ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 10.3.5
oktober 22, 2019

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

oktober 22, 2019

1.1 Introduction

1 ERTS User's Guide

1.1 Introduction

1.1.1 Scope
The Erlang Runtime System Application, ERTS, contains functionality necessary to run the Erlang system.

By default, ERTS is only guaranteed to be compatible with other Erlang/OTP components from the same release
as ERTS itself.

For information on how to communi cate with Erlang/OTP componentsfrom earlier rel eases, see the documentation
of systemflag +Riner!| (1).

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Communication in Erlang

Communication in Erlang is conceptually performed using asynchronous signaling. All different executing entities,
such as processes and ports, communicate through asynchronous signals. The most commonly used signal isamessage.
Other common signals are exit, link, unlink, monitor, and demonitor signals.

1.2.1 Passing of Signals

The amount of time that passes between a signal is sent and the arrival of the signal at the destination is unspecified
but positive. If the receiver has terminated, the signal does not arrive, but it can trigger another signal. For example, a
link signal sent to a non-existing process triggers an exit signal, which is sent back to where the link signal originated
from. When communicating over the distribution, signals can be lost if the distribution channel goes down.

The only signal ordering guarantee given is the following: if an entity sends multiple signals to the same destination
entity, the order is preserved; that is, if A sends asignal S1 to B, and later sends signal S2 to B, S1 is guaranteed
not to arrive after S2.

1.2.2 Synchronous Communication

Some communication is synchronous. If broken down into pieces, a synchronous communication operation consists of
two asynchronous signals; one request signal and one reply signal. An example of such asynchronous communication
isacal to erl ang: process_i nf o/ 2 whenthefirst argumentisnot sel f () . The caller sends an asynchronous
signal requesting information, and then waits for the reply signal containing the requested information. When the
reguest signal reaches its destination, the destination process replies with the requested information.

1.2.3 Implementation

The implementation of different asynchronous signals in the virtual machine can vary over time, but the behavior
always respects this concept of asynchronous signals being passed between entities as described above.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.3 Time and Time Correction in Erlang

By inspecting the implementation, you might notice that some specific signal gives a stricter guarantee than described
above. It is of vital importance that such knowledge about the implementation is not used by Erlang code, as the
implementation can change at any time without prior notice.

Examples of major implementation changes:

e Asfrom ERTS5.5.2 exit signals to processes are truly asynchronously delivered.
* Asfrom ERTS5.10 all signals from processes to ports are truly asynchronously delivered.

1.3 Time and Time Correction in Erlang

1.3.1 New Extended Time Functionality

As from Erlang/OTP 18 (ERTS 7.0) the time functionality has been extended. This includes a new API for time
and time warp modes that change the system behavior when system time changes.

The default time war p mode has the same behavior as before, and the old API still works. Thus, you are not required
to change anything unless you want to. However, you ar e strongly encour aged to usethe new API instead of the
old APl based on er | ang: now/ 0. er | ang: now 0 isdeprecated, asit isand will be a scalability bottleneck.

By using the new API, you automatically get scalability and performance improvements. This also enables you to
use the multi-time warp mode that improves accuracy and precision of time measurements.

1.3.2 Terminology

To make it easier to understand this section, some terms are defined. Thisis a mix of our own terminology (Erlang/
OS system time, Erlang/OS monotonic time, time warp) and globally accepted terminology.

Monotonically Increasing

In a monotonically increasing sequence of values, al values that have a predecessor are either larger than or equal
to its predecessor.

Strictly Monotonically Increasing

In a strictly monotonically increasing sequence of values, al values that have a predecessor are larger than its
predecessor.

UTl

Universal Time. UT1 is based on the rotation of the earth and conceptually means solar time at 0° longitude.

uTcC

Coordinated Universal Time. UTC amost aligns with UT1. However, UTC uses the Sl definition of a second, which
has not exactly the same length as the second used by UT1. This means that UTC slowly drifts from UT1. To keep
UTC relatively in sync with UT1, leap seconds are inserted, and potentially also deleted. That is, an UTC day can be
86400, 86401, or 86399 seconds long.

POSIX Time

Timesince Epoch. Epoch isdefined to be 00:00:00 UTC, 1970-01-01. A day in POSI X timeisdefined to be exactly
86400 seconds long. Strangely enough, Epoch is defined to beatimein UTC, and UTC has another definition of how
long aday is. Quoting the Open Group " POSI X timeistherefore not necessarily UTC, despiteits appearance” .
The effect of thisis that when an UTC leap second is inserted, POSIX time either stops for a second, or repeats the

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href
href
href

1.3 Time and Time Correction in Erlang

last second. If an UTC leap second would be deleted (which has not happened yet), POSIX time would make a one
second leap forward.

Time Resolution
The shortest time interval that can be distinguished when reading time values.

Time Precision

The shortest time interval that can be distinguished repeatedly and reliably when reading time values. Precision is
limited by the resolution, but resolution and precision can differ significantly.

Time Accuracy

The correctness of time values.

Time Warp

A timewarp is aleap forwards or backwardsin time. That is, the difference of time values taken before and after the
time warp does not correspond to the actual elapsed time.

OS System Time

The operating systems view of POSIX time. To retrieveit, call os: system ti me() . Thismay or may not be an
accurate view of POSIX time. This time may typically be adjusted both backwards and forwards without limitation.
That is, time warps may be observed.

To get information about the Erlang runtime system's source of OS system time, call
erl ang: system.info(os_systemtime_source).
OS Monotonic Time

A monotonically increasing time provided by the OS. This time does not leap and has a relatively steady frequency
although not completely correct. However, it isnot uncommon that OS monotonic time stopsif the systemis suspended.
This time typically increases since some unspecified point in time that is not connected to OS system time. This type
of time is not necessarily provided by all OSs.

To get information about the Erlang runtime system's source of OS monotonic time, call
erl ang: system.info(os_nonotonic_tinme_source).

Erlang System Time

The Erlang runtime systems view of POS X time. Toretrieveit, call er | ang: system ti me().

This time may or may not be an accurate view of POSIX time, and may or may not align with OS system time. The
runtime system works towards aligning the two system times. Depending on the time warp mode used, this can be
achieved by letting Erlang system time perform atime warp.

Erlang Monotonic Time

A monotonically increasing time provided by the Erlang runtime system. Erlang monotonic timeincreases since some
unspecified point in time. To retrieveit, call er| ang: nonotoni c_tine().

The accuracy and precision of Erlang monotonic time heavily depends on the following:

e Accuracy and precision of OS monotonic time
e Accuracy and precision of OSsystemtime
e timewarp mode used

On a system without OS monotonic time, Erlang monotonic time guarantees monaotonicity, but cannot give other
guarantees. The frequency adjustments made to Erlang monotonic time depend on the time warp mode used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

1.3 Time and Time Correction in Erlang

Internally in the runtime system, Erlang monotonic timeis the "time engine" that is used for more or less everything
that has anything to do with time. All timers, regardlessof itisar ecei ve ... after timer, BIFtimer, or atimer
inthet i mer (3) module, aretriggered relative Erlang monotonic time. Even Erlang systemtime is based on Erlang
monotonic time. By adding current Erlang monotonic timewith current time offset, you get current Erlang systemtime.

To retrieve the current time offset, call erl ang: ti ne_of f set/ 0.

1.3.3 Introduction

Timeisvital to an Erlang program and, more importantly, correct timeisvita to an Erlang program. As Erlang isa
language with soft real -time properties and we can expresstimein our programs, the Virtual Machine and the language
must be careful about what is considered a correct time and in how time functions behave.

When Erlang was designed, it was assumed that the wall clock time in the system showed a monotonic time moving
forward at exactly the same pace as the definition of time. This more or less meant that an atomic clock (or better time
source) was expected to be attached to your hardware and that the hardware was then expected to be locked away from
any human tinkering forever. While this can be a compelling thought, it is ssimply never the case.

A "normal" modern computer cannot keep time, not on itself and not unless you have a chip-level atomic clock wired
to it. Time, as perceived by your computer, must normally be corrected. Hence the Network Time Protocol (NTP)
protocol, together with the nt pd process, does its best to keep your computer time in sync with the correct time.
Between NTP corrections, usually aless potent time-keeper than an atomic clock is used.

However, NTP is not fail-safe. The NTP server can be unavailable, nt p. conf can be wrongly configured, or
your computer can sometimes be disconnected from Internet. Furthermore, you can have a user (or even system
administrator) who thinks the correct way to handle Daylight Saving Timeisto adjust the clock one hour two times a
year (which isthe incorrect way to do it). To complicate things further, this user fetched your software from Internet
and has not considered what the correct time is as perceived by a computer. The user does not care about keeping the
wall clock in sync with the correct time. The user expects your program to have unlimited knowledge about the time.

Most programmers al so expect timeto bereliable, at least until they realizethat thewall clock time on their workstation
is off by aminute. Then they set it to the correct time, but most probably not in a smooth way.

The number of problems that arise when you always expect the wall clock time on the system to be correct can be
immense. Erlang therefore introduced the "corrected estimate of time", or the "time correction”, many years ago.
The time correction relies on the fact that most operating systems have some kind of monotonic clock, either areal-
time extension or some built-in "tick counter" that is independent of the wall clock settings. This counter can have
microsecond resolution or much less, but it has a drift that cannot be ignored.

1.3.4 Time Correction

If time correction is enabled, the Erlang runtime system makes use of both OS system time and OS monotonic time,
to adjust the frequency of the Erlang monotonic clock. Time correction ensures that Erlang monotonic time does not
warp and that the frequency isrelatively accurate. The type of frequency adjustments depends on the time warp mode
used. Section Time Warp Modes provides more details.

By default time correction is enabled if support for it exists on the specific platform. Support for it
includes both OS monotonic time, provided by the OS, and an implementation in the Erlang runtime
system using OS monotonic time. To check if your system has support for OS monotonic time, call
erl ang: system i nf o(os_nonotoni c_ti ne_source). To check if time correction is enabled on your
system, cal erl ang: system.info(tine_correction).

To enable or disable time correction, pass command-lineargument +c [true| fal se] toerl (1).

If time correction is disabled, Erlang monotonic time can warp forwards or stop, or even freeze for extended periods
of time. There are then no guarantees that the frequency of the Erlang monotonic clock is accurate or stable.

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

You typically never want to disable time correction. Previously a performance penalty was associated with time
correction, but nowadays it is usually the other way around. If time correction is disabled, you probably get bad
scalability, bad performance, and bad time measurements.

1.3.5 Time Warp Safe Code

Time warp safe code can handle atime warp of Erlang systemtime.

er | ang: now 0 behavesbad when Erlang system timewarps. When Erlang system time does atimewarp backwards,
the values returned from er | ang: now 0 freeze (if you disregard the microsecond increments made because of the
actual call) until OS system time reaches the point of the last value returned by er | ang: now 0. This freeze can
continue for along time. It can take years, decades, and even longer until the freeze stops.

All usesof er | ang: now’ 0 are not necessarily time warp unsafe. If you do not useit to get time, it istime warp safe.
However, all usesof er | ang: now' 0 aresuboptimal from a performance and scalability perspective. So you really
want to replace the use of it with other functionality. For examples of how to replace the use of er | ang: now 0,
see section How to Work with the New API.

1.3.6 Time Warp Modes

Current Erlang system time is determined by adding the current Erlang monotonic time with current time offset. The
time offset is managed differently depending on which time warp mode you use.

To set the time warp mode, pass command-line argument +C [no_ti me_war p| si ngl e_ti ne_war p|
multi _time_warp] toerl (1).

No Time Warp Mode

The time offset is determined at runtime system start and does not change later. Thisis the default behavior, but not
because it is the best mode (which it is not). It is default only because this is how the runtime system behaved until
ERTS 7.0. Ensure that your Erlang code that can execute during atime warp is time warp safe before enabling other
modes.

Asthetime offset is not allowed to change, time correction must adjust the frequency of the Erlang monotonic clock
to align Erlang system time with OS system time smoothly. A significant downside of this approach is that we on
purpose will use a faulty frequency on the Erlang monotonic clock if adjustments are needed. This error can be as
large as 1%. This error will show up in all time measurements in the runtime system.

If time correction is not enabled, Erlang monotonic time freezes when OS system time leaps backwards. The freeze of
monatonic time continues until OS system time catches up. The freeze can continue for along time. When OS system
time leaps forwards, Erlang monotonic time also leaps forward.

Single Time Warp Mode

Thismode is more or less a backward compatibility mode as from its introduction.

On an embedded system it is not uncommon that the system has no power supply, not even a battery, when it is shut
off. The system clock on such a system is typically way off when the system boots. If no time warp mode is used,
and the Erlang runtime system is started before OS system time has been corrected, Erlang system time can be wrong
for along time, centuries or even longer.

If you need to use Erlang code that is not time warp safe, and you need to start the Erlang runtime system before OS
system time has been corrected, you may want to use the single time warp mode.

There are limitations to when you can execute time warp unsafe code using this mode. If it is possible to use time
warp safe code only, it is much better to use the multi-time warp mode instead.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.3 Time and Time Correction in Erlang

Using the single time warp mode, the time offset is handled in two phases:

Preliminary Phase
This phase starts when the runtime system starts. A preliminary time offset based on current OS system time is
determined. This offset isfrom now on to be fixed during the whole preliminary phase.

If time correction is enabled, adjustmentsto the Erlang monotonic clock are made to keep its frequency as correct
as possible. However, no adjustments are made trying to align Erlang system time and OS system time. That
is, during the preliminary phase Erlang system time and OS system time can diverge from each other, and no
attempt is made to prevent this.

If time correction is disabled, changes in OS system time affects the monotonic clock the same way as when the
no time warp modeis used.

Fina Phase

This phase begins when the user finalizes the time offset by caling
erl ang: system flag(tinme_offset, finalize).Thefinaization canonly be performed once.

During finalization, the time offset is adjusted and fixed so that current Erlang system time alignswith the current
OS system time. As the time offset can change during the finalization, Erlang system time can do atime warp at
this point. The time offset is from now on fixed until the runtime system terminates. If time correction has been
enabled, the time correction from now on also makes adjustments to align Erlang system time with OS system
time. When the system isin the final phase, it behaves exactly asin no time warp mode.

In order for this to work properly, the user must ensure that the foll owing two requirements are satisfied:

Forward Time Warp

The time warp made when finalizing the time offset can only be done forwards without encountering problems.
Thisimplies that the user must ensure that OS system time is set to atime earlier or equal to actual POSIX time
before starting the Erlang runtime system.

If you are not sure that OS system timeis correct, set it to atimethat is guaranteed to be earlier than actual POSIX
time before starting the Erlang runtime system, just to be safe.

Finalize Correct OS System Time
OS system time must be correct when the user finalizes the time offset.
If these requirements are not fulfilled, the system may behave very bad.

Assuming that these requirements are fulfilled, time correction is enabled, and OS system time is adjusted using a
time adjustment protocol such as NTP, only small adjustments of Erlang monotonic time are needed to keep system
times aligned after finalization. Aslong asthe system is not suspended, the largest adjustments needed are for inserted
(or deleted) leap seconds.

To use thismode, ensure that all Erlang code that will execute in both phases is time warp safe.
Code executing only in the final phase does not have to be able to cope with the time warp.

Multi-Time Warp Mode

Multi-time warp mode in combination with time correction is the preferred configuration. This as the Erlang
runtime system have better performance, scale better, and behave better on ailmost all platforms. Also, the accuracy
and precision of time measurements are better. Only Erlang runtime systems executing on ancient platforms benefit
from another configuration.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

The time offset can change at any time without limitations. That is, Erlang system time can perform time warps both
forwards and backwards at any time. Aswe align Erlang system time with OS system time by changing the time offset,
we can enable a time correction that tries to adjust the frequency of the Erlang monotonic clock to be as correct as
possible. This makes time measurements using Erlang monotonic time more accurate and precise.

If time correction is disabled, Erlang monotonic time leaps forward if OS system time leaps forward. If OS system
time leaps backwards, Erlang monotonic time stops briefly, but it does not freeze for extended periods of time. This
asthe time offset is changed to align Erlang system time with OS system time.

To use this mode, ensure that all Erlang code that will execute on the runtime system is time warp safe. ‘

1.3.7 New Time API

Theoldtime APl isbasedoner | ang: now 0.er | ang: now 0 wasintended to be used for many unrelated things.
Thistied these unrelated operations together and caused issues with performance, scalability, accuracy, and precision
for operations that did not need to have such issues. To improve this, the new API spreads different functionality over
multiple functions.

To be backward compatible, er | ang: now 0 remains "as is’, but you are strongly discouraged from using it.
Many use cases of er | ang: now/ 0 prevents you from using the new multi-time warp mode, which is an important
part of this new time functionality improvement.

Some of the new Bl Fson some systems, perhaps surprisingly, return negative integer values on anewly started runtime
system. Thisis not a bug, but a memory use optimization.

The new API consists of the following new BIFs:

e erlang:convert _time _unit/3
e erlang: monotonic_tine/0

e erlang:nonotonic_tine/l

e erlang:systemtine/0

e erlang:systemtine/l

e erlang:tine_offset/0

e erlang:tine_offset/1

e erlang:tinestanp/0

e« erlang:unique_integer/0
 erlang:unique_integer/1

e o0s:systemtine/0

e o0s:systemtine/l

The new API also consists of extensions of the following existing BIFs:

e erlang:monitor(tinme_offset, clock_service)

« erlang:systemflag(tinme_offset, finalize)

e erlang: system.info(os_nonotonic_tinme_source)
e erlang:systeminfo(os_systemtinme_source)

e erlang:system.info(tine_offset)

e erlang:systeminfo(time_warp_node)
 erlang:system.info(time_correction)

e erlang:system.info(start_tine)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.3 Time and Time Correction in Erlang

« erlang:systeminfo(end_tine)

New Erlang Monotonic Time

Erlang monotonic time assuchisnew asfrom ERTS 7.0. It isintroduced to detach time measurements, such as elapsed
time from calendar time. In many use cases there is a need to measure elapsed time or specify a time relative to
another point in time without the need to know the involved timesin UTC or any other globally defined time scale.
By introducing a time scale with alocal definition of where it starts, time that do not concern calendar time can be
managed on that time scale. Erlang monotonic time uses such atime scale with alocally defined start.

Theintroduction of Erlang monotonic time allows usto adjust the two Erlang times (Erlang monotonic time and Erlang
system time) separately. By doing this, the accuracy of elapsed time does not have to suffer just because the system
time happened to be wrong at some point in time. Separate adjustments of thetwo timesare only performed in thetime
warp modes, and only fully separated in the multi-time warp mode. All other modes than the multi-time warp mode
are for backward compatibility reasons. When using these modes, the accuracy of Erlang monotonic time suffer, as
the adjustments of Erlang monotonic time in these modes are more or less tied to Erlang system time.

The adjustment of system time could have been made smother than using a time warp approach, but we think that
would be abad choice. Aswe can express and measure time that is not connected to calendar time by the use of Erlang
monotonic time, it is better to expose the change in Erlang system time immediately. This as the Erlang applications
executing on the system can react on the change in system time as soon as possible. Thisis also more or less exactly
how most operating systems handl e this (OS monotonic time and OS system time). By adjusting system time smoothly,
we would just hide the fact that system time changed and make it harder for the Erlang applications to react to the
change in asensible way.

To be ableto react to achangein Erlang system time, you must be able to detect that it happened. The changein Erlang
system time occurs when the current time offset is changed. We have therefore introduced the possibility to monitor
thetime offset using er | ang: noni tor (ti me_offset, clock_service).A process monitoring thetime
offset is sent a message on the following format when the time offset is changed:

{'CHANGE', MonitorReference, time offset, clock service, NewTimeOffset}

Unique Values

Besidesreportingtime, er | ang: now' 0 also produces uniqueand strictly monotonically increasing values. To detach
this functionality from time measurements, we haveintroduced er | ang: uni que_i nt eger ().

How to Work with the New API

Previoudly er | ang: now O was the only option for doing many things. This section deals with some things that
er | ang: now 0 can be used for, and how you use the new API.

Retrieve Erlang System Time

Useer | ang: now O to retrieve the current Erlang system time.

Use erl ang: system ti ne/ 1 toretrieve the current Erlang system time on the time unit of your choice.

If you want the same format as returned by er | ang: now 0, use er | ang: ti mest anp/ 0.

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Measure Elapsed Time

Don't:

Taketime stampswith er | ang: now/ 0 and calculate the differencein timewith ti ner: now_di ff/ 2.

Take time stamps with er| ang: nonot oni c_ti ne/ 0 and calculate the time difference using ordinary
subtraction. Theresultisin nat i ve time unit. If you want to convert the result to another time unit, you can use
erl ang: convert _tine_unit/3.

An easier way todo thisistouse er | ang: nonot oni ¢_t i ne/ 1 with the desired time unit. However, you can
then lose accuracy and precision.

Determine Order of Events

Don't:

Determine the order of events by saving atime stamp with er | ang: now' 0 when the event occurs.

Determinethe order of eventsby saving theinteger returnedby er | ang: uni que_i nt eger ([nonot oni c])
when the event occurs. These integers are strictly monotonically ordered on current runtime system instance
corresponding to creation time.

Determine Order of Events with Time of the Event

Determine the order of events by saving atime stamp with er | ang: now' 0 when the event occurs.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.3 Time and Time Correction in Erlang

Determine the order of events by saving atuple containing monotonic time and a strictly monotonically increasing
integer asfollows:

Time = erlang:monotonic_time(),
UMI = erlang:unique integer([monotonic]),
EventTag = {Time, UMI}

These tuples are strictly monotonically ordered on the current runtime system instance according to creation time.
It isimportant that the monotonic time isin the first element (the most significant element when comparing two-
tuples). Using the monotonic time in the tuples, you can calculate time between events.

If you are interested in Erlang system time at the time when the event occurred, you can also save the time offset
before or after saving theeventsusing er | ang: ti me_of f set / 0. Erlang monotonic time added with the time
offset corresponds to Erlang system time.

If you are executing in a mode where time offset can change, and you want to get the actual Erlang system time
when the event occurred, you can save the time offset as athird element in the tuple (the least significant element
when comparing three-tuples).

Create a Unique Name

Don't:

Use the values returned from er | ang: now/ 0 to create a name unique on the current runtime system instance.

Use the value returned from er | ang: uni que_i nt eger/ O to create a name unique on the current runtime
systeminstance. If you only want positiveintegers, you canuse er | ang: uni que_i nt eger ([posi tive]).

Seed Random Number Generation with a Unique Value

| Seed random number generation using er | ang: now() .

Don't:

Seed random number generation using a combination of erl ang: monot oni c_ti me(),
erlang:ti me_offset(), erl ang: uni que_i nt eger (), and other functionality.

To sum up this section: Do not useer | ang: now 0.

1.3.8 Support of Both New and Old OTP Releases

It can berequired that your code must run on avariety of OTP installations of different OTP releases. If so, you cannot
usethe new API out of the box, asit will not be available on releases before OTP 18. The solution isnot to avoid using
the new API, asyour code would then not benefit from the scalability and accuracy improvements made. Instead, use
the new APl when available, and fall back on er | ang: now 0 when the new API is unavailable.

Fortunately most of the new API can easily be implemented using existing primitives, except for:

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

* erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

« erlang: system.info(os_nonotonic_tinme_source)

e erlang:systeminfo(os_systemtinme_source)

By wrapping the APl with functions that fall back on er| ang: now 0 when the new API is unavailable, and

using these wrappers instead of using the API directly, the problem is solved. These wrappers can, for example, be
implemented asin $ERL_TOP/ertsexample/time _compat.erl.

1.4 Match Specifications in Erlang

A "match specification” (mat ch_spec) isan Erlang term describing asmall "program” that triesto match something.
It can be used to either control tracing with erlang:trace pattern/3 or to search for objectsin an ETS table with for
example ets. select/2. The match specification in many ways works like a small function in Erlang, but isinterpreted/
compiled by the Erlang runtime system to something much more efficient than calling an Erlang function. The match
specification is also very limited compared to the expressiveness of real Erlang functions.

The most notable difference between a match specification and an Erlang fun is the syntax. Match specifications are
Erlang terms, not Erlang code. Also, a match specification has a strange concept of exceptions:

* An exception (such as badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, generates
immediate failure.

e Anexception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.4.1 Grammar

A match specification used in tracing can be described in the following infor mal grammar:

* MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

e MatchHead ::= MatchVariable|' ' |[MatchHeadPart, ...]

e MatchHeadPart ::= term() | MatchVariable|' '

e MatchVariable ::= '$<number>'

* MatchConditions ::= [MatchCondition, ...] | []

* MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }

* BoolFunction::=is_atom|is_float |is_integer |[is_list|is_nunber |is_pid]is_port
|[is reference|is_tuple]is_map|is_map_key|is_binary]|is_function|is_record|

is_seqg_trace|"and' |'or' |'not' |'xor' |'andal so' |' orel se'
e ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

e TermConstruct = {{}} [{{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] | #{} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

e NonCompositeTerm ::=term() (not list or tuple or map)
e Constant ::={const , term()}

e GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |map_get |nap_si ze |node |r ound
|size|bit_size|tl |[trunc|"+" |"-"|"*" |'div' |'rem |'band' |'bor' |' bxor"' |
"bnot' |"bsl' |"bsr' |'>" |">=" |'<'" |'=<"|'"=="|'"=="|"=/="|'"I=" |self |get_tcw

* MatchBody ::=[ActionTerm]

* ActionTerm ::= ConditionExpression | ActionCall

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

href

1.4 Match Specifications in Erlang

« ActionCdl ::={ActionFunction} | { ActionFunction, ActionTerm, ...}

e ActionFunction::=set _seq_t oken|get _seq_t oken|nessage |return_trace|
exception_trace|process_dunp|enabl e _trace|di sable trace|trace |display|
caller |set _tcw]|silent

A match specification usedin et s(3) can be described in the following informal grammar:

* MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

* MatchHead ::= MatchVariable|"' _' [{ MatchHeadPart, ... }

e MatchHeadPart ::= term() | MatchVariable |' '

« MatchVariable ::= '$<number>'

* MatchConditions ::= [MatchCondition, ...] | []

* MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }

e BoolFunction::=is_atom|is_float |is_integer |[is_list|is_nunber |is_pid]is_port
|[is reference|is_tuplel]is_map|map_is_key|is_binary]|is_function|is_record]|

"and' |'or' |'not' |'xor' |'andal so' |' orel se'
e ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

o TermConstruct = {{}} |{{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] | #} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

e NonCompositeTerm ::=term() (not list or tuple or map)
e Constant ::={const , term()}

e GuardFunction ::= BoolFunction | abs | el ement |hd |l engt h |map_get |map_si ze |node |r ound
|size|bit_size|tl |trunc| "+ ["-"["*" |'div' |"rem |'band' |' bor' |'bxor' |
"bnot' |"bsl' |"bsr' |'> |'>=" |'< |'=<"|'"=: =" |"=="[|"=/[=|"]=" |self

* MatchBody ::=[ConditionExpression, ...]

1.4.2 Function Descriptions

Functions Allowed in All Types of Match Specifications
The functionsalowed in mat ch_spec work asfollows:
is_ atomis float,is integer,is list,is nunber,is pid,is_port,is_reference,
is tuple,is map,is_binary,is function
Same as the corresponding guard testsin Erlang, returnt r ue or f al se.
is record

Takes an additional parameter, which must betheresult of r ecor d_i nf o(si ze, <record_type>),like
in{is_record, '$1', rectype, record_info(size, rectype)}.

not
Negates its single argument (anything other than f al se givesf al se).

and’

Returnst r ue if all itsarguments (variablelength argument list) evaluatetot r ue, otherwisef al se. Evaluation
order is undefined.

