ERLANG

Kernel

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.
Kernel 6.4
maj 28, 2019

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

maj 28, 2019

1.1 Introduction

1 Kernel User's Guide

1.1 Introduction
1.1.1 Scope

TheKernd application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and soon.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications

* Codeloading

e Logging

e Globa name service

* Supervision of Erlang/OTP

* Communication with sockets

e Operating system interface

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 Logging

Erlang/OTP 21.0 providesastandard API for logging through Logger , whichispart of the Kernel application. Logger
consists of the API for issuing log events, and a customizable backend where log handlers, filters and formatters can

be plugged in.
By default, the Kernel applicationinstallsonelog handler at system start. Thishandler isnamed def aul t . It receives

and processes standard |og events produced by the Erlang runtime system, standard behaviours and different Erlang/
OTP applications. The log events are by default written to the terminal.

You can also configure the system so that the default handler prints log events to a single file, or to a set of wrap
logsviadi sk_I og.

By configuration, you can also modify or disable the default handler, replace it by a custom handler, and install
additional handlers.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce changes to the Logger APl and
functionality in patches following this release. These changes might or might not be backwards compatible with
theinitial version.

1.2.1 Overview
A log event consists of alog level, the message to be logged, and metadata.

Ericsson AB. All Rights Reserved.: Kernel | 1

1.2 Logging

The Logger backend forwards log events from the AP, first through a set of primary filters, then through a set of
secondary filters attached to each log handler. The secondary filters are in the following named handler filters.

Each filter set consists of alog level check, followed by zero or morefilter functions.

The following figure shows a conceptual overview of Logger. The figure shows two log handlers, but any number
of handlers can be installed.

Figure 2.1: Conceptual Overview

Log levels are expressed as atoms. Internally in Logger, the atoms are mapped to integer values, and alog event passes
the log level check if the integer value of itslog level isless than or equal to the currently configured log level. That
is, the check passesif the event is equally or more severe than the configured level. See section Log Level for alisting
and description of al log levels.

The primary log level can be overridden by alog level configured per module. This is to, for instance, allow more
verbose logging from a specific part of the system.

Filter functions can be used for more sophisticated filtering than the log level check provides. A filter function can
stop or pass alog event, based on any of the event's contents. It can also modify al parts of the log event. See see
section Filters for more details.

If alog event passes through al primary filtersand all handler filtersfor a specific handler, Logger forwards the event
to the handler callback. The handler formats and prints the event to its destination. See section Handlers for more
details.

Everything up to and including the call to the handler callbacks is executed on the client process, that is, the process
where the log event was issued. It is up to the handler implementation if other processes are involved or not.

The handlers are called in sequence, and the order is not defined.

1.2.2 Logger API

The API for logging consists of a set of macros, and a set of functionson theform | ogger : Level / 1, 2, 3, which
areall shortcutsfor | ogger : | og(Level , Argl[, Arg2[, Arg3]]).

Themacros aredefined inl ogger . hr | , which isincluded in amodule with the directive
-include lib("kernel/include/logger.hrl").

The difference between using the macros and the exported functions is that macros add location (originator)
information to the metadata, and performslazy evaluation by wrapping the logger call in acase statement, soit isonly
evaluated if thelog level of the event passes the primary log level check.

Log Level

Thelog level indicatesthe severity of aevent. In accordance with the Syslog protocol, RFC 5424, eight log levels can
be specified. The following tablelists al possible log levels by name (atom), integer value, and description:

Level Integer Description

emergency 0 system is unusable

alert 1 action must be taken immediately
critical 2 critical conditions

2 | Ericsson AB. All Rights Reserved.: Kernel

href

1.2 Logging

error 3 error conditions

warning 4 warning conditions

notice 5 normal but significant conditions
info 6 informational messages

debug 7 debug-level messages

Table 2.1: Log Levels

Notice that the integer value is only used internally in Logger. In the API, you must always use the atom. To compare
the severity of two log levels, use | ogger : conpare_| evel s/ 2.
Log Message

The log message contains the information to be logged. The message can consist of a format string and arguments
(given as two separate parameters in the Logger API), astring or areport. The latter, which is either amap or akey-
value list, can be accompanied by areport callback specified in the log event's metadata. The report callback is a
convenience function that the formatter can use to convert the report to a format string and arguments, or directly
to a string. The formatter can also use its own conversion function, if no callback is provided, or if a customized
formatting is desired.

The report callback must be a fun with one or two arguments. If it takes one argument, this is the report itself, and
the fun returns a format string and arguments:

fun((l ogger:report()) -> {io:format(),[term()1})

If it takes two arguments, the first is the report, and the second is a map containing extra data that allows direct
coversion to a string:

fun((l ogger:report(),l ogger:report_cb_config()) -> unicode: chardata())

The fun must obey the dept h and chars_| i mi t parameters provided in the second argument, as the formatter
cannot do anything useful of these parameters with the returned string. The extra data also contains a field named
si ngl e_Il i ne,indicating if the printed log message may contain line breaks or not. This variant is used when the
formatting of the report depends on the size or single line parameters.

Example, format string and arguments:

logger:error("The file does not exist: ~ts",[Filename])
Example, string:

logger:notice("Something strange happened!")
Example, report, and metadata with report callback:

logger:debug(#{got => connection request, id => Id, state => State},
#{report cb => fun(R) -> {"~p",[R]} end})

The log message can also be provided through afun for lazy evaluation. The fun is only evaluated if the primary log
level check passes, and is therefore recommended if it is expensive to generate the message. The lazy fun must return
astring, areport, or atuple with format string and arguments.

Ericsson AB. All Rights Reserved.: Kernel | 3

1.2 Logging

Metadata

M etadata contains additional data associated with alog message. Logger inserts some metadata fields by default, and
the client can add custom metadata in two different ways:

Set process metadata

Process metadata is set and updated with | ogger: set _process_netadata/1 and
| ogger : updat e_process_net adat a/ 1, respectively. This metadata applies to the process on which
these calls are made, and Logger adds the metadata to all log events issued on that process.

Add metadata to a specific log event
Metadata associated with one specific log event is given as the last parameter to the log macro or Logger API
function when the event isissued. For example:

?LOG_ERROR("Connection closed",#{context => server})

See the description of the | ogger : et adat a() type for information about which default keys Logger inserts,
and how the different metadata maps are merged.

1.2.3 Filters

Filters can be primary, or attached to a specific handler. Logger calls the primary filtersfirst, and if they all pass, it
calls the handler filters for each handler. Logger calls the handler callback only if al filters attached to the handler
in question also pass.

A filter isdefined as:
{FilterFun, Extra}

whereFi | t er Fun isafunction of arity 2, and Ext r a isany term. When applying thefilter, Logger callsthefunction
with the log event as the first argument, and the value of Ext r a asthe second argument. See | ogger: filter()
for type definitions.

Thefilter function can return st op, i gnor e or the (possibly modified) log event.

If st op isreturned, the log event isimmediately discarded. If the filter is primary, no handler filters or callbacks are
caled. If itisahandler filter, the corresponding handler callback is not called, but the log event is forwarded to filters
attached to the next handler, if any.

If the log event is returned, the next filter function is called with the returned value as the first argument. That is, if
afilter function modifies the log event, the next filter function receives the modified event. The value returned from
the last filter function is the value that the handler callback receives.

If the filter function returnsi gnor e, it means that it did not recognize the log event, and thus leaves to other filters
to decide the event's destiny.

The configuration optionf i | t er _def aul t specifies the behaviour if al filter functions returni gnor e, or if no
filtersexist.fi | t er _def aul t isby default settol og, meaningthat if all existing filtersignore alog event, L ogger
forwards the event to the handler callback. If fi | t er _def aul t issettost op, Logger discards such events.

Primary filters are added with | ogger:add_primary filter/2 and removed with
| ogger:remove_primary filter/ 1. They can aso be added at system start via the Kernel configuration
parameter | ogger .

Handler filters are added with | ogger:add_handler filter/3 and removed with
| ogger:renmove_handl er filter/2.They canalso be specified directly in the configuration when adding a
handler with | ogger : add_handl er/ 3 or viathe Kernel configuration parameter | ogger .

4 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

To see which filters are currently installed in the system, use | ogger: get _config/0, or
| ogger:get_primary_config/ 0and | ogger: get_handl er_confi g/ 1. Filters are listed in the order
they are applied, that is, the first filter in thelist is applied first, and so on.

For convenience, the following built-in filters exist:
| ogger filters: domain/2
Provides away of filtering log events based on adonmi n field in Met adat a.
| ogger filters:level/2
Provides away of filtering log events based on the log level.
| ogger _filters: progress/?2
Stops or alows progress reportsfrom super vi sor and appl i cati on_control |l er.
| ogger _filters:renote_gl/2
Stops or alows log events originating from a process that has its group |eader on a remote node.

1.2.4 Handlers
A handler is defined as a module exporting at least the following callback function:

| og(LogEvent, Config) -> void()

This function is called when alog event has passed through all primary filters, and all handler filters attached to the
handler in question. The function call is executed on the client process, and it is up to the handler implementation if
other processes are involved or not.

Logger alows adding multiple instances of a handler callback. That is, if a callback module implementation allows
it, you can add multiple handler instances using the same callback module. The different instances are identified by
unique handler identities.

In addition to the mandatory callback function | og/ 2, a handler module can export the optiona callback
functionsaddi ng_handl er/ 1,changi ng_confi g/ 3,filter_config/1l,andrenovi ng_handl er/ 1.
See section Handler Callback Functionsin the logger(3) manual page for more information about these function.

The following built-in handlers exist:
| ogger _std_h

Thisisthe default handler used by OTP. Multipleinstances can be started, and each instance will writelog events
to agiven destination, terminal or file.

| ogger _di sk log_h
This handler behaves much like | ogger _st d_h, except it usesdi sk_| og asits destination.
error_| ogger

This handler is provided for backwards compatibility only. It is not started by default, but
will be automaticaly started the first time an error_| ogger event handler is added with
error_| ogger:add_report_handler/1, 2.

Theold err or _| ogger event handlersin STDLIB and SASL till exist, but they are not added by Erlang/
OTP 21.0 or later.

Ericsson AB. All Rights Reserved.: Kernel | 5

1.2 Logging

1.2.5 Formatters

A formatter can be used by the handler implementation to do the final formatting of alog event, before printing to
the handler's destination. The handler callback receives the formatter information as part of the handler configuration,
which is passed as the second argument to HVbdul e: | og/ 2.

Theformatter information consist of aformatter module, FMbdul e and its configuration, FConf i g. FModul e must
export the following function, which can be called by the handler:

f or mat (LogEvent, FConfi g)
-> FormattedLogEntry

The formatter information for a handler is set as a part of its configuration when the handler is added. It
can aso be changed during runtime with | ogger: set handl er _confi g(Handl erld, formatter,
{ FModul e, FConfi g}) , which overwrites the current formatter information, or with
| ogger: update formatter_confi g/ 2, 3, which only modifies the formatter configuration.

If the formatter module exports the optional callback function check confi g(FConfi g), Logger cdls this
function when the formatter information is set or modified, to verify the validity of the formatter configuration.

If no formatter information is specified for a handler, Logger uses | ogger fornmatter as default. See the
| ogger _formatter(3) manua page for moreinformation about this module.

1.2.6 Configuration

At system start, Logger is configured through Kernel configuration parameters. The parameters that apply to Logger
are described in section Kernel Configuration Parameters. Examples are found in section Configuration Examples.

During runtime, Logger configuration is changed via API functions. See section Configuration APl Functionsin the
| ogger (3) manual page.

Primary Logger Configuration

Logger API functions that apply to the primary Logger configuration are:

e get_primary_config/0

e set _primary_config/l,2

e update_primary_config/1l

e add_primary_filter/2

e renmove_ primary filter/1

The primary Logger configuration is a map with the following keys:
level = logger:level() | all | none

Specifiesthe primary log level, that is, log event that are equally or more severe than thislevel, are forwarded to
the primary filters. Less severe log events are immediately discarded.

See section Log Level for alisting and description of possible log levels.

The initial value of this option is set by the Kernel configuration parameter | ogger _| evel . It is changed
during runtimewith | ogger: set_primary_config(l evel , Level).

Defaultstonot i ce.

filters = [{Filterld,Filter}]
Specifies the primary filters.
e« Filterld = logger:filter_id()
e Filter = logger:filter()

6 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

The initial value of this option is set by the Kernel configuration parameter | ogger. During
runtime, primary filters are added and removed with | ogger:add primary filter/2 and
| ogger:renove_primary_filter/1,respectively.

See section Filters for more detailed information.
Defaultsto[] .
filter_default = log | stop
Specifies what happensto alog event if al filtersreturni gnor e, or if nofilters exist.
See section Filters for more information about how this option is used.
Defaultsto | og.

Handler Configuration
Logger API functions that apply to handler configuration are:

e get_handler _config/0,1

e set_handler_config/2,3

e update_handl er _config/2,3

e add _handler filter/3

* renove_handler_filter/2

e update formatter _config/2,3

The configuration for a handler is a map with the following keys:
id = logger:handler _id()

Automatically inserted by Logger. The valueisthe same asthe Handl er | d specified when adding the handler,
and it cannot be changed.

nmodul e = nodul e()

Automatically inserted by Logger. The value is the same asthe Mbdul e specified when adding the handler, and
it cannot be changed.

level = logger:level() | all | none

Specifies the log level for the handler, that is, log events that are equally or more severe than this level, are
forwarded to the handler filters for this handler.

See section Log Level for alisting and description of possible log levels.

The log level is specified when adding the handler, or changed during runtime with, for instance,
| ogger: set _handl er _config(Handl erld, | evel, Level).

Defaultstoal | .

filters = [{Filterld,Filter}]
Specifies the handler filters.
e« Filterld = logger:filter_id()
e« Filter = logger:filter()

Handler filters are specified when adding the handler, or added or removed during runtime with
| ogger:add _handler filter/3and | ogger:renove_handl er _filter/2,respectively.

See Filters for more detailed information.
Defaultsto[] .

Ericsson AB. All Rights Reserved.: Kernel | 7

1.2 Logging

filter_default =1log | stop
Specifies what happensto alog event if al filtersreturni gnor e, or if no filters exist.
See section Filters for more information about how this option is used.
Defaultsto| og.
formatter = {Fornmatter Modul e, Fornatt er Confi g}
Specifies aformatter that the handler can use for converting the log event term to a printable string.

e FormatterMdul e = nodul e()
e« FormatterConfig = logger:formatter_config()

The formatter information is specified when adding the handler. The formatter configuration can be changed
during runtime with | ogger : update_fornmatter_confi g/ 2, 3, or the complete formatter information
can be overwritten with, for instance, | ogger : set _handl er _confi g/ 3.

See section Formatters for more detailed information.

Defaultsto { | ogger _formatter, Def aul t Formatt er Confi g} . Seethe | ogger _fornmatter(3)
manual page for information about this formatter and its default configuration.

config = tern()
Handler specific configuration, that is, configuration data related to a specific handler implementation.

The configuration for the built-in handlers is described in the |ogger _std h(3) and
| ogger di sk_| og_h(3) manua pages.

Noticethat| evel andfilt ers areobeyed by Logger itself before forwarding the log eventsto each handler, while
format t er and al handler specific options are left to the handler implementation.

Kernel Configuration Parameters
The following Kernel configuration parameters apply to Logger:
| ogger = [Config]

Specifies the configuration for Logger, except the primary log level, which is specified with | ogger _| evel ,
and the compatibility with SASL Error Logging, which is specified with | ogger _sasl _conpati bl e.

With this parameter, you can modify or disable the default handler, add custom handlers and primary logger
filters, set log levels per module, and modify the proxy configuration.

Conf i g isany (zero or more) of the following:

{handl er, default, undefined}
Disables the default handler. This allows another application to add its own default handler.
Only one entry of thistype is allowed.

{handl er, Handl erld, Mdul e, Handl erConfi g}
If Handl er | d isdef aul t, then this entry modifies the default handler, equivalent to calling

| ogger : renove_handl er (def aul t)
followed by

| ogger: add_handl er (def aul t, Modul e, Handl er Confi g)

8 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

For all other values of Handl er | d, this entry adds a new handler, equivalent to calling
| ogger: add_handl er (Handl er1 d, Mdul e, Handl er Confi g)

Multiple entries of thistype are allowed.
{filters, FilterDefault, [Filter]}
Adds the specified primary filters.

e FilterDefault = log | stop
 Filter = {Filterld, {FilterFun, FilterConfig}}

Equivaent to caling
l ogger:add_primary filter(Filterld, {FilterFun, FilterConfig})

foreachFil ter.
Fi | t er Def aul t specifiesthe behaviour if al primary filtersreturni gnor e, see section Filters.
Only one entry of thistypeis allowed.
{modul e_| evel , Level, [Mbdule]}
Sets module log level for the given modules. Equivaent to calling

| ogger: set _nodul e_| evel (Mbdul e, Level)

for each Modul e.

Multiple entries of thistype are allowed.
{proxy, ProxyConfi g}

Sets the proxy configuration, equivalent to calling

| ogger: set _proxy_confi g(ProxyConfig)

Only one entry of thistypeis allowed.
See section Configuration Examples for examples using thel ogger parameter for system configuration.
| ogger | evel = Level
Specifiesthe primary log level. Seethe ker nel (6) manual page for more information about this parameter.
| ogger _sasl _conpatible = true | false
Specifies Logger's compatibility with SASL Error Logging. See the ker nel (6) manua page for more
information about this parameter.
Configuration Examples

The value of the Kernel configuration parameter | ogger is alist of tuples. It is possible to write the term on the
command linewhen starting an erlang node, but asthe term grows, a better approach isto use the system configuration
file. Seetheconf i g(4) manua page for more information about thisfile.

Ericsson AB. All Rights Reserved.: Kernel | 9

1.2 Logging

Each of the following examples shows a simple system configuration file that configures Logger according to the
description.

Modify the default handler to print to afileinstead of st andar d_i o:

[{kernel,
[{logger,
[{handler, default, logger std h, 9% {handler, HandlerId, Module,
#{config => #{file => "log/erlang.log"}}} % Config}
13131

Modify the default handler to print each log event asa single line:

[{kernel,
[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter, #{single line => true}}}}
131} 1.

Modify the default handler to print the pid of the logging process for each log event:

[{kernel,
[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter,
#{template => [time," ",pid," ",msg,"\n"1}}}}
13131,

Modify the default handler to only print errors and more severe log eventsto "log/erlang.log”, and add another handler
to print all log eventsto "log/debug.log”.

[{kernel,
[{logger,
[{handler, default, logger std h,
#{level => error,
config => #{file => "log/erlang.log"}}},
{handler, info, logger std h,
#{level => debug,
config => #{file => "log/debug.log"}}}
131} 1.

1.2.7 Backwards Compatibility with error_logger
Logger provides backwards compatibility with er r or _I ogger inthefollowing ways:
API for Logging
Theerror _| ogger API till exists, but should only be used by legacy code. It will beremovedinalater release.

Cdls to error_l ogger:error_report/1, 2, error_|l ogger:error_nsg/ 1,2, and
corresponding functions for warning and info messages, are al forwarded to Logger as cals to
| ogger: | og(Level , Report, Met adat a) .

Level = error | warning | infoandistakenfrom thefunctionname. Report containstheactual log
message, and Met adat a contains additional information which can be used for creating backwards compatible
eventsfor legacy er r or _| ogger event handlers, see section Legacy Event Handlers.

Output Format

Togetlog eventsonthesameformat asproducedbyerror _| ogger _tty handerror _| ogger _file_h,
usethedefault formatter, | ogger _f or mat t er , with configuration parameter | egacy_header settot r ue.
Thisisthe default configuration of thedef aul t handler started by Kernel.

10 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

Default Format of Log Events from OTP

By default, all log events originating from within OTP, except the former so called "SASL reports', look the
same as before.

SASL Reports
By SASL reports we mean supervisor reports, crash reports and progress reports.

Prior to Erlang/OTP 21.0, these reports were only logged when the SASL application was running, and they were
printed trough SASL'sown event handlerssasl _report _tty handsasl _report file_h.

The destination of these log events was configured by SASL configuration parameters.
Due to the specific event handlers, the output format slightly differed from other log events.
Asof Erlang/OTP 21.0, the concept of SASL reportsisremoved, meaning that the default behaviour isasfollows:

e Supervisor reports, crash reports, and progress reports are no longer connected to the SASL application.

e Supervisor reports and crash reports areissued aser r or level log events, and are logged through the
default handler started by Kernel.

* Progressreportsareissued asi nf o level log events, and since the default primary log level isnot i ce,
these are not logged by default. To enable printing of progress reports, set the primary log level toi nf o.

e Theoutput format isthe samefor all log events.

If the old behaviour is preferred, the Kernel configuration parameter | ogger _sasl _conpati bl e can be
settot r ue. The SASL configuration parameters can then be used as before, and the SASL reports will only be
printed if the SASL application is running, through a second log handler named sasl .

All SASL reports have ametadatafield domai n whichissetto[ot p, sasl] . Thisfield can be used by filters
to stop or alow the log events.

See section SASL User's Guide for more information about the old SASL error logging functionality.
Legacy Event Handlers
To use event handlers written for er r or _| ogger , just add your event handler with

error_logger:add report handler/1,2.

Thisautomatically startsthe error logger event manager, and addser r or _| ogger asahandler to Logger, with
the following configuration:

#{level => info,
filter default => log,
filters => []}.

This handler ignores events that do not originate from the er r or _| ogger API, or from within OTP. This
meansthat if your code usesthe Logger API for logging, then your log eventswill be discarded by thishandler.

The handler is not overload protected.

1.2.8 Error Handling

Logger does, to a certain extent, check its input data before forwarding a log event to filters and handlers. It does,
however, not evaluate report callbacks, or check the validity of format strings and arguments. This means that al
filters and handlers must be careful when formatting the data of alog event, making sure that it does not crash due
to bad input data or faulty callbacks.

Ericsson AB. All Rights Reserved.: Kernel | 11

1.2 Logging

If afilter or handler still crashes, Logger will remove thefilter or handler in question from the configuration, and print
ashort error message to the terminal. A debug event containing the crash reason and other detailsis also issued.

See section Log Message for more information about report callbacks and valid forms of log messages.

1.2.9 Example: Add a handler to log info events to file

When starting an Erlang node, the default behaviour isthat all log eventsonlevel not i ce or more severe, arelogged
to the terminal viathe default handler. To also log info events, you can either change the primary log level to i nf o:

1> logger:set primary config(level, info).
ok

or set the level for one or afew modules only:

2> logger:set module level(mymodule, info).
ok

Thisalowsinfo eventsto pass through to the default handler, and be printed to the terminal aswell. If there are many
info events, it can be useful to print theseto afile instead.

First, set the log level of the default handler to not i ce, preventing it from printing info events to the terminal:

3> logger:set handler config(default, level, notice).
ok

Then, add a new handler which prints to file. You can use the handler module | ogger _st d_h, and configure it
tologtofile:

4> Config = #{config => #{file => "./info.log"}, level => info}.
#{config => #{file => "./info.log"}, level => info}

5> logger:add handler(myhandler, logger std h, Config).

ok

Sincefi | t er _def aul t defaultstol og, thishandler now receivesall log events. If you want info eventsonly inthe
file, you must add afilter to stop all non-info events. The built-in filter | ogger _filters: | evel /2 candothis:

6> logger:add handler filter(myhandler, stop non info,
{fun logger filters:level/2, {stop, neq, info}}).
ok

See section Filters for more information about thefiltersand thef i | t er _def aul t configuration parameter.

1.2.10 Example: Implement a handler

Section Handler Callback Functions in the logger(3) manual page describes the callback functions that can be
implemented for a Logger handler.

A handler callback module must export:
* log(Log, Config)
It can optionally also export some, or all, of the following:

e addi ng_handl er (Confi g)
e renovi ng_handl er (Confi g)
e changi ng_config(Set OrUpdate, O dConfig, NewConfig)

12 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

« filter_config(Config)

When a handler is added, by for example a call to | ogger: add_handl er (1d, Hwbdule, Config),
Logger first calls Hvbdul e: addi ng_handl er (Confi g) . If this function returns { ok, Confi g1}, Logger
writes Conf i g1 to the configuration database, and the | ogger : add_handl er/ 3 call returns. After this, the
handler isinstalled and must be ready to receive log events as callsto Hvbdul e: | og/ 2.

A handler can be removed by caling | ogger:renmove_handler(l1d). Logger cals
HModul e: renovi ng_handl er (Confi g), and removes the handler's configuration from the configuration
database.

When | ogger:set _handl er _config/ 2,3 or |ogger:update_handl er_config/2, 3 is caled,
Logger calls HVbdul e: changi ng_confi g(Set Or Update, O dConfi g, NewConfi g). If thisfunction
returns { ok, NewConf i g1}, Logger writes NewConf i g1 to the configuration database.

When | ogger:get _config/0 or |ogger:get_handl er_config/0,1 is cadled, Logger cals
HModul e: filter _confi g(Confi g). Thisfunction must return the handler configuration where internal data
isremoved.

A simple handler that prints to the terminal can be implemented as follows:

-module(myhandlerl).
-export([log/2]).

log(LogEvent, #{formatter := {FModule, FConfig}}) ->
io:put chars(FModule:format(LogEvent, FConfig)).

Notice that the above handler does not have any overload protection, and all log events are printed directly from the
client process.

For information and examples of overload protection, please refer to section Protecting the Handler from Overload,
and the implementation of | ogger _std_h and| ogger _di sk_| og_h .

Thefollowing isasimpler example of a handler which logs to afile through one single process:

Ericsson AB. All Rights Reserved.: Kernel | 13

1.2 Logging

-module(myhandler2).
-export([adding handler/1, removing handler/1, log/2]).
-export([init/1, handle call/3, handle cast/2, terminate/2]).

adding handler(Config) ->
MyConfig = maps:get(config,Config,#{file => "myhandler2.log"}),
{ok, Pid} = gen server:start(?MODULE, MyConfig, [1),
{ok, Config#{config => MyConfig#{pid => Pid}}}.

removing handler(#{config := #{pid := Pid}}) ->
gen_server:stop(Pid).

log(LogEvent,#{config := #{pid := Pid}} = Config) ->
gen server:cast(Pid, {log, LogEvent, Config}).

init(#{file := File}) ->
{ok, Fd} file:open(File, [append, {encoding, utf8}]),
{ok, #{file => File, fd => Fd}}.

handle call(, , State) ->

{reply, {error, bad request}, State}.

handle cast({log, LogEvent, Config}, #{fd := Fd} = State) ->
do log(Fd, LogEvent, Config),
{noreply, State}.

terminate(Reason, #{fd := Fd}) ->
= file:close(Fd),
ok.

do log(Fd, LogEvent, #{formatter := {FModule, FConfig}}) ->
String = FModule:format(LogEvent, FConfig),
io:put chars(Fd, String).

