ERLANG

EUNIt

Copyright © 2008-2020 Ericsson AB, All Rights Reserved
EUnit 2.6

november 12, 2020

Copyright © 2008-2020 Ericsson AB, All Rights Reserved

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS 1S" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License. The Initial Developer
of the Original Code is Ericsson AB. Ericsson AB, All Rights Reserved.

november 12, 2020

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

1 EUnit User's Guide

The EUnit application contains modules with support for unit testing.

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

EUnit is a unit testing framework for Erlang. It isvery powerful and flexible, is easy to use, and has small syntactical
overhead.

e Unittesting

* Terminology

e Getting started

e EUnit macros

e EUnit test representation

EUnit builds on ideas from the family of unit testing frameworks for Object Oriented languages that originated with
JUnit by Beck and Gamma (and Beck's previous framework SUnit for Smalltalk). However, EUnit uses techniques
more adapted to functional and concurrent programming, and is typically less verbose than its relatives.

Although EUnit uses many preprocessor macros, they have been designed to be as nonintrusive as possible, and should
not cause conflicts with existing code. Adding EUnit tests to a module should thus not normally reguire changing
existing code. Furthermore, tests that only exercise the exported functions of a module can always be placed in a
completely separate module, avoiding any conflicts entirely.

1.1.1 Unit testing

Unit Testing is testing of individual program "units" in relative isolation. There is no particular size requirement:
a unit can be a function, a module, a process, or even a whole application, but the most typical testing units are
individual functionsor modules. In order to test aunit, you specify aset of individual tests, set up the smallest necessary
environment for being able to run those tests (often, you don't need to do any setup at all), you run the tests and collect
theresults, and finally you do any necessary cleanup so that the test can be run again later. A Unit Testing Framework
tries to help you in each stage of this process, so that it is easy to write tests, easy to run them, and easy to see which
tests failed (so you can fix the bugs).

Advantages of unit testing
Reduces the risks of changing the program

Most programs will be modified during their lifetime: bugs will be fixed, features will be added, optimizations
may become necessary, or the code will need to be refactored or cleaned up in other ways to make it easier to
work with. But every change to aworking program isarisk of introducing new bugs - or reintroducing bugs that
had previously been fixed. Having a set of unit teststhat you can run with very little effort makesit easy to know
that the code still works as it should (this use is called regression testing; see Terminology). This goes along
way to reduce the resistance to changing and refactoring code.

Helps guide and speed up the devel opment process

By focusing on getting the code to pass the tests, the programmer can become more productive, not overspecify
or get lost in premature optimizations, and create code that is correct from the very beginning (so-called test-
driven development; see Terminology).

Ericsson AB, All Rights Reserved: EUnit | 1

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

Helps separate interface from implementation

When writing tests, the programmer may discover dependencies (in order to get the tests to run) that ought not
to be there, and which need to be abstracted away to get a cleaner design. This helps eliminate bad dependencies
before they spread throughout the code.

M akes component integration easier

By testing in a bottom-up fashion, beginning with the smallest program units and creating a confidence in that
they work asthey should, it becomes easier to test that a higher-level component, consisting of several such units,
also behaves according to specification (known as integr ation testing; see Terminology).

I's self-documenting

The tests can be read as documentation, typically showing both examples of correct and incorrect usage, along
with the expected conseguences.

1.1.2 Terminology
Unit testing

Testing that a program unit behaves as it is supposed to do (in itself), according to its specifications. Unit tests
have an important function as regression tests, when the program later is modified for some reason, since they
check that the program still behaves according to specification.

Regression testing

Running a set of tests after making changes to a program, to check that the program behaves as it did before the
changes (except, of course, for any intentional changesin behaviour). Unit tests are important as regression tests,
but regression testing can involve more than just unit testing, and may also test behaviour that might not be part
of the normal specification (such as bug-for-bug-compatibility).

Integration testing

Testing that a number of individually developed program units (assumed to already have been separately unit
tested) work together as expected. Depending on the system being devel oped, integration testing may beassimple
as"just another level of unit testing”, but might also involve other kinds of tests (compare system testing).

System testing

Testing that a complete system behaves according to its specification. Specifically, system testing should not
require knowing any details about the implementation. It typically involves testing many different aspects of the
system behaviour apart from the basic functionality, such as performance, usability, and reliability.

Test-driven devel opment

A program development technique where you continuously write tests before you implement the code that is
supposed to pass those tests. This can help you focus on solving the right problems, and not make a more
complicated implementation than necessary, by letting the unit tests determine when a program is "done": if it
fulfilsits specifications, there is no need to keep adding functionality.

Mock object

Sometimes, testing some unit A (e.g., a function) requires that it collaborates somehow with some other unit B
(perhaps being passed as an argument, or by reference) - but B has not been implemented yet. A "mock object" -
an object which, for the purposes of testing A, looks and behaveslike areal B - might then be used instead. (This
isof course only useful if it would be significantly more work to implement areal B than to create amock object.)