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

or
Returns t r ue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is
undefined.

' andal so'
Worksas' and' , but quits evaluating its arguments when one argument eval uates to something elsethant r ue.
Arguments are evaluated |eft to right.

'orel se'
Worksas' or' , but quits evaluating as soon asone of itsargumentsevaluatestot r ue. Arguments are evaluated
left to right.

' xor'

Only two arguments, of which onemust bet r ue andthe other f al se toreturnt r ue; otherwise' xor"' returns
false.

abs, el enent, hd, | engt h, map_get , map_si ze, node, round, si ze,bi t _si ze,tl ,trunc,' +',
tetytxrtdivt ' remtt band' " bor' "t bxor', ' bnot' " bsl' " bsrt >t > < =<

==, ==, =" self

Same asthe corresponding Erlang BIFs (or operators). In case of bad arguments, the result depends on the context.
In the Mat chCondi t i ons part of the expression, the test fails immediately (like in an Erlang guard). In the
Vat chBody part, exceptions are implicitly caught and the call resultsintheatom ' EXI T' .

Functions Allowed Only for Tracing

The functions allowed only for tracing work as follows:

i s_seq_trace
Returnst r ue if asequential trace token is set for the current process, otherwisef al se.

set _seq_t oken

Worksasseq_trace: set _token/ 2, but returnst r ue on success, and' EXI T' on error or bad argument.
Only allowed in the Mat chBody part and only allowed when tracing.

get _seq_t oken
Sameasseq_trace: get _t oken/ 0 and only allowed in the Mat chBody part when tracing.
nessage

Sets an additional message appended to the trace message sent. One can only set one additional message in the
body. Later calls replace the appended message.

As a specia case, { message, fal se} disables sending of trace messages (‘call' and 'return_to') for this
function call, just like if the match specification had not matched. This can be useful if only the side effects of
the Mat chBody part are desired.

Another special caseis{ nessage, true}, which setsthe default behavior, asif the function had no match
specification; trace message is sent with no extra information (if no other calls to message are placed before
{message, true},itisinfacta"noop").

Takes one argument: the message. Returnst r ue and can only beused inthe Mat chBody part and when tracing.
return_trace

Causesar et ur n_f r omtrace message to be sent upon return from the current function. Takes no arguments,
returnst r ue and can only be used in the Mat chBody part when tracing. If the process trace flag si | ent is
active, ther et ur n_f r omtrace messageis inhibited.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.4 Match Specifications in Erlang

Warning: If the traced function istail-recursive, this match specification function destroysthat property. Hence,
if a match specification executing this function is used on a perpetual server process, it can only be active for
alimited period of time, or the emulator will eventually use all memory in the host machine and crash. If this
match specification function isinhibited using process trace flag si | ent , tail-recursiveness still remains.

exception_trace

Worksasr et urn_t race plus; if the traced function exits because of an exception, an excepti on_from
trace message is generated, regardless of the exception is caught or not.

process_dunp

Returns some textual information about the current process as a binary. Takes no arguments and is only allowed
in the Mat chBody part when tracing.

enabl e trace

With one parameter this function turns on tracing like the Erlang call er | ang: trace(sel f (), true,
[P2]) , where P2 isthe parameter to enabl e_t r ace.

With two parameters, the first parameter is to be either a process identifier or the registered name of a
process. In this case tracing is turned on for the designated process in the same way as in the Erlang call
erlang:trace(Pl, true, [P2]),wherePl isthefirstand P2 isthe second argument. The process P1
gets its trace messages sent to the same tracer as the process executing the statement uses. P1 cannot be one
of theatomsal | , newor exi st i ng (unlessthey are registered names). P2 cannot becpu_t i mest anp or
tracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.
di sabl e_trace

With one parameter this function disables tracing like the Erlang call er | ang: trace(sel f (), fal se,
[P2]) , where P2 isthe parameter to di sabl e_trace.

With two parameters this function works as the Erlang call er| ang: trace(P1, false, [P2]),where
P1 can be either a process identifier or a registered name and is specified as the first argument to the match
specification function. P2 cannot becpu_ti nestanportracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.
trace

With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively al changes are
applied atomically. The trace flags are the same as for er | ang: t r ace/ 3, not including cpu_t i mest anp,
but includingt r acer.

If atracer is specified in both lists, the tracer in the enable list takes precedence. If no tracer is specified, the same
tracer as the process executing the match specification is used (not the meta tracer). If that process doesn't have
tracer either, then trace flags are ignored.

When using a tracer module, the module must be loaded before the match specification is executed. If it is not
loaded, the match fails.

With three parameters to this function, the first is either a process identifier or the registered name of a process
to set trace flags on, the second is the disable list, and the third is the enable list.

Returnst r ue if any trace property was changed for the trace target process, otherwisef al se. Can only be used
in the Mat chBody part when tracing.

call er

Returns the calling function as a tuple { Modul e, Function, Arity} orthe atom undefi ned if the
calling function cannot be determined. Can only be used in the Mat chBody part when tracing.

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

Notice that if a "technically built in function” (that is, a function not written in Erlang) is traced, the cal | er
function sometimesreturnsthe atom undef i ned. The caling Erlang function is not available during such calls.

di spl ay

For debugging purposes only. Displaysthe single argument as an Erlang term on st dout , which is seldom what
iswanted. Returnst r ue and can only be used in the Mat chBody part when tracing.

get _tcw

Takes no argument and returns the value of the node's trace control word. The same is done by
erl ang: system.info(trace control _word).

Thetrace control word is a 32-bit unsigned integer intended for generic trace control. The trace control word can
betested and set both from within trace match specificationsand with BIFs. Thiscall isonly allowed whentracing.

set _tcw

Takes one unsigned integer argument, setsthe value of the node's trace control word to the value of the argument,
and returns the previous value. The same is done by er | ang: system fl ag(trace_control _word,
Val ue) . Itisonly alowed to useset _t cwin the Mat chBody part when tracing.

sil ent

Takes one argument. If theargument ist r ue, the call trace message mode for the current processis set to silent
for this call and al later calls, that is, call trace messages are inhibited even if { message, true} iscaled
in the Mat chBody part for atraced function.

This mode can aso be activated with flag si | ent toer| ang: trace/ 3.

If the argument isf al se, the call trace message mode for the current process is set to normal (non-silent) for
thiscall and all later calls.

If theargumentisnott r ue or f al se, the call trace message mode is unaffected.

All "function calls* must be tuples, even if they take no arguments. The value of sel f isthe atom() sel f, but
thevalueof { sel f} isthe pid() of the current process.

1.4.3 Match target

Each execution of amatch specification is done against a match target term. The format and content of the target term
depends on the context in which the match is done. The match target for ETS is aways afull table tuple. The match
target for call trace is always alist of al function arguments. The match target for event trace depends on the event
type, see table below.

Context Type Match target Description
ETS {Key, Vauel, Vaue?, ...} |A tableobject
Trace call [Argl, Arg2, ...] Function arguments

Receiving process/port and

Trace send [Receiver, Message] m e term

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.4 Match Specifications in Erlang

Sending node, process/port

Trace 'receive [Node, Sender, Message] andm o term

Table 4.1: Match target depending on context

1.4.4 Variables and Literals

Variables take the form ' $<nunber >' , where <numrber > is an integer between 0 and 100,000,000 (1e+8). The
behavior if the number isoutside theselimitsisundefined. Inthe Mat chHead part, the special variable' _' matches
anything, and never gets bound (like _ in Erlang).

* IntheMat chCondi ti on/ Mat chBody parts, no unbound variablesarealowed, so' ' isinterpreted asitself
(an atom). Variables can only be bound in the Mat chHead part.

e Inthe Mat chBody and Mat chCondi t i on parts, only variables bound previously can be used.

» Asagpecial case, the following apply in the Mat chCondi t i on/ Mat chBody parts:

* Thevariable' $_' expands to the whole match target term.
e The variable ' $$' expands to a list of the values of al bound variables in order (that is,
["$1',"%2", ...]).
Inthe Mat chHead part, al literals (except the variables above) are interpreted "asis’.

In the Mat chCondi t i on/ Mat chBody parts, the interpretation is in some ways different. Literals in these parts
can either be written "asis", which works for all literals except tuples, or by using the special form { const, T},
where T isany Erlang term.

For tuple literas in the match specification, double tuple parentheses can also be used, that is, construct them as a
tuple of arity one containing asingle tuple, which is the one to be constructed. The "double tuple parenthesis’ syntax
is useful to construct tuples from already bound variables, likein{{' $1', [a, b,' $2']}}. Examples:

Expression Variable Bindings Result

{{'s1',/'$2}} '$1'=a,'$2=b {ab}

{const, {'$1', '$2'}} Irrelevant {'$1, '$2}

a Irrelevant a

3T B =] (]

[$1] B =] (1]

[{{a}}] Irrelevant [{a}]

42 Irrelevant 42

"hello” Irrelevant "hello”

$1 Irrelevant 49 (the ASCII value for character '1")

Table 4.2: Literals in MatchCondition/MatchBody Parts of a Match Specification

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

1.4.5 Execution of the Match

The execution of the match expression, when the runtime system decides whether a trace message is to be sent, is
asfollows:

For each tuple in the Mat chExpr essi on list and while no match has succeeded:

* Match the Mat chHead part against the match target term, binding the ' $<nunber >' variables (much likein
et s: mat ch/ 2). If the Mat chHead part cannot match the arguments, the match fails.

» Evauateeach Mat chCondi ti on (whereonly ' $<nunber >' variables previously bound in the Mat chHead
part can occur) and expect it to return the atom t r ue. When a condition does not evaluate to t r ue, the match
fails. If any BIF call generates an exception, the match also falils.

« Two cases can occur:
« |f the match specification is executing when tracing:

Evaluate each Act i onTer min the same way as the Mat chCondi t i ons, but ignore the return values.
Regardless of what happens in this part, the match has succeeded.

« |If the match specification is executed when selecting objects from an ETS table:
Evaluate the expressions in order and return the value of the last expression (typicaly there is only one

expression in this context).
1.4.6 Differences between Match Specifications in ETS and Tracing

ETS match specifications produce a return value. Usudly the W©MatchBody contains one single
Condi ti onExpr essi on that defines the return value without any side effects. Calls with side effects are not
allowed in the ETS context.

When tracing thereis no return value to produce, the match specification either matches or does not. The effect when
the expression matches is a trace message rather than a returned term. The Act i onTer s are executed as in an
imperative language, that is, for their side effects. Functions with side effects are also allowed when tracing.

1.4.7 Tracing Examples

Match an argument list of three, where the first and third arguments are equal:

({C's1*, '_", '$1'],
]I
131

Match an argument list of three, where the second argument is a number > 3:

—r——

({r_", 's1, ' 'l,
[({ '=', '"$1', 3},
[1}]
Match an argument list of three, where the third argument is either a tuple containing argument one and two, or alist
beginning with argument oneand two (thatis,[a, b, [a, b, c]] or[a, b, {a, b}]):

[{['$1", "$2', '$3'],

[{'orelse',
'=i=", '$3', {{'$1','$2'}}},
{'and'
{'=:=", '$1', {hd, '$3'}},
. {'=:=", '$2", {hd, {tl, "$3'}}}}}1,

The above problem can a so be solved as follows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.4 Match Specifications in Erlang

({r'$1', "$2', {'$1', '$2}1, [1, [1},
{0'$1*, "$2', ['$1', "$2" | '_'11, [1, [I}]

Match two arguments, where the first is a tuple beginning with a list that in turn begins with the second argument
timestwo (thatis, [{[4, x],y},2] or[{[8], V¥, z},4]):

({r's1+, "$2'1,[{'=:=", {"*", 2, '$2'}, {hd, {element, 1, '$1'}}}],
[1}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message,
otherwise let the trace message be "asis", but set the sequential trace token label to 4711:

[{['$1", "$1', '$1'],
[{is_number, '$1'}],
[{message, {process dump}}1},
{' ', [1, [{set seq token, label, 4711}1}]

Ascan be noted above, the parameter list can be matched against asingleMat chVar i abl eoran' _' . Toreplacethe
whole parameter list with asingle variableis aspecial case. In all other cases the Mat chHead must be aproper list.

Generate a trace message only if the trace control word is set to 1:

[{I_I ’
[{'==',{get_tcw},{const, 1}}1I,
[1}]

Generate atrace message only if thereisaseq_t r ace token:

({_"
[{'==',{is _seq trace},{const, 1}}1,
[1}1]

Removethe' si | ent' traceflag when thefirst argumentis' ver bose' , and add it whenitis' sil ent' :

[{'$1',
[{'==",{hd, '$1'},verbose}],
[{trace, [silent],[1}1},
{'$1',
[{'==",{hd, '$1'},silent}],

[{trace, [],[silent]}]1}]

Addar et urn_trace messageif the function is of arity 3:

[{'$1',
[{'==",{length, '$1'},3}],
[{return_trace}l},

{'_"[1,11}]
Generate a trace message only if the function is of arity 3 and thefirst argumentis' t r ace' :
['trace','$2','$3'],
[1,
(1},
{'_" 11,11}

[{

1.4.8 ETS Examples

Match all objectsin an ETS table, where the first elementistheatom ' st ri der' and the tuple arity is 3, and return
the whole object:

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

[{{strider,"' ',' '},
[1,
['$ "1}]
Match all objectsin an ETStable with arity > 1 and the first element is'gandalf’, and return element 2:

[{'$1",
[{'==', gandalf, {element, 1, '$1'}},{'>=",{size, '$1'},2}1,
[{element,2,'$1'}1}]

In this example, if the first element had been the key, it is much more efficient to match that key in the Mat chHead
part thanintheMat chCondi t i ons part. The search space of thetablesisrestricted with regardsto the Mat chHead
so that only objects with the matching key are searched.

Match tuples of three elements, where the second element is either ' nerry' or' pi ppi n', and return the whole
objects:

[{{'_",merry,' '},
[,
['$ 13,

{E]'_' ,Ppippin, ' '},
['$ '1}]

Functionet s: t est _ns/ 2> can be useful for testing complicated ETS matches.

1.5 How to Interpret the Erlang Crash Dumps

This section describestheer | _cr ash. dunp file generated upon abnormal exit of the Erlang runtime system.

The Erlang crash dump had a mgjor facelift in Erlang/OTP R9C. The information in this section is therefore not
directly applicable for older dumps. However, if you use cr ashdunp_vi ewer (3) on older dumps, the crash
dumps are trandlated into a format similar to this.

The system writes the crash dump in the current directory of the emulator or in the file pointed out by the environment
variable (whatever that means on the current operating system) ERL_ CRASH_DUMP. For a crash dump to be written,
awritable file system must be mounted.

Crash dumps are written mainly for one of two reasons. either the built-in function er | ang: hal t/ 1 is called
explicitly with a string argument from running Erlang code, or the runtime system has detected an error that cannot
be handled. The most usual reason that the system cannot handle the error is that the cause is external limitations,
such as running out of memory. A crash dump caused by an internal error can be caused by the system reaching limits
in the emulator itself (like the number of atoms in the system, or too many simultaneous ETS tables). Usually the
emulator or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump
correctly isimportant.

On systemsthat support OS signals, it isalso possibleto stop the runtime system and generate a crash dump by sending
the SI GUSR1 signal.

The Erlang crash dump is areadable text file, but it can be difficult to read. Using the Crashdump Viewer tool in the
oser ver application simplifies the task. Thisis awx-widget-based tool for browsing Erlang crash dumps.

1.5.1 General Information
Thefirst part of the crash dump shows the following:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.5 How to Interpret the Erlang Crash Dumps

e The creation time for the dump

e A dogan indicating the reason for the dump

* The system version of the node from which the dump originates
e The compile time of the emulator running the originating node

* The number of atomsin the atom table

e Theruntime system thread that caused the crash dump

Reasons for Crash Dumps (Slogan)

The reason for the dump is shown in the beginning of the file as:

Slogan: <reason>

If the system ishalted by the BIF er | ang: hal t/ 1, the dogan is the string parameter passed to the BIF, otherwise
it isadescription generated by the emulator or the (Erlang) kernel. Normally the message is enough to understand the
problem, but some messages are described here. Notice that the suggested reasons for the crash are only suggestions.
The exact reasons for the errors can vary depending on the local applications and the underlying operating system.

<A>: Cannot allocate <N> bytes of memory (of type" <T>")

The system has run out of memory. <A> is the allocator that failed to allocate memory, <N> is the number of
bytes that <A> tried to allocate, and <T> is the memory block type that the memory was needed for. The most
common case is that a process stores huge amounts of data. In this case <T> is most often heap, ol d_heap,
heap_frag, or bi nary. For moreinformation on allocators, seeerts_al | oc(3).

<A>: Cannot reallocate <N> bytes of memory (of type" <T>")

Same as above except that memory was reallocated instead of allocated when the system ran out of memory.
Unexpected op code <N>

Error in compiled code, beamfile damaged, or error in the compiler.

Module <Name> undefined | Function <Name> undefined | No function <Name>:<Name>/1| No function
<Name>:start/2

The Kernel/STDLIB applications are damaged or the start script is damaged.
Driver_select called with too largefile descriptor N

The number of file descriptors for sockets exceeds 1024 (Unix only). The limit on file descriptorsin some Unix
flavors can be set to over 1024, but only 1024 sockets/pipes can be used simultaneously by Erlang (because of
limitations in the Unix sel ect call). The number of open regular filesis not affected by this.

Received SIGUSR1

Sending the SI GUSR1 signal to an Erlang machine (Unix only) forces a crash dump. This slogan reflects that
the Erlang machine crash-dumped because of receiving that signal.

Kernel pid terminated (<Who>) (<Exit reason>)

The kernel supervisor has detected a failure, usualy that the appl i cati on_control | er has shut down
(Who=application_controller,Wy =shut down). Theapplication controller can have shut down for
many reasons, the most usual is that the node name of the distributed Erlang node is already in use. A complete
supervisor tree "crash” (that is, the top supervisors have exited) gives about the same result. This message comes
from the Erlang code and not from the virtual machineitself. It isaways because of somefailurein an application,
either within OTP or a"user-written" one. Looking at the error log for your application is probably the first step
to take.

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

I nit terminating in do_boot ()

The primitive Erlang boot sequence was terminated, most probably because the boot script has errors or cannot
be read. Thisis usually a configuration error; the system can have been started with a faulty - boot parameter
or with aboot script from the wrong OTP version.

Could not start kernel pid (<Who>) ()

One of the kernel processes could not start. This is probably because of faulty arguments (like errorsin a -
confi g argument) or faulty configuration files. Check that all files are in their correct location and that the
configuration files (if any) are not damaged. Usually messages are also written to the controlling terminal and/
or the error log explaining what iswrong.

Other errors than these can occur, as the er | ang: hal t/ 1 BIF can generate any message. If the message is not
generated by the BIF and does not occur in the list above, it can be because of an error in the emulator. There can
however be unusual messages, not mentioned here, which are still connected to an application failure. There is much
more information available, so athorough reading of the crash dump can reveal the crash reason. The size of processes,
the number of ETS tables, and the Erlang data on each process stack can be useful to find the problem.

Number of Atoms

The number of atoms in the system at the time of the crash is shown as Atoms: <number>. Some ten thousands
atomsis perfectly normal, but more canindicatethat theBIF er | ang: | i st _t o_at om 1 isused to generate many
different atoms dynamically, which is never a good idea.

1.5.2 Scheduler Information

Under the tag =scheduler is shown information about the current state and statistics of the schedulersin the runtime
system. On operating systems that allow suspension of other threads, the data within this section reflects what the
runtime system looks like when a crash occurs.

The following fields can exist for a process:
=scheduler:id

Heading. States the scheduler identifier.
Scheduler Sleep Info Flags

If empty, the scheduler was doing some work. If not empty, the scheduler is either in some state of sleep, or
suspended. This entry isonly present in an SMP-enabled emulator.

Scheduler Sleep Info Aux Work

If not empty, ascheduler internal auxiliary work is scheduled to be done.
Current Port

The port identifier of the port that is currently executed by the scheduler.
Current Process

The process identifier of the process that is currently executed by the scheduler. If there is such a process, this
entry isfollowed by the State, Internal State, Program Counter, and CP of that same process. The entries are
described in section Process | nformation.

Notice that this is a snapshot of what the entries are exactly when the crash dump is starting to be generated.
Therefore they are most likely different (and more telling) than the entries for the same processes found in the
=proc section. If thereis no currently running process, only the Current Process entry is shown.

Current Process Limited Stack Trace

This entry is shown only if there isa current process. It issimilar to =proc_stack, except that only the function
frames are shown (that is, the stack variables are omitted). Also, only the top and bottom part of the stack are

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.5 How to Interpret the Erlang Crash Dumps

shown. If the stack is small (< 512 dlots), the entire stack is shown. Otherwise the entry skipping ## slots is
shown, where ## is replaced by the number of dlots that has been skipped.

Run Queue
Shows statistics about how many processes and ports of different priorities are scheduled on this scheduler.
** crashed **

This entry is normally not shown. It signifies that getting the rest of the information about this scheduler failed
for some reason.

1.5.3 Memory Information

Under the tag =memory is shown information similar to what can be obtainted on a living node with
erl ang: menmory() .

1.5.4 Internal Table Information

Under the tags =hash_table:<table hame> and =index_table:<table name> is shown internal tables. These are
mostly of interest for runtime system developers.

1.5.5 Allocated Areas

Under the tag =allocated_areas is shown information similar to what can be obtained on a living node with
erl ang: system.info(allocated _areas).

1.5.6 Allocator

Under the tag =allocator :<A> is shown various information about allocator <A>. The information is similar to what
can be obtained on aliving node with er | ang: system i nfo({al | ocat or, <A>}).For moreinformation,
seedsoerts_alloc(3).

1.5.7 Process Information

The Erlang crashdump contains a listing of each living Erlang process in the system. The following fields can exist
for aprocess:

=proc:<pid>
Heading. States the processidentifier.
State
The state of the process. This can be one of the following:

Scheduled
The process was scheduled to run but is currently not running ("in the run queue").
Waiting
The process was waiting for something (inr ecei ve).
Running
The process was currently running. If the BIF er | ang: hal t / 1 was called, this was the process calling
it.
Exiting
The process was on its way to exit.
Garbing
Thisis bad luck, the process was garbage collecting when the crash dump was written. The rest of the
information for this processis limited.

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

Suspended
The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or because it triesto write
to a busy port.

Registered name
The registered name of the process, if any.
Spawned as

The entry point of the process, that is, what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call

The current function of the process. These fields do not always exist.
Spawned by

The parent of the process, that is, the process that executed spawn or spawn_| i nk.
Started

The date and time when the process was started.
M essage queue length

The number of messages in the process message queue.
Number of heap fragments

The number of allocated heap fragments.
Heap fragment data

Size of fragmented heap data. Thisis data either created by messages sent to the process or by the Erlang BIFs.
This amount depends on so many things that this field is utterly uninteresting.

Link list

Process | Ds of processes linked to this one. Can also contain ports. If process monitoring is used, thisfield also
tellsinwhich direction themonitoring isin effect. That is, alink "to" aprocesstellsyou that the "current” process
was monitoring the other, and alink "from" a process tells you that the other process was monitoring the current
one.

Reductions

The number of reductions consumed by the process.
Stack+heap

The size of the stack and heap (they share memory segment).
OldHeap

Thesizeof the"old heap". The Erlang virtual machine uses generational garbage collection with two generations.
There is one heap for new data items and one for the data that has survived two garbage collections. The
assumption (which is amost always correct) is that data surviving two garbage collections can be "tenured" to
a heap more seldom garbage collected, as they will live for along period. This is a usual technique in virtual
machines. The sum of the heaps and stack together constitute most of the allocated memory of the process.

Heap unused, OldHeap unused
The amount of unused memory on each heap. Thisinformation is usually useless.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.5 How to Interpret the Erlang Crash Dumps

Memory

The total memory used by this process. This includes call stack, heap, and interna structures. Same as
erl ang: process_i nfo(Pi d, menory).

Program counter

The current instruction pointer. Thisis only of interest for runtime system developers. The function into which
the program counter points is the current function of the process.

CP

The continuation pointer, that is, the return address for the current call. Usually useless for other than runtime
system developers. This can be followed by the function into which the CP points, which is the function calling
the current function.

Arity

The number of live argument registers. The argument registers if any are live will follow. These can contain the
arguments of the function if they are not yet moved to the stack.

Internal State
A more detailed internal representation of the state of this process.
See also section Process Data.

1.5.8 Port Information

This section lists the open ports, their owners, any linked processes, and the name of their driver or external process.

1.5.9 ETS Tables

This section contains information about all the ETS tablesin the system. The following fields are of interest for each
table:

=ets.<owner>
Heading. States the table owner (a process identifier).
Table
Theidentifier for the table. If thetableisananed_t abl e, thisisthe name.
Name
The table name, regardless of if itisanamed_t abl e or not.
Hash table, Buckets
If thetableisahash table, that is, if itisnot an or der ed_set .
Hash table, Chain Length

If thetableisahash table. Contains statistics about the table, such as the maximum, minimum, and average chain
length. Having amaximum much larger than the average, and a standard deviation much larger than the expected
standard deviation is a sign that the hashing of the terms behaves badly for some reason.

Ordered set (AVL tree), Elements

If thetableisan or der ed_set . (The number of elementsis the same as the number of objects in the table.)
Fixed

If thetableisfixed using et s: saf e_fi xt abl e/ 2 or someinternal mechanism.

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

Objects
The number of objectsin thetable.
Words
The number of words (usually 4 bytes/word) allocated to datain the table.
Type
Thetabletype, that is, set , bag, dubl i cat e_bag, or or der ed_set .
Compr essed
If the table was compressed.
Protection
The protection of the table.
Write Concurrency
Ifwrite_concurrency wasenabled for thetable.
Read Concurrency

If read_concurrency was enabled for the table.

1.5.10 Timers

This section contains information about al the timers started with the BIFs er| ang: start _tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exist for each timer:

=timer:<owner >

Heading. States the timer owner (a process identifier), that is, the process to receive the message when the timer
expires.

M essage
The message to be sent.
Time left

Number of milliseconds left until the message would have been sent.

1.5.11 Distribution Information

If the Erlang node was alive, that is, set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>

The node name.
no_distribution

If the node was not distributed.
=visible node:<channel>

Heading for avisible node, that is, an alive node with a connection to the node that crashed. States the channel
number for the node.

=hidden_node:<channel>

Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the " -
hi dden" flag. States the channel number for the node.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.5 How to Interpret the Erlang Crash Dumps

=not_connected:<channel>

Heading for anode that was connected to the crashed node earlier. References (that is, process or port identifiers)
to the not connected node existed at the time of the crash. States the channel number for the node.

Name

The name of the remote node.
Controller

The port controlling communication with the remote node.
Creation

An integer (1-3) that together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote_proc>

Thelocal process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote proc>

The remote process was monitoring the local process at the time of the crash.
Remotelink: <local_proc> <remote_proc>

A link existed between the local process and the remote process at the time of the crash.

1.5.12 Loaded Module Information

This section contains information about all loaded modules.
First, the memory use by the loaded code is summarized:
Current code
Code that is the current latest version of the modules.
Old code
Code where there exists a newer version in the system, but the old version is not yet purged.
The memory useisin bytes.
Then, all loaded modules are listed. The following fields exist:
=mod:<module_name>
Heading. States the module name.
Current size
Memory use for the loaded code, in bytes.
Old size
Memory use for the old code, if any.
Current attributes
Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes
Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info

Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

Old compilation info

Compilation information (options) for the old code, if any. Thisfield isdecoded when |ooked at by the Crashdump
Viewer tool.

