ERLANG

Secure Socket Layer

Copyright © 1999-2019 Ericsson AB. All Rights Reserved.
Secure Socket Layer 9.3
maj 28, 2019

Copyright © 1999-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

maj 28, 2019

1.1 Introduction

1 SSL User's Guide

The Secure Socket Layer (SSL) application provides secure communication over sockets.

1.1 Introduction

1.1.1 Purpose

Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of SSL/TLS/DTLS.

1.2 TLS/DTLS and TLS Predecessor, SSL

The Erlang SSL application implements the SSL/TLS/DTLS protocol for the currently supported versions, see the
ssl(3) manual page.

By default SSL/TLSisrun over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) asthegen_t cp modulein Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarentees. Other transports, such as SCTP, may be
supported in future rel eases.

If aclient and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade aregular TCP/
IP connection to an TLS connection, this is supported by the Erlang SSL application API. This can be useful for,
for example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note thisisa TLS
feature only.

1.2.1 Security Overview

To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typicaly
used for encrypting bulk data.

Thekeysfor the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
in the TLS/DTLS handshake.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.3 Using SSL application API

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash M essage A uthenticity Code (MAC), or aHash-based MAC (HMAC), to protect the message dataintegrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose isto detect if the message has been altered.”

1.2.3 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in its turn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificatesareissued by Certification Authorities (CAs) only. A handful of top CAsintheworld issueroot certificates.
Y ou can examine several of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication

Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

» Each certificate in the certificate chain isissued by the previous one.

* Thecertificates attributes are valid.

* Theroot certificate is atrusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty” certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server isto accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions

From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
isrequired. Session datais also invalidated after 24 hours from it was saved, for security reasons. The amount of time
the session datais to be saved can be configured.

By default the TLS/DTL S clientstry to reuse an available session and by default the TLS/DTL S servers agree to reuse
sessions when clients ask for it.

1.3 Using SSL application API

To seerelevant version information for ssl, call ssl : ver si ons/ 0.

To see all supported cipher suites, call ssl : ci pher _sui tes(al |) . Theavailable cipher suitesfor a connection
depend on your certificate. Specific cipher suites that you want your connection to use can also be specified. Default
isto use the strongest available.

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

1.3.1 Setting up Connections

This section shows a small example of how to set up client/server connections using the Erlang shell. The returned
value of thessl socket isabbreviated with[. ..] asit canbefairly large and is opaque.

Minimal Example

| The minimal setup is not the most secure setup of SSL/TLS/DTLS. |

To set up client/server connections:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create an TLS listen socket: (To run DTLS add the option { protocol, dtls})
2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certfile, "cert.pem"}, {keyfile, "key.pem"},{reuseaddr, true}]).
{ok, {sslsocket, [...1}}

Step 3: Do atransport accept on the TLS listen socket:

3 server> {ok, TLSTransportSocket} = ssl:transport accept(ListenSocket).
{ok, {sslsocket, [...]1}}

Step 4: Start the client side:

1 client> ssl:start().
ok

Torun DTLS add the option { protocal, dtls} to third argument.

2 client> {ok, Socket} = ssl:connect("localhost", 9999, [], infinity).
{ok,{sslsocket, [...]1}}

Step 5: Do the TLS handshake:

4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
ok

Step 6: Send amessage over TLS:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message was sent on the server side:

3 client> flush().
Shell got {ssl,{sslsocket,[...]1},"foo"}
ok

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.3 Using SSL application API

Upgrade Example - TLS only

To upgrade a TCP/IP connection to an SSL connection, the client and server must agree to do so. The agreement
can be accomplished by using a protocol, for example, the one used by HTTP specified in RFC 2817.

To upgradeto an SSL connection:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create anormal TCP listen socket:

2 server> {ok, ListenSocket} = gen tcp:listen(9999, [{reuseaddr, true}]).
{ok, #Port<0.475>}

Step 3: Accept client connection:

3 server> {ok, Socket} = gen tcp:accept(ListenSocket).
{ok, #Port<0.476>}

Step 4. Start the client side:

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen tcp:connect("localhost", 9999, [], infinity).

Step 5: Ensureact i ve issettof al se beforetrying to upgrade a connection to an SSL connection, otherwise SSL
handshake messages can be delivered to the wrong process:

4 server> inet:setopts(Socket, [{active, false}l]).
ok

Step 6: Do the TLS handshake:
5 server> {ok, TLSSocket} = ssl:handshake(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}]).
{ok, {sslsocket,[...]1}}

Step 7: Upgrade to an TLS connection. The client and server must agree upon the upgrade. The server must call
ssl : handshake/ 2 beforetheclient callsssl : connect / 3.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}1, infinity).
{ok, {sslsocket,[...]1}}

Step 8: Send amessage over TLS:

4 client> ssl:send(TLSSocket, "foo").
ok

Step 9: Setacti ve true onthe TLS socket:

4 server> ssl:setopts(TLSSocket, [{active, true}]).
ok

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

Step 10: Flush the shell message queue to see that the message was sent on the client side:

5 server> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.2 Customizing cipher suits
Fetch default cipher suite list for an TLS/DTLS version. Change default to al to get al possible cipher suites.

1> Default = ssl:cipher suites(default, 'tlsvl.2').
[#{cipher => aes 256 gcm,key exchange => ecdhe ecdsa,
mac => aead,prf => sha384},]

In OTP 20 it is desirable to remove all cipher suites that uses rsa kexchange (removed from default in 21)

2> NoRSA =
ssl:filter cipher suites(Default,
[{key exchange, fun(rsa) -> false;
() -> true end}]).
[...]

Pick just afew suites

3> Suites =
ssl:filter cipher suites(Default,
[{key exchange, fun(ecdh ecdsa) -> true;
() -> false end},
{cipher, fun(aes 128 cbc) ->true;
() ->false end}]).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

4>ssl:prepend cipher suites(Suites, Default).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf},
#{cipher => aes 256 cbc,key exchange => ecdhe ecdsa,
mac => sha384,prf => sha384}, ...]

1.3.3 Using an Engine Stored Key
Erlang ssl application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
M/Engi ne:

2> {ok, EngineRef} =

crypto:engine load(<<"dynamic">>,

[{<<"SO PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>]1,[]).
{ok,#Ref<0.2399045421.3028942852.173962>}

Create amap with the engine information and the algorithm used by the engine:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

1.4 Using TLS for Erlang Distribution

3> PrivKey =
#{algorithm => rsa,
engine => EngineRef,
key id => "id of the private key in Engine"}.

Use the map in the sdl key option:

4> {ok, SSLSocket} =

ssl:connect("localhost", 9999,
[{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"},
{key, PrivKey}], infinity).

See also crypto documentation

1.4 Using TLS for Erlang Distribution

This section describes how the Erlang distribution can use TL S to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
i net _tcp_dist inthe Kernel application. When starting an Erlang node distributed, net _ker nel uses this
module to set up listen ports and connections.

Inthe SSL application, an extradistribution module, i net _t | s_di st , canbeused asan aternative. All distribution
connectionswill use TLS and all participating Erlang nodes in adistributed system must use this distribution module.

The security level depends on the parameters provided to the TL 'S connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

* Step 1: Build boot scripts including the SSL application.

e Step 2: Specify the distribution module for net _ker nel .
* Step 3: Specify the security options and other SSL options.
e Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the SSL Application

Boot scriptsare built using the sy st ool s utility in the SASL application. For more information onsyst ool s, see
the SASL documentation. Thisis only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bi n directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under r el eases/ <OTP version>/start _clean.rel.

Do the following:

e Copy that script to another location (and preferably another name).

« Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example. r el filewith TLS added:

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

{release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
[{kernel,"2.15"},

{stdlib,"1.18"},

{crypto, "2.0.3"},

{public_key, "0.12"},

{asnl, "4.0"},

{ssl, "5.0"}

I}.

Theversion numbersdiffer inyour system. Whenever one of the applicationsincluded in the script isupgraded, change
the script.

Do the following:

» Build the boot script.
Assumingthe.rel fileissoredinafilestart _ssl.rel inthecurrent directory, a boot script can be
built as follows:

1> systools:make script("start ssl",[]).

Thereisnow ast art _ssl . boot filein the current directory.

Do the following:

e Test the boot script. To do this, start Erlang with the - boot command-line parameter specifying this boot script
(with itsfull path, but without the . boot suffix). In UNIX it can look asfollows:

$ erl -boot /home/me/ssl/start ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
1> whereis(ssl manager).
<0.41.0>

Thewher ei s function-call verifies that the SSL application is started.

Asan aternative to building a bootscript, you can explicitly add the path to the SSL ebi n directory on the command
line. Thisisdone with command-line option - pa. Thisworksasthe SSL application does not need to be started for the
distribution to come up, as aclone of the SSL application is hooked into the Kernel application. So, aslong asthe SSL
application code can be reached, the distribution starts. The - pa method is only recommended for testing purposes.

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as needed to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

1.4.2 Specifying Distribution Module for net_kernel

Thedistribution modulefor SSL/TLSisnamedi net _t | s_di st andisspecified onthe command linewith option -
prot o_di st.Theargumentto- pr ot o_di st istobethe module namewithout suffix _di st . So, thisdistribution
moduleis specified with - pr ot o_di st i net _t| s onthecommand line.

Extending the command line gives the following:
$ erl -boot /home/me/ssl/start ssl -proto dist inet tls

For the distribution to be started, give the emulator a name as well:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

1.4 Using TLS for Erlang Distribution

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with "G)
(ssl _test@myhost)1>

However, a node started in this way refuses to talk to other nodes, as no TLS parameters are supplied (see the next
section).

1.4.3 Specifying SSL/TLS Options

The SSL/TLS distribution options can be written into afile that is consulted when the node is started. This file name
is then specified with the command line argument - ssl _di st _optfile.

Any available SSL/TLS option can be specified in an options file, but note that options that take af un() hasto use
thesyntax f un Mbd: Func/ Ari ty since afunction body cannot be compiled when consulting afile.

Do not tamper with the socket options | i st, bi nary, acti ve, packet, nodel ay and del i ver since they
are used by the distribution protocol handler itself. Other raw socket options such as packet _si ze may interfere
severely, so beware!

For SSL/TLS to work, at least a public key and a certificate must be specified for the server side. In the following
example, the PEM file"/ home/ me/ ssl / er| server. pem' contains both the server certificate and its private
key.

Create afile named for example" / hone/ ne/ ssl / ssl _test @yhost. conf":

[{server,
[{certfile, "/home/me/ssl/erlserver.pem"},
{secure renegotiate, true}l},

{client,
[{secure renegotiate, true}l}].