1.2.11 Protecting the Handler from Overload

The default handlers, | ogger _std_h and | ogger di sk_| og_h, feature an overload protection mechanism,
which makes it possible for the handlers to survive, and stay responsive, during periods of high load (when huge
numbers of incoming log requests must be handled). The mechanism works as follows:

Message Queue Length

The handler process keeps track of the length of its message queue and takes some form of action when the current
length exceeds a configurable threshold. The purpose is to keep the handler in, or to as quickly as possible get the
handler into, a state where it can keep up with the pace of incoming log events. The memory use of the handler
must never grow larger and larger, since that will eventually cause the handler to crash. These three thresholds, with
associated actions, exist:

sync_node_gl en

Aslong as the length of the message queue is lower than this value, all log events are handled asynchronously.
Thismeansthat the client process sending thelog event, by calling alog functionin the Logger API, does not wait
for aresponse from the handler but continues executing immediately after the event is sent. It is not affected by
thetimeit takesthe handler to print the event to the log device. If the message queue grows larger than thisvalue,
the handler starts handling log events synchronously instead, meaning that the client process sending the event
must wait for aresponse. When the handler reduces the message queue to alevel below thesync_node_ gl en
threshold, asynchronous operation is resumed. The switch from asynchronous to synchronous mode can slow
down the logging tempo of one, or afew, busy senders, but cannot protect the handler sufficiently in a situation
of many busy concurrent senders.

Defaultsto 10 messages.

14 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

drop_node_qgl en

When the message queue grows larger than this threshold, the handler switches to a mode in which it drops all
new events that senders want to log. Dropping an event in this mode means that the call to the log function never
results in a message being sent to the handler, but the function returns without taking any action. The handler
keeps logging the events that are already in its message queue, and when the length of the message queue is
reduced to a level below the threshold, synchronous or asynchronous mode is resumed. Notice that when the
handler activates or deactivates drop mode, information about it is printed in the log.

Defaultsto 200 messages.
flush_qgl en

If the length of the message queue grows larger than this threshold, a flush (delete) operation takes place. To
flush events, the handler discards the messagesin the message queue by receiving themin aloop without logging.
Client processeswaiting for aresponse from asynchronouslog request receive areply from the handler indicating
that the request is dropped. The handler process increases its priority during the flush loop to make sure that no
new events are received during the operation. Notice that after the flush operation is performed, the handler prints
information in the log about how many events have been del eted.

Defaultsto 1000 messages.
For the overload protection algorithm to work properly, it is required that:
sync_node_qgl en =< drop_node_qgl en =< flush_gl en
and that:
drop_node glen > 1
To disable certain modes, do the following:
 Ifsync_node_ql enissettoO, all log events are handled synchronously. That is, asynchronous logging is

disabled.

e Ifsync_node_ gl en issettothesamevaueasdr op_node_ql en, synchronous mode isdisabled. That is,
the handler always runs in asynchronous mode, unless dropping or flushing is invoked.

« Ifdrop_node_ql enissettothesamevaueasf | ush_qgl en, drop modeis disabled and can never occur.

During high load scenarios, the length of the handler message queue rarely grows in a linear and predictable way.
Instead, whenever the handler processis scheduled in, it can have an almost arbitrary number of messages waiting in
the message queue. It isfor this reason that the overload protection mechanism isfocused on acting quickly, and quite
drastically, such asimmediately dropping or flushing messages, when alarge queue length is detected.

The values of the previoudly listed thresholds can be specified by the user. This way, a handler can be configured
to, for example, not drop or flush messages unless the message queue length of the handler process grows extremely
large. Notice that large amounts of memory can be required for the node under such circumstances. Another example
of user configuration is when, for performance reasons, the client processes must never be blocked by synchronous
log requests. It is possible, perhaps, that dropping or flushing events is still acceptable, since it does not affect the
performance of the client processes sending the log events.

A configuration example:

logger:add handler(my standard h, logger std h,
#{config => #{file => "./system info.log",
sync_mode qglen => 100,
drop mode glen => 1000,
flush _qlen => 2000}}).

Ericsson AB. All Rights Reserved.: Kernel | 15

1.2 Logging

Controlling Bursts of Log Requests

Large bursts of log events - many events received by the handler under a short period of time - can potentially cause
problems, such as:

* Logfilesgrow very large, very quickly.
e Circular logs wrap too quickly so that important data is overwritten.
* Write buffers grow large, which slows down file sync operations.

For this reason, both built-in handlers offer the possibility to specify the maximum number of events to be handled
within acertain timeframe. With thisburst control feature enabled, the handler can avoid choking thelog with massive
amounts of printouts. The configuration parameters are:

burst _limt_enable
Vauet r ue enables burst control and f al se disablesit.
Defaultstot r ue.

burst _|imnt_max_count

This is the maximum number of eventsto handle withinaburst _|imnmit_w ndow ti ne timeframe. After
the limit is reached, successive events are dropped until the end of the time frame.

Defaultsto 500 events.

burst _limt_w ndow tine
See the previous description of bur st _|imt_nmax_count.
Defaultsto 1000 milliseconds.

A configuration example:

logger:add handler(my disk log h, logger disk log h,
#{config => #{file => "./my disk log",
burst limit enable => true,
burst limit max count => 20,
burst limit window time => 500}}).
Terminating an Overloaded Handler

It is possible that a handler, even if it can successfully manage peaks of high load without crashing, can build up a
large message queue, or use alarge amount of memory. The overload protection mechanism includes an automatic
termination and restart feature for the purpose of guaranteeing that a handler does not grow out of bounds. The feature
is configured with the following parameters:

overl oad_kill_enabl e
Valuet r ue enablesthe feature and f al se disablesit.
Defaultstof al se.

overload kill _qglen

This is the maximum allowed queue length. If the message queue grows larger than this, the handler processis
terminated.

Defaultsto 20000 messages.
overl oad_kill_nem si ze

This is the maximum memory size that the handler process is alowed to use. If the handler grows larger than
this, the process is terminated.

Defaultsto 3000000 bytes.

16 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

overload kill _restart_after

If the handler isterminated, it restarts automatically after adelay specified in milliseconds. Thevaluei nfi nity
prevents restarts.

Defaultsto 5000 milliseconds.

If the handler process is terminated because of overload, it prints information about it in the log. It also prints
information about when arestart has taken place, and the handler is back in action.

The sizes of the log events affect the memory needs of the handler. For information about how to limit the size of
log events, seethel ogger formatter(3) manual page.

1.2.12 Logger Proxy

The Logger proxy is an Erlang process which is part of the Kernel application’s supervision tree. During startup, the
proxy process registers itself as the syst em | ogger , meaning that log events produced by the emulator are sent
to this process.

When alog event isissued on aprocesswhich hasitsgroup leader on aremote node, Logger automatically forwardsthe
log event to the group leader's node. To achievethis, it first sends the log event as an Erlang message from the original
client processto the proxy on the local node, and the proxy in turn forwards the event to the proxy on the remote node.

When receiving alog event, either from the emulator or from a remote node, the proxy calls the Logger API to log
the event.

Theproxy processisoverload protected in the sameway as described in section Protecting the Handler from Overload,
but with the following default values:

#{sync_mode qglen => 500,
drop_mode glen => 1000,
flush glen => 5000,
burst limit enable => false,
overload kill enable => false}

For log events from the emulator, synchronous message passing mode is not applicable, since all messages are passed
asynchronously by the emulator. Drop mode is achieved by setting the syst em | ogger to undef i ned, forcing
the emulator to drop events until it is set back to the proxy pid again.

The proxy uses er | ang: send_nosuspend/ 2 when sending log events to a remote node. If the message could
not be sent without suspending the sender, it is dropped. Thisisto avoid blocking the proxy process.

1.2.13 See Also

disk_log(3), erlang(3), error_logger(3), |logger(3), Ilogger_disk_log_h(3),
| ogger filters(3),logger formatter(3),l ogger_std _h(3),sasl (6)

Ericsson AB. All Rights Reserved.: Kernel | 17

1.2 Logging

2 Reference Manual

18 | Ericsson AB. All Rights Reserved.: Kernel

kernel

kernel
Application

TheKernel application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and soon.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
* Codeloading

e Logging

* Globa name service

e Supervision of Erlang/OTP

e Communication with sockets

e Operating system interface

Logger Handlers
Two standard logger handlers are defined in the Kernel application. These are described in the Kernel User's Guide,
andinthel ogger _std_h(3) andl ogger _di sk_I og_h(3) manual pages.

OS Signal Event Handler

Asynchronous OS signals may be subscribed to viathe Kernel applications event manager (see OTP Design Principles
andgen_event (3)) registeredaser | _si gnal _ser ver . A default signal handler isinstalled which handlesthe
following signals:

sigusrl

The default handler will halt Erlang and produce a crashdump with slogan "Received SIGUSR1". This is
equivalentto callinger | ang: hal t (" Recei ved SI GUSR1").

sigquit
The default handler will halt Erlang immediately. Thisis equivalent to callinger | ang: hal t () .
sigterm

The default handler will terminate Erlang normally. Thisis equivalent to callingi ni t: st op() .

Events
Any event handler added to er | _si gnal _ser ver must handle the following events.
si ghup
Hangup detected on controlling terminal or death of controlling process
si gquit
Quit from keyboard
si gabrt
Abort signal from abort
sigalrm

Timer signal from alarm

Ericsson AB. All Rights Reserved.: Kernel | 19

kernel

sigterm
Termination signal
sigusrl
User-defined signal 1
si gusr2
User-defined signal 2
sigchld
Child process stopped or terminated
si gstop
Stop process
sigtstp
Stop typed at terminal
Setting OS signals are described in 0s: set _si gnal / 2.

Configuration

The following configuration parameters are defined for the Kernel application. For more information about
configuration parameters, seefileapp(4) .

distributed = [Distrib]
Specifieswhich applicationsthat are distributed and on which nodesthey are allowed to execute. In thisparameter:
e Distrib = {App, Nodes} | {App, Ti me, Nodes}

* App = aton()
« Time = integer()>0
e Nodes = [node() | {node(),...,node()}]

The parameter isdescribed inappl i cati on: | oad/ 2.
di st _aut o_connect = Val ue

Specifies when nodes are automatically connected. If this parameter is not specified, a node is aways
automatically connected, for example, when a message is to be sent to that node. Val ue is one of:

never
Connectionsare never automatically established, they must be explicitly connected. Seenet _ker nel (3).
once

Connections are established automatically, but only once per node. If a node goes down, it must thereafter
be explicitly connected. Seenet _ker nel (3).

perm ssions = [Perm
Specifies the default permission for applications when they are started. In this parameter:
e Perm = { Appl Nane, Bool }

e« Appl Nane = atom()
e Bool = bool ean()

Permissions are described inappl i cati on: perm t/ 2.

20 | Ericsson AB. All Rights Reserved.: Kernel

kernel

| ogger = [Confi g]

Specifies the configuration for Logger, except the primary log level, which is specified with | ogger _I evel ,
and the compatibility with SASL Error Logging, which is specified with | ogger _sasl _conpati bl e.

Thel ogger parameter isdescribed in section Logging in the Kernel User's Guide.
| ogger | evel = Level

Specifies the primary log level for Logger. Log events with the same, or a more severe level, pass through the
primary log level check. See section Logging in the Kernel User's Guide for more information about Logger and

log levels.
Level = emergency | alert | critical | error | warning | notice | info |
debug | all | none

To change the primary log level at runtime, use | ogger : set _primary_config(l evel, Level).
Defaultstonot i ce.
| ogger _sasl _conpatible = true | false

Specifiesif Logger behaves backwards compatible with the SASL error logging functionality from releases prior
to Erlang/OTP 21.0.

If this parameter is set to t r ue, the default Logger handler does not log any progress-, crash-, or supervisor
reports. If the SASL application is then started, it adds a Logger handler named sas| , which logs these events
according to values of the SASL configuration parameter sasl _error _| ogger andsasl _errl og_type.

See section Deprecated Error Logger Event Handlers and Configuration in the sasl(6) manua page for
information about the SASL configuration parameters.

See section SASL Error Logging in the SASL User's Guide, and section Backwards Compatibility with
error_logger in the Kernel User's Guide for information about the SASL error logging functionality, and how
Logger can be backwards compatible with this.

Defaultsto f al se.

If this parameter issettot r ue, sasl _errl og_t ype indicates that progress reports shall be logged, and
the configured primary log level isnot i ce or more severe, then SASL automatically sets the primary log
level toi nf 0. That is, this setting can potentially overwrite the value of the Kernel configuration parameter
| ogger | evel . Thisis to alow progress reports, which have log level i nf o, to be forwarded to the
handlers.

gl obal _groups = [GroupTupl €]
Defines global groups, see gl obal _gr oup(3) . Inthis parameter:

e GoupTuple = {G oupNane, [Node]} | {GoupName, PublishType, [Node]}
e GoupNane = atom()
e PublishType = normal | hidden
e Node = node()
i net _default_connect_options = [{Opt, Val}]

Specifies default options for connect sockets, seei net (3) .
inet_default listen options = [{Opt, Val}]
Specifies default optionsfor | i st en (and accept) sockets, seei net (3) .

Ericsson AB. All Rights Reserved.: Kernel | 21

kernel

{inet _dist _use_interface, ip_address()}

If the host of an Erlang node has many network interfaces, this parameter specifies which one to listen on. For
the type definition of i p_addr ess(), seei net (3).

{inet_dist_listen_mn, First} and{inet_dist_l|isten_nax, Last}
Definesthe Fi r st . . Last port range for the listener socket of a distributed Erlang node.
{inet _dist |isten_options, Opts}

Defines alist of extra socket options to be used when opening the listening socket for a distributed Erlang node.
Seegen_tcp:listen/2.

{inet_dist_connect_options, Opts}

Defines a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_t cp: connect/ 4.

i net_parse_error_log = silent
If set, no log events are issued when erroneous lines are found and skipped in the various Inet configuration files.
inetrc = Fil enane

The name (string) of an Inet user configuration file. For details, see section | net Confi gur ati on in the
ERTS User's Guide.

net _setuptinme = SetupTi ne

Set upTi me must be a positive integer or floating point number, and is interpreted as the maximum allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is120. If higher values are specified, 120 isused. Default is 7 seconds if the variable is not specified, or if the
valueisincorrect (for example, not a number).

Notice that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

net ticktine = TickTinme
Specifies the net _ker nel tick time in seconds. This is the approximate time a connected node may be
unresponsive until it is considered down and thereby disconnected.

Onceevery Ti ckTi me/ 4 seconds, each connected node isticked if nothing has been sent to it during that last
Ti ckTi me/ 4 interval. A tick is a small package sent on the connection. A connected node is considered to
be down if no ticks or payload packages have been received during the last four Ti ckTi e/ 4 intervals. This
ensures that nodes that are not responding, for reasons such as hardware errors, are considered to be down.

Astheavailability isonly checked every Ti ckTi me/ 4 seconds, the actual time T anode have been unresponsive
when detected may vary between M nT and Max T, where:

MinT
MaxT

TickTime - TickTime / 4
TickTime + TickTime / 4

Ti ckTi ne defaultsto 60 seconds. Thus, 45 < T < 75 seconds.

Notice that all communicating nodes are to have the same Ti ckTi ne value specified, asit determines both the
frequency of outgoing ticks and the expected frequency of incominging ticks.

Normally, aterminating node is detected immediately by the transport protocol (like TCP/IP).
shutdown_timeout = integer() | infinity

Specifiesthetimeappl i cati on_contr ol | er waitsfor an application to terminate during node shutdown.
If the timer expires, appl i cati on_control | er brutaly killsappl i cati on_mast er of the hanging
application. If this parameter is undefined, it defaultstoi nfinity.

22 | Ericsson AB. All Rights Reserved.: Kernel

kernel

sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes that must be alive for this node to start properly. If some node in the list does not
start within the specified time, this node does not start either. If this parameter is undefined, it defaultsto[] .

sync_nodes_opti onal = [NodeNane]

Specifies which other nodesthat can be alive for this node to start properly. If some nodeinthislist does not start
within the specified time, this node starts anyway. If this parameter is undefined, it defaults to the empty list.

sync_nodes _tinmeout = integer() | infinity

Specifies the time (in milliseconds) that this node waits for the mandatory and optional nodes to start. If this
parameter is undefined, no node synchronization is performed. Thisoption ensuresthat gl obal issynchronized.

start _distribution = true | fal se

Starts al distribution services, such as r pc, gl obal , and net _ker nel if the parameter is t r ue. This
parameter isto be set to f al se for systems who want to disable all distribution functionality.

Defaultstot r ue.
start_dist_ac = true | false

Starts the di st _ac server if the parameter ist r ue. This parameter is to be set to t r ue for systems using
distributed applications.

Defaultstof al se. If this parameter is undefined, the server is started if parameter di st ri but ed isset.
start _boot _server = true | false

Startstheboot _ser ver if the parameterist r ue (seeer| _boot _server (3)). This parameter isto be set
tot r ue in an embedded system using this service.

Defaultstof al se.
boot server_slaves = [Sl avel P

If configuration parameter start boot server is true, this parameter can be used to initialize
boot server withalist of slave IP addresses:

Slavel P = string() | atom| {integer(),integer(),integer(),integer()},
where0 <= integer() <=255.
Examples of Sl avel Pinatom, string, and tuple form:
' 150. 236. 16. 70', "150, 236, 16, 70", {150, 236, 16, 70}.
Defaultsto[] .
start _disk log = true | false

Startsthe di sk_| og_ser ver if the parameter ist r ue (seedi sk_I 0og(3)). This parameter isto be set to
t r ue in an embedded system using this service.

Defaultstof al se.
start_pg2 =true | false

Startsthepg?2 server (seepg2(3)) if theparameter ist r ue. Thisparameteristobesettot r ue in an embedded
system that uses this service.

Defaultstof al se.
start _tinmer = true | false

Startsthet i mer _ser ver if the parameter ist r ue (seet i ner (3)). Thisparameter istobe settotr ue in
an embedded system using this service.

Ericsson AB. All Rights Reserved.: Kernel | 23

kernel

Defaultstof al se.
shel | _history = enabled | disabled

Specifies whether shell history should be logged to disk between usages of er | .
shel |l _history drop = [string()]

Specific log lines that should not be persisted. For example["qg().", "init:stop()."] will alow to
ignore commands that shut the node down. Defaultsto[] .

shel |l _history_file_bytes = integer()
how many bytes the shell should remember. By default, the valueis set to 512kb, and the minimal value is 50kb.
shel | _history_path = string()

Specifies where the shell history files will be stored. defaults to the user's cache directory as returned by
fil enane: basedi r (user_cache, "erl ang-history").

shut down_func = {Md, Func}
Where:
« Md = atom()
e Func = atom()
Sets afunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as

Mod: Func(Reason) ,whereReason istheterminatereasonfor appl i cati on_control | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.

source_search_rules = [DirRule] | [SuffixRule]
Where:
e DirRule = {ObjDirSuffix, Srchirsuffix}
e SuffixRule = {ObjSuffix, SrcSuffix,[DirRule]}
e ObjDirSuffix = string()
e Srchirsuffix = string()
e (ObjSuffix = string()
e SrcSuffix = string()
Specifiesalist of rulesforuseby filelib:find file/2 filelib:find_source/2Ifthisissetto
some other value than the empty list, it replaces the default rules. Rules can be simple pairs of directory suffixes,
suchas{"ebin", "src"},whichareusedbyfilelib:find_ filel2,ortriplesspecifying separate

directory suffix rules depending on file name extensions, for example[{" . beant', ".erl", [{"ebin",
"src"}]},whichareusedbyfil elib:find_source/2.Bothkindsof rulescan be mixed inthelist.

The interpretation of Cbj Di r Suf fi x and SrcDi r Suf fi x is as follows: if the end of the directory name
where an object islocated matches Obj Di r Suf f i x, then the name created by replacing Cbj Di r Suf f i x with
SrcDir Suffix isexpanded by calling fil elib:wi | dcard/ 1, andthefirst regular file found among the
matchesis the sourcefile.

Deprecated Configuration Parameters

In Erlang/OTP 21.0, anew API for logging was added. Theold er r or _| ogger event manager, and event handlers
running on this manager, still work, but they are no longer used by default.

The following application configuration parameters can till be set, but they are only used if the corresponding
configuration parameters for Logger are not set.

24 | Ericsson AB. All Rights Reserved.: Kernel

kernel

error_| ogger
Replaced by setting thet ype, and possibly f i | e and nodes parameters of the default | ogger _std_h
handler. Example:

erl -kernel logger '[{handler,default,logger std h,#{config=>#{file=>"/tmp/erlang.log"}}}1"'

error _| ogger format_depth
Replaced by setting the dept h parameter of the default handlers formatter. Example:

erl -kernel logger '[{handler,default,logger std h,#{formatter=>{logger formatter,#{legacy header=>true

See Backwards compatibility with error_logger for more information.

See Also

app(4), application(3), code(3), disk log(3), erl_boot_server(3), erl_ddll(3),
file(3), global (3), gl obal _group(3), heart(3), inet(3), | ogger(3), net_kernel (3),
0s(3),pg2(3),rpc(3),seq_trace(3),user(3),tinmer(3)

Ericsson AB. All Rights Reserved.: Kernel | 25

app

app

Name

The application resour ce file specifies the resources an application uses, and how the application is started. There
must always be one application resource file called Appl i cat i on. app for each application Appl i cati on in
the system.

The fileis read by the application controller when an application is loaded/started. It is also used by the functionsin
syst ool s, for example when generating start scripts.
File Syntax

The application resource file is to be called Appl i cat i on. app, where Appl i cat i on is the application name.
Thefileisto belocated in directory ebi n for the application.

The file must contain asingle Erlang term, which is called an application specification:

{application, Application,
[{description, Description},

{id, Id},
{vsn, Vsn},
{modules, Modules},
{maxP, MaxP},
{maxT, MaxT},
{registered, Names},

{included applications, Apps},
{applications, Apps},

{env, Env},

{mod, Start},

{start phases, Phases},

{runtime dependencies, RTDeps}]}.

Value Default

Application atom() -

Description string() "
Id string() "
Vsn string() "
Modules [Module] [1
MaxP int() infinity
MaxT int() infinity
Names [Name] []
Apps [App] [1
Env [{Par,Val}] []
Start {Module,StartArgs} []
Phases [{Phase,PhaseArgs}] undefined
RTDeps [ApplicationVersion] []

Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArgs = term()
ApplicationVersion = string()

Appl i cation
Application name.

For the application controller, al keys are optional. The respective default values are used for any omitted keys.
Thefunctionsin syst ool s require more information. If they are used, the following keys are mandatory:
e description

26 | Ericsson AB. All Rights Reserved.: Kernel

app

* vsn

* nodul es

e registered

e applications

The other keys areignored by syst ool s.
description

A one-line description of the application.
id

Product identification, or similar.
vsn

Version of the application.
nodul es

All modules introduced by this application. syst ool s usesthislist when generating start scripts and tar files.
A module can only be defined in one application.

max P

Deprecated - isignored

Maximum number of processes alowed in the application.
maxT

Maximum time, in milliseconds, that the application is allowed to run. After the specified time, the application
terminates automatically.

regi stered

All names of registered processes started in this application. syst ool s uses this list to detect name clashes
between different applications.

i ncl uded_applications

All applicationsincluded by this application. When this application is started, all included applications are loaded
automatically, but not started, by the application controller. It is assumed that the top-most supervisor of the
included application is started by a supervisor of this application.

applications

All applications that must be started before this application is allowed to be started. syst ool s usesthislist to
generate correct start scripts. Defaults to the empty list, but notice that all applications have dependencies to (at
least) Kernel and STDLIB.

env

Configuration parameters used by the application. The value of a configuration parameter isretrieved by calling
appl i cation: get_env/ 1, 2. Thevauesin the application resource file can be overridden by valuesin a
configuration file (seeconfi g(4)) or by command-lineflags (seeerts: erl (1)).

nod
Specifies the application callback module and a start argument, seeappl i cati on(3).

Key nod is necessary for an application implemented as a supervision tree, otherwise the application controller
does not know how to start it. mod can be omitted for applications without processes, typically code libraries,
for example, STDLIB.

Ericsson AB. All Rights Reserved.: Kernel | 27

app

start_phases

A list of start phases and corresponding start arguments for the application. If this key
is present, the application master, in addition to the usual cal to Mdul e:start/2, aso
cals Modul e: start _phase(Phase, Type, PhaseArgs) for each stat phase defined by key
st art _phases. Only after thisextended start procedure, appl i cati on: start (Appl i cati on) returns.

Start phases can be used to synchronize startup of an application and its included applications. In this case, key
nmod must be specified as follows:
{mod, {application starter, [Module,StartArgs]}}

The application master then calls Modul e: start/ 2 for the primary application, followed by calls to
Modul e: st art _phase/ 3 for each start phase (as defined for the primary application), both for the primary
application and for each of itsincluded applications, for which the start phase is defined.

Thisimplies that for an included application, the set of start phases must be a subset of the set of phases defined
for the primary application. For more information, see OTP Design Principles.

runti ne_dependenci es

A list of application versions that the application depends on. An example of such an application version is
"kernel - 3. 0". Application versions specified as runtime dependencies are minimum requirements. That is,
alarger application version than the one specified in the dependency satisfies the requirement. For information
about how to compare application versions, see section Versions in the System Principles User's Guide.

Notice that the application version specifies a source code version. One more, indirect, requirement is that the
installed binary application of the specified version is built so that it is compatible with the rest of the system.

Some dependencies can only be required in specific runtime scenarios. When such optional dependencies exist,
these are specified and documented in the corresponding "App" documentation of the specific application.

Therunti me_dependenci es key was introduced in OTP 17.0. The type of its value might be subject
to changes during the OTP 17 release.

All runtime dependencies specified in OTP applications during the OTP 17 release may not be completely
correct. Thisis actively being worked on. Declared runtime dependencies in OTP applications are expected
to be correct in OTP 18.

See Also
application(3),systool s(3)

28 | Ericsson AB. All Rights Reserved.: Kernel

application

application

Erlang module

In OTP, application denotes a component implementing some specific functionality, that can be started and stopped
asaunit, and that can be reused in other systems. This module interacts with application controller, aprocess started
at every Erlang runtime system. This module contains functions for controlling applications (for example, starting and
stopping applications), and functionsto accessinformation about applications (for exampl e, configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resource file named Appl i cati on. app, where Appl i cat i on is the application name. For details about the
application specification, see app(4) .

Thismodule can a so be viewed as a behaviour for an application implemented according to the OTP design principles
asasupervision tree. The definition of how to start and stop thetreeisto belocated in an application callback module,
exporting a predefined set of functions.

For details about applications and behaviours, see OTP Design Principles.

Data Types
start type() =
normal |
{takeover, Node :: node()} |
{failover, Node :: node()}
restart type() = permanent | transient | temporary

tuple of(T)
A tuple where the elements are of type T.

Exports

ensure all started(Application) -> {ok, Started} | {error, Reason}

ensure all started(Application, Type) ->
{ok, Started} | {error, Reason}

Types:
Application = atom()
Type = restart_type()
Started = [atom()]
Reason = term()

Equivalent to calling st art / 1, 2 repeatedly on al dependencies that are not yet started for an application.

Returns { ok, AppNames} for asuccessful start or for an aready started application (which is, however, omitted
from the AppNarnes list).

Thefunctionreports{ error, {AppNane, Reason}} for errors, where Reason isany possible reason returned
by start/ 1, 2 when starting a specific dependency.

If an error occurs, the applications started by the function are stopped to bring the set of running applications back
toitsinitial state.

Ericsson AB. All Rights Reserved.: Kernel | 29

application

ensure started(Application) -> ok | {error, Reason}
ensure started(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart_type()

Reason = term()
Equivalenttost art/ 1, 2 except it returns ok for already started applications.

get all env() -> Env
get all env(Application) -> Env
Types:
Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Appl i cat i on. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
functionreturns|] .

get all key() -> []1 | {ok, Keys}
get all key(Application) -> undefined | Keys

Types:
Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their values for Appl i cat i on. If the argument is omitted, it defaults
to the application of the calling process.