1.5.13 Fun Information
This section lists al funs. The following fields exist for each fun:
=fun

Heading.
Module

The name of the module where the fun was defined.
Uniq, Index

Identifiers.
Address

The address of the fun's code.
Native address

The address of the fun's code when HiPE is enabled.
Refc

The number of references to the fun.

1.5.14 Process Data

For each processthereisat least one=proc_stack and one=proc_heap tag, followed by the raw memory information
for the stack and heap of the process.

For each process there is aso a =proc_messages tag if the process message queue is non-empty, and a
=proc_dictionary tag if the process dictionary (the put / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou can then see the stack dump, the
message queue (if any), and the dictionary (if any).

The stack dump is a dump of the Erlang process stack. Most of the live data (that is, variables currently in use) are
placed on the stack; thus this can be interesting. One hasto "guess' what is what, but as the information is symbolic,
thorough reading of thisinformation can be useful. Asan example, we can find the state variabl e of the Erlang primitive
loader online (5) and (6) in the following example:

(1) 3cac44 Return addr 0x13BF58 (<terminate process normally>)

(2) y(0) ["/view/siri r1@ dev/clearcase/otp/erts/lib/kernel/ebin",

(3) "/view/siri rl10 dev/clearcase/otp/erts/lib/stdlib/ebin"]

(4) y(1) <0.1.0>

(5) y(2) {state, [],none,#Fun<erl prim loader.6.7085890>,undefined,#Fun<erl prim loader.7.9000327>,
(6) #Fun<erl prim loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl prim loader.9.10708760>}
(7) y(3) infinity

When interpreting the data for a process, it is helpful to know that anonymous function objects (funs) are given the
following:

* A name constructed from the name of the function in which they are created
* A number (starting with 0) indicating the number of that fun within that function

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1.5.15 Atoms

This section presents al the atoms in the system. Thisis only of interest if one suspects that dynamic generation of
atoms can be a problem, otherwise this section can be ignored.

Notice that the last created atom is shown first.

1.5.16 Disclaimer

The format of the crash dump evolves between OTP rel eases. Some information described here may not apply to your
version. A description like thiswill never be complete; it is meant as an explanation of the crash dump in general and
as ahelp when trying to find application errors, not as a compl ete specification.

1.6 How to Implement an Alternative Carrier for the Erlang
Distribution

This section describes how to implement an alternative carrier protocol for the Erlang distribution. The distribution is
normally carried by TCP/IP. Here is explained a method for replacing TCP/IP with another protocol.

The sectionisastep-by-step explanation of theuds_di st exampleapplication (inthe Kernel applicationexanpl es
directory). Theuds_di st application implements distribution over Unix domain sockets and is written for the Sun
Solaris 2 operating environment. The mechanisms are however general and apply to any operating system Erlang runs
on. The reason the C code is nhot made portable, is simply readability.

1.6.1 Introduction

To implement anew carrier for the Erlang distribution, the main steps are as follows.

Asof ERTS version 10.0 support for distribution controller processes has been introduced. That is, the traffic over
adistribution channel can be managed by a process instead of only by a port. This makesit possible to implement
large parts of the logic in Erlang code, and you perhaps do not even need a new driver for the protocol. One
example could be Erlang distribution over UDP using gen_udp (your Erlang code will of course have to take
care of retranspissions, etc in this example). That is, depending on what you want to do you perhaps do not need
to implement a driver at al and can then skip the driver related sections below. The gen_t cp_di st example
described in the Distribution Module section utilize distribution controller processes and can be worth having a
look at if you want to use distribution controller processes.

Writing an Erlang Driver

First, the protocol must be available to the Erlang machine, which involves writing an Erlang driver. A port program
cannot be used, an Erlang driver is required. Erlang drivers can be:

« Statically linked to the emulator, which can be an alternative when using the open source distribution of Erlang, or

» Dynamically loaded into the Erlang machines address space, which isthe only alternativeif aprecompiled version
of Erlang is to be used

Writing an Erlang driver is not easy. The driver is written as some callback functions called by the Erlang emulator
when datais sent to the driver, or the driver has any data available on afile descriptor. Asthe driver callback routines
execute in the main thread of the Erlang machine, the callback functions can perform no blocking activity whatsoever.
The callbacks are only to set up file descriptors for waiting and/or read/write available data. All 1/0 must be non-
blocking. Driver callbacks are however executed in sequence, why a global state can safely be updated within the
routines.

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

Writing an Erlang Interface for the Driver

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. This interface can then be used by the distribution module, which will cover the
details of the protocol from thenet _ker nel .

The easiest pathisto mimicthei net andi net _t cp interfaces, but not much functionality in those modules needs
to beimplemented. In the example application, only afew of the usual interfaces are implemented, and they are much
simplified.

Writing a Distribution Module

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well-defined callbacks, much likeagen_ser ver (thereisno
compiler support for checking the callbacks, though). This module implements:

e Thedetails of finding other nodes (that is, talking to eprd or something similar)
* Creating alisten port (or similar)

e Connecting to other nodes

« Performing the handshakes/cookie verification

Thereis however autility module, di st _ut i | , which does most of the hard work of handling handshakes, cookies,
timers, and ticking. Using di st _uti | makes implementing a distribution module much easier and that is done in
the exampl e application.

Creating Boot Scripts

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when all the system is running, but in areal system the distribution isto
start very early, why a boot script and some command-line parameters are necessary.

This step also impliesthat the Erlang code in the interface and distribution modulesiswritten in such away that it can
be run in the startup phase. In particular, there can be no callsto the appl i cat i on module or to any modules not
loaded at boot time. That is, only Ker nel , STDLI B, and the application itself can be used.

1.6.2 Distribution Module

The distribution module expose an APl that net _ker nel call in order to manage connections to other nodes. The
module name should have the suffix _di st .

The module needs to create some kind of listening entity (process or port) and an acceptor process that accepts
incoming connections using thelistening entity. For each connection, themodul e at | east needsto create one connection
supervisor process, which also is responsible for the handshake when setting up the connection, and a distribution
controller (process or port) responsible for transport of data over the connection. The distribution controller and the
connection supervisor process should be linked together so both of them are cleaned up when the connection is taken
down.

Note that there need to be exactly one distribution controller per connection. A process or port can only be distribution
controller for one connection. The registration as distribution controller cannot be undone. It will stick until the
distribution controller terminates. The distribution controller should not ignore exit signals. It is allowed to trap exits,
but it should then voluntarily terminate when an exit signal isreceived.

An exampleimplementation of adistribution modulecan befoundin $ERL _TOP/lib/ker nel/examples/gen_tcp_dist/
src/gen_tcp_dist.erl. Itimplementsthedistribution over TCP/IPusingthegen_t cp API with distribution controllers
implemented by processes. Thisinstead of using port distribution controllers as the ordinary TCP/IP distribution uses.

Exported Callback Functions

The following functions are mandatory:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

href
href

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

listen(Nane) ->
{ok, {Listen, Address, Creation}} | {error, Error}
listen/1 iscaled once in order to listen for incoming connection requests. The call is made when the

distribution is brought up. The argument Nan® is the part of the node name before the @sign in the full node
name. It can be either an atom or a string.

The return value consists of aLi st en handle (which is later passed to the accept / 1 callback), Addr ess
whichisa#net _addr ess{} recordwithinformation about the addressfor the node (the#net _addr ess{}
recordisdefinedinker nel /i ncl ude/ net _addr ess. hrl),andCr eat i on which (currently) isaninteger
1,2,0r3.

If epnd isto be used for node discovery, you typically want to usethe (unfortunately undocumented) er | _epnd
module (part of the ker nel application) in order to register the listen port with epnd and retrieve Cr eat i on
to use.

accept(Listen) ->
AcceptorPi d

accept/ 1 should spawn a process that accepts connections. This process should preferably execute on max
priority. The process identifier of this process should be returned.

TheLi st en argument will bethesameastheLi st en handle part of thereturnvalueof thel i st en/ 1 callback
above. accept / 1 iscalled only once when the distribution protocol is started.

The caler of this function is a representative for net _ker nel (thismay or may not be the process registered
asnet _ker nel) andisin this document identified as Ker nel . When a connection has been accepted by the
acceptor process, it needs to inform Ker nel about the accepted connection. Thisis done by passing a message
on the form:

Kernel ! {accept, AcceptorPid, DistController, Family, Proto}

Di st Control | er iseither the process or port identifier of the distribution controller for the connection. The
distribution controller should be created by the acceptor processes when a new connection is accepted. Its job
isto dispatch traffic on the connection.

Ker nel responds with one of the following messages:
{Kernel, controller, SupervisorPid}

The request was accepted and Super vi sor Pi d is the process identifier of the connection supervisor
process (which is created intheaccept _connect i on/ 5 callback).

{Kernel, unsupported_protocol}
The request was rejected. Thisis afatal error. The acceptor process should terminate.

When an accept sequence has been completed the acceptor process is expected to continue accepting further
requests.

accept _connection(AcceptorPid, DistCrl, M/Node, Allowed, SetupTine) ->
Connect i onSupervi sor Pi d

accept _connecti on/ 5 should spawn a process that will perform the Erlang distribution handshake for the
connection. If the handshake successfully completes it should continue to function as a connection supervisor.
This process should preferably execute on max priority.

The arguments:
Accept or Pi d
Process identifier of the process created by theaccept / 1 callback.

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

DistCrl

Theidentifier of the distribution controller identifier created by the acceptor process. To be passed along to
di st _util:handshake_ ot her_started(HsData) .

MyNode
Node name of this node. To be passed aong to
di st _util:handshake other_started(HsData).

Al'l owed
Tobepassedaongtodi st _util: handshake ot her started(HsData).

Set upTi ne

Time used for creating asetup timer by acall todi st _util:start_tinmer(SetupTi ne).Thetimer
should be passed alongtodi st _uti | : handshake_ot her _start ed(HsDat a) .

The created process should provide callbacks and other information needed for the handshakeina#hs_dat a{ }
record and call di st _uti | : handshake_ot her _st art ed(HsDat a) with thisrecord.

di st _util:handshake ot her started(HsData) will perform the handshake and if the handshake
successfully completes this process will then continue in a connection supervisor loop as long as the connection
isup.

set up(Node, Type, MyNode, LongOr Short Nanes, SetupTine) ->
Connect i onSuper vi sor Pi d

set up/ 5 should spawn a process that connects to Node. When connection has been established it should
perform the Erlang distribution handshake for the connection. If the handshake successfully completesit should
continue to function as a connection supervisor. This process should preferably execute on max priority.

The arguments:
Node

Node name of remote node. Tobepassedalongtodi st _uti | : handshake_we_st art ed(HsDat a) .
Type

Connection type. To bepassed dlongtodi st _uti | : handshake _we started(HsDat a).
My/Node

Node name of thisnode. To be passed alongtodi st _uti | : handshake we_st arted(HsDat a) .
LongOr Shor t Nanes

Either the atom | ongnanes or the atom shor t names indicating whether long or short namesis used.
Set upTi ne

Time used for creating asetup timer by acall todi st _util:start _tiner(SetupTi ne).Thetimer
should be passed alongtodi st _uti |l : handshake we started(HsDat a) .

The caler of this function is a representative for net _ker nel (thismay or may not be the process registered
asnet _ker nel) andisin this document identified as Ker nel .

This function should, besides spawning the connection supervisor, also create a distribution controller. The
distribution controller is either a process or a port which is responsible for dispatching traffic.

The created process should provide callbacks and other information needed for the handshakeina#hs_dat a{ }
recordand call di st _uti | : handshake_we_ st art ed(HsDat a) with thisrecord.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

di st _util:handshake we_started(HsData) will perform the handshake and the handshake
successfully completes this process will then continue in a connection supervisor loop as long as the connection
isup.

cl ose(Listen) ->
voi d()

Called in order to close the Li st en handle that originally was passed fromthel i st en/ 1 callback.

sel ect (NodeNane) ->
bool ean()

Returnt r ue if the host name part of the NodeNane isvalid for use with this protocol; otherwise, f al se.
There are also two optional functions that may be exported:

setopts(Listen, Opts) ->
ok | {error, Error}

The argument Li st en isthe handle originally passed from thel i st en/ 1 callback. The argument Opt s isa
list of options to set on future connections.

getopts(Listen, Opts) ->
{ok, OptionValues} | {error, Error}

The argument Li st en isthe handle originally passed from thel i st en/ 1 callback. The argument Opt s isa
list of optionsto read for future connections.

The #hs_data{} Record

The dist_util:handshake_we_started/1 and dist_util:handshake_other_started/1
functions takes a#hs_dat a{} record as argument. There are quite a lot of fields in this record that you need to
set. Therecordisdefinedinker nel /i ncl ude/ di st _util . hrl.Not documented fields should not be set, i.e.,
should be left asundef i ned.

Thefollowing #hs_dat a{ } record fields need to be set unless otherwise stated:
kernel _pid

Process identifier of the Kernel process. That is, the process that caled ether setup/5 or
accept _connection/5.

ot her _node

Name of the other node. This field is only mandatory when this node initiates the connection. That is, when
connectionisset up viaset up/ 5.

thi s_node
The node name of this node.
socket
The identifier of the distribution controller.
timer
Thetimer created usingdi st _util:start _tiner/1.
al | oned

Information passed as Al | owed toaccept _connecti on/ 5. Thisfield is only mandatory when the remote
node initiated the connection. That is, when the connection is set up viaaccept _connecti on/ 5.

f _send
A fun with the following signature:

32 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

fun (DistCtrlr, Data) -> ok | {error, Error}

where Di st Ct r | r istheidentifier of the distribution controller and Dat a isio datato pass to the other side.
Only used during handshake phase.
f_recv

A fun with the following signature:
fun (DistCtrlr, Length) -> {ok, Packet} | {error, Reason}

where Di st Ct r | r istheidentifier of the distribution controller. If Lengt h is0, al available bytes should be
returned. If Lengt h > 0, exactly Lengt h bytes should be returned, or an error; possibly discarding less than
Lengt h bytes of data when the connection is closed from the other side. It is used for passive receive of data
from the other end.

Only used during handshake phase.
f _setopts_pre_nodeup

A fun with the following signature:

fun (DistCtrlr) -> ok | {error, Error}

where Di st Ctr | r istheidentifier of the distribution controller. Called just before the distribution channel is
taken up for normal traffic.

Only used during handshake phase.
f _set opts_post_nodeup
A fun with the following signature:

fun (DistCtrlr) -> ok | {error, Error}

whereDi st Ct r | r istheidentifier of the distribution controller. Called just after distribution channel has been
taken up for normal traffic.

Only used during handshake phase.
f _getll
A fun with the following signature:

fun (DistCtrlr) -> ID

where Di st Ctr | r istheidentifier of the distribution controller and | D is the identifier of the low level entity
that handles the connection (often Di st Ct r | r itself).

Only used during handshake phase.
f _address
A fun with the following signature:

fun (DistCtrlr, Node) -> NetAddress

where Di st Ct r | r is the identifier of the distribution controller, Node is the node name of the node on
the other end, and Net Addr ess isa#net _addr ess{} record with information about the address for the
Node on the other end of the connection. The #net _addr ess{} record isdefined in ker nel /i ncl ude/
net address. hrl.

Only used during handshake phase.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

nf_tick
A fun with the following signature;

fun (DistCtrlr) -> void()

whereDi st Ct r | r istheidentifier of the distribution controller. This function should send information over the
connection that is not interpreted by the other end while increasing the statistics of received packets on the other
end. Thisis usually implemented by sending an empty packet.

It is of vital importance that this operation does not block the caller for along time. This since it is called
from the connection supervisor.

Used when connection is up.
nf get st at

A fun with the following signature:
fun (DistCtrlr) -> {ok, Received, Sent, PendSend}

where Di st Ct r | r istheidentifier of the distribution controller, Recei ved isreceived packets, Sent issent

packets, and PendSend is amount of packets in queue to be sent or abool ean() indicating whether there
are packets in queue to be sent.

It is of vital importance that this operation does not block the caller for along time. This since it is called
from the connection supervisor.

Used when connection is up.
request _type

Therequest Type aspassedtoset up/ 5. Thisisonly mandatory when the connection has been initiated by this
node. That is, the connection is set up viaset up/ 5.

nf _setopts

A fun with the following signature:
fun (DistCtrl, Opts) -> ok | {error, Error}

where Di st Ct r | r is the identifier of the distribution controller and Opt s is a list of options to set on the
connection.

Thisfunction is optional. Used when connection is up.
nf _getopts
A fun with the following signature:

fun (DistCtrl, Opts) -> {ok, OptionValues} | {error, Error}

where Di st Ct r | r isthe identifier of the distribution controller and Opt s is alist of options to read for the
connection.

Thisfunction is optional. Used when connection is up.

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

f _handshake_conpl ete

A fun with the following signature:
fun (DistCtrlr, Node, DHandle) -> void()

whereDi st Ct r | r istheidentifier of the distribution controller, Node is the node name of the node connected
at the other end, and DHandl e is a distribution handle needed by a distribution controller process when calling
the following BIFs:

e erlang:dist_ctrl_get _data/l

e erlang:dist_ctrl_get _data notification/1
e erlang:dist_ctrl_input_handler/2

e erlang:dist_ctrl_put _datal/?2

This function is called when the handshake has completed and the distribution channel is up. The distribution
controller can begin dispatching traffic over the channel. Thisfunction is optional.

Only used during handshake phase.
add_f 1 ags
Distribution flags to add to the connection. Currently all (non obsolete) flags will automatically be enabled.
Thisflag field is optional.
reject flags
Distribution flags to reject. Currently the following distribution flags can be rejected:

DFLAG DI ST_HDR ATOM CACHE
Do not use atom cache over this connection.

Use function di st _util:strict_order_fl ags/ 0 to get all flags for features that require strict order
delivery.

Thisflag field is optional.
require_flags

Require these distribution flags to be used. The connection will be aborted during the handshake if the other end
does not use them.

Thisflag field is optional.
Distribution Data Delivery

When using the default configuration, the data to pass over a connection needs to be delivered asisto the node on the
receiving end in the exact same order, with no loss of datawhat so ever, as sent from the sending node.

The data delivery order can be relaxed by disabling features that require strict ordering. This is done by passing
the distribution flags returned by di st _util:strict _order flags/Ointhereject fl ags field of the
#hs_dat a{} record used when setting up the connection. When relaxed ordering is used, only the order of signals
with the same sender/receiver pair has to be preserved. However, note that disabling the features that require strict
ordering may have a negative impact on performance, throughput, and/or latency.

Enable Your Distribution Module

For net _ker nel to find out which distribution moduleto use, theer | command-line argument - pr ot o_di st is
used. It isfollowed by one or more distribution module names, with suffix "_dist" removed. That is,gen_t cp_di st
asadistribution module is specified as- pr ot o_di st gen_t cp.

If noepnd (TCP port mapper daemon) is used, also command-line option - no_epnd isto be specified, which makes
Erlang skip the epnd startup, both as an OS process and as an Erlang ditto.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1.6.3 The Driver

This section was written along time ago. Most of it is still valid, but some things have changed since then. Some
updates have been made to the documentation of the driver presented here, but more can be done and is planned
for the future. The reader isencouragedtoread theer | _dri ver anddri ver _ent ry documentation also.

Although Erlang driversin general can be beyond the scope of this section, a brief introduction seemsto bein place.

Drivers in General

An Erlang driver is a native code module written in C (or assembler), which serves as an interface for some special
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/
O. An Erlang driver can be dynamically linked (or loaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the driversin OTP are however statically linked to the runtime system, but that is more an
optimization than a necessity.

Thedriver datatypesand the functions availableto the driver writer are defined in header fileer | _dri ver . h seated
in Erlang'sinclude directory. Seethe erl_driver documentation for details of which functions are available.

When writing adriver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation must be non-blocking and all possible situations are to be
accounted for in the driver. A non-stable driver will affect and/or crash the whole Erlang runtime system.

The emulator calls the driver in the following situations:

* Whenthedriverisloaded. This callback must have a special name and inform the emulator of what callbacks are
to be used by returning a pointer to aEr | Dr VEnt r y struct, which isto be properly filled in (see below).

* When aport to the driver is opened (by aopen_port call from Erlang). Thisroutineisto set up interna data
structures and return an opague data entity of thetype Er | Dr vDat a, which is a datatype large enough to hold a
pointer. The pointer returned by thisfunction isthe first argument to al other callbacks concerning this particular
port. Itisusually called the port handle. The emulator only storesthe handle and does never try to interpret it, why
it can be virtually anything (anything not larger than a pointer that is) and can point to anything if it is a pointer.
Usually this pointer refers to a structure holding information about the particular port, asit does in the example.

* When an Erlang process sends data to the port. The data arrives as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This callback returns nothing to the caller, answers are sent to the caller
as messages (using aroutine called dr i ver _out put availableto all drivers). Thereisaso away totalk ina
synchronous way to drivers, described below. There can be an additional callback function for handling data that
isfragmented (sent in adeep io-list). That interface gets the datain aform suitable for Unix wr i t ev rather than
in asingle buffer. There is no need for adistribution driver to implement such a callback, so we will not.

* When afile descriptor is signaled for input. This callback is called when the emulator detects input on a file
descriptor that the driver has marked for monitoring by using the interface dr i ver _sel ect . The mechanism
of driver select makes it possible to read non-blocking from file descriptors by calling dri ver _sel ect when
reading is needed, and then do the reading in this callback (when reading is possible). The typical scenario is
that dri ver _sel ect iscaled when an Erlang process orders a read operation, and that this routine sends the
answer when data is available on the file descriptor.

e When afile descriptor is signaled for output. This callback is called in a similar way as the previous, but when
writing to a file descriptor is possible. The usual scenario is that Erlang orders writing on a file descriptor and
that the driver callsdr i ver _sel ect . When the descriptor is ready for output, this callback is called and the
driver can try to send the output. Queuing can be involved in such operations, and there are convenient queue
routines available to the driver writer to use.

* When aport is closed, either by an Erlang process or by the driver calling one of thedri ver _fai | ur e_ XXX
routines. This routine is to clean up everything connected to one particular port. When other callbacks call a

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

driver_fail ure_XXXroutine, thisroutineisimmediately called. The callback routine issuing the error can
make no more use of the data structures for the port, as this routine surely has freed all associated data and closed
all file descriptors. If the queue utility available to driver writer is used, this routine is however not called until
the queue is empty.

e When an Erlang process calls er| ang: port _cont r ol / 3, which is asynchronous interface to drivers. The
control interface is used to set driver options, change states of ports, and so on. This interface is used alot in
the example.

e When atimer expires. The driver can set timers with the function dri ver _set _t i mer . When such timers
expire, a specific callback function is called. No timers are used in the example.

* When the whole driver is unloaded. Every resource allocated by the driver isto be freed.
The Data Structures of the Distribution Driver

The driver used for Erlang distribution is to implement areliable, order maintaining, variable length packet-oriented
protocol. All error correction, resending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream-oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big-endian 32-bit integer. As Unix domain sockets only can be used
between processes on the same machine, we do not need to code the integer in some specia endianess, but we will
do it anyway because in most situation you need to do it. Unix domain sockets are reliable and order maintaining, so
we do not need to implement resends and such in the driver.

Westart writing the example Unix domain socketsdriver by declaring prototypesandfillinginastaticEr | Dr vEnt ry
structure:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 37

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1) #include
2) #include
3) #include
4) #include
5) #include
#include
7) #include
8) #include

(
(
(
(
(
(6)
(
(
(
(

<stdio.h>
<stdlib.h>
<string.h>
<unistd.h>
<errno.h>
<sys/types.h>
<sys/stat.h>
<sys/socket.h>

9) #include <sys/un.h>
10) #include <fcntl.h>
(11) #define HAVE UIO H
(12) #include "erl driver.h"
(13) /*
(14) ** Interface routines
(15) */
(16) static ErlDrvData uds start(ErlDrvPort port, char *buff);
(17) static void uds_stop(ErlDrvData handle);
(18) static void uds command(ErlDrvData handle, char *buff, int bufflen);
(19) static void uds_input(ErlDrvData handle, ErlDrvEvent event);
(20) static void uds output(ErlDrvData handle, ErlDrvEvent event);
(21) static void uds finish(void);
(22) static int uds control(ErlDrvData handle, unsigned int command,
(23) char* buf, int count, char** res, int res size);
(24) /* The driver entry */
(25) static ErlDrvEntry uds driver entry = {
(26) NULL, /* init, N/A */
(27) uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready input, called when input
(31) descriptor ready */
(32) uds_output, /* ready output, called when output
(33) descriptor ready */
(34) "uds drv", /* char *driver name, the argument
(35) to open port */
(36) uds_finish, /* finish, called when unloaded */
(37) NULL, /* void * that is not used (BC) */
(38) uds_control, /* control, port control callback */
(39) NULL, /* timeout, called on timeouts */
(40) NULL, /* outputv, vector output interface */
(41) NULL, /* ready async callback */
(42) NULL, /* flush callback */
(43) NULL, /* call callback */
(44) NULL, /* event callback */
(45) ERL DRV _EXTENDED MARKER, /* Extended driver interface marker */
(46) ERL_DRV_EXTENDED MAJOR VERSION, /* Major version number */
(47) ERL DRV_EXTENDED MINOR VERSION, /* Minor version number */
(48) ERL DRV _FLAG SOFT BUSY, /* Driver flags. Soft busy flag is
(49) required for distribution drivers */
(50) NULL, /* Reserved for internal use */
(51) NULL, /* process exit callback */
(52) NULL /* stop_select callback */
(53) };

On line 1-10 the OS headers needed for the driver areincluded. Asthisdriver iswritten for Solaris, we know that the
header ui 0. h exists. Sothe preprocessor variable HAVE_UlI O _Hcan bedefined beforeer | _dri ver . hisincluded
on line 12. The definition of HAVE_UlI O_H will make the 1/0 vectors used in Erlang's driver queues to correspond
to the operating systems ditto, which is very convenient.

On line 16-23 the different callback functions are declared ("forward declarations).

38 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The driver structure is similar for statically linked-in drivers and dynamically loaded. However, some of the fields
are to be left empty (that is, initialized to NULL) in the different types of drivers. The first field (thei ni t function
pointer) is always left blank in a dynamically loaded driver, see line 26. NULL on line 37 is always to be there, the
field isno longer used and is retained for backward compatibility. No timers are used in this driver, why no callback
for timersis needed. The out put v field (line 40) can be used to implement an interface similar to Unix wri t ev
for output. The Erlang runtime system could previously not use out put v for the distribution, but it can as from
ERTS5.7.2. Asthisdriver waswritten before ERTS 5.7.2 it does not usethe out put v callback. Using theout put v
callback is preferred, asit reduces copying of data. (We will however use scatter/gather 1/O internally in the driver.)

As from ERTS 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present on line 48. As from ERTS 5.7.4 flag ERL_DRV_FLAG _SOFT_BUSY is
required for drivers that are to be used by the distribution. The soft busy flag implies that the driver can handle calls
to the out put and out put v calbacks athough it has marked itself as busy. This has always been a requirement
on drivers used by the distribution, but no capability information has been available about this previously. For more
information. see er| _dri ver: set _busy_port()).

Thisdriver waswritten before the runtime system had SMP support. Thedriver will still functionin the runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. Thiscan be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can executein parallel.
When instances safely can executein parallél, it is safe to enable instance-specific locking on the driver. Thisis done
by passing ERL_DRV_FLAG _USE_PORT_LOCKI NGas adriver flag. Thisisleft as an exercise for the reader.

