View Source cerl (compiler v8.5)
Core Erlang abstract syntax trees.
Note
The public interface of the Erlang compiler can be found in module
compile
.This module is an internal part of the compiler. Its API is not guaranteed to remain compatible between releases.
This module defines an abstract data type for representing Core Erlang source code as syntax trees.
A recommended starting point for the first-time user is the documentation of the
function type/1
.
Note
This module deals with the composition and decomposition of syntactic entities (as opposed to semantic ones); its purpose is to hide all direct references to the data structures used to represent these entities. With few exceptions, the functions in this module perform no semantic interpretation of their inputs, and in general, the user is assumed to pass type-correct arguments - if this is not done, the effects are not defined.
Currently, the internal data structure used is the same as the record-based data structures used traditionally in the Beam compiler.
The internal representations of abstract syntax trees are subject to change without notice, and should not be documented outside this module. Furthermore, we do not give any guarantees on how an abstract syntax tree may or may not be represented, with the following exceptions: no syntax tree is represented by a single atom, such as
none
, by a list constructor[X | Y]
, or by the empty list[]
. This can be relied on when writing functions that operate on syntax trees.
Summary
Functions
Creates a syntax tree corresponding to an Erlang term.
Appends Annotations
to the list of user annotations of Node
.
Returns the pattern subtree of an abstract pattern alias.
Returns the variable subtree of an abstract pattern alias.
See also: abstract/1
.
See also: c_atom/1
.
See also: c_binary/1
.
Equivalent to ann_c_bitstr(As, Value, Size, abstract(1), Type, Flags).
See also: c_catch/1
.
See also: c_char/1
.
Equivalent to ann_c_clause(As, Patterns, c_atom(true), Body).
See also: c_cons/2
.
See also: c_float/1
.
See also: c_fun/2
.
See also: c_int/1
.
See also: c_map/1
.
See also: c_map_pattern/2
See also: ann_c_module/4
, c_module/4
.
See also: c_nil/0
.
Equivalent to ann_c_receive(As, Clauses, c_atom(infinity), c_atom(true)).
See also: c_seq/2
.
See also: c_string/1
.
See also: c_tuple/1
.
See also: c_values/1
.
See also: c_var/1
.
Creates a syntax tree with the given annotations, type and subtrees.
Returns the list of argument subtrees of an abstract function application.
Returns the number of argument subtrees of an abstract function application.
Returns the operator subtree of an abstract function application.
Returns the literal string represented by an abstract atom. This always includes surrounding single-quote characters.
Returns the printname of an abstract atom.
Returns the value represented by an abstract atom.
Returns the list of segment subtrees of an abstract binary-template.
Returns the total size in bits of an abstract bit-string template.
Returns the flags subtree of an abstract bit-string template.
Returns the size subtree of an abstract bit-string template.
Returns the type subtree of an abstract bit-string template.
Returns the unit subtree of an abstract bit-string template.
Returns the value subtree of an abstract bit-string template.
Creates an abstract pattern alias.
Creates an abstract function application.
Creates an abstract atom literal.
Creates an abstract binary-template.
Equivalent to c_bitstr(Value, abstract(all), abstract(1), Type, Flags).
Creates an abstract bit-string template.
Creates an abstract inter-module call.
Creates an abstract case-expression.
Creates an abstract catch-expression.
Creates an abstract character literal.
Equivalent to c_clause(Patterns, c_atom(true), Body).
Creates an an abstract clause.
Creates an abstract list constructor.
Creates an abstract list constructor skeleton.
Creates an abstract floating-point literal.
Equivalent to c_var({Name, Arity}).
Creates an abstract fun-expression.
Creates an abstract integer literal.
Creates an abstract let-expression.
Creates an abstract letrec-expression.
Creates an abstract map constructor.
Creates an abstract map update expression.
Creates an abstract map pair using the assoc
operator.
Creates an abstract map pair using the exact
operator.
Creates an abstract map pattern.
Creates an abstract module definition.
Creates an abstract empty list.
Creates an abstract primitive operation call.
Creates an abstract receive-expression.
Creates an abstract sequencing expression.
Creates an abstract string literal.
Creates an abstract try-expression.
Creates an abstract tuple.
Creates an abstract tuple skeleton.
Creates an abstract value list.
Creates an abstract variable.
Returns the list of argument subtrees of an abstract inter-module call.
Returns the number of argument subtrees of an abstract inter-module call.
Returns the module subtree of an abstract inter-module call.
Returns the name subtree of an abstract inter-module call.
Returns the argument subtree of an abstract case-expression.
Equivalent to clause_arity(hd(case_clauses(Node)))
, but
potentially more efficient.
Returns the list of clause subtrees of an abstract case-expression.
Returns the body subtree of an abstract catch-expression.
Returns the literal string represented by an abstract character. This includes a
leading $
character.
Returns the value represented by an abstract character literal.
Returns the number of pattern subtrees of an abstract clause.
Returns the body subtree of an abstract clause.
Returns the guard subtree of an abstract clause.
Returns the list of pattern subtrees of an abstract clause.
Returns the list of all abstract variables in the patterns of an abstract clause.
Returns the Erlang term represented by a syntax tree.
Returns the head subtree of an abstract list constructor.
Returns the tail subtree of an abstract list constructor.
Copies the list of user annotations from Source
to Target
.
Returns the number of subtrees of a data constructor node.
Returns the list of subtrees of a data constructor node.
Returns a type descriptor for a data constructor node. (Cf.
is_data/1
.)
Returns the numeral string represented by a floating-point literal node.
Returns the value represented by a floating-point literal node.
Returns the arity part of an abstract function name variable.
Returns the identifier part of an abstract function name variable.
Ensures that literals have a compact representation.
Translates an explicit record representation to a corresponding abstract syntax tree.
Returns the number of parameter subtrees of an abstract fun-expression.
Returns the body subtree of an abstract fun-expression.
Returns the list of parameter subtrees of an abstract fun-expression.
Returns the list of user annotations associated with a syntax tree node.
Returns the numeral string represented by an integer literal node.
Returns the value represented by an integer literal node.
Returns true
if Node
is an abstract pattern alias, otherwise false
.
Returns true
if Node
is an abstract function application, otherwise false
.
Returns true
if Node
represents an atom literal, otherwise false
.
Returns true
if Node
is an abstract binary-template, otherwise false
.
Returns true
if Node
is an abstract bit-string template, otherwise false
.
Returns true
if Node
is an abstract inter-module call expression, otherwise
false
.
Returns true
if Node
is an abstract case-expression, otherwise false
.
Returns true
if Node
is an abstract catch-expression, otherwise false
.
Returns true
if Node
may represent a character literal, otherwise false
.
Returns true
if Node
is an abstract clause, otherwise false
.
Returns true
if Node
is an abstract list constructor, otherwise false
.
Returns true
if Node
represents a floating-point literal, otherwise false
.
Returns true
if Node
is an abstract function name variable, otherwise
false
.
Returns true
if Node
is an abstract fun-expression, otherwise false
.
Returns true
if Node
represents an integer literal, otherwise false
.
Returns true
if Node
is an abstract let-expression, otherwise false
.
Returns true
if Node
is an abstract letrec-expression, otherwise false
.
Returns true
if Node
represents a proper list, otherwise false
.
Returns true
if Node
is any kind of abstract map (for constructing,
updating or matching), otherwise false
.
Returns true
if Node
represents an empty abstract map, otherwise false
.
Returns true
if Node
is an abstract map pattern, otherwise false
.
Returns true
if Node
is an abstract module definition, otherwise false
.
Returns true
if Node
is an abstract empty list, otherwise false
.
Returns true
if Node
is an abstract primitive operation call, otherwise
false
.
Returns true
if Node
is an abstract receive-expression, otherwise false
.
Returns true
if Node
is an abstract sequencing expression, otherwise
false
.
Returns true
if Node
may represent a string literal, otherwise false
.
Returns true
if Node
is an abstract try-expression, otherwise false
.