Test case

A single, well-defined test, that somehow can be uniquely identified. When executed, the test case either passes
or fails; the test report should identify exactly which test cases failed.

2 | Ericsson AB, All Rights Reserved: EUnit

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

Test suite

A collection of test cases, generally with a specific, common target for testing, such asasingle function, module,
or subsystem. A test suite may also be recursively composed by smaller test suites.

1.1.3 Getting started

* Including the EUnit header file

e Writing simple test functions

* Running EUnit

e Writing test generating functions

* Anexample

e Disabling testing

* Avoiding compile-time dependency on EUnit

Including the EUnit header file
The simplest way to use EUnit in an Erlang module is to add the following line at the beginning of the module (after
the - nodul e declaration, but before any function definitions):

-include lib("eunit/include/eunit.hrl").

Thiswill have the following effect:

e Creates an exported function t est () (unless testing is turned off, and the module does not aready contain a
test() function), that can be used to run all the unit tests defined in the module

e Causes al functions whose namesmatch . .. _test() or... _test () tobeautomatically exported from
the module (unless testing is turned off, or the EUNI T_NOAUTO macro is defined)

« Makesadl the preprocessor macros of EUnit available, to help writing tests

Note: For -i ncl ude_lib(...) towork, the Erlang module search path must contain a directory whose name
endsin euni t/ ebi n (pointing to the ebi n subdirectory of the EUnit installation directory). If EUnit is installed
asl i b/ eunit under your Erlang/OTP system directory, its ebi n subdirectory will be automatically added to the
search path when Erlang starts. Otherwise, you need to add the directory explicitly, by passing a- pa flag to theer |
or er | ¢ command. For example, a Makefile could contain the following action for compiling . er | files:

erlc -pa "path/to/eunit/ebin" $(ERL COMPILE FLAGS) -0$(EBIN) $<

or if you want Eunit to always be available when you run Erlang interactively, you can add aline like the following
to your SHOVE/ . er | ang file:

code:add path("/path/to/eunit/ebin").

Writing simple test functions

The EUnit framework makes it extremely easy to write unit tests in Erlang. There are afew different ways of writing
them, though, so we start with the simplest;

A function with a name ending in . . . _test () is recognized by EUnit as a simple test function - it takes no
arguments, and its execution either succeeds (returning some arbitrary value that EUnit will throw away), or fails by
throwing an exception of some kind (or by not terminating, in which case it will be aborted after awhile).

An example of asimple test function could be the following:

reverse test() -> lists:reverse([1,2,3]).

Ericsson AB, All Rights Reserved: EUnit | 3

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

Thisjust teststhat the function| i st s: rever se(Li st) doesnot crashwhenLi st is[1, 2, 3] . Itisnot agreat
test, but many people write simple functions like this one to test the basic functionality of their code, and those tests
can be used directly by EUnit, without changes, as long as their function names match.

Use exceptionsto signal failure To write more interesting tests, we need to make them crash (throw an exception)
when they don't get the result they expect. A simple way of doing this is to use pattern matching with =, asin the
following examples:

reverse nil test() -> [] = lists:reverse([]).
reverse one test() -> [1] = lists:reverse([1]).
reverse two test() -> [2,1] = lists:reverse([1,2]).

If therewassomebuginl i sts: rever se/ 1 that madeit return something other than[2, 1] whenitgot[1, 2] as
input, then the last test above would throw abadmat ch error. Thefirst two (we assumethey do not get abadnat ch)
would simply return [] and [1] , respectively, so both succeed. (Note that EUnit is not psychic: if you write a test
that returns avalue, even if it is the wrong value, EUnit will consider it a success. Y ou must make sure that the test
iswritten so that it causes a crash if the result is not what it should be.)

Using assert macros If you want to use Boolean operators for your tests, the assert macro comes in handy (see
EUnit macros for details):

length test() -> ?assert(length([1,2,3]) =:= 3).

The ?assert (Expressi on) macro will evaluate Expr essi on, and if that does not evaluate to t r ue, it will
throw an exception; otherwise it just returns ok. In the above example, the test will thus fail if the call to| engt h
does not return 3.

Running EUnit

If you have added the declaration -i ncl ude_li b("eunit/include/eunit.hrl") toyour module, as
described above, you only need to compile the module, and run the automatically exported function t est () . For
example, if your module was named m then calling m t est () will run EUnit on all the tests defined in the module.
Y ou do not need to write - expor t declarations for the test functions. Thisisall done by magic.

You can aso use the function eunit:test/1 to run arbitrary tests, for example to try out some more advanced test
descriptors (see EUnit test representation). For example, running euni t : t est (M) does the same thing as the auto-
generated functionm t est (), whileeuni t: test ({i nparal l el , n}) runsthe sametest cases but executes
them all in parallel.

Putting testsin separate modules

If you want to separate your test code from your normal code (at least for testing the exported functions), you can
simply write the test functionsin amodule named m t est s (note: not m t est), if your moduleis named m Then,
whenever you ask EUnit to test the module m it will also look for the module m t est s and run those tests as well.
See Modul eNane in the section Primitives for details.