Thus, the defined callbacks are as follows:
uds_start
Must initiate data for a port. We do not create any sockets here, only initialize data structures.
uds_stop
Called when aport is closed.
uds_comand

Handles messages from Erlang. The messages can either be plain data to be sent or more subtle instructions to
the driver. Thisfunction is here mostly for data pumping.

uds_i nput

Called when there is something to read from a socket.
uds_out put

Called when it is possible to write to a socket.
uds_finish

Caled when the driver is unloaded. A distribution driver will never be unloaded, but we include this for
completeness. To be able to clean up after oneself is always a good thing.

uds_control
The er |l ang: port _contr ol / 3 callback, which isused alot in thisimplementation.

The portsimplemented by this driver operate in two major modes, named command and dat a. In comrand mode,
only passive reading and writing (like gen_t cp: r ecv/gen_t cp: send) can be done. The port is in this mode
during the distribution handshake. When the connection is up, the port is switched to dat a mode and al data is
immediately read and passed further to the Erlang emulator. In dat a mode, no data arriving to uds_conmand is
interpreted, only packaged and sent out on the socket. Theuds_cont r ol callback doesthe switching between those
two modes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 39

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

While net _ker nel informs different subsystems that the connection is coming up, the port is to accept data to
send. However, the port should not receive any data, to avoid that data arrives from another node before every kernel
subsystem is prepared to handleit. A third mode, named i nt er medi at e, isused for thisintermediate stage.

An enum is defined for the different types of ports:

1) typedef enum {

(

(2) portTypeUnknown, /* An uninitialized port */

(3) portTypelListener, /* A listening port/socket */

(4) portTypeAcceptor, /* An intermediate stage when accepting
(5) on a listen port */

(6) portTypeConnector, /* An intermediate stage when connecting */
(7) portTypeCommand, /* A connected open port in command mode */
(8) portTypeIntermediate, /* A connected open port in special

(9) half active mode */

(10) portTypeData /* A connected open port in data mode */

(11) } PortType;

The different types are as follows:
por t TypeUnknown

The type a port has when it is opened, but not bound to any file descriptor.
port Typeli st ener

A port that is connected to a listen socket. This port does not do much, no data pumping is done on this socket,
but read datais available when one is trying to do an accept on the port.

port TypeAccept or

This port is to represent the result of an accept operation. It is created when one wants to accept from a listen
socket, and it is converted to apor t Ty peComrand when the accept succeeds.

port TypeConnect or

Very similar to port TypeAccept or, an intermediate stage between the request for a connect operation and
that the socket is connected to an accepting ditto in the other end. When the sockets are connected, the port
switches typeto por t TypeCommand.

port TypeConmand

A connected socket (or accepted socket) in command mode mentioned earlier.
port Typel nt er medi at e

The intermediate stage for a connected socket. There isto be no processing of input for this socket.
port TypeDat a

The mode where data is pumped through the port and the uds_conmmand routine regards every call as a call
where sending iswanted. In thismode, all input availableisread and sent to Erlang when it arrives on the socket,
much like in the active mode of agen_t cp socket.

We study the state that is needed for the ports. Notice that not all fields are used for all types of ports. Some space
could be saved by using unions, but that would clutter the code with multiple indirections, so here is used one struct
for all types of ports, for readability:

40 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) typedef unsigned char Byte;
(2) typedef unsigned int Word;

(3) typedef struct uds data {

(4) int fd; /* File descriptor */

(5) ErlDrvPort port; /* The port identifier */

(6) int lockfd; /* The file descriptor for a lock file in
(7) case of listen sockets */

(8) Byte creation; /* The creation serial derived from the
(9) lock file */

(10) PortType type; /* Type of port */

(11) char *name; /* Short name of socket for unlink */

(12) Word sent; /* Bytes sent */

(13) Word received; /* Bytes received */

(14) struct uds data *partner; /* The partner in an accept/listen pair */
(15) struct uds data *next; /* Next structure in list */

(16) /* The input buffer and its data */

(17) int buffer size; /* The allocated size of the input buffer */
(18) int buffer pos; /* Current position in input buffer */
(19) int header pos; /* Where the current header is in the

(20) input buffer */

(21) Byte *buffer; /* The actual input buffer */

(22) } UdsData;

This structure is used for all types of ports although some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as a union of structures. However, the multiple indirections in
the code to access afield in such a structure would clutter the code too much for an example.

Thefieldsin the structure are as follows:
fd

The file descriptor of the socket associated with the port.
port

The port identifier for the port that this structure correspondsto. It is needed for most dr i ver _ XXX calls from
the driver back to the emulator.

| ockfd
If the socket is alisten socket, we use a separate (regular) file for two purposes:
* Wewant alocking mechanism that gives no race conditions, to be sure if another Erlang node uses the listen
socket name we require or if the fileis only left there from a previous (crashed) session.

e Westorethecr eat i on seria number in the file. The cr eat i on isanumber that is to change between
different instances of different Erlang emulators with the same name, so that process identifiers from one
emulator do not become valid when sent to a new emulator with the same distribution name. The creation
can be from 0 through 3 (two bits) and is stored in every process identifier sent to another node.

In a system with TCP-based distribution, this data is kept in the Erlang port mapper daemon (epnd),
which is contacted when a distributed node starts. The lock file and a convention for the UDS listen socket's
name remove the need for epnd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.
creation
The creation number for alisten socket, which is calculated as (the value found in the lock-file + 1) rem 4. This

creation value is also written back into the lock file, so that the next invocation of the emulator finds our value
inthefile.

type
The current type/state of the port, which can be one of the values declared above.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 41

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

name

The name of the socket file (the path prefix removed), which alows for deletion (unl i nk) when the socket is
closed.

sent

How many bytesthat have been sent over the socket. This can wrap, but that is no problem for the distribution, as
the Erlang distribution is only interested in if this value has changed. (The Erlang net _ker nel ti cker uses
thisvalue by calling the driver to fetch it, which is done through the er | ang: port contr ol / 3 routine.)

recei ved
How many bytes that are read (received) from the socket, used in similar waysassent .
part ner

A pointer to another port structure, which is either the listen port from which this port is accepting a connection
or conversely. The "partner relation” is always bidirectional.

next

Pointer to next structure in a linked list of all port structures. This list is used when accepting connections and
when the driver is unloaded.

buf f er _si ze, buf f er _pos, header _pos, buffer

Data for input buffering. For details about the input buffering, see the source code in directory ker nel /
exanpl es. That certainly goes beyond the scope of this section.

Selected Parts of the Distribution Driver Implementation

The implemenation of the distribution driver is not completely covered here, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver callback routines can be found intheer | _dri ver. h header file.

The driver initidization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavors of systems). This is the only routine that must have a well-defined name. All other
callbacks are reached through the driver structure. The macro to use is named DRI VER | NI T and takes the driver
name as parameter:

(1) /* Beginning of linked list of ports */
(2) static UdsData *first data;

(3) DRIVER INIT(uds drv)

(4) {

(5) first data = NULL;

(6) return &uds driver entry;
(7) }

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine is called
whener| _ddl | : 1 oad_dri ver iscalled from Erlang.

Theuds_st art routineis called when a port is opened from Erlang. In this case, we only allocate a structure and
initialize it. Creating the actual socket isleft to theuds_comrand routine.

42 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static ErlDrvData uds start(ErlDrvPort port, char *buff)
(2){

(3) UdsData *ud;

(4)

(5) ud = ALLOC(sizeof(UdsData));
(6) ud->fd = -1;

(7) ud->lockfd = -1;

(8) ud->creation = 0;

(9) ud->port = port;

(10) ud->type = portTypeUnknown;
(11) ud->name = NULL;

(12) ud->buffer size = 0;

(13) ud->buffer pos = 0;

(14) ud->header pos = 0;

(15) ud->buffer = NULL;

(16) ud->sent = 0;

(17) ud->received = 0;

(18) ud->partner = NULL;

(19) ud->next = first data;

(20) first data = ud;

(21)

(22) return((ErlDrvData) ud);
(23) }

Every data item is initialized, so that no problems arise when a newly created port is closed (without there being
any corresponding socket). Thisroutineis called when open_port ({spawn, "uds_drv"},[]) iscaledfrom
Erlang.

Theuds_comrand routine is the routine called when an Erlang process sends data to the port. This routine handles
all asynchronous commands when the port isin command mode and the sending of all datawhen the portisin dat a
mode:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 43

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static void uds_command(ErlDrvData handle, char *buff, int bufflen)

(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeData || ud->type == portTypelntermediate) {
(5) DEBUGF (("Passive do _send %d",bufflen));

(6) do send(ud, buff + 1, bufflen - 1); /* XXX */
(7) return;

(8) }

(9) if (bufflen == 0) {

(10) return;

(11) }

(12) switch (*buff) {

(13) case 'L':

(14) if (ud->type !'= portTypeUnknown) {

(15) driver failure posix(ud->port, ENOTSUP);
(16) return;

(17) }

(18) uds_command_listen(ud,buff,bufflen);

(19) return;

(20) case 'A':

(21) if (ud->type !'= portTypeUnknown) {

(22) driver failure posix(ud->port, ENOTSUP);
(23) return;

(24) }

(25) uds_command_accept(ud,buff,bufflen);

(26) return;

(27) case 'C':

(28) if (ud->type !'= portTypeUnknown) {

(29) driver failure posix(ud->port, ENOTSUP);
(30) return;

(31) }

(32) uds_command_connect (ud,buff,bufflen);

(33) return;

(34) case 'S':

(35) if (ud->type != portTypeCommand) {

(36) driver failure posix(ud->port, ENOTSUP);
(37) return;

(38))

(39) do_send(ud, buff + 1, bufflen - 1);

(40) return;

(41) case 'R':

(42) if (ud->type !'= portTypeCommand) {

(43) driver failure posix(ud->port, ENOTSUP);
(44) return;

(45))

(46) do recv(ud);

(47) return;

(48) default:

(49) return;

(50) }

(51) }

The command routine takes three parameters; the handle returned for the port by uds_st ar t , which isapointer to
the internal port structure, the data buffer, and the length of the data buffer. The buffer is the data sent from Erlang
(alist of bytes) converted to an C array (of bytes).

If Erlang sends, for example, the list [$a, $b, $c] to the port, the buf f | en variable is 3 and the buf f variable
contains{'a','b',"'c'} (noNULL termination). Usualy the first byte is used as an opcode, which isthe case in
this driver too (at least when the port isin command mode). The opcodes are defined as follows:

'L' <socket nane>
Creates and listens on socket with the specified name.

44 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

"A' <listen nunber as 32-bit big-endi an>

Accepts from the listen socket identified by the specified identification number. The identification number is
retrieved with theuds_cont r ol routine.

' C <socket name>
Connects to the socket named <socket name>.
'S <dat a>

Sends the data <data> on the connected/accepted socket (in conmmand mode). The sending is acknowledged
when the data has | eft this process.

) RI
Receives one packet of data.

"One packet of data" in command ' R can be explained as follows. This driver always sends data packaged with a
4 byte header containing a big-endian 32-bit integer that represents the length of the data in the packet. There is no
need for different packet sizes or some kind of streamed mode, as this driver is for the distribution only. Why is the
header word coded explicitly in big-endian when a UDS socket is local to the host? It is good practice when writing
adistribution driver, as distribution in practice usually crosses the host boundaries.

On line 4-8 is handled the case where the port isin dat a modeor i nt er nedi at e mode and the remaining routine
handles the different commands. The routine usesthedri ver _fai |l ure_posi x() routine to report errors (see,
for example, line 15). Notice that the failure routines make a call to the uds_ st op routine, which will remove the
internal port data. The handle (and the casted handle ud) is therefore invalid pointers after adri ver _fail ure
call and we should return immediately. The runtime system will send exit signalsto al linked processes.

The uds_i nput routine is caled when data is available on a file descriptor previousy passed to the
driver_sel ect routine. This occurs typically when a read command is issued and no data is available. The
do_recv routineisasfollows:

1) static void do recv(UdsData *ud)

(

(2) A4

(3) int res;

(4) char *ibuf;

(5) for(;;) {

(6) if ((res = buffered read package(ud,&ibuf)) < 0) {

(7) if (res == NORMAL READ FAILURE) {

(8) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(9) } else {

(10) driver failure eof(ud->port);

(11) }

(12) return;

(13) }

(14) /* Got a package */

(15) if (ud->type == portTypeCommand) {

(16) ibuf[-1] = 'R'; /* There is always room for a single byte
(17) opcode before the actual buffer

(18) (where the packet header was) */

(19) driver output(ud->port,ibuf - 1, res + 1);

(20) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,O0);
(21) return;

(22) } else {

(23) ibuf[-1] = DIST MAGIC RECV TAG; /* XXX */

(24) driver output(ud->port,ibuf - 1, res + 1);

(25) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,1);
(26) }

(27) }

(28) }

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 45

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The routine tries to read data until a packet is read or the buf f er ed_r ead_package routine returns a
NORMAL_READ FAI LURE (an internally defined constant for the module, which means that the read operation
resulted in an EAWOULDBL OCK). If the port isin command mode, the reading stops when one package is read. If the
port isin dat a mode, the reading continues until the socket buffer is empty (read failure). If no more data can be
read and moreiswanted (which is always the case when the socket isin dat a mode), dri ver _sel ect iscalledto
make theuds_i nput calback be called when more datais available for reading.

When the port isin dat a mode, all datais sent to Erlang in aformat that suits the distribution. In fact, the raw data
will never reach any Erlang process, but will be translated/interpreted by the emulator itself and then delivered in the
correct format to the correct processes. In the current emulator version, received data is to be tagged with a single
byte of 100. That iswhat the macro DI ST_MAG C_RECV_TAGis defined to. The tagging of data in the distribution
can be changed in the future.

Theuds_i nput routine handles other input events (like non-blocking accept), but most importantly handle data
arriving at the socket by callingdo_r ecv:

(1) static void uds input(ErlDrvData handle, ErlDrvEvent event)

(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypelListener) {

(5) UdsData *ad = ud->partner;

(6) struct sockaddr un peer;

(7) int pl = sizeof(struct sockaddr un);

(8) int fd;

(9) if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
(10) if (errno '= EWOULDBLOCK) {

(11) driver failure posix(ud->port, errno);
(12) return;

(13) }

(14) return;

(15) }

(16) SET _NONBLOCKING(fd);

(17) ad->fd = fd;

(18) ad->partner = NULL;

(19) ad->type = portTypeCommand;

(20) ud->partner = NULL;

(21) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(22) driver output(ad->port, "Aok",3);

(23) return;

(24) }

(25) do_recv(ud);

(26) }

The important lineis the last line in the function: the do_r ead routineis called to handle new input. The remaining
function handles input on a listen socket, which means that it is to be possible to do an accept on the socket, which
isalso recognized as aread event.

The output mechanisms are similar to the input. Thedo_send routineis as follows:

46 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static void do_send(UdsData *ud, char *buff, int bufflen)
(2){

(3) char header[4];

(4) int written;

(5) SysIOVec iov[2];

(6) ErlIOVec eio;

(7) ErlDrvBinary *binv[] = {NULL,NULL};

(8) put _packet length(header, bufflen);

(9) iov[0].iov_base = (char *) header;

(10) iov[0].iov_len = 4;

(11) iov[1l].iov_base = buff;

(12) iov[1l].iov_len = bufflen;

(13) eio.iov = iov;

(14) eio.binv = binv;

(15) eio.vsize = 2;

(16) eio.size = bufflen + 4;

(17) written = 0;

(18) if (driver sizeq(ud->port) == 0) {

(19) if ((written = writev(ud->fd, iov, 2)) == eio.size) {
(20) ud->sent += written;

(21) if (ud->type == portTypeCommand) {
(22) driver output(ud->port, "Sok", 3);
(23))

(24) return;

(25) } else if (written < 0) {

(26) if (errno != EWOULDBLOCK) {

(27) driver failure eof(ud->port);
(28) return;

(29) } else {

(30) written = 0;

(31))

(32) } else {

(33) ud->sent += written;

(34) h

(35) /* Enqueue remaining */

(36) ¥

(37) driver_enqv(ud->port, &eio, written);

(38) send _out queue(ud);

(39) }

This driver uses the wr i t ev system call to send data onto the socket. A combination of wri t ev and the driver
output queuesisvery convenient. AnEr | | OVec structurecontainsaSys| OVec (whichisequivalenttothest r uct

i ovec structuredefinedinui 0. h. TheEr | | Ovec also containsan array of Er | Dr vBi nar y pointers, of the same
length asthe number of buffersinthe /O vector itself. One can usethisto allocate the binariesfor the queue "manually"
in the driver, but here the binary array is filled with NULL values (line 7). The runtime system then allocates its own
bufferswhendri ver _enqv iscaled (line 37).

Theroutinebuildsan I/O vector containing the header bytes and the buffer (the opcode has been removed and the buffer
length decreased by the output routine). If the queue is empty, we write the data directly to the socket (or at least try
to). If any dataisleft, it is stored in the queue and then we try to send the queue (line 38). An acknowledgement is sent
when the messageisdelivered completely (line22). Thesend_out _queue sends acknowledgementsif the sending
is completed there. If the port isin command mode, the Erlang code serializes the send operations so that only one
packet can be waiting for delivery at atime. Therefore the acknowledgement can be sent whenever the queueis empty.

Thesend_out _queue routineisasfollows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 47

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static int send out queue(UdsData *ud)

(2) {

(3) for(;;) {

(4) int vlen;

(5) SysIOVec *tmp = driver peekq(ud->port, &vlen);
(6) int wrote;

(7) if (tmp == NULL) {

(8) driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
(9) if (ud->type == portTypeCommand) {

(10) driver output(ud->port, "Sok", 3);
(11))

(12) return 0;

(13) b

(14) if (vlen > IO VECTOR MAX) {

(15) vlen = I0 VECTOR MAX;

(16) b

(17) if ((wrote = writev(ud->fd, tmp, vlen)) < 0) {
(18) if (errno == EWOULDBLOCK) {

(19) driver select(ud->port, (ErlDrvEvent) ud->fd,
(20) DO WRITE, 1);

(21) return 0;

(22) } else {

(23) driver failure eof(ud->port);

(24) return -1;

(25))

(26) h

(27) driver deq(ud->port, wrote);

(28) ud->sent += wrote;

(29) }

(30) }

We simply pick out an 1/0 vector from the queue (which is the whole queue asa Sy s| Ovec). If the I/O vector istoo
long (I O_VECTOR_MAX is defined to 16), the vector length is decreased (line 15), otherwisethewr i t ev cal (line
17) fails. Writing is tried and anything written is dequeued (line 27). If the write fails with EAOULDBLOCK (notice
that all sockets are in non-blocking mode), dri ver _sel ect iscalled to maketheuds_out put routine be called
when there is space to write again.

We continue trying to write until the queue is empty or the writing blocks.
The routine aboveis called from theuds_out put routine:

(1) static void uds output(ErlDrvData handle, ErlDrvEvent event)
(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeConnector) {

(5) ud->type = portTypeCommand;

(6) driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
(7) driver output(ud->port, "Cok",3);

(8) return;

(9) }

(10) send out queue(ud);

(11) }

Theroutineissimple: it first handles the fact that the output select will concern a socket in the business of connecting
(and the connecting blocked). If the socket isin a connected state, it simply sends the output queue. This routine is
called when it is possible to write to a socket where we have an output queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface caled when Erlang calls
erl ang: port_control /3. Only thisinterface can control the driver when it isin dat a mode. It can be called
with the following opcodes:

48 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

'R

Sets port in command mode.

Setsportini nt er nedi at e mode.

Setsport in dat a mode.

Getsidentification number for listen port. Thisidentification number is used in an accept command to the driver.
It isreturned as a big-endian 32-bit integer, which isthe file identifier for the listen socket.

Gets statistics, whichisthe number of bytesreceived, the number of bytes sent, and the number of bytespendingin
the output queue. This datais used when the distribution checksthat a connection isalive (ticking). The statistics
isreturned as three 32-bit big-endian integers.

Sends a tick message, which is a packet of length 0. Ticking is done when the port is in dat a mode, so the
command for sending data cannot be used (besides it ignores zero length packages in conmand mode). Thisis
used by the ticker to send dummy data when no other traffic is present.

Note: It is important that the interface for sending ticks is not blocking. This implementation uses
erl ang: port_control /3, which does not block the caler. If erl ang: port_conmand is used, use
erl ang: port_comrand/ 3 andpass[f or ce] asoptionlist; otherwisethe caller can be blocked indefinitely
on abusy port and prevent the system from taking down a connection that is not functioning.

Gets creation number of alisten socket, which is used to dig out the number stored in the lock fileto differentiate
between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to alocate its own buffer if the provided one is
too small. Theuds_cont r ol codeisasfollows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 49

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1) static int uds control(ErlDrvData handle, unsigned int command,
2) char* buf, int count, char** res, int res size)

3) {

4) /* Local macro to ensure large enough buffer. */

(
(
(
(
(
(6) do {
(
(
(
(

5) #define ENSURE(N) \
\

7) if (res size < N) { \

8) *res = ALLOC(N); \

9) } \

10) } while(0)
(11) UdsData *ud = (UdsData *) handle;
(12) switch (command) {
(13) case 'S':
(14) {
(15) ENSURE (13) ;
(16) **res = 0;
(17) put _packet length((*res) + 1, ud->received);
(18) put _packet length((*res) + 5, ud->sent);
(19) put_packet length((*res) + 9, driver sizeq(ud->port));
(20) return 13;
(21) }
(22) case 'C':
(23) if (ud->type < portTypeCommand) {
(24) return report _control error(res, res size, "einval");
(25) }
(26) ud->type = portTypeCommand;
(27) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(28) ENSURE (1) ;
(29) **res = 0;
(30) return 1;
(31) case 'I':
(32) if (ud->type < portTypeCommand) {
(33) return report _control error(res, res size, "einval");
(34) }
(35) ud->type = portTypelntermediate;
(36) driver select(ud->port, (ErlDrvEvent) ud->fd, DO _READ, 0);
(37) ENSURE (1) ;
(38) **res = 0;
(39) return 1;
(40) case 'D':
(41) if (ud->type < portTypeCommand) {
(42) return report _control error(res, res size, "einval");
(43) }
(44) ud->type = portTypeData;
(45) do recv(ud);
(46) ENSURE (1) ;
(47) **res = 0;
(48) return 1;
(49) case 'N':
(50) if (ud->type != portTypelListener) {
(51) return report _control error(res, res size, "einval");
(52) }
(53) ENSURE(5) ;
(54) (*res)[0] = 0;
(55) put packet length((*res) + 1, ud->fd);
(56) return 5;
(57) case 'T': /* tick */
(58) if (ud->type != portTypeData) {
(59) return report _control error(res, res size, "einval");
(60) ¥
(61) do send(ud,"",0);
(62) ENSURE (1) ;
(63) **res = 0;

50 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(64) return 1;

(65) case 'R':

(66) if (ud->type != portTypelListener) {

(67) return report _control error(res, res size, "einval");
(68) }

(69) ENSURE(2) ;

(70) (*res)[0] = 0;

(71) (*res)[1] = ud->creation;

(72) return 2;

(73) default:

(74) return report control error(res, res size, "einval");
(75) }

(76) #undef ENSURE

(77) }

The macro ENSURE (line 5-10) is used to ensure that the buffer is large enough for the answer. We switch on the
command and take actions. We always have read select activeon aport in dat a mode (achieved by calingdo_r ecv
on line 45), but we turn off read selectionini nt er medi at e and conmand modes (line 27 and 36).

Therest of the driver is more or less UDS-specific and not of general interest.

1.6.4 Putting It All Together

To test the distribution, the net _ker nel : st art/ 1 function can be used. It is useful, as it starts the distribution
on arunning system, where tracing/debugging can be performed. The net _kernel : start/ 1 routine takesalist
as its single argument. The list first element in the list is to be the node name (without the "@hostname™) as an
atom. The second (and last) element is to be one of the atoms shor t nanes or | ongnamnes. In the example case,
shor t nanes is preferred.

Fornet _ker nel tofind out which distribution moduleto use, command-lineargument - pr ot o_di st isused. Itis
followed by one or more distribution module names, with suffix *_dist" removed, that is, uds_di st asadistribution
moduleis specified as- prot o_di st uds.

If noepnd (TCP port mapper daemon) is used, also command-line option - no_epnd isto be specified, which makes
Erlang skip the epnd startup, both as an OS process and as an Erlang ditto.

The path to the directory where the distribution modules reside must be known at boot. This can be achieved either by
specifying - pa <pat h> on the command line or by building a boot script containing the applications used for your
distribution protocol. (Intheuds_di st protocol, only theuds_di st application needs to be added to the script.)

Thedistribution startsat boot if all the aboveisspecifiedandan- snane <nane> flagispresent at the command line.

Example 1:

$ erl -pa $ERL TOP/lib/kernel/examples/uds_dist/ebin -proto dist uds -no_epmd
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with "G)

1> net kernel:start([bing,shortnames]).
{ok,<0.30.0>}

(bing@hador)2>

Example 2:
$ erl -pa $ERL TOP/lib/kernel/examples/uds dist/ebin -proto dist uds \
-no_epmd -sname bong

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bong@hador) 1>

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 51

1.7 How to Implement an Alternative Service Discovery for Erlang Distribution

The ERL_FLAGS environment variable can be used to store the complicated parametersin:

$ ERL_FLAGS=-pa $ERL TOP/lib/kernel/examples/uds dist/ebin \
-proto _dist uds -no_epmd

$ export ERL_FLAGS

$ erl -sname bang

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bang@hador) 1>

ERL_ FLAGS should not include the node name.

1.7 How to Implement an Alternative Service Discovery for
Erlang Distribution

This section describes how to implement an alternative discovery mechanism for Erlang distribution. Discovery is
normally done using DNS and the Erlang Port Mapper Daemon (EPMD) for port discovery.

‘ Support for alternative service discovery mechanisms was added in Erlang/OTP 21. ‘

1.7.1 Introduction

To implement your own service discovery module you have to write your own EPMD module. The
EPMD module is responsible for providing the location of another node. The distribution modules
(inet _tcp_dist/inet_tls_dist)calthe EPMD moduleto get the IP address and port of the other node. The
EPMD module that is part of Erlang/OTP will resolve the hostname using DNS and uses the EPMD unix process
to get the port of another node. The EPMD unix process does this by connecting to the other node on a well-known
port, port 4369.

1.7.2 Discovery module

The discovery module needs to implement the same API as the regular EPMD module. However, instead of
communicating with EPMD you can connect to any service to find out connection details of other nodes. A discovery
moduleisenabled by setting -epmd _modulewhen starting erlang. Thediscovery module must implement thefollowing
callbacks:

start_link/O

Start any processes needed by the discovery module.
names/1

Return node names held by the registrar for the given host.
register_node/2

Register the given node name with the registrar.
port_please/3

Return the distribution port used by the given node.

The discovery module may implement the following callback:

address please/3
Return the address of the given node. If not implemented, inet:gethostbyname/1 will be used instead
This callback may also return the port of the given node. In that case port_please/3 may be omitted.

52 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 The Abstract Format

1.8 The Abstract Format

This section describes the standard representation of parse trees for Erlang programs as Erlang terms. This
representation isknown asthe abstract format. Functions dealing with such parsetreesare conpi | e: forms/ 1, 2
and functionsin the following modules:

epp(3)

erl _eval (3)
erl _lint(3)
erl _parse(3)
erl _pp(3)

i 0(3)

The functions are also used as input and output for parse transforms, seethe conpi | e(3) module.

We use the function Rep to denote the mapping from an Erlang source construct Cto its abstract format representation
R, andwriteR = Rep(C).

The word LI NE in this section represents an integer, and denotes the number of the line in the source file where the
construction occurred. Severa instances of LI NE in the same construction can denote different lines.

As operators are not terms in their own right, when operators are mentioned below, the representation of an operator
isto be taken to be the atom with a printname consisting of the same characters as the operator.