Returns true
if Node
is an abstract tuple, otherwise false
.
Returns true
if Node
is an abstract value list, otherwise false
.
Returns true
if Node
is an abstract variable, otherwise false
.
Returns true
if Node
represents a data constructor, otherwise false
.
Returns true
if Node
is a leaf node, otherwise false
.
Returns true
if Node
represents a literal term, otherwise false
.
Returns true
if Term
can be represented as a literal, otherwise false
.
Returns true
if Node
may represent a "printing" character, otherwise
false
. (Cf. is_c_char/1
.)
Returns true
if Node
may represent a string literal containing only
"printing" characters, otherwise false
.
Returns the argument subtree of an abstract let-expression.
Returns the number of left-hand side variables of an abstract let-expression.
Returns the body subtree of an abstract let-expression.
Returns the list of left-hand side variables of an abstract let-expression.
Returns the body subtree of an abstract letrec-expression.
Returns the list of definitions of an abstract letrec-expression.
Returns the list of left-hand side function variable subtrees of a letrec-expression.
Returns the list of element subtrees of an abstract list.
Returns the number of element subtrees of an abstract list.
Creates a data constructor node with the specified type and subtrees. (Cf.
data_type/1
.)
Like make_data/2
, but analogous to
c_tuple_skel/1
and c_cons_skel/2
.
Equivalent to make_list(List, none)
Creates an abstract list from the elements in List
and the optional Tail
.
Creates a syntax tree with the given type and subtrees.
Returns the argument subtree of an abstract map.
Returns the list of map pair subtrees of an abstract map.
Returns the key subtree of an abstract map pair.
Returns the operation subtree of an abstract map pair.
Returns the value subtree of an abstract map pair.
Creates a meta-representation of a syntax tree.
Returns the list of pairs of attribute key/value subtrees of an abstract module definition.
Returns the list of function definitions of an abstract module definition.
Returns the list of exports subtrees of an abstract module definition.
Returns the name subtree of an abstract module definition.
Returns the list of left-hand side function variable subtrees of an abstract module definition.
Returns the list of all abstract variables in the given patterns.
Returns the list of all abstract variables in a pattern.
Returns the list of argument subtrees of an abstract primitive operation call.
Returns the number of argument subtrees of an abstract primitive operation call.
Returns the name subtree of an abstract primitive operation call.
Returns the action subtree of an abstract receive-expression.
Returns the list of clause subtrees of an abstract receive-expression.
Returns the timeout subtree of an abstract receive-expression.
Returns the argument subtree of an abstract sequencing expression.
Returns the body subtree of an abstract sequencing expression.
Sets the list of user annotations of Node
to Annotations
.
Returns the literal string represented by an abstract string. This includes
surrounding double-quote characters "..."
.
Returns the value represented by an abstract string literal.
Returns the grouped list of all subtrees of a node.
Translates an abstract syntax tree to a corresponding explicit record representation.
Returns the expression subtree of an abstract try-expression.
Returns the success body subtree of an abstract try-expression.
Returns the list of exception variable subtrees of an abstract try-expression.
Returns the exception body subtree of an abstract try-expression.
Returns the list of success variable subtrees of an abstract try-expression.
Returns the number of element subtrees of an abstract tuple.
Returns the list of element subtrees of an abstract tuple.
Returns the type tag of Node
.
Ensures that literals have a fully expanded representation.
See also: c_alias/2
.
See also: c_binary/1
.
Equivalent to update_c_bitstr(Node, Value, Size, abstract(1), Type, Flags).
See also: c_case/2
.
See also: c_catch/1
.
See also: c_cons/2
.
Like update_c_fname/3
, but takes the arity from Node
.
See also: c_fun/2
.
See also: c_map/1
, c_map_pattern/1
.
See also: c_primop/2
.
See also: c_seq/2
.
See also: c_tuple/1
.
See also: c_values/1
.
See also: c_var/1
.
See also: make_data/2
.
Equivalent to update_list(Old, List, none)
See also: make_list/2
, update_list/2
.
Creates a syntax tree with the given subtrees, and the same type and annotations
as the node Node
.
Creates a syntax tree with the given type and subtrees, and the same annotations
as the node Node
.
Returns the number of element subtrees of an abstract value list.
Returns the list of element subtrees of an abstract value list.
Returns the name of an abstract variable.
Types
-type c_binary() :: #c_binary{anno :: list(), segments :: [cerl:c_bitstr()]}.
-type c_map() :: #c_map{anno :: list(), arg :: cerl:c_var() | cerl:c_literal(), es :: [cerl:c_map_pair()], is_pat :: boolean()}.
-type c_var() :: #c_var{anno :: list(), name :: cerl:var_name()}.
-type cerl() :: c_alias() | c_apply() | c_binary() | c_bitstr() | c_call() | c_case() | c_catch() | c_clause() | c_cons() | c_fun() | c_let() | c_letrec() | c_literal() | c_map() | c_map_pair() | c_module() | c_opaque() | c_primop() | c_receive() | c_seq() | c_try() | c_tuple() | c_values() | c_var().
-type ctype() ::
alias | apply | binary | bitstr | call | 'case' | 'catch' | clause | cons | 'fun' | 'let' |
letrec | literal | map | map_pair | module | primop | 'receive' | seq | 'try' | tuple |
values | var.
-type dtype() :: cons | tuple | {atomic, value()}.
Functions
Creates a syntax tree corresponding to an Erlang term.
Term
must be a literal term, that is, one that can be represented as
a source code literal. Thus, it may not contain a process identifier,
port, reference, binary or function value as a subterm.
Note: This is a constant time operation.
See also: ann_abstract/2
, concrete/1
, is_literal/1
, is_literal_term/1
.
Appends Annotations
to the list of user annotations of Node
.
Note: this is equivalent to
set_ann(Node, Annotations ++ get_ann(Node))
, but potentially
more efficient.
Returns the pattern subtree of an abstract pattern alias.
See also: c_alias/2
.
Returns the variable subtree of an abstract pattern alias.
See also: c_alias/2
.
See also: abstract/1
.
See also: c_alias/2
.
See also: c_apply/2
.
See also: c_atom/1
.
See also: c_binary/1
.
-spec ann_c_bitstr(Annotations :: [term()], Value :: cerl(), Size :: cerl(), Type :: cerl(), Flags :: cerl()) -> c_bitstr().
Equivalent to ann_c_bitstr(As, Value, Size, abstract(1), Type, Flags).
-spec ann_c_bitstr(Annotations :: [term()], Value :: cerl(), Size :: cerl(), Unit :: cerl(), Type :: cerl(), Flags :: cerl()) -> c_bitstr().
See also: ann_c_bitstr/5
, c_bitstr/5
.
-spec ann_c_call(Annotations :: [term()], Module :: cerl(), Name :: cerl(), Arguments :: [cerl()]) -> c_call().
See also: c_call/3
.
See also: c_case/2
.
See also: c_catch/1
.
See also: c_char/1
.
Equivalent to ann_c_clause(As, Patterns, c_atom(true), Body).
See also: c_clause/3
.
-spec ann_c_clause(Annotations :: [term()], Patterns :: [cerl()], Guard :: cerl(), Body :: cerl()) -> c_clause().
See also: ann_c_clause/3
, c_clause/3
.
-spec ann_c_cons(Annotations :: [term()], Head :: cerl(), Tail :: cerl()) -> c_literal() | c_cons().
See also: c_cons/2
.
See also: c_cons_skel/2
.
See also: c_float/1
.
Equivalent to ann_c_var(As, {Atom, Arity}).
See also: c_fname/2
.
See also: c_fun/2
.
See also: c_int/1
.
-spec ann_c_let(Annotations :: [term()], Variables :: [cerl()], Argument :: cerl(), Body :: cerl()) -> c_let().
See also: c_let/3
.
-spec ann_c_letrec(Annotations :: [term()], Definitions :: [{cerl(), cerl()}], Body :: cerl()) -> c_letrec().
See also: c_letrec/2
.