If the specified application is not loaded, the function returnsundef i ned. If the process executing the call does not
belong to any application, the function returns|] .

get application() -> undefined | {ok, Application}
get application(PidOrModule) -> undefined | {ok, Application}

Types:
PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returns the name of the application to which the process Pi d or the module Mbdul e belongs. Providing no argument
isthesameascallingget _application(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returnsundef i ned.

get env(Par) -> undefined | {ok, Val}

get env(Application, Par) -> undefined | {ok, Val}
Types:

30 | Ericsson AB. All Rights Reserved.: Kernel

application

Application = Par = atom()
Val = term()

Returns the value of configuration parameter Par for Appl i cati on. If the application argument is omitted, it
defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

e The specified application is not loaded.
* Theconfiguration parameter does not exist.
» The process executing the call does not belong to any application.

get env(Application, Par, Def) -> Val
Types:

Application = Par = atom()

Def = Val = term()

Workslikeget _env/ 2 but returns value Def when configuration parameter Par does not exist.

get key(Key) -> undefined | {ok, Val}
get key(Application, Key) -> undefined | {ok, Val}

Types:
Application = Key = atom()
Val = term()

Returnsthe value of the application specification key Key for Appl i cat i on. If the application argument is omitted,
it defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

* The specified application is not loaded.
e The specification key does not exist.
» The process executing the call does not belong to any application.

load(AppDescr) -> ok | {error, Reason}

load (AppDescr, Distributed) -> ok | {error, Reason}

Types.
AppDescr = Application | (AppSpec :: application_spec())
Application = atom()

Distributed =

{Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple_of (node())]
Time = integer() >=1
Reason = term()
application spec() =

{application,

Application :: atom(),

AppSpecKeys :: [application_opt()]}
application opt() =

{description, Description :: string()} |

Ericsson AB. All Rights Reserved.: Kernel | 31

application

{vsn, Vsn :: string()} |
{id, Id :: string()} |
{modules, [Module :: module()]} |
{registered, Names :: [Name :: atom()1} |
{applications, [Application :: atom()1} |
{included applications, [Application :: atom()]} |
{env, [{Par :: atom(), Val :: term()}1} |
{start phases,
[{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
{maxT, MaxT :: timeout()} |
{maxP, MaxP :: integer() >= 1 | infinity} |
{mod, Start :: {Module :: module(), StartArgs :: term()}}

Loads the application specification for an application into the application controller. It also loads the application
specifications for any included applications. Notice that the function does not load the Erlang object code.

The application can be specified by itsname Appl i cat i on. Inthiscase, the application controller searchesthe code
path for the application resource file Appl i cat i on. app and loads the specification it contains.

The application specification can also be specified directly as a tuple AppSpec, having the format and contents as
describedinapp(4) .

IfDi stributed == {Application,[Tine,] Nodes}, the application becomes distributed. The argument
overrides the value for the application in the Kernel configuration parameter di st ri but ed. Appl i cati on must
be the application name (same as in the first argument). If a node crashes and Ti ne is specified, the application
controller waits for Ti me milliseconds before attempting to restart the application on another node. If Ti ne is not
specified, it defaultsto O and the application is restarted immediately.

Nodes isalist of hode names where the application can run, in priority from left to right. Node names can be grouped
using tuplesto indicate that they have the same priority.

Example:

Nodes = [cpl@cave, {cp2@cave, cp3@cave}]
This means that the application is preferably to be started at cpl@ave. If cpl@ave is down, the application is
to be started at cp2@ave or cp3@ave.

IfDi stributed == def aul t,thevauefortheapplicationintheKernel configuration parameter di st ri but ed
isused.

loaded applications() -> [{Application, Description, Vsn}]
Types:

Application atom()

Description = Vsn = string()

Returns alist with information about the applications, and included applications, which areloaded using| oad/ 1, 2.
Appl i cati on isthe application name. Descri pt i on and Vsn are the values of their descri pti on andvsn
application specification keys, respectively.

set _env(Config) -> ok

set env(Config, Opts) -> ok
Types:

32 | Ericsson AB. All Rights Reserved.: Kernel

application

Config = [{Application, Env}]

Application = atom()

Env = [{Par :: atom(), Val :: term()}]

Opts = [{timeout, timeout()} | {persistent, boolean()}]

Sets the configuration Conf i g for multiple applications. It is equivalent to calling set _env/ 4 on each application
individially, except it is more efficient. The given Conf i g isvalidated before the configuration is set.

set _env/ 2 usesthestandardgen_ser ver time-out value (5000 ms). Optiont i meout can bespecifiedif another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

Option per si st ent canbesettot r ue to guarantee that parameters set with set _env/ 2 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
isloaded and also on application reload.

If an application is given more than once or if an application has the same key given more than once, the behaviour is
undefined and a warning message will be logged. In future releases, an error will be raised.

set _env/1lisequivaenttoset _env(Config, []).

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

permit(Application, Permission) -> ok | {error, Reason}
Types:

Application = atom()

Permission = boolean()

Reason = term()

Changes the permission for Appl i cati on to run at the current node. The application must be loaded using
| oad/ 1, 2 for the function to have effect.

If the permission of aloaded, but not started, application isset to f al se, st art returns ok but the application is
not started until the permissionissettot r ue.

If the permission of a running application is set to f al se, the application is stopped. If the permission later is set
totrue, itisrestarted.

If the application isdistributed, setting the permissionto f al se meansthat the application will be started at, or moved
to, another node according to how its distribution is configured (see| oad/ 2).

Thefunction does not return until the application is started, stopped, or successfully moved to another node. However,
in some caseswhere permissionissettot r ue, the function returns ok even though the application isnot started. This
is true when an application cannot start because of dependencies to other applications that are not yet started. When
they are started, Appl i cat i on isstarted aswell.

By default, all applications are loaded with permissiont r ue on al nodes. The permission can be configured using
the Kernel configuration parameter per ni ssi ons.

set _env(Application, Par, Val) -> ok

set env(Application, Par, Val, Opts) -> ok
Types.

Ericsson AB. All Rights Reserved.: Kernel | 33

application

Application = Par = atom()
Val = term()
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Sets the value of configuration parameter Par for Appl i cati on.

set _env/ 4 usesthestandardgen_ser ver time-out value (5000 ms). Optiont i meout can be specifiedif another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

If set _env/ 4 is caled before the application is loaded, the application environment values specified in file
Appl i cati on. app override the ones previously set. Thisis also true for application rel oads.

Option per si st ent canbesettot r ue to guarantee that parameters set with set _env/ 4 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
isloaded and also on application reload.

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types:
Application = atom()
Type = restart _type()
Reason = term()
Starts Appl i cati on. If it is not loaded, the application controller first loads it using | oad/ 1. It ensures that

any included applications are loaded, but does not start them. That is assumed to be taken care of in the code for
Application.

The application controller checks the value of the application specification key appl i cat i ons, to ensure that all
applications needed to be started before this application are running. Otherwise, { er r or, { not _st art ed, App}}
isreturned, where App isthe name of the missing application.

The application controller then creates an application master for the application. The application master becomes
the group leader of al the processes in the application. 1/0 is forwarded to the previous group leader, though, thisis
just away to identify processes that belong to the application. Used for example to find itself from any process, or,
reciprocally, to kill them all when it terminates.

The application master starts the application by calling the application callback function Modul e: start/ 2 as
defined by the application specification key nod.

Argument Type specifies the type of the application. If omitted, it defaultstot enpor ary.
* If apermanent application terminates, all other applications and the entire Erlang node are also terminated.

« « [fatransient application terminateswith Reason == nor mal , thisisreported but no other applications
are terminated.
« |If atransient application terminates abnormally, all other applications and the entire Erlang node are also
terminated.

» If atemporary application terminates, this is reported but no other applications are terminated.

34 | Ericsson AB. All Rights Reserved.: Kernel

application

Notice that an application can always be stopped explicitly by caling st op/ 1. Regardless of the type of the
application, no other applications are affected.

Notice also that the transient type is of little practical use, because when a supervision tree terminates, the reason is
set to shut down, not nor mal .

start type() -> StartType | undefined | local
Types:
StartType = start_type()

This function is intended to be called by a process belonging to an application, when the application is started, to
determine the start type, whichis St art Type or | ocal .

For adescription of St art Type, seeModul e: start/ 2.

| ocal isreturned if only parts of the application are restarted (by a supervisor), or if the function is called outside
astartup.

If the process executing the call does not belong to any application, the function returnsundef i ned.

stop(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
StopsAppl i cat i on. Theapplication master callsModul e: prep_st op/ 1, if such afunction isdefined, and then
tellsthetop supervisor of the application to shut down (seesuper vi sor (3)). Thismeansthat the entire supervision

tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calsModul e: st op/ 1. Modul e isthe callback module as defined by the application specification key mod.

Last, the application master terminates. Notice that all processes with the application master as group leader, that is,
processes spawned from a process belonging to the application, are also terminated.

When stopped, the application is still loaded.

To stop adistributed application, st op/ 1 must be called on all nodeswhere it can execute (that is, on all nodeswhere
it has been started). The call to st op/ 1 on the node where the application currently executes stops its execution. The
application is not moved between nodes, as st op/ 1 is called on the node where the application currently executes
beforest op/ 1 is called on the other nodes.

takeover(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart _type()

Reason = term()
Takes over the distributed application Appl i cati on, which executes at another node Node. At the current
node, the application is restarted by calling Modul e: st art ({t akeover, Node}, Start Args) . Modul e and
St ar t Ar gs areretrieved from the loaded application specification. The application at the other node is not stopped

until the startup is completed, that is, when Modul e: st art/ 2 and any callsto Modul e: st art _phase/ 3 have
returned.

Thus, two instances of the application run simultaneously during the takeover, so that data can be transferred from the
old to the new instance. If thisis not an acceptable behavior, parts of the old instance can be shut down when the new
instance is started. However, the application cannot be stopped entirely, at least the top supervisor must remain alive.

Ericsson AB. All Rights Reserved.: Kernel | 35

application

For adescription of Type, seestart/ 1, 2.

unload(Application) -> ok | {error, Reason}
Types:

Application = atom()

Reason = term()

Unloads the application specification for Appl i cati on from the application controller. It also unloads the
application specificationsfor any included applications. Notice that the function does not purge the Erlang object code.

unset env(Application, Par) -> ok
unset env(Application, Par, Opts) -> ok
Types:
Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]
Removes the configuration parameter Par and itsvalue for Appl i cati on.

unset _env/ 2 uses the standard gen_ser ver time-out value (5000 ms). Option t i meout can be specified if
another time-out value is useful, for example, in situations where the application controller is heavily loaded.

unset _env/ 3 aso allows the persistent option to be passed (seeset _env/ 4).

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

which applications() -> [{Application, Description, Vsn}]

which applications(Timeout) -> [{Application, Description, Vsn}]

Types:
Timeout = timeout()
Application = atom()
Description = Vsn = string()

Returns a list with information about the applications that are currently running. Appl i cat i on isthe application

name. Descri ption and Vsn are the values of their descri pti on and vsn application specification keys,
respectively.

whi ch_appl i cati ons/ 0 usesthe standard gen_ser ver time-out value (5000 ms). A Ti neout argument can
be specified if another time-out value is useful, for example, in situations where the application controller is heavily
loaded.

Callback Module

The following functions are to be exported from an appl i cat i on callback module.

36 | Ericsson AB. All Rights Reserved.: Kernel

application

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}

Types.
Start Type = start_type()
StartArgs = term)
Pid = pid()

State = term)

This function is called whenever an application is started using st art/ 1, 2, and is to start the processes of the
application. If the application is structured according to the OTP design principles as a supervision tree, this means
starting the top supervisor of thetree.

St ar t Type defines the type of start:

e nornal ifitisanormal startup.

* nornal asoif theapplication is distributed and started at the current node because of afailover from another
node, and the application specification key st art _phases == undefi ned.

« {takeover, Node} if the application is distributed and started at the current node because of a takeover from
Node, either becauset akeover/ 2 has been called or because the current node has higher priority than Node.

« {failover, Node} if theapplication is distributed and started at the current node because of afailover from
Node, and the application specification key st art _phases /= undefi ned.
St art Args isthe St ar t Ar gs argument defined by the application specification key nod.

The function is to return { ok, Pi d} or {ok, Pi d, St at e}, where Pi d is the pid of the top supervisor and
St at e is any term. If omitted, St at e defaults to [] . If the application is stopped later, St at e is passed to
Modul e: prep_stop/ 1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types.

Phase = aton()

Start Type = start _type()

PhaseArgs = term))

Pid = pid()

State = state()

Starts an application with included applications, when synchronization is needed between processes in the different
applications during startup.

The start phases are defined by the application specificationkey st art _phases == [{Phase, PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

For adescription of St art Type, seeModul e: start/ 2.
Module:prep stop(State) -> NewState

Types:
State = NewState = term)

Ericsson AB. All Rights Reserved.: Kernel | 37

application

Thisfunctioniscalled when an application isabout to be stopped, before shutting down the processes of the application.

St at e isthe state returned from Modul e: start/ 2, or [] if no state was returned. NewSt at e is any term and
ispassed to Mbdul e: st op/ 1.

Thefunctionisoptional. If it isnot defined, the processes are terminated and then Mbdul e: st op(St at e) iscalled.

Module:stop(State)
Types.
State = term)

This function is called whenever an application has stopped. It isintended to be the opposite of Mbdul e: start/ 2
and isto do any necessary cleaning up. The return value isignored.

St at e isthe return value of Mbdul e: prep_st op/ 1, if such afunction exists. Otherwise St at e is taken from
thereturn value of Mbdul e: start/ 2.

Module:config change(Changed, New, Removed) -> ok
Types.

Changed = [{Par, Val }]

New = [{Par, Val }]

Removed = [Par]

Par = atom()

Val = term))

Thisfunction is called by an application after a code replacement, if the configuration parameters have changed.
Changed isalist of parameter-value tuplesincluding all configuration parameters with changed values.
Newisalist of parameter-value tuplesincluding all added configuration parameters.

Removed isalist of al removed parameters.

See Also
OTP Design Principles, kernel(6), app(4)

38 | Ericsson AB. All Rights Reserved.: Kernel

auth

auth

Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types

cookie() = atom()

Exports

cookie() -> Cookie
Types.
Cookie = cooki e()
Useerl ang: get _cooki e() in ERTSinstead.

cookie(TheCookie) -> true

Types.
TheCookie = Cookie | [Cookie]
The cookie can also be specified as a list with a single atom element.
Cookie = cooki e()

Useer | ang: set _cooki e(node(), Cookie) in ERTSinstead.

is_auth(Node) -> yes | no
Types:
Node = node()

Returnsyes if communication with Node isauthorized. Notice that a connection to Node is established in this case.
Returnsno if Node does not exist or communication is not authorized (it has another cookie than aut h thinksit has).

Usenet _adm pi ng(Node) instead.

node cookie([Node, Cookiel]) -> yes | no
Types.

Node = node()

Cooki e = cooki e()

Equivalent tonode_cooki e(Node, Cooki e) .

node cookie(Node, Cookie) -> yes | no
Types:

Node = node()

Cookie = cookie()

Sets the magic cookie of Node to Cooki e and verifies the status of the authorization. Equivalent to calling
erl ang: set _cooki e(Node, Cooki e), followed by aut h: i s_aut h(Node) .

Ericsson AB. All Rights Reserved.: Kernel | 39

code

code

Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in interactive or embedded mode. Which one is decided by the command-line
flag - node:

% erl -mode interactive

The modes are as follows:

* In interactive mode, which is default, only some code is loaded during system startup, basically the modules
needed by the runtime system. Other code is dynamically loaded when first referenced. When acall to afunction
in acertain moduleismade, and the moduleis not loaded, the code server searchesfor and triesto |oad the modul e.

e |n embedded mode, modules are not auto loaded. Trying to use a module that has not been loaded resultsin an

error. This mode is recommended when the boot script loads all modules, asit istypicaly donein OTP releases.
(Code can still be loaded later by explicitly ordering the code server to do o).

To prevent accidentally rel oading of modules affecting the Erlang runtime system, directoriesker nel , st dl i b, and
conpi | er areconsidered sticky. This means that the system issues a warning and rejects the request if a user tries
to reload amodule residing in any of them. The feature can be disabled by using command-lineflag - nost i ck.

Code Path

In interactive mode, the code server maintains a search path, usually called the code path, consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under library
directory $OTPROOT/ | i b, where $OTPROOT is the installation directory of Erlang/OTP, code: root _dir ().
Directories can benamed Nane[- VVsn] and the code server, by default, choosesthe directory with the highest version
number among those having the same Nane. Suffix - Vsn is optional. If an ebi n directory exists under Nane][-
Vsn] , thisdirectory is added to the code path.

Environment variable ERL_ LI BS (defined in the operating system) can be used to define more library directories to
be handled in the same way as the standard OTP library directory described above, except that directories without an
ebi n directory are ignored.

All application directories found in the additional directories appears before the standard OTP applications, except for
the Kernel and STDLIB applications, which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the same name in OTP, except for modules
in Kernel and STDLIB.

Environment variable ERL_ LI BS (if defined) is to contain a colon-separated (for Unix-like systems) or semicolon-
separated (for Windows) list of additional libraries.

Example:
On aUnix-like system, ERL_ LI BS can be set to the following

/usr/local/jungerl:/home/some user/my erlang lib

On Windows, use semi-colon as separator.

40 | Ericsson AB. All Rights Reserved.: Kernel

code

Loading of Code From Archive Files

The support for loading code from archive files is experimental. The purpose of releasing it before it isready is
to obtain early feedback. The file format, semantics, interfaces, and so on, can be changed in a future release. The
functionl i b_dir/ 2 andflag- code_pat h_choi ce areaso experimental.

The Erlang archives are ZI P fileswith extension . ez. Erlang archives can also beenclosedinescri pt fileswhose
file extension is arbitrary.

Erlang archive files can contain entire Erlang applications or parts of applications. The structure in an archive file
is the same as the directory structure for an application. If you, for example, create an archive of mesi a- 4. 4. 7,
the archive file must be named mesi a- 4. 4. 7. ez and it must contain atop directory named resi a- 4. 4. 7. If
the version part of the name is omitted, it must also be omitted in the archive. That is, amrmesi a. ez archive must
contain ammesi a top directory.

An archivefile for an application can, for example, be created like this:

zip:create("mnesia-4.4.7.ez",
["mnesia-4.4.7"],
[{cwd, code:lib dir()},
{compress, all},
{uncompress, [".beam",".app"1}]1).

Any file in the archive can be compressed, but to speed up the access of frequently read files, it can be a good idea
to store beamand app files uncompressed in the archive.

Normally the top directory of an application islocated in library directory $OTPROOT/ | i b or in adirectory referred
to by environment variable ERL_ LI BS. At startup, when theinitial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebi n directories in archives to the code path. The code path
then contains paths to directories that look like $OTPROOT/ | i b/ rmesi a. ez/ mesi a/ ebi n or $OTPROOT/
i b/ mesia-4.4.7.ez/ mesia-4.4.7/ebin.

The code server uses module er| _prim | oader in ERTS (possibly through erl _boot server) to read
code files from archives. However, the functionsin er| _pri m | oader can aso be used by other applications
to read files from archives. For example, the call erl _prim |l oader:list _dir("/otp/root/lib/
mesi a-4. 4. 7. ez/ mesi a- 4. 4. 7/ exanpl es/ bench) " would list the contents of a directory inside an
archive. Seeer| _prim| oader(3).

An application archive file and aregular application directory can coexist. This can be useful when it is needed to have
parts of the application asregular files. A typical caseisthepr i v directory, which must reside as aregular directory
tolink in driversdynamically and start port programs. For other applications that do not need this, directory pri v can
reside in the archive and the files under the directory pr i v can beread througher| _pri m | oader.

When a directory is added to the code path and when the entire code path is (re)set, the code server decides which
subdirectories in an application that are to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the code path is not updated (possibly to the
same path as before, to trigger the directory resolution update).

For each directory on the second level in the application archive (ebi n, priv, src, and so on), the code
server first chooses the regular directory if it exists and second from the archive. Function code: lib _dir/2
returns the path to the subdirectory. For example, code: i b_di r (megaco, ebi n) can return / ot p/ r oot /
i b/ megaco-3.9.1.1. ez/ megaco-3.9. 1. 1/ ebi n whilecode: | i b_di r (negaco, pri v) can return
/otp/root/lib/negaco-3.9.1. 1/priv.

Ericsson AB. All Rights Reserved.: Kernel | 41

code

Whenanescri pt filecontainsan archive, there are no restrictions on the name of theescr i pt and no restrictions
on how many applications that can be stored in the embedded archive. Single Beam files can aso reside on the top
level in the archive. At startup, the top directory in the embedded archive and all (second level) ebi n directoriesin
the embedded archive are added to the code path. Seeert s: escri pt (1) .

When the choice of directories in the code path is stri ct, the directory that ends up in the code path is
exactly the stated one. This means that if, for example, the directory $OTPROOT/ | i b/ rmesi a- 4. 4. 7/ ebi nis
explicitly added to the code path, the code server does not load files from $OTPROOT/ | | b/ mesi a- 4. 4. 7. ez/
mmesi a- 4. 4. 7/ ebi n.

This behavior can be controlled through command-line flag - code_pat h_choi ce Choi ce. If theflagisset to
r el axed, the code server instead chooses a suitable directory depending on the actua file structure. If a regular
application ebi n directory exists, it is chosen. Otherwise, the directory ebi n in the archive is chosen if it exists. If
neither of them exists, the original directory is chosen.

Command-lineflag- code_pat h_choi ce Choi ce alsoaffectshow modulei ni t interpretstheboot scri pt.
The interpretation of the explicit code pathsinthe boot scri pt canbestrict orrel axed. Itisparticularly
useful to set the flag to r el axed when elaborating with code loading from archives without editing the boot
scri pt.Thedefaultisr el axed. Seeerts:init(3).

Current and Old Code

The code for amodule can exist in two variantsin asystem: current code and old code. When amoduleisloaded into
the system for the first time, the module code becomes 'current' and the global export tableis updated with references
to al functions exported from the module.

If then a new instance of the module is loaded (for example, because of error correction), the code of the previous
instance becomes'old’, and all export entriesreferring to the previousinstance areremoved. After that, the new instance
isloaded as for the first time, and becomes ‘current'.

Both old and current code for a module are valid, and can even be evaluated concurrently. The difference is that
exported functions in old code are unavailable. Hence, a global call cannot be made to an exported function in old
cade, but old code can still be evaluated because of processes lingeringin it.

If athird instance of the module isloaded, the code server removes (purges) the old code and any processes lingering
in it are terminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, see
section Compilation and Code Loading in the Erlang Reference Manual.

Argument Types and Invalid Arguments

Module and application names are atoms, while file and directory names are strings. For backward compatibility
reasons, some functions accept both strings and atoms, but a future release will probably only allow the arguments
that are documented.

Functions in this module generally fail with an exception if they are passed an incorrect type (for example, an integer
or atuple where an atom is expected). An error tuple is returned if the argument type is correct, but there are some
other errors (for example, anon-existing directory is specifiedto set _pat h/ 1).

Error Reasons for Code-Loading Functions

Functions that load code (such as| oad_fi | e/ 1) will return{ err or, Reason} if theload operation fails. Here
follows a description of the common reasons.

badfil e

The object code has an incorrect format or the module name in the object code is not the expected module name.

42 | Ericsson AB. All Rights Reserved.: Kernel

code

nofile

No file with object code was found.

not _pur ged

The object code could not be loaded because an old version of the code already existed.

on_load failure

The module has an -on_load function that failed when it was called.

sticky_directory

The object code resides in a sticky directory.

Data Types
load ret() =
{error, What :: load_error_rsn()} |

{module, Module :: module()}

load error rsn() =
badfile | nofile | not purged | on load failure |
sticky directory

prepared code()

An opague term holding prepared code.

Exports

set path(Path) -> true | {error, What}

Types:
Path = [Dir :: file:filenane()]
What = bad directory
Sets the code path to the list of directories Pat h.
Returns:
true
If successful
{error, bad_directory}

If any Di r isnot adirectory name

get path() -> Path

Types.

Path = [Dir :: file:filenanme()]
Returns the code path.

add path(Dir) -> add_path_ret()
add pathz(Dir) -> add_path_ret()

Types:

Ericsson AB. All Rights Reserved.: Kernel | 43

code

Dir = file:filenane()
add path ret() = true | {error, bad directory}

AddsDi r to the code path. The directory is added as the last directory in the new path. If Di r already existsin the
path, it is not added.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add patha(Dir) -> add_path_ret()
Types:
Dir = file:filenanme()
add path ret() = true | {error, bad directory}
AddsDi r tothe beginning of the code path. If Di r exists, it isremoved from the old position in the code path.

Returnst r ue if successful, or{error, bad_directory} if D r isnotthe name of adirectory.

add paths(Dirs) -> ok
add pathsz(Dirs) -> ok
Types:
Dirs = [Dir :: file:filenanme()]
Addsthe directoriesin Di r s to the end of the code path. If aDi r exists, it is not added.
Always returns ok, regardless of the validity of each individual Di r .

add pathsa(Dirs) -> ok
Types:
Dirs = [Dir :: file:filenanme()]
TraversesDi r s and adds each Di r to the beginning of the code path. This means that the order of Di r s isreversed

in the resulting code path. For example, if you add [Di r 1, Di r 2], the resulting path will be [Di r 2, Di r 1|
A dCodePat h] .

If aDi r aready existsin the code path, it is removed from the old position.
Always returns ok, regardless of the validity of each individual Di r .

del path(NameOrDir) -> boolean() | {error, What}
Types:
NameOrDir = Name | Dir
Name = atom()
Dir = file:filename()
What = bad name
Deletes a directory from the code path. The argument can be an atom Nane, in which case the directory with the

name. ../ Name[- Vsn] [/ ebi n] is deleted from the code path. Also, the complete directory name Di r can be
specified as argument.

Returns:
true
If successful

44 | Ericsson AB. All Rights Reserved.: Kernel

code

fal se

If the directory is not found
{error, bad_nane}

If the argument isinvalid

replace path(Name, Dir) -> true | {error, What}
Types.
Name = atom()
Dir = file:filenanme()
What = bad directory | bad name | {badarg, term()}

Replaces an old occurrence of adirectory named. . . / Nane[- Vsn] [/ ebi n] inthecode path, withDi r . If Nane
doesnot exist, it addsthenew directory Di r lastinthe code path. Thenew directory must alsobenamed. . . / Nang][-
Vsn] [/ ebi n] . Thisfunctionisto be used if a new version of the directory (library) is added to arunning system.

Returns:
true
If successful
{error, bad_nane}
If Narre is not found
{error, bad_directory}
If Di r does not exist
{error, {badarg, [Nane, Dir]}}
If Narre or Di r isinvalid

load file(Module) -> load_ret()

Types:
Module = module()
load ret() =

{error, What :: load_error_rsn()} |
{module, Module :: module()}

Tries to load the Erlang module Modul e, using the code path. It looks for the object code file with an extension
corresponding to the Erlang machine used, for example, Modul e. beam Theloading failsif the module name found
in the object code differsfrom the name Modul e. | oad_bi nar y/ 3 must be used to load object code with amodule
name that is different from the file name.

