sets (stdlib v7.0)
View SourceSets are collections of elements with no duplicate elements.
The data representing a set as used by this module is to be regarded as opaque by other modules. In abstract terms, the representation is a composite type of existing Erlang terms. See note on data types. Any code assuming knowledge of the format is running on thin ice.
This module provides the same interface as the ordsets
module but
with an undefined representation. One key difference is that this
module considers two elements as different if they do not match
(=:=
), whereas ordsets
considers them different if and only if
they do not compare equal (==
).
Erlang/OTP 24.0 introduced a new more performant representation for sets which
has become the default in Erlang/OTP 28. Developers can use the old representation
by passing the {version, 1}
flag to new/1
and from_list/2
. Functions that
work on two sets, such as union/2
, will work with sets of different
versions. In such cases, there is no guarantee about the version of the returned set.
Explicit conversion from the old version to the new one can be done with
sets:from_list(sets:to_list(Old), [{version,2}])
.
Compatibility
The following functions in this module also exist and provide the same
functionality in the gb_sets
and ordsets
modules. That is, by only
changing the module name for each call, you can try out different set
representations.
add_element/2
del_element/2
filter/2
filtermap/2
fold/3
from_list/1
intersection/1
intersection/2
is_element/2
is_empty/1
is_equal/2
is_set/1
is_subset/2
map/2
new/0
size/1
subtract/2
to_list/1
union/1
union/2
Note
While the three set implementations offer the same functionality with
respect to the aforementioned functions, their overall behavior may differ.
As mentioned, this module considers elements as different if and only if they
do not match (=:=
), while both ordsets
and gb_sets
consider elements
as different if and only if they do not compare equal (==
).
Examples
1> sets:is_element(1.0, sets:from_list([1])).
false
2> ordsets:is_element(1.0, ordsets:from_list([1])).
true
3> gb_sets:is_element(1.0, gb_sets:from_list([1])).
true
See Also
Summary
Functions
Returns a new set formed from Set1
with Element
inserted.
Returns a copy of Set1
with Element
removed.
Filters elements in Set1
using predicate function Pred
.
Calls Fun(Elem)
for each Elem
of Set1
to update or remove
elements from Set1
.
Folds Function
over every element in Set
and returns the final value of
the accumulator.
Returns a set of the elements in List
.
Returns a set of the elements in List
of the given version.
Returns the intersection of the non-empty list of sets.
Returns the intersection of Set1
and Set2
.
Returns true
if Set1
and Set2
are disjoint; otherwise, returns
false
.
Returns true
if Element
is an element of Set
; otherwise, returns
false
.
Returns true
if Set
is an empty set; otherwise, returns false
.
Returns true
if Set1
and Set2
are equal, that is, if every element
of one set is also a member of the other set; otherwise, returns false
.
Returns true
if Set
appears to be a set of elements; otherwise,
returns false
.
Returns true
when every element of Set1
is also a member of Set2
;
otherwise, returns false
.
Maps elements in Set1
with mapping function Fun
.
Returns a new empty set.
Returns a new empty set of the given version.
Returns the number of elements in Set
.
Returns the elements of Set1
that are not elements in Set2
.
Returns the elements of Set
as a list.
Returns the union of a list of sets.
Returns the union of Set1
and Set2
.
Types
Functions
Returns a new set formed from Set1
with Element
inserted.
Examples
1> S0 = sets:new().
2> S1 = sets:add_element(7, S0).
3> sets:to_list(S1).
[7]
4> S2 = sets:add_element(42, S1).
5> lists:sort(sets:to_list(S2)).
[7,42]
6> S2 = sets:add_element(42, S1).
7> lists:sort(sets:to_list(S2)).
[7,42]
Returns a copy of Set1
with Element
removed.
Examples
1> S = sets:from_list([a,b]).
2> sets:to_list(sets:del_element(b, S)).
[a]
3> S = sets:del_element(x, S).