-spec ann_c_map(Annotations :: [term()], Pairs :: [c_map_pair()]) -> c_map() | c_literal().
See also: c_map/1
.
-spec ann_c_map(Annotations :: [term()], Argument :: c_map() | c_literal(), Pairs :: [c_map_pair()]) -> c_map() | c_literal().
See also: c_map/2
-spec ann_c_map_pair(Annotations :: [term()], Operation :: cerl(), Key :: cerl(), Value :: cerl()) -> c_map_pair().
See also: c_map_pair/2
, c_map_pair_exact/2
.
-spec ann_c_map_pattern(Annotations :: [term()], Pairs :: [c_map_pair()]) -> c_map().
See also: c_map_pattern/2
-spec ann_c_module(Annotations :: [term()], Name :: cerl(), Exports :: [cerl()], Definitions :: [{cerl(), cerl()}]) -> c_module().
See also: ann_c_module/5
, c_module/3
.
-spec ann_c_module(Annotations :: [term()], Name :: cerl(), Exports :: [cerl()], Attributes :: [{cerl(), cerl()}], Definitions :: [{cerl(), cerl()}]) -> c_module().
See also: ann_c_module/4
, c_module/4
.
See also: c_nil/0
.
See also: c_primop/2
.
Equivalent to ann_c_receive(As, Clauses, c_atom(infinity), c_atom(true)).
See also: c_atom/1
, c_receive/3
.
-spec ann_c_receive(Annotations :: [term()], Clauses :: [cerl()], Timeout :: cerl(), Actions :: cerl()) -> c_receive().
See also: ann_c_receive/2
, c_receive/3
.
See also: c_seq/2
.
See also: c_string/1
.
ann_c_try(Annotations, Argument, Variables, Body, ExceptionVars, Handler)
View Source-spec ann_c_try(Annotations :: [term()], Argument :: cerl(), Variables :: [cerl()], Body :: cerl(), ExceptionVars :: [cerl()], Handler :: cerl()) -> c_try().
See also: c_try/5
.
See also: c_tuple/1
.
See also: c_tuple_skel/1
.
See also: c_values/1
.
See also: c_var/1
.
See also: make_data/2
.
-spec ann_make_data_skel(Annotations :: [term()], Type :: dtype(), Elements :: [cerl()]) -> c_lct().
See also: make_data_skel/2
.
Equivalent to ann_make_list(As, List, none)
See also: ann_make_list/2
, make_list/2
.
Creates a syntax tree with the given annotations, type and subtrees.
See make_tree/2
for details.
See also: make_tree/2
.
Returns the list of argument subtrees of an abstract function application.
See also: apply_arity/1
, c_apply/2
.
Returns the number of argument subtrees of an abstract function application.
Note: this is equivalent to length(apply_args(Node))
, but
potentially more efficient.
See also: apply_args/1
, c_apply/2
.
Returns the operator subtree of an abstract function application.
See also: c_apply/2
.
-spec atom_lit(Node :: cerl()) -> nonempty_string().
Returns the literal string represented by an abstract atom. This always includes surrounding single-quote characters.
Note that an abstract atom may have several literal representations, and that
the representation yielded by this function is not fixed; for example,
atom_lit(c_atom("a\012b"))
could yield the string
"\'a\\nb\'"
.
See also: c_atom/1
.
Returns the printname of an abstract atom.
See also: c_atom/1
.
Returns the value represented by an abstract atom.
See also: c_atom/1
.
Returns the list of segment subtrees of an abstract binary-template.
See also: c_binary/1
, c_bitstr/5
.
-spec bitstr_bitsize(Node :: c_bitstr()) -> all | any | utf | non_neg_integer().
Returns the total size in bits of an abstract bit-string template.
If the size field is an integer literal, the result is the product of
the size and unit values; if the size field is the atom literal all
,
the atom all
is returned. If the size is not a literal, the atom
any
is returned. If the type of the bit-string segment is one of
utf8
, utf16
or utf32
, the atom utf
is returned.
See also: c_bitstr/5
.
Returns the flags subtree of an abstract bit-string template.
See also: c_bitstr/5
.
Returns the size subtree of an abstract bit-string template.
See also: c_bitstr/5
.
Returns the type subtree of an abstract bit-string template.
See also: c_bitstr/5
.
Returns the unit subtree of an abstract bit-string template.
See also: c_bitstr/5
.
Returns the value subtree of an abstract bit-string template.
See also: c_bitstr/5
.
Creates an abstract pattern alias.
The result represents "Variable = Pattern
".
See also: alias_pat/1
, alias_var/1
, ann_c_alias/3
, c_clause/3
,
is_c_alias/1
, update_c_alias/3
.
Creates an abstract function application.
If Arguments
is [A1, ..., An]
, the result represents "apply Operator(A1, ..., An)
".
See also: ann_c_apply/3
, apply_args/1
, apply_arity/1
, apply_op/1
,
c_call/3
, c_primop/2
, is_c_apply/1
, update_c_apply/3
.
Creates an abstract atom literal.
The print name of the atom is the character sequence represented by
Name
.
Note: passing a string as argument to this function causes a corresponding atom to be created for the internal representation.
See also: ann_c_atom/2
, atom_lit/1
, atom_name/1
, atom_val/1
,
is_c_atom/1
.
Creates an abstract binary-template.
A binary object is in this context is a sequence of an arbitrary number of bits. (The number of bits used to be evenly divisible by 8, but after the introduction of bit strings in the Erlang language, the choice was made to use the binary template for all bit strings.) It is specified by zero or more bit-string template segments of arbitrary lengths (in number of bits).
If Segments
is [S1, ..., Sn]
, the result represents "#{S1, ..., Sn}#
". All the Si
must have type bitstr
.
See also: ann_c_binary/2
, binary_segments/1
, c_bitstr/5
,
is_c_binary/1
, update_c_binary/2
.
Equivalent to c_bitstr(Value, abstract(all), abstract(1), Type, Flags).
Equivalent to c_bitstr(Value, Size, abstract(1), Type, Flags)
-spec c_bitstr(Value :: cerl(), Size :: cerl(), Unit :: cerl(), Type :: cerl(), Flags :: cerl()) -> c_bitstr().
Creates an abstract bit-string template.
These can only occur as components of an abstract binary-template (see
c_binary/1
). The result represents "#<Value>(Size, Unit, Type, Flags)
", where Unit
must represent a positive integer constant,
Type
must represent a constant atom (one of 'integer'
, 'float'
,
'binary'
, 'utf8'
, 'utf16'
or 'utf32'
), and Flags
must
represent a constant list "[F1, ..., Fn]"
where all the Fi
are
atoms.
See also: ann_c_bitstr/6
, bitstr_flags/1
, bitstr_size/1
,
bitstr_type/1
, bitstr_unit/1
, bitstr_val/1
, c_binary/1
, is_c_bitstr/1
,
update_c_bitstr/6
.
Creates an abstract inter-module call.
If Arguments
is [A1, ..., An]
, the result represents "call Module:Name(A1, ..., An)
".
See also: ann_c_call/4
, c_apply/2
, c_primop/2
, call_args/1
,
call_arity/1
, call_module/1
, call_name/1
, is_c_call/1
,
update_c_call/4
.
Creates an abstract case-expression.
If Clauses
is [C1, ..., Cn]
, the result represents "case Argument of C1 ... Cn end
". Clauses
must not be empty.
See also: ann_c_case/3
, c_clause/3
, case_arg/1
, case_arity/1
,
case_clauses/1
, is_c_case/1
, update_c_case/3
.
Creates an abstract catch-expression.
The result represents "catch Body
".
Note: catch-expressions can be rewritten as try-expressions, and will eventually be removed from Core Erlang.
See also: ann_c_catch/2
, c_try/5
, catch_body/1
, is_c_catch/1
,
update_c_catch/2
.
-spec c_char(Value :: non_neg_integer()) -> c_literal().
Creates an abstract character literal.