Returns{ nodul e, Mbdul e} if successful, or { error, Reason} if loadingfails. See Error Reasonsfor Code-
Loading Functions for a description of the possible error reasons.

load abs(Filename) -> load_ret()
Types:
Filename = file:fil enanme()

load ret() =
{error, What :: load_error_rsn()} |
{module, Module :: module()}

loaded filename() =

Ericsson AB. All Rights Reserved.: Kernel | 45

code

(Filename :: file:filenanme()) | | oaded_ret_atons()
loaded ret atoms() = cover compiled | preloaded
Sameas!| oad_fil e(Modul e), butFi | enane isan absolute or relative filename. The code path is not searched.

It returns avalue in the sasme way as| oad_fil e/ 1. Notice that Fi | ename must not contain the extension (for
example, . beam) because| oad_abs/ 1 addsthe correct extension.

ensure loaded(Module) -> {module, Module} | {error, What}
Types:
Module = module()
What = embedded | badfile | nofile | on load failure
Triestoload amoduleinthesameway asl oad_f i | e/ 1, unlessthemoduleisalready loaded. However, in embedded

mode it does not load a module that is not aready loaded, but returns{ error, enbedded} instead. See Error
Reasons for Code-Loading Functions for a description of other possible error reasons.

load binary(Module, Filename, Binary) ->
{module, Module} | {error, What}

Types:
Module = module()
Filename = | oaded_fil enanme()
Binary = binary()
What = badarg | | oad_error_rsn()

loaded filename() =
(Filename :: file:filename()) | | oaded_ret_atons()

loaded ret atoms() = cover compiled | preloaded
Thisfunction can be used to |oad object code on remote Erlang nodes. Argument Bi nar y must contain object codefor

Modul e. Fi | enare isonly used by the code server to keep arecord of from which file the object code for Modul e
comes. Thus, Fi | enane isnot opened and read by the code server.

Returns{ nodul e, Mbdul e} if successful, or{error, Reason} if loading fails. See Error Reasonsfor Code-
Loading Functions for a description of the possible error reasons.

atomic load(Modules) -> ok | {error, [{Module, What}]}
Types:
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:filenane()
Binary = binary()
What =

badfile | nofile | on load not allowed | duplicated |
not purged | sticky directory | pending on load

Triesto load all of the modulesin the list Modul es atomically. That means that either all modules are loaded at the
same time, or none of the modules are loaded if there is a problem with any of the modules.

Loading can fail for one the following reasons:
badfile

The object code has an incorrect format or the module name in the object code is not the expected module name.

46 | Ericsson AB. All Rights Reserved.: Kernel

code

nofile
No file with object code exists.
on_| oad_not _al | owed
A module contains an -on_load function.
dupl i cat ed
A moduleisincluded more than oncein Modul es.
not _pur ged
The object code cannot be loaded because an old version of the code already exists.
sticky _directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module contains an - on_| oad function that never finished.

If it isimportant to minimize the time that an application is inactive while changing code, use prepare_loading/1 and
finish_loading/1 instead of at o ¢_I| oad/ 1. Hereis an example:

{ok,Prepared} = code:prepare loading(Modules),

% Put the application into an inactive state or do any
other preparation needed before changing the code.

= code:finish loading(Prepared),

Resume the application.

@ of

o
o X o°

)
5

prepare loading(Modules) ->
{ok, Prepared} | {error, [{Module, What}]}

Types.
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:filenane()
Binary = binary()
Prepared = prepared_code()
What = badfile | nofile | on load not allowed | duplicated

Prepares to load the modules in the list Mbdul es. Finish the loading by calling finish_loading(Prepared).
This function can fail with one of the following error reasons:
badfile
The object code has an incorrect format or the module name in the object code is not the expected module name.
nofile
No file with object code exists.
on_|l oad_not _al | owed
A module contains an -on_load function.
dupl i cat ed
A moduleisincluded more than oncein Modul es.

Ericsson AB. All Rights Reserved.: Kernel | 47

code

finish loading(Prepared) -> ok | {error, [{Module, What}]}
Types.

Prepared = prepared_code()

Module = module()

What = not_purged | sticky directory | pending on load

Tries to load code for all modules that have been previously prepared by prepare loading/1. The loading occurs
atomically, meaning that either all modules are loaded at the same time, or none of the modules are loaded.

This function can fail with one of the following error reasons:
not purged
The object code cannot be loaded because an old version of the code already exists.
sticky_directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module containsan - on_| oad function that never finished.

ensure modules loaded(Modules :: [Module]) ->
ok | {error, [{Module, What}]}

Types:
Module = module()
What = badfile | nofile | on load failure
Triesto load any modules not already loaded in the list Modul es in the sameway asload file/1.

Returnsok if successful, or{ error, [{ Modul e, Reason}] } if loading of somemodulesfails. See Error Reasons
for Code-Loading Functions for a description of other possible error reasons.

delete(Module) -> boolean()
Types:
Module = module()

Removes the current code for Modul e, that is, the current code for Modul e is made old. This means that processes
can continue to execute the code in the module, but no external function calls can be madeto it.

Returnst r ue if successful, or f al se if thereis old code for Mbdul e that must be purged first, or if Modul e is
not a (loaded) module.

purge(Module) -> boolean()
Types:
Module = module()

Purges the code for Modul e, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

As of ERTS version 9.0, aprocess is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of er | ang: check_pr ocess_code/ 3, whichisused in order
to determine this.

48 | Ericsson AB. All Rights Reserved.: Kernel

code

Returnst r ue if successful and any processis needed to be killed, otherwisef al se.

soft _purge(Module) -> boolean()
Types:
Module = module()
Purges the code for Modul e, that is, removes code marked as old, but only if no processeslinger init.

Asof ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of er | ang: check_pr ocess_code/ 3, whichisused in order
to determine this.

Returnsf al se if the module cannot be purged because of processes lingering in old code, otherwiset r ue.

is loaded(Module) -> {file, Loaded} | false

Types:
Module = module()
Loaded = | oaded_fil enane()
loaded filename() =
(Filename :: file:filename()) | | oaded_ret_atons()

Fi | ename isan absolute filename.
loaded ret atoms() = cover_compiled | preloaded
Checksif Modul e isloaded. If itis, {fi | e, Loaded} isreturned, otherwisef al se.

Normally, Loaded is the absolute filename Fi | ename from which the code is obtained. If the module is
preloaded (see script (4)), Loaded==pr el oaded. If the module is Cover-compiled (see cover (3)),
Loaded==cover _conpi | ed.

all loaded() -> [{Module, Loaded}]

Types.
Module = module()
Loaded = | oaded_fil enanme()
loaded filename() =
(Filename :: file:filenane()) | | oaded_ret_atons()

Fi | enane isan absolute filename.
loaded ret atoms() = cover compiled | preloaded

Returns a list of tuples{ Modul e, Loaded} for al loaded modules. Loaded is normally the absolute filename,
asdescribed fori s_| oaded/ 1.

which(Module) -> Which
Types:

Ericsson AB. All Rights Reserved.: Kernel | 49

code

Module = module()
Which = file:filenane() | |oaded_ret_atons() | non existing
loaded ret _atoms() = cover_compiled | preloaded

If the module is not loaded, this function searches the code path for the first file containing object code for Modul e
and returns the absol ute filename.

If the moduleisloaded, it returns the name of the file containing the loaded object code.
If the moduleis preloaded, pr el oaded isreturned.

If the module is Cover-compiled, cover _conpi | ed isreturned.

If the module cannot be found, non_exi st i ng isreturned.

get object code(Module) -> {Module, Binary, Filename} | error

Types:
Module = module()
Binary = binary()

Filename = file:filenane()

Searches the code path for the object code of module Modul e. Returns { Modul e, Bi nary, Fil enane} if
successful, otherwise er r or . Bi nary isabinary data object, which contains the object code for the module. This
can be useful if codeisto be loaded on aremote node in a distributed system. For example, loading module Modul e
on anode Node is done asfollows:

{ Module, Binary, Filename} = code:get object code(Module),
rpc:call(Node, code, load binary, [Module, Filename, Binaryl]),

root dir() -> file:filenanme()
Returns the root directory of Erlang/OTP, which isthe directory whereit isinstalled.

Example:

> code:root dir().
"/usr/local/otp"

lib dir() -> file:filename()
Returns the library directory, $OTPROOT/ | i b, where $OTPRQOOT isthe root directory of Erlang/OTP.
Example:

> code:lib dir().
"/usr/local/otp/lib"

lib dir(Name) -> file:filename() | {error, bad name}
Types.
Name = atom()

Returnsthe path for the "library directory", the top directory, for an application Nane located under $OTPROOT/ | i b
or on adirectory referred to with environment variable ERL_ LI BS.

50 | Ericsson AB. All Rights Reserved.: Kernel

code

If aregular directory called Name or Nane- Vsn exists in the code path with an ebi n subdirectory, the path to this
directory isreturned (not the ebi n directory).

If the directory refers to a directory in an archive, the archive name is stripped away before the path is returned.
For example, if directory /usr/ 1 ocal /ot p/lib/ mesia-4.2.2. ez/ mesia-4.2.2/ebin isin the
path, / usr/ 1 ocal / ot p/1i b/ mesi a- 4. 2. 2/ ebi n isreturned. This means that the library directory for an
application isthe same, regardlessiif the application residesin an archive or not.

Example:
> code:lib dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns{ error, bad_nane} if Nane isnot the name of an application under SOTPROOT/ | i b or on adirectory
referred to through environment variable ERL_ LI BS. Fails with an exception if Nane has the wrong type.

For backward compatibility, Nane is aso allowed to be a string. That will probably changein a future release. |

lib dir(Name, SubDir) -> file:filenane() | {error, bad name}
Types:
Name = SubDir = atom()

Returnsthe path to a subdirectory directly under the top directory of an application. Normally the subdirectoriesreside
under the top directory for the application, but when applications at |east partly resides in an archive, the situation is
different. Some of the subdirectories can reside as regular directories while other reside in an archive file. It is not
checked whether this directory exists.

Example:

> code:lib dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Nane or SubDi r hasthe wrong type.

compiler dir() -> file:filenanme()
Returns the compiler library directory. Equivalenttocode: | i b _dir(conpiler).

priv_dir(Name) -> file:filenane() | {error, bad name}
Types:
Name = atom()
Returns the path to the pr i v directory in an application. Equivalentto code: | i b_di r (Nane, priv).

For backward compatibility, Nane is also allowed to be a string. That will probably changein afuture release. |

objfile extension() -> nonempty string()
Returns the object code file extension corresponding to the Erlang machine used, namely . beam

Ericsson AB. All Rights Reserved.: Kernel | 51

code

stick dir(Dir) -> ok | error
Types:

Dir = file:filename()
MarksDi r as sticky.
Returns ok if successful, otherwiseer r or .

unstick dir(Dir) -> ok | error
Types:

Dir = file:fil enanme()
Unsticks adirectory that is marked as sticky.
Returns ok if successful, otherwiseer r or .

is sticky(Module) -> boolean()
Types.
Module = module()

Returnst r ue if Modul e is the name of a module that has been loaded from a sticky directory (in other words: an
attempt to reload the module will fail), or f al se if Mbdul e isnot aloaded module or is not sticky.

where is file(Filename) -> non_existing | Absname
Types:
Filename = Absname = file:fil enane()

Searches the code path for Fi | enane, afile of arbitrary type. If found, the full nameisreturned. non_exi sti ng
isreturned if the file cannot be found. The function can be useful, for example, to locate application resource files.

clash() -> ok
Searches all directoriesin the code path for module names with identical names and writes areport to st dout .

module status(Module :: module()) ->
not loaded | loaded | modified | removed

Returns:
not | oaded
If Mbdul e isnot currently loaded.
| oaded
If Modul e isloaded and the object file exists and contains the same code.
renoved
If Mbdul e isloaded but no corresponding object file can be found in the code path.
nodi fi ed
If Mbdul e isloaded but the object file contains code with a different MD5 checksum.

Preloaded modules are always reported as| oaded, without inspecting the contents on disk. Cover compiled modules
will always be reported asnodi f i ed if an object file exists, or asr enpved otherwise. Modules whose load pathis
an empty string (which isthe convention for auto-generated code) will only bereported as| oaded or not _| oaded.

52 | Ericsson AB. All Rights Reserved.: Kernel

code

For modules that have native code loaded (seei s_nodul e_nat i ve/ 1), the MD5 sum of the native code in the
object fileis used for the comparison, if it exists; the Beam code in thefile isignored. Reversely, for modules that do
not currently have native code loaded, any native code in the file will be ignored.

Seeadsonodi fi ed_nodul es/ 0.
modified modules() -> [module()]
Returns the list of al currently loaded modules for which nodul e_st at us/ 1 returns nodi fi ed. See also

al | _| oaded/ 0.

is _module native(Module) -> true | false | undefined

Types:
Module = module()
Returns:
true
If Mbdul e isthe name of aloaded module that has native code loaded
fal se

If Mbdul e isloaded but does not have native code
undef i ned
If Modul e isnot loaded

get mode() -> embedded | interactive
Returns an atom describing the mode of the code server: i nt er act i ve or enbedded.

Thisinformation is useful when an external entity (for example, an IDE) provides additional code for a running node.
If the code server is in interactive mode, it only has to add the path to the code. If the code server is in embedded
mode, the code must be loaded with | oad_bi nary/ 3.

Ericsson AB. All Rights Reserved.: Kernel | 53

config

config

Name

A configuration file contains values for configuration parameters for the applications in the system. The er |
command-lineargument - conf i g Narre tellsthe systemto usedatain the system configurationfileNane. confi g.

Configuration parameter values in the configuration file override the values in the application resource files (see
app(4)). Thevauesin the configuration file can be overridden by command-lineflags (seeerts: erl (1)).

The value of a configuration parameter is retrieved by callingappl i cati on: get _env/ 1, 2.

File Syntax

The configuration fileisto be called Nane. conf i g, where Nane isany name.

File. conf i g contains asingle Erlang term and has the following syntax:
[{Applicationl, [{Parll, Valll}, ...1},

{ApplicationN, [{ParN1l, ValN1}, ...1}].

Application = aton()
Application name.

Par = atom()
Name of a configuration parameter.
Val = ternm()

Value of a configuration parameter.

sys.config

When starting Erlang in embedded mode, it is assumed that exactly one system configuration file is used, named
sys. confi g. This file is to be located in $ROOT/ r el eases/ Vsn, where $ROOT is the Erlang/OTP root
installation directory and Vsn isthe release version.

Release handling relies on this assumption. When installing anew release version, thenew sys. conf i g isread and
used to update the application configurations.

Thismeansthat specifying another . conf i g file, or more. conf i g files, leadsto inconsistent update of application
configurations. Thereis, however, asyntax for sys. conf i g that allows pointing out other . conf i g files:

[{Application, [{Par, Val}l} | File].

File = string()
Name of another . confi g file. Extension . conf i g can be omitted. It is recommended to use absolute paths.
If arelative path isused, Fi | e issearched, first, relative from sys. conf i g directory, then relative to the
current working directory of the emulator, for backward compatibility. Thisallow to useasys. confi g
pointing out other . confi g filesin arelease or in anode started manually using - confi g ... with same
result whatever the current working directory.

When traversing the contents of sys. conf i g and afilename is encountered, its contents are read and merged with
the result so far. When an application configuration tuple { Appl i cat i on, Env} isfound, it is merged with the
result so far. Merging means that new parameters are added and existing parameter values overwritten.

Example:

54 | Ericsson AB. All Rights Reserved.: Kernel

config

sys.config:

[{myapp, [{parl,vall}, {par2,val2}]},
"/home/user/myconfig"].

myconfig.config:

[{myapp, [{par2,val3}, {par3,vald}]}].
Thisyields the following environment for myapp:

[{parl,vall}, {par2,val3},{par3,vald}]

The behavior if afile specified in sys. conf i g does not exist, or is erroneous, is backwards compatible. Starting
the runtime system will fail. Installing a new release version will not fail, but an error message is returned and the
erroneous file isignored.

See Also
app(4),erts:erl (1), OTP Design Principles

Ericsson AB. All Rights Reserved.: Kernel | 55

disk log

disk log

Erlang module

di sk_| og isadisk-based term logger that enables efficient logging of items on files.
Two types of logs are supported:
halt logs

Appends itemsto asinglefile, which size can be limited by the di sk_| og module.
wrap logs

Uses a segquence of wrap log files of limited size. Asawrap log fileis filled up, further items are logged on to
the next file in the sequence, starting all over with the first file when the last file isfilled up.

For efficiency reasons, items are always written to files as binaries.
Two formats of the log files are supported:
internal format

Supports automatic repair of log files that are not properly closed and enables efficient reading of logged items
in chunks using a set of functions defined in this module. Thisisthe only way to read internally formatted logs.
An item logged to an internally formatted log must not occupy more than 4 GB of disk space (the size must fit
in 4 bytes).

external format

Leaves it up to the user to read and interpret the logged data. The di sk_| og module cannot repair externally
formatted logs.

For each open disk log, one process handles requests made to the disk log. This processis created when open/ 1 is
called, provided there exists no process handling the disk log. A process that opens a disk log can be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and an owner can close the disk log
either explicitly (by callingcl ose/ 1 orl cl ose/ 1, 2) or by terminating.

Owners can subscribe to notifications, messages of theform { di sk_| og, Node, Log, | nfo},whicharesent
from the disk log process when certain events occur, see the functions and in particular the open/ 1 optionnot i fy.
A log can have many owners, but a process cannot own a log more than once. However, the same process can open
the log as a user more than once.

For adisk log process to closeits file properly and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously. The users are counted and there must not be any users
left when the disk log process terminates.

Itemscan belogged synchronoudly by using functions| og/ 2,bl og/ 2,1 og_t er ns/ 2,andbl og_t er ns/ 2. For
each of these functions, the caller is put on hold until the items are logged (but not necessarily written, usesync/ 1 to
ensurethat). By adding an a to each of the mentioned function names, we get functionsthat log itemsasynchronously.
Asynchronous functions do not wait for the disk log process to write the items to the file, but return the control to
the caller more or lessimmediately.

When using the internal format for logs, use functions| og/ 2,1 og terns/ 2, al og/ 2, and al og_t er ns/ 2.
These functions log one or more Erlang terms. By prefixing each of the functions with a b (for "binary"), we get
the corresponding bl og() functions for the external format. These functions log one or more chunks of bytes.
For example, to log the string " hel | 0" in ASCII format, you can usedi sk_| og: bl og(Log, "hello"),or
di sk_1 og: bl og(Log, list_to_binary("hello")).Thetwo aternativesare equally efficient.

Thebl og() functionscan also be used for internally formatted logs, but in this case they must be called with binaries
constructed with callstot er m_ t o_bi nary/ 1. There is no check to ensure this, it is entirely the responsibility of

56 | Ericsson AB. All Rights Reserved.: Kernel

disk log

the caller. If these functions are called with binaries that do not correspond to Erlang terms, the chunk/ 2, 3 and
automatic repair functions fail. The corresponding terms (not the binaries) are returned when chunk/ 2, 3 iscalled.

A collection of open disk logs with the same name running on different nodes is said to be adistributed disk log if
reguests made to any of the logs are automatically made to the other logs as well. The members of such a collection
arecalled individual distributed disk logs, or just distributed disk logsif thereisno risk of confusion. Thereisno order
between the members of such a collection. For example, logged terms are not necessarily written to the node where
the request was made before written to the other nodes. However, afew functions do not make requeststo all members
of distributed disk logs, namely i nf o/ 1, chunk/ 2, 3, bchunk/ 2, 3, chunk_step/ 3,andl cl ose/ 1, 2.

An open disk log that is not a distributed disk log is said to be alocal disk log. A local disk log is only accessible
from the node where the disk 1og process runs, whereas a distributed disk log is accessible from all nodesin the Erlang
system, except for those nodeswherealocal disk |og with the same name asthedistributed disk |og exists. All processes
on nodes that have accessto alocal or distributed disk log can log items or otherwise change, inspect, or close thelog.

It is not guaranteed that all log files of a distributed disk log contain the same log items. No attempt is made to
synchronize the contents of the files. However, as long as at least one of the involved nodes is alive at each time,
all items are logged. When logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs are ignored. If al nodes are down, the disk log functions reply with anonode error.

Note:

In some applications, it can be unacceptable that replies from individual logs are ignored. An aternative in such
situationsisto use many local disk logsinstead of one distributed disk log, and implement the distribution without
use of thedi sk_| og module.

Errors are reported differently for asynchronous log attempts and other uses of the di sk_| og module. When used
synchronously, thismodule replieswith an error message, but when called asynchronously, this modul e does not know
where to send the error message. Instead, owners subscribing to notificationsreceive an er r or _st at us message.

Thedi sk_| og module doesnot report errorstotheer r or _| ogger module. It isup to the caller to decide whether
to employ theerror logger. Functionf or mat _er r or / 1 can beused to produce readable messagesfrom error replies.
However, information events are sent to the error logger in two situations, namely when alog is repaired, or when
afileis missing while reading chunks.

Error message no_such_| og means that the specified disk log is not open. Nothing is said about whether the disk
log files exist or not.

If an attempt to reopen or truncate a log fails (see r eopen/ 2, 3 and t r uncat e/ 1, 2) the disk log process
terminates immediately. Before the process terminates, links to owners and blocking processes (see bl ock/ 1, 2)
areremoved. The effect is that the links work in one direction only. Any process using a disk log must check for
error message no_such_| og if some other process truncates or reopens the log simultaneously.

Data Types

log() = term()

dlog size() =
infinity |
integer() >= 1 |

Ericsson AB. All Rights Reserved.: Kernel | 57

disk log

{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
dlog format() = external | internal
dlog head opt() = none | term() | iodata()
dlog mode() = read only | read write
dlog type() = halt | wrap
continuation()
Chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3.

invalid header() = term()
file error() = term()

Exports

accessible logs() -> {[LocallLog], [DistributedLog]}
Types:
LocalLog = DistributedLog = 1 0g()

Returns the names of the disk logs accessible on the current node. Thefirst list containslocal disk logs and the second
list contains distributed disk logs.

alog(Log, Term) -> notify ret()
balog(Log, Bytes) -> notify_ret()
Types:
Log = 1 og()
Term = term()
Bytes = iodata()
notify ret() = ok | {error, no such log}
Asynchronously append an item to a disk log. al og/ 2 is used for internally formatted logs and bal og/ 2 for

externally formatted logs. bal og/ 2 can also be used for internally formatted logs if the binary is constructed with
acdltotermto_binary/1.

Owners subscribing to notifications receive messager ead_onl y, bl ocked_| og, or f or mat _ext er nal if the
item cannot be written on the log, and possibly one of the messages wr ap, ful | , or err or _st at us if an item
is written on the log. Message er r or _st at us is sent if something is wrong with the header function or if afile
€rror occurs.

alog terms(Log, TermList) -> notify_ret()
balog terms(Log, BytelList) -> notify_ret()
Types.
Log = I og()
TermList = [term()]
BytelList = [iodata()]
notify ret() = ok | {error, no such log}
Asynchronously append a list of items to a disk log. al og_t erns/ 2 is used for internally formatted logs and

bal og_t er ms/ 2 for externally formatted logs. bal og_t er ms/ 2 can aso be used for internally formatted logs if
the binaries are constructed with callstot erm t o_bi nary/ 1.

58 | Ericsson AB. All Rights Reserved.: Kernel

disk log

Owners subscribing to notifications receive messager ead_onl y, bl ocked_I og, or f or mat _ext er nal if the
items cannot be written on the log, and possibly one or more of the messageswr ap, ful | , and err or _st at us
if items are written on the log. Message er r or _st at us is sent if something is wrong with the header function or
if afile error occurs.

block(Log) -> ok | {error, block_error_rsn()}
block(Log, QueuelLogRecords) -> ok | {error, block_error_rsn()}
Types.
Log = 1 og()
QueuelLogRecords = boolean()
block error rsn() = no such log | nonode | {blocked log, log()}
With acall to bl ock/ 1, 2 aprocess can block alog. If the blocking processis not an owner of the log, atemporary

link is created between the disk log process and the blocking process. The link ensures that the disk log is unblocked
if the blocking process terminates without first closing or unblocking the log.

Any process can probe a blocked log with i nf o/ 1 or close it with cl ose/ 1. The blocking process can also
use functions chunk/ 2, 3, bchunk/ 2, 3, chunk_st ep/ 3, and unbl ock/ 1 without being affected by the
block. Any other attempt than those mentioned so far to update or read a blocked log suspends the calling process
until the log is unblocked or returns error message { bl ocked_| og, Log}, depending on whether the value of
QueuelLogRecords istrue orfal se. QueueLogRecor ds defaultstot r ue, whichisused by bl ock/ 1.

change header(Log, Header) -> ok | {error, Reason}
Types:

Log = I og()

Header =

{head, dl og_head_opt()} |

{head func, MFA :: {atom(), atom(), list()}}
Reason =

no_such log | nonode |

{read only mode, Log} |

{blocked log, Log} |

{badarg, head}

Changes the value of option head or head_f unc for an owner of adisk log.

change notify(Log, Owner, Notify) -> ok | {error, Reason}
Types:

Log = I og()

Owner = pid()

Notify = boolean()

Reason =
no_such log | nonode |
{blocked log, Log} |
{badarg, notify} |
{not_owner, Owner}

Changes the value of option not i fy for an owner of adisk log.

Ericsson AB. All Rights Reserved.: Kernel | 59

disk log

change size(Log, Size) -> ok | {error, Reason}

Types.
Log = log()
Size = dl og_size()
Reason =

no_such log | nonode |

{read only mode, Log} |

{blocked log, Log} |

{new size too small, Log, CurrentSize :: integer() >= 1} |
{badarg, size} |

{file error, file:filenanme(), file_error()}

Changesthe size of an openlog. For ahalt log, the size can always beincreased, but it cannot be decreased to something
less than the current file size.

For awrap log, both the size and the number of files can always be increased, as long as the number of files does
not exceed 65000. If the maximum number of files is decreased, the change is not valid until the current file is full
and the log wraps to the next file. The redundant files are removed the next time the log wraps around, that is, starts
tolog to file number 1.

As an example, assume that the old maximum number of filesis 10 and that the new maximum number of filesis 6.
If the current file number is not greater than the new maximum number of files, files 7-10 are removed when file 6
isfull and the log starts to write to file number 1 again. Otherwise, the files greater than the current file are removed
when the current file is full (for example, if the current fileis 8, files 9 and 10 are removed). The files between the
new maximum number of files and the current file (that is, files 7 and 8) are removed the next time file 6 isfull.

If the size of the files is decreased, the change immediately affects the current log. It does not change the size of log
files already full until the next time they are used.

If the log size is decreased, for example, to save space, functioni nc_w ap_fil e/ 1 can be used to force the log
to wrap.

chunk(Log, Continuation) -> chunk_ret()
chunk(Log, Continuation, N) -> chunk_ret()
bchunk(Log, Continuation) -> bchunk_ret ()
bchunk(Log, Continuation, N) -> bchunk_ret()
Types:

Log = I og()

Continuation = start | continuation()

N = integer() >= 1 | infinity

chunk ret() =

{Continuation2 :: continuation(), Terms :: [term()]} |
{Continuation2 :: continuation(),
Terms :: [term()],
Badbytes :: integer() >= 0} |
eof |
{error, Reason :: chunk_error_rsn()}
bchunk ret() =
{Continuation2 :: continuation(), Binaries :: [binary()1} |
{Continuation2 :: continuation(),
Binaries :: [binary()],

Badbytes :: integer() >= 0} |

60 | Ericsson AB. All Rights Reserved.: Kernel

disk log

eof |
{error, Reason :: chunk_error_rsn()}

chunk _error _rsn() =
no_such log |
{format_external, log()} |
{blocked log, log()} |
{badarg, continuation} |
{not_internal wrap, log()} |
{corrupt log file, FileName :: file:filenane()} |
{file error, file:filenane(), file_error()}

Efficiently reads the terms that are appended to an internally formatted log. It minimizes disk 1/O by reading 64
kilobyte chunks from the file. Functions bchunk/ 2, 3 return the binaries read from the file, they do not call
bi nary_to_termn().Apart fromthat, they work just likechunk/ 2, 3.