And then start the node like this (line breaks in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

Theoptionsinthe{ server, Opts} tupleareused when calling ssl : ssl _accept/ 3, and the options in the
{client, Opts} tupleareusedwhencalingssl:connect/ 4.

For the client, the option { ser ver _nane_i ndi cati on, atomto_list(TargetNode)} isadded when
connecting. This makes it possible to use the client option { veri fy, verify_peer}, and theclient will verify
that the certificate matches the node name you are connecting to. This only worksif the the server certificate isissued
tothenameat om to_I| i st (Tar get Node) .

For the server it is aso possible to use the option {verify, verify_peer} and the server will only accept
client connections with certificates that are trusted by a root certificate that the server knows. A client that presents
an untrusted certificate will be rejected. This option is preferably combined with {fai | _i f _no_peer _cert,
true} or aclient will still be accepted if it does not present any certificate.

A node started in thisway is fully functional, using TL S as the distribution protocol.

1.4.4 Specifying SSL/TLS Options (Legacy)

Asin the previous section the PEM file" / hone/ me/ ssl / er| server. peni contains both the server certificate
and its private key.

Ontheer| command line you can specify options that the SSL/TL S distribution adds when creating a socket.

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

The simplest SSL/TLS options in the following list can be specified by adding the prefix server _or cli ent _
to the option name:

« certfile

o keyfile

e password

 cacertfile

e verify

o verify_fun (writeas{ Modul e, Function, Initial UserState})
e crl_check

e crl _cache (write as Erlang term)

e reuse_sessions

e secure_renegotiate

 depth

e hibernate_after

e ci phers (useold string format)

Note that veri fy_f un needsto be written in a different form than the corresponding SSL/TLS option, since funs
are not accepted on the command line.

The server can also takethe optionsdhfil eandfail _if_no_peer cert (aso prefixed).

cl i ent _-prefixed options are used when the distribution initiates a connection to another node. ser ver _-prefixed
options are used when accepting a connection from a remote node.

Raw socket options, such aspacket and si ze must not be specified on the command line.

The command-line argument for specifying the SSL/TLS optionsis named - ssl _di st _opt andisto be followed
by pairs of SSL options and their values. Argument - ssl _di st _opt can be repeated any number of times.

An example command line doing the same as the exampl e in the previous section can now look asfollows (line breaks
in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile "/home/me/ssl/erlserver.pem"
-ssl dist opt server secure renegotiate true client secure renegotiate true
-sname ssl_test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)
(ssl_test@myhost)1>

1.4.5 Setting up Environment to Always Use SSL/TLS (Legacy)

A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the SSL/TL S distribution can be specified in that variable and are then interpreted as command-line arguments
for all subsequent invocations of Erlang.

In aUnix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

1.5 Standards Compliance

$ ERL_FLAGS="-boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile /home/me/ssl/erlserver.pem
-ssl dist opt server secure renegotiate true client secure renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with "G)

(ssl _test@myhost)1> init:get arguments().
[{root,["/usr/local/erlang"]},

{progname, ["erl "1},

{sname, ["ss1l test"]},

{boot, ["/home/me/ss1/start ssl"1},

{proto _dist,["inet tls"]},

{ssl dist opt,["server certfile","/home/me/ssl/erlserver.pem"]},
{ssl dist opt,["server secure renegotiate","true",

"client secure renegotiate","true"]
{home, ["/home/me"]}]

Thei ni t: get _argunent s() cal verifiesthat the correct arguments are supplied to the emulator.

1.4.6 Using SSL/TLS distribution over IPv6

It is possible to use SSL/TLS distribution over IPv6 instead of 1Pv4. To do this, pass the option - pr ot o_di st
inet6_tl s instead of - proto_di st inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

An example command line with this option would look like this:

$ erl -boot /home/me/ssl/start ssl -proto dist inet6 tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

A node started in this way will only be able to communicate with other nodes using SSL/TL S distribution over | Pv6.

1.5 Standards Compliance

1.5.1 Purpose

This section describes the current state of standards compliance of the ssl application.

1.5.2 Common (pre TLS 1.3)

» For security reasons RSA key exchange cipher suites are no longer supported by default, but can be configured.
(OTP21)

» For security reasons DES cipher suites are no longer supported by default, but can be configured. (OTP 20)

» For security reasons 3DES cipher suites are no longer supported by default, but can be configured. (OTP 21)

* Renegotiation Indication Extension RFC 5746 is supported

« Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

» Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.

» Export cipher suites are not supported asthe U.S. lifted its export restrictions in early 2000.

* |DEA cipher suites are not supported as they have become deprecated by the TL S 1.2 specification so it is not
motivated to implement them.

» Compression is not supported.

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

1.5 Standards Compliance

1.5.3 Common

e CRL validation is supported.
« Policy certificate extensions are not supported.
* 'Server Name Indication’ extension (RFC 6066) is supported.

« Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

e Itispossibleto use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by default.

1.5.4 SSL 2.0
For security reasons SSL-2.0 is not supported. Interoperability with SSL-2.0 enabled clients dropped. (OTP 21)

1.5.5 SSL 3.0
For security reasons SSL-3.0 is ho longer supported by default, but can be configured. (OTP 19)

1.5.6 TLS 1.0
For security reasons TLS-1.0 is no longer supported by default, but can be configured. (OTP 22)

157 TLS 1.1
For security reasons TLS-1.1 is no longer supported by default, but can be configured. (OTP 22)

1.5.8 TLS 1.2
Supported

1.5.9 DTLS 1.0
For security reasons DTLS-1.0 (based on TLS 1.1) isno longer supported by default, but can be configured. (OTP 22)

1.5.10 DTLS 1.2
Supported (based on TLS 1.2)

1.5.11 DTLS 1.3
Not yet supported

1.5.12 TLS 1.3

OTP-22 introduces basic support for TLS 1.3 on the server side. Basic functionality coversasimple TLS 1.3 handshake
with support of the mandatory extensions (supported groups, signature_algorithms, key_share, supported versions
and signature_algorithms_cert). The server supports a selective set of cryptographic algorithms:

« Key Exchange: ECDHE

e Groups: dl standard groups supported for the Diffie-Hellman key exchange

« Ciphers: TLS AES 128 GCM_SHA256, TLS AES 256 GCM_SHA384,
TLS CHACHA20_POLY1305_SHA256 and TLS AES 128 CCM_SHAZ256

e Signature Algorithms: RSA and RSA PSS
* Certificates: currently only certificates with RSA keys are supported

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

href

1.5 Standards Compliance

Other notable features:

e The server supports the HelloRetryRequest mechanism
e PSK and session resumption not supported

e Early dataand O-RTT not supported

» Key and Initialization Vector Update not supported

For more detailed information see the Standar ds Compliance below.

Note that the client sideis not yet functional. It is planned to be released later in OTP-22. |

The following table describes the current state of standards compliance for TLS 1.3.
(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not Applicable)

Section Feature State Since
1.3. Updates Affecting
TLS1.2 c 22
Version downgrade
.) C 22
protection mechanism
RSASSA-PSS signature PC 2
schemes
supported versions C 2
(ClientHello) extension
sgnaml_Jre_aI gorithms_cert C 2
extension
2. Protocol Overview PC 22
(EC)DHE C 22
PSK-only NC
PSK with (EC)DHE NC
2.1. Incorrect DHE
share HelloRetryRequest C 22
2.2. Resumption and NC
Pre-Shared Key (PSK)
2.3.0-RTT Data NC
4.1.1. _Cr_yptograph|c PC 2
Negotiation

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

supported_groups

. C

extension

signature_algorithms c

extension

pre_shared key extension | NC
4.1.2. Client Hello Client NC

server_name (RFC6066) NC

max_fragment_length NG

(RFC6066)

status_request (RFC6066) | NC

supported_groups NC

(RFC7919)

signature_algorithms NC

(RFCB8446)

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer J)rotocol_nﬁ@ti ation

(RFC7301)

signed_certificate timestam
(RFC6962)

PNC

client_certificate type

(RFC7250) NC
server_certificate type NC
(RFC7250)

padding (RFC7685) NC
key share (RFC8446) NC
pre_shared key NG
(RFCB8446)

psk_key exchange modes NG
(RFCB8446)

early_data (RFC8446) NC
cookie (RFCB8446) NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

href

1.5 Standards Compliance

supported versions

(RFC8446) NC

certificate_authorities NC

(RFCB8446)

oid_filters (RFC8446) NC

post_handshake auth NC

(RFCB8446)

signature_algorithms_cert NG

(RFC8446)

Server PC 22
server_name (RFC6066) NC

max_fragment_length NC

(RFC6066)

status _request (RFC6066) | NC

supported_groups

(RFC7919) ¢ 22
signature_algorithms

(RFC8446) c 22
use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer _protocol_nﬁgti ation

(RFC7301)

signed_certificate timestam N

(RFC6962)

client_certificate type NC

(RFC7250)

server_certificate type NG

(RFC7250)

padding (RFC7685) NC

key share (RFC8446) C 22
pre_shared key NC

(RFCB8446)

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

psk_key exchange modes

(RFC8446) NC

early_data (RFC8446) NC

cookie (RFCB8446) NC

?Fi?:[é)&ije_)vers ons c 2

certificate_authorities NG

(RFC8446)

oid_filters (RFC8446) NC

post_handshake auth NG

(RFC8446)