EUnit captures standard output

If your test code writes to the standard output, you may be surprised to see that the text does not appear on the console
when the tests are running. Thisis because EUnit captures all standard output from test functions (this also includes
setup and cleanup functions, but not generator functions), so that it can be included in the test report if errors occur.
To bypass EUnit and print text directly to the console while testing, you can write to the user output stream, as
ini o: format (user, "~w', [Terni). Therecommended way of doing thisis to use the EUnit Debugging
macros, which make it much simpler.

For checking the output produced by the unit under test, see Macros for checking output.

4 | Ericsson AB, All Rights Reserved: EUnit

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

Writing test generating functions

A drawback of simple test functions is that you must write a separate function (with a separate name) for each test
case. A more compact way of writing tests (and much more flexible, aswe shall see), isto write functionsthat return
tests, instead of being tests.

A function with a name ending in . . . _test _() (note the final underscore) is recognized by EUnit as a test
generator function. Test generators return arepresentation of aset of teststo be executed by EUnit.

Representing atest asdata The most basic representation of atest isasingle fun-expression that takes no arguments.
For example, the following test generator:

basic test () ->
fun () -> ?assert(l + 1 =:= 2) end.

will have the same effect as the following simple test:

simple test() ->
?assert(l + 1 =:= 2).

(in fact, EUnit will handle all simple tests just like it handles fun-expressions: it will put them in alist, and run them
one by one).

Using macr osto writetests To maketests more compact and readable, aswell as automatically add information about
the line number in the source code where atest occurred (and reduce the number of characters you have to type), you
can usethe t est macro (note the initial underscore character), like this:

basic test () ->
? test(?assert(l + 1 =:= 2)).

The _t est macro takes any expression (the "body") as argument, and places it within a fun-expression (along with
some extrainformation). The body can be any kind of test expression, just like the body of a simple test function.

Under scor e-pr efixed macr os create test objects But this example can be made even shorter! Most test macros, such
asthefamily of assert macros, have acorresponding form with an initial underscore character, which automatically
addsa?_test(...) wrapper. The above example can then simply be written;

basic test () ->
? assert(l + 1 =:= 2).

which has exactly the same meaning (notethe _assert instead of asser t). You can think of theinitial underscore
assignalling test object.

An example

Sometimes, an example says more than athousand words. The following small Erlang module shows how EUnit can
be used in practice.

Ericsson AB, All Rights Reserved: EUnit | 5

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

-module(fib).
-export([fib/1]).
-include lib("eunit/include/eunit.hrl").

fib(0) -> 1;
fib(1l) -> 1;
fib(N) when N > 1 -> fib(N-1) + fib(N-2).

fib test () ->

[? assert(fib(0) =:= 1),
? assert(fib(1l) =:= 1),
? assert(fib(2) =:= 2),
? assert(fib(3) =:= 3),
? assert(fib(4) =:=5),
? assert(fib(5) =:= 8),
? assertException(error, function clause, fib(-1)),
? assert(fib(31) =:= 2178309)

1.

(Author's note: When | first wrote this example, | happened to writea* instead of + inthef i b function. Of course,
this showed up immediately when | ran the tests.)

See EUnit test representation for afull list of all the ways you can specify test setsin EUnit.

Disabling testing

Testing can be turned off by defining the NOTEST macro when compiling, for example asan optiontoer | ¢, asin:
erlc -DNOTEST my module.erl

or by adding a macro definition to the code, beforethe EUnit header fileisincluded:
-define(NOTEST, 1).

(thevalueisnot important, but should typically belort r ue). Notethat unlessthe EUNI T_NQAUTOmacro isdefined,
disabling testing will also automatically strip all test functionsfrom the code, except for any that are explicitly declared
as exported.

For instance, to use EUnit in your application, but with testing turned off by default, put the following linesin aheader
file:

-define(NOTEST, true).
-include lib("eunit/include/eunit.hrl").

and then make sure that every module of your application includes that header file. This means that you have a only
a single place to modify in order to change the default setting for testing. To override the NOTEST setting without
modifying the code, you can define TEST in acompiler option, like this:

erlc -DTEST my module.erl
See Compilation control macros for details about these macros.

Avoiding compile-time dependency on EUnit

If you are distributing the source code for your application for other people to compile and run, you probably want
to ensure that the code compiles even if EUnit is not available. Like the example in the previous section, you can put
the following lines in a common header file;

-ifdef(TEST).

-include lib("eunit/include/eunit.hrl").
-endif.

6 | Ericsson AB, All Rights Reserved: EUnit

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

and, of course, also make sure that you place all test code that uses EUnit macros within - i f def (TEST) or -
i fdef (EUNI T) sections.

1.1.4 EUnit macros

Although all the functionality of EUnit is available even without the use of preprocessor macros, the EUnit header file
defines a number of such macros in order to make it as easy as possible to write unit tests as compactly as possible
and without getting too many detailsin the way.

Except where explicitly stated, using EUnit macros will never introduce run-time dependencies on the EUnit library
code, regardless of whether your code is compiled with testing enabled or disabled.