If the local implementation of Erlang defines char/0
as a subset
of integer/0
, this function is equivalent to
c_int/1
. Otherwise, if the given value is an integer,
it will be converted to the character with the corresponding code. The
lexical representation of a character is "$Char
", where Char
is a
single printing character or an escape sequence.
See also: ann_c_char/2
, c_int/1
, c_string/1
, char_lit/1
, char_val/1
,
is_c_char/1
, is_print_char/1
.
Equivalent to c_clause(Patterns, c_atom(true), Body).
See also: c_atom/1
.
Creates an an abstract clause.
If Patterns
is [P1, ..., Pn]
, the result represents "<P1, ..., Pn> when Guard -> Body
".
See also: ann_c_clause/4
, c_case/2
, c_clause/2
, c_receive/3
,
clause_arity/1
, clause_body/1
, clause_guard/1
, clause_pats/1
,
clause_vars/1
, is_c_clause/1
, update_c_clause/4
.
Creates an abstract list constructor.
The result represents "[Head | Tail]
". Note that if both Head
and
Tail
have type literal
, then the result will also have type
literal
, and annotations on Head
and Tail
are lost.
Recall that in Erlang, the tail element of a list constructor is not necessarily a list.
See also: ann_c_cons/3
, c_cons_skel/2
, c_nil/0
, cons_hd/1
,
cons_tl/1
, is_c_cons/1
, is_c_list/1
, list_elements/1
, list_length/1
,
make_list/2
, update_c_cons/3
.
Creates an abstract list constructor skeleton.
Does not fold constant literals, that is, the result always has type
cons
, representing "[Head | Tail]
".
This function is occasionally useful when it is necessary to have annotations on
the subnodes of a list constructor node, even when the subnodes are constant
literals. However, note that is_literal/1
will yield false
and concrete/1
will fail if passed the result from this
function.
fold_literal/1
can be used to revert a node to the
normal-form representation.
See also: ann_c_cons_skel/3
, c_cons/2
, c_nil/0
, concrete/1
,
fold_literal/1
, is_c_cons/1
, is_c_list/1
, is_literal/1
,
update_c_cons_skel/3
.
Creates an abstract floating-point literal.
The lexical representation is the decimal floating-point numeral of
Value
.
See also: ann_c_float/2
, float_lit/1
, float_val/1
, is_c_float/1
.
Equivalent to c_var({Name, Arity}).
See also: ann_c_fname/3
, fname_arity/1
, fname_id/1
, is_c_fname/1
,
update_c_fname/3
.
Creates an abstract fun-expression.
If Variables
is [V1, ..., Vn]
, the result represents "fun (V1, ..., Vn) -> Body
". All the Vi
must have type var
.
See also: ann_c_fun/3
, fun_arity/1
, fun_body/1
, fun_vars/1
,
is_c_fun/1
, update_c_fun/3
.
Creates an abstract integer literal.
The lexical representation is the canonical decimal numeral of Value
.
See also: ann_c_int/2
, c_char/1
, int_lit/1
, int_val/1
, is_c_int/1
.
Creates an abstract let-expression.
If Variables
is [V1, ..., Vn]
, the result represents "let <V1, ..., Vn> = Argument in Body
". All the Vi
must have type var
.
See also: ann_c_let/4
, is_c_let/1
, let_arg/1
, let_arity/1
,
let_body/1
, let_vars/1
, update_c_let/4
.
Creates an abstract letrec-expression.
If Definitions
is [{V1, F1}, ..., {Vn, Fn}]
, the result represents
"letrec V1 = F1 ... Vn = Fn in Body
. All the Vi
must have type
var
and represent function names. All the Fi
must have type
'fun'
.
See also: ann_c_letrec/3
, is_c_letrec/1
, letrec_body/1
, letrec_defs/1
,
letrec_vars/1
, update_c_letrec/3
.
-spec c_map(Pairs :: [c_map_pair()]) -> c_map().
Creates an abstract map constructor.
If Pairs
is [E1, ..., EN]
, the result represents "~{E1, ..., EN}~
" (creating a new map). Note that if all pairs in Pairs
have
type literal
for both the key and the value, or if Pairs
is empty,
then the result will also have type literal
and annotations on nodes
in Pairs
are lost.
All Ei
must be abstract pairs constructed by c_map_pair/2
.
See also: ann_c_map/2
, is_c_map/1
, is_c_map_empty/1
, is_c_map_pattern/1
,
map_es/1
, c_map_pair/2
, c_map_pair_exact/2
.
-spec c_map(Argument :: cerl(), Pairs :: [c_map_pair()]) -> c_map().
Creates an abstract map update expression.
If Pairs
is [E1, ..., EN]
, the result represents "~{E1, ..., EN | Argument}~
" (updating an existing map). Note that if Argument
is a
literal and all pairs in Pairs
have type literal
for both the key
and the value, or if Pairs
is empty, then the result will also have
type literal
and annotations on nodes in Pairs
are lost.
All Ei
must be abstract pairs constructed by either c_map_pair/2
or
c_map_pair_exact/2
.
See also: ann_c_map/2
, is_c_map/1
, is_c_map_empty/1
, is_c_map_pattern/1
,
map_es/1
, c_map_pair/2
, c_map_pair_exact/2
.
-spec c_map_pair(Key :: cerl(), Value :: cerl()) -> c_map_pair().
Creates an abstract map pair using the assoc
operator.
These can only occur as components of an abstract map creation
expression or an abstract update expression (see c_map/1
and
c_map/2
).
The result represents "Key => Value
".
See also: map_pair_key/1
, map_pair_op/1
, map_pair_val/1
.
-spec c_map_pair_exact(Key :: cerl(), Value :: cerl()) -> c_map_pair().
Creates an abstract map pair using the exact
operator.
These can only occur as components of an abstract map update
expression or an abstract map pattern (see c_map/1
and
c_map_pattern/1
).
The result represents "Key := Value
".
See also: map_pair_key/1
, map_pair_op/1
, map_pair_val/1
.
-spec c_map_pattern(Pairs :: [c_map_pair()]) -> c_map().
Creates an abstract map pattern.
If Pairs
is [E1, ..., EN]
, the result represents
"~{E1, ..., EN}~
".
All Ei
must be abstract pairs constructed by c_map_pair_exact/2
.
See also: ann_c_map/2
, is_c_map/1
, is_c_map_empty/1
, is_c_map_pattern/1
,
map_es/1
, c_map_pair_exact/2
.
-spec c_module(Name :: cerl(), Exports :: [cerl()], Definitions :: [{cerl(), cerl()}]) -> c_module().
Equivalent to c_module(Name, Exports, [], Definitions)
-spec c_module(Name :: cerl(), Exports :: [cerl()], Attributes :: [{cerl(), cerl()}], Definitions :: [{cerl(), cerl()}]) -> c_module().
Creates an abstract module definition.
The result represents
module Name [E1, ..., Ek]
attributes [K1 = T1, ...,
Km = Tm]
V1 = F1
...
Vn = Fn
end
if Exports
= [E1, ..., Ek]
, Attributes
= [{K1, T1}, ..., {Km, Tm}]
, and
Definitions
= [{V1, F1}, ..., {Vn, Fn}]
.
Name
and all the Ki
must be atom literals, and all the Ti
must be constant
literals. All the Vi
and Ei
must have type var
and represent function
names. All the Fi
must have type 'fun'
.
See also: ann_c_module/4
, ann_c_module/5
, c_atom/1
, c_fun/2
,
c_module/3
, c_var/1
, is_literal/1
, module_attrs/1
, module_defs/1
,
module_exports/1
, module_name/1
, module_vars/1
, update_c_module/5
.
-spec c_nil() -> c_literal().
Creates an abstract empty list.
The result represents "[]
". The empty list is traditionally called
"nil".
See also: ann_c_nil/1
, c_cons/2
, is_c_list/1
.
Creates an abstract primitive operation call.
If Arguments
is [A1, ..., An]
, the result represents "primop Name(A1, ..., An)
". Name
must be an atom literal.
