ERLANG

crypto

Copyright © 1999-2019 Ericsson AB. All Rights Reserved.
crypto 4.4.2

oktober 21, 2019

Copyright © 1999-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

oktober 21, 2019

1.1 Licenses

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

1.1 Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

1.1.1 OpenSSL License

~
*

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ""AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

¥ O K K X K X K X K K X K X K X K X K K X K K X X K X K X K K X K X K X K X K X X K X X X ¥ X ¥ X ¥ ¥

*
~

2 | Ericsson AB. All Rights Reserved.: crypto

1.2 FIPS mode

1.1.2 SSlLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

~
*

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " “AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

¥ O K K X K X K X K K K K X K X K X K K K K K K X K X K X K K K XK X K X K X K X K X K X X K X X X X ¥ X ¥ ¥

*
~

1.2 FIPS mode

This chapter describes FIPS mode support in the crypto application.

Ericsson AB. All Rights Reserved.: crypto | 3

1.2 FIPS mode

1.2.1 Background

OpenSSL can be built to provide FIPS 140-2 validated cryptographic services. It is not the OpenSSL application that
isvalidated, but a special software component called the OpenSSL FIPS Object Module. However applications do not
use this Object Module directly, but through the regular API of the OpenSSL library.

The crypto application supports using OpenSSL in FIPS mode. In this scenario only the validated algorithms provided
by the Object Module are accessible, other algorithms usually available in OpenSSL (like md5) or implemented in
the Erlang code (like SRP) are disabled.

1.2.2 Enabling FIPS mode
e Build or install the FIPS Object Module and a FIPS enabled OpenSSL library.
Y ou should read and precisely follow the instructions of the Security Policy and User Guide.

It is very easy to build a working OpenSSL FIPS Object Module and library from the source. However it
does not quaify as FIPS 140-2 validated if the numerous restrictions in the Security Policy are not properly
followed.

e Configure and build Erlang/OTP with FIPS support:

$ cd $ERL TOP
$./otp build configure --enable-fips

éﬁécking for FIPS mode set... yes
$ make

If FI PS_node_set returnsno the OpenSSL library is not FIPS enabled and crypto won't support FIPS mode
either.

» Setthefi ps_node configuration setting of the crypto applicationtot r ue beforeloading the crypto module.

Thebest placeisinthesys. conf i g system configuration file of the release.

e Start and use the crypto application as usual. However take care to avoid the non-FIPS validated algorithms,
they will al throw exception not _support ed.

Entering and leaving FIPS mode on a node aready running crypto is not supported. The reason is that OpenSSL is
designed to prevent an application requesting FIPS mode to end up accidentally running in non-FIPS mode. If entering
FIPS mode fails (e.g. the Object Module is not found or is compromised) any subsequent use of the OpenSSL API
would terminate the emulator.

An on-the-fly FIPS mode change would thus have to be performed in a critical section protected from any concurrently
running crypto operations. Furthermore in case of failure al crypto calls would have to be disabled from the Erlang
or nif code. Thiswould be too much effort put into this not too important feature.

1.2.3 Incompatibilities with regular builds

The Erlang API of the crypto application is identical regardless of building with or without FIPS support. However
the nif code internally uses a different OpenSSL API.

This means that the context (an opaque type) returned from streaming crypto functions (hash_(i nit |
update|final),hmac_(init|update|final) andstream (init|encrypt|decrypt))isdifferent
and incompatible with regular builds when compiling crypto with FIPS support.

4 | Ericsson AB. All Rights Reserved.: crypto

href
href

1.2 FIPS mode

1.2.4 Common caveats

In FIPS mode non-validated algorithms are disabled. This may cause some unexpected problemsin application relying
on crypto.

Do not try to work around these problems by using alternative implementations of the missing algorithms! An
application can only claim to be using a FIPS 140-2 validated cryptographic module if it uses it exclusively for
every cryptographic operation.

Restrictions on key sizes

Although public key algorithms are supported in FIPS mode they can only be used with secure key sizes. The Security
Policy requires the following minimum values:

RSA

1024 bit
DSS

1024 bit
EC algorithms

160 hit

Restrictions on elliptic curves

The Erlang API alows using arbitrary curve parameters, but in FIPS mode only those allowed by the Security Policy
shall be used.

Avoid md5 for hashing

Md5 isapopular choice as ahash function, but it is not secure enough to be validated. Try to use shainstead wherever
possible.

For exceptional, non-cryptographic use cases one may consider switchingtoer | ang: nd5/ 1 aswell.

Certificates and encrypted keys

Asmd5 is not available in FIPS mode it is only possible to use certificates that were signed using sha hashing. When
validating an entire certificate chain al certificates (including the root CA's) must comply with this rule.

For similar dependency on the md5 and des algorithms most encrypted private keys in PEM format do not work
either. However, the PBES2 encryption scheme allows the use of stronger FIPS verified algorithmswhich isaviable
alternative.

SNMP v3 limitations

It is only possible to use us THMACSHAAuUt hPr ot ocol and usmAesCf b128Pr ot ocol for authentication and
privacy respectively in FIPS mode. The snmp application however won't restrict selecting disabled protocols in any
way, and using them would result in run time crashes.

TLS 1.2 is required

All SSL and TLS versions prior to TLS 1.2 use a combination of md5 and shal hashes in the handshake for various
purposes:

e Authenticating the integrity of the handshake messages.

* Inthe exchange of DH parameters in cipher suites providing non-anonymous PFS (perfect forward secrecy).

* Inthe PRF (pseud-random function) to generate keying materials in cipher suites not using PFS.

Ericsson AB. All Rights Reserved.: crypto | 5

1.3 Engine Load

OpenSSL handles these corner cases in FIPS mode, however the Erlang crypto and ssl applications are not prepared
for them and therefore you are limited to TLS 1.2 in FIPS mode.

On the other hand it worth mentioning that at least all cipher suites that would rely on non-validated algorithms are
automatically disabled in FIPS mode.

Certificates using weak (md5) digests may aso cause problems in TLS. Although TLS 1.2 has an extension for
specifying which type of signatures are accepted, and in FIPS mode the ssl application will use it properly, most
TL S implementations ignore this extension and simply send whatever certificates they were configured with.

1.3 Engine Load

This chapter describes the support for loading encryption engines in the crypto application.

1.3.1 Background

OpenSSL exposes an Engine API, which makes it possible to plug in aternative implementations for some or all of
the cryptographic operations implemented by OpenSSL. When configured appropriately, OpenSSL calls the engine's
implementation of these operations instead of its own.

Typically, OpenSSL engines provide a hardware implementation of specific cryptographic operations. The hardware
implementation usually offers improved performance over its software-based counterpart, which is known as
cryptographic acceleration.

The file name requirement on the engine dynamic library can differ between SSL versions.

1.3.2 Use Cases

Dynamically load an engine from default directory
If the engine islocated in the OpenSSL/LibreSSL installation engi nes directory.

1> {ok, Engine} = crypto:engine load(<<"otp test engine">>, [], []).
{ok, #Ref}

Load an engine with the dynamic engine
Load an engine with the help of the dynamic engine by giving the path to the library.

2> {ok, Engine} = crypto:engine load(<<"dynamic">>,
[{<<"SO PATH">>,
<<"/some/path/otp test engine.so">>},
{<<"ID">>, <<"MD5">>},
<<"LOAD">>],
[1.
{ok, #Ref}

Load an engine and replace some methods

Load an engine with the help of the dynamic engine and just replace some engine methods.