The first time chunk() (or bchunk()) iscalled, an initial continuation, the atom st ar t , must be provided. If a
disk log processis running on the current node, terms are read from that log. Otherwise, an individual distributed log
on some other node is chosen, if such alog exists.

When chunk/ 3 iscalled, N control s the maximum number of termsthat are read from thelog in each chunk. Defaults
toi nfinity, which means that all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of the fileis reached.

chunk() returns a tuple { Conti nuati on2, Terns}, where Terns is a list of terms found in the log.
Cont i nuat i on2 isyet another continuation, which must be passed on to any subsequent callsto chunk() . With
aseries of calsto chunk() , al termsfrom alog can be extracted.

chunk() returnsatuple { Conti nuati on2, Terns, Badbytes} if thelog is opened in read-only mode
and the read chunk is corrupt. Badbyt es is the number of bytes in the file found not to be Erlang terms in the
chunk. Notice that the log is not repaired. When trying to read chunks from a log opened in read-write mode, tuple
{corrupt _log file, FileNane} isreturnedif theread chunk iscorrupt.

chunk() returnseof when the end of thelog isreached, or { error, Reason} if anerror occurs. If awrap log
fileis missing, amessage is output on the error log.

When chunk/ 2, 3 isused with wrap logs, the returned continuation might not be valid in the next call to chunk() .
This is because the log can wrap and delete the file into which the continuation points. To prevent this, the log can
be blocked during the search.

chunk_info(Continuation) -> InfolList | {error, Reason}

Types:
Continuation = continuation()
InfoList = [{node, Node :: node()}, ...]

Reason = {no continuation, Continuation}

Returns the pair { node, Node}, describing the chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or
chunk_st ep/ 3.

Terms are read from the disk log running on Node.
chunk step(Log, Continuation, Step) ->

{ok, any()} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 61

disk log

Log = log()
Continuation = start | continuation()
Step = integer()
Reason =
no such log | end of log |
{format external, Log} |
{blocked log, Log} |
{badarg, continuation} |
{file error, file:filename(), file_ error()}

Can be used with chunk/ 2, 3 and bchunk/ 2, 3 to search through an internally formatted wrap log. It takes as
argument a continuation as returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3, and steps forward (or
backward) St ep filesin the wrap log. The continuation returned, points to the first log item in the new current file.

If atom st ar t isspecified as continuation, adisk log to read terms from is chosen. A local or distributed disk log on
the current node is preferred to an individua distributed log on some other node.

If the wrap log is not full because all files are not yet used, { error, end_of | og} isreturned if trying to step
outside the log.

close(Log) -> ok | {error, close_error_rsn()}
Types:

Log = 1 og()

close error_rsn() =

no such log | nonode |
{file error, file:filenane(), file_error()}

Closes alocal or distributed disk log properly. An internally formatted log must be closed before the Erlang system
is stopped. Otherwise, the log is regarded as unclosed and the automatic repair procedure is activated next time the
log is opened.

The disk log processis not terminated as long as there are owners or users of the log. All owners must close the log,
possibly by terminating. Also, any other process, not only the processes that have opened the log anonymously, can
decrement the user s counter by closing the log. Attemptsto close alog by a processthat is not an owner areignored
if there are no users.

If thelog is blocked by the closing process, the log is aso unblocked.

format error(Error) -> io_lib:chars()
Types:
Error = term()

Given theerror returned by any function in thismodule, thisfunction returns a descriptive string of the error in English.
For file errors, functionf or mat _error/ 1 inmodulefi | e iscaled.

inc_wrap file(Log) -> ok | {error, inc_wap_error_rsn()}
Types:
Log = | og()
inc_wrap _error _rsn() =
no_such log | nonode |
{read only mode, log()} |
{blocked log, log()} |
{halt_log, log()} |

62 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{invalid header, invalid_header()} |
{file error, file:filename(), file_error()}

invalid header() = term()

Forces the internally formatted disk log to start logging to the next log file. It can be used, for example, with
change_si ze/ 2 to reduce the amount of disk space allocated by the disk log.

Owners subscribing to notifications normally receive a wr ap message, but if an error occurs with a reason tag of
i nval i d_header orfile_error,anerror_status messageis sent.

info(Log) -> InfoList | {error, no such log}
Types:

Log = 1 0g()
InfolList = [dlog_info()]
dlog info() =
{name, Log :: log()} |
{file, File :: file:filename()} |
{type, Type :: dlog_type()} |
{format, Format :: dlog_format()} |
{size, Size :: dlog_size()} |
{mode, Mode :: dlog_nmode()} |
{owners, [{pid(), Notify :: boolean()}1} |
{users, Users :: integer() >= 0} |
{status,
Status :: ok | {blocked, QueueLogRecords :: boolean()}} |
{node, Node :: node()} |
{distributed, Dist :: local | [node()]} |

{head,
Head ::

none | {head, term()} | (MFA :: {atom(), atom(), list()})} |
{no written items, NoWrittenItems :: integer() >= 0} |

{full, Full :: boolean} |

{no _current bytes, integer() >= 0} |

{no current items, integer() >= 0} |

{no _items, integer() >= 0} |

{current file, integer() >= 1} |

{no_overflows,

{SinceLogWasOpened :: integer() >= 0,
SincelLastInfo :: integer() >= 0}}

Returnsalist of { Tag, Val ue} pairsdescribing the log. If adisk log process is running on the current node, that
log is used as source of information, otherwise an individual distributed log on some other node is chosen, if such
alog exists.

Thefollowing pairs are returned for all logs:
{nane, Log}
Log isthelog name as specified by the open/ 1 option nane.
{file, File}
For halt logs Fi | e isthefilename, and for wrap logs Fi | e isthe base name.

Ericsson AB. All Rights Reserved.: Kernel | 63

disk log

{type, Type}

Type isthelog type as specified by theopen/ 1 optiont ype.
{format, Format}

For mat isthelog format as specified by theopen/ 1 option f or nat .
{size, Size}

Si ze isthelog size as specified by the open/ 1 option si ze, or thesize set by change_si ze/ 2. Thevaue
set by change_si ze/ 2 isreflected immediately.

{node, Mode}
Mbde isthe log mode as specified by the open/ 1 option node.
{owners, [{pid(), Notify}]}

Not i fy isthe value set by the open/ 1 option not i fy or function change_noti fy/ 3 for the owners of
thelog.

{users, Users}

User s isthe number of anonymous users of the log, seethe open/ 1 option | i nkt o.
{status, Status}

St at us isok or { bl ocked, QueuelLogRecor ds} asset by functionsbl ock/ 1, 2 and unbl ock/ 1.
{node, Node}

The information returned by the current invocation of function i nf o/ 1 is gathered from the disk log process
running on Node.

{distributed, Dist}

If thelogislocal onthecurrent node, Di st hasthevaluel ocal , otherwiseal nodeswherethelogisdistributed
arereturned asalist.

Thefollowing pairs are returned for all logs opened inr ead_wr i t € mode:
{head, Head}

Depending on the value of the open/1 options head and head_func, or set by function
change_header/ 2, the value of Head is none (default), { head, H} (head option), or { M F, A}
(head_f unc option).

{no_witten_itens, NoWittenltens}

NoW i t t enl t errs isthe number of itemswritten to the log since the disk log process was created.
The following pair isreturned for halt logs opened inr ead_wr i t e mode:
{full, Full}

Ful | ist rue orf al se depending on whether the halt log is full or not.
The following pairs are returned for wrap logs opened inr ead_wr i t e mode:
{no_current_bytes, integer() >= 0}

The number of bytes written to the current wrap log file.
{no_current _itens, integer() >= 0}

The number of items written to the current wrap log file, header inclusive.
{no_items, integer() >= 0}

The total number of itemsin all wrap log files.

64 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{current_file, integer()}

The ordinal for the current wrap log file in therange 1. . MaxNoFi | es, where MaxNoFi | es is specified by
theopen/ 1 option si ze or set by change_si ze/ 2.

{no_overfl ows, {SinceLogWasOpened, Sincelastl|nfo}}

Si nceLogWasOpened (Si ncelLast | nf 0) isthe number of times awrap log file has been filled up and a
new oneisopened ori nc_w ap_fil e/ 1 hasbeen called since the disk log was last opened (i nf o/ 1 was
last called). Thefirsttimei nf o/ 2 iscalled after alog was (re)opened or truncated, the two values are equal.

Notice that functions chunk/ 2, 3, bchunk/ 2, 3, and chunk_st ep/ 3 do not affect any value returned by
i nfo/l.

lclose(Log) -> ok | {error, Iclose_error_rsn()}
lclose(Log, Node) -> ok | {error, Iclose_error_rsn()}
Types:

Log = log()
Node = node()

lclose error _rsn() =
no such log | {file error, file:filenane(), file_error()}

| cl ose/ 1 closesalocal log or anindividual distributed log on the current node.

| cl ose/ 2 closes an individual distributed log on the specified node if the node is not the current one.
| cl ose(Log) isequivalenttol cl ose(Log, node()).Seeasocl ose/ 1.

If no log with the specified name exist on the specified node, no_such_I og isreturned.

log(Log, Term) -> ok | {error, Reason :: log_error_rsn()}
blog(Log, Bytes) -> ok | {error, Reason :: log_error_rsn()}
Types:

Log = 1 0g()

Term = term()
Bytes = iodata()
log error rsn() =
no such log | nonode |
{read only mode, log()} |
{format external, log()} |
{blocked log, log()} |
{full, log()} |
{invalid header, invalid_header()} |
{file error, file:filenane(), file_error()}

Synchronously appends aterm to adisk log. Returnsok or { er r or, Reason} when the termiswritten to disk. If
thelog isdistributed, ok isreturned, unless al nodes are down. Terms are written by the ordinary wr i t e() function
of the operating system. Hence, it is not guaranteed that the term iswritten to disk, it can linger in the operating system
kernel for awhile. To ensure that the item is written to disk, function sync/ 1 must be called.

| og/ 2 isused for internally formatted logs, and bl og/ 2 for externally formatted logs. bl og/ 2 can also be used
for internally formatted logsif the binary is constructed with acall to t erm t o_bi nary/ 1.

Owners subscribing to notifications are notified of an error with an er r or _st at us message if the error reason tag
isi nval i d_header orfile_error.

Ericsson AB. All Rights Reserved.: Kernel | 65

disk log

log terms(Log, TermList) ->

ok | {error, Resaon :: log_error_rsn()}
blog terms(Log, BytesList) ->
ok | {error, Reason :: log_error_rsn()}
Types:
Log = I og()

TermList = [term()]

BytesList = [iodata()]

log error rsn() =
no_such log | nonode |
{read only mode, log()} |
{format_external, log()} |
{blocked log, log()} |

{full, log()} |
{invalid header, invalid_header()} |

{file error, file:filenane(), file_error()}

Synchronously appends alist of itemsto thelog. It is more efficient to use these functionsinstead of functions!| og/ 2
and bl og/ 2. The specified list is split into as large sublists as possible (limited by the size of wrap log files), and
each sublist islogged as one single item, which reduces the overhead.

l og terns/ 2 is used for internaly formatted logs, and bl og termnms/ 2 for externaly formatted logs.
bl og_terns/ 2 can dso be used for internaly formatted logs if the binaries are constructed with calls to
termto_binary/1.

Owners subscribing to notifications are notified of an error with an er r or _st at us message if the error reason tag
isi nval i d_header orfile_error.

open(ArgL) -> open_ret() | dist_open_ret()
Types:

ArgL = dl og_options()

dlog options() = [dlog_option()]

dlog option() =

{name, Log :: log()} |

{file, FileName :: file:filename()} |
{linkto, LinkTo :: none | pid()} |

{repair, Repair :: true | false | truncate} |

{type, Type :: dlog_type()} |

{format, Format :: dlog_format()} |

{size, Size :: dlog_size()} |

{distributed, Nodes :: [node()]1} |

{notify, boolean()} |

{head, Head :: dlog_head_opt()} |

{head func, MFA :: {atom(), atom(), list()}} |
{quiet, boolean()} |

{mode, Mode :: dl og_node()}

open ret() =ret() | {error, open_error_rsn()}
ret() =

{ok, Log :: log()} |
{repaired,

Log :: log(),

66 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{recovered, Rec :: integer() >= 0},

{badbytes, Bad :: integer() >= 0}}
dist open ret() =

{[{node(), ret()}], [{node(), {error, dist_error_rsn()}}1}
dist error _rsn() = nodedown | open_error_rsn()
open _error _rsn() =

no such log |

{badarg, term()} |

{size mismatch,

CurrentSize :: dlog_size(),

NewSize :: dlog_size()} |

{arg mismatch,

OptionName :: dlog optattr(),

CurrentValue :: term(),

Value :: term()} |

{name already open, Log :: log()} |

{open read write, Log :: log()} |

{open read only, Log :: log()} |

{need repair, Log :: log()} |

{not a log file, FileName :: file:filenane()} |
{invalid index file, FileName :: file:filenane()} |

{invalid header, invalid_header()} |
{file error, file:filename(), file_error()} |
{node already open, Log :: log()}

dlog optattr() =
name | file | linkto | repair | type | format | size |
distributed | notify | head | head func | mode
dlog size() =
infinity |
integer() >= 1 |
{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
Parameter Ar gL isalist of the following options:
{nane, Log}

Specifies the log name. This name must be passed on as a parameter in all subsequent logging operations. A
name must always be supplied.

{file, FileNane}

Specifies the name of the file to be used for logged terms. If this value is omitted and the log name is an atom or
astring, the filename defaultsto | i st s: concat ([Log, ".LOG']) for haltlogs.

For wrap logs, thisis the base name of thefiles. Each filein awrap log is called <base_nane>. N, where Nis
an integer. Each wrap log also hastwo files called <base_nane>. i dx and <base_nane>. si z.

{l'i nkto, LinkTo}

If Li nkTo is a pid, it becomes an owner of the log. If Li nkTo is none, the log records that it is used
anonymously by some process by incrementing the user s counter. By default, the process that calls open/ 1
ownsthelog.

{repair, Repair}

If Repair istrue, the current log file is repaired, if needed. As the restoration is initiated, a message is
output on the error log. If f al se is specified, no automatic repair is attempted. Instead, the tuple { er r or,

Ericsson AB. All Rights Reserved.: Kernel | 67

disk log

{need_repair, Log}} isreturnedif anattemptismadetoopenacorruptlogfile. Ift r uncat e isspecified,
the log file becomes truncated, creating an empty log. Defaults to t r ue, which has no effect on logs opened
in read-only mode.

{type, Type}

Thelog type. Defaultsto hal t .
{format, Fornat}

Disk log format. Defaultstoi nt er nal .
{size, Size}

Log size.

When ahalt log hasreached itsmaximum size, all attemptstolog moreitemsarerejected. Defaultstoi nfi nity,
which for halt implies that there is no maximum size.

For wrap logs, parameter Si ze can be a pair { MaxNoByt es, MaxNoFi | es} ori nfi ni ty. Inthe latter
casg, if thefiles of an existing wrap log with the same name can be found, the size is read from the existing wrap
log, otherwise an error is returned.

Wrap logs write at most MaxNoBYyt es bytes on each file and use MaxNoFi | es files before starting all over
with the first wrap log file. Regardless of MaxNoByt es, at least the header (if there is one) and one item are
written on each wrap log file before wrapping to the next file.

When opening an existing wrap log, it is not necessary to supply a value for option Si ze, but any supplied
value must equal the current log size, otherwisethetuple{error, {size_mi smatch, CurrentSi ze,
NewSi ze} } isreturned.

{distributed, Nodes}

This option can be used for adding members to a distributed disk log. Defaultsto [], which means that the log
isloca on the current node.

{notify, boolean()}

If t r ue, thelog owners are notified when certain log events occur. Defaultsto f al se. The owners are sent one
of the following messages when an event occurs:

{di sk _log, Node, Log, {wap, NoLostltens}}

Sent when awrap log has filled up one of its filesand a new fileis opened. NoLost | t ens isthe number
of previously logged items that were lost when truncating existing files.

{di sk _log, Node, Log, {truncated, NoLostltens}}

Sent when alog is truncated or reopened. For halt logs NoLost | t ens is the number of items written on
the log since the disk log process was created. For wrap logs NoLost | t ens is the number of items on
all wrap log files.

{di sk_l og, Node, Log, {read_only, Itens}}

Sent when an asynchronous log attempt is made to alog file opened in read-only mode. | t ens istheitems
from the log attempt.

{di sk | og, Node, Log, {blocked |og, Itens}}

Sent when an asynchronous log attempt is made to a blocked log that does not queue log attempts. | t enrs
isthe items from the log attempt.

{di sk _log, Node, Log, {format_external, Itens}}

Sent when function al og/ 2 or al og_t er ns/ 2 isused for internally formatted logs. | t ens istheitems
from the log attempt.

68 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{di sk_| og, Node, Log, full}
Sent when an attempt to log items to awrap log would write more bytes than the limit set by option si ze.
{di sk_l og, Node, Log, {error_status, Status}}

Sent when the error status changes. The error status is defined by the outcome of the last attempt to log
items to the log, or to truncate the log, or the last use of function sync/1,inc_wap file/l, or
change_si ze/ 2. St at us iseitherok or{error, Error},theformeristheinitia value.

{head, Head}

Specifies a header to be written first on thelog file. If thelog isawrap log, the item Head iswritten first in each
new file. Head isto be aterm if the format isi nt er nal , otherwise a sequence of bytes. Defaults to none,
which means that no header iswritten first on thefile.

{head_func, {MF, A}}

Specifies afunction to be called each time anew log fileis opened. Thecall M F(A) isassumed to return { ok,
Head} . Theitem Head iswritten first in each file. Head isto be aterm if theformat isi nt er nal , otherwise
a sequence of bytes.

{node, Mbode}
Specifiesif thelog isto be opened in read-only or read-write mode. Defaultstor ead_wri t e.
{qui et, Bool ean}
Specifiesif messageswill besenttoer r or _| ogger onrecoverableerrorswiththelogfiles. Defaultstof al se.

open/ 1 returns { ok, Log} if the log file is successfully opened. If the file is successfully repaired, the tuple
{repaired, Log, {recovered, Rec}, {badbytes, Bad}} isreturned, where Rec isthe number
of whole Erlang terms found in the file and Bad is the number of bytes in the file that are non-Erlang terms. If the
parameter di st ri but ed is specified, open/ 1 returns a list of successful replies and a list of erroneous replies.
Each reply is tagged with the node name.

When adisk log is opened in read-write mode, any existing log fileis checked for. If thereis none, anew empty logis
created, otherwise the existing file is opened at the position after the last logged item, and the logging of items starts
from there. If the format isi nt er nal and the existing file is not recognized as an internally formatted log, a tuple
{error, {not_a log file, FileNane}} isreturned.

open/ 1 cannot be used for changing the values of options of an open log. When there are prior owners or users of
alog, all option values except name, | i nkt 0, and not i fy are only checked against the values supplied before as
option valuesto functionopen/ 1, change_header/ 2,change_noti fy/ 3,orchange_si ze/ 2. Thus, none
of the options except nane is mandatory. I1f some specified value differs from the current value, atuple { er r or,
{arg_m smatch, OptionNane, CurrentVal ue, Val ue}} isreturned.

If an owner attempts to open alog as owner once again, it is acknowledged with the return value { ok, Log},
but the state of the disk log is not affected.

If alog with a specified name islocal on some node, and one tries to open the log distributed on the same node, the
tuple{error, {node_al ready_open, Log}} isreturned. Thesametupleisreturnedif thelog is distributed
on some node, and one tries to open the log locally on the same node. Opening individual distributed disk logs for the
first time adds those logs to a (possibly empty) distributed disk log. The supplied option values are used on all nodes
mentioned by option di st ri but ed. Individua distributed logs know nothing about each other's option values, so
each node can be given unique option values by creating a distributed log with many callsto open/ 1.

Ericsson AB. All Rights Reserved.: Kernel | 69

disk log

A log file can be opened more than once by giving different values to option nane or by using the same file when
distributing alog on different nodes. It is up to the user of module di sk_| og to ensure that not more than one disk
log process has write access to any file, otherwise the file can be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed, Reason}, [{di sk_| og, open, 1}]}. The function returns { error, Reason} for al other
errors.

pid2name(Pid) -> {ok, Log} | undefined

Types:
Pid = pid()
Log = log()

Returns the log name given the pid of adisk log process on the current node, or undef i ned if the specified pid is
not a disk log process.

This function is meant to be used for debugging only.

reopen(Log, File) -> ok | {error, reopen_error_rsn()}
reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
Types:

Log = I og()

File = file:filenane()

Head = term()

BHead = iodata()

reopen_error_rsn() =
no _such log | nonode |
{read only mode, log()} |
{blocked log, log()?} |
{same_file name, log()} |
{invalid index file, file:filename()} |
{invalid header, invalid_header()} |
{file error, file:filename(), file_error()}

Renamesthelog fileto Fi | e and then recreatesanew log file. If awrap log exists, Fi | e isused as the base name of
the renamed files. By default the header givento open/ 1 iswritten first in the newly opened log file, but if argument
Head or BHead is specified, thisitem is used instead. The header argument is used only once. Next time awrap log
file is opened, the header given to open/ 1 isused.

reopen/ 2, 3 are used for internally formatted logs, and br eopen/ 3 for externally formatted logs.
Owners subscribing to notifications receive at r uncat e message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{fai |l ed, Error},
[{disk _|og, Fun, Arity}]}. Other processes having requests queued receive the message {di sk_| og,
Node, {error, disk |og stopped}}.

sync(Log) -> ok | {error, sync_error_rsn()}
Types.

Log = I og()

sync_error_rsn() =

70 | Ericsson AB. All Rights Reserved.: Kernel

disk log

no_such log | nonode |

{read only mode, log()} |

{blocked log, log()} |

{file error, file:filename(), file_error()}

Ensures that the contents of the log are written to the disk. Thisis usually arather expensive operation.

truncate(Log) -> ok | {error, trunc_error_rsn()}
truncate(Log, Head) -> ok | {error, trunc_error_rsn()}
btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()}
Types.

Log = I og()

Head = term()

BHead = iodata()

trunc _error _rsn() =
no such log | nonode |
{read only mode, log()} |
{blocked log, log()} |
{invalid header, invalid_header()} |
{file error, file:filenane(), file_error()}

Removes al items from a disk log. If argument Head or BHead is specified, this item is written first in the newly
truncated log, otherwise the header given to open/ 1 is used. The header argument is used only once. Next time a
wrap log file is opened, the header givento open/ 1 is used.

truncat e/ 1, 2 are used for internally formatted logs, and bt r uncat e/ 2 for externally formatted logs.
Owners subscribing to notifications receive at r uncat e message.

If the attempt to truncate thelog fails, the disk log processterminateswiththe EXIT message{ { f ai | ed, Reason},
[{disk_|og, Fun, Arity}]}. Other processes having requests queued receive the message {di sk_| og,
Node, {error, disk |og stopped}}.

unblock(Log) -> ok | {error, unblock_error_rsn()}
Types:
Log = 1 0g()
unblock error rsn() =
no such log | nonode |

{not blocked, log()} |
{not blocked by pid, log()}

Unblocks alog. A log can only be unblocked by the blocking process.

See Also
file(3),pg2(3),wap_I| og reader(3)

Ericsson AB. All Rights Reserved.: Kernel | 71

erl_boot_server

erl_boot_server

Erlang module

This server is used to assist diskless Erlang nodes that fetch all Erlang code from another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime system is started with command-
lineflag - | oader i net. All hosts specified with command-line flag - host s Host must have one instance of
this server running.

This server can be started with the Kernel configuration parameter st art _boot _ser ver.

Theer| boot server canreadregular filesand filesin archives. Seecode(3) ander| _pri m| oader (3)
in ERTS.

The support for loading code from archive files is experimental. It is released before it is ready to obtain early
feedback. The file format, semantics, interfaces, and so on, can be changed in afuture release.

Exports

add slave(Slave) -> ok | {error, Reason}

Types:
Slave = Host
Host = inet:ip_address() | inet:hostnane()

Reason = {badarg, Slave}
AddsaS| ave nodeto thelist of allowed slave hosts.

delete slave(Slave) -> ok | {error, Reason}

Types:
Slave = Host
Host = inet:ip_address() | inet:hostnane()

Reason = {badarg, Slave}
Deletesa Sl ave node from the list of allowed dave hosts.

start(Slaves) -> {ok, Pid} | {error, Reason}

Types:
Slaves = [Host]
Host = inet:ip_address() | inet:hostnane()
Pid = pid()

Reason = {badarg, Slaves}
Starts the boot server. Sl aves isalist of IP addresses for hosts, which are allowed to use this server as aboot server.

start link(Slaves) -> {ok, Pid} | {error, Reason}
Types.

72 | Ericsson AB. All Rights Reserved.: Kernel

erl_boot_server

Slaves = [Host]
Host = inet:ip_address() | inet:hostnane()
Pid = pid()
Reason = {badarg, Slaves}
Startsthe boot server and linksto the caller. Thisfunctionisused to start the server if itisincluded in asupervision tree.

which slaves() -> Slaves
Types:
Slaves = [Slavel]

Slave =
{Netmask :: inet:ip_address(), Address :: inet:ip_address()}

Returns the current list of allowed slave hosts.

SEE ALSO

erts:init(3),erts:erl_primloader(3)

Ericsson AB. All Rights Reserved.: Kernel | 73

erl_ddll

erl_ddll

Erlang module

This module provides an interface for loading and unloading Erlang linked-in driversin runtime.

This is a large reference document. For casual use of this module, and for most real world applications, the
descriptions of functions| oad/ 2 and unl oad/ 1 are enough to getting started.

The driver isto be provided as a dynamically linked library in an object code format specific for the platform in use,
thatis, . so fileson most Unix systemsand . ddl fileson Windows. An Erlang linked-in driver must provide specific
interfacesto the emulator, so thismoduleis not designed for loading arbitrary dynamic libraries. For moreinformation
about Erlang drivers, seeerts: erl _dri ver .

When describing a set of functions (that is, a module, a part of a module, or an application), executing in a process
and wanting to use addll-driver, we use theterm user. A process can have many users (different modul es needing the
same driver) and many processes running the same code, making up many users of adriver.

Inthe basic scenario, each user loadsthe driver before starting to useit and unloadsthe driver when done. Thereference
counting keeps track of processes and the number of loads by each process. This way the driver is only unloaded
when no one wantsit (it has no user). The driver also keeps track of ports that are opened to it. This enables delay of
unloading until all ports are closed, or killing of all ports that use the driver when it is unloaded.

Theinterface supports two basic scenarios of loading and unloading. Each scenario can aso have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are as follows:

Load and Unload on a" When Needed Basis'

This (most common) scenario simply supports that each user of the driver loads it when needed and unloads it
when no longer needed. The driver isawaysreference counted and aslong as a process keeping the driver |oaded
isstill alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not concerned with if the driver is already loaded from the file system or if the object code must be loaded from
file system.