* Basic macros

e Compilation control macros

» Utility macros

e Assert macros

» Macros for checking output

e Macrosfor running external commands
» Debugging macros

Basic macros

_test(Expr)
Turns Expr into a "test object”, by wrapping it in a fun-expression and a source line number. Technically, this
isthesameas{ ?LI NE, fun () -> (Expr) end}.

Compilation control macros

EUNI T

Thismacroisawaysdefinedtot r ue whenever EUnit is enabled at compiletime. Thisistypically used to place
testing code within conditional compilation, asin:

-ifdef (EUNIT).
% test code here

-endi%:
e.g., to ensure that the code can be compiled without including the EUnit header file, when testing is disabled.
See also the macros TEST and NOTEST.
EUNI T_NOAUTO
If this macro is defined, the automatic exporting or stripping of test functions will be disabled.
TEST

This macro is always defined (to t r ue, unless previously defined by the user to have another value) whenever
EUnit is enabled at compile time. This can be used to place testing code within conditional compilation; see aso
the macros NOTEST and EUNI T.

For testing code that is strictly dependent on EUnit, it may be preferableto usethe EUNI T macro for this purpose,
while for code that uses more generic testing conventions, using the TEST macro may be preferred.

The TEST macro can aso be used to override the NOTEST macro. If TEST is defined befor e the EUnit header
fileisincluded (even if NOTEST is also defined), then the code will be compiled with EUnit enabled.

Ericsson AB, All Rights Reserved: EUnit | 7

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

NOTEST

This macro is aways defined (to t r ue, unless previously defined by the user to have another value) whenever
EUnit is disabled at compile time. (Compare the TEST macro.)

Thismacro can also be used for conditional compilation, but is moretypically used to disable testing: If NOTEST
is defined befor e the EUnit header fileisincluded, and TEST isnot defined, then the code will be compiled with
EUnit disabled. See also Disabling testing.

NOASSERT

If this macro is defined, the assert macros will have no effect, when testing is also disabled. See Assert macros.
When testing is enabled, the assert macros are always enabled automatically and cannot be disabled.

ASSERT

If this macro is defined, it overrides the NOASSERT macro, forcing the assert macros to always be enabled
regardless of other settings.

NODEBUG

If thismacro isdefined, the debugging macroswill have no effect. See Debugging macros. NODEBUGalso implies
NQASSERT, unless testing is enabled.

DEBUG
If this macro is defined, it overrides the NODEBUG macro, forcing the debugging macros to be enabl ed.

Utility macros
The following macros can make tests more compact and readable:
LET(Var, Arg, Expr)
Createsalocal binding Var = Ar g inExpr . (Thisisthesameas(f un(Var) - >(Expr) end) (Ar g) .) Note

that the binding is not exported outside of Expr , and that within Expr , this binding of Var will shadow any
binding of Var in the surrounding scope.

| F(Cond, TrueCase, Fal seCase)

Evaluates Tr ueCase if Cond evaluatesto t r ue, or otherwise evaluates Fal seCase if Cond evauates to
fal se. (Thisisthe same as (case (Cond) of true->(TrueCase); false->(FalseCase)
end) .) Notethat it isan error if Cond does not yield a boolean value.

Assert macros

(Note that these macros also have corresponding forms which start with an "_" (underscore) character, as in ?
_assert (Bool Expr), that create a "test object" instead of performing the test immediately. Thisis equivalent to
writing ?_t est (assert (Bool Expr)), etc)

If the macro NOASSERT is defined before the EUnit header file isincluded, these macros have no effect when testing
is also disabled; see Compilation control macros for details.

assert (Bool Expr)

Evaluates the expression Bool Expr , if testing is enabled. Unlesstheresult ist r ue, an informative exception
will be generated. If there is no exception, the result of the macro expression is the atom ok, and the value of
Bool Expr isdiscarded. If testing is disabled, the macro will not generate any code except the atom ok, and
Bool Expr will not be evaluated.

Typica usage:

?assert(f(X, Y) =:= [])

8 | Ericsson AB, All Rights Reserved: EUnit

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

Theassert macro can be used anywhere in a program, not just in unit tests, to check pre/postconditions and
invariants. For example:

some recursive function(X, Y, Z) ->
?assert(X + Y > Z),

assert Not (Bool Expr)
Equivalenttoassert (not (Bool Expr)).
assert Mat ch(Guar dedPatt ern, Expr)

Evaluates Expr and matches the result against Guar dedPat t er n, if testing is enabled. If the match fails, an
informative exception will be generated; seetheassert macro for further details. Guar dedPat t er n can be
anything that you can write on the left hand side of the - > symbol in a case-clause, except that it cannot contain
comma-separated guard tests.

Themainreasonfor usingasser t Mat ch alsofor ssmple matches, instead of matching with =, isthat it produces
more detailed error messages.