6 | Ericsson AB. All Rights Reserved.: crypto

1.4 Engine Stored Keys

3> Methods = crypto:engine get all methods() -- [engine method dh,engine method rand,
engine _method ciphers,engine method digests, engine method store,
engine _method pkey meths, engine method pkey asnl meths].
[engine method rsa,engine method dsa,
engine method ecdh,engine method ecdsal
4> {ok, Engine} = crypto:engine load(<<"dynamic">>,
[{<<"SO PATH">>,
<<"/some/path/otp test engine.so">>},
{<<"ID">>, <<"MD5">>},
<<"LOAD">>],

[1,
Methods) .
{ok, #Ref}

Load with the ensure loaded function
This function makes sure the engine is loaded just once and the ID is added to the internal engine list of OpenSSL.

The following callsto the function will check if the ID isloaded and then just get a new reference to the engine.

5> {ok, Engine} = crypto:ensure engine loaded(<<"MD5">>,
<<"/some/path/otp test engine.so">>).
{ok, #Ref}

To unload it use crypto:ensure_engine_unloaded/1 which removes the ID from the internal list before unloading the
engine.

6> crypto:ensure engine unloaded(<<"MD5">>).
ok

List all engines currently loaded

5> crypto:engine list().
[<<"dynamic">>, <<"MD5">>]

1.4 Engine Stored Keys

This chapter describes the support in the crypto application for using public and private keys stored in encryption
engines.

1.4.1 Background

OpenSSL exposes an Engine API, which makes it possible to plug in aternative implementations for some of the
cryptographic operations implemented by OpenSSL. See the chapter Engine Load for details and how to load an
Engine.

An engine could among other tasks provide a storage for private or public keys. Such a storage could be made safer
than the normal file system. Thoose techniques are not described in this User's Guide. Here we concentrate on how
to use private or public keys stored in such an engine.

The storage engine must call ENG NE_set | oad_privkey function and
ENGA NE_set | oad_pubkey_ functi on. Seethe OpenSSL cryptolib's manpages.

OTP/Crypto requires that the user provides two or three items of information about the key. The application used by
the user is usually on a higher level, for examplein SSL. If using the crypto application directly, it is required that:

e an Engineisloaded, seethe chapter on Engine Load or the Reference Manual

« areferenceto akey inthe Engineis available. This should be an Erlang string or binary and depends on the
Engine loaded

Ericsson AB. All Rights Reserved.: crypto | 7

href
href

1.5 Algorithm Details

» an Erlang map is constructed with the Engine reference, the key reference and possibly akey passphrase if
needed by the Engine. See the Reference Manual for details of the map.

1.4.2 Use Cases

Sign with an engine stored private key

This example shows how to construct a key reference that is used in a sign operation. The actual key is stored in the
engine that is loaded at prompt 1.

1> {ok, EngineRef} = crypto:engine load(....).

{ok, #Ref<0.2399045421 . 3028942852 . 173962>}

2> PrivKey = #{engine => EngineRef,

key id => "id of the private key in Engine"}.

é;'Signature = crypto:sign(rsa, sha, <<"The message">>, PrivKey).
<<65,6,125,254,54,233,84,77,83,63,168,28,169,214,121, 76,
207,177,124,183,156,185,160,243,36,79,125,230,231, .. .>>
Verify with an engine stored public key
Here the signature and message in the last example is verifyed using the public key. The public key is stored in an
engine, only to exemplify that it is possible. The public key could of course be handled openly as usual.

4> PublicKey = #{engine => EngineRef,
key id => "id of the public key in Engine"}.

5> crypto:verify(rsa, sha, <<"The message">>, Signature, PublicKey).
true
6>

Using a password protected private key
The same example as the first sign example, except that a password protects the key down in the Engine.

6> PrivKeyPwd = #{engine => EngineRef,
key id => "id of the pwd protected private key in Engine",
password => "password"}.
7> crypto:sign(rsa, sha, <<"The message">>, PrivKeyPwd).
<<140,80,168,101,234,211,146,183,231,190,160,82,85, 163,
175,106,77,241,141,120,72,149,181,181,194,154,175,76,

223,...>>
8>

1.5 Algorithm Details

This chapter describes details of algorithms in the crypto application.

Thetablesonly documentsthe supported cryptos and key lengths. The user should not draw any conclusion on security
from the supplied tables.

1.5.1 Ciphers

Block Ciphers
To be used in block_encrypt/3, block _encrypt/4, block decrypt/3 and block _decrypt/4.
Availablein al OpenSSL compatible with Erlang CRYPTO if not disabled by configuration.

8 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

To dynamically check availability, check that the name in the Cipher and Mode column is present in the list with the

ci pher tagin thereturn value of crypto:supports().

Cipher and Mode [Kb(}e/tyglﬁe]ngth I[t\)/yltzr;]gth ﬁ)l;)tc;]size
aes_chc 16, 24, 32 16 16
aes_chcl128 16 16 16
aes_cbhc256 32 16 16
aes_cfb8 16, 24, 32 16 any
aes_ech 16, 24, 32 16
aes_ige256 16 32 16
bl owfi sh_cbc 4-56 8 8
bl owfi sh_cf b64 #1 8 any
bl owfi sh_ech #1 8
bl owf i sh_of b64 #1 8 any
((:l:e SEéEbDCEs CBC) (888] 8 8
?:e SgéébeEs CFB) [8.8.8] 8 any
des_chc 8 8 8
des _cfb 8 8 any
des_ech 8 8
?:e I;E?IjEIGDSB CBC) 888] 8 8
rc2_chc #1 8 8

Table 5.1: Block cipher key lengths

AEAD Ciphers

To be used in block_encrypt/4 and block_decrypt/4.

To dynamically check availability, check that the name in the Cipher and Mode column is present in the list with the

ci pher taginthereturn value of crypto:supports().

Ericsson AB. All Rights Reserved.: crypto | 9

1.5 Algorithm Details

Supported
Cipher and Key length IV length AAD length | Taglength Block size with
Mode [bytes] [bytes] [bytes] [bytes] [bytes] OpenSSL
versions
even 4-16
aes_ccm 16,24,32 7-13 any default: 12 any #1.1.0
aes_gcm 16,24,32 #1 an 1-16 an #1.1.0
-9 e y default: 16 Y -
chacha20_paBg1305 1-16 any 16 any #1.1.0

Table 5.2: AEAD cipher key lengths

Stream Ciphers

To be used in stream _init/2 and stream_init/3.

To dynamically check availahility, check that the name in the Cipher and Mode column is present in the list with the

ci pher taginthereturn value of crypto: supports().

: Key length IV length Supported with
Cipher and Mode [bytes] [bytes] OpenSSL versions
aes_ctr 16, 24, 32 16 #1.0.1
rcd #1 all

Table 5.3: Stream cipher key lengths

1.5.2 Message Authentication Codes (MACs)

CMAC

To be used in cmac/3 and cmac/4.
CMAC with the following ciphers are available with OpenSSL 1.0.1 or later if not disabled by configuration.

To dynamically check availahility, check that the name cnac is present in the list with the macs tag in the return
value of crypto:supports(). Also check that the name in the Cipher and Mode column is present in the list with the

ci pher taginthereturnvaue.

Cipher and Mode E)i{ée]ngth m;@}n acLength
aes_cbc 16, 24, 32 16
aes_cbcl128 16 16
aes_chc256 32 16

10 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

aes_cf b8 16 1
bl owfi sh_chc 4-56 8
bl owfi sh_cfbh64 #1 1
bl owfi sh_ech #1 8
bl owf i sh_of b64 #1 1
?:e SESEDES CBC) 888 8
?:e SééEbeEs CFB) [8.8.8] 1
des_cbc 8 8
des_cfb 8 1
des_echb 8 1
rc2_chc #1 8

Table 5.4: CMAC cipher key lengths

HMAC
Availablein all OpenSSL compatible with Erlang CRYPTO if not disabled by configuration.

To dynamically check availability, check that the name hnac is present in the list with the macs tag in the return
value of crypto: supports().

POLY1305
POLY 1305 is available with OpenSSL 1.1.1 or later if not disabled by configuration.