The following two pairs of functions support this scenario:
load/2 and unload/1

When using the| oad/ unl oad interfaces, the driver is not unloaded until the last port using the driver is
closed. Function unl oad/ 1 can return immediately, as the users have no interrest in when the unloading
occurs. The driver is unloaded when no one needs it any longer.

If a process having the driver loaded dies, it has the same effect as if unloading is done.

When loading, function | oad/ 2 returns ok when any instance of the driver is present. Thus, if adriver is
waliting to get unloaded (because of open ports), it ssmply changes state to no longer need unloading.

load_driver/2 and unload_driver/1

These interfaces are intended to be used when it is considered an error that ports are open to adriver that no
user has loaded. The portsthat are still open when the last user callsunl oad_dri ver/ 1 or when the last
process having the driver loaded dies, are killed with reason dr i ver _unl oaded.

The function names| oad_dri ver andunl oad_dri ver arekept for backward compatibility.

74 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

L oading and Reloading for Code Replacement

This scenario can occur if the driver code needs replacement during operation of the Erlang emulator.
Implementing driver code replacement is alittle more tedious than Beam code replacement, as one driver cannot
be loaded as both "old" and "new" code. All users of adriver must have it closed (no open ports) before the old
code can be unloaded and the new code can be loaded.

The unloading/loading is done as one atomic operation, blocking all processesin the system from using the driver
in question while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process starts, the driver isloaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when areload is already in progress is always an error. Using the high-level functions, it is
aso an error to demand rel oading when more than one user has the driver loaded.

To simplify driver replacement, avoid designing your system so that more than one user has the driver loaded.

The two functions for reloading drivers are to be used together with corresponding load functions to support the
two different behaviors concerning open ports:

load/2 and reload/2
This pair of functionsis used when reloading is to be done after the last open port to the driver is closed.

Asr el oad/ 2 waits for the reloading to occur, a misbehaving process keeping open ports to the driver
(or keeping the driver loaded) can cause infinite waiting for reload. Time-outs must be provided outside of
the process demanding the reload or by using the low-level interfacetry | oad/ 3 in combination with
driver monitors.

load_driver/2 and reload_driver/2

This pair of functions are used when open ports to the driver are to be killed with reason
dri ver _unl oaded to alow for new driver code to get loaded.

However, if another process has the driver loaded, calling rel oad_dri ver returns error code
pendi ng_pr ocess. Asstated earlier, the recommended designisto not allow other usersthan the "driver
reloader” to demand loading of the driver in question.

Data Types

driver() = iolist() | atom()
path() = string() | atom()

Exports

demonitor(MonitorRef) -> ok
Types.
MonitorRef = reference()

Removes adriver monitor in much the ssmeway aser | ang: denoni t or/ 1 in ERTS does with process monitors.
For details about how to create driver monitors, seeroni tor/ 2,try_| oad/ 3,andtry_unl oad/ 2.

The function throws abadar g exception if the parameter isnot ar ef er ence() .

format _error(ErrorDesc) -> string()
Types:

Ericsson AB. All Rights Reserved.: Kernel | 75

erl_ddll

ErrorDesc = term()

Takes an Er r or Desc returned by load, unload, or reload functions and returns a string that describes the error or
warning.

Because of peculiarities in the dynamic loading interfaces on different platforms, the returned string is only
guaranteed to describe the correct error if format_error/1is called in the same instance of the Erlang virtual
machine asthe error appeared in (meaning the same operating system process).

info() -> AllInfolList
Types.
AllInfoList = [DriverInfo]
DriverInfo = {DriverName, InfolList}
DriverName = string()
InfoList = [InfoItem]
InfoItem = {Tag :: atom(), Value :: term()}

Returnsalist of tuples{ Dri ver Nane, | nfolList}, wherel nfolLi st istheresult of calingi nf o/ 1 for that
Dr i ver Nane. Only dynamically linked-in drivers are included in the list.

info(Name) -> InfolList

Types:
Name = driver()
InfolList = [InfoItem, ...]

InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples{ Tag, Val ue}, where Tag is the information item and Val ue is the result of calling
i nf o/ 2 withthisdriver name and thistag. Theresultisatuplelist containing all information available about adriver.

The following tags appearsin the list:

s processes
e driver_options

e port_count

 linked_in_driver

e pernanent

e awaiting_ Il oad

e awaiting_unl oad

For a detailed description of each value, seei nf o/ 2.

The function throws abadar g exception if the driver is not present in the system.

info(Name, Tag) -> Value
Types:
Name = driver ()
Tag =
processes | driver options | port_count | linked in driver |

76 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

permanent | awaiting load | awaiting unload
Value = term()

Returns specific information about one aspect of a driver. Parameter Tag specifies which aspect to get information
about. The return Val ue differs between different tags:

processes

Returns all processes containing users of the specific driversasalist of tuples{ pi d(), i nteger() >= 0},
wherei nt eger () denotesthe number of usersin processpi d() .

driver_options

Returnsalist of the driver options provided when loading, and any options set by the driver during initialization.
Theonly valid optioniski | | _ports.

port _count

Returns the number of ports (ani nt eger () >= 0) using the driver.
i nked_in_driver

Returnsabool ean(), whichist r ue if thedriver isa staticaly linked-in one, otherwisef al se.
per manent

Returns abool ean(), whichist r ue if the driver has made itself permanent (and is not a statically linked-
in driver), otherwisef al se.

awai ti ng | oad

Returns a list of al processes having monitors for | oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nt eger () isthe number of monitors held by process pi d() .

awai t i ng_unl oad

Returns a list of all processes having monitors for unl oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nteger () isthenumber of monitors held by processpi d() .

If option| i nked_i n_dri ver or per manent returnstr ue, al other optionsreturn | i nked_i n_dri ver or
per manent , respectively.

The function throws abadar g exception if the driver is not present in the system or if the tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}
Types.
Path = path()
Name = driver ()
ErrorDesc = term()
Loads and links the dynamic driver Nane. Pat h isafile path to the directory containing the driver. Nane must be a

sharable object/dynamic library. Two driverswith different Pat h parameters cannot be loaded under the same name.
Nane isastring or atom containing at least one character.

The Nane specified is to correspond to the filename of the dynamically |oadable object file residing in the directory
specified as Pat h, but without the extension (that is, . so0). The driver name provided in the driver initialization
routine must correspond with the filename, in much the same way as Erlang module names correspond to the names
of the. beamfiles.

If the driver was previously unloaded, but is still present because of open ports to it, a call to | oad/ 2 stops the
unloading and keepsthe driver (aslong as Pat h isthe same), and ok isreturned. If you really want the object code to

Ericsson AB. All Rights Reserved.: Kernel | 77

erl_ddll

bereloaded, user el oad/ 2 orthelow-level interfacet ry | oad/ 3 instead. Seealsothedescriptionof di f f er ent
scenar i os for loading/unloading in the introduction.

If more than one processtriesto load an already loaded driver with the same Pat h, or if the same processtriesto load
it many times, the function returns ok . The emulator keepstrack of thel oad/ 2 calls, so that a corresponding number
of unl oad/ 2 calls must be done from the same process before the driver gets unloaded. It is therefore safe for an
application to load a driver that is shared between processes or applications when needed. It can safely be unloaded
without causing trouble for other parts of the system.

It isnot allowed to load multiple drivers with the same name but with different Pat h parameters.

Pat h is interpreted literally, so that all loaders of the same driver must specify the same literal Pat h string,
although different paths can point out the same directory in the file system (because of use of relative paths and
links).

On success, the function returns ok. On failure, the return valueis{ err or, Err or Desc}, where Er r or Desc is
an opague term to be translated into human readable form by functionf or mat _error/ 1.

For more control over the error handling, usethet ry_| oad/ 3 interface instead.
The function throws abadar g exception if the parameters are not specified as described here.

load driver(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver ()

ErrorDesc = term()

Works essentially as| oad/ 2, but loads the driver with other options. All ports using the driver are killed with reason
dri ver _unl oaded when the driver isto be unloaded.

The number of loads and unloads by different users influences the loading and unloading of a driver file. The port
killing therefore only occurs when the last user unloads the driver, or when the last process having loaded the driver
exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Usingtry | oad/ 3 with
{driver_options,[kill_ports]} intheoptionlist givesthe same effect regarding the port killing.

The function throws abadar g exception if the parameters are not specified as described here.

loaded drivers() -> {ok, Drivers}
Types:

Drivers = [Driver]

Driver = string()

Returns alist of all the available drivers, both (statically) linked-in and dynamically loaded ones.
The driver names are returned as alist of strings rather than alist of atoms for historical reasons.
For more information about drivers, seei nf o.

monitor(Tag, Item) -> MonitorRef
Types:

78 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Tag = driver

Item = {Name, When}

Name = driver ()

When = loaded | unloaded | unloaded only
MonitorRef = reference()

Creates a driver monitor and works in many ways as er | ang: noni t or/ 2 in ERTS, does for processes. When
a driver changes state, the monitor results in a monitor message that is sent to the calling process. Moni t or Ref
returned by this function is included in the message sent.

Aswith process monitors, each driver monitor set only generates one single message. The monitor is"destroyed" after
the message is sent, so it isthen not needed to call denoni t or/ 1.

Moni t or Ref can also be used in subsequent callsto denoni t or / 1 to remove amonitor.
The function accepts the following parameters:
Tag

The monitor tag is always dr i ver , as this function can only be used to create driver monitors. In the future,
driver monitors will be integrated with process monitors, why this parameter has to be specified for consistence.

ltem

Parameter | t em specifies which driver to monitor (the driver name) and which state change to monitor. The
parameter isatuple of arity two whosefirst element isthe driver name and second element is one of thefollowing:

| oaded

Notifieswhenthedriver isreloaded (or loaded if |oading isunderway). It only makes senseto monitor drivers
that are in the process of being loaded or reloaded. A future driver name for loading cannot be monitored.
That only resultsin a DOAN message sent immediately. Monitoring for loading istherefore most useful when
triggered by functiont ry_| oad/ 3, where the monitor is created because the driver isin such a pending
State.

Setting adriver monitor for | oadi hg eventually leads to one of the following messages being sent:
{*UP", reference(), driver, Nane, |oaded}

This message is sent either immediately if the driver is aready loaded and no reloading is pending, or
when reloading is executed if reloading is pending.

The user is expected to know if reloading is demanded before creating a monitor for loading.
{"UP", reference(), driver, Nane, pernanent}

This message is sent if reloading was expected, but the (old) driver made itself permanent before
reloading. It is aso sent if the driver was permanent or statically linked-in when trying to creste the
monitor.

{' DO, reference(), driver, Nane, |oad_cancell ed}

Thismessage arrivesif reloading was underway, but the requesting user cancelled it by dying or calling
try_unl oad/ 2 (or unl oad/ 1/unl oad_dri ver/ 1) again before it was reloaded.

{'DOWN , reference(), driver, Nane, {load failure, Failure}}

This message arrivesif reloading was underway but the loading for some reason failed. TheFai | ur e
term is one of the errors that can be returned fromt ry_| oad/ 3. The error term can be passed to
format _error/ 1 fortrandation into human readable form. Notice that the trand ation must be done
in the same running Erlang virtual machine as the error was detected in.

Ericsson AB. All Rights Reserved.: Kernel | 79

erl_ddll

unl oaded

Monitors when a driver gets unloaded. If one monitors a driver that is not present in the system, one
immediately gets notified that the driver got unloaded. Thereisno guarantee that the driver was ever |oaded.

A driver monitor for unload eventually resultsin one of the following messages being sent:
{'DOWN , reference(), driver, Nane, unloaded}

The monitored driver instanceis now unloaded. Asthe unload can be aresult of ar el oad/ 2 request,
the driver can once again have been |oaded when this message arrives.

{*UP", reference(), driver, Nane, unload_cancel | ed}

This message is sent if unloading was expected, but while the driver was waiting for all ports to get
closed, anew user of the driver appeared, and the unloading was cancelled.

Thismessage appearsif { ok, pendi ng_dri ver} wasreturnedfromt ry_unl oad/ 2 for thelast
user of thedriver, and then { ok, al ready_| oaded} isreturned fromacaltotry_| oad/ 3.

If oner eally wantsto monitor when the driver gets unloaded, this message distorts the picture, because
no unloading wasdone. Optionunl oaded_onl y createsamonitor similar toanunl oaded monitor,
but never resultsin this message.

{"UP, reference(), driver, Nane, permanent}

Thismessageis sent if unloading was expected, but the driver madeitself permanent before unloading.
It isalso sent if trying to monitor a permanent or statically linked-in driver.

unl oaded_only

A monitor created as unl oaded_onl y behaves exactly as one created as unl oaded except that the
{"UP", reference(), driver, Nanme, unload_cancel | ed} messageisnever sent, but the
monitor instead persists until the driver really gets unloaded.

The function throws abadar g exception if the parameters are not specified as described here.

reload(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver ()

ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Reloads the driver named Name from a possibly different Pat h than previoudly used. This function is used in the
code changescenar i o described in the introduction.

If there are other users of thisdriver, thefunctionreturns{ error, pendi ng_pr ocess}, butif there are no other
users, the function call hangs until all open ports are closed.

Avoid mixing multiple users with driver reload requests. ‘

To avoid hanging on open ports, use functiontry_| oad/ 3 instead.
The Nane and Pat h parameters have exactly the same meaning as when calling the plain function| oad/ 2.

On success, thefunction returns ok. On failure, the function returns an opaque error, except thependi ng_pr ocess
error described earlier. The opague errors are to be translated into human readable form by function
format _error/ 1.

80 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

For more control over the error handling, usethet ry_| oad/ 3 interface instead.

The function throws abadar g exception if the parameters are not specified as described here.

reload driver(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name = driver ()

ErrorDesc = pending process | OpaqueError
OpaqueError = term()

Works exactly asr el oad/ 2, but for driversloaded with thel oad_dri ver/ 2 interface.

As this interface implies that ports are killed when the last user disappears, the function does not hang waiting for
portsto get closed.

For more details, see scenar i 0s in this module description and the function description for r el oad/ 2.
The function throws abadar g exception if the parameters are not specified as described here.

try load(Path, Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorDesc}

Types:

Path = path()

Name = driver ()

OptionList = [Option]

Option =
{driver options, DriverOptionList} |
{monitor, MonitorOption} |
{reload, ReloadOption}

DriverOptionList = [DriverOption]
DriverOption = kill ports

MonitorOption = ReloadOption = pending driver | pending
Status = loaded | already loaded | PendingStatus

PendingStatus = pending driver | pending process
Ref = reference()
ErrorDesc = ErrorAtom | OpaqueError

ErrorAtom =
linked in driver | inconsistent | permanent |
not loaded by this process | not loaded | pending reload |
pending process

OpaqueError = term()

Provides more control than the | oad/ 2/r el oad/ 2 and | oad_dri ver/ 2/rel oad_dri ver/ 2 interfaces. It
never waits for completion of other operations related to the driver, but immediately returns the status of the driver
as one of the following:

{ok, | oaded}
The driver was loaded and isimmediately usable.

Ericsson AB. All Rights Reserved.: Kernel | 81

erl_ddll

{ok, already_l oaded}

Thedriver wasalready |oaded by another processor isin use by aliving port, or both. Theload by youisregistered
and acorresponding t r y_unl oad is expected sometime in the future.

{ok, pending_driver}or{ok, pending driver, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded (open ports use it). Still, unload is expected when you are done with the driver. This return
value mostly occurs when options { r el oad, pendi ng_dri ver} or {rel oad, pendi ng} are used, but
can occur when another user is unloading a driver in parallel and driver option ki | | _ports isset. In other
words, this return value always needs to be handled.

{ok, pending process}or{ok, pending_process, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is till waiting
to get unloaded by another user (not only by aport, in which case{ ok, pendi ng_dri ver} would have been
returned). Still, unload is expected when you are done with the driver. Thisreturn value only occurs when option
{rel oad, pendi ng} isused.

When the function returns{ ok, pendi ng_dri ver} or{ok, pendi ng_process}, onecan get information
about when the driver isactually loaded by using option { noni t or, Moni t or Opti on}.

When monitoring is requested, and a corresponding { ok, pendi ng_driver} or{ok, pendi ng_process}
would be returned, the function instead returnsatuple{ ok, Pendi ngSt at us, reference()} andtheprocess
then gets a monitor message later, when the driver gets loaded. The monitor message to expect is described in the
function description of nmoni t or/ 2.

In case of loading, monitoring can not only get triggered by using option {r el oad, Rel oadOpti on}, but
also in specia cases where the load error is transient. Thus, { noni t or, pendi ng_dri ver} isto be used
under basically all real world circumstances.

The function accepts the following parameters:
Pat h

Thefile system path to the directory where the driver object file islocated. The filename of the object file (minus
extension) must correspond to the driver name (used in parameter Nane) and the driver must identify itself with
the same name. Pat h can be provided asaniolist(), meaning it can bealist of otheri ol i st () s, characters (8-
bit integers), or binaries, all to be flattened into a sequence of characters.

The (possibly flattened) Pat h parameter must be consistent throughout the system. A driver isto, by all users,
be loaded using the same literal Pat h. The exception is when reloading is requested, in which case Pat h can
be specified differently. Notice that all users trying to load the driver later need to use the new Pat h if Pat h
is changed using ar el oad option. This is yet another reason to have only one loader of a driver one wants
to upgrade in arunning system.

Name

This parameter is the name of the driver to be used in subsequent calls to function er | ang: open_port in
ERTS. The name can be specified asani ol i st () or anat on() . The name specified when loading is used
to find the object file (with the help of Pat h and the system-implied extension suffix, that is, . s0). The name
by which the driver identifies itself must also be consistent with this Name parameter, much as the module name
of aBeam file much corresponds to its filename.

82 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Opt i onLi st

Some options can be specified to control the loading operation. The options are specified as alist of two-tuples.
The tuples have the following values and meanings:

{driver_options, DriverOptionList}
Thisisto provide options that changes its general behavior and "sticks' to the driver throughout itslifespan.

The driver options for a specified driver name need always to be consistent, even when the driver is
reloaded, meaning that they are as much a part of the driver as the name.

The only allowed driver optioniski | I _port s, which meansthat all ports opened to the driver are killed
with exit reason dr i ver _unl oaded when no process any longer has the driver loaded. This situation
arises either when the last user calst ry_unl oad/ 2, or when the last process having loaded the driver
exits.

{noni tor, MonitorOption}

A MonitorOptiontellstry | oad/ 3 to trigger a driver monitor under certain conditions. When the
monitor is triggered, the function returns a three-tuple { ok, Pendi ngSt atus, reference()},
wherer ef er ence() isthe monitor reference for the driver monitor.

Only one Moni t or Opt i on can be specified. It is one of the following:

e Theatompendi ng, which meansthat amonitor isto be created whenever aload operation is delayed,

 Theatompendi ng_dri ver ,inwhichamonitor iscreated whenever the operation is delayed because
of open portsto an otherwise unused driver.

Optionpendi ng_dri ver isof littleuse, but ispresent for completeness, asit iswell defined which reload
optionsthat can giveriseto which delays. However, it can beagood ideato usethe sameMoni t or Opt i on
asthe Rel oadOpt i on, if present.

If reloading is not requested, it can still be useful to specify option noni t or, as forced unloads (driver
optionki I | _ports oroptionki ||l _portstotry_unl oad/ 2) trigger atransient state where driver
loading cannot be performed until all closing ports are closed. Thus, ast ry_unl oad can, in aimost all
situations, return{ ok, pendi ng_dri ver},awaysspecifyatleast{ noni t or, pendi ng _dri ver}
in production code (see the monitor discussion earlier).

{rel oad, Rel oadOption}

Thisoption is used to reload a driver from disk, most often in a code upgrade scenario. Having ar el oad
option also implies that parameter Pat h does not need to be consistent with earlier loads of the driver.

To reload a driver, the process must have loaded the driver before, that is, there must be an active user of
the driver in the process.

Ther el oad option can be either of the following:
pendi ng

Withtheatom pendi ng, reloading isrequested for any driver and is effectuated when all ports opened
to the driver are closed. The driver replacement in this case takes place regardless if there are still
pending users having the driver loaded.

Theoption also triggers port-killing (if driver optionki | | _por t s isused) although there are pending
users, making it usablefor forced driver replacement, but laying much responsibility onthedriver users.
The pending option is seldom used as one does not want other users to have loaded the driver when
code change is underway.

Ericsson AB. All Rights Reserved.: Kernel | 83

erl_ddll

pendi ng_dri ver

This option is more useful. Here, reloading is queued if the driver is not loaded by any other users,
but the driver has opened ports, in which case { ok, pendi ng_dri ver} isreturned (anoni t or
option is recommended).

If the driver is unloaded (not present in the system), error code not _| oaded isreturned. Optionr el oad
isintended for when the user has already |oaded the driver in advance.

The function can return numerous errors, some can only be returned given a certain combination of options.

Some errors are opague and can only be interpreted by passing them to function f or mat _er r or/ 1, but some can
be interpreted directly:

{error,linked_in_driver}

The driver with the specified name is an Erlang statically linked-in driver, which cannot be manipulated with
thisAPI.

{error,inconsistent}
Thedriver is already |oaded with other Dr i ver Opt i onLi st or adifferent literal Pat h argument.
This can occur evenif ar el oad option is specified, if Dri ver Opt i onLi st differsfrom the current.
{error, pernanent}

The driver has requested itself to be permanent, making it behave like an Erlang linked-in driver and can no
longer be manipulated with this API.

{error, pending_process}

The driver isloaded by other userswhen option { r el oad, pendi ng_dri ver} was specified.
{error, pending_rel oad}

Driver reload is already requested by another user when option { r el oad, Rel oadOpti on} was specified.
{error, not_| oaded by this process}

Appears when option r el oad is specified. The driver Nane is present in the system, but there is no user of
itin this process.
{error, not_I| oaded}

Appears when option r el oad is specified. The driver Nane is not in the system. Only drivers loaded by this
process can be rel oaded.

All other error codes are to be trandated by function f or mat _error/ 1. Noticethat callstof or mat _err or are
to be performed from the same running instance of the Erlang virtual machine as the error is detected in, because of
system-dependent behavior concerning error values.

If the arguments or options are malformed, the function throws abadar g exception.

try unload(Name, OptionList) ->
{ok, Status} |
{ok, PendingStatus, Ref} |
{error, ErrorAtom}

Types.

84 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

Name = driver ()

OptionList = [Option]

Option = {monitor, MonitorOption} | kill ports
MonitorOption = pending driver | pending

Status = unloaded | PendingStatus

PendingStatus = pending driver | pending process
Ref = reference()

ErrorAtom =

linked in driver | not loaded | not loaded by this process |
permanent

Thisisthelow-level function to unload (or decrement reference counts of) adriver. It can be used to force port killing,
in much the same way asthedriver optionki | | _por t s implicitly does. Also, it can trigger amonitor either because
other users still have the driver loaded or because open ports use the driver.

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular
process (that is, this user) no longer needs the driver. That can, if there are no other users, trigger unloading of the
driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed.

If the driver hasoption ki | | _ports set,orif ki || _ports isspecified as an option to this function, all pending
ports using this driver are killed when unloading is done by the last user. If no port-killing is involved and there are
open ports, the unloading is delayed until no more open ports use the driver. If, in this case, another user (or even this
user) loads the driver again before the driver is unloaded, the unloading never takes place.

To allow the user to request unloading to wait for actual unloading, noni t or triggers can be specified in much
the same way as when loading. However, as users of this function seldom are interested in more than decrementing
the reference counts, monitoring is seldom needed.

If optionki I | _port s isused, monitor trigging is crucial, as the ports are not guaranteed to be killed until the
driver isunloaded. Thus, a monitor must be triggered for at least the pendi ng_dr i ver case.

The possible monitor messages to expect are the same as when using option unl oaded to function noni t or / 2.
The function returns one of the following statuses upon success:
{ok, unl oaded}

The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if
the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and no more users require it to be loaded.
{ok, pending_driver}or{ok, pending driver, reference()}

Indicates that this call removed the last user from the driver, but there are still open ports using it. When all ports
are closed and no new users have arrived, the driver is reloaded and the name and memory reclaimed.

Thisreturn valueisvalid even if option ki | | _port s was used, askilling ports can be a process that does not
completeimmediately. However, the condition isin that case transient. Monitors are always useful to detect when
the driver isreally unloaded.

{ok, pending process}or{ok, pending_process, reference()}

The unload request is registered, but other users still hold the driver. Notice that theterm pendi ng_pr ocess
can refer to the running process; there can be more than one user in the same process.

Ericsson AB. All Rights Reserved.: Kernel | 85

erl_ddll

Thisisanormal, healthy, return valueif the call wasjust placed to inform the emul ator that you have no further use
of thedriver. It isthe most common return value in the most common scenar i o described in the introduction.

The function accepts the following parameters:
Nanme

Nane isthe name of the driver to be unloaded. The name can be specified asani ol i st () orasanat on().
Opt i onLi st

Argument Opt i onLi st can be used to specify certain behavior regarding ports and triggering monitors under
certain conditions:

kill_ports

Forces killing of all ports opened using this driver, with exit reason dri ver _unl oaded, if you are the
last user of the driver.

If other users have the driver loaded, this option has no effect.

To get the consistent behavior of killing ports when the last user unloads, use driver optionki | | _ports
when loading the driver instead.

{moni tor, NbnitorQOption}
Creates adriver monitor if the condition specified in Moni t or Opt i on istrue. The valid options are:
pendi ng_dri ver
Creates adriver monitor if the return valueisto be{ ok, pendi ng_dri ver}.
pendi ng
Createsamonitor if thereturnvalueis{ ok, pendi ng_dri ver} or{ ok, pendi ng_process}.

The pendi ng_dri ver Moni t or Opti on is by far the most useful. It must be used to ensure that the
driver really is unloaded and the ports closed whenever optionki | | _port s isused, or thedriver can have
been loaded with driver optionki | | _ports.

Using themonitor triggersinthecall tot ry _unl oad ensuresthat the monitor isadded before the unloading
is executed, meaning that the monitor is aways properly triggered, which is not the case if moni t or/ 2
is called separately.

The function can return the following error conditions, all well specified (no opague values):
{error, linked_in_driver}

Y ou were trying to unload an Erlang statically linked-in driver, which cannot be manipulated with this interface
(and cannot be unloaded at all).

{error, not_| oaded}
The driver Nane is not present in the system.
{error, not | oaded by this process}
The driver Nane is present in the system, but there is no user of it in this process.

Asaspecial case, drivers can be unloaded from processes that have done no corresponding call tot ry_| oad/ 3
if, and only if, there are no user s of thedriver at all, which can occur if the process containing the last user dies.

{error, pernmanent}

The driver has made itself permanent, in which case it can no longer be manipulated by thisinterface (much like
astatically linked-in driver).

The function throws abadar g exception if the parameters are not specified as described here.

86 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

unload(Name) -> ok | {error, ErrorDesc}
Types.

Name = driver ()

ErrorDesc = term()

Unloads, or at least dereferences the driver named Narre. If the caller isthe last user of the driver, and no more open
ports use the driver, the driver gets unloaded. Otherwise, unloading is delayed until al ports are closed and no users
remain.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user of the driver. For use scenarios, seethedescr i pt i on in the beginning of this module.

The Er r or Desc returned is an opaque value to be passed further on to function f or mat _error/ 1. For more
control over the operation, usethet ry_unl oad/ 2 interface.

The function throws abadar g exception if the parameters are not specified as described here.

unload driver(Name) -> ok | {error, ErrorDesc}
Types.