See also: ann_c_primop/3
, c_apply/2
, c_call/3
, is_c_primop/1
,
primop_args/1
, primop_arity/1
, primop_name/1
, update_c_primop/3
.
Equivalent to c_receive(Clauses, c_atom(infinity), c_atom(true)).
See also: c_atom/1
.
Creates an abstract receive-expression.
If Clauses
is [C1, ..., Cn]
, the result represents "receive C1 ... Cn after Timeout -> Action end
".
See also: ann_c_receive/4
, c_receive/1
, is_c_receive/1
,
receive_action/1
, receive_clauses/1
, receive_timeout/1
,
update_c_receive/4
.
Creates an abstract sequencing expression.
The result represents "do Argument Body
".
See also: ann_c_seq/3
, is_c_seq/1
, seq_arg/1
, seq_body/1
,
update_c_seq/3
.
Creates an abstract string literal.
Equivalent to creating an abstract list of the corresponding character
literals (cf. is_c_string/1
), but is typically
more efficient. The lexical representation of a string is ""Chars"
",
where Chars
is a sequence of printing characters or spaces.
See also: ann_c_string/2
, c_char/1
, is_c_string/1
, is_print_string/1
,
string_lit/1
, string_val/1
.
-spec c_try(Argument :: cerl(), Variables :: [cerl()], Body :: cerl(), ExceptionVars :: [cerl()], Handler :: cerl()) -> c_try().
Creates an abstract try-expression.
If Variables
is [V1, ..., Vn]
and ExceptionVars
is [X1, ..., Xm]
, the result represents "try Argument of <V1, ..., Vn> -> Body catch <X1, ..., Xm> -> Handler
". All the Vi
and Xi
must have
type var
.
See also: ann_c_try/6
, c_catch/1
, is_c_try/1
, try_arg/1
, try_body/1
,
try_vars/1
, update_c_try/6
.
Creates an abstract tuple.
If Elements
is [E1, ..., En]
, the result represents "{E1, ..., En}
". Note that if all nodes in Elements
have type literal
, or if
Elements
is empty, then the result will also have type literal
and
annotations on nodes in Elements
are lost.
Recall that Erlang has distinct 1-tuples, that is, {X}
is always
distinct from X
itself.
See also: ann_c_tuple/2
, c_tuple_skel/1
, is_c_tuple/1
, tuple_arity/1
,
tuple_es/1
, update_c_tuple/2
.
Creates an abstract tuple skeleton.
Does not fold constant literals, that is, the result always has type
tuple
, representing "{E1, ..., En}
", if Elements
is [E1, ..., En]
.
This function is occasionally useful when it is necessary to have annotations on
the subnodes of a tuple node, even when all the subnodes are constant literals.
However, note that is_literal/1
will yield false
and
concrete/1
will fail if passed the result from this function.
fold_literal/1
can be used to revert a node to the
normal-form representation.
See also: ann_c_tuple_skel/2
, c_tuple/1
, concrete/1
, fold_literal/1
,
is_c_tuple/1
, is_literal/1
, tuple_es/1
, update_c_tuple_skel/2
.
Creates an abstract value list.
If Elements
is [E1, ..., En]
, the result represents "<E1, ..., En>
".
See also: ann_c_values/2
, is_c_values/1
, update_c_values/2
,
values_arity/1
, values_es/1
.
Creates an abstract variable.
A variable is identified by its name, given by the Name
parameter.
If a name is given by a single atom, it should either be a "simple" atom which
does not need to be single-quoted in Erlang, or otherwise its print name should
correspond to a proper Erlang variable, that is, begin with an uppercase character
or an underscore. Names on the form {A, N}
represent function name variables
"A/N
"; these are special variables which may be bound only in the function
definitions of a module or a letrec
. They may not be bound in let
expressions and cannot occur in clause patterns. The atom A
in a function name
may be any atom; the integer N
must be nonnegative. The functions
c_fname/2
etc. are utilities for handling function name
variables.
When printing variable names, they must have the form of proper Core Erlang
variables and function names. E.g., a name represented by an integer such as
42
could be formatted as "_42
", an atom 'Xxx'
simply as "Xxx
", and an
atom foo
as "_foo
". However, one must assure that any two valid distinct
names are never mapped to the same strings. Tuples such as {foo, 2}
representing function names can simply by formatted as "'foo'/2
", with no risk
of conflicts.
See also: ann_c_var/2
, c_fname/2
, c_letrec/2
, c_module/4
,
is_c_var/1
, update_c_var/2
, var_name/1
.
Returns the list of argument subtrees of an abstract inter-module call.
See also: c_call/3
, call_arity/1
.
Returns the number of argument subtrees of an abstract inter-module call.
Note: this is equivalent to length(call_args(Node))
, but
potentially more efficient.
See also: c_call/3
, call_args/1
.
Returns the module subtree of an abstract inter-module call.
See also: c_call/3
.
Returns the name subtree of an abstract inter-module call.
See also: c_call/3
.
Returns the argument subtree of an abstract case-expression.
See also: c_case/2
.
-spec case_arity(Node :: c_case()) -> non_neg_integer().
Equivalent to clause_arity(hd(case_clauses(Node)))
, but
potentially more efficient.
See also: c_case/2
, case_clauses/1
, clause_arity/1
.
Returns the list of clause subtrees of an abstract case-expression.
See also: c_case/2
, case_arity/1
.
Returns the body subtree of an abstract catch-expression.
See also: c_catch/1
.
-spec char_lit(Node :: c_literal()) -> nonempty_string().
Returns the literal string represented by an abstract character. This includes a
leading $
character.
Currently, all characters that are not in the set of ISO 8859-1 (Latin-1) "printing" characters will be escaped.
See also: c_char/1
.
Returns the value represented by an abstract character literal.
See also: c_char/1
.
-spec clause_arity(Node :: c_clause()) -> non_neg_integer().
Returns the number of pattern subtrees of an abstract clause.
Note: this is equivalent to length(clause_pats(Node))
, but
potentially more efficient.
See also: c_clause/3
, clause_pats/1
.
Returns the body subtree of an abstract clause.
See also: c_clause/3
.
Returns the guard subtree of an abstract clause.
See also: c_clause/3
.
Returns the list of pattern subtrees of an abstract clause.
See also: c_clause/3
, clause_arity/1
.
Returns the list of all abstract variables in the patterns of an abstract clause.
The order of listing is not defined.
See also: c_clause/3
, pat_list_vars/1
.
Returns the Erlang term represented by a syntax tree.
An exception is thrown if Node
does not represent a literal term.
Note: This is a constant time operation.
See also: abstract/1
, is_literal/1
.
Returns the head subtree of an abstract list constructor.
See also: c_cons/2
.
Returns the tail subtree of an abstract list constructor.
Recall that the tail does not necessarily represent a proper list.
See also: c_cons/2
.
Copies the list of user annotations from Source
to Target
.
Note: this is equivalent to set_ann(Target, get_ann(Source))
,
but potentially more efficient.
-spec data_arity(Node :: c_lct()) -> non_neg_integer().
Returns the number of subtrees of a data constructor node.
This is equivalent to length(data_es(Node))
, but
potentially more efficient.
Returns the list of subtrees of a data constructor node.
If the arity of the constructor is zero, the result is the empty list.
Note: if data_type(Node)
is cons
, the number of subtrees is
exactly two. If data_type(Node)
is {atomic, Value}
, the
number of subtrees is zero.
See also: data_arity/1
, data_type/1
, is_data/1
, make_data/2
.
Returns a type descriptor for a data constructor node. (Cf.
is_data/1
.)
This is mainly useful for comparing types and for constructing new
nodes of the same type (cf. make_data/2
). If Node
represents an integer, floating-point number, atom or empty list, the
result is {atomic, Value}
, where Value
is the value of
concrete(Node)
, otherwise the result is either
cons
or tuple
.
Type descriptors can be compared for equality or order (in the Erlang term order), but remember that floating-point values should in general never be tested for equality.
See also: concrete/1
, is_data/1
, make_data/2
, type/1
.