To dynamically check availability, check that the name pol y1305 is present in the list with the macs tag in the
return value of crypto: supports().

1.5.3 Hash

To dynamically check availability, check that the wanted name in the Names column is present in the list with the
hashs tag in the return value of crypto: supports().

Supported with
Type Names OpenSSL versions
SHA1 sha all
SHA2 sha224, sha256, sha384, sha512 all

sha3_224, sha3_256, sha3_384,

SHA3 sha3_512

#1.1.1

Ericsson AB. All Rights Reserved.: crypto | 11

1.5 Algorithm Details

MD4 md4 all

MD5 md5 all

RIPEMD ripemd160 all
Table 5.5:

1.5.4 Public Key Cryptography

RSA

RSA is available with all OpenSSL versions compatible with Erlang CRYPTO if not disabled by configuration. To
dynamically check availability, check that theatomr sa ispresent inthelist withthepubl i c_keys taginthereturn
value of crypto: supports().

The RSA options are experimental.

The exact set of options and there syntax may be changed without prior notice.

. . . public encrypt private encrypt
Option signiverify private decrypt public decrypt
{rsa_padding,rsa_x931_pading} X
{rsa_padding,rsa_pkcsl_padioing} X X
{rsa_padding,rsa_pkcsl_psg péaping}

{rsa pss_sdtlen, -2..} X (2)

{rsa_mgf1_md, atom()} x (2)
{rsa_padding,rsa_pkcsl_oagp_padding} X (2)
{rsa_mgfl_md, atom()} x (2)
{rsa_oaep _label, X (3)
binary()}} x (3)
{rsa_oaep_md, atom()}

{rsa_padding,rsa_no_paddi rllgg» (1)

Table 5.6:

Notes:

e (1) OpensSL #1.0.0
* (2) OpensSL #1.0.1
e (3)OpenssL #1.1.0

12 | Ericsson AB. All Rights Reserved.: crypto

1.5 Algorithm Details

DSS

DSS is available with OpenSSL versions compatible with Erlang CRYPTO if not disabled by configuration. To
dynamically check availability, check that theatom dss ispresent inthelist withthepubl i c_keys taginthereturn
value of crypto: supports().

ECDSA

ECDSA isavailable with OpenSSL 0.9.80 or later if not disabled by configuration. To dynamically check availability,
check that the atom ecdsa ispresent in the list with the publ i c_keys tag in the return value of crypto: supports().
If the atom ec_gf 2mcharacteristic two field curves are available.

The actual supported named curves could be checked by examining the list with the cur ves tag in the return value
of crypto:supports().

EdDSA

EdDSA is available with OpenSSL 1.1.1 or later if not disabled by configuration. To dynamically check availability,
check that the atom eddsa is present in the list with the publ i ¢c_keys tagin the return value of crypto: supports().

Support for the curves ed25519 and ed448 is implemented. The actua supported named curves could be checked by
examining the list with the cur ves tag in the return value of crypto: supports().

Diffie-Hellman

Diffie-Hellman computations are available with OpenSSL versions compatible with Erlang CRYPTO if not disabled
by configuration. To dynamically check availability, check that the atom dh is present in the list with the
publ i c_keys tagin thereturn value of crypto: supports().

Elliptic Curve Diffie-Hellman

Elliptic Curve Diffie-Hellman is available with OpenSSL 0.9.80 or later if not disabled by configuration. To
dynamically check availability, check that the atom ecdh is present in the list with the publ i ¢_keys tag in the
return value of crypto: supports().

The Edward curves x25519 and x448 are supported with OpenSSL 1.1.1 or later if not disabled by configuration.

The actual supported named curves could be checked by examining the list with the cur ves tag in the return value
of crypto: supports().

Ericsson AB. All Rights Reserved.: crypto | 13

1.5 Algorithm Details

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

14 | Ericsson AB. All Rights Reserved.: crypto

crypto

crypto

Application

The purpose of the Crypto application isto provide an Erlang API to cryptographic functions, see crypto(3). Note that
the APl ison afairly low level and there are some corresponding API functionsavailable in public_key(3), on ahigher
abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES

The current crypto implementation uses nifs to interface OpenSSLs crypto library and may work with limited
functionality with as old versions as OpenSSL 0.9.8c. FIPS mode support requires at least version 1.0.1 and a FIPS
capable OpenSSL installation. We recommend using a version that is officially supported by the OpenSSL project.
API compatible backends like LibreSSL should also work.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

CONFIGURATION

The following configuration parameters are defined for the crypto application. See app(3) for more information
about configuration parameters.

fi ps_nmode = bool ean()

Specifieswhether to run crypto in FIPS mode. This setting will take effect when the nif moduleisloaded. If FIPS
mode is requested but not available at run time the nif module and thus the crypto module will fail to load. This
mechanism prevents the accidental use of non-validated algorithms.

rand_cache_si ze = integer()

Sets the cache size in bytes to use by crypto:rand seed al g(crypto_cache) and
crypto:rand_seed_al g _s(crypto_cache) . Thisparameter isread when aseed functioniscalled, and
then kept in generators state object. It has a rather small default value that causes reads of strong random bytes
about once per hundred calls for a random value. The set value is rounded up to an integral number of words
of the size these seed functions use.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: crypto | 15

href

crypto

crypto

Erlang module

This module provides a set of cryptographic functions.
Hash functions

SHA1, SHA2
Secure Hash Standard [FIPS PUB 180-4]
SHA3
SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions[FIPS PUB 202]
MD5
The MD5 Message Digest Algorithm [RFC 1321]
MD4
The MD4 Message Digest Algorithm [RFC 1320]

MACs - Message Authentication Codes

Hmac functions

Keyed-Hashing for M essage Authentication [RFC 2104]
Cmac functions

The AES-CMAC Algorithm [RFC 4493]
POLY 1305

ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Symmetric Ciphers

DES, 3DES and AES
Block Cipher Techniques[NIST]
Blowfish
Fast Software Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer -
Verlag, 1994, pp. 191-204.
Chacha20
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]
Chacha20_poly1305
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]

Modes

ECB, CBC, CFB, OFB and CTR
Recommendation for Block Cipher Modes of Operation: Methods and Techniques[NIST SP
800-38A]

GCM
Recommendation for Block Cipher Modes of Operation: Galois’Counter Mode (GCM) and GMAC
[NIST SP 800-38D]

CCM
Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality [NIST SP 800-38C]

Asymetric Ciphers - Public Key Techniques

16 | Ericsson AB. All Rights Reserved.: crypto

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

crypto

RSA
PKCS#1: RSA Cryptography Specifications [RFC 3447]
DSS
Digital Signature Standard (DSS) [FIPS 186-4]
ECDSA
Elliptic Curve Digital Signature Algorithm [ECDSA]
SRP
The SRP Authentication and Key Exchange System [RFC 2945]

The actual supported agorithms and features depends on their availability in the actual libcrypto used. See the

crypto (App) about dependencies.
Enabling FIPS mode will also disable algorithms and features.

The CRYPTO User's Guide has more information on FIPS, Engines and Algorithm Details like key lengths.

Data Types

Ciphers
stream cipher() = rc4 | aes ctr | chacha20
Stream ciphers for stream_encrypt/2 and stream_decrypt/2 .

block cipher with iv() =

cbc_ci pher () |

cfb_cipher() |

aes cbcl28 |

aes cbc256 |

aes 1ige256 |

blowfish ofbh64 |

des3 cbf |

des ede3 |

rc2_cbc
cbc_cipher() = des cbc | des3 cbc | aes cbc | blowfish cbc
cfb_cipher() =

aes cfb128 | aes cfb8 | blowfish cfb64 | des3 cfb | des cfb

Block ciphers with initialization vector for block_encrypt/4 and block_decrypt/4 .
block cipher without iv() = ecb_ci pher()

ecb cipher() = des ecb | blowfish ecb | aes ecb

Block ciphers without initialization vector for block_encrypt/3 and block_decrypt/3 .
aead cipher() = aes gcm | aes _ccm | chacha20 polyl305

Ciphers with simultaneous MAC-cal culation or MAC-checking. block _encrypt/4 and block _decrypt/4 .