Name = driver ()

ErrorDesc = term()

Unloads, or at least dereferences the driver named Nanre. If the caller isthe last user of the driver, al remaining open
ports using the driver are killed with reason dr i ver _unl oaded and the driver eventually gets unloaded.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user. For use scenarios, seethedescr i pti on in the beginning of this module.

The Er r or Desc returned is an opaque value to be passed further on to function f or mat _error/ 1. For more
control over the operation, usethet ry_unl oad/ 2 interface.

The function throws abadar g exception if the parameters are not specified as described here.

See Also

erts:erl _driver(4),erts:driver_entry(4)

Ericsson AB. All Rights Reserved.: Kernel | 87

erl_epmd

erl_epmd

Erlang module

This module communicates with the EPMD daemon, see epmd. To implement your own epmd module please see
ERTSUser's Guide: How to Implement an Alternative Service Discovery for Erlang Distribution

Exports

start_link() -> {ok, pid()} | ignore | {error, term()}
This function isinvoked as this module is added as a child of theer | _di stri buti on supervisor.

register node(Name, Port) -> Result
register node(Name, Port, Driver) -> Result

Types.
Name = string()
Port = integer() >= 0

Driver = inet tcp | inet6 tcp | inet | inet6
Creation = integer() >= 0
Result = {ok, Creation} | {error, already registered} | term()

Registers the node with epnd and tells epmd what port will be used for the current node. It returns a creation number.
This number isincremented on each register to help with identifying if a node is reconnecting to epmd.

port please(Name, Host) -> {ok, Port, Version} | noport
port please(Name, Host, Timeout) -> {ok, Port, Version} | noport
Types:

Name = atom() | string()

Host = atom() | string() | inet:ip_address()

Timeout = integer() >= 0 | infinity

Port = Version = integer() >= 0

Requests the distribution port for the given node of an EPMD instance. Together with the port it returns adistribution
protocol version which has been 5 since Erlang/OTP R6.

address please(Name, Host, AddressFamily) ->
Success | {error, term()}

Types:
Name = string()
Host = string() | inet:ip_address()
AddressFamily = inet | inet6
Port = Version = integer() >= 0
Success =

{ok, inet:ip_address()} |
{ok, inet:ip_address(), Port, Version}

Called by the distribution module. Resolves the Host to an IP address.

88 | Ericsson AB. All Rights Reserved.: Kernel

erl_epmd

Another epmd module may return port and distribution protocol version as well.

names (Host) -> {ok, [{Name, Port}]} | {error, Reason}

Types:
Host = atom() | string() | inet:ip_address()
Name = string()
Port = integer() >= 0

Reason = address | file: posix()

Cadlled by net _adm nanes/ 0. Host defaults to the localhost. Returns the names and associated port numbers of
the Erlang nodesthat epd registered at the specified host. Returns{ er r or, addr ess} if epnd isnot operational.

Example:

(arne@dunn)1> erl epmd:names(localhost).
{ok, [{"arne",40262}1}

Ericsson AB. All Rights Reserved.: Kernel | 89

erl_prim_loader

erl_prim_loader

Erlang module

The module erl_prim_loader is moved to the runtime system application. Please see erl_prim_|loader(3) in the ERTS
reference manual instead.

90 | Ericsson AB. All Rights Reserved.: Kernel

erlang

erlang

Erlang module

The module erlang is moved to the runtime system application. Please see erlang(3) in the ERTS reference manual
instead.

Ericsson AB. All Rights Reserved.: Kernel | 91

error_handler

error_handler

Erlang module

This module defines what happens when certain types of errors occur.

Exports

raise undef exception(Module, Function, Args) -> no _return()
Types:
Module = Function = atom()
Args = list()
A (possibly empty) list of arguments Ar g1, . ., ArgN
Raisesan undef exception with a stacktrace, indicating that Modul e: Funct i on/ Nisundefined.

undefined function(Module, Function, Args) -> any()
Types:

Module = Function = atom()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN
This function is called by the runtime system if a call is made to Modul e: Functi on(Argl,.., ArgN) and
Mbdul e: Funct i on/ Nisundefined. Noticethat thisfunctionisevaluated insidethe processmaking theorigina call.
This function first attempts to autoload Modul e. If that is not possible, an undef exceptionis raised.
If it is possible to load Modul e and function Funct i on/ Nis exported, it is called.

Otherwise, if function ' $handl e _undefined function'/2 is exported, it is «caled as
" $handl e_undefi ned_f uncti on' (Function, Args).

Defining' $handl e_undefi ned_f uncti on' / 2 inordinary application codeishighly discouraged. Itisvery
easy to make subtle errorsthat can take along time to debug. Furthermore, none of thetoolsfor static code analysis
(such as Dialyzer and Xref) supportsthe use of * $handl e_undef i ned_f uncti on' / 2 and no such support
will beadded. Only usethisfunction after having carefully considered other, less dangerous, solutions. Oneexample
of potential legitimate useis creating stubs for other sub-systems during testing and debugging.

Otherwise an undef exception israised.

undefined lambda(Module, Fun, Args) -> term()
Types:

Module = atom()

Fun = function()

Args = list()

A (possibly empty) list of arguments Ar g1, . ., ArgN

This function is evaluated if acall ismadeto Fun(Argl, .., ArgN) when the module defining the fun is not
loaded. The function is evaluated inside the process making the original call.

92 | Ericsson AB. All Rights Reserved.: Kernel

error_handler

If Modul e isinterpreted, the interpreter isinvoked and the return value of the interpreted Fun(Argl, .., ArgN)
cal isreturned.

Otherwise, it returns, if possible, the value of appl y(Fun, Ar gs) after an attempt is made to autoload Modul e.
If thisis not possible, the call fails with exit reason undef .

Notes

Thecodeinerror _handl er iscomplex. Do not changeit without fully understanding the interaction between the
error handler, thei ni t process of the code server, and the 1/0O mechanism of the code.

Code changes that seem small can cause a deadlock, as unforeseen consequences can occur. The use of i nput is
dangerousin thistype of code.

Ericsson AB. All Rights Reserved.: Kernel | 93

error_logger

error_logger

Erlang module

In Erlang/OTP 21.0, a new API for logging was added. The old er r or _| ogger module can still be used by
legacy code, but log events are redirected to the new Logger API. New code should use the Logger API directly.

error _| ogger isno longer started by default, but is automatically started when an event handler is added with
error | ogger:add_report_handl er/1, 2. Theerror_I| ogger moduleisthen also added asahandler
to the new logger.

Seel ogger (3) and the Logging chapter in the User's Guide for more information.

The Erlang error logger is an event manager (see OTP Design Principles and gen_event (3)), registered as
error_| ogger.

Error logger is no longer started by default, but is automatically started when an event handler is added with
add_report_handl er/ 1, 2. Theerror_| ogger module is then aso added as a handler to the new logger,
causing log events to be forwarded from logger to error logger, and consequently to all installed error logger event
handlers.

User-defined event handlers can be added to handle application-specific events.
Existing event handlers provided by STDLIB and SASL are still available, but are no longer used by OTP.

Warning events were introduced in Erlang/OTP R9C and are enabled by default as from Erlang/OTP 18.0. To retain
backwards compatibility with existing user-defined event handlers, the warning events can be tagged aser r or s or
i nf o using command-line flag +W <e | i | w>, thusshowing up as ERROR REPORT or | NFO REPORT
inthelogs.

Data Types

report() =
[{Tag :: term(), Data :: term()} | term()] | string() | term()

Exports

add report handler(Handler) -> any()
add report handler(Handler, Args) -> Result
Types.

Handler = module()

Args = gen_event: handl er _args()

Result = gen_event: add_handl er _ret ()

Adds a new event handler to the error logger. The event handler must be implemented as agen_event callback
module, seegen_event (3).

Handl er istypically the name of the callback module and Ar gs is an optional term (defaults to []) passed to the
initialization callback function Handl er : i ni t / 1. The function returns ok if successful.

The event handler must be able to handle the events in this module, see section Events.

94 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

Thefirsttimethisfunctioniscalled, er r or _| ogger isadded asal ogger handler, andtheer r or _| ogger process
is started.

delete report handler(Handler) -> Result
Types:

Handler = module()

Result = gen_event:del _handl er_ret ()

Deletes an event handler from the error logger by caling gen_event : del et e_handl er (error _| ogger,
Handl er, []),seegen_event(3).

If no more event handlers exist after the deletion, error _| ogger is removed as a Logger handler, and the
error _| ogger processis stopped.

error msg(Format) -> ok
error _msg(Format, Data) -> ok
format(Format, Data) -> ok
Types:
Format = string()
Data = list()
Log a standard error event. The For mat and Dat a arguments are the same as the arguments of i o: f or mat / 2
in STDLIB.

Error logger forwards the event to Logger, including metadata that allows backwards compatibility with legacy error
logger event handlers.

The event is handled by the default Logger handler.

These functions are kept for backwards compatibility and must not be used by new code. Use the ?LOG_ERROR
macroor | ogger:error/ 1, 2, 3 instead.

Example:

1> error_logger:error_msg("An error occurred in ~p", [a _module]).
=ERROR REPORT==== 22-May-2018::11:18:43.376917 ===

An error occurred in a _module

ok

War ning:

If the Unicode trandlation modifier (t) isused in theformat string, all event handlers must ensure that the formatted
output is correctly encoded for the 1/0O device.

error_report(Report) -> ok
Types:
Report = report ()

Log a standard error event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

The event is handled by the default Logger handler.

Ericsson AB. All Rights Reserved.: Kernel | 95

error_logger

This functionsis kept for backwards compatibility and must not be used by new code. Use the ?LOG_ERROR macro
orl ogger:error/1, 2, 3instead.

Example:

2> error_logger:error_report([{tagl,datal},a term,{tag2,data}]).

=ERROR REPORT==== 22-May-2018::11:24:23.699306 ===
tagl: datal
a_term
tag2: data
ok
3> error_logger:error_report("Serious error in my module").
=ERROR REPORT==== 22-May-2018::11:24:45.972445 ===
Serious error in my module
ok

error_report(Type, Report) -> ok
Types:
Type = term()
Report = report()
Log a user-defined error event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

Error logger also addsadomai n field with value[Type] to this event's metadata, causing the filters of the default
Logger handler to discard the event. A different Logger handler, or an error logger event handler, must be added to
handle this event.

It isrecommended that Repor t followsthe same structureasforerr or _report/ 1.

Thisfunctionsis kept for backwards compatibility and must not be used by new code. Usethe ?LOG_ERROR macro
orl ogger:error/ 1,2, 3instead.

get format depth() -> unlimited | integer() >=1

Returns max (10, Dept h), where Dept h is the value of error _| ogger _f or mat _dept h in the Kernel
application, if Depthis an integer. Otherwise, unl i m t ed isreturned.

Theerror | ogger fornmat _dept h variableis deprecated since the Logger APl was introduced in Erlang/
OTP 21.0. The variable, and this function, are kept for backwards compatibility since they still might be used by
legacy report handlers.

info msg(Format) -> ok
info msg(Format, Data) -> ok
Types:

Format = string()

Data = list()

Logastandard information event. TheFFor mat and Dat a argumentsarethe sameastheargumentsofi o: f or mat / 2
in STDLIB.

Error logger forwards the event to Logger, including metadata that allows backwards compatibility with legacy error
logger event handlers.

96 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

The event is handled by the default Logger handler.

These functions are kept for backwards compatibility and must not be used by new code. Usethe ?LOG_| NFOmacro
orl ogger:info/1, 2, 3instead.

Example:

1> error_logger:info msg("Something happened in ~p", [a module]).
=INFO REPORT==== 22-May-2018::12:03:32.612462 ===

Something happened in a module

ok

Warning:

If the Unicode translation modifier (t) isused in theformat string, all event handlers must ensure that the formatted
output is correctly encoded for the 1/0O device.

info report(Report) -> ok
Types:
Report = report()
Log astandard information event. Error logger forwardsthe event to Logger, including metadatathat allows backwards
compatibility with legacy error logger event handlers.
The event is handled by the default Logger handler.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG | NFO macro
orl ogger:info/1l, 2, 3instead.

Example:

2> error _logger:info report([{tagl,datal},a term,{tag2,data}]).
=INFO REPORT==== 22-May-2018::12:06:35.994440 ===
tagl: datal
a_term
tag2: data
ok
3> error_logger:info report("Something strange happened").
=INFO REPORT==== 22-May-2018::12:06:49.066872 ===
Something strange happened
ok

info report(Type, Report) -> ok
Types:
Type = any()
Report = report ()
Log a user-defined information event. Error logger forwards the event to Logger, including metadata that allows
backwards compatibility with legacy error logger event handlers.

Error logger dso addsadomai n field with value[Type] to this event's metadata, causing the filters of the default
Logger handler to discard the event. A different Logger handler, or an error logger event handler, must be added to
handle this event.

It is recommended that Repor t follows the same structure asfori nf o_report/ 1.

Ericsson AB. All Rights Reserved.: Kernel | 97

error_logger

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_| NFO macro
orl ogger:info/1, 2, 3instead.

logfile(Request :: {open, Filename}) -> ok | {error, OpenReason}
logfile(Request :: close) -> ok | {error, CloseReason}
logfile(Request :: filename) -> Filename | {error, FilenameReason}
Types:

Filename = file: nane()

OpenReason = allready have logfile | open_error()

CloseReason = module not found

FilenameReason = no log file

open error() = file:posix() | badarg | system limit
Enables or disables printout of standard eventsto afile.

This is done by adding or deleting the error | ogger _file_h event handler, and thus indirectly adding
error _| ogger asalogger handler.

Notice that this function does not manipulate the Logger configuration directly, meaning that if the default Logger
handler is already logging to afile, this function can potentially cause logging to a second file.

This function is useful as a shortcut during development and testing, but must not be used in a production system.
See section Logging in the Kernel User's Guide, and the | ogger (3) manua page for information about how to
configure Logger for live systems.

Request isone of the following:
{open, Fil enane}

OpenslogfileFi | enane. Returnsok if successful,or{ error, allready_have_| ogfil e} ifloggingto
fileisalready enabled, or an error tupleif another error occurred (for example, if Fi | ename cannot be opened).
Thefileis opened with encoding UTF-8.

cl ose
Closes the current log file. Returnsok, or { error, nodul e_not _found}.
fil enane

Returns the name of thelog fileFi | enane, or {error, no_|l og_fil e} if loggingtofileisnot enabled.

tty(Flag) -> ok
Types:
Flag = boolean()
Enables (FI ag == true) ordisables(FI ag == f al se) printout of standard events to the terminal.

This is done by manipulating the Logger configuration. The function is useful as a shortcut during development
and testing, but must not be used in a production system. See section Logging in the Kernel User's Guide, and the
| ogger (3) manual page for information about how to configure Logger for live systems.

warning map() -> Tag
Types:

98 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

Tag = error | warning | info

Returns the current mapping for warning events. Events sent using warning _nsg/1,2 or
war ni ng_report/ 1, 2 aretagged as errors, warnings (default), or info, depending on the value of command-line
flag +W

Example:

0s$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ~G)

1> error_logger:warning map().

warning

2> error_logger:warning msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok
3>
User switch command
--> q
0s$ erl +W e
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ~G)

1> error_logger:warning map().

error

2> error_logger:warning msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok

warning msg(Format) -> ok
warning msg(Format, Data) -> ok
Types.
Format = string()
Data = list()
Log a standard warning event. The For mat and Dat a arguments are the same asthe argumentsof i o: f or mat / 2
in STDLIB.

Error logger forwards the event to Logger, including metadata that allows backwards compatibility with legacy error
logger event handlers.

The event is handled by the default Logger handler. The log level can be changed to error or info, see
war ni ng_nmap/ 0.

These functions are kept for backwards compatibility and must not be used by new code. Usethe ?LOG_WARNI NG
macro or | ogger : war ni ng/ 1, 2, 3 instead.

If the Unicode trandlation modifier (t) isused intheformat string, all event handlers must ensure that the formatted
output is correctly encoded for the 1/0O device.

Ericsson AB. All Rights Reserved.: Kernel | 99

error_logger

warning report(Report) -> ok
Types:
Report = report ()

Log a standard warning event. Error logger forwards the event to Logger, including metadata that allows backwards
compatibility with legacy error logger event handlers.

The event is handled by the default Logger handler. The log level can be changed to error or info, see
war ni ng_nap/ 0.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_WARNI NG
macro or | ogger : war ni ng/ 1, 2, 3 instead.

warning report(Type, Report) -> ok
Types:

Type = any()

Report = report()

Log auser-defined warning event. Error logger forwardsthe event to L ogger, including metadatathat allows backwards
compatibility with legacy error logger event handlers.

Error logger also addsadomai n field with value[Type] to this event's metadata, causing the filters of the default
Logger handler to discard the event. A different Logger handler, or an error logger event handler, must be added to
handle this event.

Thelog level can be changed to error or info, seewar ni ng_nap/ 0.
It isrecommended that Repor t follows the same structure asfor war ni ng_report/ 1.

This functions is kept for backwards compatibility and must not be used by new code. Use the ?LOG_WARNI NG
macro or | ogger : war ni ng/ 1, 2, 3 instead.

Events

All event handlers added to the error logger must handle the following events. G eader isthe group leader pid of
the process that sent the event, and Pi d isthe process that sent the event.

{error, deader, {Pid, Format, Data}}

Generated whenerror _nsg/ 1, 2 or f or mat iscaled.
{error _report, deader, {Pid, std error, Report}}

Generated whenerror _report/ 1iscalled.
{error _report, deader, {Pid, Type, Report}}

Generated whenerr or _report/ 2 iscaled.
{warni ng_nsg, d eader, {Pid, Format, Data}}

Generated when war ni ng_nsg/ 1, 2 iscalled if warnings are set to be tagged as warnings.
{warni ng_report, deader, {Pid, std warning, Report}}

Generated whenwar ni ng_r eport/ 1 iscalled if warnings are set to be tagged as warnings.
{warning_report, deader, {Pid, Type, Report}}

Generated when war ni ng_r eport/ 2 iscalled if warnings are set to be tagged as warnings.
{info_nsg, d eader, {Pid, Format, Data}}

Generated wheni nfo_nsg/ 1, 2 iscalled.

100 | Ericsson AB. All Rights Reserved.: Kernel

error_logger

{info_report, deader, {Pid, std_info, Report}}
Generated wheni nf o_r eport/ 1iscalled.

{info_report, deader, {Pid, Type, Report}}
Generated wheni nf o_r eport/ 2 iscalled.

Notice that some system-internal events can aso be received. Therefore a catch-al clause last in the definition
of the event handler callback function Modul e: handl e_event/2 is necessary. This aso applies for
Modul e: handl e_i nf o/ 2, asthe event handler must also take care of some system-internal messages.

See Also
gen_event (3),1 ogger (3),l og_nf_h(3),kernel (6),sasl (6)

Ericsson AB. All Rights Reserved.: Kernel | 101

file

file

Erlang module

This module provides an interface to the file system.

File operations are only guaranteed to appear atomic when going through the same file server. A NIF or other OS
process may observe intermediate steps on certain operations on some operating systems, eg. renaming an existing
fileon Windows, orwri te_fil e_i nfo/ 2 onany OS at the time of writing.

Regarding filename encoding, the Erlang VM can operate in two modes. The current mode can be queried using
functionnat i ve_name_encodi ng/ 0. Itreturns| ati nl orut f 8.

Inl ati n1 mode, the Erlang VM does not change the encoding of filenames. In ut f 8 mode, filenames can contain
Unicode characters greater than 255 and the VM converts filenames back and forth to the native filename encoding
(usually UTF-8, but UTF-16 on Windows).

The default mode depends on the operating system. Windows and MacOS X enforce consistent filename encoding
and therefore the VM uses ut f 8 mode.

On operating systems with transparent naming (for example, all Unix systems except MacOS X), default isut f 8 if
theterminal supports UTF-8, otherwisel at i n1. Thedefault can be overridden using +f nl (toforcel at i n1 mode)
or +f nu (to force ut f 8 mode) when starting er | .

On operating systems with transparent naming, files can be inconsistently named, for example, somefiles are encoded
in UTF-8 while others are encoded in I SO Latin-1. The concept of raw filenamesisintroduced to handlefile systems
with inconsistent naming when running in ut f 8 mode.

A raw filenameisafilename specified asabinary. The Erlang VM does not translate a filename specified as abinary
on systems with transparent naming.

When running in ut f 8 mode, functions| i st _dir/ 1 andread_| i nk/ 1 never return raw filenames. To return
all filenamesincluding raw filenames, use functionsl i st _dir_all/landread |ink_all/1.

See also section Notes About Raw Filenames in the STDLIB User's Guide.

File operations used to accept filenames containing null characters (integer value zero). This caused the nameto be
truncated and in some cases argumentsto primitive operationsto be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file operations fail.

Data Types
deep_list() = [char() | atom() | deep_list()]
fd()

A file descriptor representing afile opened in r aw mode.
filename() = string()

See also the documentation of thenane_al | () type.
filename all() = string() | binary()
See a'so the documentation of the name_al | () type.

102 | Ericsson AB. All Rights Reserved.: Kernel

file

io device() = pid() | fd()
Asreturned by open/ 2; pi d() isaprocess handling I/O-protocols.
name() = string() | atom() | deep_list()

If VM isin Unicode filename mode, st ri ng() and char () are alowed to be > 255. See also the documentation
of thenane_al | () type.

name all() =
string() | atom() | deep_list() | (RawFilename :: binary())

If VM isin Unicode filename mode, characters are allowed to be > 255. RawFi | enane is afilename not subject to
Unicode translation, meaning that it can contain characters not conforming to the Unicode encoding expected from
thefile system (that is, non-UTF-8 characters although the VM is started in Unicode filename mode). Null characters
(integer value zero) are not alowed in filenames (not even at the end).

posix() =
eacces | eagain | ebadf | ebadmsg | ebusy | edeadlk |
edeadlock | edquot | eexist | efault | efbig | eftype |
eintr | einval | eio | eisdir | eloop | emfile | emlink |
emultihop | enametoolong | enfile | enobufs | enodev |
enolck | enolink | enoent | enomem | enospc | enosr | enostr |
enosys | enotblk | enotdir | enotsup | enxio | eopnotsupp |
eoverflow | eperm | epipe | erange | erofs | espipe | esrch |
estale | etxtbsy | exdev

An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.
date time() = cal endar:datetime()
Must denote avalid date and time,

file info() =
#file info{size = integer() >= 0 | undefined,
type =
device | directory | other | regular |
symlink | undefined,
access =
read | write | read write | none | undefined,
atime =
file:date_tine() |
integer() >= 0 |
undefined,
mtime =
file:date_tine() |
integer() >= 0 |
undefined,
ctime =
file:date_tine() |
integer() >= 0 |
undefined,
mode = integer() >= 0 | undefined,
links = integer() >= 0 | undefined,
major device = integer() >= 0 | undefined,
minor device = integer() >= 0 | undefined,
inode = integer() >= 0 | undefined,
uid = integer() >= 0 | undefined,

Ericsson AB. All Rights Reserved.: Kernel | 103

file

gid = integer() >= 0 | undefined}

location() =

integer() |

{bof, Offset :: integer()} |

{cur, Offset :: integer()} |

{eof, Offset :: integer()} |

bof | cur | eof
mode() =

read | write | append | exclusive | raw | binary |

{delayed write,

Size :: integer() >= 0,

Delay :: integer() >= 0} |

delayed write |

{read ahead, Size :: integer() >= 1} |

read ahead | compressed |

{encoding, unicode: encoding() } |

sync
file info option() =

{time, local} | {time, universal} | {time, posix} | raw

Exports

advise(IoDevice, Offset, Length, Advise) -> ok | {error, Reason}
Types:
IoDevice = io_device()

Offset = Length = integer()
Advise = posix_file_advise()
Reason = posi x() | badarg

posix file advise() =
normal | sequential | random | no reuse | will need |
dont need

advi se/ 4 can be used to announce an intention to access file data in a specific pattern in the future, thus allowing
the operating system to perform appropriate optimizations.

On some platforms, this function might have no effect.

allocate(File, Offset, Length) -> ok | {error, posix()}
Types:

File = i o_device()

Offset = Length = integer() >= 0

al | ocat e/ 3 can be used to preallocate space for afile.

This function only succeedsin platforms that provide this feature. When it succeeds, spaceis preallocated for the file
but the file size might not be updated. This behaviour depends on the preallocation implementation. To guarantee that
the file size is updated, truncate the file to the new size.

change group(Filename, Gid) -> ok | {error, Reason}
Types:

104 | Ericsson AB. All Rights Reserved.: Kernel

file

Filename = nane_all ()
Gid = integer()
Reason = posix() | badarg
Changes group of afile. Seewrite_file_info/2.

change mode(Filename, Mode) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Mode = integer()

Reason = posix() | badarg
Changes permissions of afile. Seewrite_fil e_i nfo/ 2.

change owner(Filename, Uid) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Uid = integer()

Reason = posix() | badarg
Changes owner of afile. Seewite_file_info/2.

change owner(Filename, Uid, Gid) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Uid = Gid = integer()

Reason = posix() | badarg
Changes owner and group of afile. Seewrite file_ info/2.

change time(Filename, Mtime) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Mtime = date_ti me()

Reason = posix() | badarg
Changes the modification and accesstimes of afile. Seewrite_fil e_i nfo/ 2.

change time(Filename, Atime, Mtime) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Atime = Mtime = date_tine()

Reason = posix() | badarg

Changes the modification and last accesstimes of afile. Seewrite fil e_info/ 2.

close(IoDevice) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 105

file

IoDevice = io_device()
Reason = posix() | badarg | terminated
Closesthefilereferenced by | oDevi ce. It mostly returns ok, except for some severe errors such as out of memory.

Notice that if option del ayed_wr i t e was used when opening the file, cl ose/ 1 can return an old write error and
not even try to close thefile. Seeopen/ 2.

consult(Filename) -> {ok, Terms} | {error, Reason}
Types:

Filename = nane_all ()

Terms = [term()]

Reason =

posi x() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Reads Erlang terms, separated by "', from Fi | enane. Returns one of the following:
{ok, Terns}
The file was successfully read.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Ternt}}

An error occurred when interpreting the Erlang termsin the file. To convert the three-element tuple to an English
description of the error, usef or mat _error/ 1.

Example:

f.txt: {person, "kalle", 25}.
{person, "pelle", 30}.

1> file:consult("f.txt").
{ok, [{person, "kalle", 25}, {person, "pelle",30}]}

The encoding of Fi | enamne can be set by acomment, as described in epp(3) .

copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}
copy(Source, Destination, ByteCount) ->
{ok, BytesCopied} | {error, Reason}

Types:

Source = Destination = io_device() | Filename | {Filename, Modes}

Filename = nane_all ()

Modes = [nopde()]

ByteCount = integer() >= 0 | infinity

BytesCopied = integer() >= 0

Reason = posix() | badarg | terminated

CopiesByt eCount bytesfrom Sour ce toDest i nati on. Sour ce and Dest i nat i on refer to either filenames
or 10 devicesfrom, for example, open/ 2. Byt eCount defaultstoi nf i ni t y, denoting an infinite number of bytes.

106 | Ericsson AB. All Rights Reserved.: Kernel

file

Argument Modes isalist of possible modes, see open/ 2, and defaultsto[] .

If both Sour ce and Dest i nat i on refer to filenames, thefilesare opened with[r ead, bi nary] and[write,
bi nary] prepended to their mode lists, respectively, to optimize the copy.

