wx
MODULE
MODULE SUMMARY
DESCRIPTION
A port of wxWidgets.
This is the base api of wxWidgets. This module contains functions for starting and stopping the wx-server, as well as other utility functions.
wxWidgets is object oriented, and not functional. Thus, in wxErlang a module represents a class, and the object created by this class has an own type, wxCLASS(). This module represents the base class, and all other wxMODULE's are sub-classes of this class.
Objects of a class are created with wxCLASS:new(...) and destroyed with wxCLASS:destroy(). Member functions are called with wxCLASS:member(Object, ...) instead of as in C++ Object.member(...).
Sub class modules inherit (non static) functions from their parents. The inherited functions are not documented in the sub-classes.
This erlang port of wxWidgets tries to be a one-to-one mapping with the original wxWidgets library. Some things are different though, as the optional arguments use property lists and can be in any order. The main difference is the event handling which is different from the original library. See wxEvtHandler.
The following classes are implemented directly as erlang types:
wxPoint={x,y},wxSize={w,h},wxRect={x,y,w,h},wxColour={r,g,b [,a]},
wxString=unicode:charlist(),
wxGBPosition={r,c},wxGBSpan={rs,cs},wxGridCellCoords={r,c}.
wxWidgets uses a process specific environment, which is created by wx:new/0. To be able to use the environment from other processes, call get_env/0 to retrieve the environment and set_env/1 to assign the environment in the other process.
Global (classless) functions are located in the wx_misc module.
DATA TYPES
- colour()
-
A 3 or 4 tuple: {R,G,B,A} or as argument {R,G,B} is also accepted where each colour channel is a an integer between 0-255.
- datetime()
-
{{Year,Month,Day}, {Hour,Minute,Second}} in local timezone.
- mouseState()
-
See #wxMouseState{} defined in wx.hrl
- wxObject()
-
Opaque object
- wx_env()
-
Wx process environment
- wx_mem()
-
Wx memory area
EXPORTS
new(Options::[Option]) -> wxObject()
Gets this process's current wx environment. Can be sent to other processes to allow them use this process wx environment.
See also: set_env/1.
set_env(Wx_env::wx_env()) -> ok
is_null(Wx_ref::wxObject()) -> boolean()
getObjectType(Wx_ref::wxObject()) -> atom()
typeCast(Old::wxObject(), NewType::atom()) -> wxObject()
Casts the object to class NewType. It is needed when using functions like wxWindow:findWindow/2, which returns a generic wxObject type.
batch(Fun::function()) -> term()
Batches all wx commands used in the fun. Improves performance of the command processing by grabbing the wxWidgets thread so that no event processing will be done before the complete batch of commands is invoked.
foreach(Fun::function(), List::list()) -> ok
Behaves like lists:foreach/2 but batches wx commands. See batch/1.
map(Fun::function(), List::list()) -> list()
Behaves like lists:map/2 but batches wx commands. See batch/1.
foldl(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldl/3 but batches wx commands. See batch/1.
foldr(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldr/3 but batches wx commands. See batch/1.
create_memory(Size::integer()) -> wx_memory()
Creates a memory area (of Size in bytes) which can be used by an external library (i.e. opengl). It is up to the client to keep a reference to this object so it does not get garbage collected by erlang while still in use by the external library.
This is far from erlang's intentional usage and can crash the erlang emulator. Use it carefully.
get_memory_bin(Wx_mem::wx_memory()) -> binary()
retain_memory(Wx_mem::wx_memory()) -> ok
Saves the memory from deletion until release_memory/1 is called. If release_memory/1 is not called the memory will not be garbage collected.
release_memory(Wx_mem) -> term()
Types:
Sets debug level. If debug level is verbose or trace each call is printed on console. If Level is driver each allocated object and deletion is printed on the console.