? F?;(a:tgﬁg?l gorithms_cert c 2
4.1.3. Server Hello Client NC

Version downgrade NC

protection

key share (RFC8446) NC

pre_shared key NG
(RFCB8446)
supported _versions NG
(RFCB8446)
Server PC 22
Version downgrade C 2
protection
key share (RFC8446) C 22
pre_shared key NG
(RFCB8446)
supported _versions
(RFCB8446) c 22
4.1.4. Hello Retry
Request Server PC 22
key_share (RFC8446) C 22
cookie (RFCB8446) NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

href
href
href

1.5 Standards Compliance

supported versions

(RFC8446) c 22
3;2 ;“Sppo”ed Client NC

Server C 22
4.2.2. Cookie Client NC

Server NC
posgane o c

rsa_pkcsl sha256 NC

rsa_pkcsl sha384 NC

rsa_pkcsl shab12 NC

ecdsa secp256rl sha256 | NC

ecdsa secp384rl sha384 | NC

ecdsa _secp521rl shab12 | NC

rsa_pss rsae sha?56 NC

rsa_pss rsae sha3g4 NC

rsa_pss rsae shab12 NC

ed25519 NC

ed448 NC

rsa pss pss sha256 NC

rsa_pss pss sha3d4 NC

rsa_pss pss shabl2 NC

rsa_pkcsl shal NC

ecdsa_shal NC

Server PC 22

rsa_pkcsl sha256 C 22

rsa_pkcsl sha384 C 22

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href

1.5 Standards Compliance

rsa_pkcsl sha512 C 22
ecdsa_secp256rl_sha?56 |[NC
ecdsa secp384rl sha384 |[NC
ecdsa secp521rl shabl2 |[NC
rsa_pss rsae sha256 C 22
rsa_pss rsae sha3g4 C 22
rsa_pss rsae shab12 C 22
ed25519 NC
ed448 NC
rsa_pss pss sha256 NC
rsa_pss pss sha3g4 NC
rsa pss pss shabl2 NC
rsa_pkcsl shal C 22
ecdsa_shal C 22
pucaitae oo e
Server NC
4.25.0ID Filters Client NC
Server NC
Chont Authaication | Clien NC
Server NC
4.2.7. Supported Groups | Client NC
secp256r1 NC
secp384rl NC
secp521rl NC
x25519 NC
x448 NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

href
href
href
href
href
href

1.5 Standards Compliance

ffdhe2048 NC
ffdhe3072 NC
ffdhe4096 NC
ffdhe6144 NC
ffdhe8192 NC
Server C 22
secp256rl C 22
secp384rl C 22
secp521rl C 22
x25519 C 22
X448 C 22
ffdhe2048 C 22
ffdhe3072 C 22
ffdhe4096 C 22
ffdhe6144 C 22
ffdhe8192 C 22
4.2.8. Key Share Client NC
Server C 22
28 Pk [y i
Server NC
izoeavo o =
Server NC
2k ool [=
Server NC
4.2.11.1. Ticket Age Client NC

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href

1.5 Standards Compliance

Server NC
4.2.11.2. PSK Binder Client NC

Server NC
4.2.11.3. Processing Client NC
Order

Server NC
4.3.1. Encrypted Client NG
Extensions

server_name (RFC6066) NC

max_fragment_length NC

(RFC6066)

supported_groups NC

(RFC7919)

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer J)rotocol_nﬁ@ti ation

(RFC7301)

client_certificate type NC

(RFC7250)

server_certificate type NC

(RFC7250)

early_data (RFC8446) NC

supported _versions NC

(RFCB8446)

Server PC 22

server_name (RFC6066) NC

max_fragment_length NC

(RFC6066)

supported_groups NC

(RFC7919)

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

href
href
href
href
href

1.5 Standards Compliance

application_layer Jarotocol_nﬁ&)ti ation
(RFC7301)

client_certificate type NC
(RFC7250)

server_certificate type NC
(RFC7250)

early data (RFC8446) NC
supported versions NG
(RFC8446)

4.3.2. Certificate .

Request Client NC
status_request (RFC6066) | NC
signature_algorithms NC
(RFCB8446)
signed_certificate timestam N
(RFC6962)
certificate_authorities NC
(RFCB8446)
oid_filters (RFC8446) NC
signature_algorithms_cert NG
(RFC8446)

Server PC 22
status _request (RFC6066) | NC
signature_algorithms NC
(RFCB8446)
signed_certificate_timestam N
(RFC6962)
certificate_authorities NG
(RFC8446)
oid_filters (RFC8446) NC
signature_algorithms_cert NG
(RFC8446)
4.4.1. The Transcript C 2

Hash

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href

1.5 Standards Compliance

4.4.2. Certificate Client NC
status _request (RFC6066) | NC
signed_certificate timestam PNe
(RFC6962)
Server PC 22
status_request (RFC6066) | NC
signed_certificate_timestam PNC
(RFC6962)
4.4.2.1. OCSP Statusand .
SCT Extensions Client NC
Server NC
4.4.2.2. Server .
Certificate Selection Client NC
certificate type MUST be NC
X.509v3
certificate's public key is
i NC
compatible
The certificate MUST
allow the key to be used NC
for signing
server_name and
certificate_authoritiesare [NC
used
Server PC
certificate type MUST be
X.509v3 ¢ 22
ceruﬂcqtes public key is C 2
compatible
The certificate MUST
allow the key to be used C 22
for signing
server_name and
certificate_authoritiesare | NC
used

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

href
href
href
href
href

1.5 Standards Compliance

4.4.2.3. Client Certificate

NOT be fragmented

Selection NC
Cotficomenge | Che NC
Server C 22
4.4.3. Certificate Verify | Client NC
Server C 22
4.4.4. Finished Client NC
Server C 22
4.5. End of Early Data Client NC
Server NC
iﬁ%;ag?smon Ticket Client NC
early data (RFC8446) NC
Server NC
early data (RFC8446) NC
soz ros vapasae iy v
Server NC
4.6.3. Key and
Initialization Vector Client NC
Update
Server NC
5.1. Record L ayer C 22
M_UST NOT be interleaved c 2
with other record types
(I\:/Ir]l:nSgT%N OT span key C 2
MUST NOT send zero-
length fragments ¢ 22
Alert messages MUST C 2

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

5.2. Record Payload
Protection c 22
5.3. Per-Record Nonce C 22
5.4. Record Padding PC 22
MAY choose to pad NC
MUST NOT send
Handshake and
Alert records that NC
have a zero-length
TL SInnerPlaintext.content
The padding sent is C 2
automatically verified
5.5. Limitson Key Usage NC
6.1. Closure Alerts NC
close notify NC
user_cancelled NC
6.2. Error Alerts PC 22
7.1. Key Schedule C 22
7.2. Updating Traffic
Secrets c 22
7.3. TrafficKey
Calculation c 22
7.5. Exporters NC
8. 0-RTT and Anti- NC
Replay
8.1. Single-Use Tickets NC
8.2. Client Hédllo
Recording NC
8.3. Freshness Checks NC
9.1. Mandatory-to-
Implement Cipher Suites PC 22
MUST implement the 2
TLS AES 128 GCM_SHA 2%6

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

SHOULD implement the

TLS AES 256 GCM_SHA384 22
SHOULD implement the 2
TLS CHACHA20 POLY1 36;5_SHA256
Digital signatures PC 22
MUST support
rsa_pkcsl sha256 (for C 22
certificates)
MUST support
rsa_pss rsae sha256 (for C 2
CertificateVerify and
certificates)
MUST support NC
ecdsa_secp256rl_sha?56
Key Exchange C 22
MUST support key C 2
exchange with secp256r1
SHOULD support key c 2
exchange with X25519

9.2. M andatory-toj PC 2

Implement Extensions
Supported Versions C 22
Cookie NC
Signature Algorithms C 22
Signature Algorithms
Certificate c 22
Negotiated Groups C 22
Key Share C 22
Server Name Indication NC
MUST %nd.and use c 2o
these extensions
"supported _versions'
is REQUIRED for PC 2o

ClientHello, ServerHello
and HelloRetryRequest

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

1.5 Standards Compliance

"signature_algorithms' is
REQUIRED for certificate
authentication

22

"supported_groups"
is REQUIRED for
ClientHello messages
using (EC)DHE key
exchange

22

"key share" is
REQUIRED for (EC)DHE
key exchange

22

"pre_shared key" is
REQUIRED for PSK key
agreement

NC

"psk_key exchange modes|
is REQUIRED for PSK
key agreement

NC

TLS1.3ClientH€llo

NC

If not containing a
"pre_shared key"
extension, it MUST
contain both a
"signature_algorithms'
extension and a
"supported_groups"
extension.

NC

If containing a
"supported_groups"
extension, it MUST also
contain a"key_share"
extension, and vice
versa. An empty
KeyShare.client_shares
vector is permitted.

NC

TLS 1.3 ServerHello

PC

22

MUST support the use
of the "server_name"
extension

NC

9.3. Protocol Invariants

NC

MUST correctly handle
extensible fields

NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

href

1.5 Standards Compliance

A client sending a
ClientHello MUST support

all parameters advertised NC
init.
A middlebox which
terminatesa TLS NA
connection MUST behave
asacompliant TLS server
A middlebox which
forwards ClientHello
parameters it does not NA
understand MUST NOT
process any messages
beyond that ClientHello.
B.4. Cipher Suites PC 22
TLS AES 128 GCM_SHAZ56 22
TLS AES 256 GCM_SHA3B4 22
TLS CHACHA20 POLY 1805 SHA256 22
TLS AES 128 CCM_SHAZ56 22
TLS AES 128 CCM_8 SHNZ56
C.1. Random Number C 2
Generation and Seeding
C.2. Certificatesand
Authentication ¢ 22
C.3. Implementation
Pitfalls PC 22
C.4. Client Tracking
) NC
Prevention
C.5. Un_authentlcated C 2
Operation
D.1. Negotiating with an NC
Older Server
D.2. Negotiating with an
Older Client c 22
D.3.0-RTT Backward NC

Compatibility

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

D.4. Middlebox

Compatibility Mode PC 22
D.5. Security

Restrictions Related to C 22

Backward Compatibility

Table 5.1: Standards Compliance

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

href
href
href
href
href

1.5 Standards Compliance

2 Reference Manual

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssl
Application

The sdl application is an implementation of the SSL, TLSand DTLS protocolsin Erlang.
For current statement of standards compliance see the User's Guide.

DEPENDENCIES

The SSL application uses the publ i ¢_key, asnl and Crypto application to handle public keys and encryption,
hence these applications must be loaded for the SSL application to work. In an embedded environment this means
they must be started with appl i cati on: start/[1, 2] beforethe SSL application is started.

CONFIGURATION

The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:
erl -ssl protocol _version "["tlsvl.2", "tlsvl.1']"
prot ocol _version = sd:s9_tls protocol()<opt i onal >

Protocol supported by started clients and servers. If thisoption isnot set, it defaultsto all TLS protocols currently
supported by the SSL application. This option can be overridden by the version option to ssl : connect/
[2,3] andssl:listen/2.

dtls_protocol version = sd:dtls protocol()<opti onal >

Protocol supported by started clientsand servers. If thisoptionisnot set, it defaultsto all DTL S protocolscurrently
supported by the SSL application. This option can be overridden by the version option to ssl : connect/
[2,3] andssl:listen/2.

session_lifetine = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may beinvalidated earlier due to the maximum limitation of the session
cache table.

session_cb = atom() <optional >

Name of the session cache callback module that implements the ssl _sessi on_cache_api behavior.
Defaultstossl _sessi on_cache.

session_cb init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .
session_cache_client_max = integer() <optional >

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessions is reached, the current cache entries will
be invalidated regardless of their remaining lifetime. Defaults to 1000. Recommended sdl-8.2.1 or later for this
option to work as intended.

session_cache_server_max = integer() <optional >

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If the
maximum number of sessionsisreached, the current cache entrieswill beinvalidated regardlessof their remaining
lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

href

ssl

ssl _pem cache_cl ean = integer() <optional >
Number of milliseconds between PEM cache validations. Defaults to 2 minutes.

ssl:clear_pem cache/O
bypass_pem cache = bool ean() <optional >

Introduced in ss1-8.0.2. Disables the PEM-cache. Can be used as a workaround for the PEM-cache bottleneck
before ss1-8.1.1. Defaults to false.

alert _tinmeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the alert so it may shutdown gracefully. Defaults to 5000
milliseconds.

internal _active_n = integer() <optional>

For TLS connections this value is used to handle the internal socket. As the implementation was changed from
an active onceto an active N behavior (N = 100), for performance reasons, this option exist for possible tweaking
or restoring of the old behavior (internal_active_n = 1) in unforeseen scenarios. The option will not affect erlang
distribution over TLS that will always run in active N mode. Added in s5l-9.1 (OTP-21.2).

