sets (stdlib v7.0)

View Source

Sets are collections of elements with no duplicate elements.

The data representing a set as used by this module is to be regarded as opaque by other modules. In abstract terms, the representation is a composite type of existing Erlang terms. See note on data types. Any code assuming knowledge of the format is running on thin ice.

This module provides the same interface as the ordsets module but with an undefined representation. One key difference is that this module considers two elements as different if they do not match (=:=), whereas ordsets considers them different if and only if they do not compare equal (==).

Erlang/OTP 24.0 introduced a new more performant representation for sets which has become the default in Erlang/OTP 28. Developers can use the old representation by passing the {version, 1} flag to new/1 and from_list/2. Functions that work on two sets, such as union/2, will work with sets of different versions. In such cases, there is no guarantee about the version of the returned set. Explicit conversion from the old version to the new one can be done with sets:from_list(sets:to_list(Old), [{version,2}]).

Compatibility

The following functions in this module also exist and provide the same functionality in the gb_sets and ordsets modules. That is, by only changing the module name for each call, you can try out different set representations.

Note

While the three set implementations offer the same functionality with respect to the aforementioned functions, their overall behavior may differ. As mentioned, this module considers elements as different if and only if they do not match (=:=), while both ordsets and gb_sets consider elements as different if and only if they do not compare equal (==).

Examples

1> sets:is_element(1.0, sets:from_list([1])).
false
2> ordsets:is_element(1.0, ordsets:from_list([1])).
true
3> gb_sets:is_element(1.0, gb_sets:from_list([1])).
true

See Also

gb_sets, ordsets

Summary

Types

As returned by new/0.

Functions

Returns a new set formed from Set1 with Element inserted.

Returns a copy of Set1 with Element removed.

Filters elements in Set1 using predicate function Pred.

Calls Fun(Elem) for each Elem of Set1 to update or remove elements from Set1.

Folds Function over every element in Set and returns the final value of the accumulator.

Returns a set of the elements in List.

Returns a set of the elements in List of the given version.

Returns the intersection of the non-empty list of sets.

Returns the intersection of Set1 and Set2.

Returns true if Set1 and Set2 are disjoint; otherwise, returns false.

Returns true if Element is an element of Set; otherwise, returns false.

Returns true if Set is an empty set; otherwise, returns false.

Returns true if Set1 and Set2 are equal, that is, if every element of one set is also a member of the other set; otherwise, returns false.

Returns true if Set appears to be a set of elements; otherwise, returns false.

Returns true when every element of Set1 is also a member of Set2; otherwise, returns false.

Maps elements in Set1 with mapping function Fun.

Returns a new empty set.

Returns a new empty set of the given version.

Returns the number of elements in Set.

Returns the elements of Set1 that are not elements in Set2.

Returns the elements of Set as a list.

Returns the union of a list of sets.

Returns the union of Set1 and Set2.

Types

set()

-type set() :: set(_).

set(Element)

-opaque set(Element)

As returned by new/0.

Functions

add_element(Element, Set1)

-spec add_element(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Returns a new set formed from Set1 with Element inserted.

Examples

1> S0 = sets:new().
2> S1 = sets:add_element(7, S0).
3> sets:to_list(S1).
[7]
4> S2 = sets:add_element(42, S1).
5> lists:sort(sets:to_list(S2)).
[7,42]
6> S2 = sets:add_element(42, S1).
7> lists:sort(sets:to_list(S2)).
[7,42]

del_element(Element, Set1)

-spec del_element(Element, Set1) -> Set2 when Set1 :: set(Element), Set2 :: set(Element).

Returns a copy of Set1 with Element removed.

Examples

1> S = sets:from_list([a,b]).
2> sets:to_list(sets:del_element(b, S)).
[a]
3> S = sets:del_element(x, S).
4> lists:sort(sets:to_list(S)).
[a,b]

filter(Pred, Set1)

-spec filter(Pred, Set1) -> Set2
                when Pred :: fun((Element) -> boolean()), Set1 :: set(Element), Set2 :: set(Element).

Filters elements in Set1 using predicate function Pred.