Examples:
?assertMatch({found, {fred, }}, lookup(bloggs, Table))

?assertMatch([X|] when X > 0, binary to list(B))

assert Not Mat ch(Guar dedPattern, Expr)
Theinverse case of assertMatch, for convenience.
assert Equal (Expect, Expr)

Evaluates the expressions Expect and Expr and compares the results for equality, if testing is enabled. If the
values are not equal, an informative exception will be generated; seetheassert macro for further details.

assert Equal ismore suitable than asser t Mat ch when the left-hand side is a computed value rather than
asimple pattern, and gives more details than ?assert (Expect =:= Expr).

Examples:
?assertEqual("b" ++ "a", lists:reverse("ab"))

?assertEqual(foo(X), bar(Y))

assert Not Equal (Unexpect ed, Expr)
Theinverse case of assertEqual, for convenience.

assert Exception(C assPattern, TernPattern, Expr)
assertError(TernPattern, Expr)

assertExit (TernPattern, Expr)

assert Throw TernPattern, Expr)

Evaluates Expr, catching any exception and testing that it matches the expected
Cl assPat t er n: Ter mPat t er n. If the match fails, or if no exception is thrown by Expr , an informative
exception will be generated; see the assert macro for further details. The assert Error, assert Exi t,
and assert Thr owmacros, are equivalent tousing asser t Excepti on withaC assPatternoferror,
exi t,ort hrow, respectively.

Examples:

Ericsson AB, All Rights Reserved: EUnit | 9

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

?assertError(badarith, X/0)
?assertExit(normal, exit(normal))

?assertException(throw, {not found, }, throw({not found,42}))

Macros for checking output
The following macro can be used within atest case to retreive the output written to standard output.
capt ur edCut put

The output captured by EUnit in the current test case, asa string.

Examples:

io:format("Hello~n"),
7assertEqual ("Hello\n", ?capturedOutput)

Macros for running external commands

Keep in mind that external commands are highly dependent on the operating system. Y ou can use the standard library
functionos: t ype() intest generator functions, to produce different sets of tests depending on the current operating
system.

Note: these macros introduce a run-time dependency on the EUnit library code, if compiled with testing enabled.
assert Cnd(ConmandSt ri ng)

Runs ConmmandSt r i ng as an external command, if testing is enabled. Unless the returned status value is 0, an
informative exception will be generated. If there is no exception, the result of the macro expression is the atom
ok. If testing is disabled, the macro will not generate any code except the atom ok, and the command will not
be executed.

Typica usage:

?assertCmd("mkdir foo")

assert CndSt at us(N, ComuandStri ng)
Liketheassert Cnd(CommandsSt ri ng) macro, but generates an exception unless the returned status value
isN.

assert CndCut put (Text, ComrandStri ng)

Runs CommandsSt ri ng as an external command, if testing is enabled. Unless the output produced by the
command exactly matches the specified string Text , an informative exception will be generated. (Note that the
output isnormalized to use asingle LF character asline break on all platforms.) If thereisno exception, the result
of the macro expression is the atom ok. If testing is disabled, the macro will not generate any code except the
atom ok, and the command will not be executed.

cnd(ComandSt ri ng)

Runs CommandSt r i ng as an external command. Unless the returned status value is O (indicating success), an
informative exception will be generated; otherwise, the result of the macro expression is the output produced by
the command, as aflat string. The output is normalized to use asingle LF character asline break on al platforms.

This macro is useful in the setup and cleanup sections of fixtures, e.g., for creating and deleting files or perform
similar operating system specific tasks, to make sure that the test system isinformed of any failures.

A Unix-specific example:

10 | Ericsson AB, All Rights Reserved: EUnit

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

{setup,
fun () -> ?cmd("mktemp") end,
fun (FileName) -> ?cmd("rm " ++ FileName) end,

.}

Debugging macros

To help with debugging, EUnit defines several useful macros for printing messages directly to the console (rather
than to the standard output). Furthermore, these macros all use the same basic format, which includes the file and line
number where they occur, making it possible in some development environments (e.g., when running Erlang in an
Emacs buffer) to simply click on the message and jump directly to the corresponding line in the code.

If the macro NODEBUG: s defined before the EUnit header fileisincluded, these macros have no effect; see Compilation
control macros for details.

debugHer e

Just prints amarker showing the current file and line number. Note that thisis an argument-less macro. The result
isalwaysok.

debugMsg(Text)
Outputs the message Text (which can beaplain string, an 10-list, or just an atom). The result is aways ok.
debugFm (Fnt String, Args)

This formats the text likei o: format (Fmt String, Args) and outputs it like debugMsg. The result is
aways ok.

debugVal (Expr)
Prints both the source code for Expr and its current value. E.g., ?debugVal (f (X)) might be displayed as
"f(X) = 42". (Large terms are truncated to the depth given by the macro EUNI T_DEBUG VAL _DEPTH,

which defaults to 15 but can be overridden by the user.) The result is always the value of Expr , so this macro
can be wrapped around any expression to display its value when the code is compiled with debugging enabled.

debugVal (Expr, Depth)
LikedebugVal (Expr), but printsterms truncated to the given depth.
debugTi me(Text, Expr)

Prints Text and the wall clock time for evaluation of Expr . The result is always the value of Expr , so this
macro can be wrapped around any expression to show its run time when the code is compiled with debugging
enabled. For example, Li st1 = ?debugTi me("sorting", lists:sort(List)) might show as
"sorting: 0.015 s".