ERROR LOGGER AND EVENT HANDLERS

The SSL application uses the default OTP error logger to log unexpected errors and TLS/DTLS alerts. The logging
of TLS/DTLS aerts may be turned off withthel og_al ert option.

SEE ALSO
application(3)

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssli

Erlang module

This module contains interface functions for the SSL/TLS/DTLS protocol. For detailed information about the
supported standards see sl (6).

Data Types

Types used in SSL/TLS/DTLS

socket() = gen_tcp: socket ()

sslsocket() = any()

An opaque reference to the TLS/DTL S connection, may be used for equality matching.

tls option() = tls_client_option() | tls_server_option()

tls client option()
client_option()
comon_option()
socket _option()
transport_optio

tls server option()
server_option()
conmmon_option()
socket _option()
transport _option()

socket option() =
gen_t cp: connect _option() |
gen_tcp:listen_option() |
gen_udp: option()

I
I
I
n()
I
I
I
(

The default socket optionsare[{ node, | i st}, { packet, 0}, {header, 0},{active, true}].

For valid options, seetheinet(3), gen_tcp(3) and gen_udp(3) manual pagesin Kernel. Notethat stream oriented options
such as packet are only relevant for SSL/TLS and not DTLS

active msgs() =
{ssl, sslsocket(), Data :: binary() | list()} |
{ssl closed, sslsocket()} |
{ssl error, sslsocket(), Reason :: any()} |
{ssl passive, sslsocket()}

When aTLS/DTL S socket isin active mode (the default), data from the socket is delivered to the owner of the socket
in the form of messages as described above.

Thessl _passi ve messageis sent only when the socket isin{ acti ve, N} mode and the counter dropped to 0.
It indicates that the socket has transitioned to passive ({ act i ve, fal se}) mode.

transport option() =
{cb_info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom()}} |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31

ssl

{cb _info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom(),
PassiveTag :: atom()}}

Defaults to { gen_tcp, tcp, tcp_closed, tcp_error, tcp_passive} for TLS (for backward
compatibility a four tuple will be converted to a five tuple with the last element "second_element”_passive) and
{gen_udp, udp, udp_closed, udp_error} for DTLS (might aso be changed to five tuplein the future).
Can be used to customize the transport layer. The tag values should be the values used by the underlying transport
in its active mode messages. For TLS the callback module must implement a reliable transport protocol, behave as
gen_t cp, and have functions corresponding to i net : set opt s/ 2,i net: get opts/ 2,i net: peer nane/ 1,
i net: socknane/ 1,andi net : port/ 1. Thecallback gen_t cp istreated specially and callsi net directly. For
DTL S this feature must be considered exprimental.

host() = hostnane() | ip_address()

hostname() = string()

ip _address() = inet:ip_address()

protocol version() = tls_version() | dtls_version()

tls version() = '"tlsvl.2' | 'tlsvl.3' | tls_legacy_version()
dtls version() = 'dtlsvl.2' | dtls_l egacy_version()

tls legacy version() = tlsvl | 'tlsvl.1' | sslv3
dtls legacy version() = dtlsvl
prf _random() = client random | server random
verify type() = verify none | verify peer
ciphers() = [erl _cipher_suite()] | string()
erl cipher suite() =
#{key exchange := kex_al go(),
cipher := cipher(),
mac := hash() | aead,
prf := hash() | default prf}
cipher() =
aes 128 cbc | aes 256 cbc | aes 128 gcm | aes 256 gcm |
aes 128 ccm | aes 256 ccm | aes 128 ccm 8 | aes 256 ccm 8 |
chacha20 poly1305 |
| egacy_ci pher ()
legacy cipher() = rc4 128 | des cbc | '3des ede cbc'
cipher filters() =
[{key exchange | cipher | mac | prf, algo_filter()}]
hash() = sha | sha2() | | egacy_hash()
sha2() = sha224 | sha256 | sha384 | sha512
legacy hash() = md5
old cipher suite() =
{kex_al go(), cipher(), hash()} |
{kex_al go(), cipher(), hash() | aead, hash()}
signature _algs() = [{hash(), sign_al go()}]
sign algo() = rsa | dsa | ecdsa
sign _scheme() =

32 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

rsa_pkcsl sha256 | rsa pkcsl sha384 | rsa pkcsl sha512 |
ecdsa secp256rl sha256 | ecdsa secp384rl sha384 |
ecdsa secp521rl sha512 | rsa pss _rsae sha256 |
rsa _pss rsae sha384 | rsa pss rsae sha512 |
rsa pss pss sha256 | rsa pss pss sha384 | rsa pss pss sha512 |
rsa _pkcsl shal | ecdsa shal
kex algo() =
rsa | dhe rsa | dhe dss | ecdhe ecdsa | ecdh ecdsa |
ecdh rsa | srp _rsa | srp_dss | psk | dhe psk | rsa psk |
dh_anon | ecdh _anon | srp_anon | any
algo filter() =
fun((kex_al go() | cipher() | hash() | aead | default prf) ->
true | false)

named curve()

sect571rl | sect571kl | secp521rl | brainpoolP512rl |
sect409kl | sect409rl | brainpoolP384rl | secp384rl |
sect283kl | sect283rl | brainpoolP256rl1 | secp256kl |
secp256rl | sect239kl | sect233kl | sect233rl | secp224kl |
secp224rl | sectl93rl | sectl93r2 | secpl92kl | secpl92rl |
sectl63kl | sectl63rl | sectl63r2 | secpl6Okl | secpl6Orl |
secploOr2

psk identity() = string()

srp_identity() = {Username :: string(), Password :: string()}

srp_param_type() =
srp 1024 | srp 1536 | srp 2048 | srp 3072 | srp 4096 |
srp 6144 | srp 8192

app_level protocol() = binary()

protocol extensions() =
#{renegotiation info => binary(),
signature algs => signature_al gs(),
alpn => app_l evel protocol (),
srp => binary(),
next protocol => app_|l evel _protocol (),
ec point formats => [0..2],
elliptic curves => [public_key:oid()],
sni => hostname() }
error_alert() =
{tls alert, {tls_alert(), Description :: string()}}

tls alert() =
close notify | unexpected message | bad record mac |
record overflow | handshake failure | bad certificate |
unsupported certificate | certificate revoked |
certificate expired | certificate unknown |
illegal parameter | unknown ca | access denied |
decode error | decrypt error | export restriction |
protocol version | insufficient security | internal error |
inappropriate fallback | user canceled | no renegotiation |
unsupported extension | certificate unobtainable |
unrecognized name | bad certificate status response |
bad certificate hash value | unknown psk identity |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33

ssl

no_application protocol
reason() = any()

TLS/DTLS OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT

common_option() =
{protocol, protocol ()} |
{handshake, handshake_conpletion()} |
{cert, cert()} |
{certfile, cert_pem()} |
{key, key()} |
{keyfile, key_pem()} |
{password, key_password() } |
{ciphers, cipher_suites()} |
{eccs, [nanmed_curve()]} |
{signature algs cert, signature_schenmes()} |
{secure_renegotiate, secure_renegotiation()} |
{depth, allowed_cert_chain_length()} |
{verify fun, customverify()} |
{crl _check, crl _check()} |
{crl _cache, crl_cache_opts()} |
{max_handshake size, handshake_size()} |
{partial chain, root_fun()} |
{versions, protocol _versions()} |
{user_lookup fun, custom user_I| ookup()} |
{log_level, | ogging_level ()} |
{log alert, log_alert()} |
{hibernate_after, hibernate_after()} |
{padding check, paddi ng_check()} |
{beast mitigation, beast_mitigation()} |
{ssl imp, ssl_inp()}

protocol() = tls | dtls

Choose TLS or DTLS protocol for the transport layer security. Defaultstot | s. For DTLS other transports than UDP
are not yet supported.

handshake completion() = hello | full

Defaults to ful | . If hello is specified the handshake will pause after the hello message and give the user a
possibility make decisions based on hello extensions before continuing or aborting the handshake by calling
handshake continue/3 or handshake cancel/1

cert() = public_key: der_encoded()

The DER-encoded users certificate. If this option is supplied, it overrides optioncertfil e.
cert pem() = file:filenane()

Path to afile containing the user certificate on PEM format.

key() =
{'RSAPrivateKey' | 'DSAPrivateKey' | 'ECPrivateKey' |
'PrivateKeyInfo',
publ i c_key: der _encoded() } |
#{algorithm := rsa | dss | ecdsa,
engine := crypto:engine_ref(),
key id := crypto:key_id(),

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

password => crypto: password() }

The DER-encoded user's private key or a map refering to a crypto engine and its key reference that optionally can be
password protected, seealso crypto:engine load/4 and Crypto's Users Guide. If thisoption is supplied, it overrides
optionkeyfil e.

key pem() = file:filenanme()

Path to the file containing the user's private PEM-encoded key. As PEM-files can contain several entries, this option
defaultsto the samefile asgiven by optioncertfil e.

key password() = string()
String containing the user's password. Only used if the private keyfile is password-protected.
cipher_suites() = ciphers()

Supported cipher suites. The function ci pher _sui t es/ 2 can be used to find all ciphers that are supported by
default. ci pher _suites(all, 'tlsvl.2") canbecaledto find all available cipher suites. Pre-Shared Key
(RFC 4279 and RFC 5487), Secure Remote Password (RFC 5054), RC4, 3DES, DES cipher suites, and anonymous
cipher suites only work if explicitly enabled by this option; they are supported/enabled by the peer also. Anonymous
cipher suites are supported for testing purposes only and are not be used when security matters.

signature schemes() = [sign_schene()]

In addition to the signature algorithms extension from TLS 1.2, TLS 1.3 (RFC 5246 Section 4.2.3)adds the
signature_algorithms_cert extension which enables having specia requirements on the signatures used in the
certificates that differs from the requirements on digital signatures as a whole. If thisis not required this extension
is not needed.