4> lists:sort(sets:to_list(S)).
[a,b]
-spec filter(Pred, Set1) -> Set2 when Pred :: fun((Element) -> boolean()), Set1 :: set(Element), Set2 :: set(Element).
Filters elements in Set1
using predicate function Pred
.
Examples
1> S = sets:from_list([1,2,3,4,5,6,7]).
2> IsEven = fun(N) -> N rem 2 =:= 0 end.
3> Filtered = sets:filter(IsEven, S).
4> lists:sort(sets:to_list(Filtered)).
[2,4,6]
-spec filtermap(Fun, Set1) -> Set2 when Fun :: fun((Element1) -> boolean() | {true, Element2}), Set1 :: set(Element1), Set2 :: set(Element1 | Element2).
Calls Fun(Elem)
for each Elem
of Set1
to update or remove
elements from Set1
.
Fun/1
must return either a Boolean or a tuple {true, Value}
. The
function returns the set of elements for which Fun
returns a new
value, with true
being equivalent to {true, Elem}
.
sets:filtermap/2
behaves as if it were defined as follows:
filtermap(Fun, Set1) ->
sets:from_list(lists:filtermap(Fun, Set1)).
Examples
1> S = sets:from_list([2,4,5,6,8,9])
2> F = fun(X) ->
case X rem 2 of
0 -> {true, X div 2};
1 -> false
end
end.
3> Set = sets:filtermap(F, S).
4> lists:sort(sets:to_list(Set)).
[1,2,3,4]
-spec fold(Function, Acc0, Set) -> Acc1 when Function :: fun((Element, AccIn) -> AccOut), Set :: set(Element), Acc0 :: Acc, Acc1 :: Acc, AccIn :: Acc, AccOut :: Acc.
Folds Function
over every element in Set
and returns the final value of
the accumulator.
The evaluation order is undefined.
Examples
1> S = sets:from_list([1,2,3,4]).
2> Plus = fun erlang:'+'/2.
3> sets:fold(Plus, 0, S).
10
-spec from_list(List) -> Set when List :: [Element], Set :: set(Element).
Returns a set of the elements in List
.
Examples
1> S = sets:from_list([a,b,c]).
2> lists:sort(sets:to_list(S)).
[a,b,c]
-spec from_list(List, [{version, 1..2}]) -> Set when List :: [Element], Set :: set(Element).
Returns a set of the elements in List
of the given version.
Examples
1> S = sets:from_list([a,b,c], [{version, 1}]).
2> lists:sort(sets:to_list(S)).
[a,b,c]
Returns the intersection of the non-empty list of sets.
The intersection of multiple sets is a new set that contains only the elements that are present in all sets.
Examples
1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([d,e,f]).
3> S2 = sets:from_list([q,r])
4> Sets = [S0, S1, S2].
5> sets:to_list(sets:intersection([S0, S1, S2])).
[]
6> sets:to_list(sets:intersection([S0, S1])).
[d]
7> sets:intersection([]).
** exception error: no function clause matching sets:intersection([])
-spec intersection(Set1, Set2) -> Set3 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).
Returns the intersection of Set1
and Set2
.
The intersection of two sets is a new set that contains only the elements that are present in both sets.
Examples
1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([c,d,e,f]).
3> S2 = sets:from_list([q,r]).
4> Intersection = sets:intersection(S0, S1).
5> lists:sort(sets:to_list(Intersection)).
[c,d]
6> sets:to_list(sets:intersection(S1, S2)).
[]
Returns true
if Set1
and Set2
are disjoint; otherwise, returns
false
.
Two sets are disjoint if they have no elements in common.
This function is equivalent to sets:intersection(Set1, Set2) =:= []
,
but faster.
Examples
1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([d,e,f]).
3> S2 = sets:from_list([q,r])
4> sets:is_disjoint(S0, S1).
false
5> sets:is_disjoint(S1, S2).
true
Returns true
if Element
is an element of Set
; otherwise, returns
false
.