Ericsson AB. All Rights Reserved.: crypto | 17

href
href
href
href

crypto

Digests

shal() = sha

sha2() = sha224 | sha256 | sha384 | sha512

sha3() = sha3 224 | sha3 256 | sha3 384 | sha3 512

compatibility only hash() = md5 | md4

The conpatibility only hash() agorithms are recommended only for compatibility with existing
applications.

rsa digest type() shal() | sha2() | md5 | ripemdl60

dss digest type() shal() | sha2()

ecdsa digest type() = shal() | sha2()

Elliptic Curves

ec _named curve() =
brainpoolP160rl
brainpoolP160tl
brainpoolP192rl
brainpoolP192t1
brainpoolP224rl
brainpoolP224t1
brainpoolP256rl
brainpoolP256t1
brainpoolP320rl
brainpoolP320t1
brainpoolP384rl
brainpoolP384t1l
brainpoolP512rl
brainpoolP512t1
c2pnb1l63vl |
c2pnb1l63v2 |
c2pnb163v3 |
c2pnbl76vl |
c2pnb208wl |
c2pnb272wl |
c2pnb304wl |
c2pnb368wl |
c2tnb191vl |
I
I
I
I
I
I
I

c2tnb191v2
c2tnb191v3
c2tnb239v1
c2tnb239v?2
c2tnb239v3
c2tnb359v1
c2tnb431rl
ipsec3 |

ipsec4d |

primel92vl
primel92v?2
primel92v3
prime239vl
prime239v2

18 | Ericsson AB. All Rights Reserved.: crypto

crypto

prime239v3 |
prime256v1l |
secpll2rl |
secpll2r2 |
secpl28rl |
secpl28r2 |
secpl60kl |
secpl6eOrl |
secpl6eOr2 |
secpl92kl |
secplozrl |
secp224kl |
secp224rl |
secp256k1l |
secp256rl |
secp384rl |
secp521rl |
sect113rl |
sect113r2 |
sect131rl |
sect131r2 |
sect163kl |
sect163rl |
sect163r2 |
sect193rl |
sect193r2 |
sect233kl |
sect233rl |
sect239kl |
sect283kl |
sect283rl |
sect409kl |
sect409rl |
sect571k1l |
sect571rl |
wtlsl |

wtlslo |
wtlsll |
wtlsl2 |
wtls3 |
wtlsd |
wtls5 |
wtls6 |
wtls7 |
wtls8 |
wtls9

edwards curve dh() x25519 | x448
edwards curve ed() ed25519 | ed448
Note that some curves are disabled if FIPSis enabled.

ec_explicit curve() =
{Field :: ec_field(),

Ericsson AB. All Rights Reserved.: crypto | 19

crypto

Curve :: ec_curve(),

BasePoint :: binary(),

Order :: binary(),

CoFactor :: none | binary()}
ec field() = ec_prinme_field() | ec_characteristic_two_field()
ec _curve() =

{A :: binary(), B :: binary(), Seed :: none | binary()}
Parametric curve definition.
ec prime field() = {prime field, Prime :: integer()}
ec_characteristic two field() =

{characteristic two field,
M :: integer(),

Basis :: ec_basis()}

ec basis() =
{tpbasis, K :: integer() >= 0} |
{ppbasis,

K1 :: integer() >= 0
K2 :: integer() >= 0,
K3 :: integer() >= 0
onbasis

Curve definition details.

Keys

key() = iodata()

des3_key() = [key()]

For keylengths, iv-sizes and blocksizes see the User's Guide.
A key for des3isalist of threeiolists

key integer() = integer() | binary()
Alwaysbi nar y() when used asreturn value

Public/Private Keys

rsa public() = [key_integer()]
rsa private() = [key_integer()]
rsa params() =

{ModulusSizeInBits :: integer(),
PublicExponent :: key_ integer()}

rsa_public() = [E, N]

rsa_private() = [E, N, D1 | [E, N, D, P1, P2, E1, E2, C]

Where E is the public exponent, N is public modulus and D is the private exponent. The longer key format contains
redundant information that will make the calculation faster. P1,P2 are first and second prime factors. E1,E2 are first
and second exponents. C isthe CRT coefficient. Terminology is taken from RFC 3447.

dss public() = [key_integer()]
dss private() = [key_integer()]

dss_public() = [P, Q, G, Y]

20 | Ericsson AB. All Rights Reserved.: crypto

href

crypto

Where P, Q and G are the dss parametersand Y is the public key.
dss_private() = [P, Q, G, X]

Where P, Q and G are the dss parameters and X is the private key.

ecdsa public() = key_integer()

ecdsa private() = key_integer()

ecdsa params() ec_nanmed_curve() | ec_explicit_curve()

eddsa public() key i nteger ()
(
)

eddsa private() = key_integer()
eddsa params() = edwards_curve_ed()
srp_public() key_i nteger ()
srp_private() = key_integer ()

srp _public() = key integer()
Whereis A or B from SRP design
srp_private() = key integer()

Whereisa or b from SRP design

srp_gen params() =

{user, srp_user_gen_parans()} | {host, srp_host_gen_parans()}
srp_comp params() =

{user, srp_user_conp_parans() } |

{host, srp_host_conp_parans() }

srp user gen params() = [DerivedKey::binary(), Prime::binary(), Generator::binary(), Version::atom()]

srp_host gen params() [Verifier::binary(), Prime::binary(), Version::atom()]

srp_user_comp params() = [DerivedKey::binary(), Prime::binary(), Generator::binary(), Version::atom() | Scre

srp_host comp params() = [Verifier::binary(), Prime::binary(), Version::atom() | ScramblerArg::list()]

Where Verifier isv, Generator isg and Primeis N, DerivedKey is X, and Scrambler isu (optional will be generated
if not provided) from SRP design Version="3'|'6' | '6a

Public Key Ciphers
pk_encrypt decrypt algs() = rsa
Algorithms for public key encrypt/decrypt. Only RSA is supported.

pk_encrypt decrypt opts() = [rsa_opt()] | rsa_conpat_opts()
rsa opt() =

{rsa padding, rsa_padding()} |

{signature md, atom()} |

{rsa_mgfl md, sha} |

{rsa oaep label, binary()} |

{rsa oaep md, sha}
rsa_padding() =

rsa_pkcsl padding |

rsa _pkcsl oaep padding |

Ericsson AB. All Rights Reserved.: crypto | 21

href
href
href

crypto

rsa_sslv23 padding |
rsa x931 padding |
rsa_no_padding

Options for public key encrypt/decrypt. Only RSA is supported.

The RSA options are experimental.
The exact set of options and there syntax may be changed without prior notice.

rsa_compat opts() = [{rsa pad, rsa_padding()}] | rsa_padding()
Those option forms are kept only for compatibility and should not be used in new code.

Public Key Sign and Verify
pk sign verify algs() = rsa | dss | ecdsa | eddsa
Algorithmsfor sign and verify.

pk sign verify opts() [rsa_sign verify opt()]
rsa sign verify opt() =
{rsa _padding, rsa_sign_verify_padding()} |
{rsa _pss saltlen, integer()}
rsa _sign verify padding() =
rsa_pkcsl padding |
rsa_pkcsl pss padding |
rsa x931 padding |
rsa _no padding

Optionsfor sign and verify.

The RSA options are experimental.
The exact set of options and there syntax may be changed without prior notice.