Examples

1> S = sets:from_list([1,2,3,4,5,6,7]).
2> IsEven = fun(N) -> N rem 2 =:= 0 end.
3> Filtered = sets:filter(IsEven, S).
4> lists:sort(sets:to_list(Filtered)).
[2,4,6]

filtermap(Fun, Set1)

(since OTP 27.0)
-spec filtermap(Fun, Set1) -> Set2
                   when
                       Fun :: fun((Element1) -> boolean() | {true, Element2}),
                       Set1 :: set(Element1),
                       Set2 :: set(Element1 | Element2).

Calls Fun(Elem) for each Elem of Set1 to update or remove elements from Set1.

Fun/1 must return either a Boolean or a tuple {true, Value}. The function returns the set of elements for which Fun returns a new value, with true being equivalent to {true, Elem}.

sets:filtermap/2 behaves as if it were defined as follows:

filtermap(Fun, Set1) ->
    sets:from_list(lists:filtermap(Fun, Set1)).

Examples

1> S = sets:from_list([2,4,5,6,8,9])
2> F = fun(X) ->
           case X rem 2 of
               0 -> {true, X div 2};
               1 -> false
           end
        end.
3> Set = sets:filtermap(F, S).
4> lists:sort(sets:to_list(Set)).
[1,2,3,4]

fold(Function, Acc0, Set)

-spec fold(Function, Acc0, Set) -> Acc1
              when
                  Function :: fun((Element, AccIn) -> AccOut),
                  Set :: set(Element),
                  Acc0 :: Acc,
                  Acc1 :: Acc,
                  AccIn :: Acc,
                  AccOut :: Acc.

Folds Function over every element in Set and returns the final value of the accumulator.

The evaluation order is undefined.

Examples

1> S = sets:from_list([1,2,3,4]).
2> Plus = fun erlang:'+'/2.
3> sets:fold(Plus, 0, S).
10

from_list(List)

-spec from_list(List) -> Set when List :: [Element], Set :: set(Element).

Returns a set of the elements in List.

Examples

1> S = sets:from_list([a,b,c]).
2> lists:sort(sets:to_list(S)).
[a,b,c]

from_list/2

(since OTP 24.0)
-spec from_list(List, [{version, 1..2}]) -> Set when List :: [Element], Set :: set(Element).

Returns a set of the elements in List of the given version.

Examples

1> S = sets:from_list([a,b,c], [{version, 1}]).
2> lists:sort(sets:to_list(S)).
[a,b,c]

intersection(SetList)

-spec intersection(SetList) -> Set when SetList :: [set(Element), ...], Set :: set(Element).

Returns the intersection of the non-empty list of sets.

The intersection of multiple sets is a new set that contains only the elements that are present in all sets.

Examples

1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([d,e,f]).
3> S2 = sets:from_list([q,r])
4> Sets = [S0, S1, S2].
5> sets:to_list(sets:intersection([S0, S1, S2])).
[]
6> sets:to_list(sets:intersection([S0, S1])).
[d]
7> sets:intersection([]).
** exception error: no function clause matching sets:intersection([])

intersection(Set1, Set2)

-spec intersection(Set1, Set2) -> Set3
                      when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Returns the intersection of Set1 and Set2.

The intersection of two sets is a new set that contains only the elements that are present in both sets.

Examples

1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([c,d,e,f]).
3> S2 = sets:from_list([q,r]).
4> Intersection = sets:intersection(S0, S1).
5> lists:sort(sets:to_list(Intersection)).
[c,d]
6> sets:to_list(sets:intersection(S1, S2)).
[]

is_disjoint(Set1, Set2)

-spec is_disjoint(Set1, Set2) -> boolean() when Set1 :: set(Element), Set2 :: set(Element).

Returns true if Set1 and Set2 are disjoint; otherwise, returns false.

Two sets are disjoint if they have no elements in common.

This function is equivalent to sets:intersection(Set1, Set2) =:= [], but faster.

Examples

1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([d,e,f]).
3> S2 = sets:from_list([q,r])
4> sets:is_disjoint(S0, S1).
false
5> sets:is_disjoint(S1, S2).
true

is_element(Element, Set)

-spec is_element(Element, Set) -> boolean() when Set :: set(Element).

Returns true if Element is an element of Set; otherwise, returns false.

Examples

1> S = sets:from_list([a,b,c]).
2> sets:is_element(42, S).
false
3> sets:is_element(b, S).
true

is_empty(Set)

(since OTP 21.0)
-spec is_empty(Set) -> boolean() when Set :: set().