The client will send a signature_algorithms_cert extension (ClientHello), if TLS version 1.3 or later is used, and the
signature_algs cert option is explicitly specified. By default, only the signature_algs extension is sent.

The signature schemes shall be ordered according to the client's preference (favorite choice first).
secure_renegotiation() = boolean()

Specifiesif to reject renegotiation attempt that does not live up to RFC 5746. By default secur e_r enegot i at e is
settot r ue, that is, secure renegotiation isenforced. If settof al se secure renegotiation will still be used if possible,
but it falls back to insecure renegotiation if the peer does not support RFC 5746.

allowed cert chain length() = integer()

Maximum number of non-self-issued intermediate certificatesthat can follow the peer certificateinavalid certification
path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can be PEER, CA,
ROQOT-CA,; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default valueis 1.

custom verify() =
{Verifyfun :: function(), InitialUserState :: any()}

The verification fun is to be defined as follows:

fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad cert, Reason :: atom() |
{revoked, atom()}} |

{extension, #'Extension'{}}, InitialUserState :: term()) ->
{valid, UserState :: term()} | {valid peer, UserState :: term()} |
{fail, Reason :: term()} | {unknown, UserState :: term()}.

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application isencountered. It isalso called when acertificate is considered valid by the path validation to allow access
to each certificatein the path to the user application. It differentiates between the peer certificate and the CA certificates
by usingval i d_peer or val i d as second argument to the verification fun. See the public_key User's Guide for
definitionof # OTPCertificate' {} and#' Extension'{}.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 35

href
href
href
href
href
href

ssl

« If theverify callback funreturns{f ai | , Reason}, the verification processisimmediately stopped, an aert
is sent to the peer, and the TLS/DTL S handshake terminates.

e |f theverify callback funreturns{val i d, User St at e}, the verification process continues.

« Iftheverify callback funawaysreturns{val i d, User St at e}, the TLS/DTL S handshake does not terminate
regarding verification failures and the connection is established.

« |f called with an extension unknown to the user application, return value { unknown, User St at e} isto be
used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.

Default optionverify funinverify_peer node:

{fun(_,{bad cert, } = Reason,) ->
{fail, Reason};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

Default optionveri fy funinmodeverify none:

{fun(_,{bad cert, }, UserState) ->
{valid, UserState};
(_,{extension, #'Extension'{critical = true}}, UserState) ->
{valid, UserState};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->

{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

The possible path validation errors are givenon form{ bad_cert, Reason} whereReason is;
unknown_ca

No trusted CA wasfound in the trusted store. The trusted CA is normally aso called ROOT CA, which isa self-
signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be self-signed
according to X-509) by using option parti al _chai n.

sel f si gned_peer

The chain consisted only of one self-signed certificate.
PKI X X-509-path validation error

For possible reasons, see public_key:pkix_path_validation/3
crl check() = boolean() | peer | best effort

Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls validate/3) on all the certificatesduring
the path validation (public_key:pkix_path validation/3) of the certificate chain. Defaultstof al se.

peer
check is only performed on the peer certificate.

best effort
if certificate revocation status cannot be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLSs.

36 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

The CRLswill be fetched from alocal or external cache. See s3_crl_cache_api(3).
crl_cache opts() = [any()]

Specify how to perform lookup and caching of certificate revocation lists. Modul e defaults to sd_crl_cache with
DbHandl e beingi nt er nal and an empty argument list.

There are two implementations available:
ssl _crl _cache

This module maintains a cache of CRLs. CRLs can be added to the cache using the function
sd_crl_cacheiinsert/1, and optionally automatically fetched through HTTPif thefollowing argument is specified:

{http, timeout()}

Enables fetching of CRLs specified as http URIs inX509 certificate extensions. Requires the OTP inets
application.

ssl _crl _hash_dir
This module makes use of adirectory where CRLs are stored in files named by the hash of the issuer name.

Thefile names consist of eight hexadecimal digitsfollowed by . r N, where Nisan integer, e.g. 1a2b3c4d. r 0.
For thefirst version of the CRL, Nstartsat zero, and for each new version, Nisincremented by one. The OpenSSL
utility c_r ehash creates symlinks according to this pattern.

For a given hash value, this module finds all consecutive . r * files starting from zero, and those files taken
together make up the revocation list. CRL fileswhose next Updat e fields are in the past, or that are issued by
adifferent CA that happens to have the same name hash, are excluded.

The following argument is required:
{dir, string()}
Specifies the directory in which the CRLs can be found.
root fun() = function()

fun(Chain::[public_key:der encoded()]) ->
{trusted ca, DerCert::public key:der encoded()} | unknown ca}

Claim an intermediate CA in the chain as trusted. TLS then performs public_key:pkix_path_validation/3 with the
selected CA as trusted anchor and the rest of the chain.

protocol versions() = [protocol _version()]

TLS protocol versions supported by started clients and servers. This option overrides the application environment
optionpr ot ocol _versionanddt|s_protocol versi on. If theenvironment option is not set, it defaultsto
all versions, except SSL-3.0, supported by the SSL application. See also sdl(6).

custom user lookup() =
{Lookupfun :: function(), UserState :: any()}

The lookup funisto defined as follows:

fun(psk, PSKIdentity ::string(), UserState :: term()) ->

{ok, SharedSecret :: binary()} | error;

fun(srp, Username :: string(), UserState :: term()) ->

{ok, {SRPParams :: srp param type(), Salt :: binary(),
DerivedKey :: binary()}} | error.

For Pre-Shared Key (PSK) cipher suites, thelookup funiscalled by the client and server to determine the shared secret.
When called by the client, PSKI dent i t y is set to the hint presented by the server or to undefined. When called by
the server, PSKI dent i t y istheidentity presented by the client.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 37

ssl

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses to generate
its session keys. Der i vedKey isto be derived according to RFC 2945 and RFC 5054: cr ypt o: sha([Sal t,
crypto: sha([User nane, <<$:>>, Password])])

session _id() = binary()

Identifiesa TL'S session.

log alert() = boolean()

If settof al se, error reports are not displayed. Deprecated in OTP 22, use {log_level, logging_level ()} instead.
logging level() = | ogger:|level ()

Specifiesthelog level for TLS/DTLS. At verbosity level not i ce and aboveerror reportsaredisplayed in TLS/DTLS.
Thelevel debug triggers verbose logging of TLS/DTLS protocol messages.

hibernate after() = timeout()

When an integer-value is specified, TLS/ DTLS- connect i on goes into hibernation after the specified number of
milliseconds of inactivity, thus reducing its memory footprint. When undef i ned is specified (this is the default),
the process never goes into hibernation.

handshake size() = integer()

Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks. Defaults to
256*1024.

padding check() = boolean()

AffectsTLS-1.0 connectionsonly. If settof al se, it disablestheblock cipher padding check to be ableto interoperate
with legacy software.

Using { paddi ng_check, bool ean()} makes TLS vulnerable to the Poodle attack. |

beast mitigation() = one n minus one | zero n | disabled

Affects SSL-3.0 and TLS-1.0 connections only. Used to change the BEAST mitigation strategy to interoperate with
legacy software. Defaultstoone_n_ni nus_one.

one_n_m nus_one - Perform 1/n-1 BEAST mitigation.
zer o_n - Perform O/n BEAST mitigation.
di sabl ed - Disable BEAST mitigation.

Using{ beast _m tigation, disabl ed} makesSSL-3.00r TLS-1.0 vulnerableto the BEAST attack. |

ssl imp() = new | old
Deprecated since OTP-17, has no affect.

TLS/DTLS OPTION DESCRIPTIONS - CLIENT

client option() =
{verify, client_verify_type()} |
{reuse_session, client_reuse_session()} |
{reuse_sessions, client_reuse_sessions()} |
{cacerts, client_cacerts()} |

38 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

ssl

{cacertfile, client_cafile()} |
{alpn_advertised protocols, client_alpn()} |
{client_preferred next protocols,
client_preferred_next_protocols()} |
{psk _identity, client_psk_identity()} |
{srp_identity, client_srp_identity()} |
{server_name_indication, sni ()} |

{customize hostname check, custom ze_host nane_check() } |
{signature algs, client_signature_algs()} |

{fallback, fallback()}

client verify type() = verify_type()

)
)

Inmodeveri fy_none the default behavior isto alow all x509-path validation errors. See also option verify_fun.
client reuse session() = session_id()

Reuses a specific session earlier saved with theoption { r euse_sessi ons, save} since OIP-21.3
client reuse sessions() = boolean() | save

When save is specified anew connection will be negotiated and saved for later reuse. The session ID can be fetched
with connection_information/2 and used with the client option reuse_session The boolean value true specifies that if
possible, automatized session reuse will be performed. If anew session is created, and is unique in regard to previous
stored sessions, it will be saved for possible later reuse. Since OTP-21.3

client cacerts() = [public_key: der_encoded()]
The DER-encoded trusted certificates. If this option is supplied it overridesoptioncacertfi | e.
client cafile() = file:filenane()

Path to afile containing PEM-encoded CA certificates. The CA certificates are used during server authentication and
when building the client certificate chain.

client alpn() = [app_Il evel _protocol ()]

The list of protocols supported by the client to be sent to the server to be used for an Application-Layer Protocol
Negotiation (ALPN). If the server supports ALPN then it will choose a protocol from this list; otherwise it will fail
the connection with a"no_application_protocol” aert. A server that does not support ALPN will ignore this value.

Thelist of protocols must not contain an empty binary.
The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.

client preferred next protocols() =

{Precedence :: server | client,
ClientPrefs :: [app_l evel _protocol ()1} |
{Precedence :: server | client,
ClientPrefs :: [app_l evel _protocol ()],

Default :: app_l evel protocol ()}
Indicates that the client isto try to perform Next Protocol Negotiation.

If precedence is server, the negotiated protocol is the first protocol to be shown on the server advertised list, which
isalso on the client preference list.

If precedence is client, the negotiated protocoal is the first protocol to be shown on the client preference list, which is
also on the server advertised list.

If the client does not support any of the server advertised protocols or the server does not advertise any protocols, the
client falls back to thefirst protocol initslist or to the default protocol (if a default is supplied). If the server does not
support Next Protocol Negotiation, the connection terminates if no default protocol is supplied.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 39

ssl

client psk identity() = psk_identity()

Specifies the identity the client presents to the server. The matching secret isfound by callinguser _| ookup_f un
client srp identity() = srp_identity()

Specifies the username and password to use to authenticate to the server.

sni() = hostnane() | disable

Specify the hostname to be used in TLS Server Name Indication extension. If not specified it will default to the Host
argument of connect/[3,4] unlessit is of type inet:ipaddress().