1.1.5 EUnit test representation

The way EUnit represents tests and test sets as data is flexible, powerful, and concise. This section describes the
representation in detail .

e Simpletest objects
e Test setsand deep lists

o Titles

e Primitives
e Control

* Fixtures

e Lazy generators

Ericsson AB, All Rights Reserved: EUnit | 11

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

Simple test objects
A simpletest object isone of the following:
* A nullary functional value (i.e., afun that takes zero arguments). Examples:

fun () -> ... end
fun some function/0
fun some module:some function/0

e Atuple{test, Mdul eNane, Functi onNane}, where Modul eNane and Functi onNane areatoms,
referring to the function Modul eNane: Funct i onNane/ 0

* (Obsolete) A pair of atoms { Modul eNanme, Functi onNane}, equivalent to {t est, Mbodul eNane,
Functi onNane} if nothing else matches first. This might be removed in afuture version.

e Anpair {Li neNunber, SinpleTest},whereLi neNunmber isanonnegativeinteger and Si npl eTest is
another simple test object. Li neNunber should indicate the source line of the test. Pairs like this are usually
only createdvia?_t est (. ..) macros; see Basic macros.

In brief, a simple test object consists of a single function that takes no arguments (possibly annotated with some
additional metadata, i.e., aline number). Evaluation of the function either succeeds, by returning some value (which
isignored), or fails, by throwing an exception.

Test sets and deep lists

A test set can be easily created by placing asequence of test objectsinalist. If T_1, ..., T_Nareindividual test objects,
then[T_1, ..., T_N] isatest set consisting of those objects (in that order).

Test setscan be joined inthe sameway: if S 1, ..., S Karetest sets, then[S_ 1, ..., S K] isasoatest s,
wherethetestsof S i areordered beforethoseof S (i +1) , for each subset S i .

Thus, the main representation of test setsis deep lists, and a simple test object can be viewed as atest set containing
only asingle test; thereis no difference between T and [T] .

A module can a'so be used to represent atest set; see Modul eNane under Primitives below.

Titles

Any test or test set T can be annotated with atitle, by wrappingitinapair{ Tit|l e, T},whereTi t| e isastring. For
convenience, any test which isnormally represented using atuple can simply be given atitle string asthefirst element,
i.e,writing{"The Title", ...} insteadof adding an extratuplewrapper asin{"The Title", {...}}.
Primitives

The following are primitives, which do not contain other test sets as arguments:

Modul eNane: : at om()

A single atom represents a module name, and is equivalent to { nodul e, Modul eNane} . Thisis often used
asinthecall euni t: test (some_nodul e).

{nodul e, Modul eNane: : atom()}

This composes a test set from the exported test functions of the named module, i.e., those functions with arity
zero whose names end with _t est or _t est _. Basically, the. .. _test () functions become simple tests,
whilethe. .. test () functionshbecome generators.

In addition, EUnit will also look for another module whose name is Modul eNane plus the suffix _t est s,
and if it exists, all the tests from that module will also be added. (If Mbdul eNane aready contains the suffix
_tests, thisisnot done) E.g., the specification { rodul e, mynodul e} will run al tests in the modules

12 | Ericsson AB, All Rights Reserved: EUnit

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

mynodul e and mynodul e_t est s. Typically, the_t est s module should only contain test casesthat usethe
public interface of the main module (and no other code).

{application, AppNane::atom(), Info::list()}

Thisisanorma Erlang/OTP application descriptor, asfound in an . app file. The resulting test set consists of
the moduleslisted in the nodul es entry in| nf o.

{application, AppNane::aton()}

This creates atest set from all the modules belonging to the specified application, by consulting the application's
.app file(see{file, FileNane}),orifnosuch fileexists, by testing all object filesin the application's
ebi n-directory (see{ di r, Pat h});if that doesnot exist,thecode: | i b_di r (AppNane) directory isused.

Pat h: : string()

A single string representsthe path of afileor directory, andisequivalentto{fi |l e, Pat h},or{dir, Path},
respectively, depending on what Pat h refersto in the file system.

{file, FileNane::string()}

If Fi | eNane has a suffix that indicates an object file (. beam), EUnit will try to reload the module from the
specified file and test it. Otherwise, the file is assumed to be atext file containing test specifications, which will
be read using the standard library functionf i | e: pat h_consul t/ 2.

Unless the file name is absolute, the file is first searched for relative to the current directory, and then using the
normal search path (code: get _pat h()). Thismeansthat the names of typical "app" filescan be used directly,
without a path, e.g., " rmesi a. app".

{dir, Path::string()}

This tests al object files in the specified directory, as if they had been individually specified using {fi |l e,
Fi | eNane} .