Returns the numeral string represented by a floating-point literal node.
See also: c_float/1
.
Returns the value represented by a floating-point literal node.
See also: c_float/1
.
Returns the arity part of an abstract function name variable.
See also: c_fname/2
, fname_id/1
.
Returns the identifier part of an abstract function name variable.
See also: c_fname/2
, fname_arity/1
.
Ensures that literals have a compact representation.
This is occasionally useful if
c_cons_skel/2
, c_tuple_skel/1
or
unfold_literal/1
were used in the construction of
Node
, and you want to revert to the normal "folded" representation of
literals. If Node
represents a tuple or list constructor, its elements are
rewritten recursively, and the node is reconstructed using
c_cons/2
or c_tuple/1
, respectively; otherwise,
Node
is not changed.
See also: c_cons/2
, c_cons_skel/2
, c_tuple/1
, c_tuple_skel/1
,
is_literal/1
, unfold_literal/1
.
Translates an explicit record representation to a corresponding abstract syntax tree.
The records are defined in the file "core_parse.hrl
".
See also: to_records/1
, type/1
.
Returns the number of parameter subtrees of an abstract fun-expression.
Note: this is equivalent to length(fun_vars(Node))
, but
potentially more efficient.
See also: c_fun/2
, fun_vars/1
.
Returns the body subtree of an abstract fun-expression.
See also: c_fun/2
.
Returns the list of parameter subtrees of an abstract fun-expression.
See also: c_fun/2
, fun_arity/1
.
Returns the list of user annotations associated with a syntax tree node.
For a newly created node, this is the empty list. The annotations may be any terms.
See also: set_ann/2
.
Returns the numeral string represented by an integer literal node.
See also: c_int/1
.
Returns the value represented by an integer literal node.
See also: c_int/1
.
Returns true
if Node
is an abstract pattern alias, otherwise false
.
See also: c_alias/2
.
Returns true
if Node
is an abstract function application, otherwise false
.
See also: c_apply/2
.
Returns true
if Node
represents an atom literal, otherwise false
.
See also: c_atom/1
.
Returns true
if Node
is an abstract binary-template, otherwise false
.
See also: c_binary/1
.
Returns true
if Node
is an abstract bit-string template, otherwise false
.
See also: c_bitstr/5
.
Returns true
if Node
is an abstract inter-module call expression, otherwise
false
.
See also: c_call/3
.
Returns true
if Node
is an abstract case-expression, otherwise false
.
See also: c_case/2
.
Returns true
if Node
is an abstract catch-expression, otherwise false
.
See also: c_catch/1
.
Returns true
if Node
may represent a character literal, otherwise false
.
If the local implementation of Erlang defines char/0
as a subset of
integer/0
, then is_c_int(Node)
will also yield true
.
See also: c_char/1
, is_print_char/1
.
Returns true
if Node
is an abstract clause, otherwise false
.
See also: c_clause/3
.
Returns true
if Node
is an abstract list constructor, otherwise false
.
Returns true
if Node
represents a floating-point literal, otherwise false
.
See also: c_float/1
.
Returns true
if Node
is an abstract function name variable, otherwise
false
.
See also: c_fname/2
, c_var/1
, var_name/1
.
Returns true
if Node
is an abstract fun-expression, otherwise false
.
See also: c_fun/2
.
Returns true
if Node
represents an integer literal, otherwise false
.
See also: c_int/1
.
Returns true
if Node
is an abstract let-expression, otherwise false
.
See also: c_let/3
.
Returns true
if Node
is an abstract letrec-expression, otherwise false
.
See also: c_letrec/2
.
Returns true
if Node
represents a proper list, otherwise false
.
A proper list is either the empty list []
, or a cons cell [Head | Tail]
, where recursively Tail
is a proper list.
Note: Because Node
is a syntax tree, the actual run-time values
corresponding to its subtrees may often be partially or completely
unknown. Thus, if Node
represents for example "[... | Ns]
" (where
Ns
is a variable), then the function will return false
, because it
is not known whether Ns
will be bound to a list at run-time. If
Node
instead represents for example "[1, 2, 3]
" or "[A | []]
",
then the function will return true
.
See also: c_cons/2
, c_nil/0
, list_elements/1
, list_length/1
.
Returns true
if Node
is any kind of abstract map (for constructing,
updating or matching), otherwise false
.
See also: ann_c_map/3
, c_map/1
, c_map_pattern/1
.
Returns true
if Node
represents an empty abstract map, otherwise false
.
See also: c_map/1
, c_map_pattern/1
.
Returns true
if Node
is an abstract map pattern, otherwise false
.
See also: c_map/1
, c_map_pattern/1
.
Returns true
if Node
is an abstract module definition, otherwise false
.
See also: type/1
.
Returns true
if Node
is an abstract empty list, otherwise false
.
Returns true
if Node
is an abstract primitive operation call, otherwise
false
.
See also: c_primop/2
.
Returns true
if Node
is an abstract receive-expression, otherwise false
.
See also: c_receive/3
.
Returns true
if Node
is an abstract sequencing expression, otherwise
false
.
See also: c_seq/2
.
Returns true
if Node
may represent a string literal, otherwise false
.
Strings are defined as lists of characters; see is_c_char/1
for details.
See also: c_string/1
, is_c_char/1
, is_print_string/1
.
Returns true
if Node
is an abstract try-expression, otherwise false
.
See also: c_try/5
.
Returns true
if Node
is an abstract tuple, otherwise false
.
See also: c_tuple/1
.
Returns true
if Node
is an abstract value list, otherwise false
.
See also: c_values/1
.
Returns true
if Node
is an abstract variable, otherwise false
.
See also: c_var/1
.
Returns true
if Node
represents a data constructor, otherwise false
.
Data constructors are cons cells, tuples, and atomic literals.
See also: data_arity/1
, data_es/1
, data_type/1
.
Returns true
if Node
is a leaf node, otherwise false
.
The current leaf node types are literal
and var
.
Note: all literals (cf. is_literal/1
) are leaf nodes, even
if they represent structured (constant) values such as {foo, [bar, baz]}
. Also
note that variables are leaf nodes but not literals.
See also: is_literal/1
, type/1
.
Returns true
if Node
represents a literal term, otherwise false
.
This function returns true
if and only if the value of
concrete(Node)
is defined.
Note: This is a constant time operation.
See also: abstract/1
, concrete/1
, fold_literal/1
.
Returns true
if Term
can be represented as a literal, otherwise false
.
This function takes time proportional to the size of Term
.
See also: abstract/1
.
Returns true
if Node
may represent a "printing" character, otherwise
false
. (Cf. is_c_char/1
.)
A "printing" character has either a given graphical representation, or
a "named" escape sequence such as "\n
". Currently, only ISO 8859-1
(Latin-1) character values are recognized.
See also: c_char/1
, is_c_char/1
.
Returns true
if Node
may represent a string literal containing only
"printing" characters, otherwise false
.
See is_c_string/1
and
is_print_char/1
for details. Currently, only
ISO 8859-1 (Latin-1) character values are recognized.
See also: c_string/1
, is_c_string/1
, is_print_char/1
.
Returns the argument subtree of an abstract let-expression.
See also: c_let/3
.
-spec let_arity(Node :: c_let()) -> non_neg_integer().
Returns the number of left-hand side variables of an abstract let-expression.
Note: this is equivalent to length(let_vars(Node))
, but
potentially more efficient.
See also: c_let/3
, let_vars/1
.
Returns the body subtree of an abstract let-expression.
See also: c_let/3
.
Returns the list of left-hand side variables of an abstract let-expression.
See also: c_let/3
, let_arity/1
.
Returns the body subtree of an abstract letrec-expression.
See also: c_letrec/2
.
Returns the list of definitions of an abstract letrec-expression.
If Node
represents "letrec V1 = F1 ... Vn = Fn in Body
", the
returned value is [{V1, F1}, ..., {Vn, Fn}]
.
See also: c_letrec/2
.