1.8.1 Module Declarations and Forms

A module declaration consists of a sequence of forms, which are either function declarations or attributes.

If D is a module declaration consisting of the forms F_1, ..., F_k, then Rep(D) = [Rep(F_1), ...,
Rep(F_k)].

If F is an attribute -export([Fun_1/A 1, C Fun_k/A k]), then Rep(F) =
{attribute, LINE, export, [{Fun_1, A 1}, ..., {Fun_k, A k}1}.

If F is an attribute -inport(Md, [Fun_1/A 1, C Fun_k/ A k]), then Rep(F) =
{attribute, LINE, i nmport,{Md,[{Fun_1,A 1}, ..., {Fun_k, A k}1}}.

If Fisan attribute - nrodul e(Mbd) , then Rep(F) ={attri but e, LI NE, nodul e, Mbd}.

If Fisanattribute-fil e(Fil e, Li ne),thenRep(F)={attribute, LINE, file,{File,Line}}.

If Fis afunction declaration Nane Fc_1 ; ... ; Name Fc_k, where each Fc_i is a function
clause with a pattern sequence of the same length Ar i t y, then Rep(F) = {f uncti on, LI NE, Nane, Arity,
[Rep(Fc_1), ...,Rep(Fc_k)]}.

If Fisafunction specification- Spec Nane Ft_1; ...; Ft_k, whereSpec iseither the atom spec or
theatom cal | back, and each Ft _i isapossibly constrained function type with an argument sequence of the
samelength Ari ty, thenRep(F) ={attri but e, Li ne, Spec, {{Nanme, Arity},[Rep(Ft_1), ...,
Rep(Ft_k)1}}.

If Fis a function specification - spec Mdd: Nane Ft_1; ...; Ft_k, where each Ft i is a
possibly constrained function type with an argument sequence of the same length Ari ty, then Rep(F) =
{attribute, Line, spec, {{Md, Nane, Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}.

If Fisarecord declaration - recor d(Nane, {V_1, ..., V_k}),whereeachV i isarecord field, then
Rep(F) ={attribute, LINE, record, { Name, [Rep(V_1), ..., Rep(V_k)]}}.ForRep(V), see
below.

If Fisatype declaration - Type Nane(V_1, ..., V_Kk) :: T, whereType iseither theatomtype
or the atom opaque, each V_i isavariable, and T is a type, then Rep(F) = {attri but e, LI NE, Type,

If Fisawild attribute- A(T) , then Rep(F) ={attri but e, LI NE, A, T}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 53

1.8 The Abstract Format

Record Fields

Each field in arecord declaration can have an optional, explicit, default initializer expression, and an optional type.

« IfVisAthenRep(V)={record_field, LI NE Rep(A)}.

e IfVisA = E,whereEisanexpression, then Rep(V)={record field,LINE, Rep(A), Rep(E)}.

e If V is A e T, where T is a type then Rep(V) = {typed_record field,
{record_field, LINE Rep(A)}, Rep(T)}.

« IfVisA = E :: T,whereEisanexpressionand T isatype, then Rep(V) ={typed_record_fi el d,
{record field, LINE, Rep(A), Rep(E)}, Rep(T)}.

Representation of Parse Errors and End-of-File

In addition to the representations of forms, the list that represents a module declaration (as returned by functionsin
epp(3) anderl _par se(3)) can contain the following:
e Tuples{error, E} and{war ni ng, W, denoting syntactically incorrect forms and warnings.

« {eof, LOCATI ON}, denoting an end-of-stream encountered before a complete form had been parsed. The word
LOCATI ON represents an integer, and denotes the number of the last line in the source file.

1.8.2 Atomic Literals
There are five kinds of atomic literals, which are represented in the same way in patterns, expressions, and guards:

e IfLisanatomliteral, then Rep(L) ={at om LI NE, L}.

* If L isacharacter literal, then Rep(L) ={ char, LI NE, L}.

e IfLisafloat literal, then Rep(L) ={f | oat, LI NE, L}.

e If Lisaninteger literal, then Rep(L) ={i nt eger, LI NE, L}.

e IfLisasdtringlitera consisting of the charactersC 1, ...,C k,thenRep(L) ={string, LINE [C 1, ...,
C Kk]}.

Notice that negative integer and float literals do not occur as such; they are parsed as an application of the unary
negation operator.

1.8.3 Patterns

If Psisasequenceof patternsP_1, ..., P_k,thenRep(Ps)=[Rep(P_1), ..., Rep(P_k)] .Suchsequences
occur asthelist of argumentsto afunction or fun.

Individual patterns are represented as follows:

e |f Pisanatomic literal L, then Rep(P) = Rep(L).

« If P is a bitstring pattern <<P_1: Si ze_1/ TSL_1, Ce P_k: Size_k/TSL_k>>, where each
Si ze_i isan expression that can be evaluated to an integer, and each TSL_i is a type specificer list, then
Rep(P) = {bi n, LI NE, [{bi n_el erent, LI NE, Rep(P_1), Rep(Si ze_1), Rep(TSL_1)}, ...,
{bin_el ement, LI NE, Rep(P_k), Rep(Si ze_k), Rep(TSL_k) }]}. For Rep(TSL), see below. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

e |f Pisacompound patternP_1 = P_2,then Rep(P) ={mat ch, LI NE, Rep(P_1), Rep(P_2)}.

 IfPisaconspattern[P_h | P_t],thenRep(P) ={cons, LI NE, Rep(P_h), Rep(P_t)}.

o IfPisamappattern#{ A 1, ..., A k},whereeachA i isanassociationP_i _1 : = P_i _2,then Rep(P)
={map, LINE, [Rep(A_1), ..., Rep(A_K)]}.ForRep(A), seebelow.

e IfPisanil pattern[], then Rep(P) ={ ni | , LI NE}.

54 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 The Abstract Format

If Pisan operator patternP_1 Qp P_2, where Op isabinary operator (thisiseither an occurrence of ++ applied
to aliteral string or character list, or an occurrence of an expression that can be evaluated to a number at compile
time), then Rep(P) = { op, LI NE, Op, Rep(P_1), Rep(P_2)}.

If Pisan operator pattern Op P_0, where Op isaunary operator (thisisan occurrence of an expression that can
be evaluated to a number at compile time), then Rep(P) = { op, LI NE, Op, Rep(P_0) }.

If Pisa parenthesized pattern (P_0), then Rep(P) = Rep(P_0) , that is, parenthesized patterns cannot be
distinguished from their bodies.

If P is a record field index pattern #Nane. Fi el d, where Fiel d is an atom, then Rep(P) =
{record_i ndex, LI NE, Nane, Rep(Fi el d)}.

If P is a record patteen #Nanme{Field 1=P_1, Ce Fi el d_k=P_Kk},
where each Field_i is an atom or . then Rep(P) =
{record, LI NE, Nane, [{record_field, LINE, Rep(Field_1), Rep(P_1)},
{record_field,LINE Rep(Field k), Rp(P_k)}1}.

If Pis a tuple pattern {P_1, ..., P_k}, then Rep(P) = {tuple, LINE, [Rep(P_1), ...,
Rep(P_k)1}.

If Pisauniversal pattern _, thenRep(P) ={var, LINE,"' _'}.

If Pisavariable pattern V, then Rep(P) = { var, LI NE, A}, where A is an atom with a printname consisting of
the same characters as V.

Notice that every pattern has the same source form as some expression, and is represented in the same way as the
corresponding expression.

1.8.4 Expressions

A body B is a non-empty sequence of expressionsE 1, ..., E k,and Rep(B) =[Rep(E_ 1), ...,
Rep(E _k)].

An expression E is one of the following:

If Eisan atomic litera L, then Rep(E) = Rep(L).

If Eisabitstring comprehension<<E_ 0 || Q.1, ..., Q_k>> whereeachQ i isaqudifier, then Rep(E)
={bc,LINE, Rep(E 0),[Rep(Q.1), ..., Rep(Q.Kk)]}.ForRep(Q), seebelow.

If E is a bitstring constructor <<E 1:Size_ 1/TSL_1, Ce E k: Si ze_k/ TSL_k>>,
where each Size_i is an expresson and each TSL_i is a type specificer list, then
Rep(E) = {bi n, LI NE, [{bi n_el ement, LI NE, Rep(E_1), Rep(Si ze_1), Rep(TSL_1)},

{bi n_el ement, LI NE, Rep(E_k), Rep(Si ze_k), Rep(TSL_k)}]}. For Rep(TSL), see below. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

If Eisablock expression begi n B end, where Bisabody, then Rep(E) = { bl ock, LI NE, Rep(B) }.

If Eisacaseexpressioncase E 0 of Cc_1 ; ... ; Cc_k end,whereE_0 isan expression and each
Cc_i isacaseclause, thenRep(E) ={' case', LI NE, Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_Kk)]}.

If Eisacatch expressioncat ch E_0,thenRep(E) ={"' catch', LI NE, Rep(E_0)}.
If Eisaconsskeleton[E_h | E_t],thenRep(E) ={cons, LI NE, Rep(E_h), Rep(E_t)}.
If Eisafunexpressionf un Name/ Arity,thenRep(E)={"'fun', LINE, {function, Nane, Arity}}.

If E is a fun expression fun Modul e: Narme/ Arity, then Rep(E) = {'fun', LINE,
{function, Rep(Mdul e), Rep(Nane), Rep(Arity)}}. (Before Erlang/lOTP R15: Rep(E) =
{'fun',LINE, {function, Modul e, Nane, Arity}}.)

If Eisafunexpressonfun Fc_1 ; ... ; Fc_k end,whereeach Fc_i isafunction clause, then Rep(E)
={"fun',LINE {clauses,[Rep(Fc_1), ..., Rep(Fc_k)1}}.

If Eisafunexpressionf un Name Fc_1 ; ... ; Nane Fc_k end,whereNaneisavariableandeachFc_i
isafunction clause, then Rep(E) = { naned_f un, LI NE, Nane, [Rep(Fc_1), ..., Rep(Fc_k)]}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 55

1.8 The Abstract Format

« If E is a function call E O(E_1, Cey E k), then Rep(E) = {call, LI NE, Rep(E_O0),
[Rep(E_1), ..., Rep(E_K)]1}.

e« |If E is a function cal E mE O(E_1, ce, E k), then Rep(E) = {call, LINE,
{renote, LINE, Rep(E n),Rep(E 0)},[Rep(E_1), ..., Rep(E Kk)]}.

e IfEisanifexpressionif lc_1 ; ... ; lc_k end,wheeeachlc_i isanif clause then Rep(E) =
{"if",LINE, [Rep(lc_1), ..., Rep(lc_k)]}.

« |IfEisalistcomprehension[E_ O || Q1, ..., QK],wheeeachQ i isaqudifier, then Rep(E) =
{lc,LINE, Rep(E_0),[Rep(Q_1), ..., Rep(Q.Kk)]}.ForRep(Q), seebelow.

e |IfEisamapcreation#{A 1, ..., A k},whereeach A i isanassociationE i _1 => E_i_2, then
Rep(E) ={map, LI NE, [Rep(A_1), ..., Rep(A_k)]}.ForRep(A), seebelow.

e IfEisamapupdate E_ O#{A 1, ..., A k},whereeach A i isanassociaionE_i _1 => E i_2or
Ei 1 := E_i_2,thenRep(E) ={map, LI NE, Rep(E_0),[Rep(A_1), ..., Rep(AK)]}.For
Rep(A), see below.

e |If E is a match operator expression P = E 0, where P is a pattern, then Rep(E) =

{mat ch, LI NE, Rep(P), Rep(E_0)}.

« IfEisnil,[],thenRep(E)={ni |, LI NE}.

e |f Eisan operator expressionE_ 1 Op E_2, where Op is abinary operator other than match operator =, then
Rep(E) ={op, LI NE, Op, Rep(E_1), Rep(E_2)}.

« If E is an operator expression Op E 0, where Op is a unary operator, then Rep(E) =
{op, LINE, Op, Rep(E_0)}.

» |f Eisaparenthesized expression(E_0), then Rep(E) = Rep(E_0) , that is, parenthesized expressions cannot
be distinguished from their bodies.

e |IfEisareceiveexpressionreceive Cc_1 ; ... ; Cc_k end,whereeach Cc_i isacase clause, then
Rep(E)={'receive' ,LINE, [Rep(Cc_1), ..., Rep(Cc_k)]}.

« |If Eisareceive expressionreceive Cc_1 ; ... ; Cc_k after EO -> Bt end, where
each Cc_i isacaseclause, E_O is an expression, and B_t is a body, then Rep(E) ={' recei ve', LI NE,
[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}.

e« If E is a record creation #Name{Field 1=E 1, ce Fi el d_k=E k},
where each Field_i is an atom or , then Rep(E) =

{record, LI NE, Nane, [{record_field, LINE, Rep(Field_ 1), Rgp(E 1)}, ce
{record field,LINE Rep(Field k), Rep(E_k)}1}.

e |If E is a record field access E _O#Name. Fi el d, where Field is an atom, then Rep(E) =
{record_field,LINE Rep(E_0), Nane, Rep(Fi el d)}.

« If E is a record field index #Name.Field, where Field is an aom, then Rep(E) =
{record_i ndex, LI NE, Nane, Rep(Fi el d)}.

e If E is a record update E O#Name{Fi el d_1=E 1, C
Fi el d_k=E k}, where each Field_i is an atom, then Rep(E) =
{record, LI NE, Rep(E_0), Nane, [{record_field,LINE, Rep(Field 1), Rep(E_ 1)}, ...,
{record_field,LINE Rep(Field k), Rp(E_k)}]}.

o If Eisatuple skeleton {E_1, ..., E_k}, then Rep(E) = {tuple, LINE, [Rep(E_1), ...,
Rep(E k)1}.

e |IfEisatryexpressontry B catch Tc_1 ; ... ; Tc_k end,whereBisabody andeachTc i isa
catch clause, then Rep(E) ={' try' , LI NE, Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)].,[1}.
 |IfEisatryexpressontry B of Cc_1; ... ; Cc_k catch Tc_1; ... ; Tc_n end,whereBis
abody, each Cc_i isacaseclause, andeach Tc_j isacatch clause, thenRep(E)={'try', LI NE, Rep(B),

[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[1}-

e |If Eisatry expression try B after A end, where B and A are bodies, then Rep(E) =
{"try',LINE Rep(B),[],[], Rep(A)}.

56 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 The Abstract Format

 IfEisatryexpressontry B of Cc_1; ... ; Cc_k after A end,whereBandAareabodies, and
eachCc_i isacaseclause thenRep(E) ={' try', LI NE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_Kk)],
[1,Rep(A)}.

e |IfEisatry expressontry B catch Tc_1 ; ... ; Tc_k after A end, whereBand A are

bodies, and each Tc_i isacatch clause, thenRep(E)={' try', LI NE, Rep(B),[],[Rep(Tc_1), ...,
Rep(Tc_k)], Rep(A) }.

 IfEisatry expressontry B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n
after A end, where B and A are a bodies, each Cc_i is acase clause, and each Tc_j is a catch clause,
then Rep(E) ={'try', LINE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,

Rep(Tc_n)], Rep(A)}.
* IfEisavariableV, then Rep(E) ={ var, LI NE, A}, where Aisan atom with a printname consisting of the same
charactersas V.

Qualifiers
A qualifier Q is one of the following:

e If Qisafilter E, where E is an expression, then Rep(Q) = Rep(E) .

« If Q is a generator P <- E, where P is a pattern and E is an expression, then Rep(Q)
{generate, LI NE, Rep(P), Rep(E)}.

e |If Q is a hitstring generator P <= E, where P is a pattern and E is an expression, then Rep(Q)
{b_generate, LI NE, Rep(P), Rep(E) }.

Bitstring Element Type Specifiers

A type specifier list TSL for abitstring element isaseguence of type specifiersTS 1 - ... - TS k,andRep(TSL)
=[Rep(TS_1), ..., Rep(TS K)].

* If TSisatype specifier A, where Aiis an atom, then Rep(TS) = A.

e If TSisatype specifier A: Val ue, where Aisan atom and Val ue isan integer, then Rep(TS) ={ A, Val ue}.

Associations
An association A is one of the following:

 If AisanassociationK => V, then Rep(A) ={map_fi el d_assoc, LI NE, Rep(K), Rep(V)}.
« |If AisanassociationK : = V,thenRep(A) ={map_fi el d_exact, LI NE, Rep(K), Rep(V)}.

1.8.5 Clauses

There are function clauses, if clauses, case clauses, and catch clauses.
A clause C is one of the following:

e IfCisacaseclauseP - > B, wherePisapattern and Bisabody, then Rep(C) ={ cl ause, LI NE, [Rep(P)],
[1,Rep(B)}.

e IfCisacaseclauseP when Gs -> B, whereP isapattern, Gs isaguard sequence, and B is a body, then
Rep(C) ={cl ause, LI NE, [Rep(P)], Rep(Gs), Rep(B) }.

e |IfCisacach clause P -> B, where P is a pattern and B is a body, then Rep(C) = { cl ause, LI NE,
[Rep({throw, P, _})].,[], Rep(B)}, thatis, acatch clause with an explicit exception classt hr ow and
with or without an explicit stacktrace variable _ cannot be distinguished from a catch clause without an explicit
exception class and without an explicit stacktrace variable.

e |IfCisacachclauseX : P -> B, where Xisan atomic literal or a variable pattern, P is a pattern, and B
isabody, then Rep(C) ={ cl ause, LINE, [Rep({X, P, _})].,[]1, Rep(B)}, thatis, acatch clause with an
explicit exception class and with an explicit stacktrace variable _ cannot be distinguished from a catch clause with
an explicit exception class and without an explicit stacktrace variable.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 57

1.8 The Abstract Format

« IfCisacachclauseX : P : S -> B,whereXisanatomic litera or avariable pattern, P isapattern, Sisa
variable, and B isabody, then Rep(C) ={ cl ause, LINE, [Rep({X, P, S})].,[], Rep(B)}.

e |IfCisacachclauseP when Gs -> B, whereP isapattern, Gs isaguard sequence, and B is a body, then
Rep(C) ={cl ause, LINE, [Rep({throw, P, })], Rep(Gs), Rep(B)}, that is, acatch clause with an
explicit exception classt hr owand with or without an explicit stacktrace variable _ cannot be distinguished from
a catch clause without an explicit exception class and without an explicit stacktrace variable.

e IfCisacachclause X : P when Gs -> B, whee X is an atomic litera or a variable
pattern, P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {cl ause, LI NE,
[Rep({X, P, _})],Rep(Gs), Rep(B)},thatis, acatch clause with an explicit exception class and with an
explicit stacktrace variable _ cannot be distinguished from a catch clause with an explicit exception class and
without an explicit stacktrace variable.

e IfCisacachclauseX : P : S when Gs -> B, where Xisan atomic litera or a variable pattern,
P is a pattern, Gs is a guard sequence, S is a variable, and B is a body, then Rep(C) = { cl ause, LI NE,
[Rep({X, P, S})], Rep(Gs), Rep(B)}.

e If Cisafunctionclause(Ps) -> B, wherePs is a pattern sequence and B is a body, then Rep(C) =
{clause, LI NE, Rep(Ps),[],Rep(B)}.

 IfCisafunctionclause(Ps) when Gs -> B, wherePs isapattern sequence, Gs isaguard sequence and
Bisabody, then Rep(C) ={ cl ause, LI NE, Rep(Ps), Rep(Gs), Rep(B)}.

e IfCisanifclauseGs -> B, whereGs isaguard sequence and B isabody, then Rep(C) = { cl ause, LI NE,
[].Rep(Gs),Rep(B)}.

1.8.6 Guards

A guard sequence Gsisasequenceof guardsG 1; ...; G k,andRep(Gs)=[Rep(G_ 1), ..., Rep(GKk)].
If the guard sequence is empty, then Rep(Gs) =[] .

A guard G is anon-empty sequence of guard tests & _1, ..., G _k,and Rep(G) =[Rep(G&G_1), ...,
Rep(G _Kk)].

A guard test Gt is one of the following:

* If Gtisanatomic literal L, then Rep(Gt) = Rep(L).

« If Gt is a bitstring constructor <<G _1: Si ze_1/TSL_1, C G _k: Si ze_k/ TSL_k>>,
where each Size_i is a guad test and each TSL_i is a type specificer list, then
Rep(Gt) ={ bi n, LI NE, [{ bi n_el enent, LI NE, Rep(& _1), Rep(Si ze_1),Rep(TSL_1)}, ...,
{bin_el ement, LI NE, Rep(G _K), Rep(Si ze_Kk), Rep(TSL_k)}]}. For Rep(TSL), see above. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

« IfGtisaconsskeleton[& _h | & _t],then Rep(Gt) ={cons, LI NE, Rep(& _h), Rep(G _t)}.

* IfGtisafunctioncal (G _1, ..., G _Kk),whereAisanatom,then Rep(Gt)={call, LI NE, Rep(A),
[Rep(G_1), ..., Rep(&_Kk)]}.
e |IfGtisafunctioncadl A mA(&G _1, ..., & _Kk),where A mistheatomer| ang and Aisan atom or an

operator, then Rep(Gt) ={cal I , LI NE, {renote, LI NE, Rep(A n), Rep(A },[Rep(&G _1), ...,
Rep(& _k)1}.

e IfGtisamapcreation#{A 1, ..., A k},whereeachA i isanassociation@ _i 1 => G _i _2,then
Rep(Gt) ={map, LI NE, [Rep(A_1), ..., Rep(A_k)]}.ForRep(A), seeabove.

e IfGtisamapupdate& O0#{A 1, ..., A k},whereeach A i isanassociation@ i 1 => & i 2
oG _i_1:=&_i_2,thenRep(Gt)={map, LI NE, Rep(& _0),[Rep(A_1), ..., Rep(A Kk)]}.

For Rep(A), see above.
e IfGtisnil,[],thenRep(Gt)={ni |, LI NE}.

 |If Gtisanoperator guardtest @ _1 Op G _2, where Qp isabinary operator other than match operator =, then
Rep(Gt) ={ op, LI NE, Op, Rep(G _1) , Rep(& _2) }.

58 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 The Abstract Format

If Gt is an operator guard test Op & _0, where Op is a unary operator, then Rep(Gt) =
{op, LINE, Op, Rep(Gt _0) }.

If Gtisaparenthesized guardtest (G _0), then Rep(Gt) = Rep(G _0) , that is, parenthesized guard tests
cannot be distinguished from their bodies.

If Gt is a record creation #Nane{Field 1=G _1, Ce Fiel d_k=G _k},
where each Field_i is an atom or ., then Rep(Gt) =
{record, LI NE, Nane, [{record_field, LINE, Rep(Field_1), Rep(G_1)}, S
{record_field,LINE Rep(Field k), Rep(& _k)}]}.

If Gt is a record field access G O#Nane. Fi el d, where Fi el d is an atom, then Rep(Gt)
{record field,LINE Rp(&_0), Nane, Rep(Field)}.

If Gt is a record field index #Nane.Field, where Field is an aom, then Rep(Gt)
{record_i ndex, LI NE, Nane, Rep(Fi el d)}.

If Gtisatupleskeleton{& _1, ..., G _Kk},then Rep(Gt) ={tuple, LINE [Rep(&_1), ...,
Rep(& _k)1}.

If Gt isavariable pattern V, then Rep(Gt) ={ var, LI NE, A}, where A is an atom with a printname consisting
of the same charactersas V.

Notice that every guard test has the same source form as some expression, and is represented in the same way as the
corresponding expression.

1.8.7 Types

If T is an annotated type A :: T_0, where A is a variable, then Rep(T) = {ann_t ype, LI NE,
[Rep(A), Rep(T_0)]}.

If T isan atom, acharacter, or aninteger literal L, then Rep(T) = Rep(L).

If T is a hitstring type <<_: M _: *N>>, where M and N are singleton integer types, then Rep(T) =
{type, LI NE, bi nary, [Rep(M, Rep(N1}.

If Tisthe empty listtype[], then Rep(T) ={type, Line, nil,[]}, thatis, the empty list type[] cannot
be distinguished from the predefined typeni | () .

If Tisafuntypefun(),thenRep(T)={type, LINE, ' fun',[]}.

If T is a fun type fun((...) -> T 0), then Rep(T) = {type,LINE 'fun',
[{type, LI NE, any}, Rep(T_0)]}.

If Tisafuntypefun(Ft),whereFt isafunction type, then Rep(T) = Rep(Ft) . For Rep(Ft), see below.

If T is an integer range type L .. H, where L and H are singleton integer types, then Rep(T) =
{type, LI NE, range, [Rep(L), Rep(H]}.

If Tisamaptypemap(),then Rep(T) ={t ype, LI NE, map, any}.

If Tisamap type #{A 1, ..., A k}, where each A i is an association type, then Rep(T) =
{type, LINE, map, [Rep(A 1), ..., Rep(A k)]}.ForRep(A), seebelow.

If TisanoperatortypeT_1 Op T_2, where Op isabinary operator (thisis an occurrence of an expression that
can be evaluated to an integer at compile time), then Rep(T) ={ op, LI NE, Op, Rep(T_1), Rep(T_2)}.

If T isan operator type Qp T_0, where Op isaunary operator (thisisan occurrence of an expression that can be
evaluated to an integer at compile time), then Rep(T) ={ op, LI NE, Op, Rep(T_0)}.

IfTis(T_0),thenRep(T)=Rep(T_0) ,thatis, parenthesized types cannot be distinguished from their bodies.

If T is a predefined (or built-in) type N(T_1, T_k), then Rep(T) = {type, LINE, N,
[Rep(T_1), ..., Rep(T_K)]}.

If T isarecord type #Narme{F_1, ..., F_k}, whereeach F_i is arecord field type, then Rep(T) =
{type, LINE, record, [Rep(Nane), Rep(F_1), ..., Rep(F_k)]}.ForRep(F), seebelow.

If TisaremotetypeM N(T_1, ..., T _Kk),thenRep(T)={renote_type, LI NE, [Rep(M, Rep(N),
[Rep(T_1), ..., Rep(T_K)]1}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 59

1.9 tty - A Command-Line Interface

« If Tisatupletypet upl e(),then Rep(T) ={t ype, LI NE, t upl e, any}.

e IfTisatupletype{T 1, ..., T_Kk},thenRep(T) ={type, LINE tuple,[Rep(T_1), ...,
Rep(T_k)]1}.

e IfTisatypeunionT_1 | ... | T_k,then Rep(T) ={type, LI NE, union,[Rep(T_1), ...,
Rep(T_k)1}.

* If TisatypevariableV, then Rep(T) ={ var, LI NE, A}, where Aisan atom with a printhame consisting of the
same charactersas V. A type variable is any variable except underscore ().

e If T is a user-defined type N(T_1, T k), then Rep(T) = {user_type, LI NE N,
[Rep(T_1), ..., Rep(T_Kk)]}.

Function Types

A function type Ft is one of the following:

« IfFtisaconstrainedfunctiontypeFt _1 when Fc,whereFt 1 isafunctiontypeand Fc isafunction constraint,
then Rep(T) ={t ype, LI NE, bounded_f un, [Rep(Ft _1), Rep(Fc)]} . For Rep(Fc), see below.

e |If tisafunctiontype (T 1, ..., T.n) -> T 0O, where each T i is a type, then Rep(Ft) =
{type, LINE, ' fun',[{type, LINE product,[Rep(T_1), ..., Rep(T_n)]},Rep(T_0)]}.

Function Constraints

A function constraint Fc is a non-empty sequence of constraints C 1, C k, and Rep(Fc) =

[Rep(C_1), ..., Rep(CLK)].

 IfCisacongraintV :: T,whereVisatypevariableand T isatype, then Rep(C) =
{type, LI NE, constraint,[{atom LI NE, i s_subtype},[Rep(V),Rep(T)]1}.