{generator, GenFun::(() -> Tests)}

The generator function GenFun is called to produce atest set.
{generat or, Modul eName::aton(), FunctionNane::aton()}

The function Modul eNane: Funct i onNane() iscalled to produce atest set.
{with, X :any(), [AbstractTestFun:: ((any()) -> any())]}

Distributes the value X over the unary functions in the list, turning them into nullary test functions. An
Abst ract Test Fun islike an ordinary test fun, but takes one argument instead of zero - it's basically missing
some information beforeit can be aproper test. In practice, {wi th, X, [F_1, ..., F_N]} isequivaent
to[fun () -> F 1(X) end, ..., fun () -> F_N(X) end].Thisisparticularly useful if your
abstract test functions are already implemented as proper functions: {wi th, FD, [fun filetest a/l,
fun filetest_b/1, fun filetest_c/1]} isequivdentto[fun () -> filetest_a(FD)
end, fun () -> filetest b(FD) end, fun () -> filetest _c(FD) end], but much more
compact. See also Fixtures, below.

Control
The following representations control how and where tests are executed:
{spawn, Tests}

Runs the specified testsin a separate subprocess, while the current test process waitsfor it to finish. Thisis useful
for tests that need a fresh, isolated process state. (Note that EUnit always starts at |east one such a subprocess
automatically; tests are never executed by the caller's own process.)

Ericsson AB, All Rights Reserved: EUnit | 13

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

{spawn, Node::aton(),
Like{ spawn, Test s}, but runsthe specified tests on the given Erlang node.
Ti me: : nunber (), Tests}

Runs the specified tests under the given timeout. Time is in seconds; e.g., 60 means one minute and 0.1 means
1/10th of asecond. If thetimeout is exceeded, the unfinished testswill beforced to terminate. Notethat if atimeout
isset around afixture, it includes the time for setup and cleanup, and if the timeout istriggered, the entire fixture
is abruptly terminated (without running the cleanup). The default timeout for an individual test is 5 seconds.

Test s}

Runsthe specified testsin strict order. Alsosee{ i npar al | el , Test s} . By default, testsare neither marked
asi norder ori nparal | el , but may be executed as the test framework chooses.

Test s}

Test s}

{tineout,

{inorder,

{inparallel,
Runs the specified testsin parallel (if possible). Also see{i nor der,

Test s}

Test s}, but running no more than N subtests simultaneously.

Test s}.
{inparallel, N:integer(),

Like{i nparall el ,
Fixtures

A "fixture" is some state that is necessary for a particular set of tests to run. EUnit's support for fixtures makesit easy
to set up such state locally for atest set, and automatically tear it down again when the test set is finished, regardless
of the outcome (success, failures, timeouts, etc.).

To make the descriptions simpler, we first list some definitions:

Set up () -> (R:any())

Set upX (X rany()) -> (R:any())

C eanup (R :any()) -> any()

d eanupX (X:rany(), Rz:rany()) -> any()
((R:any()) -> Tests) | {with,

I nstanti at or [Abstract Test Fun: : ((any()) ->
any())]}

Wer e local | spawn | {spawn, Node::aton()}

Table 1.1:

(these are explained in more detail further below.)

The following representations specify fixture handling for test sets:

{setup, Setup, Tests | Instantiator}

{setup, Setup, O eanup, Tests | Instantiator}
{setup, Where, Setup, Tests | Instantiator}

{setup, Where, Setup, C eanup, Tests | Instantiator}

set up sets up a single fixture for running al of the specified tests, with optional teardown afterwards. The

arguments are described in detail below.

14 | Ericsson AB, All Rights Reserved: EUnit

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

{node, Node::atom(), Tests | Instantiator}
{node, Node::aton(), Args::string(), Tests | Instantiator}

node islike set up, but with a built-in behaviour: it starts a slave node for the duration of the tests. The atom
Node should have the format nodenanme@ ul | . machi ne. name, and Ar gs are the optional arguments to
the new node; seesl ave: start _|i nk/ 3 for details.

{foreach, Where, Setup, Ceanup, [Tests | Instantiator]}
{foreach, Setup, C eanup, [Tests | Instantiator]}
{foreach, Were, Setup, [Tests | Instantiator]}
{foreach, Setup, [Tests | Instantiator]}

f or each is used to set up afixture and optionally tear it down afterwards, repeated for each single one of the
specified test sets.

{foreachx, Were, SetupX, CeanupX, Pairs::[{X :any(), ((X:any(), R :any())
-> Tests)}]}

{foreachx, SetupX, dd eanupX, Pairs}

{foreachx, \Were, SetupX, Pairs}

{foreachx, SetupX, Pairs}

foreachx islike f or each, but uses a list of pairs, each containing an extra argument X and an extended
instantiator function.

A Set up function isexecuted just before any of the specified testsarerun, and aCl eanup function isexecuted when
no more of the specified testswill be run, regardless of the reason. A Set up function takes no argument, and returns
some valuewhich will be passed asitistotheCl eanup function. A C eanup function should do whatever necessary
and return some arbitrary value, such as the atom ok. (Set upX and Cl eanupX functions are similar, but receive
one additional argument: some value X, which depends on the context.) When no Cl eanup function is specified, a
dummy function is used which has no effect.