The Host Nanme will also be wused in the hostname verification of the peer certificate using
public_key:pkix_verify _hostname/2.

Thespecia valuedi sabl e preventsthe Server Name Indication extension from being sent and disablesthe hostname
verification check public_key:pkix_verify _hostname/2

customize hostname check() = list()

Customizes the hostname verification of the peer certificate, as different protocols that use TLS such as HTTP or
LDAP may want to do it differently, for possible options see public_key:pkix verify hostname/3

fallback() = boolean()
Send special cipher suite TLS FALLBACK_SCSV to avoid undesired TLS version downgrade. Defaults to false

Note this option is not needed in normal TLS usage and should not be used to implement new clients. But legacy
clients that retries connections in the following manner

ssl : connect (Host , Port, [...{versions, ["tlsv2', "tlsvl. 1", "tlsvl',
"sslv3'1}1])

ssl : connect (Host , Port, [...{versions, [tlIsvl. 1", ‘'tlsvl', ‘'sslv3]},
{fall back, true}])

ssl:connect(Host, Port, [...{versions, ['tlsvl', ‘'sslv3']}, {fallback,
true}])

ssl:connect (Host, Port, [...{versions, ['sslv3']}, {fallback, true}])

may useit to avoid undesired TL S version downgrade. Notethat TLS FALLBACK _SCSV must a so be supported
by the server for the prevention to work.

client signature algs() = signature_al gs()

In addition to the algorithms negotiated by the cipher suite used for key exchange, payload encryption, message
authentication and pseudo random calculation, the TL S signature algorithm extension Section 7.4.1.4.1in RFC 5246
may be used, from TL S 1.2, to negotiate which signature algorithm to use during the TL S handshake. If no lower TLS
versionsthan 1.2 are supported, the client will send a TL S signature algorithm extension with the algorithms specified
by this option. Defaults to

40 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

[

%% SHA2

{sha512, ecdsa},
{sha512, rsa},
{sha384, ecdsa},
{sha384, rsa},
{sha256, ecdsa},
{sha256, rsa},
{sha224, ecdsa},
{sha224, rsa},
%% SHA

{sha, ecdsa},
{sha, rsa},
{sha, dsa},

1

The algorithms should be in the preferred order. Selected signature algorithm can restrict which hash functions that
may be selected. Default support for { md5, rsa} removed in ssl-8.0

TLS/DTLS OPTION DESCRIPTIONS - SERVER

server_option() =
{cacerts, server_cacerts()} |
{cacertfile, server_cafile()} |
{dh, dh_der()} |
{dhfile, dh_file()} |
{verify, server_verify_type()} |
{fail if no_peer cert, fail _if_no_peer_cert()} |
{reuse _sessions, server_reuse_sessions()} |
{reuse session, server_reuse_session()} |
{alpn_preferred protocols, server_alpn()} |
{next _protocols advertised, server_next_protocol ()} |
{psk_identity, server_psk_identity()} |
{honor_cipher order, boolean()} |
{sni hosts, sni_hosts()} |
{sni_fun, sni_fun()} |
{honor_cipher order, honor_ci pher_order()} |
{honor_ecc_order, honor_ecc_order()} |
{client renegotiation, client_renegotiation()} |
{signature algs, server_signature_algs()}

server cacerts() = [public_key:der_encoded()]
The DER-encoded trusted certificates. If this option is supplied it overrides optioncacertfi |l e.
server _cafile() = file:filenanme()

Path to a file containing PEM-encoded CA certificates. The CA certificates are used to build the server certificate
chain and for client authentication. The CAsare also used in thelist of acceptable client CAs passed to the client when
acertificate is requested. Can be omitted if there is no need to verify the client and if there are no intermediate CAs
for the server certificate.

dh der() = binary()
The DER-encoded Diffie-Hellman parameters. If specified, it overrides option dhf i | e.
dh file() = file:filenanme()

Path to afile containing PEM-encoded Diffie Hellman parametersto be used by the server if acipher suite using Diffie
Hellman key exchangeis negotiated. If not specified, default parameters are used.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 41

ssl

server verify type() = verify_type()

A server only does x509-path validation in mode veri fy_peer, as it then sends a certificate request to the
client (this message is not sent if the verify option isveri fy_none). You can then also want to specify option
fail _if_no_peer_cert.

fail if no peer cert() = boolean()

Used together with {verify, verify peer} by an TLSDTLS server. If set to t r ue, the server fails if the
client does not have a certificate to send, that is, sends an empty certificate. If settof al se, it failsonly if the client
sends an invalid certificate (an empty certificate is considered valid). Defaults to false.

server reuse sessions() = boolean()

The boolean value true specifies that the server will agree to reuse sessions. Setting it to false will result in an empty
session table, that is no sessions will be reused. See also option reuse_session

server reuse session() = function()

Enablesthe TLS/DTLS server to have alocal policy for deciding if a session isto be reused or not. Meaningful only
if reuse_sessions issettotrue. Suggest edSessi onl d isabi nary(), Peer Cert isaDER-encoded
certificate, Conpr essi on isan enumeration integer, and Ci pher Sui t e isof typeci phersuite().

server_alpn() = [app_l evel _protocol ()]
Indicates the server will try to perform Application-Layer Protocol Negotiation (ALPN).

The list of protocols is in order of preference. The protocol negotiated will be the first in the list that matches
one of the protocols advertised by the client. If no protocol matches, the server will fail the connection with a
"no_application_protocol" aert.

The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.
server_next protocol() = [app_Il evel _protocol ()]

List of protocolsto send to the client if the client indicates that it supports the Next Protocol extension. The client can
select a protocol that is not on thislist. Thelist of protocols must not contain an empty binary. If the server negotiates
aNext Protocol, it can be accessed using the negot i at ed_next _pr ot ocol / 1 method.

server _psk identity() = psk_identity()

Specifies the server identity hint, which the server presents to the client.

honor cipher order() = boolean()

If settot r ue, usethe server preference for cipher selection. If set to f al se (the default), use the client preference.

sni hosts() =
[{hostname(), [server_option() | comon_option()]1}]

If the server receivesa SNI (Server Name I ndication) from the client matching ahost listedinthesni _host s option,
the specific options for that host will override previously specified options. The option sni _f un, andsni _host s
are mutually exclusive.

sni fun() = function()

If the server receives a SNI (Server Name Indication) from the client, the given function will be called to retrieve
[server_option()] for the indicated server. These options will be merged into predefined [server_option()] list. The
function should be defined as. fun(ServerName :: string()) -> [server_option()] and can be specified as afun or as
named f un nodul e: functi on/ 1 Theoptionsni _fun,andsni _host s are mutually exclusive.

client renegotiation() = boolean()

In protocolsthat support client-initiated renegotiation, the cost of resources of such an operationishigher for the server
than the client. This can act as a vector for denial of service attacks. The SSL application aready takes measures to

42 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

counter-act such attempts, but client-initiated renegotiation can be strictly disabled by setting this option to f al se.
The default valueist r ue. Note that disabling renegotiation can result in long-lived connections becoming unusable
due to limits on the number of messages the underlying cipher suite can encipher.

honor cipher order() = boolean()

If true, use the server's preference for cipher selection. If false (the default), use the client's preference.
honor _ecc order() = boolean()

If true, use the server's preference for ECC curve selection. If false (the default), use the client's preference.
server _signature algs() = signature_al gs()

The algorithms specified by this option will be the ones accepted by the server in a signature algorithm negotiation,
introduced in TLS-1.2. The algorithms will also be offered to the client if a client certificate is requested. For more
details see the corresponding client option.

Exports

append cipher suites(Deferred, Suites) -> ci phers()
Types:
Deferred = ci phers() | cipher_filters()
Suites = ciphers()
Make Def er r ed suites become the least preferred suites, that is put them at the end of the cipher suite list Sui t es

after removing them from Sui t es if present. Def er r ed may bealist of cipher suitsor alist of filtersin which case
thefiltersare use on Sui t es to extract the Deferred cipher list.

cipher suites() -> [old_cipher_suite()] | [string()]
cipher suites(Type) -> [old_ci pher_suite() | string()]
Types:

Type = erlang | openssl | all
Deprecated in OTP 21, use cipher_suites/2 instead.

cipher suites(Supported, Version) -> ciphers()
Types:
Supported = default | all | anonymous
Version = protocol _version()

Returns all default or all supported (except anonymous), or al anonymous cipher suitesfor aTLS version

cipher suites(Supported, Version, StringType :: rfc | openssl) ->
[string()]
Types.
Supported = default | all | anonymous
Version = protocol version()

Same as cipher_suites/2 but lists RFC or OpenSSL string names instead of erl_cipher_suite()

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 43

ssl

eccs() -> NamedCurves
eccs(Version) -> NamedCurves
Types:
Version = protocol version()
NamedCurves = [named_curve()]

Returns alist of supported ECCs. eccs() isequivaent to callingeccs(Pr ot ocol) with al supported protocols
and then deduplicating the output.

clear pem cache() -> ok

PEM files, used by ssl API-functions, are cached. The cacheisregularly checked to seeif any cache entries should be
invalidated, however this function provides away to unconditionally clear the whole cache.

connect (TCPSocket, TLSOptions) ->
{ok, sslsocket()} |
{error, reason()} |
{option not a key value tuple, any()}
connect (TCPSocket, TLSOptions, Timeout) ->
{ok, sslsocket()} | {error, reason()}
Types:
TCPSocket = socket ()
TLSOptions = [tls_client_option()]
Timeout = timeout()

Upgrades a gen_t cp, or equivalent, connected socket to an TLS socket, that is, performs the client-side TLS
handshake.

If theoptionverifyissettoverify_peer theoptionser ver _nane_i ndi cat i on shall also be specified,
if it isnot no Server Name I ndication extension will be sent, and public_key:pkix_verify_hostname/2 will be called
with the IP-address of the connection as Ref er encel D, which is proably not what you want.

If the option { handshake, hel | o} isused the handshake is paused after receiving the server hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake_cancel / 1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_msgs()

connect(Host, Port, TLSOptions) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol _extensions()} |
{error, reason()} |
{option not a key value tuple, any()}
connect(Host, Port, TLSOptions, Timeout) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol _extensions()} |
{error, reason()} |

44 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{option not a key value tuple, any()}

Types.
Host = host ()
Port = inet:port_nunber()

TLSOptions = [tls_client_option()]
Timeout = timeout()
Opensan TLS/DTLS connection to Host , Port .