Returns the list of left-hand side function variable subtrees of a letrec-expression.
If Node
represents§ "letrec V1 = F1 ... Vn = Fn in Body
", the
returned value is [V1, ..., Vn]
.
See also: c_letrec/2
.
Returns the list of element subtrees of an abstract list.
Node
must represent a proper list. For example, if Node
represents
"[X1, X2 | [X3, X4 | []]
", then
list_elements(Node)
yields the list [X1, X2, X3, X4]
.
See also: c_cons/2
, c_nil/0
, is_c_list/1
, list_length/1
,
make_list/2
.
-spec list_length(Node :: c_cons() | c_literal()) -> non_neg_integer().
Returns the number of element subtrees of an abstract list.
Node
must represent a proper list. For example, if Node
represents
"[X1 | [X2, X3 | [X4, X5, X6]]]
", then
list_length(Node)
returns the integer 6.
Note: this is equivalent to length(list_elements(Node))
, but
potentially more efficient.
See also: c_cons/2
, c_nil/0
, is_c_list/1
, list_elements/1
.
Creates a data constructor node with the specified type and subtrees. (Cf.
data_type/1
.)
An exception is thrown if the length of Elements
is invalid for the
given Type
; see data_es/1
for arity constraints on
constructor types.
See also: ann_make_data/3
, data_es/1
, data_type/1
, make_data_skel/2
,
update_data/3
.
Like make_data/2
, but analogous to
c_tuple_skel/1
and c_cons_skel/2
.
See also: ann_make_data_skel/3
, c_cons_skel/2
, c_tuple_skel/1
,
make_data/2
, update_data_skel/3
.
Equivalent to make_list(List, none)
Creates an abstract list from the elements in List
and the optional Tail
.
If Tail
is none
, the result will represent a nil-terminated list,
otherwise it represents "[... | Tail]
".
See also: ann_make_list/3
, c_cons/2
, c_nil/0
, list_elements/1
,
update_list/3
.
Creates a syntax tree with the given type and subtrees.
Type
must be a node type name (cf. type/1
) that does
not denote a leaf node type (cf.
is_leaf/1
).
Groups
must be a nonempty list of groups of syntax trees,
representing the subtrees of a node of the given type, in
left-to-right order as they would occur in the printed program text,
grouped by category as done by subtrees/1
.
The result of
ann_make_tree(get_ann(Node), type(Node), subtrees(Node))
(cf. update_tree/2
) represents the same source code text as
the original Node
, assuming that subtrees(Node)
yields a
nonempty list. However, it does not necessarily have the exact same data
representation as Node
.
See also: ann_make_tree/3
, is_leaf/1
, subtrees/1
, type/1
,
update_tree/2
.
Returns the argument subtree of an abstract map.
See also: c_map/2
.
-spec map_es(Node :: c_map() | c_literal()) -> [c_map_pair()].
Returns the list of map pair subtrees of an abstract map.
See also: c_map/1
.
-spec map_pair_key(Node :: c_map_pair()) -> cerl().
Returns the key subtree of an abstract map pair.
See also: c_map_pair/2
, c_map_pair_exact/2
.
-spec map_pair_op(Node :: c_map_pair()) -> map_op().
Returns the operation subtree of an abstract map pair.
See also: c_map_pair/2
, c_map_pair_exact/2
.
-spec map_pair_val(Node :: c_map_pair()) -> cerl().
Returns the value subtree of an abstract map pair.
See also: c_map_pair/2
, c_map_pair_exact/2
.
Creates a meta-representation of a syntax tree.
The result represents an Erlang expression "MetaTree
" which, if
evaluated, will yield a new syntax tree representing the same source
code text as Tree
(although the actual data representation may be
different). The expression represented by MetaTree
is
implementation independent with regard to the data structures used
by the abstract syntax tree implementation.
Any node in Tree
whose node type is var
(cf. type/1
), and
whose list of annotations (cf. get_ann/1
) contains the atom
meta_var
, will remain unchanged in the resulting tree, except that exactly one
occurrence of meta_var
is removed from its annotation list.
The main use of the function meta/1
is to transform a data
structure Tree
, which represents a piece of program code, into a form that is
representation independent when printed. E.g., suppose Tree
represents a
variable named "V". Then (assuming a function print/1
for printing syntax
trees), evaluating print(abstract(Tree))
- simply using
abstract/1
to map the actual data structure onto a syntax tree
representation - would output a string that might look something like
"{var, ..., 'V'}
", which is obviously dependent on the implementation of the
abstract syntax trees. This could, for example, be useful for caching a syntax tree
in a file. However, in some situations like in a program generator generator (with
two "generator"), it may be unacceptable. Using print(meta(Tree))
instead
would output a representation independent syntax tree generating expression;
in the above case, something like "cerl:c_var('V')
".
The implementation tries to generate compact code with respect to literals and lists.
See also: abstract/1
, get_ann/1
, type/1
.
Returns the list of pairs of attribute key/value subtrees of an abstract module definition.
See also: c_module/4
.
Returns the list of function definitions of an abstract module definition.
See also: c_module/4
.
Returns the list of exports subtrees of an abstract module definition.
See also: c_module/4
.
Returns the name subtree of an abstract module definition.
See also: c_module/4
.
Returns the list of left-hand side function variable subtrees of an abstract module definition.
See also: c_module/4
.
Returns the list of all abstract variables in the given patterns.
An exception is thrown if some element in Patterns
does not
represent a well-formed Core Erlang clause pattern. The order of
listing is not defined.
See also: clause_vars/1
, pat_vars/1
.
Returns the list of all abstract variables in a pattern.
An exception is thrown if Node
does not represent a well-formed Core
Erlang clause pattern. The order of listing is not defined.
See also: clause_vars/1
, pat_list_vars/1
.
Returns the list of argument subtrees of an abstract primitive operation call.
See also: c_primop/2
, primop_arity/1
.
Returns the number of argument subtrees of an abstract primitive operation call.
Note: this is equivalent to length(primop_args(Node))
, but
potentially more efficient.
See also: c_primop/2
, primop_args/1
.
Returns the name subtree of an abstract primitive operation call.
See also: c_primop/2
.
Returns the action subtree of an abstract receive-expression.
See also: c_receive/3
.
Returns the list of clause subtrees of an abstract receive-expression.
See also: c_receive/3
.
Returns the timeout subtree of an abstract receive-expression.
See also: c_receive/3
.
Returns the argument subtree of an abstract sequencing expression.
See also: c_seq/2
.
Returns the body subtree of an abstract sequencing expression.
See also: c_seq/2
.
Sets the list of user annotations of Node
to Annotations
.
See also: add_ann/2
, copy_ann/2
, get_ann/1
.
-spec string_lit(Node :: c_literal()) -> nonempty_string().
Returns the literal string represented by an abstract string. This includes
surrounding double-quote characters "..."
.
Currently, characters that are not in the set of ISO 8859-1 (Latin-1) "printing" characters will be escaped, except for spaces.
See also: c_string/1
.
Returns the value represented by an abstract string literal.
See also: c_string/1
.
Returns the grouped list of all subtrees of a node.
If Node
is a leaf node (cf. is_leaf/1
), this is the
empty list, otherwise the result is always a nonempty list, containing
the lists of subtrees of Node
, in left-to-right order as they occur
in the printed program text, and grouped by category. Often, each
group contains only a single subtree.
Depending on the type of Node
, the size of some groups may be
variable (for example, the group consisting of all the elements of a
tuple), while others always contain the same number of elements -
usually exactly one (for example, the group containing the argument
expression of a case-expression). Note, however, that the exact
structure of the returned list (for a given node type) should in
general not be depended upon, since it might be subject to change
without notice.
The function subtrees/1
and the constructor functions
make_tree/2
and update_tree/2
can be a
great help if one wants to traverse a syntax tree, visiting all its subtrees,
but treat nodes of the tree in a uniform way in most or all cases. Using these
functions makes this simple, and also assures that your code is not overly
sensitive to extensions of the syntax tree data type, because any node types not
explicitly handled by your code can be left to a default case.