Diffie-Hellman Keys and parameters
dh public() = key_integer()

dh private() = key_integer()

dh params() = [key_integer()]

dh params() = [P, G] | [P, G, PrivateKeyBitLength]

ecdh public() = key_integer()
ecdh private() = key_integer()

ecdh params() =
ec_naned_curve() | edwards_curve_dh() | ec_explicit_curve()

Types for Engines

engine key ref() =
#{engine := engine_ref(),
key id := key_id(),

22 | Ericsson AB. All Rights Reserved.: crypto

crypto

password => password(),
term() => term()}

engine ref() = term()

Theresult of acall to engine load/3.

key id() = string() | binary()

Identifies the key to be used. The format depends on the loaded engine. It is passed to the
ENG NE_| oad_(pri vat e| publi c) _key functionsin libcrypto.

password() = string() | binary()

The password of the key stored in an engine.

engine method type() =
engine method rsa |
engine method dsa |
engine method dh |
engine method rand |
engine method ecdh |
engine method ecdsa |
engine method ciphers |
engine method digests |
engine method store |
engine method pkey meths |
engine method pkey asnl meths |
engine method ec

engine cmnd() = {uni code: chardata(), uni code: chardata() }
Pre and Post commands for engine_load/3 and /4.

Internal data types
stream state()
hmac_state()

hash state()

Contexts with an internal state that should not be manipulated but passed between function calls.

Exports
block encrypt(Type :: bl ock_cipher_without _iv(),
Key :: key(),
PlainText :: iodata()) ->
binary()

Encrypt Pl ai nText according to Type block cipher.

May raise exception error: not sup in case the chosen Type is not supported by the underlying libcrypto
implementation.

For keylengths and blocksizes see the User's Guide.

block decrypt(Type :: bl ock_cipher_without _iv(),
Key :: key(),
Data :: iodata()) ->

Ericsson AB. All Rights Reserved.: crypto | 23

crypto

binary()
Decrypt G pher Text according to Type block cipher.

May raise exception error: not sup in case the chosen Type is not supported by the underlying libcrypto
implementation.

For keylengths and blocksizes see the User's Guide.

block encrypt(Type, Key, Ivec, PlainText) -> CipherText

block encrypt(AeadType, Key, Ivec, {AAD, PlainText}) -> {CipherText,
CipherTag}

block encrypt(aes gcm | aes ccm, Key, Ivec, {AAD, PlainText, TaglLength}) ->
{CipherText, CipherTag}

Types:
Type = bl ock_ci pher_with_iv()
AeadType = aead_ci pher ()
Key = key() | des3_key()
Pl ai nText = iodata()
AAD = | Vec = Ci pherText = G pherTag = binary()
TagLength = 1..16
Encrypt Pl ai nText according to Type block cipher. | Vec isan arbitrary initializing vector.

In AEAD (Authenticated Encryption with Associated Data) mode, encrypt Pl ai nText according to Type block
cipher and calculate Ci pher Tag that also authenticates the AAD (Associated Authenticated Data).

May raise exception error: not sup in case the chosen Type is not supported by the underlying libcrypto
implementation.

For keylengths, iv-sizes and blocksizes see the User's Guide.

block decrypt(Type, Key, Ivec, CipherText) -> PlainText

block decrypt(AeadType, Key, Ivec, {AAD, CipherText, CipherTag}) -> PlainText
| error

Types.
Type = bl ock_ci pher_with_iv()
AeadType = aead_ci pher ()
Key = key() | des3_key()
Pl ai nText = i odata()
AAD = | Vec = Ci pherText = G pherTag = binary()
Decrypt Ci pher Text according to Type block cipher. | Vec isan arbitrary initializing vector.
In AEAD (Authenticated Encryption with Associated Data) mode, decrypt Ci pher Text according to Type block

cipher and check the authenticity the Pl ai nText and AAD (Associated Authenticated Data) using the Ci pher Tag.
May return er r or if the decryption or validation fail's

May raise exception error: not sup in case the chosen Type is not supported by the underlying libcrypto
implementation.

For keylengths, iv-sizes and blocksizes see the User's Guide.

24 | Ericsson AB. All Rights Reserved.: crypto

crypto

bytes to integer(Bin :: binary()) -> integer()
Convert binary representation, of an integer, to an Erlang integer.

compute key(Type, OthersPublicKey, MyPrivateKey, Params) ->
SharedSecret

Types:
Type = dh | ecdh | srp
SharedSecret = binary()
OthersPublicKey = dh_public() | ecdh_public() | srp_public()

MyPrivateKey =
dh_private() | ecdh_private() | {srp_public(), srp_private()}

Params = dh_parans() | ecdh_parans() | srp_conp_parans()
Computes the shared secret from the private key and the other party's public key. See also public_key:compute _key/2

exor(Binl :: iodata(), Bin2 :: iodata()) -> binary()
Performs bit-wise XOR (exclusive or) on the data supplied.

generate key(Type, Params) -> {PublicKey, PrivKeyOut}
generate key(Type, Params, PrivKeyIn) -> {PublicKey, PrivKeyQut}
Types.

Type = dh | ecdh | rsa | srp

PublicKey =

dh_public() | ecdh_public() | rsa_public() | srp_public()
PrivKeyIn =

undefined |

dh_private() |

ecdh_private() |

rsa_private() |

{srp_public(), srp_private()}
PrivKeyOut =

dh_private() |

ecdh_private() |

rsa_private() |

{srp_public(), srp_private()}
Params =

dh_parans() | ecdh_parans() | rsa_parans() | srp_conp_parans()

Generates a public key of type Type. See aso public_key:generate key/1. May raise exception:
e error: badar g: anargument is of wrong type or has anillegal value,

e« error:|ow_ entropy:therandom generator failed due to lack of secure "randomness”,
 error:conputation_fail ed:thecomputation fails of another reason than| ow_ent r opy.

RSA key generation isonly availableif the runtime was built with dirty scheduler support. Otherwise, attempting
to generate an RSA key will raise exception er r or : not sup.

Ericsson AB. All Rights Reserved.: crypto | 25

crypto

hash(Type, Data) -> Digest

Types:
Type =
shal() |
sha2() |
sha3() |
ripemd160 |

conpatibility_only_hash()
Data = iodata()
Digest = binary()
Computes a message digest of type Ty pe from Dat a.

May raise exception error: not sup in case the chosen Type is not supported by the underlying libcrypto
implementation.

hash_init(Type) -> State

Types:
Type =
shal() |
sha2() |
sha3() |
ripemd160 |

compatibility_only hash()
State = hash_state()

Initializesthe context for streaming hash operations. Ty pe determineswhich digest to use. Thereturned context should
be used as argument to hash_update.

May raise exception error: not sup in case the chosen Type is not supported by the underlying libcrypto
implementation.

hash update(State, Data) -> NewState
Types:
State = NewState = hash_state()
Data = iodata()

Updates the digest represented by Cont ext using the given Dat a. Cont ext must have been generated using
hash_init or a previous call to this function. Dat a can be any length. NewCont ext must be passed into the next
call tohash_updat e or hash_final.

hash final(State) -> Digest
Types:
State = hash_state()
Digest = binary()

Finalizes the hash operation referenced by Cont ext returned from a previous call to hash_update. The size of
Di gest isdetermined by the type of hash function used to generate it.