Examples
1> S = sets:from_list([a,b,c]).
2> sets:is_element(42, S).
false
3> sets:is_element(b, S).
true
Returns true
if Set
is an empty set; otherwise, returns false
.
Examples
1> sets:is_empty(sets:new()).
true
2> sets:is_empty(sets:from_list([1])).
false
Returns true
if Set1
and Set2
are equal, that is, if every element
of one set is also a member of the other set; otherwise, returns false
.
Examples
1> Empty = sets:new().
2> S = sets:from_list([a,b]).
3> sets:is_equal(S, S)
true
4> sets:is_equal(S, Empty)
false
5> OldSet = sets:from_list([a,b], [{version,1}]).
6> sets:is_equal(S, OldSet).
true
7> S =:= OldSet.
false
Returns true
if Set
appears to be a set of elements; otherwise,
returns false
.
Note
Note that the test is shallow and will return true
for any term that
coincides with the possible representations of a set. See also note on
data types.
Furthermore, since sets are opaque, calling this function on terms
that are not sets could result in dialyzer
warnings.
Examples
1> sets:is_set(sets:new()).
true
2> sets:is_set(sets:new([{version,1}])).
true
3> sets:is_set(0).
false
Returns true
when every element of Set1
is also a member of Set2
;
otherwise, returns false
.
Examples
1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([c,d]).
3> sets:is_subset(S1, S0).
true
4> sets:is_subset(S0, S1).
false
5> sets:is_subset(S0, S0).
true
-spec map(Fun, Set1) -> Set2 when Fun :: fun((Element1) -> Element2), Set1 :: set(Element1), Set2 :: set(Element2).
Maps elements in Set1
with mapping function Fun
.
Examples
1> S = sets:from_list([1,2,3,4,5,6,7]).
2> F = fun(N) -> N div 2 end.
3> Mapped = sets:map(F, S).
4> lists:sort(sets:to_list(Mapped)).
[0,1,2,3]
Returns a new empty set.
Examples
1> sets:to_list(sets:new()).
[]
Returns a new empty set of the given version.
Examples
1> sets:to_list(sets:new([{version, 1}])).
[]
2> sets:new() =:= sets:new([{version, 2}]).
true
-spec size(Set) -> non_neg_integer() when Set :: set().
Returns the number of elements in Set
.
Examples
1> sets:size(sets:new()).
0
2> sets:size(sets:from_list([4,5,6])).
3
-spec subtract(Set1, Set2) -> Set3 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).
Returns the elements of Set1
that are not elements in Set2
.
Examples
1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([c,d,e,f]).
3> lists:sort(sets:to_list(sets:subtract(S0, S1))).
[a,b]
4> lists:sort(sets:to_list(sets:subtract(S1, S0))).
[e,f]
-spec to_list(Set) -> List when Set :: set(Element), List :: [Element].
Returns the elements of Set
as a list.
The order of the returned elements is undefined.
Examples
1> S = sets:from_list([1,2,3]).
2> lists:sort(sets:to_list(S)).
[1,2,3]
Returns the union of a list of sets.
The union of multiple sets is a new set that contains all the elements from all sets, without duplicates.
Examples
1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([d,e,f]).
3> S2 = sets:from_list([q,r])
4> Sets = [S0, S1, S2].
5> Union = sets:union(Sets).
6> lists:sort(sets:to_list(Union)).
[a,b,c,d,e,f,q,r]
-spec union(Set1, Set2) -> Set3 when Set1 :: set(Element), Set2 :: set(Element), Set3 :: set(Element).
Returns the union of Set1
and Set2
.
The union of two sets is a new set that contains all the elements from both sets, without duplicates.
Examples
1> S0 = sets:from_list([a,b,c,d]).
2> S1 = sets:from_list([c,d,e,f]).
3> Union = sets:union(S0, S1).
4> lists:sort(sets:to_list(Union)).
[a,b,c,d,e,f]