For example:
postorder(F, Tree) ->
F(case subtrees(Tree) of
[] -> Tree;
List -> update_tree(Tree,
[[postorder(F, Subtree)
|| Subtree <- Group]
|| Group <- List])
end).
maps the function F
on Tree
and all its subtrees, doing a post-order
traversal of the syntax tree. (Note the use of
update_tree/2
to preserve annotations.) For a simple
function like:
f(Node) ->
case type(Node) of
atom -> atom("a_" ++ atom_name(Node));
_ -> Node
end.
the call postorder(fun f/1, Tree)
will yield a new representation of Tree
in
which all atom names have been extended with the prefix "a_", but nothing else
(including annotations) has been changed.
See also: is_leaf/1
, make_tree/2
, update_tree/2
.
Translates an abstract syntax tree to a corresponding explicit record representation.
The records are defined in the file "cerl.hrl
".
See also: from_records/1
, type/1
.
Returns the expression subtree of an abstract try-expression.
See also: c_try/5
.
Returns the success body subtree of an abstract try-expression.
See also: c_try/5
.
Returns the list of exception variable subtrees of an abstract try-expression.
See also: c_try/5
.
Returns the exception body subtree of an abstract try-expression.
See also: c_try/5
.
Returns the list of success variable subtrees of an abstract try-expression.
See also: c_try/5
.
-spec tuple_arity(Node :: c_tuple() | c_literal()) -> non_neg_integer().
Returns the number of element subtrees of an abstract tuple.
Note: this is equivalent to length(tuple_es(Node))
, but
potentially more efficient.
See also: c_tuple/1
, tuple_es/1
.
Returns the list of element subtrees of an abstract tuple.
See also: c_tuple/1
.
Returns the type tag of Node
.
Current node types are:
alias
apply
binary
bitstr
call
case
catch
clause
cons
fun
let
letrec
literal
map
map_pair
module
opaque
primop
receive
seq
try
tuple
values
var
Note
The name of the primary constructor function for a node type is always the name of the type itself, prefixed by "
c_
"; recognizer predicates are correspondingly prefixed by "is_c_
". Furthermore, to simplify preservation of annotations (cf.get_ann/1
), there are analogous constructor functions prefixed by "ann_c_
| and "update_c_
", for setting the annotation list of the new node to either a specific value or to the annotations of an existing node, respectively.
The only purpose of the opaque
type is to facilitate testing of the compiler.
See also: abstract/1
, c_alias/2
, c_apply/2
, c_binary/1
, c_bitstr/5
,
c_call/3
, c_case/2
, c_catch/1
, c_clause/3
, c_cons/2
, c_fun/2
,
c_let/3
, c_letrec/2
, c_module/3
, c_primop/2
, c_receive/1
, c_seq/2
,
c_try/5
, c_tuple/1
, c_values/1
, c_var/1
, data_type/1
,
from_records/1
, get_ann/1
, meta/1
, subtrees/1
, to_records/1
.
Ensures that literals have a fully expanded representation.
If Node
represents a literal tuple or list constructor, its elements
are rewritten recursively, and the node is reconstructed using
c_cons_skel/2
or
c_tuple_skel/1
, respectively; otherwise, Node
is not changed. The fold_literal/1
can be used to revert to the
normal compact representation.
See also: c_cons/2
, c_cons_skel/2
, c_tuple/1
, c_tuple_skel/1
,
fold_literal/1
, is_literal/1
.
See also: c_alias/2
.
See also: c_apply/2
.
See also: c_binary/1
.
-spec update_c_bitstr(Node :: c_bitstr(), Value :: cerl(), Size :: cerl(), Type :: cerl(), Flags :: cerl()) -> c_bitstr().
Equivalent to update_c_bitstr(Node, Value, Size, abstract(1), Type, Flags).
-spec update_c_bitstr(Node :: c_bitstr(), Value :: cerl(), Size :: cerl(), Unit :: cerl(), Type :: cerl(), Flags :: cerl()) -> c_bitstr().
See also: c_bitstr/5
, update_c_bitstr/5
.
-spec update_c_call(Node :: cerl(), Module :: cerl(), Name :: cerl(), Arguments :: [cerl()]) -> c_call().
See also: c_call/3
.
See also: c_case/2
.
See also: c_catch/1
.
-spec update_c_clause(Node :: c_clause(), Patterns :: [cerl()], Guard :: cerl(), Body :: cerl()) -> c_clause().
See also: c_clause/3
.
-spec update_c_cons(Node :: c_literal() | c_cons(), Head :: cerl(), Tail :: cerl()) -> c_literal() | c_cons().
See also: c_cons/2
.
-spec update_c_cons_skel(Node :: c_cons() | c_literal(), Head :: cerl(), Tail :: cerl()) -> c_cons().
See also: c_cons_skel/2
.
Like update_c_fname/3
, but takes the arity from Node
.
See also: c_fname/2
, update_c_fname/3
.
Equivalent to update_c_var(Old, {Atom, Arity}).
See also: c_fname/2
, update_c_fname/2
.
See also: c_fun/2
.
-spec update_c_let(Node :: c_let(), Variables :: [cerl()], Argument :: cerl(), Body :: cerl()) -> c_let().
See also: c_let/3
.
-spec update_c_letrec(Node :: c_letrec(), Definitions :: [{cerl(), cerl()}], Body :: cerl()) -> c_letrec().
See also: c_letrec/2
.
-spec update_c_map(Node :: c_map(), Map :: cerl(), Pairs :: [c_map_pair()]) -> c_map() | c_literal().
See also: c_map/1
, c_map_pattern/1
.
-spec update_c_map_pair(Node :: c_map_pair(), Operation :: map_op(), Key :: cerl(), Value :: cerl()) -> c_map_pair().
See also: c_map_pair/2
, c_map_pair_exact/2
.
-spec update_c_module(Node :: c_module(), Name :: cerl(), Exports :: [cerl()], Attributes :: [{cerl(), cerl()}], Definitions :: [{cerl(), cerl()}]) -> c_module().
See also: c_module/4
.
See also: c_primop/2
.
-spec update_c_receive(Node :: c_receive(), Clauses :: [cerl()], Timeout :: cerl(), Action :: cerl()) -> c_receive().
See also: c_receive/3
.
See also: c_seq/2
.
update_c_try(Node, Argument, Variables, Body, ExceptionVars, Handler)
View Source-spec update_c_try(Node :: c_try(), Argument :: cerl(), Variables :: [cerl()], Body :: cerl(), ExceptionVars :: [cerl()], Handler :: cerl()) -> c_try().
See also: c_try/5
.
-spec update_c_tuple(Node :: c_tuple() | c_literal(), Elements :: [cerl()]) -> c_tuple() | c_literal().
See also: c_tuple/1
.
See also: c_tuple_skel/1
.
See also: c_values/1
.
See also: c_var/1
.
See also: make_data/2
.
See also: make_data_skel/2
.
Equivalent to update_list(Old, List, none)
See also: make_list/2
, update_list/2
.
Creates a syntax tree with the given subtrees, and the same type and annotations
as the node Node
.
This is equivalent to ann_make_tree(get_ann(Node), type(Node), Groups)
, but potentially more efficient.
See also: ann_make_tree/3
, get_ann/1
, type/1
, update_tree/3
.
Creates a syntax tree with the given type and subtrees, and the same annotations
as the node Node
.
This is equivalent to
ann_make_tree(get_ann(Node), Type, Groups)
, but
potentially more efficient.
See also: ann_make_tree/3
, get_ann/1
, update_tree/2
.
-spec values_arity(Node :: c_values()) -> non_neg_integer().
Returns the number of element subtrees of an abstract value list.
Note: This is equivalent to length(values_es(Node))
, but
potentially more efficient.
See also: c_values/1
, values_es/1
.
Returns the list of element subtrees of an abstract value list.
See also: c_values/1
, values_arity/1
.
Returns the name of an abstract variable.
See also: c_var/1
.