26 | Ericsson AB. All Rights Reserved.: crypto

crypto

hmac(Type, Key, Data) -> Mac
hmac(Type, Key, Data, MacLength) -> Mac
Types:
Type = shal() | sha2() | sha3() | compatibility_only_hash()

Key = Data = iodata()
MacLength = integer()

Mac = binary()
ComputesaHMAC of type Type from Dat a using Key as the authentication key.
MacLengt h will limit the size of the resultant Mac.

hmac init(Type, Key) -> State

Types:
Type = shal() | sha2() | sha3() | compatibility_only_hash()
Key = iodata()
State = hmac_state()

Initializes the context for streaming HMAC operations. Ty pe determines which hash function to use in the HMAC
operation. Key isthe authentication key. The key can be any length.

hmac update(State, Data) -> NewState
Types:

Data = iodata()

State = NewState = hmac_state()

Updates the HMAC represented by Cont ext using the given Dat a. Cont ext must have been generated using an
HMAC init function (such as hmac init). Dat a can be any length. NewCont ext must be passed into the next call
tohmac_updat e or to one of the functions hmac_final and hmac_final_n

Donot useaCont ext asargument in morethan onecall to hmac_update or hmac_final. The semantics of reusing
old contextsin any way isundefined and could even crash the VM in earlier rel eases. The reason for thislimitation
isalack of support in the underlying libcrypto API.

hmac_final(State) -> Mac
Types.
State = hmac_state()
Mac = binary()

Finalizes the HMAC operation referenced by Cont ext . The size of the resultant MAC is determined by the type of
hash function used to generate it.

hmac_final n(State, HashLen) -> Mac
Types:

Ericsson AB. All Rights Reserved.: crypto | 27

crypto

State = hmac_state()
HashLen = integer()
Mac = binary()
Finalizes the HMAC operation referenced by Cont ext . HashLen must be greater than zero. Mac will be abinary

with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

cmac(Type, Key, Data) -> Mac
cmac(Type, Key, Data, MacLength) -> Mac
Types:
Type =
cbc_ci pher () |
cfb_cipher() |
blowfish cbc |
des ede3 |
rc2_chc

Key = Data = iodata()
MacLength = integer()

Mac = binary()
Computes a CMAC of type Type from Dat a using Key as the authentication key.
MacLengt h will limit the size of the resultant Mac.

info fips() -> not supported | not enabled | enabled

Providesinformation about the FIPS operating status of crypto and the underlying libcrypto library. If crypto was built
with FIPS support this can be either enabl ed (when running in FIPS mode) or not _enabl ed. For other builds
thisvalueisawaysnot _support ed.

See enable _fips mode/1 about how to enable FIPS mode.

In FIPS mode all non-FIPS compliant algorithms are disabled and raise exception err or : not sup. Check
supports that in FIPS mode returns the restricted list of available algorithms.

enable fips mode(Enable) -> Result
Types:
Enable = Result = boolean()

Enables (Enabl e = true) or disables (Enabl e = fal se) FIPS mode. Returnst r ue if the operation was
successful or f al se otherwise.

Note that to enable FIPS mode succesfully, OTP must be built with the configure option - - enabl e-f i ps, and the
underlying libcrypto must also support FIPS.

See dso info_fips/0.

info_lib() -> [{Name, VerNum, VerStr}]
Types:

28 | Ericsson AB. All Rights Reserved.: crypto

crypto

Name = binary()
VerNum = integer()
VerStr binary()

Provides the name and version of the libraries used by crypto.

Nane isthe name of the library. Ver Numis the numeric version according to the library's own versioning scheme.
Ver St r contains atext variant of the version.

> info lib().
[{<<"OpenSSL">>,269484095,<<"0penSSL 1.1.0c 10 Nov 2016"">>}]

From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
openssl v. h) used when crypto was compiled. The text variant represents the libcrypto library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

mod pow(N, P, M) -> Result

Types.
N =P =M= binary() | integer()
Result = binary() | error

Computes the function N*P nmod M

next iv(Type :: cbc_cipher(), Data) -> NextIVec
next iv(Type :: des cfb, Data, IVec) -> NextIVec

Types:
Data = iodata()
IVec = NextIVec = binary()

Returnstheinitialization vector to be used in the next iteration of encrypt/decrypt of type Type. Dat a isthe encrypted
data from the previous iteration step. The | Vec argument is only needed for des_cf b as the vector used in the
previous iteration step.

polyl305(Key :: iodata(), Data :: iodata()) -> Mac
Types:
Mac = binary()
Computes a POL Y 1305 message authentication code (Mac) from Dat a using Key as the authentication key.

private decrypt(Algorithm, CipherText, PrivateKey, Options) ->

PlainText
Types.

Ericsson AB. All Rights Reserved.: crypto | 29

crypto

Algorithm = pk_encrypt_decrypt_al gs()
CipherText = binary()
PrivateKey = rsa_private() | engine_key_ ref()
Options = pk_encrypt _decrypt _opts()
PlainText = binary()
Decryptsthe G pher Text , encrypted with public_encrypt/4 (or equivalent function) using the Pr i vat eKey, and

returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_private/[2,3]

private encrypt(Algorithm, PlainText, PrivateKey, Options) ->
CipherText

Types:
Algorithm = pk_encrypt_decrypt_al gs()
PlainText = binary()
PrivateKey = rsa_private() | engine_key_ref()
Options = pk_encrypt decrypt _opts()
CipherText = binary()

Encryptsthe Pl ai nText usingthePri vat eKey and returnsthe ciphertext. Thisisalow level signature operation
used for instance by older versions of the SSL protocol. See also public_key:encrypt_private/[2,3]

public decrypt(Algorithm, CipherText, PublicKey, Options) ->
PlainText

Types:
Algorithm = pk_encrypt_decrypt_al gs()
CipherText = binary()
PublicKey = rsa_public() | engine_key_ref()
Options = pk_encrypt _decrypt_opts()
PlainText = binary()
Decryptsthe Gi pher Text , encrypted with private_encrypt/4(or equivalent function) using the Pr i vat eKey, and

returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_public/[2,3]

public encrypt(Algorithm, PlainText, PublicKey, Options) ->

CipherText
Types:
Algorithm = pk_encrypt_decrypt_al gs()
PlainText = binary()
PublicKey = rsa_public() | engine_key_ref()

Options = pk_encrypt _decrypt_opts()
CipherText = binary()

Encryptsthe Pl ai nText (messagedigest) using thePubl i cKey andreturnsthe Ci pher Text . Thisisalow level
signature operation used for instance by older versions of the SSL protocol. See also public_key:encrypt_public/[2,3]

30 | Ericsson AB. All Rights Reserved.: crypto

crypto

rand seed(Seed :: binary()) -> ok

Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the
system you are running on does not have enough "randomness’ built in. Normally thisis when strong_rand_bytes/1
raiseserror: | ow _entropy

rand uniform(Lo, Hi) -> N
Types:
Lo, H, N = integer()

Generate arandom number N, Lo =< N < Hi. Usesthecrypt o library pseudo-random number generator.
H must be larger than Lo.

start() -> ok | {error, Reason :: term()}
Equivalent to application:start(crypto).

stop() -> ok | {error, Reason :: term()}
Equivalent to application:stop(crypto).

strong rand bytes(N :: integer() >= 0) -> binary()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng
seeded and periodically mixed with operating system provided entropy. By default thisisthe RAND byt es method
from OpenSSL.

May raiseexceptioner r or : | ow_ent r opy in casethe random generator failed dueto lack of secure "randomness’.

rand seed() -> rand:state()

Creates state object for random number generation, in order to generate cryptographically strong random numbers
(based on OpenSSL's BN _r and_r ange), and savesit in the process dictionary before returning it as well. See also
rand:seed/1 and rand_seed &/0.

When using the state object from thisfunction therand functionsusing it may raiseexceptioner r or : | ow_ent r opy
in case the random generator failed dueto lack of secure "randomness’.

Example

= crypto:rand seed(),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[

rand seed s() -> rand:state()

Creates state object for random number generation, in order to generate cryptographically strongly random numbers
(based on OpenSSL'sBN r and_r ange). Seeasorand:seed /1.

When using the state obj ect from thisfunction therand functionsusing it may raiseexceptioner r or : | ow_ent r opy
in case the random generator failed due to lack of secure "randomness’.