Association Types

« If A is an association type K => V, where K and V are types, then Rep(A) =
{type, LI NE, map_fiel d_assoc, [Rep(K), Rep(V)]1}.
« If A is an association type K 1= V, where K and V are types, then Rep(A) =

{type, LI NE, map_fi el d_exact, [Rep(K), Rep(V)]}.

Record Field Types

 |IfFisarecordfieldtypeNane :: Type, where Type isatype, then Rep(F) =
{type, LINE, field_ type, [Rep(Nane), Rep(Type)]}.

1.8.8 The Abstract Format after Preprocessing

The compilation option debug_i nf o can be specified to the compiler to have the abstract code stored in the
abstract _code chunk in the Beam file (for debugging purposes).

As from Erlang/OTP R9C, the abstract code chunk contains {raw abstract vl1, Abstract Code},
where Abst r act Code isthe abstract code as described in this section.

In OTP releases before ROC, the abstract code after some more processing was stored in the Beam file. The first
element of the tuple would be either abst ract _v1 (in OTPR7B) or abst ract _v2 (in OTP R8B).

1.9 tty - A Command-Line Interface

tty isasimple command-line interface program where keystrokes are collected and interpreted. Completed lines
are sent to the shell for interpretation. A simple history mechanism saves previous lines, which can be edited before
sending them to the shell. t t v is started when Erlang is started with the following command:

60 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 tty - A Command-Line Interface

erl

t t y operatesin one of two modes:

* Normal mode, in which text lines can be edited and sent to the shell.
» Shell break mode, which allows the user to kill the current shell, start multiple shells, and so on.

1.9.1 Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the Emacs line-editing
commands are supported. The following is a complete list of the supported line-editing commands.

Typographic conventions:
e G a means pressing the Ctrl key and the letter a simultaneously.
« M meanspressing the Esc key and the letter f in sequence.

e Home and End represent the keys with the same name on the keyboard.
 Left and R ght represent the corresponding arrow keys.

Key Sequence Function

Home Beginning of line
C-a Beginning of line
C-b Backward character
C-Left Backward word
M-b Backward word
C-d Delete character
M-d Delete word

End End of line

C-e End of line

C Forward character
C-Right Forward word

M-f Forward word

C-g Enter shell break mode
Ck Kill line

C-u Backward kill line
CH Redraw line

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 61

1.10 How to Implement a Driver

C-n Fetch next line from the history buffer
C-p Fetch previous line from the history buffer
C-t Transpose characters

C-w Backward kill word

C-y Insert previoudly killed text

Table 9.1: tty Text Editing

1.9.2 Shell Break Mode

In this mode the following can be done:

» Kill or suspend the current shell
» Connect to a suspended shell
e Start anew shell

1.10 How to Implement a Driver

This section was written a long time ago. Most of it is still valid, as it explains important concepts, but this was
written for an older driver interface so the examples do not work anymore. The reader is encouraged to read the
erl _driver anddriver _entry documentation also.

1.10.1 Introduction

This section describes how to build your own driver for Erlang.

A driver in Erlang is a library written in C, which is linked to the Erlang emulator and called from Erlang. Drivers
can be used when C is more suitable than Erlang, to speed up things, or to provide access to OS resources not directly
accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known as a DLL on Windows), or statically loaded, linked
with the emulator when it iscompiled and linked. Only dynamically loaded drivers are described here, statically linked
drivers are beyond the scope of this section.

When adriver isloaded it is executed in the context of the emulator, shares the same memory and the same thread.
Thismeansthat all operationsin the driver must be non-blocking, and that any crash in the driver brings the whole
emulator down. In short, be careful.

1.10.2 Sample Driver

This section describes a simple driver for accessing a postgres database using the libpg C client library. Postgres is
used because it is free and open source. For information on postgres, see www.postgr es.or g.

62 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href

1.10 How to Implement a Driver

The driver is synchronous, it uses the synchronous calls of the client library. Thisis only for simplicity, but not good,
asit halts the emulator while waiting for the database. Thisisimproved below with an asynchronous sample driver.

The code is straightforward: all communication between Erlang and the driver isdonewithport _control / 3, and
the driver returns data back using ther buf .

An Erlang driver only exports one function: the driver entry function. This is defined with amacro, DRI VER_| NI T,
which returns a pointer to aC st r uct containing the entry points that are called from the emulator. The st r uct

defines the entries that the emulator calls to call the driver, with a NULL pointer for entries that are not defined and
used by the driver.

The st art entry is caled when the driver is opened as a port with open_port/ 2. Here we alocate memory
for a user data structure. This user data is passed every time the emulator calls us. First we store the driver
handle, as it is needed in later cals. We allocate memory for the connection handle that is used by LibPQ. We
also set the port to return alocated driver binaries, by setting flag PORT _CONTROL_FLAG Bl NARY, caling
set _port_control _fl ags.(Thisisbecausewedo not know if our datawill fitintheresult buffer of cont r ol ,
which has a default size, 64 bytes, set up by the emulator.)

Anentry i ni t iscalled when the driver isloaded. However, we do not use this, as it is executed only once, and we
want to have the possibility of several instances of the driver.

Thest op entry is called when the port is closed.

The control entry iscaled from the emulator when the Erlang code calls port _cont r ol / 3, to do the actual
work. We have defined a simple set of commands: connect to log in to the database, di sconnect to log out,
and sel ect to send a SQL-query and get the result. All results are returned through r buf . The library ei in
erl _i nterface isusedtoencodedatain binary term format. Theresult isreturned to the emulator as binary terms,
sobi nary_t o_t er miscaled in Erlang to convert the result to term form.

Thecodeisavailablein pg_sync. ¢ inthesanpl e directory of ert s.

The driver entry contains the functions that will be called by the emulator. In this example, only st art , st op, and
control areprovided:

/* Driver interface declarations */

static ErlDrvData start(ErlDrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static ErlDrvEntry pq driver entry = {

NULL, /* init */

start,

stop,

NULL, /* output */

NULL, /* ready input */
NULL, /* ready output */
"pg_sync", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready async */
NULL, /* flush */

NULL, /* call */

NULL /* event */

Y
We have a structure to store state needed by the driver, in this case we only need to keep the database connection:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 63

1.10 How to Implement a Driver

typedef struct our data s {
PGconn* conn;
} our data t;

The control codes that we have defined are as follows:

/* Keep the following definitions in alignment with the
* defines in erl pqg sync.erl

*/
#define DRV_CONNECT 'c!
#define DRV_DISCONNECT ‘D!
#define DRV_SELECT 'S°

Thisreturnsthedriver structure. Themacro DRI VER_| NI T definesthe only exported function. All the other functions
are static, and will not be exported from the library.

/* INITIALIZATION AFTER LOADING */

* This is the init function called after this driver has been loaded.
* It must *not* be declared static. Must return the address to

* the driver entry.

&

DRIVER INIT(pq drv)
{

}

return &pq driver entry;

Heresomeinitializationisdone, st ar t iscalledfromopen_port . Thedatawill bepassedtocont r ol andst op.

/* DRIVER INTERFACE */
static ErlDrvData start(ErlDrvPort port, char *command)

{
our _data t* data;
data = (our_data t*)driver alloc(sizeof(our data t));
data->conn = NULL;
set port _control flags(port, PORT _CONTROL FLAG BINARY);
return (ErlDrvData)data;

}

We call disconnect to log out from the database. (This should have been done from Erlang, but just in case.)
static int do disconnect(our data t* data, ei x buff* x);

static void stop(ErlDrvData drv_data)

{
our data t* data = (our data t*)drv_data;
do disconnect(data, NULL);
driver free(data);

}

We use the binary format only to return data to the emulator; input data is a string parameter for connect and
sel ect . Thereturned data consists of Erlang terms.

The functions get _s and ei _x_t o_new_bi nary are utilities that are used to make the code shorter. get _s
duplicates the string and zero-terminates it, as the postgres client library wantsthat. ei _x_t o_new_bi nary takes
anei _x_buff buffer, allocates a binary, and copies the data there. This binary isreturned in *r buf . (Notice that
thisbinary is freed by the emulator, not by us.)

64 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

static char* get s(const char* buf, int len);
static int do connect(const char *s, our data t* data, ei x buff* x);
static int do select(const char* s, our data t* data, ei x buff* x);

/* As we are operating in binary mode, the return value from control
* is irrelevant, as long as it is not negative.
*/
static int control(ErlDrvData drv_data, unsigned int command, char *buf,

int len, char **rbuf, int rlen)
{
int r;
ei x buff x;
our _data t* data = (our data t*)drv_data;
char* s = get s(buf, len);
ei x new with version(&x);
switch (command) {
case DRV_CONNECT: r = do_connect(s, data, &x); break;
case DRV _DISCONNECT: r = do_disconnect(data, &x); break;
case DRV _SELECT: r = do_select(s, data, &x); break;
default: r=-1; break;
rbuf = (char)ei x to new binary(&x);
ei x_free(&x);
driver free(s);
return r;
}

do_connect iswherewe log in to the database. If the connection was successful, we store the connection handle
in the driver data, and return ' ok' . Otherwise, we return the error message from postgres and store NULL in the
driver data.

static int do connect(const char *s, our data t* data, ei x buff* x)

{
PGconn* conn = PQconnectdb(s);
if (PQstatus(conn) != CONNECTION_OK) {
encode error(x, conn);
PQfinish(conn);
conn = NULL;
} else {
encode ok(x);
}
data->conn = conn;
return 0;
}

If we are connected (and if the connection handle is not NULL), welog out from the database. We need to check if we
should encode an' ok' , aswe can get here from function st op, which does not return data to the emul ator:

static int do disconnect(our data t* data, ei x buff* x)
{
if (data->conn == NULL)
return 0;
PQfinish(data->conn);
data->conn NULL;
if (x != NULL)
encode ok(x);
return 0;

}

We execute a query and encode the result. Encoding is done in another C module, pg_encode. ¢, which is aso
provided as sample code.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 65

1.10 How to Implement a Driver

static int do select(const char* s, our data t* data, ei x buff* x)

PGresult* res = PQexec(data->conn, s);
encode result(x, res, data->conn);
PQclear(res);
return 0;

}

Here we check the result from postgres. If it is data, we encode it as lists of lists with column data. Everything from
postgres is C strings, sowe use ei _x_encode_st ri ng to send the result as strings to Erlang. (The head of the
list contains the column names.)

void encode result(ei x buff* x, PGresult* res, PGconn* conn)
{
int row, n_rows, col, n cols;
switch (PQresultStatus(res)) {
case PGRES_TUPLES OK:
n_rows = PQntuples(res);
n _cols = PQnfields(res);
ei x encode tuple header(x, 2);
encode ok(Xx);
ei x encode list header(x, n_rows+l);
ei x encode list header(x, n _cols);
for (col = 0; col < n _cols; ++col) {
ei x encode string(x, PQfname(res, col));
}

ei x encode empty list(x);
for (row = 0; row < n_rows; ++row) {
ei x encode list header(x, n _cols);
for (col = 0; col < n _cols; ++col) {
ei x encode string(x, PQgetvalue(res, row, col));
}

ei x encode empty list(x);

}
ei x encode empty list(x);
break;

case PGRES_COMMAND_OK:
ei x encode tuple header(x, 2);
encode ok(x);
ei x encode string(x, PQcmdTuples(res));
break;

default:
encode error(x, conn);
break;

1.10.3 Compiling and Linking the Sample Driver

The driver isto be compiled and linked to a shared library (DLL on Windows). With gcc, this is done with link flags
-shared and-f pi c. Asweusetheei library, we should includeit too. There are several versions of ei , compiled
for debug or non-debug and multi-threaded or single-threaded. In the makefile for the samples, the obj directory is
used for theei library, meaning that we use the non-debug, single-threaded version.

1.10.4 Calling a Driver as a Port in Erlang

Beforeadriver can be called from Erlang, it must beloaded and opened. Loading isdoneusingtheer | _ddl | module
(theer ! _ddl | driver that loads dynamic driver is actually adriver itself). If loading is successfull, the port can be
opened with open_port/ 2. The port name must match the name of the shared library and the name in the driver
entry structure.

66 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

When the port has been opened, the driver can be called. In the pg_sync example, we do not have any data from
the port, only the return value from the port _control .

The following code is the Erlang part of the synchronous postgres driver, pg_sync. erl :

-module(pg_sync).

-define(DRV_CONNECT, 1).
-define(DRV_DISCONNECT, 2).
-define(DRV_SELECT, 3).

-export([connect/1, disconnect/1, select/2]).

connect(ConnectStr) ->

case erl ddll:load driver(".", "pg sync") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit({error, E})

end,

Port = open port({spawn, ?MODULE}, [1),

case binary to term(port control(Port, ?DRV_CONNECT, ConnectStr)) of
ok -> {ok, Port};
Error -> Error

end.

disconnect(Port) ->
R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
port close(Port),
R.

select(Port, Query) ->
binary to term(port_control(Port, ?DRV_SELECT, Query)).

The APl issimple:

* connect/ 1 loadsthedriver, opensit, and logs on to the database, returning the Erlang port if successful.
« sel ect/ 2 sendsaquery to the driver and returns the result.

e disconnect/ 1 closesthe database connection and the driver. (However, it does not unload it.)

The connection string is to be a connection string for postgres.

Thedriverisloaded wither| _ddl | : | oad_dri ver/ 2. If thisissuccessful, or if it is already loaded, it is opened.
Thiswill call thest art functionin the driver.

Weusetheport control / 3 functionfor al calsintothedriver. Theresult from thedriver isreturned immediately
and converted to terms by calling bi nary_t o_t er n1 1. (Wetrust that the terms returned from the driver are well-
formed, otherwisethe bi nary_t o_t er mcalls could be containedinacat ch.)

1.10.5 Sample Asynchronous Driver

Sometimes database queries can take along time to complete, in our pg_sync driver, the emulator halts while the
driver isdoing itsjob. Thisisoften not acceptable, as no other Erlang process gets a chance to do anything. To improve
on our postgres driver, we re-implement it using the asynchronous callsin LibPQ.

The asynchronous version of the driver isin the samplefilespg_async. ¢ and pg_asyng. er| .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 67

1.10 How to Implement a Driver

/* Driver interface declarations */

static ErlDrvData start(ErlDrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static void ready io(ErlDrvData drv_data, ErlDrvEvent event);

static ErlDrvEntry pq driver entry = {

NULL, /* init */

start,

stop,

NULL, /* output */

ready io, /* ready input */
ready io, /* ready output */
"pg_async", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready async */
NULL, /* flush */

NULL, /* call */

NULL /* event */

+i

typedef struct our data t {
PGconn* conn;
ErlDrvPort port;
int socket;
int connecting;

} our data t;

Some things have changed from pg_sync.c: we use the entry ready _io for ready_input and
r eady_out put, which is caled from the emulator only when there is input to be read from the socket. (Actualy,
the socket isused inasel ect function inside the emulator, and when the socket is signaled, indicating there is data
toread, ther eady_i nput entry iscalled. More about this below.)

Our driver datais also extended, we keep track of the socket used for communication with postgres, and al so the port,
which is needed when we send datato the port with dr i ver _out put . Wehaveaflag connect i ng totell whether
the driver is waiting for a connection or waiting for the result of a query. (Thisis needed, astheentry r eady _i o is
called both when connecting and when thereis a query result.)

68 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

static int do connect(const char *s, our data t* data)
{
PGconn* conn = PQconnectStart(s);
if (PQstatus(conn) == CONNECTION BAD) {
ei x buff x;
ei x new with version(&x);
encode _error(&x, conn);
PQfinish(conn);
conn = NULL;
driver output(data->port, x.buff, x.index);
ei x_free(&x);
}
PQconnectPoll(conn);
int socket = PQsocket(conn);
data->socket = socket;

driver select(data->port, (ErlDrvEvent)socket, DO READ, 1);
driver select(data->port, (ErlDrvEvent)socket, DO WRITE, 1);

data->conn = conn;
data->connecting = 1;
return 0;

}

Theconnect function looks a bit different too. We connect using the asynchronous PQconnect St art function.
After the connection is started, we retrieve the socket for the connection with PQsocket . This socket isused with the
driver _sel ect function to wait for connection. When the socket is ready for input or for output, ther eady_i o

function is caled.

Noticethat we only returndata(withdr i ver _out put) if thereisan error here, otherwise we wait for the connection

to be completed, in which case our r eady_i o function is called.

static int do select(const char* s, our data t* data)
{
data->connecting = 0;
PGconn* conn = data->conn;
/* if there's an error return it now */
if (PQsendQuery(conn, s) == 0) {
ei x _buff x;
ei x _new with version(&x);
encode _error(&x, conn);
driver output(data->port, x.buff, x.index);
ei x_free(&x);
}
/* else wait for ready output to get results */
return 0;

}

Thedo_sel ect function initiates a select, and returns if there is no immediate error. The result is returned when

ready_ioiscalled.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 69

1.10 How to Implement a Driver

static void ready io(ErlDrvData drv_data, ErlDrvEvent event)
{
PGresult* res = NULL;
our _data t* data = (our data t*)drv_data;
PGconn* conn = data->conn;
ei x buff x;
ei x new with version(&x);
if (data->connecting) {
ConnStatusType status;
PQconnectPoll(conn);
status = PQstatus(conn);
if (status == CONNECTION OK)
encode ok (&x);
else if (status == CONNECTION BAD)
encode _error(&x, conn);
} else {
PQconsumeInput(conn);
if (PQisBusy(conn))
return;
res = PQgetResult(conn);
encode result(&x, res, conn);
PQclear(res);
for (;;) {
res = PQgetResult(conn);
if (res == NULL)
break;
PQclear(res);
}
)
if (x.index > 1) {
driver output(data->port, x.buff, x.index);
if (data->connecting)
driver select(data->port, (ErlDrvEvent)data->socket, DO WRITE, 0);

ei x_free(&x);

}

Ther eady_i o function is called when the socket we got from postgres is ready for input or output. Here we first
check if we are connecting to the database. In that case, we check connection status and return OK if the connection is
successful, or error if it is not. If the connection is not yet established, we simply return; r eady i o iscalled again.

If we have a result from a connect, indicated by having data in the x buffer, we no longer need to select on output
(r eady_out put), so weremovethisby calingdri ver _sel ect.

If we are not connecting, we wait for results from a PQsendQuer y, so we get the result and return it. The encoding
is done with the same functions asin the earlier example.

Error handling isto be added here, for example, checking that the socket is still open, but thisisonly asimple example.
The Erlang part of the asynchronous driver consists of the samplefilepg_async. erl .

70 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

-module(pg _async).

-define(DRV_CONNECT, $C).
-define(DRV_DISCONNECT, $D).
-define(DRV_SELECT, $S).

-export([connect/1, disconnect/1l, select/2]).

connect(ConnectStr) ->
case erl ddll:load driver(".", "pg _async") of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
Port = open_port({spawn, ?MODULE}, [binaryl]),
port control(Port, ?DRV_CONNECT, ConnectStr),
case return _port data(Port) of
ok ->
{ok, Port};
Error ->
Error
end.

disconnect(Port) ->
port control(Port, ?DRV_DISCONNECT, ""),
R = return port data(Port),
port close(Port),
R.

select(Port, Query) ->
port control(Port, ?DRV_SELECT, Query),
return_port data(Port).

return_port data(Port) ->
receive
{Port, {data, Data}} ->
binary to term(Data)
end.

The Erlang code is slightly different, as we do not return the result synchronously from port _contr ol , instead we
getitfromdri ver _out put asdatainthe messagequeue. Thefunctionr et ur n_port _dat a abovereceivesdata
from the port. Asthe dataisin binary format, we use bi nary_t o_t er m 1 to convert it to an Erlang term. Notice
that the driver isopenedin binary mode (open_port/ 2 iscaled with option[bi nar y]). Thismeansthat data sent
from the driver to the emulator is sent as binaries. Without option bi nar y, they would have been lists of integers.

1.10.6 An Asynchronous Driver Using driver_async

As afina example we demonstrate the use of dri ver _async. We aso use the driver term interface. The driver is
written in C++. This enables us to use an algorithm from STL. We use the next _per nut at i on agorithm to get
the next permutation of alist of integers. For large lists (> 100,000 elements), this takes some time, so we perform
this as an asynchronous task.

The asynchronous API for drivers is complicated. First, the work must be prepared. In the example, thisis donein
out put . We could have used cont r ol , but we want some variation in the examples. In our driver, we allocate
a structure that contains anything that is needed for the asynchronous task to do the work. Thisis done in the main
emulator thread. Then the asynchronousfunction iscalled from adriver thread, separate from the main emulator thread.
Noticethat the driver functionsare not re-entrant, so they are not to be used. Finally, after the functioniscompleted, the
driver callback r eady_async is called from the main emulator thread, thisis where we return the result to Erlang.
(We cannot return the result from within the asynchronous function, as we cannot call the driver functions.)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 71

1.10 How to Implement a Driver

The following code is from the sample file next _per m cc. The driver entry looks like before, but also contains
the callback r eady_async.

static ErlDrvEntry next perm driver entry = {

NULL, /* init */

start,

NULL, /* stop */

output,

NULL, /* ready input */
NULL, /* ready output */
"next_perm", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */

NULL, /* control */
NULL, /* timeout */
NULL, /* outputv */
ready async,

NULL, /* flush */

NULL, /* call */

NULL /* event */

175

Theout put function allocates the work area of the asynchronous function. Aswe use C++, we use a struct, and stuff
the datain it. We must copy the original data, it is not valid after we have returned from the out put function, and
the do_per mfunction is called later, and from another thread. We return no data here, instead it is sent later from
ther eady_async calback.

Theasync_dat a is passed to the do_per mfunction. We do not useaasync_f r ee function (the last argument
todriver _async),itisonly used if thetask is cancelled programmatically.

struct our_async data {
bool prev;
vector<int> data;
our_async _data(ErlDrvPort p, int command, const char* buf, int len);

+i

our_async _data::our _async data(ErlDrvPort p, int command,
const char* buf, int 1len)
: prev(command == 2),
data((int*)buf, (int*)buf + len / sizeof(int))
{
)

static void do perm(void* async data);

static void output(ErlDrvData drv_data, char *buf, int len)

{
if (*buf < 1 || *buf > 2) return;
ErlDrvPort port = reinterpret cast<kErlDrvPort>(drv_data);
void* async data = new our async data(port, *buf, buf+l, len);
driver async(port, NULL, do perm, async data, do free);

}

Inthedo_per mwe do the work, operating on the structure that was allocated in out put .

static void do perm(void* async data)

{
our_async data* d = reinterpret cast<our async data*>(async data);
if (d->prev)
prev_permutation(d->data.begin(), d->data.end());
else
next permutation(d->data.begin(), d->data.end());
}

72 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

In the r eady_async function the output is sent back to the emulator. We use the driver term format instead
of ei . This is the only way to send Erlang terms directly to a driver, without having the Erlang code to call
bi nary_to_ternt 1. Inthe simple example this works well, and we do not need to use ei to handle the binary
term format.

When the datais returned, we deallocate our data

static void ready async(ErlDrvData drv_data, ErlDrvThreadData async data)
{
ErlDrvPort port = reinterpret cast<ErlDrvPort>(drv_data);
our_async data* d = reinterpret cast<our async data*>(async data);
int n = d->data.size(), result n = n*2 + 3;
ErlDrvTermData *result = new ErlDrvTermData[result n], *rp = result;
for (vector<int>::iterator i = d->data.begin();
i !'= d->data.end(); ++i) {
*rp++ = ERL _DRV_INT;
*rp++ *i;

}
*rp++ = ERL DRV _NIL;
*rp++ = ERL DRV _LIST;

*rp++ n+l;

driver output term(port, result, result n);
delete[] result;

delete d;

}

Thisdriver is called like the others from Erlang. However, aswe use dri ver _out put _t er m there is no need to
cal bi nary_t o_t er m The Erlang codeisin the samplefilenext _perm erl .

The input is changed into alist of integers and sent to the driver.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 73

1.11 Inet Configuration

-module(next _perm).
-export([next perm/1l, prev_perm/1, load/0, all perm/1]).

load() ->
case whereis(next perm) of
undefined ->
case erl ddll:load driver(".", "next perm") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit(E)
end,
Port = open port({spawn, "next perm"}, []),
register(next perm, Port);
->
ok
end.

list to integer binaries(L) ->
[<<I:32/integer-native>> || I <- L].

next perm(L) ->
next perm(L, 1).

prev_perm(L) ->
next perm(L, 2).

next perm(L, Nxt) ->

load(),
B = list to integer binaries(L),
port control(next perm, Nxt, B),
receive

Result ->

Result

end.

all perm(L) ->
New = prev_perm(L),
all perm(New, L, [New]).

all perm(L, L, Acc) ->
Acc;
all perm(L, Orig, Acc) ->
New = prev_perm(L),
all perm(New, Orig, [New | Accl).

1.11 Inet Configuration
1.11.1 Introduction

This section describes how the Erlang runtime system is configured for IP communication. It also explains how you
can configure it for your needs by a configuration file. The information is primarily intended for users with special
configuration needs or problems. There is normally no need for specific settings for Erlang to function properly on
acorrectly |P-configured platform.

When Erlang starts up it reads the Kernel variable i net r c, which, if defined, is to specify the location and name
of auser configuration file. Example:

% erl -kernel inetrc '"./cfg files/erl inetrc"'

Noticethat theuse of an . i net r ¢ file, which was supported in earlier Erlang/OTP versions, is now obsolete.

74 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Inet Configuration

A second way to specify the configuration file is to set environment variable ERL_I NETRC to the full name of the
file. Example (bash):

% export ERL_INETRC=./cfg_files/erl_inetrc

Notice that the Kernel variablei net r ¢ overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed mode,
Erlang uses default configuration settings and a native lookup method that works correctly under most circumstances.
Erlang reads no information from system i net configuration files (such as / et ¢/ host. conf and /etc/
nsswi t ch. conf) inthese modes, except for/ et ¢/ r esol v. conf and/ et ¢/ host s that isread and monitored
for changes on Unix platforms for the internal DNSclienti net _res(3).

If Erlang is started in long name distributed mode, it needs to get the domain name from somewhere and reads system
i net configuration filesfor thisinformation. Any hosts and resolver information found is also recorded, but not used
aslong as Erlang is configured for native lookups. The information becomes useful if the lookup method is changed
to'file' or'dns', seebeow.

Native lookup (system calls) is always the default resolver method. Thisistruefor all platforms, except VxWorks and
OSE Deltawhere' fil e' or' dns' isused (inthat priority order).

On Windows platforms, Erlang searches the system registry rather than looks for configuration files when started in
long name distributed mode.

1.11.2 Configuration Data

Erlang records the following datain alocal databaseif found in systemi net configuration files (or system registry):

* Hostnames and host addresses

e Domain name

¢ Nameservers

e Search domains

e Lookup method

This data can also be specified explicitly in the user configuration file. Thisfile is to contain lines of configuration
parameters (each terminated with a full stop). Some parameters add data to the configuration (such as host and
nameserver), others overwrite any previous settings (such as domain and lookup). The user configuration fileisalways

examined last in the configuration process, making it possible for the user to override any default values or previously
made settings. Call i net : get _rc() toview the state of thei net configuration database.

The valid configuration parameters are as follows:
{file, Format, File}.
Format = atom()
File = string()
Specify a system file that Erlang is to read configuration data from. For mat tells the parser how the file is to
be interpreted:
e resol v (Unix resolv.conf)
e host_conf _freebsd (FreeBSD host.conf)
« host _conf _bsdos (BSDOS host.conf)
e host _conf _| i nux (Linux host.conf)
e nsswi tch_conf (Unix nsswitch.conf)
e host s (Unix hosts)

Fi | e isto specify the filename with full path.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 75

1.11 Inet Configuration

{resolv_conf, File}.
File = string()

Specify a system file that Erlang is to read resolver configuration from for the internal DNS client
i net _res(3), and monitor for changes, even if it does not exist. The path must be absolute.