When theoptionveri fy issettoveri fy_peer thecheck public_key:pkix_verify hostname/2 will be performed
in addition to the usual x509-path validation checks. If the check fails the error { bad_cert, hostname_check_failed}
will be propagated to the path validation fun verify fun, where it is possible to do customized checks by using the
full possibilities of the public_key:pkix_verify hostname/3 API. When the option ser ver _nane_i ndi cati on is
provided, its value (the DNS name) will be used as Ref er encel D to public_key:pkix_verify_hostname/2. When
no server _name_i ndi cati on option is given, the Host argument will be used as Server Name Indication
extension. The Host argument will also be used for the public_key:pkix_verify_hostname/2 check and if the Host

argument isani net : i p_address() the Ref er encel D used for the check will be{i p, Host} otherwise
dns_i d will be assumed with afallback toi p if that fails.

According to good practices certificates should not use | P-addresses as " server names”. It would be very surprising
if this happen outside a closed network.

If the option { handshake, hel | 0} isused the handshake is paused after receiving the server hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake_cancel / 1.

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_msgs()

close(SslSocket) -> ok | {error, Reason}
Types:

Ss1Socket = ssl socket ()

Reason = any()

Closes an TLS/DTLS connection.

close(SslSocket, How) -> ok | {ok, port()} | {error, Reason}
Types.
Ss1Socket = ssl socket ()
How = timeout() | {NewController :: pid(), timeout()}
Reason = any()
Closes or downgrades an TLS connection. In the latter case the transport connection will be handed over to the

NewCont r ol | er process after receiving the TLS close alert from the peer. The returned transport socket will have
thefollowing optionsset: [{ acti ve, fal se}, {packet, 0}, {node, binary}]

controlling process(SslSocket, NewOwner) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 45

ssl

Ss1Socket = ssl socket ()
NewOwner = pid()
Reason = any()

Assignsanew controlling processto the SSL socket. A controlling processisthe owner of an SSL socket, and receives
all messages from the socket.

connection information(SslSocket) ->
{ok, Result} | {error, reason()}

Types:
Ss1Socket = ssl socket ()
Result = [{OptionName, OptionValue}]
OptionName = atom()
OptionValue = any()
Returns the most relevant information about the connection, ssl options that are undefined will be filtered out.

Note that values that affect the security of the connection will only be returned if explicitly requested by
connection_information/2.

Thelegacy | t em = ci pher _sui t e isstill supported and returns the cipher suite on its (undocumented) legacy
format. It should be replaced by sel ect ed_ci pher _sui te.

connection information(SslSocket, Items) ->
{ok, Result} | {error, reason()}

Types:
Ss1Socket = ssl socket ()
Items = [OptionName]
Result = [{OptionName, OptionValue}]
OptionName = atom()
OptionValue = any()
Returns the requested information items about the connection, if they are defined.

Note that client_random, server_random and master_secret are values that affect the security of connection.
Meaningful atoms, not specified above, are the sl option names.

If only undefined options are requested the resulting list can be empty.

filter cipher suites(Suites, Filters) -> Ciphers
Types:

46 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Suites = ci phers()
Filters = cipher _filters()
Ciphers = ci phers()
Removes cipher suites if any of the filter functions returns false for any part of the cipher suite. This function also

calls default filter functions to make sure the cipher suites are supported by crypto. If no filter function is supplied for
some part the default behaviour is fun(Algorithm) -> true.

format _error(Reason :: {error, Reason}) -> string()
Types:

Reason = any()
Presents the error returned by an SSL function as a printable string.

getopts(SslSocket, OptionNames) ->
{ok, [gen_tcp:option()1} | {error, reason()}
Types:
Ss1Socket = ssl socket ()
OptionNames = [gen_tcp: opti on_nane()]
Gets the values of the specified socket options.

getstat(SslSocket) -> {ok, OptionValues} | {error, inet:posix()}

getstat(SslSocket, Options) ->
{ok, OptionValues} | {error, inet:posix()}

Types:

Ss1Socket = ssl socket ()

Options = [inet:stat_option()]

OptionValues = [{inet:stat_option(), integer()}]
Gets one or more statistic options for the underlying TCP socket.
See inet:getstat/2 for statistic options description.

handshake (HsSocket) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

handshake(HsSocket, Timeout) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

Types:
HsSocket = ssl socket ()
Timeout = timeout()
SslSocket = ssl socket ()
Ext = protocol _extensions()
Reason = closed | timeout | error_alert()

Performsthe SSL/TLS/DTLS server-side handshake.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 47

ssl

Returnsanew TLS/DTLS socket if the handshake is successful.

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_msgs()

handshake(Socket, Options) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

handshake(Socket, Options, Timeout) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

Types:
Socket = socket () | sslsocket ()
Ss1Socket = ssl socket ()
Options = [server_option()]
Timeout = timeout()
Ext = protocol extensions()
Reason = closed | timeout | {options, any()} | error_alert()

If Socket isaordinary socket () : upgradesagen_t cp, or equivalent, socket to an SSL socket, that is, performs
the SSL/TL S server-side handshake and returns a TL S socket.

The Socket shall be in passive mode ({active, false}) before calling this function or else the behavior of this
function is undefined

If Socket isan sslsocket() : provides extra SSL/TLS/DTLS options to those specified in listen/2 and then performs
the SSL/TLS/DTLS handshake. Returns anew TLS/DTLS socket if the handshake is successful.

If option { handshake, hel | o} isspecified the handshake is paused after receiving the client hello message and
the successresponseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake_cancel / 1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_msgs()

handshake cancel(Sslsocket :: #sslsocket{}) -> any()
Cancel the handshake with afatal USER_CANCELED dert.

handshake continue(HsSocket, Options) ->
{ok, SslSocket} | {error, Reason}

handshake continue(HsSocket, Options, Timeout) ->
{ok, SslSocket} | {error, Reason}

Types.

48 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

HsSocket = ssl socket ()

Options = [tls_client_option() | tls_server_option()]
Timeout = timeout()

Ss1Socket = ssl socket ()

Reason = closed | timeout | error_alert()

Continue the SSL/TL S handshake possiby with new, additional or changed options.

listen(Port, Options) -> {ok, ListenSocket} | {error, reason()}
Types.

Port = inet: port_numnber()

Options = [tls_server_option()]

ListenSocket = ssl socket ()
Creates an SSL listen socket.

negotiated protocol(SslSocket) -> {ok, Protocol} | {error, Reason}
Types:

SslSocket = ssl socket ()

Protocol = binary()

Reason = protocol not negotiated

Returns the protocol negotiated through ALPN or NPN extensions.

peercert(SslSocket) -> {ok, Cert} | {error, reason()}
Types.

SslSocket = ssl socket ()

Cert = binary()

The peer certificate is returned as a DER-encoded binary. The certificate can be decoded with
public_key:pkix_decode cert/2

peername(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

Ss1Socket = ssl socket ()

Address = inet:ip_address()

Port = inet:port_nunber()

Returns the address and port number of the peer.

prepend cipher suites(Preferred, Suites) -> ciphers()
Types:
Preferred = ciphers() | cipher_filters()
Suites = ciphers()
Make Pr ef er r ed suites become the most preferred suitesthat is put them at the head of the cipher suitelist Sui t es

after removing them from Sui t es if present. Pr ef er r ed may be alist of cipher suits or alist of filters in which
case thefiltersare use on Sui t es to extract the preferred cipher list.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 49

ssl

prf(SslSocket, Secret, Label, Seed, WantedLength) ->
{ok, binary()} | {error, reason()}

Types.

SslSocket = ssl socket ()

Secret = binary() | master secret

Label = binary()

Seed = [binary() | prf_random()]

WantedLength = integer() >= 0
Usesthe Pseudo-Random Function (PRF) of aTL S session to generate extrakey material. It either takes user-generated
valuesfor Secr et and Seed or atoms directing it to use a specific value from the session security parameters.

Can only be used with TLS/DTLS connections; { error, undefi ned} isreturned for SSLv3 connections.

recv(SslSocket, Length) -> {ok, Data} | {error, reason()}
recv(SslSocket, Length, Timeout) -> {ok, Data} | {error, reason()?}
Types.

Ss1Socket = ssl socket ()

Length = integer()

Data = binary() | list() | HttpPacket

Timeout = timeout()

HttpPacket = any()

See the description of Ht t pPacket inerl ang: decode_packet/ 3 in ERTS

Receives a packet from a socket in passive mode. A closed socket isindicated by return value{ er r or, cl osed}.

Argument Lengt h is meaningful only when the socket isin mode r aw and denotes the number of bytes to read. If
Lengt h =0, al available bytesarereturned. If Lengt h > 0, exactly Lengt h bytesarereturned, or an error; possibly
discarding lessthan Lengt h bytes of data when the socket gets closed from the other side.

Optional argument Ti neout specifies atime-out in milliseconds. The default valueisi nfinity.

renegotiate(SslSocket) -> ok | {error, reason()}
Types:
SslSocket = ssl socket ()
Initiates a new handshake. A notablereturn valueis{error, renegoti ati on_rej ect ed} indicating that the

peer refused to go through with the renegotiation, but the connection is still active using the previously negotiated
Session.

send(Ss1Socket, Data) -> ok | {error, reason()}
Types.