Ericsson AB. All Rights Reserved.: crypto | 31

crypto

The state returned from this function can not be used to get areproducabl e random sequence as from the other rand
functions, since reproducability does not match cryptographically safe.

The only supported usage isto generate one distinct random sequence from this start state.

rand seed alg(Alg) -> rand:state()
Types:
Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strong random numbers.
See also rand:seed/1 and rand_seed_alg_g/1.

When using the state object from thisfunction therand functionsusingit may raiseexceptioner r or : | ow_ent r opy
in case the random generator failed due to lack of secure "randomness’.

The cache size can be changed from its default value using the crypto app's configuration parameter
rand_cache_si ze.

Example

~ = crypto:rand seed alg(crypto cache),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[

rand seed alg s(Alg) -> rand:state()
Types:
Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strongly random numbers.
Seedsorand:seed §/1.

If Al g iscrypt o thisfunction behaves exactly likerand_seed </0.

If Al giscrypt o_cache thisfunction fetches random data with OpenSSL's RAND byt es and cachesit for speed
using an internal word size of 56 bits that makes calculations fast on 64 bit machines.

When using the state object from thisfunction therand functionsusing it may raiseexceptioner r or : | ow_ent r opy
in case the random generator failed due to lack of secure "randomness’.

The cache size can be changed from its default value using the crypto app's configuration parameter
rand_cache_si ze.

The state returned from this function can not be used to get areproducabl e random sequence as from the other rand
functions, since reproducability does not match cryptographically safe.

In fact since random data is cached some numbers may get reproduced if you try, but thisis unpredictable.
The only supported usage is to generate one distinct random sequence from this start state.

stream init(Type, Key) -> State
Types:

32 | Ericsson AB. All Rights Reserved.: crypto

crypto

Type = rc4
Key = iodata()
State = stream state()
Initializes the state for use in RC4 stream encryption stream_encrypt and stream_decrypt

For keylengths see the User's Guide.

stream init(Type, Key, IVec) -> State
Types.
Type = aes _ctr | chacha20
Key = iodata()
IVec = binary()
State = stream state()
Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key isthe AES key and must

be either 128, 192, or 256 hits long. | Vec is an arbitrary initializing vector of 128 bits (16 bytes). This state is for
use with stream_encrypt and stream_decrypt.

For keylengths and iv-sizes see the User's Guide.

stream encrypt(State, PlainText) -> {NewState, CipherText}
Types:
State = stream state()
PlainText = iodata()
NewState = stream state()
CipherText = iodata()
Encrypts Pl ai nText according to the stream cipher Type specified in stream_init/3. Text can be any number

of bytes. The initial St ate is created using stream init. NewSt at e must be passed into the next call to
stream encrypt.

stream decrypt(State, CipherText) -> {NewState, PlainText}
Types:
State = streamstate()
CipherText = iodata()
NewState = stream state()
PlainText = iodata()
Decrypts Ci pher Text according to the stream cipher Type specified in stream_init/3. Pl ai nText can be any

number of bytes. The initial St at e is created using stream init. NewSt at e must be passed into the next call to
stream decrypt.

supports() -> [Support]
Types.
Support =
{hashs, Hashs} |
{ciphers, Ciphers} |
{public_keys, PKs} |
{macs, Macs} |

Ericsson AB. All Rights Reserved.: crypto | 33

crypto

{curves, Curves} |

{rsa opts, RSAopts}
Hashs =

[shal() |

sha2() |

sha3() |

ripemd160 |

conpatibility only hash()]
Ciphers =

[stream ci pher() |

bl ock_ci pher _with_iv() |

bl ock_ci pher _wi t hout _i v() |

aead_ci pher ()]
PKs = [rsa | dss | ecdsa | dh | ecdh | ec gf2m]
Macs = [hmac | cmac | polyl305]

Curves =
[ec_named_curve() | edwards_curve_dh() | edwards_curve_ed()]

RSAopts = [rsa_sign_verify opt() | rsa_opt()]
Can be used to determine which crypto algorithms that are supported by the underlying libcrypto library

Note: ther sa_opt s entry isin an experimenta state and may change or be removed without notice. No guarantee
for the accuarcy of the rsa option's value list should be assumed.

ec_curves() -> [EllipticCurve]
Types:
EllipticCurve =
ec_nanmed_curve() | edwards_curve_dh() | edwards_curve_ed()

Can be used to determine which named elliptic curves are supported.

ec_curve(CurveName) -> ExplicitCurve
Types:
CurveName = ec_naned_curve()
ExplicitCurve = ec_explicit_curve()
Return the defining parameters of aelliptic curve.

sign(Algorithm, DigestType, Msg, Key) -> Signature
sign(Algorithm, DigestType, Msg, Key, Options) -> Signature
Types:
Algorithm = pk_sign_verify_al gs()
DigestType =
rsa_di gest _type() |
dss_di gest _type() |
ecdsa_di gest _type() |
none
binary() | {digest, binary()}

Msg
Key =
rsa_private() |

34 | Ericsson AB. All Rights Reserved.: crypto

crypto

dss_private() |
[ecdsa_private() | ecdsa_parans()] |
[eddsa_private() | eddsa_parans()] |
engi ne_key_ref ()
Options = pk_sign_ verify opts()
Signature = binary()
Creates adigital signature.
Themsgiseither the binary "cleartext" datato be signed or it isthe hashed value of "cleartext” i.e. thedigest (plaintext).
Algorithm dss can only be used together with digest type sha.

See also public_key:sign/3.

verify(Algorithm, DigestType, Msg, Signature, Key) -> Result
verify(Algorithm, DigestType, Msg, Signature, Key, Options) ->

Result
Types:
Algorithm = pk_sign_verify_al gs()
DigestType =

rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
Msg = binary() | {digest, binary()}
Signature = binary()
Key =
rsa_public() |
dss_public() |
[ecdsa_public() | ecdsa_parans()] |
[eddsa_public() | eddsa_parans()] |
engi ne_key _ref ()
Options = pk_sign verify opts()
Result = boolean()
Verifiesadigital signature
Themsgiseither the binary "cleartext" datato be signed or it isthe hashed value of "cleartext" i.e. thedigest (plaintext).
Algorithm dss can only be used together with digest type sha.

See also public_key:verify/4.

privkey to pubkey(Type, EnginePrivateKeyRef) -> PublicKey
Types:

Type = rsa | dss

EnginePrivateKeyRef = engi ne_key_ref ()

PublicKey = rsa_public() | dss_public()

Fetches the corresponding public key from a private key stored in an Engine. The key must be of the type indicated
by the Type parameter.

engine get all methods() -> Result
Types:

Ericsson AB. All Rights Reserved.: crypto | 35

crypto

Result = [engi ne_nethod type()]
Returns alist of all possible engine methods.
May raise exception er r or : not sup in casethere is no engine support in the underlying OpenSSL implementation.
See also the chapter Engine Load in the User's Guide.

engine load(EngineId, PreCmds, PostCmds) -> Result
Types:
Engineld = uni code: chardat a()

PreCmds = PostCmds = [engi ne_cmmd()]
Result =
{ok, Engine :: engine_ref()} | {error, Reason :: term()}

Loads the OpenSSL engine given by Engi nel d if it is available and then returns ok and an engine handle. This
function is the same as calling engi ne_| oad/ 4 with Engi neMet hods set to alist of al the possible methods.
An error tupleisreturned if the engine can't be loaded.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine load(EngineId, PreCmds, PostCmds, EngineMethods) -> Result
Types:
Engineld = uni code: chardat a()
PreCmds = PostCmds = [engi ne_cmmd()]
EngineMethods = [engi ne_net hod_type()]
Result =
{ok, Engine :: engine_ref()} | {error, Reason :: term()}

Loads the OpenSSL engine given by Engi nel d if it isavailable and then returns ok and an engine handle. An error
tupleisreturned if the engine can't be loaded.