This can override the configuration parameters naneser ver and sear ch depending on the contents of the
specified file. They can also change any time in the future reflecting the file contents.

If the file is specified as an empty string " ", no file is read or monitored in the future. This emulates the old
behavior of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified, it defaults to /et c/resol v. conf unless environment variable
ERL_I NET_ETC_DI Ris set, which defines the directory for thisfile to some maybe other than/ et c.

{hosts _file, File}.
File = string()

Specify a system file that Erlang is to read resolver configuration from for the internal hosts file resolver, and
monitor for changes, even if it does not exist. The path must be absolute.

These host entries are searched after al added with {file, hosts, File} aboveor{host, 1P,
Al i ases} below when lookup optionf i | e isused.

If the file is specified as an empty string " ", no file is read or monitored in the future. This emulates the old
behavior of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not gspecified, it defaults to /etc/hosts unless environment variable
ERL_I NET_ETC_DI Ris set, which defines the directory for thisfile to some maybe other than / et c.

{registry, Type}.

Type = atom()

Specify a system registry that Erlang is to read configuration data from. wi n32 isthe only valid option.
{host, IP, Aliases}.

I P = tuple()

Aliases = [string()]

Add host entry to the hosts table.
{domai n, Donai n}.

Domain = string()

Set domain name.
{naneserver, IP [,Port]}.

I P = tuple()

Port = integer()

Add address (and port, if other than default) of the primary nameserver to usefori net _res(3).
{alt _nameserver, IP [,Port]}.

I P = tuple()

Port = integer()

Add address (and port, if other than default) of the secondary nameserver fori net _res(3).

76 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Inet Configuration

{search, Donuins}.
Domains = [string()]
Add search domainsfori net _res(3).
{I ookup, Methods}.
Met hods = [atom()]
Specify lookup methods and in which order to try them. The valid methods are as follows:

* native (usesystem cals)
e fil e (usehost dataretrieved from system configuration files and/or the user configuration file)
e dns (usethe Erlang DNSclienti net _res(3) for nameserver queries)

The lookup method st ri ng tries to parse the hosthame as an 1Pv4 or IPv6 string and return the resulting IP
address. Itisautomatically tried first whennat i ve isnot inthe Met hods list. To skip it in this case, the pseudo
lookup method nost r i ng can be inserted anywhere in the Met hods list.

{cache_si ze, Size}.

Size = integer()

Set the resolver cache size. Defaults to 100 DNS records.
{cache_refresh, Tine}.

Time = integer()

Set how often (in milliseconds) the resolver cachefori net _r es(3) isrefreshed (that is, expired DNS records
are deleted). Defaultsto 1 hour.

{tinmeout, Tine}.

Time = integer()

Set thetime to wait until retry (in milliseconds) for DNS queriesmadeby i net _r es(3) . Defaultsto 2 seconds.
{retry, N}.

N = integer()

Set the number of DNS queriesi net _r es(3) will try before giving up. Defaultsto 3.
{inet6, Bool}.

Bool = true | false

Tellsthe DNSclienti net _r es(3) tolook up IPv6 addresses. Defaultsto f al se.
{usevc, Bool}.

Bool = true | false

Tellsthe DNSclienti net _res(3) touse TCP (Virtual Circuit) instead of UDP. Defaultsto f al se.
{edns, Version}.

Version = false | O

Sets the EDNS version that i net _res(3) will use. The only allowed version is zero. Defaults to f al se,
which means not to use EDNS.

{udp_payl oad_si ze, Size}.
N = integer()

Sets the allowed UDP payload size i net _r es(3) will advertise in EDNS queries. Also sets the limit when
the DNS query will be deemed too large for UDP forcing a TCP query instead; this is not entirely correct, as

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 77

1.12 External Term Format

the advertised UDP payload size of the individual nameserver iswhat is to be used, but this simple strategy will
do until amore intelligent (probing, caching) algorithm needs to be implemented. Default to 1280, which stems
from the standard Ethernet MTU size.

{udp, Mbdul e}.

Modul e = atom()

Tell Erlang to use another primitive UDP modulethani net _udp.
{tcp, Modul e}.

Modul e = atom()

Tell Erlang to use another primitive TCP module thani net _t cp.
cl ear _hosts.

Clear the hosts table.
cl ear _ns.

Clear the list of recorded nameservers (primary and secondary).
cl ear _search.

Clear thelist of search domains.

1.11.3 User Configuration Example

Assume that a user does not want Erlang to use the native lookup method, but wants Erlang to read all information
necessary from start and use that for resolving names and addresses. If lookup fails, Erlang is to request the data from
anameserver (using the Erlang DNS client, set to use EDNS allowing larger responses). The resolver configuration
is updated when its configuration file changes. Also, DNS records are never to be cached. The user configuration file
(inthisexamplenamed er | _i net r c, stored indirectory . / cf g_f i | es) can then look as follows (Unix):

% -- ERLANG INET CONFIGURATION FILE --

% read the hosts file

file, hosts, "/etc/hosts"}.

%% add a particular host

{host, {134,138,177,105}, ["finwe"]}.

%% do not monitor the hosts file

{hosts file, ""}.

%% read and monitor nameserver config from here
{resolv_conf, "/usr/local/etc/resolv.conf"}.
%% enable EDNS

{edns,0}.

%% disable caching

{cache size, 0}.

%% specify lookup method

{lookup, [file, dns]}.

~ P of

And Erlang can, for example, be started as follows:

% erl -sname my node -kernel inetrc '"./cfg files/erl inetrc"'

1.12 External Term Format
1.12.1 Introduction

The external term format is mainly used in the distribution mechanism of Erlang.

78 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

As Erlang has a fixed number of types, there is no need for a programmer to define a specification for the external
format used within some application. All Erlang terms have an external representation and the interpretation of the
different terms is application-specific.

InErlangthe BIF er| ang: term t o_bi nary/ 1, 2 isused to convert aterminto the external format. To convert
binary data encoding to aterm, the BIF er | ang: bi nary_to_t erm 1 isused.

The distribution does thisimplicitly when sending messages across node boundaries.
The overall format of the term format is as follows:

1 1 N

131 Tag Dat a

Table 12.1: Term Format

When messages are passed between connected nodes and a distribution header is used, the first byte containing
the version number (131) is omitted from the terms that follow the distribution header. Thisis because the version
number isimplied by the version number in the distribution header.

The compressed term format is as follows:

1 1 4 N
131 80 Unconpr essedSi ze 211 b-
P conpr essedDat a

Table 12.2: Compressed Term Format

Uncompressed size (unsigned 32-bit integer in big-endian byte order) isthe size of the data before it was compressed.
The compressed data has the following format when it has been expanded:

1 Uncompressed Size

Tag Dat a

Table 12.3: Compressed Data Format when Expanded

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 79

1.12 External Term Format

Asfrom ERTS 9.0 (OTP 20), atoms may contain any Unicode characters and are always encoded using the UTF-8
external formats ATOM _UTF8_EXT or SMALL_ATOM UTF8_EXT. The old Latin-1 formats ATOM_EXT and
SMALL_ATOM EXT are deprecated and are only kept for backward compatibility when decoding terms encoded
by older nodes.

Support for UTF-8 encoded atoms in the external format has been available since ERTS 5.10 (OTP R16). This
abillity allows such old nodes to decode, store and encode any Unicode atoms received from a new OTP 20 node.

The maximum number of allowed charactersin an atom is 255. In the UTF-8 case, each character can need 4 bytes
to be encoded.

1.12.2 Distribution Header

Asfrom ERTS5.7.2 the old atom cache protocol was dropped and anew one wasintroduced. This protocol introduced
the distribution header. Nodes with an ERTS version earlier than 5.7.2 can still communicate with new nodes, but no
distribution header and no atom cache are used.

The distribution header only contains an atom cache reference section, but can in the future contain more information.
The distribution header precedes one or more Erlang terms on the external format. For more information, see the
documentation of the protocol between connected nodesin the distribution protocol documentation.

ATOM_CACHE_REF entrieswith corresponding At omCacheRef er encel ndex intermsencoded on the external
format following a distribution header refer to the atom cache references made in the distribution header. Therangeis
0<=At onCacheRef er encel ndex < 255, that is, at most 255 different atom cache references from the following
terms can be made.

The distribution header format is as follows:

1 1 1 Nun1berOfAt01n0CacheRefs 2+1 N|O
131 68 Nurtber Of At omCacheRefs Fl ags At onCacheRef s

Table 12.4: Distribution Header Format

Fl ags consist of Nurmber OF At onTCacheRef s/ 2+1 bytes, unless Nunber OF At onCacheRef s is 0. If
Nurmber O At onCacheRef s is 0, Fl ags and At omCacheRef s are omitted. Each atom cache reference has
a half byte flag field. Flags corresponding to a specific At onCacheRef er encel ndex are located in flag byte
number At omCacheRef er encel ndex/ 2. Flag byte 0 is the first byte after the Nunber OF At onCacheRef s
byte. Flags for an even At onCacheRef er encel ndex arelocated in the least significant half byte and flags for an
odd At onCacheRef er encel ndex arelocated in the most significant half byte.

Theflag field of an atom cache reference has the following format:

1 bit 3 bits

NewCacheEnt r yFl ag Segrent | ndex

Table 12.5:

80 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

The most significant bit is the NewCacheEnt r yFl ag. If set, the corresponding cache reference is new. The three
least significant bits are the Segrment | ndex of the corresponding atom cache entry. An atom cache consists of 8
segments, each of size 256, that is, an atom cache can contain 2048 entries.

After flag fields for atom cache references, another half byte flag field is located with the following format:

3 bits 1 bit

Currentl yUnused LongAt onrs

Table 12.6:

The least significant bit in that half byte is flag LongAt ons. If it is set, 2 bytes are used for atom lengths instead
of 1 bytein the distribution header.

After the Fl ags field follow the At onmCacheRef s. The first At omCacheRef is the one corresponding to
At onCacheRef er encel ndex 0. Higher indices follow in sequence up to index Nunber OfF At omCacheRef s
- 1.

If the NewCacheEnt r yFI ag for the next At onCacheRef hasbeen set, aNewAt omCacheRef onthefollowing
format follows:

1 1|2 Length

I nt er nal Segnent | ndex Lengt h At onText

Table 12.7:

I nt er nal Segnent | ndex together with the Segnent | ndex completely identify the location of an atom
cache entry in the atom cache. Lengt h is the number of bytes that At onTText consists of. Length is a 2
byte big-endian integer if flag LongAt ons has been set, otherwise a 1 byte integer. When distribution flag
DFLAG UTF8_ ATOMS has been exchanged between both nodes in the distribution handshake, characters in
At oniText are encoded in UTF-8, otherwise in Latin-1. The following CachedAt onRef s with the same
Segrrent | ndex and | nt er nal Segnent | ndex as this NewAt onCacheRef refer to this atom until a new
NewAt onCacheRef with the same Segnent | ndex and | nt er nal Segnent | ndex appear.

For more information on encoding of atoms, see the note on UTF-8 encoded atoms in the beginning of this section.

If the NewCacheEnt r yFl ag for the next At onCacheRef hasnot been set, aCachedAt onRef on thefollowing
format follows:

1

I nt er nal Segnent | ndex

Table 12.8:

I nt er nal Segnent | ndex together with the Segrent | ndex identify the location of the atom cache entry in the
atom cache. The atom corresponding to this CachedAt onRef is the latest NewAt onCacheRef preceding this
CachedAt onRef inanother previously passed distribution header.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 81

1.12 External Term Format

1.12.3 ATOM_CACHE_REF

1 1

82 At onCacheRef er encel ndex

Table 12.9: ATOM_CACHE_REF

Refersto the atom with At onCacheRef er encel ndex in the distribution header.

1.12.4 SMALL INTEGER_EXT

1 1

97 I nt

Table 12.10: SMALL_INTEGER_EXT

Unsigned 8-bit integer.
1.12.5 INTEGER_EXT

1 4

98 I nt

Table 12.11: INTEGER_EXT

Signed 32-bit integer in big-endian format.

1.12.6 FLOAT_EXT

1 31

99 Fl oat string

Table 12.12: FLOAT_EXT

A float is stored in string format. The format used in sprintf to format the float is "%.20€" (there are more bytes
allocated than necessary). To unpack the float, use sscanf with format "%olf".

Thisterm isused in minor version 0 of the external format; it has been superseded by NEW FLOAT _EXT.

1.12.7 PORT_EXT

1 N 4 1

82 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

102 Node ID Creation

Table 12.13: PORT_EXT

Same as NEW PORT_EXT except the Cr eat i on field is only one byte and only two bits are significant, the rest
aretobeO.

1.12.8 NEW_PORT EXT

1 N 4 4

89 Node ID Creation

Table 12.14: NEW_PORT_EXT

Encodes a port identifier (obtained from erl ang: open_port/2). Node is an encoded atom, that is,
ATOM UTF8_EXT, SMALL_ATOM UTF8_EXT or ATOM CACHE_REF. | Disa32-hit big endian unsigned integer.
Only 28 bits are significant; the rest areto be 0. The Cr eat i on works just likein NEW Pl D_EXT. Port operations
are not allowed across node boundaries.

Introduced in OTP 19, but only to be decoded and echoed back. Not encoded for local ports. Planned to supersede
PORT_EXT in OTP 23 when DFLAG_BI G_CREATON becomes mandatory.

1.12.9 PID_EXT

1 N 4 4 1

103 Node I D Seri al Creation

Table 12.15: PID_EXT

Same as NEW Pl D_EXT except the Cr eat i on field is only one byte and only two bits are significant, the rest are
to beO.

1.12.10 NEW_PID_EXT

1 N 4 4 4

88 Node I D Seri al Creation

Table 12.16: NEW_PID_EXT

Encodes an Erlang process identifier object.
Node

The name of the originating node, encoded using ATOM UTF8_ EXT, SMALL_ATOM UTF8_EXT or
ATOM CACHE_REF.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 83

1.12 External Term Format

I D

A 32-bit big endian unsigned integer. Only 15 bits are significant; the rest areto be 0.
Seri al

A 32-bit big endian unsigned integer. Only 13 bits are significant; the rest areto be 0.
Creation

A 32-bit big endian unsigned integer. All identifiers originating from the same node incarnation must have
identical Cr eat i on values. This makesit possible to separate identifiers from old (crashed) nodes from a new
one. The value zero should be avoided for normal operations asit is used as awild card for debug purpose (like
apidreturned by erlang:list_to pid/1).

Introduced in OTP 19, but only to be decoded and echoed back. Not encoded for local processes. Planned to supersede
Pl D_EXT in OTP 23 when DFLAG_BI G_CREATON becomes mandatory.

1.12.11 SMALL TUPLE_EXT

1 1 N

104 Arity El enent s

Table 12.17: SMALL_TUPLE_EXT

Encodes atuple. The Ari ty field is an unsigned byte that determines how many elements that follows in section
El enent s.

1.12.12 LARGE_TUPLE_EXT

1 4 N

105 Arity El enent s

Table 12.18: LARGE_TUPLE_EXT

Sameas SMALL_TUPLE_ EXT except that Ar i t y isan unsigned 4 byte integer in big-endian format.

1.12.13 MAP_EXT

1 4 N

116 Arity Pairs

Table 12.19: MAP_EXT

Encodesamap. The Ari ty field is an unsigned 4 byte integer in big-endian format that determines the number of
key-value pairsin the map. Key and value pairs (Ki => Vi) are encoded in section Pai r s in the following order:
K1, V1, K2, V2,..., Kn, Vn.Duplicatekeysarenot allowed within the same map.

Asfrom Erlang/OTP 17.0

84 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

1.12.14 NIL_EXT

106

Table 12.20: NIL_EXT

The representation for an empty list, that is, the Erlang syntax [] .

1.12.15 STRING_EXT

1 2 Len

107 Length Characters

Table 12.21: STRING_EXT

String does not have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer
in the range 0-255) more efficiently over the distribution. Asfield Lengt h isan unsigned 2 byteinteger (big-endian),
implementations must ensure that lists longer than 65535 elements are encoded as LI ST_EXT.

1.12.16 LIST EXT

1 4

108 Length El enent s Tai |

Table 12.22: LIST_EXT

Lengt h isthe number of elementsthat followsin section El enent s. Tai | isthefinal tail of thelist; itisNI L_EXT
for aproper list, but can be any typeif thelist isimproper (for example, [a| b]).

1.12.17 BINARY_EXT

1 4 Len

109 Len Dat a

Table 12.23: BINARY_EXT

Binaries are generated with hit syntax expression or with erlang:list_to _binary/1,
erlang:termto_binary/ 1, orasinput from binary ports. The Len length field is an unsigned 4 byte integer
(big-endian).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 85

1.12 External Term Format

1.12.18 SMALL BIG_EXT

1 1 1

n

110 n Si gn

d(0) ...d(n-1)

Table 12.24: SMALL_BIG_EXT

Bignums are stored in unary formwith aSi gn byte, that is, O if the binum is positiveand 1 if it isnegative. The digits

are stored with the least significant byte stored first. To calculate the integer, the following formula can be used:

B =256
(do*B"0 + d1*B*"1 + d2*B"2 + ...

1.12.19 LARGE BIG_EXT

d(N-1)*B~(n- 1))

1 4 1 n
111 n Si gn d(0) ..d(n-1)
Table 12.25: LARGE_BIG_EXT
Sameas SMALL_BI G_EXT except that the length field is an unsigned 4 byte integer.
1.12.20 REFERENCE_EXT (deprecated)
1 N 4 1
101 Node I D Creation
Table 12.26: REFERENCE_EXT
The same as NEW REFERENCE_EXT except | Disonly oneword (Len = 1).
1.12.21 NEW_REFERENCE_EXT
1 2 N 1 N’
114 Len Node Creation ID .

Table 12.27: NEW_REFERENCE_EXT

The sameas NEWER REFERENCE_EXT except:
ID
In the first word (4 bytes) of | D, only 18 bits are significant, the rest must be 0.

86 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

Creation

Only one byte long and only two bits are significant, the rest must be 0.

1.12.22 NEWER REFERENCE_EXT

1 2 N 4 N'

90 Len Node Creation ID ...

Table 12.28: NEWER_REFERENCE_EXT

Encodes a reference term generated with erlang: make ref/0.
Node

The name of the originating node, encoded using ATOM UTF8_ EXT, SMALL_ATOM UTF8_EXT or
ATOM CACHE_REF.

Len
A 16-hit big endian unsigned integer not larger than 3.
1D

A sequence of Len big-endian unsigned integers (4 bytes each, so N =4 * Len), but is to be regarded as
uninterpreted data.

Creation
Worksjust likein NEW Pl D_EXT.

Introduced in OTP 19, but only to be decoded and echoed back. Not encoded for local references. Planned to supersede
NEW REFERENCE_EXT in OTP 23 when DFLAG_BI G_CREATON becomes mandatory.

1.12.23 FUN_EXT

1 4 N1 N2 N3 N4 N5
117 NUNEr ee Pi d Modul e | ndex Uni q Free
vars ...

Table 12.29: FUN_EXT

Pid
A processidentifier asin Pl D_EXT. Represents the process in which the fun was created.
Modul e

Encoded as an atom, using ATOM UTF8_ EXT, SMALL_ATOM UTF8_ EXT, or ATOM CACHE REF. Thisis
the module that the fun is implemented in.

| ndex

An integer encoded using SMALL_| NTEGER _EXT or | NTEGER_EXT. It is typically a small index into the
module's fun table.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 87

1.12 External Term Format

Uni g

An integer encoded using SMALL | NTEGER _EXT or | NTEGER _EXT. Uni q is the hash value of the parse
for the fun.

Free vars

Nuntr ee number of terms, each one encoded according to its type.

1.12.24 NEW_FUN_EXT

1 4 1 16 4 4 N1 N2 N3 N4 N5

Free

112 Size | Arity | Uniqg [Index |[Nunfree|lMdul eQ dl ndexd duniq] Pid Var s

Table 12.30: NEW_FUN_EXT

Thisisthe new encoding of internal funs: f un F/ Aandfun(Argl,..) -> ... end.
Si ze
Thetotal number of bytes, including field Si ze.
Arity
The arity of the function implementing the fun.
Uni g
The 16 bytes MD5 of the significant parts of the Beam file.
| ndex
An index number. Each fun within a module has an unique index. | ndex is stored in big-endian byte order.
Nuntr ee
The number of free variables.
Modul e

Encoded as an atom, using ATOM _UTF8_EXT, SMALL_ATOM UTF8_EXT, or ATOM CACHE_REF. Is the
module that the fun isimplemented in.

d dl ndex

An integer encoded using SMALL | NTEGER _EXT or | NTEGER _EXT. Is typicaly a small index into the
module's fun table.

a duni q

An integer encoded using SMALL | NTEGER _EXT or | NTEGER _EXT. Uni q is the hash vaue of the parse
tree for the fun.

Pid
A processidentifier asin Pl D_EXT. Represents the process in which the fun was created.
Free vars

Nuntr ee number of terms, each one encoded according to its type.

88 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

1.12.25 EXPORT_EXT

1 N1 N2 N3

113 Modul e Functi on Arity

Table 12.31: EXPORT_EXT

Thisterm isthe encoding for external funs: f un M F/ A.

Modul e and Function are atoms (encoded using ATOM UTF8_ EXT, SMALL_ATOM UTF8_ EXT, or
ATOM _CACHE_REF).

Arity isaninteger encoded using SMALL | NTEGER EXT.

1.12.26 BIT_BINARY_EXT

1

Len

77

Len

Bits

Table 12.32:

BIT_BINARY_EXT

Thisterm represents a bitstring whose length in bits does not have to be amultiple of 8. The Len field isan unsigned
4 byte integer (big-endian). The Bi t s field is the number of bits (1-8) that are used in the last byte in the data field,
counting from the most significant bit to the least significant.

1.12.27 NEW_FLOAT _EXT

1 8

70 | EEE f1 oat

Table 12.33: NEW_FLOAT_EXT

A float is stored as 8 bytes in big-endian |EEE format.
Thisterm is used in minor version 1 of the external format.

1.12.28 ATOM_UTF8_EXT

1 2 Len

118 Len At omNane

Table 12.34: ATOM_UTF8_EXT

An atomisstored with a2 byte unsigned length in big-endian order, followed by Len bytes containing the At ormNane
encoded in UTF-8.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 89

1.13 Distribution Protocol

For more information on encoding of atoms, see the note on UTF-8 encoded atoms in the beginning of this section.

1.12.29 SMALL ATOM UTF8 EXT

1 1 Len

119 Len At omNane

Table 12.35: SMALL ATOM_UTF8_EXT

Anatomisstored with a1 byte unsigned length, followed by Len bytes containing the At omNane encoded in UTF-8.
Longer atoms encoded in UTF-8 can be represented using ATOM UTF8 _EXT.

For more information on encoding of atoms, see the note on UTF-8 encoded atoms in the beginning of this section.

1.12.30 ATOM_EXT (deprecated)

1 2 Len

100 Len At omNane

Table 12.36: ATOM_EXT

An atom is stored with a 2 byte unsigned length in big-endian order, followed by Len numbers of 8-bit Latin-1
characters that forms the At oniNane. The maximum allowed value for Len is 255.

1.12.31 SMALL ATOM_EXT (deprecated)

1 1 Len

115 Len At omNane

Table 12.37: SMALL_ATOM_EXT

An atom is stored with a 1 byte unsigned length, followed by Len numbers of 8-bit Latin-1 characters that forms
the At omNane.

SMALL_ATOM EXT was introduced in ERTS 5.7.2 and require an exchange of distribution flag
DFLAG_SMALL_ATOM TAGS inthe distribution handshake.

1.13 Distribution Protocol

Thisdescriptionisfar from complete. It will be updated if the protocol is updated. However, the protocols, both from
Erlang nodes to the Erlang Port Mapper Daemon (EPM D) and between Erlang nodes are stable since many years.

The distribution protocol can be divided into four parts:

90 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

* Low-level socket connection (1)

« Handshake, interchange node name, and authenticate (2)

e Authentication (doneby net _ker nel (3)) (3)

» Connected (4)

A node fetches the port number of another node through the EPMD (at the other host) to initiate a connection request.

For each host, where a distributed Erlang node is running, also an EPMD isto be running. The EPMD can be started
explicitly or automatically as aresult of the Erlang node startup.

By default the EPMD listens on port 43609.

(3) and (4) above are performed at the samelevel but thenet _ker nel disconnectsthe other nodeif it communicates
using an invalid cookie (after 1 second).

Theintegersin al multibyte fields are in big-endian order.

The Erlang Distribution protocol isnot by itself secure and does not aim to be so. In order to get secure distribution
the distributed nodes should be configured to use distribution over tls. See the Using SSL for Erlang Distribution
User's Guide for details on how to setup a secure distributed node.

1.13.1 EPMD Protocol

The requests served by the EPMD are summarized in the following figure.

Figure 13.1: Summary of EPMD Requests

Each request * _REQis preceded by a 2 byte length field. Thus, the overall request format is as follows:

2 n

Length Request

Table 13.1: Request Format

Register a Node in EPMD

When adistributed node is started it registersitself in the EPMD. The message ALI VE2_REQdescribed below is sent
from the node to the EPMD. The response from the EPMD is ALl VE2_RESP.

1 2 1 1 2 2 2 Nlen 2 Elen

120 Port No NodeTypePr ot oldiogruest Vduosiiersm Ver si oMl en NodeNamg El en Extra

Table 13.2: ALIVE2_REQ (120)

Por t No

The port number on which the node accept connection requests.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 91

1.13 Distribution Protocol

NodeType
77 = normal Erlang node, 72 = hidden node (C-node), ...
Pr ot ocol
0=TCP/IPv4, ...
H ghest Ver si on
The highest distribution version that this node can handle. The valuein Erlang/OTP R6B and later is 5.
Lowest Ver si on
The lowest distribution version that this node can handle. The value in Erlang/OTP R6B and later is 5.
Nl en
The length (in bytes) of field NodeNane.
NodeNane
The node name as an UTF-8 encoded string of NI en bytes.
El en
The length of field Ext r a.
Extra
Extrafield of El en bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the connection is
closed, the node is automatically unregistered from the EPMD.

The response message ALI VE2_RESP isasfollows:

1 1 2

121 Resul t Creation

Table 13.3: ALIVE2_RESP (121)

Result = 0 -> ok, result > 0 -> error.

Unregister a Node from EPMD

A node unregisters itself from the EPMD by closing the TCP connection to EPMD established when the node was
registered.

Get the Distribution Port of Another Node

When one node wants to connect to another node it starts with a PORT_PLEASE2 _ REQrequest to the EPMD on the
host where the node resides to get the distribution port that the node listens to.

1 N

122 NodeNane

Table 13.4: PORT_PLEASE2_REQ (122)

whereN =Lengt h - 1.

92 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

1 1

119 Resul t

Table 13.5: PORT2_RESP (119) Response Indicating Error, Result > 0

or

1 1 2 1 1 2 2 2 Nlen 2 Elen

119 |Result PortNo\IodeTypTrotbi:gTest\lavarisirVers ddl en NodeNang Elen |>Extra

Table 13.6: PORT2_RESP, Result = 0

If Resul t >0, the packet only consistsof [119, Resul t].
The EPMD closes the socket when it has sent the information.
Get All Registered Names from EPMD

Thisrequest isused through the Erlang function net _adm nanes/ 1, 2. A TCP connection isopened to the EPMD
and this request is sent.