Ss1Socket = ssl socket ()

Data = iodata()

Writes Dat a to Ssl Socket .
A notablereturn valueis{ error, cl osed} indicating that the socket is closed.

setopts(SslSocket, Options) -> ok | {error, reason()}
Types:

50 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Ss1Socket = ssl socket ()
Options = [gen_tcp:option()]
Sets options according to Opt i ons for socket Ssl Socket .

shutdown(Ss1Socket, How) -> ok | {error, reason()}
Types:
SslSocket = ssl socket ()
How = read | write | read write
Immediately closes a socket in one or two directions.
How == wri t e means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, option { exi t _on_cl ose, fal se}
isuseful.

ssl accept(SslSocket) -> ok | {error, Reason}

ssl accept(Socket, TimeoutOrOptions) ->
ok | {ok, sslsocket()} | {error, Reason}

Types:
Socket = sslsocket() | socket()
TimeoutOrOptions = timeout() | [tls_server_option()]
Reason = timeout | closed | {options, any()} | error_alert()

Deprecated in OTP 21, use handshake/[1,2] instead.

| handshake/[1,2] always returns a new socket.

ssl accept(Socket, Options, Timeout) ->
ok | {ok, sslsocket()} | {error, Reason}

Types.
Socket = sslsocket() | socket ()
Options = [tls_server_option()]
Timeout = timeout()
Reason = timeout | closed | {options, any()} | error_alert()

Deprecated in OTP 21, use handshake/[2,3] instead.

| handshake/[2,3] always returns a new socket.

sockname (SslSocket) -> {ok, {Address, Port}} | {error, reason()?}
Types.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 51

ssl

Ss1Socket = ssl socket ()
Address = inet:ip_address()
Port = inet: port_numnber()

Returns the local address and port number of socket Ssl Socket .

start() -> ok | {error, reason()}
start(Type) -> ok | {error, Reason}

Starts the SSL application. Default typeist enpor ary.

stop() -> ok
Stops the SSL application.

str to suite(CipherSuiteName) -> erl _cipher_suite()

Types:
CipherSuiteName =
string() |
{error, {not recognized, CipherSuiteName :: string()}}

Convertsan RFC or OpenSSL name string to an erl_cipher_suite() Returns an error if the cipher suiteis not supported
or the name is not avalid cipher suite name.

suite to openssl str(CipherSuite) -> string()
Types:

CipherSuite = erl _ci pher_suite()
Convertserl_cipher_suite() to OpenSSL name string.
PRE TLS-1.3 these names differ for RFC hames

suite to str(CipherSuite) -> string()
Types:

CipherSuite = erl _ci pher_suite()
Convertserl_cipher_suite() to RFC name string.

transport accept(ListenSocket) ->
{ok, SslSocket} | {error, reason()}

transport accept(ListenSocket, Timeout) ->
{ok, SslSocket} | {error, reason()}

Types.
ListenSocket = ssl socket ()
Timeout = timeout()
SslSocket = ssl socket ()
Acceptsan incoming connection request on alisten socket. Li st enSocket must be asocket returned from listen/2.

The socket returned is to be passed to handshake/[2,3] to complete handshaking, that is, establishing the SSL/TLSY
DTLS connection.

52 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Most API functions require that the TLS/DTLS connection is established to work as expected.

The accepted socket inherits the options set for Li st enSocket in listen/2.

The default value for Ti meout isinfinity. If Ti neout is specified and no connection is accepted within the
giventime, {error, tineout} isreturned.

versions() -> [VersionInfo]
Types.
VersionInfo =
{ss1 app, string()} |
{supported | available, [tls_version()]} |
{supported dtls | available dtls, [dtls_version()]1}

Returns version information relevant for the SSL application.

app_vsn
The application version of the SSL application.
supported
SSL/TLS versions supported by default. Overridden by a version option on connect/[2,3,4], listen/2, and
sd_accept/[1,2,3]. For the negotiated SSL/TLS version, see connection_information/1 .
supported_dtls
DTLS versions supported by default. Overridden by a version option on connect/[2,3,4], listen/2, and
sd_accept/[1,2,3]. For the negotiated DTLS version, see connection_information/1 .
avai |l abl e
All SSL/TLS versions supported by the SSL application. TLS 1.2 requires sufficient support from the Crypto
application.
avail abl e _dtls
All DTLS versions supported by the SSL application. DTLS 1.2 requires sufficient support from the Crypto
application.

SEE ALSO
inet(3) and gen_tcp(3) gen _udp(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 53

ssl_crl_cache

ssl_crl_cache

Erlang module

Implements an internal CRL (Certificate Revocation List) cache. In addition to implementing the sd_crl_cache api
behaviour the following functions are available.

Data Types

DATA TYPES

crl src() =
{file, file:filenane()} | {der, public_key:der_encoded() }

uri() = wuri_string:uri_string()
Exports

delete(Entries) -> ok | {error, Reason}
Types.

Entries = crl _src()]}

Reason = crl _reason()

Delete CRLs from the ssl applications local cache.

insert(CRLSrc) -> ok | {error, Reason}
insert(URI, CRLSrc) -> ok | {error, Reason}

Types.
CRLSrc = crl _src()]}
URI = uri()

Reason = term()
Insert CRLs, available to fetch on DER format from URI , into the sdl applications local cache.

54 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_crl_cache_api

ssl_crl_cache_api

Erlang module

When SSL/TLS performs certificate path validation according to RFC 5280 it should also perform CRL validation
checks. To enable the CRL checks the application needs access to CRLs. A database of CRLS can be set up in many
different ways. This module provides the behavior of the APl needed to integrate an arbitrary CRL cache with the
erlang ssl application. It is also used by the application itself to provide a simple default implementation of a CRL
cache.

Data Types

crl _cache ref() = any()

Reference to the CRL cache.

dist point() = #'DistributionPoint'{}
For description see X509 certificates records

Exports

fresh crl(DistributionPoint, CRL) -> FreshCRL
Types:

DistributionPoint = dist_point()

CRL = [public_key:der_encoded()]

FreshCRL = [public_key: der_encoded()]

fun fresh_crl/2 will beusedasinput option updat e_cr | to public_key:pkix_crls validate/3

lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs
lookup(DistributionPoint, DbHandle) -> not available | CRLs
Types:

Di stri butionPoint = dist_point()

| ssuer = public_key:issuer_nane()

DbHandl e = crl _cache_ref()

CRLs = [public_key: der_encoded()]

Lookup the CRLs belonging to the distribution point Di st ri but i onpoi nt . This function may choose to only
look in the cache or to follow distribution point links depending on how the cache is administrated.

Thel ssuer argument contains the issuer name of the certificate to be checked. Normally the returned CRL should
be issued by thisissuer, except if the cRLI ssuer field of Di stri buti onPoi nt hasavalue, in which case that
value should be used instead.

Inan earlier version of this API, thel ookup function received two arguments, omitting | ssuer . For compatibility,
thisis still supported: if thereisno| ookup/ 3 function in the callback module, | ookup/ 2 iscalled instead.

select(Issuer, DbHandle) -> CRLs
Types.
| ssuer = public_key:issuer_nane()
DbHandl e = cache_ref ()

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 55

href

ssl_crl_cache_api

Select the CRLs in the cache that areissued by | ssuer

56 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_session_cache_api

ssl_session_cache_api

Erlang module

Definesthe API for the TL S session cache so that the data storage scheme can be replaced by defining a new callback
module implementing this API.

Data Types

session_cache ref()
session_cache key()

any ()
{partial _key(), ssl:session_id()}

A key to an entry in the session cache.

partial key()

The opaque part of the key. Does not need to be handled by the callback.
session()

The session data that is stored for each session.

Exports

delete(Cache, Key) ->

Types:
Cache = session_cache_ref()
Key = session_cache_key()

Deletes a cache entry. Isonly called from the cache handling process.

foldl(Fun, AccO, Cache) -> Acc

Types:
Fun = fun()
AccO = Acc = term)
Cache = session_cache_ref()
CdlsFun(El em Accl n) on successive elements of the cache, starting with Accl n == AccO. Fun/ 2 must

return a new accumulator, which is passed to the next call. The function returns the fina value of the accumulator.
AccO isreturned if the cache is empty.

init(Args) -> Cache
Types:
Cache = session_cache_ref()
Args = proplists:proplist()
Includes property {rol e, client | server}.Currently thisisthe only predefined property, there can aso be
user-defined properties. See aso application environment variable session_cb_init_args.

Performs possible initializations of the cache and returns a reference to it that is used as parameter to the other AP
functions. Is called by the cache handling processesi ni t function, hence putting the same requirements on it as a
normal processi ni t function. This function is called twice when starting the SSL application, once with the role
client and once with the role server, as the SSL application must be prepared to take on both roles.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 57

ssl_session_cache_api

lookup(Cache, Key) -> Entry

Types.
Cache = session_cache_ref()
Key = session_cache_key()
Session = session() | undefined

Looks up a cache entry. Isto be callable from any process.

select session(Cache, PartialKey) -> [Session]
Types.

Cache = session_cache_ref()

Partial Key = partial _key()

Session = session()

Selects sessions that can be reused. Isto be callable from any process.

size(Cache) -> integer()
Types:
Cache = session_cache_ref()

Returnsthe number of sessionsin the cache. If size exceeds the maximum number of sessions, the current cache entries
will beinvalidated regardless of their remaining lifetime. Is to be callable from any process.

terminate(Cache) ->

Types.
Cache = session_cache ref()
Asreturned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

update(Cache, Key, Session) ->
Types:
Cache = session_cache_ref()
Key = session_cache_key()
Session = session()

Caches anew session or updates an aready cached one. Isonly called from the cache handling process.

58 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

	Secure Socket Layer
	SSL User's Guide
	Introduction
	Purpose
	Prerequisites

	TLS/DTLS and TLS Predecessor, SSL
	Security Overview
	Data Privacy and Integrity
	Digital Certificates
	Peer Authentication
	TLS Sessions

	Using SSL application API
	Setting up Connections
	Minimal Example
	Upgrade Example - TLS only

	Customizing cipher suits
	Using an Engine Stored Key

	Using TLS for Erlang Distribution
	Building Boot Scripts Including the SSL Application
	Specifying Distribution Module for net_kernel
	Specifying SSL/TLS Options
	Specifying SSL/TLS Options (Legacy)
	Setting up Environment to Always Use SSL/TLS (Legacy)
	Using SSL/TLS distribution over IPv6

	Standards Compliance
	Purpose
	Common (pre TLS 1.3)
	Common
	SSL 2.0
	SSL 3.0
	TLS 1.0
	TLS 1.1
	TLS 1.2
	DTLS 1.0
	DTLS 1.2
	DTLS 1.3
	TLS 1.3

	Reference Manual
	ssl
	ssl
	append_cipher_suites/2
	cipher_suites/0
	cipher_suites/1
	cipher_suites/2
	cipher_suites/3
	eccs/0
	eccs/1
	clear_pem_cache/0
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	close/2
	controlling_process/2
	connection_information/1
	connection_information/2
	filter_cipher_suites/2
	format_error/1
	getopts/2
	getstat/1
	getstat/2
	handshake/1
	handshake/2
	handshake/2
	handshake/3
	handshake_cancel/1
	handshake_continue/2
	handshake_continue/3
	listen/2
	negotiated_protocol/1
	peercert/1
	peername/1
	prepend_cipher_suites/2
	prf/5
	recv/2
	recv/3
	renegotiate/1
	send/2
	setopts/2
	shutdown/2
	ssl_accept/1
	ssl_accept/2
	ssl_accept/3
	sockname/1
	start/0
	start/1
	stop/0
	str_to_suite/1
	suite_to_openssl_str/1
	suite_to_str/1
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_crl_cache
	delete/1
	insert/1
	insert/2

	ssl_crl_cache_api
	fresh_crl/2
	lookup/3
	lookup/2
	select/2

	ssl_session_cache_api
	delete/2
	foldl/3
	init/1
	lookup/2
	select_session/2
	size/1
	terminate/1
	update/3