Returns true if Set is an empty set; otherwise, returns false.

Examples

1> sets:is_empty(sets:new()).
true
2> sets:is_empty(sets:from_list([1])).
false

is_equal(Set1, Set2)

(since OTP 27.0)
-spec is_equal(Set1, Set2) -> boolean() when Set1 :: set(), Set2 :: set().

Returns true if Set1 and Set2 are equal, that is, if every element of one set is also a member of the other set; otherwise, returns false.

Examples

1> Empty = sets:new().
2> S = sets:from_list([a,b]).
3> sets:is_equal(S, S)
true
4> sets:is_equal(S, Empty)
false
5> OldSet = sets:from_list([a,b], [{version,1}]).
6> sets:is_equal(S, OldSet).
true
7> S =:= OldSet.
false

is_set(Set)

-spec is_set(Set) -> boolean() when Set :: term().

Returns true if Set appears to be a set of elements; otherwise, returns false.

Note

Note that the test is shallow and will return true for any term that coincides with the possible representations of a set. See also note on data types.

Furthermore, since sets are opaque, calling this function on terms that are not sets could result in dialyzer warnings.

Examples

1> sets:is_set(sets:new()).
true
2> sets:is_set(sets:new([{version,1}])).
true
3> sets:is_set(0).
false

is_subset(Set1, Set2)

-spec is_subset(Set1, Set2) -> boolean() when Set1 :: set(Element), Set2 :: set(Element).

Returns true when every element of Set1 is also a member of Set2; otherwise, returns false.

Examples

1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([c,d]).
3> sets:is_subset(S1, S0).
true
4> sets:is_subset(S0, S1).
false
5> sets:is_subset(S0, S0).
true

map(Fun, Set1)

(since OTP 27.0)
-spec map(Fun, Set1) -> Set2
             when Fun :: fun((Element1) -> Element2), Set1 :: set(Element1), Set2 :: set(Element2).

Maps elements in Set1 with mapping function Fun.

Examples

1> S = sets:from_list([1,2,3,4,5,6,7]).
2> F = fun(N) -> N div 2 end.
3> Mapped = sets:map(F, S).
4> lists:sort(sets:to_list(Mapped)).
[0,1,2,3]

new()

-spec new() -> set(none()).

Returns a new empty set.

Examples

1> sets:to_list(sets:new()).
[]

new/1

(since OTP 24.0)
-spec new([{version, 1..2}]) -> set(none()).

Returns a new empty set of the given version.

Examples

1> sets:to_list(sets:new([{version, 1}])).
[]
2> sets:new() =:= sets:new([{version, 2}]).
true

size(Set)

-spec size(Set) -> non_neg_integer() when Set :: set().

Returns the number of elements in Set.

Examples

1> sets:size(sets:new()).
0
2> sets:size(sets:from_list([4,5,6])).
3

subtract(Set1, Set2)

-spec subtract(Set1, Set2) -> Set3 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Returns the elements of Set1 that are not elements in Set2.

Examples

1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([c,d,e,f]).
3> lists:sort(sets:to_list(sets:subtract(S0, S1))).
[a,b]
4> lists:sort(sets:to_list(sets:subtract(S1, S0))).
[e,f]

to_list(Set)

-spec to_list(Set) -> List when Set :: set(Element), List :: [Element].

Returns the elements of Set as a list.

The order of the returned elements is undefined.

Examples

1> S = sets:from_list([1,2,3]).
2> lists:sort(sets:to_list(S)).
[1,2,3]

union(SetList)

-spec union(SetList) -> Set when SetList :: [set(Element)], Set :: set(Element).

Returns the union of a list of sets.

The union of multiple sets is a new set that contains all the elements from all sets, without duplicates.

Examples

1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([d,e,f]).
3> S2 = sets:from_list([q,r])
4> Sets = [S0, S1, S2].
5> Union = sets:union(Sets).
6> lists:sort(sets:to_list(Union)).
[a,b,c,d,e,f,q,r]

union(Set1, Set2)

-spec union(Set1, Set2) -> Set3 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).

Returns the union of Set1 and Set2.

The union of two sets is a new set that contains all the elements from both sets, without duplicates.

Examples

1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([c,d,e,f]).
3> Union = sets:union(S0, S1).
4> lists:sort(sets:to_list(Union)).
[a,b,c,d,e,f]