Anl nst ant i at or function receivesthe samevalueastheCl eanup function, i.e., thevauereturned by the Set up
function. It should then behave much like a generator (see Primitives), and return a test set whose tests have been
instantiated with the given value. A special caseisthesyntax {wi t h, [Abstract Test Fun]} which represents
an instantiator function that distributesthe value over alist of unary functions; see Primitives: {wi th, X, [...]}
for more details.

A VWer e term controls how the specified tests are executed. The default is spawn, which means that the current
process handl esthe setup and teardown, whilethetestsare executed in asubprocess. { spawn, Node} islikespawn,
but runs the subprocess on the specified node. | ocal meansthat the current process will handle both setup/teardown
and running the tests - the drawback is that if atest times out so that the process is killed, the cleanup will not be
performed; hence, avoid this for persistent fixtures such as file operations. In general, | ocal should only be used
when:

» the setup/teardown needs to be executed by the process that will run the tests;

« no further teardown needs to be done if the process is killed (i.e., no state outside the process was affected by
the setup)

Lazy generators

Sometimes, it can be convenient not to produce the whole set of test descriptions before the testing begins; for example,
if you want to generate a huge amount of tests that would take up too much space to keep in memory all at once.

It is fairly easy to write a generator which, each time it is called, either produces an empty list if it is done, or
otherwise produces a list containing a single test case plus a new generator which will produce the rest of the tests.
This demonstrates the basic pattern:

Ericsson AB, All Rights Reserved: EUnit | 15

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

lazy test () ->
lazy gen(16000).

lazy gen(N) ->

{generator,
fun () ->
if N>0 ->
[? test(...)
| lazy_gen(N-1)];
true ->
[
end
end}.

When EUnit traverses the test representation in order to run the tests, the new generator will not be called to produce
the next test until the previous test has been executed.

Note that it is easiest to write this kind of recursive generator using a help function, likethel azy _gen/ 1 function
above. It can also be written using a recursive fun, if you prefer to not clutter your function namespace and are
comfortable with writing that kind of code.

16 | Ericsson AB, All Rights Reserved: EUnit

1.1 EUnit - a Lightweight Unit Testing Framework for Erlang

2 Reference Manual

The EUnit application contains modules with support for unit testing.

Ericsson AB, All Rights Reserved: EUnit | 17

eunit

eunit

Erlang module

This module is the main EUnit user interface.

Exports

start() -> term()
Starts the EUnit server. Normally, you don't need to call this function; it is started automatically.

stop() -> term()
Stops the EUnit server. Normally, you don't need to call this function.

test(Tests) -> term()
Equivalent to test(Tests, []).

test(Tests::term(), Options::[term()]) -> ok | {error, term()}
Runs a set of tests. The format of Test s isdescribed in the section EUnit test representation of the overview.
Example:

eunit:test(fred)

runsall testsin the module f r ed and also any testsinthe modulef r ed_t est s, if that module exists.
Options:
ver bose
Displays more details about the running tests.
print_depth
Maximum depth to which terms are printed in case of error.

Options in the environment variable EUNIT are also included last in the option list, i.e., have lower precedence than
thosein Opt i ons.

See also: test/1.

18 | Ericsson AB, All Rights Reserved: EUnit

eunit_surefire

eunit_surefire

Erlang module

Surefire reports for EUnit (Format used by Maven and Atlassian Bamboo for example to integrate test results). Based
oninitia code from Paul Guyot.

Example: Generate XML result filein the current directory:

eunit:test([fib, eunit examples],
[{report,{eunit surefire, [{dir,"."}1}}]).

Exports

handle begin(Kind, Data, St) -> term()
handle cancel (X1, Data, St) -> term()
handle end (X1, Data, St) -> term()
init(Options) -> term()

start() -> term()

start(Options) -> term()

terminate (X1, St) -> term()

See also

eunit

Ericsson AB, All Rights Reserved: EUnit | 19

	EUnit
	EUnit User's Guide
	EUnit - a Lightweight Unit Testing Framework for Erlang

	Unit testing
	Advantages of unit testing

	Terminology
	Getting started
	Including the EUnit header file
	Writing simple test functions
	Running EUnit
	Writing test generating functions
	An example
	Disabling testing
	Avoiding compile-time dependency on EUnit

	EUnit macros
	Basic macros
	Compilation control macros
	Utility macros
	Assert macros
	Macros for checking output
	Macros for running external commands
	Debugging macros

	EUnit test representation
	Simple test objects
	Test sets and deep lists
	Titles
	Primitives
	Control
	Fixtures
	Lazy generators

	Reference Manual
	eunit
	start/0
	stop/0
	test/1
	test/2

	eunit_surefire
	handle_begin/3
	handle_cancel/3
	handle_end/3
	init/1
	start/0
	start/1
	terminate/2

