wxErlang

Reference Manual

Version 2.0

Table of Contents

wxGraphicsMatrix

Module

wxGraphicsMatrix

Module Summary

Functions for wxGraphicsMatrix class

Description

A wxGraphicsMatrix is a native representation of an affine matrix. The contents are specific and private to the respective renderer. Instances are ref counted and can therefore be assigned as usual. The only way to get a valid instance is via wxGraphicsContext:createMatrix/2 or wxGraphicsRenderer:createMatrix/2.

This class is derived (and can use functions) from: wxGraphicsObject

wxWidgets docs: wxGraphicsMatrix

concat(This, T) -> ok

Types

Concatenates the matrix passed with the current matrix.

The effect of the resulting transformation is to first apply the transformation in t to the coordinates and then apply the transformation in the current matrix to the coordinates.

get(This) -> Result

Types

Result =
    {A :: number(),
     B :: number(),
     C :: number(),
     D :: number(),
     Tx :: number(),
     Ty :: number()}

Returns the component values of the matrix via the argument pointers.

invert(This) -> ok

Types

Inverts the matrix.

isEqual(This, T) -> boolean()

Types

Returns true if the elements of the transformation matrix are equal.

isIdentity(This) -> boolean()

Types

Return true if this is the identity matrix.

rotate(This, Angle) -> ok

Types

Angle = number()

Rotates this matrix clockwise (in radians).

scale(This, XScale, YScale) -> ok

Types

XScale = YScale = number()

Scales this matrix.

translate(This, Dx, Dy) -> ok

Types

Dx = Dy = number()

Translates this matrix.

set(This) -> ok

Types

set(This, Options :: [Option]) -> ok

Types

Option =
    {a, number()} |
    {b, number()} |
    {c, number()} |
    {d, number()} |
    {tx, number()} |
    {ty, number()}

Sets the matrix to the respective values (default values are the identity matrix).

transformPoint(This) -> {X :: number(), Y :: number()}

Types

Applies this matrix to a point.

transformDistance(This) -> {Dx :: number(), Dy :: number()}

Types

Applies this matrix to a distance (ie.

performs all transforms except translations).