The function raises a er r or ; badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine unload(Engine) -> Result

Types.
Engine = engi ne_ref ()
Result = ok | {error, Reason :: term()}

Unloads the OpenSSL engine given by Engi ne. An error tuple is returned if the engine can't be unloaded.

The function raises a error: badar g if the parameter is in wrong format. It may aso raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine by id(EngineId) -> Result
Types:

36 | Ericsson AB. All Rights Reserved.: crypto

crypto

Engineld = uni code: chardat a()
Result =
{ok, Engine :: engine_ref()} | {error, Reason :: term()}
Get areferenceto an aready loaded enginewith Engi nel d. Anerror tupleisreturned if the engine can't be unloaded.

The function raises a error: badar g if the parameter is in wrong format. It may aso raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine ctrl cmd string(Engine, CmdName, CmdArg) -> Result
Types:

Engine = term()

CmdName = CmdArg = uni code: chardat a()

Result = ok | {error, Reason :: term()}

Sends ctrl commands to the OpenSSL engine given by Engi ne. This function is the same as calling
engine_ctrl _cnd_string/4withOptional settof al se.

The function raises a er r or ; badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine ctrl cmd string(Engine, CmdName, CmdArg, Optional) ->
Result

Types:
Engine = term()
CmdName = CmdArg = uni code: chardat a()
Optional = boolean()

Result = ok | {error, Reason :: term()}

Sends ctrl commands to the OpenSSL engine given by Engi ne. Opt i onal is aboolean argument that can relax
the semantics of the function. If settot r ue it will only return failure if the ENGINE supported the given command
name but failed while executing it, if the ENGINE doesn't support the command name it will simply return success
without doing anything. In this case we assume the user is only supplying commands specific to the given ENGINE
sowesetthistof al se.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine add(Engine) -> Result

Types:
Engine = engine_ref ()
Result = ok | {error, Reason :: term()}

Add the engine to OpenSSL 's internal list.

The function raises a er r or ; badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine remove(Engine) -> Result
Types:

Ericsson AB. All Rights Reserved.: crypto | 37

crypto

Engine
Result
Remove the engine from OpenSSL'sinternal list.

engi ne_ref ()
ok | {error, Reason :: term()}

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine get id(Engine) -> Engineld
Types:
Engine = engine_ref ()
Engineld = uni code: chardat a()
Return the ID for the engine, or an empty binary if thereisnoid set.

The function raises a er r or ; badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine get name(Engine) -> EngineName
Types:
Engine = engi ne_ref ()
EngineName = uni code: chardat a()
Return the name (eg a description) for the engine, or an empty binary if thereis no name set.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

engine list() -> Result
Types:

Result = [EngineId :: unicode:chardata()]
List theid's of al enginesin OpenSSL'sinternal list.

It may also raise the exception er r or: not sup in case there is no engine support in the underlying OpenSSL
implementation.

See also the chapter Engine Load in the User's Guide.

May raise exception er r or : not sup in case engine functionality is not supported by the underlying OpenSSL
implementation.

ensure _engine loaded(EngineIld, LibPath) -> Result
Types:
Engineld = LibPath = uni code: chardat a()

Result =
{ok, Engine :: engine_ref()} | {error, Reason :: term()}

Loads the OpenSSL engine given by Engi nel d and the path to the dynamic library implementing the engine. This
functionisthesameascallingensur e_engi ne_| oaded/ 3 with Engi neMet hods settoalist of al the possible
methods. An error tuple isreturned if the engine can't be loaded.

The function raises a er r or ; badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

38 | Ericsson AB. All Rights Reserved.: crypto

crypto

ensure _engine loaded(EngineId, LibPath, EngineMethods) -> Result
Types:
Engineld = LibPath = uni code: chardat a()
EngineMethods = [engi ne_nethod_type()]
Result =
{ok, Engine :: engine_ref()} | {error, Reason :: term()}

L oads the OpenSSL engine given by Engi nel d and the path to the dynamic library implementing the engine. This
function differs from the normal engine load in that sense it also add the engine id to the internal list in OpenSSL.
Then in the following callsto the function it just fetch the reference to the engine instead of loading it again. An error
tupleis returned if the engine can't be loaded.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case thereis no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

ensure _engine unloaded(Engine) -> Result

Types:
Engine = engine_ref()
Result = ok | {error, Reason :: term()}

Unloadsan engineloaded withtheensur e_engi ne_| oaded function. It both removesthelabel from the OpenSSL
internal engine list and unloads the engine. This function is the same as calling ensur e_engi ne_unl oaded/ 2
with Engi neMet hods set to a list of all the possible methods. An error tuple is returned if the engine can't be
unloaded.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

ensure_engine unloaded(Engine, EngineMethods) -> Result
Types:

Engine = engine_ref ()

EngineMethods = [engi ne_net hod_t ype()]

Result = ok | {error, Reason :: term()}

Unloadsan engineloaded withtheensur e_engi ne_| oaded function. It both removesthelabel from the OpenSSL
internal engine list and unloads the engine. An error tupleis returned if the engine can't be unloaded.

The function raises a er r or : badar g if the parameters are in wrong format. It may also raise the exception
error: not sup in case there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

Ericsson AB. All Rights Reserved.: crypto | 39

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	FIPS mode
	Background
	Enabling FIPS mode
	Incompatibilities with regular builds
	Common caveats
	Restrictions on key sizes
	Restrictions on elliptic curves
	Avoid md5 for hashing
	Certificates and encrypted keys
	SNMP v3 limitations
	TLS 1.2 is required

	Engine Load
	Background
	Use Cases
	Dynamically load an engine from default directory
	Load an engine with the dynamic engine
	Load an engine and replace some methods
	Load with the ensure loaded function
	List all engines currently loaded

	Engine Stored Keys
	Background
	Use Cases
	Sign with an engine stored private key
	Verify with an engine stored public key
	Using a password protected private key

	Algorithm Details
	Ciphers
	Block Ciphers
	AEAD Ciphers
	Stream Ciphers

	Message Authentication Codes (MACs)
	CMAC
	HMAC
	POLY1305

	Hash
	Public Key Cryptography
	RSA
	DSS
	ECDSA
	EdDSA
	Diffie-Hellman
	Elliptic Curve Diffie-Hellman

	Reference Manual
	crypto
	crypto
	block_encrypt/3
	block_decrypt/3
	block_encrypt/4
	block_encrypt/4
	block_encrypt/4
	block_decrypt/4
	block_decrypt/4
	bytes_to_integer/1
	compute_key/4
	exor/2
	generate_key/2
	generate_key/3
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	cmac/3
	cmac/4
	info_fips/0
	enable_fips_mode/1
	info_lib/0
	mod_pow/3
	next_iv/2
	next_iv/3
	poly1305/2
	private_decrypt/4
	private_encrypt/4
	public_decrypt/4
	public_encrypt/4
	rand_seed/1
	rand_uniform/2
	start/0
	stop/0
	strong_rand_bytes/1
	rand_seed/0
	rand_seed_s/0
	rand_seed_alg/1
	rand_seed_alg_s/1
	stream_init/2
	stream_init/3
	stream_encrypt/2
	stream_decrypt/2
	supports/0
	ec_curves/0
	ec_curve/1
	sign/4
	sign/5
	verify/5
	verify/6
	privkey_to_pubkey/2
	engine_get_all_methods/0
	engine_load/3
	engine_load/4
	engine_unload/1
	engine_by_id/1
	engine_ctrl_cmd_string/3
	engine_ctrl_cmd_string/4
	engine_add/1
	engine_remove/1
	engine_get_id/1
	engine_get_name/1
	engine_list/0
	ensure_engine_loaded/2
	ensure_engine_loaded/3
	ensure_engine_unloaded/1
	ensure_engine_unloaded/2