1
110
Table 13.7: NAMES_REQ (110)
Theresponse for aNAMVES REQis asfollows:
4
EPNMDPor t No Nodel nf o*

Table 13.8: NAMES_RESP

Nodel nf o isastring written for each active node. When all Nodel nf o has been written the connection is closed
by the EPMD.

Nodel nf o is, asexpressed in Erlang:
io:format("name ~ts at port ~p~n", [NodeName, Port]).

Dump All Data from EPMD
Thisrequest isnot really used, it is to be regarded as a debug feature.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 93

1.13 Distribution Protocol

100

Table 13.9: DUMP_REQ

The response for a DUMP_REQis as follows:

4

EPNMDPor t No Nodel nf o*

Table 13.10: DUMP_RESP

Nodel nf o isastring written for each node kept in the EPMD. When al Nodel nf o has been written the connection
is closed by the EPMD.

Nodel nf o is, asexpressed in Erlang:

io:format("active name ~ts at port ~p, fd = ~p~n",
[NodeName, Port, Fd]).
or
io:format("old/unused name ~ts at port ~p, fd = ~p ~n",

[NodeName, Port, Fd]).

Kill EPMD
This request kills the running EPMD. It is amost never used.
1
107
Table 13.11: KILL_REQ
Theresponsefor aKl LL_REQisasfollows:
2
OKString
Table 13.12: KILL_RESP
where OKSt ri ng is"OK".
STOP_REQ (Not Used)
1 n

94 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

115 NodeNane

Table 13.13: STOP_REQ

wheren=Lengt h - 1.
The current implementation of Erlang does not care if the connection to the EPMD is broken.
Theresponse for aSTOP_REQis asfollows:

.
OKString
Table 13.14: STOP_RESP
where OKSt r i ng is"STOPPED".
A negative response can look as follows:
.
NOKSt ri ng

Table 13.15: STOP_NOTOK_RESP

where NOKSt ri ng is"NOEXIST".

1.13.2 Distribution Handshake

This section describes the distribution handshake protocol introduced in Erlang/OTP R6. This description was
previously located in $ERL_TOP/ | i b/ kernel /i nternal _doc/ di stri buti on_handshake.txt and
has more or less been copied and "formatted” here. It has been almost unchanged since 1999, but the handshake has
not changed much since then either.

General

The TCP/IP distribution uses a handshake that expects a connection-based protocol, that is, the protocol does not
include any authentication after the handshake procedure.

This is not entirely safe, as it is vulnerable against takeover attacks, but it is a tradeoff between fair safety and
performance.

The cookies are never sent in cleartext and the handshake procedure expects the client (called A) to be the first one
to prove that it can generate a sufficient digest. The digest is generated with the MD5 message digest algorithm and
the challenges are expected to be random numbers.

Definitions

A challenge is a 32-hit integer in big-endian order. Below the function gen_chal | enge() returns a random 32-
bit integer used as a challenge.

A digest isa (16 bytes) MD5 hash of the challenge (astext) concatenated with the cookie (as text). Below, the function
gen_di gest (Chal | enge, Cooki e) generatesadigest as described above.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 95

1.13 Distribution Protocol

Anout _cooki e isthe cookie used in outgoing communication to a certain node, so that Asout _cooki e for Bis
to correspond with B'si n_cooki e for A and conversely. A'sout _cooki e for Band Asi n_cooki e for B need
not be the same. Below the function out _cooki e(Node) returnsthe current node'sout _cooki e for Node.

An i n_cooki e is the cookie expected to be used by another node when communicating with us, so that A's
i n_cooki e for B corresponds with B'sout _cooki e for A. Below the functioni n_cooki e(Node) returnsthe
current node'si n_cooki e for Node.

The cookies are text strings that can be viewed as passwords.

Every message in the handshake starts with a 16-bit big-endian integer, which contains the message length (not
counting the two initial bytes). In Erlang this corresponds to option { packet, 2} ingen_t cp(3). Notice that
after the handshake, the distribution switchesto 4 byte packet headers.

The Handshake in Detail
Imagine two nodes, A that initiates the handshake and B that accepts the connection.
1) connect/accept
A connects to B through TCP/IP and B accepts the connection.
2) send_nane/r ecei ve_nane

A sendsaninitial identification to B, which receives the message. The message looks as follows (every "square”
is one byte and the packet header is removed):

e ommmem - - - Fomm-- - oo +o---- I +
| 'n'|Version®|Versionl|Flag0|Flagl|Flag2|Flag3|Name0®|Namel| ... |NameN|
R R - - Fomm- - - oo +o---- I +

'n'isthemessagetag. 'Version0' and 'Versionl' isthedistribution version selected by A, based oninformation from
the EPMD. (16-bit big-endian) 'Flag0' ... 'Flag3' are capability flags, the capabilities are defined in $ERL_TOP/
I'i b/ kernel /include/dist.hrl.(32-bit big-endian) ‘Name0' ... 'NameN' is the full node name of A, as
astring of bytes (the packet length denotes how long it is).

3)recv_stat us/send_st at us
B sendsastatus messageto A, which indicatesif the connectionisallowed. Thefollowing status codes are defined:
ok
The handshake will continue.
ok_si mul t aneous

The handshake will continue, but A isinformed that B has another ongoing connection attempt that will be
shut down (simultaneous connect where A's name is greater than B's name, compared literally).

nok

The handshake will not continue, as B already has an ongoing handshake, which it itself has initiated
(simultaneous connect where B's name is greater than A's).

not _al | owed
The connection is disallowed for some (unspecified) security reason.
alive

A connection to the node is aready active, which either means that node A is confused or that the TCP
connection breakdown of a previous node with this name has not yet reached node B. See step 3B below.

The format of the status message is as follows:

96 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

| "s'|StatusO|Statusl| ... |StatusN|
R R R D R +

'S isthe message tag. 'Status0' ... 'StatusN' is the status as a string (not terminated).
3B) send_st at us/recv_st at us

If status was al i ve, node A answers with another status message containing either t r ue, which means that
the connection is to continue (the old connection from this node is broken), or f al se, which means that the
connection is to be closed (the connection attempt was a mistake.

4)recv_chal | enge/send_chal | enge

If the status was ok or ok_si rmul t aneous, the handshake continues with B sending A another message, the
challenge. The challenge contains the same type of information as the "name" message initially sent from A to
B, plus a 32-hit challenge:

e R +----- te---- R +e---- R +----- te---- +----- +----- +----- LD P +
| 'n'|Version0@|Versionl|Flag0|Flagl|Flag2|Flag3|Chal0®|Chall|Chal2|Chal3|NameO|Namel| ... |NameN|
e R +----- te---- R +e---- R +----- te---- +----- +----- +----- L +

'‘Cha0' ... 'Chal3' is the challenge as a 32-bit big-endian integer and the other fields are B's version, flags, and
full node name.

5)send_chal | enge_repl y/recv_chal | enge_reply

Now A has generated a digest and its own challenge. Those are sent together in a package to B:

L +e---- R +o---- te---- R +----- +----- +- - +
| 'r'|Chalo|Chall|Chal2|Chal3|Dige0|Digel|Dige2|Dige3| ... |Digel5|
L +e---- R +o---- te---- R +----- +----- +- - +

'r'isthetag. 'Chal0' ... 'Chal3'is A's challenge for B to handle. 'DigeQ' ... 'Digel5’ is the digest that A constructed
from the challenge B sent in the previous step.

6)recv_chal | enge_ack/send_chal | enge_ack

B checks that the digest received from A is correct and generates a digest from the challenge received from A.
The digest isthen sent to A. The messageis as follows:

B +e---- R +----- R +
|'a'|Dige0|Digel|Dige2|Dige3| ... |Digel5|
B +e---- R +----- R +

‘d isthetag. 'Dige0' ... 'Digel5' isthe digest calculated by B for A's challenge.
7) check
A checks the digest from B and the connection is up.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 97

1.13 Distribution Protocol

Semigraphic View

A (initiator) B (acceptor)
TCP connect ----------------------~----- - >
TCP accept
send Name ------------moo oo >
recv_name
e T send status

recv_status
(if status was 'alive'
send status - - - - - - - - - - - - - - - - - . >
recv_status)
ChB = gen challenge()

e T send challenge
recv_challenge

ChA = gen challenge(),
0CA = out cookie(B),
DiA = gen digest(ChB, 0CA)
(ChA, DiA)
send challenge reply ----------coommmmmmmomnn >
recv_challenge reply
ICB = in cookie(A),
check:
DiA == gen digest (ChB, ICB)?
- if OK:
0CB = out cookie(A),
DiB = gen digest (ChA, 0CB)
(DiB)
e R T send challenge ack
recv_challenge ack DONE
ICA = in _cookie(B), - else:
check: CLOSE
DiB == gen digest(ChA, ICA)?
- if OK:
DONE
- else:
CLOSE

Distribution Flags
The following capability flags are defined:
- def i ne(DFLAG _PUBLI SHED, 16#1) .
The node isto be published and part of the global namespace.
- def i ne(DFLAG_ATOM CACHE, 16#2).
The node implements an atom cache (obsol ete).
- def i ne(DFLAG_EXTENDED REFERENCES, 16#4) .

The node implements extended (3 x 32 hits) references. This is required today. If not present, the connection
isrefused.

- def i ne(DFLAG DI ST_MONI TOR, 16#8) .
The node implements distributed process monitoring.

98 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

- defi ne(DFLAG_FUN_TAGS, 16#10).
The node uses separate tag for funs (lambdas) in the distribution protocol.
- defi ne(DFLAG DI ST_MONI TOR_NAME, 16#20) .
The node implements distributed named process monitoring.
- def i ne(DFLAG_HI DDEN_ATOM CACHE, 16#40) .
The (hidden) node implements atom cache (obsol ete).
- defi ne(DFLAG_NEW FUN_TAGS, 16#80) .
The node understand new fun tags.
- def i ne(DFLAG_EXTENDED_PI DS_PORTS, 16#100) .
The node can handle extended pids and ports. Thisisrequired today. If not present, the connection is refused.

- def i ne(DFLAG_EXPORT_PTR_TAG, 16#200).
-def i ne(DFLAG_BI T_BI NARI ES, 16#400) .
- def i ne(DFLAG_NEW FLOATS, 16#800) .

The node understands new float format.

- def i ne(DFLAG_UNI CODE_| O, 16#1000) .
- def i ne(DFLAG DI ST_HDR_ATOM CACHE, 16#2000) .

The node implements atom cache in distribution header.
- defi ne(DFLAG_SMALL_ATOM TAGS, 16#4000).
The node understand the SMALL_ ATOM_EXT tag.
- defi ne(DFLAG_UTF8_ATOMS, 16#10000) .
The node understand UTF-8 encoded atoms.
- defi ne(DFLAG_MAP_TAG 16#20000) .
The node understand the map tag.
- defi ne(DFLAG_BI G_CREATI QN, 16#40000) .
The node understand big node creation.
- def i ne(DFLAG_SEND_SENDER, 16#80000) .

Use the SEND_SENDER control message instead of the SEND control message and use the SEND_SENDER_TT
control message instead of the SEND_TT control message.

There is aso function di st _util:strict_order_flags/ 0 returning al flags (bitwise or:ed together)
corresponding to features that require strict ordering of data over distribution channels.
1.13.3 Protocol between Connected Nodes

As from ERTS 5.7.2 the runtime system passes a distribution flag in the handshake stage that enables the use of a
distribution header on all messages passed. Messages passed between nodes have in this case the following format:

4 d n m

Length Di stributi onHeader Cont r ol Message Message

Table 13.16: Format of Messages Passed between Nodes (as from ERTS 5.7.2)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 99

1.13 Distribution Protocol

Length

Equal tod+n+m.
Cont r ol Message

A tuple passed using the external format of Erlang.
Message

The message sent to another node using the " (in external format). Notice that Message is only passed in
combination with aCont r ol Message encoding asend ('!").

Notice that the version number is omitted from the terms that follow a distribution header .

Nodes with an ERTS version earlier than 5.7.2 does not pass the distribution flag that enables the distribution header.
M essages passed between nodes have in this case the following format:

4 1 n m

Lengt h Type Cont r ol Message Message

Table 13.17: Format of Messages Passed between Nodes (before ERTS 5.7.2)

Length
Equal tol1+n+m.
Type
Equal to 112 (pass through).
Cont r ol Message
A tuple passed using the external format of Erlang.
Message

The message sent to another node using the "' (in external format). Notice that Message is only passed in
combination with aCont r ol Message encoding asend ('!").

The Cont r ol Message isatuple, where the first element indicates which distributed operation it encodes:
LI NK

{1, FronPid, ToPid}
SEND

{2, Unused, ToPi d}

Followed by Message.

Unused iskept for backward compatibility.

EXIT

{3, FronPid, ToPid, Reason}
UNLI NK

{4, FronPid, ToPid}
NODE_LI NK

{5}

100 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

REG_SEND
{6, FronPid, Unused, ToName}
Followed by Message.
Unused iskept for backward compatibility.
GROUP_LEADER
{7, FronPid, ToPid}
EXI T2
{8, FronPid, ToPid, Reason}

1.13.4 New Ctrimessages for distrvsn = 1 (Erlang/OTP R4)
SEND TT
{12, Unused, ToPid, TraceToken}
Followed by Message.
Unused iskept for backward compatibility.
EXIT_TT
{13, FronPid, ToPid, TraceToken, Reason}
REG SEND_TT
{16, FronPid, Unused, ToNane, TraceToken}
Followed by Message.
Unused iskept for backward compatibility.
EXIT2_TT
{18, FronPid, ToPid, TraceToken, Reason}

1.13.5 New Ctrimessages for distrvsn = 2

di st rvsn 2 was never used.

1.13.6 New Ctrimessages for distrvsn = 3 (Erlang/OTP R5C)

None, but the version number was increased anyway.

1.13.7 New Ctrimessages for distrvsn = 4 (Erlang/OTP R6)
These are only recognized by Erlang nodes, not by hidden nodes.
MONI TOR_P

{19, FronPid, ToProc, Ref},whereFronPi d=monitoring processand ToPr oc =monitored process
pid or name (atom)

DEMONI TOR_P

{20, FronPid, ToProc, Ref},whereFronPi d=monitoringprocessand ToPr oc = monitored process
pid or name (atom)

We include Fr onPi d just in case we want to trace this.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 101

1.13 Distribution Protocol

MONI TOR_P_EXI T
{21, FromProc, ToPid, Ref, Reason},whereFronProc =monitored processpid or name (atom),
ToPi d = monitoring process, and Reason = exit reason for the monitored process

1.13.8 New Ctrimessages for Erlang/OTP 21
SEND_SENDER

{22, FronPid, ToPid}
Followed by Message.
This control messages replace the SEND control message and will be sent when the distribution flag
DFLAG_SEND_SENDER has been negotiated in the connection setup handshake.
Note:

Messages encoded before the connection has been set up may still use the SEND control message. However,
once a SEND SENDER or SEND SENDER TT control message has been sent, no more SEND control
messages will be sent in the same direction on the connection.

SEND_SENDER _TT
{23, FronPid, ToPid, TraceToken}
Followed by Message.
This control messages replace the SEND_TT control message and will be sent when the distribution flag
DFLAG_SEND_SENDER has been negotiated in the connection setup handshake.
Note:

Messages encoded before the connection has been set up may still use the SEND TT control message.
However, oncea SEND_SENDER or SEND SENDER_TT control message has been sent, no more SEND_TT
control messages will be sent in the same direction on the connection.

102 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

2 Reference Manual

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 103

erl_prim_loader

erl_prim_loader

Erlang module

Thismoduleisused toload all Erlang modulesinto the system. The start script isalso fetched with thislow-level loader.
erl _prim.| oader knows about the environment and how to fetch modules.

Command-line flag - | oader Loader can be used to choose the method used by er| _pri m | oader. Two
Loader methods are supported by the Erlang runtime system: ef i | e andi net .

Exports

get file(Filename) -> {ok, Bin, FullName} | error
Types.
Filename = atom() | string()
Bin = binary()
FullName = string()
Fetches a file using the low-level loader. Fi | enane is either an absolute filename or only the name of the file, for

example, "I i sts. beant' . If aninternal path is set to the loader, this path is used to find the file. Ful | Nane isthe
complete name of the fetched file. Bi n isthe contents of the file asabinary.

Filename can aso be a file in an archive, for example, $OTPROOT/ | i b/ mesia-4.4.7. ezl
mesi a- 4. 4. 7/ ebi n/ mesi a. beam For information about archive files, scecode(3) .

get path() -> {ok, Path}
Types.
Path = [Dir :: string()]

Gets the path set in the loader. The path is set by the i ni t (3) process according to information found in the start
script.

list dir(Dir) -> {ok, Filenames} | error

Types.
Dir = string()
Filenames = [Filename :: string()]

Listsal thefilesin adirectory. Returns{ ok, Fi | enames} if successful, otherwiseerror.Fi | enanes isalist
of the names of al the filesin the directory. The names are not sorted.

Di r canasobeadirectory inanarchive, for example, SOTPROOT/ | i b/ mesi a-4. 4. 7. ez/ mesi a-4. 4.7/
ebi n. For information about archivefiles, see code(3) .

read file info(Filename) -> {ok, FileInfo} | error

Types:
Filename = string()
FileInfo = file:file_info()

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwiseerror. Filelnfoisa
record f i | e_i nf o, defined in the Kernel include filefi | e. hr| . Include the following directive in the module
from which the function is called:

104 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader

-include lib("kernel/include/file.hrl").

For more information about therecordfi | e_i nfo,seefil e(3).

Filename can aso be a file in an archive, for example, $OTPROOT/ | i b/ mesia-4.4.7. ezl
mmesi a- 4. 4. 7/ ebi n/ mesi a. For information about archive files, seecode(3) .

read link info(Filename) -> {ok, FileInfo} | error

Types.
Filename = string()
FileInfo = file:file_info()

Worksliker ead_fil e_i nf o/ 1 exceptthatif Fi | ename isasymboliclink, information about thelink isreturned
inthefi | e_i nf o record andthet ype field of therecordissettosym i nk.

If Fi | enane is not a symbolic link, this function returns exactly the same result asread_fil e_i nfo/ 1. On
platforms that do not support symbolic links, this function is aways equivalenttor ead_fil e_i nf o/ 1.

set path(Path) -> ok
Types:
Path = [Dir :: string()]
Setsthe path of the loader if i ni t (3) interpretsapat h command in the start script.

Command-Line Flags
Theer| _pri m| oader moduleinterprets the following command-line flags:
-1 oader Loader

Specifiesthename of theloader usedbyer | _pri m | oader.Loader canbeefi | e (usethelocal file system)
ori net (load usingtheboot _ser ver on another Erlang node).

If flag - | oader isomitted, it defaultstoefi | e.
- | oader _debug

Makestheef i | e loader write some debug information, such as the reason for failures, while it handlesfiles.
-hosts Hosts

Specifies which other Erlang nodes the i net loader can use. This flag is mandatory if flag - | oader i net
is present. On each host, there must be on Erlang node with the er| _boot _ser ver (3), which handles the
load requests. Host s isalist of IP addresses (hostnames are not acceptable).

- set cooki e Cooki e
Specifies the cookie of the Erlang runtime system. Thisflag is mandatory if flag - | oader i net is present.

See Also

init(3), erl _boot_server(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 105

erlang

erlang

Erlang module

By convention, most Built-In Functions (BIFs) areincluded in this module. Some of the BIFs are viewed more or less
as part of the Erlang programming language and are auto-imported. Thus, it is not necessary to specify the module
name. For example, thecallsat om to_| i st (erl ang) anderl ang: atom to_li st (erlang) areidentical.

Auto-imported BIFs are listed without module prefix. BIFs listed with module prefix are not auto-imported.

BIFs can fail for various reasons. All BIFsfail with reason badar g if they are called with arguments of an incorrect
type. The other reasons are described in the description of each individual BIF.

Some BIFs can be used in guard tests and are marked with "Allowed in guard tests'.

Data Types

ext binary() = binary()

A binary data object, structured according to the Erlang external term format.

iovec() = [binary()]

A list of binaries. This datatype is useful to use together with eni f _i nspect _i ovec.
message queue data() = off _heap | on_heap

See process_fl ag(nessage_queue_data, MD).

timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}

See erl ang: ti mest anp/ 0.

time unit() =
integer() >= 1 |
second |
millisecond |
microsecond |
nanosecond |
native |
perf counter |
deprecated_time_unit()

Supported time unit representations:
PartsPerSecond :: integer() >=1
Time unit expressed in parts per second. That is, the time unit equals 1/ Par t sPer Second second.
second
Symbolic representation of the time unit represented by the integer 1.
mllisecond
Symbolic representation of the time unit represented by the integer 1000.
nm crosecond
Symbolic representation of the time unit represented by the integer 1000000.

106 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

nanosecond

Symbolic representation of the time unit represented by the integer 1000000000.
native

Symbolic representation of the native time unit used by the Erlang runtime system.

The nat i ve time unit is determined at runtime system start, and remains the same until the runtime system
terminates. If aruntime system is stopped and then started again (even on the same machine), thenat i ve time
unit of the new runtime system instance can differ fromthenat i ve time unit of the old runtime system instance.

One can get an approximation of the nat i ve time unit by calling erl ang: convert _time_unit(1,
second, native). Theresult equalsthe number of whole nat i ve time units per second. If the number of
nat i ve time units per second does not add up to awhole number, the result is rounded downwards.

The value of the nat i ve time unit gives you more or less no information about the quality of time values.
It sets alimit for the resolution and for the precision of time values, but it gives no information about the
accuracy of time values. The resolution of the nat i ve time unit and the resolution of time values can differ
significantly.

perf _counter
Symbolic representation of the performance counter time unit used by the Erlang runtime system.

Theperf _count er time unit behaves much in the same way asthe nat i ve time unit. That is, it can differ
between runtime restarts. To get values of thistype, call os: perf_counter/O0.

deprecated_tinme_unit()
Deprecated symbolic representations kept for backwards-compatibility.

The time_unit/0 type can be extended. To convert time vaues between time units, use
erl ang: convert _tine_unit/3.

deprecated time unit() =
seconds | milli seconds | micro seconds | nano_seconds

Thetime_unit () typealso consist of the following deprecated symbolic time units:

seconds
Same assecond.
mlli_seconds

Sameasni | | i second.
m cro_seconds
Sameasm crosecond.
nano_seconds
Sameasnanosecond.
dist handle()
An opaque handle identifing a distribution channel.
nif resource()
An opague handle identifing a NIF resource object .
spawn_opt option() =

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 107

erlang

link |

monitor |

{priority, Level :: priority_level()} |
{fullsweep after, Number :: integer() >= 0} |

{min heap size, Size :: integer() >= 0} |

{min bin vheap size, VSize :: integer() >= 0} |
{max_heap size, Size :: max_heap_size()} |
{message queue data, MQD :: nessage_queue_data() }

Optionsfor spawn_opt () .
priority level() = low | normal | high | max
Process priority level. For moreinfo seeprocess_flag(priority, Level)

max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error logger => boolean()}

Process max heap size configuration. For more info seepr ocess_f | ag(nax_heap_si ze, MaxHeapSi ze)
message queue data() = off heap | on _heap

Process message queue data configuration. For moreinfo seepr ocess_f | ag(message_queue_data, M)

Exports

abs(Float) -> float()
abs(Int) -> integer() >= 0
Types:
Int = integer()
Returns an integer or float that is the arithmetical absolute value of Fl oat or | nt, for example:

> abs(-3.33).
3.33

> abs(-3).

3

Allowed in guard tests.

erlang:adler32(Data) -> integer() >= 0
Types:

Data = iodata()
Computes and returns the adler32 checksum for Dat a.

erlang:adler32(0ldAdler, Data) -> integer() >= 0
Types.

OldAdler = integer() >= 0

Data = iodata()

Continues computing the adler32 checksum by combining the previous checksum, A dAdl er , with the checksum
of Dat a.

108 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

The following code:

X
Y

erlang:adler32(Datal),
erlang:adler32(X,Data2).

assigns the same valueto Y asthis:

Y = erlang:adler32([Datal,Data2]).

erlang:adler32 combine(FirstAdler, SecondAdler, SecondSize) ->
integer() >= 0
Types.
FirstAdler = SecondAdler = SecondSize = integer() >= 0

Combines two previously computed adler32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

Y
z

erlang:adler32(Datal),
erlang:adler32(Y,Data2).

assigns the same value to Z asthis:

X = erlang:adler32(Datal),
Y = erlang:adler32(Data2),
Z = erlang:adler32 combine(X,Y,iolist size(Data2)).

erlang:append element(Tuplel, Term) -> Tuple2
Types:
Tuplel = Tuple2 = tuple()
Term = term()
Returnsanew tuplethat has one element morethan Tupl el, and containstheelementsin Tupl el followed by Ter m

asthe last element. Semantically equivalenttol i st _to_tupl e(tuple_to |ist(Tuplel) ++ [Terni),
but much faster. Example:

> erlang:append element({one, two}, three).
{one, two, three}

apply(Fun, Args) -> term()
Types.
Fun = function()
Args = [term()]
Callsafun, passing the elementsin Ar gs as arguments.

If the number of elements in the arguments are known at compile time, the call is better written as Fun(Ar g1,
Arg2, ... ArgN).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 109

erlang

Earlier, Fun could also be specified as{ Modul e, Functi on},equivaenttoappl y(Modul e, Functi on,
Ar gs) . Thisuseisdeprecated and will stop working in a futurerelease.

apply(Module, Function, Args) -> term()
Types:

Module = module()

Function = atom()

Args = [term()]

Returnstheresult of applying Funct i on inModul e to Ar gs. The applied function must be exported from Mbdul e.
The arity of the function isthe length of Ar gs. Example:

> apply(lists, reverse, [[a, b, cl]).
[c,b,al

> apply(erlang, atom_to list, ['Erlang']).
"Erlang"

If the number of arguments are known at compile time, the call is better written as Modul e: Functi on(Ar g1,
Arg2, ..., ArgN).

Failure: error _handl er: undefi ned_f uncti on/ 3iscaledif theapplied function is not exported. The error
handler can be redefined (see pr ocess_f 1 ag/ 2). If error _handl er isundefined, or if the user has redefined
the default er r or _handl er so the replacement module is undefined, an error with reason undef is generated.

atom to binary(Atom, Encoding) -> binary()
Types:
Atom = atom()
Encoding = latinl | unicode | utf8
Returns abinary corresponding to the text representation of At om If Encodi ngisl at i n1, one byte existsfor each

character in the text representation. If Encodi ng isut f 8 or uni code, the characters are encoded using UTF-8
where characters may require multiple bytes.

Asfrom Erlang/OTP 20, atoms can contain any Unicode character and at om t o_bi nary(Atom | atinl)
may fail if the text representation for At omcontains a Unicode character > 255.

Example:

> atom to binary('Erlang', latinl).
<<"Erlang">>

atom to list(Atom) -> string()
Types:
Atom = atom()
Returns a string corresponding to the text representation of At om for example:

110 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> atom to list('Erlang').
"Erlang"

binary part(Subject, PosLen) -> binary()
Types.
Subject = binary()
PosLen = {Start :: integer() >= 0, Length :: integer()}
Extracts the part of the binary described by PosLen.
Negative length can be used to extract bytes at the end of a binary, for example:

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary part(Bin,{byte size(Bin), -5}).
<<6,7,8,9,10>>

Failure: badar g if PosLen in any way references outside the binary.
St art iszero-based, that is:

1> Bin = <<1,2,3>>
2> binary part(Bin,{0,2}).
<<1,2>>

For details about the PosLen semantics, seebi nary(3).
Al