If Sour ce refersto afilename, it is opened with r ead mode prepended to the mode list before the copy, and closed
when done.

If Desti nati on refersto afilename, it is opened with wr i t e mode prepended to the mode list before the copy,
and closed when done.

Returns{ ok, Byt esCopi ed}, where Byt esCopi ed isthe number of bytes that was copied, which can be less
than Byt eCount if end of filewas encountered onthesource. If the operationfails,{ er r or, Reason} isreturned.

Typical error reasons; asfor open/ 2 if afile had to be opened, and asforr ead/ 2 andwr i t e/ 2.

datasync(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()

Reason = posix() | badarg | terminated

Ensuresthat any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. In many
ways it resemblesf sync but it does not update some of the metadata of the file, such as the access time. On some
platforms this function has no effect.

Applications that access databases or log files often write atiny data fragment (for example, onelinein alogfile) and
then call f sync() immediately to ensure that the written data is physically stored on the hard disk. Unfortunately,
fsync() aways initiates two write operations: one for the newly written data and another one to update the
modificationtimestoredinthei node. If themodificationtimeisnot apart of thetransaction concept, f dat async()

can be used to avoid unnecessary i node disk write operations.

Availableonly insome POSIX systems, thiscall resultsinacall tof sync() , or hasno effect in systemsnot providing
thef dat async() syscal.

del dir(Dir) -> ok | {error, Reason}
Types:
Dir = nane_al |l ()
Reason = posi x() | badarg
Triesto delete directory Di r . The directory must be empty before it can be deleted. Returns ok if successful.
Typical error reasons:
eacces
Missing search or write permissions for the parent directoriesof Di r .
eexi st
The directory is not empty.
enoent
The directory does not exist.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.
ei nval
Attempt to delete the current directory. On some platforms, eacces isreturned instead.

Ericsson AB. All Rights Reserved.: Kernel | 107

file

delete(Filename) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Reason = posi x() | badarg

Triesto deletefile Fi | enane. Returns ok if successful.
Typical error reasons:
enoent

Thefile does not exist.
eacces

Missing permission for the file or one of its parents.
eperm

Thefileisadirectory and the user is not superuser.
enotdir

A component of the filename is not adirectory. On some platforms, enoent isreturned instead.
ei nval

Fi | ename has an improper type, such astuple.

In afuture release, a bad type for argument Fi | ename will probably generate an exception.

eval(Filename) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Reason =

posi x() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressionsis also an expression) from
Fi | ename. Theresult of the evaluation is not returned; any expression sequence in the file must be there for its side
effect. Returns one of the following:

ok

Thefile was read and evaluated.
{error, atom)}

An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. To convert the three-element tuple to an
English description of the error, usef or mat _error/ 1.

The encoding of Fi | enamne can be set by acomment, as described in epp(3) .

108 | Ericsson AB. All Rights Reserved.: Kernel

file

eval(Filename, Bindings) -> ok | {error, Reason}

Types.
Filename = nane_all ()
Bindings = erl _eval : bi ndi ng_struct ()
Reason =

posi x() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

The same as eval / 1, but the variable bindings Bi ndi ngs are used in the evaluation. For information about the
variable bindings, seeer| _eval (3).

format _error(Reason) -> Chars
Types.
Reason =

posi x() |
badarg | terminated | system_ limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Chars = string()
Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get cwd() -> {ok, Dir} | {error, Reason}
Types:
Dir = fil ename()
Reason = posi x()
Returns{ ok, Dir},whereDi r isthe current working directory of the file server.

In rare circumstances, this function can fail on Unix. It can occur if read permission does not exist for the parent
directories of the current directory.

A typical error reason:
eacces
Missing read permission for one of the parents of the current directory.

get cwd(Drive) -> {ok, Dir} | {error, Reason}
Types:
Drive = string()
Dir = fil ename()
Reason = posix() | badarg
Returns{ok, Dir} or{error, Reason},whereDi r isthe current working directory of the specified drive.
Dri ve istobeof theform"Let t er: ", for example, "c:".
Returns{error, enotsup} on platforms that have no concept of current drive (Unix, for example).

Typica error reasons.

Ericsson AB. All Rights Reserved.: Kernel | 109

file

enot sup

The operating system has no concept of drives.
eacces

The drive does not exist.
ei nval

Theformat of Dri ve isinvalid.

list dir(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name_al I ()

Filenames = [fil enane()]

Reason =

posi x() |
badarg |
{no_translation, Filename :: unicode:latinl_binary()}

Lists al filesin adirectory, except files with raw filenames. Returns{ ok, Fi | enanmes} if successful, otherwise
{error, Reason}.Fil enanes isalist of the names of al the filesin the directory. The names are not sorted.

Typical error reasons:
eacces
Missing search or write permissions for Di r or one of its parent directories.
enoent
The directory does not exist.
{no_transl ation, Filenane}
Fi | enaneisabi nary() withcharacterscodedin SO Latin-1 and theVM wasstarted with parameter +f nue.

list dir all(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name_al I ()

Filenames = [filename_all ()]

Reason = posi x() | badarg

Lists al the files in a directory, including files with raw filenames. Returns { ok, Fi | enanes} if successful,
otherwise {error, Reason}.Fil enanes isalist of the names of al the files in the directory. The names are
not sorted.

Typical error reasons:
eacces

Missing search or write permissionsfor Di r or one of its parent directories.
enoent

The directory does not exist.

make dir(Dir) -> ok | {error, Reason}
Types:

110 | Ericsson AB. All Rights Reserved.: Kernel

file

Dir = nane_all ()
Reason = posix() | badarg
Triesto create directory Di r . Missing parent directories are not created. Returns ok if successful.
Typical error reasons:
eacces
Missing search or write permissions for the parent directoriesof Di r .
eexi st
A fileor directory named Di r exists already.
enoent
A component of Di r does not exist.
enospc
No spaceis left on the device.
enotdir

A component of Di r isnot adirectory. On some platforms, enoent isreturned instead.

make link(Existing, New) -> ok | {error, Reason}
Types.

Existing = New = nane_all ()

Reason = posix() | badarg

Makes a hard link from Exi sti ng to New on platforms supporting links (Unix and Windows). This function
returns ok if the link was successfully created, otherwise { error, Reason}. On platforms not supporting links,
{error, enot sup} isreturned.

Typical error reasons:
eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup
Hard links are not supported on this platform.

make symlink(Existing, New) -> ok | {error, Reason}
Types:
Existing = New = nane_all ()
Reason = posix() | badarg
Creates a symbolic link New to the file or directory Exi st i ng on platforms supporting symbolic links (most Unix
systems and Windows, beginning with Vista). Exi st i ng doesnot need to exist. Returnsok if thelink is successfully

created, otherwise { error, Reason}. On platforms not supporting symbolic links, { error, enot sup} is
returned.

Typica error reasons:

Ericsson AB. All Rights Reserved.: Kernel | 111

file

eacces
Missing read or write permissions for the parent directories of Exi st i ng or New.
eexi st
New already exists.
enot sup
Symbolic links are not supported on this platform.
eperm
User does not have privilegesto create symbolic links (SeCr eat eSynbol i cLi nkPri vi | ege onWindows).

native name encoding() -> latinl | utf8

Returnsthe filename encoding mode. If it isl at i n1, the system trandates no filenames. If itisut f 8, filenames are
converted back and forth to the native filename encoding (usually UTF-8, but UTF-16 on Windows).

open(File, Modes) -> {ok, IoDevice} | {error, Reason}
Types:
File = Filename | iodata()
Filename = nane_all ()
Modes = [nmode() | ram]
IoDevice = io_device()
Reason = posix() | badarg | system limit
OpensfileFi | e in the mode determined by Mbdes, which can contain one or more of the following options:
read
Thefile, which must exist, is opened for reading.
wite
Thefileis opened for writing. It is created if it does not exist. If the file existsand wr i t e isnot combined with
r ead, thefileistruncated.
append

Thefileisopened for writing. It iscreated if it does not exist. Every write operation to afile opened with append
takes place at the end of thefile.

excl usi ve
Thefileisopened for writing. It iscreated if it does not exist. If thefileexists, { error, eexi st} isreturned.

War ning:

This option does not guarantee exclusiveness on file systems not supporting O_EXCL properly, such as NFS.
Do not depend on this option unless you know that the file system supports it (in general, local file systems
are safe).

raw

Allows faster access to afile, as no Erlang process is needed to handle the file. However, afile opened in this
way has the following limitations:

112 | Ericsson AB. All Rights Reserved.: Kernel

file

e The functionsin the i 0 module cannot be used, as they can only talk to an Erlang process. Instead, use
functionsr ead/ 2,read line/l,andwite/2.

e Especidly if read_I i ne/ 1 isto be used on ar awfile, it is recommended to combine this option with
option{read ahead, Si ze} asline-oriented I/O isinefficient without buffering.

« Only the Erlang process that opened the file can use it.

< A remote Erlang file server cannot be used. The computer on which the Erlang node is running must have
access to the file system (directly or through NFS).

bi nary
Read operations on the file return binaries rather than lists.
{del ayed write, Size, Del ay}

Datain subsequent wr i t e/ 2 calsisbuffered until at least Si ze bytes are buffered, or until the oldest buffered
datais Del ay milliseconds old. Then al buffered datais written in one operating system call. The buffered data
is aso flushed before some other file operation thanwr i t e/ 2 is executed.

The purpose of this option is to increase performance by reducing the number of operating system calls. Thus,
thewri t e/ 2 calls must be for sizes significantly lessthan Si ze, and not interspersed by too many other file
operations.

When this option is used, the result of wr i t e/ 2 calls can prematurely be reported as successful, and if awrite
error occurs, the error is reported as the result of the next file operation, which is not executed.

For example, when del ayed_write is used, after a number of wite/2 cals, cl ose/1 can return
{error, enospc}, asthereis not enough space on the disc for previously written data. cl ose/ 1 must
probably be called again, asthefileis still open.

del ayed wite

The same as{del ayed write, Size, Delay} with reasonable default values for Si ze and Del ay
(roughly some 64 KB, 2 seconds).

{read_ahead, Size}

Activates read data buffering. If r ead/ 2 calls are for significantly less than Si ze bytes, read operations to
the operating system are still performed for blocks of Si ze bytes. The extra data is buffered and returned in
subsequent r ead/ 2 calls, giving a performance gain as the number of operating system callsis reduced.

Ther ead_ahead buffer isalso highly used by functionr ead_1| i ne/ 1 inr awmaode, therefore thisoptionis
recommended (for performance reasons) when accessing raw files using that function.

If read/ 2 callsarefor sizes not significantly less than, or even greater than Si ze bytes, no performance gain
can be expected.

read_ahead
Thesameas{r ead_ahead, Si ze} withareasonable default valuefor Si ze (roughly some 64 KB).
conpr essed

Makes it possible to read or write gzip compressed files. Option conpr essed must be combined with r ead
orwri t e, but not both. Notice that the file size obtained withr ead_f i | e_i nf o/ 1 does probably not match
the number of bytes that can be read from a compressed file.

{encodi ng, Encodi ng}

Makes the file perform automatic translation of characters to and from a specific (Unicode) encoding. Notice
that the data supplied towr i t e/ 2 or returned by r ead/ 2 till is byte-oriented; this option denotes only how
datais stored inthe disk file.

Ericsson AB. All Rights Reserved.: Kernel | 113

file

ram

Depending on the encoding, different methods of reading and writing datais preferred. The default encoding of
I ati n1impliesusingthismodule(f i | e) for reading and writing data as the interfaces provided herework with
byte-oriented data. Using other (Unicode) encodingsmakesthei o(3) functionsget _chars,get | i ne,and
put _char s more suitable, as they can work with the full Unicode range.

If dataissentto ani o_devi ce() inaformat that cannot be converted to the specified encoding, or if data
isread by afunction that returns datain aformat that cannot cope with the character range of the data, an error
occurs and the fileis closed.

Allowed values for Encodi ng:
latinl

The default encoding. Bytes supplied to thefile, that is, wr i t e/ 2 are written "asis' on thefile. Likewise,
bytesread from thefile, that is, r ead/ 2 are returned "asis'. If modulei o(3) isused for writing, the file
can only cope with Unicode characters up to code point 255 (the SO Latin-1 range).

uni code or utf8

Characters are translated to and from UTF-8 encoding before they are written to or read from the file. A
file opened in this way can be readable using function r ead/ 2, as long as no data stored on the file lies
beyond the 1SO Latin-1 range (0..255), but failure occurs if the data contains Unicode code points beyond
that range. Thefile is best read with the functions in the Unicode aware modulei o(3) .

Bytes written to the file by any means are translated to UTF-8 encoding before being stored on the disk file.
utf16 or {utf16, bi g}

Works like uni code, but translation is done to and from big endian UTF-16 instead of UTF-8.
{utfie,little}

Workslike uni code, but tranglation is done to and from little endian UTF-16 instead of UTF-8.
utf32 or {utf32, big}

Workslike uni code, but tranglation is done to and from big endian UTF-32 instead of UTF-8.
{utf32,1ittle}

Workslike uni code, but tranglation is done to and from little endian UTF-32 instead of UTF-8.

The Encoding can be changed for afile"onthefly" by using functioni o: set opt s/ 2. So afilecan beanalyzed
in latinl encoding for, for example, aBOM, positioned beyond the BOM and then be set for the right encoding
before further reading. For functions identifying BOMs, see module uni code(3) .

This option is not allowed on r awfiles.

Fil e must bei odat a() . Returnsan f d() , which letsmodule f i | e operate on the data in-memory asif it
isafile.

sync

On platforms supporting it, enables the POSIX O _SYNC synchronous /O flag or its platform-dependent
equivalent (for example, FI LE_FLAG WRI TE_ THROUGH on Windows) so that writesto thefile block until the
datais physically written to disk. However, be aware that the exact semantics of thisflag differ from platform to
platform. For example, none of Linux or Windows guaranteesthat all file metadata are al so written before the call
returns. For precise semantics, check the details of your platform documentation. On platforms with no support
for POSIX O_SYNC or equivalent, use of thesync flag causesopen toreturn{ error, enot sup}.

Returns.

114 | Ericsson AB. All Rights Reserved.: Kernel

file

{ok, 1l oDevice}

Thefileis opened in the requested mode. | oDevi ce isareferenceto thefile.
{error, Reason}

The file cannot be opened.

| oDevi ce isredly the pid of the process that handles the file. This processis linked to the process that originally
opened thefile. If any processto which thel oDevi ce islinked terminates, the fileis closed and the processitself is
terminated. An | oDevi ce returned from this call can be used as an argument to the 1/0O functions (seei o(3)).

In previousversionsof f i | e, modes were specified as one of theatomsr ead, wi te,orread _wit e instead
of alist. Thisis till allowed for reasons of backwards compatibility, but is not to be used for new code. Also note
thatread_writ e isnot alowed in amodelist.

Typical error reasons:
enoent

Thefile does not exist.
eacces

Missing permission for reading the file or searching one of the parent directories.
eisdir

The named fileis adirectory.
enotdir

A component of the filename is not adirectory. On some platforms, enoent isreturned instead.
enospc

Thereis no space |eft on the device (if wr i t e access was specified).

path consult(Path, Filename) ->
{ok, Terms, FullName} | {error, Reason}

Types:
Path = [Dir]
Dir = Filename = nane_all ()
Terms = [term()]
FullName = filenane_all ()
Reason =

posi x() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Pat h (alist of directory names) until the file Fi | enane isfound. If Fi | enane is an absolute
filename, Pat h isignored. Then reads Erlang terms, separated by '.", from thefile.

Returns one of the following:
{ok, Terns, Full Nane}
Thefileis successfully read. Ful | Nane isthe full name of thefile.

Ericsson AB. All Rights Reserved.: Kernel | 115

file

{error, enoent}

The file cannot be found in any of the directoriesin Pat h.
{error, atom)}

An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang termsin the file. Use f or mat _err or/ 1 to convert the three-
element tuple to an English description of the error.

The encoding of Fi | enane can be set by acomment as described in epp(3) .

path eval(Path, Filename) -> {ok, FullName} | {error, Reason}
Types:

Path = [Dir :: nane_all ()]

Filename = nane_all ()

FullName = fil enanme_all ()

Reason =

posi x() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Pat h (alist of directory names) until the file Fi | enane isfound. If Fi | ename is an absolute
filename, Pat h is ignored. Then reads and evaluates Erlang expressions, separated by "' (or '), a sequence of
expressions is also an expression), from the file. The result of evaluation is not returned; any expression sequence in
the file must be there for its side effect.

Returns one of the following:
{ok, Full Nane}
Thefileisread and evaluated. Ful | Name isthe full name of the file.
{error, enoent}
Thefile cannot be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. Use f or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of Fi | ename can be set by a comment as described in epp(3) .
path open(Path, Filename, Modes) ->

{ok, IoDevice, FullName} | {error, Reason}
Types:

116 | Ericsson AB. All Rights Reserved.: Kernel

file

Path = [Dir :: name_all ()]

Filename = nane_all ()

Modes = [node()]

IoDevice = io_device()

FullName = fil enane_all ()

Reason = posix() | badarg | system limit

Searches the path Pat h (alist of directory names) until the file Fi | enane isfound. If Fi | enamne is an absolute
filename, Pat h isignored. Then opensthe file in the mode determined by Modes.

Returns one of the following:
{ok, loDevice, Full Nane}

Thefile is opened in the requested mode. | oDevi ce isareference to the file and Ful | Nan®e isthe full name
of thefile.

{error, enoent}

The file cannot be found in any of the directoriesin Pat h.
{error, atom)}

The file cannot be opened.

path script(Path, Filename) ->
{ok, Value, FullName} | {error, Reason}

Types:
Path = [Dir :: name_all ()]
Filename = nane_all ()
Value = term()
FullName = filenane_all ()

Reason =

posi x() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Pat h (alist of directory names) until the file Fi | enane isfound. If Fi | enane is an absolute
filename, Pat h is ignored. Then reads and evaluates Erlang expressions, separated by "' (or '), a sequence of
expressions is also an expression), from the file.

Returns one of the following:
{ok, Value, Full Nane}
Thefileisread and evaluated. Ful | Name isthe full name of thefileand Val ue the value of the last expression.
{error, enoent}
The file cannot be found in any of the directoriesin Pat h.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Tern}}

An error occurred when interpreting the Erlang expressions in the file. Use f or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

Ericsson AB. All Rights Reserved.: Kernel | 117

file

The encoding of Fi | enane can be set by acomment as described in epp(3) .

path script(Path, Filename, Bindings) ->
{ok, Value, FullName} | {error, Reason}

Types:

Path = [Dir :: nane_all ()]

Filename = nane_all ()

Bindings = erl _eval : bi ndi ng_struct()

Value = term()

FullName = filenanme_all ()

Reason =

posi x() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Thesameaspat h_scri pt/ 2 but thevariablebindingsBi ndi ngs areusedintheevaluation. Seeer | _eval (3)
about variable bindings.

pid2name(Pid) -> {ok, Filename} | undefined

Types:
Filename = filenane_all ()
Pid = pid()

If Pi d isan /O device, that is, apid returned from open/ 2, this function returns the filename, or rather:
{ok, Filenane}

If the file server of this node is not a slave, the file was opened by the file server of this node (this implies that
Pi d must bealocal pid) and the fileis not closed. Fi | enane isthefilenamein flat string format.

undef i ned
In all other cases.

| This function isintended for debugging only. |

position(IoDevice, Location) ->
{ok, NewPosition} | {error, Reason}

Types:
IoDevice = io_device()
Location = location()

NewPosition = integer()
Reason = posix() | badarg | terminated

Sets the position of the file referenced by | oDevi ce to Locat i on. Returns{ ok, NewPosi ti on} (asabsolute
offset) if successful, otherwise{ error, Reason}.Locati on isone of thefollowing:

O fset
Thesameas{bof, O fset}.

118 | Ericsson AB. All Rights Reserved.: Kernel

file

{bof, O fset}
Absolute offset.
{cur, Ofset}
Offset from the current position.
{eof, O fset}
Offset from the end of file.
bof | cur | eof
The same as above with Of f set 0.

Notice that offsets are counted in bytes, not in characters. If the file is opened using some other encodi ng than
| at i n1, onebyte does not correspond to one character. Positioning in such afile can only be doneto known character
boundaries. That is, to a position earlier retrieved by getting a current position, to the beginning/end of the file or to
some other position known to be on a correct character boundary by some other means (typically beyond a byte order
mark in the file, which has a known byte-size).

A typical error reason is:
ei nval

Either Locat i on isillegal, or it isevaluated to a negative offset in the file. Notice that if the resulting position
isanegative value, theresult is an error, and after the call the file position is undefined.

pread(IoDevice, LocNums) -> {ok, DatalL} | eof | {error, Reason}
Types:

IoDevice = io_device()
LocNums =
[{Location :: location(), Number :: integer() >= 0}]

DatalL = [Data]
Data = string() | binary() | eof
Reason = posi x() | badarg | terminated
Performs a sequence of pr ead/ 3 in one operation, which is more efficient than calling them one at atime. Returns

{ok, [Data, ...]} or{error, Reason}, whereeach Dat a, the result of the corresponding pr ead, is
either alist or abinary depending on the mode of thefile, or eof if the requested position is beyond end of file.

Asthe position is specified as a byte-offset, take special caution when working with fileswhere encodi ng isset to
something elsethan | at i n1, as not every byte position isavalid character boundary on such afile.

pread(IoDevice, Location, Number) ->
{ok, Data} | eof | {error, Reason}

Types:
IoDevice = io_device()
Location = |l ocation()

Number = integer() >= 0
Data = string() | binary()
Reason = posix() | badarg | terminated

Combines posi ti on/ 2 andr ead/ 2 in one operation, which is more efficient than calling them one at atime. If
| oDevi ce isopened inr awmode, some restrictions apply:

e Locati onisonly alowed to be an integer.

Ericsson AB. All Rights Reserved.: Kernel | 119

file

* Thecurrent position of the file is undefined after the operation.

Asthe position is specified as a byte-offset, take special caution when working with files where encodi ng is set to
something elsethan | at i n1, as not every byte position isavalid character boundary on such afile.

pwrite(IoDevice, LocBytes) -> ok | {error, {N, Reason}}

Types:
IoDevice = io_device()
LocBytes = [{Location :: location(), Bytes :: iodata()}]

N = integer() >= 0
Reason = posix() | badarg | terminated

Performs a sequence of pwr i t e/ 3 in one operation, which is more efficient than calling them one at atime. Returns
okor{error, {N, Reason}},whereNisthenumber of successful writes done before the failure.

When positioning in afile with other encodi ng than| at i n1, caution must be taken to set the position on a correct
character boundary. For details, see posi ti on/ 2.

pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}

Types:
IoDevice = io_device()
Location = | ocation()

Bytes = iodata()
Reason = posix() | badarg | terminated
Combinesposi ti on/ 2 andwr it e/ 2 in one operation, which is more efficient than calling them one at atime. If
| oDevi ce has been opened in r aw mode, some restrictions apply:
e Locati onisonly alowed to be an integer.
* Thecurrent position of thefile is undefined after the operation.

When positioning in afile with other encodi ng than| at i n1, caution must be taken to set the position on a correct
character boundary. For details, see posi ti on/ 2.

read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}
Types.

IoDevice = io_device() | atom()

Number = integer() >= 0

Data = string() | binary()

Reason =

posi x() |
badarg | terminated |
{no_translation, unicode, latinl}

Reads Nunber bytes/characters from the file referenced by | oDevi ce. The functions r ead/ 2, pr ead/ 3, and
read_I i ne/ 1 arethe only waysto read from afile opened in r aw mode (although they work for normally opened
files, too).

For files where encodi ng is set to something else than | at i n1, one character can be represented by more than
one byte on the file. The parameter Nunber always denotes the number of characters read from the file, while the
position in the file can be moved much more than this number when reading a Unicodefile.

120 | Ericsson AB. All Rights Reserved.: Kernel

file

Also, if encodi ng isset to something elsethan| at i nl, ther ead/ 3 call failsif the data contains characters larger
than 255, which iswhy modulei o(3) isto be preferred when reading such afile.

The function returns:
{ok, Dat a}

If thefile was opened in binary mode, the read bytes are returned in abinary, otherwisein alist. Thelist or binary
is shorter than the number of bytes requested if end of file was reached.

eof
Returned if Nurmber >0 and end of file was reached before anything at al could be read.
{error, Reason}
An error occurred.
Typical error reasons:
ebadf
Thefileis not opened for reading.
{no_translation, unicode, latinl}

Thefileis opened with another encodi ng than| at i n1 and the datain thefile cannot be translated to the byte-
oriented data that this function returns.

read file(Filename) -> {ok, Binary} | {error, Reason}

Types:
Filename = nane_all ()
Binary = binary()
Reason = posix() | badarg | terminated | system limit

Returns { ok, Bi nary}, where Bi nary is a binary data object that contains the contents of Fi | ename, or
{error, Reason} if anerror occurs.

Typical error reasons:
enoent

Thefile does not exist.
eacces

Missing permission for reading the file, or for searching one of the parent directories.
eisdir

The named fileis adirectory.
enotdir

A component of the filename is not adirectory. On some platforms, enoent isreturned instead.
enonem

There is not enough memory for the contents of the file.

read file info(Filename) -> {ok, FileInfo} | {error, Reason}

read file info(Filename, Opts) -> {ok, FileInfo} | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 121

file

Filename = nane_all ()

Opts = [file_info_option()]
FileInfo = file_info()
Reason = posi x() | badarg

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwise {error, Reason}.
Fil el nfoisarecordfil e_i nf o, defined in the Kernel includefilefi | e. hrl . Include the following directive
in the module from which the function is called:

-include lib("kernel/include/file.hrl").

The time type returned in ati e, nti e, and ct i e is dependent on thetimetypeset inOpts :: {tine,
Type} asfollows:

| ocal
Returnslocal time.
uni ver sal
Returns universal time.
posi x
Returns seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.
Defaultis{ti ne, |ocal}.

If the option r aw s set, the file server is not called and only information about local filesis returned. Note that this
will break this module's atomicity guarantees asit can race with aconcurrentcall towrite file_info/ 1, 2

Asfiletimes are stored in POSIX time on most OS, it is faster to query file information with option posi x. |

Therecordf i | e_i nf o contains the following fields:

size = integer() >=0
Size of filein bytes.

type = device | directory | other | regular | synlink
Thetype of thefile.

access = read | wite | read_wite | none
The current system access to thefile.

atime = date tine() | integer() >=0
The last time the file was read.
nime = date_time() | integer() >=0

The last time the file was written.
ctime = date_tine() | integer() >=0

The interpretation of this time field depends on the operating system. On Unix, it is the last time the file or the
i node was changed. In Windows, it is the create time.

node = integer() >= 0
The file permissions as the sum of the following bit values:

122 | Ericsson AB. All Rights Reserved.: Kernel

file

8#00400

read permission: owner
8#00200

write permission: owner
8#00100

execute permission: owner
8#00040

read permission: group
8#00020

write permission: group
8#00010

execute permission: group
8#00004

read permission: other
8#00002

write permission: other
8#00001

execute permission: other
16#800

set user id on execution
16#400

set group id on execution
On Unix platforms, other bits than those listed above may be set.

links = integer() >= 0
Number of linksto thefile (thisis aways 1 for file systems that have no concept of links).
maj or _device = integer() >= 0

Identifies the file system where the file islocated. In Windows, the number indicates adrive as follows: 0 means
A:, 1 means B:, and so on.

m nor_device = integer() >= 0
Only valid for character devices on Unix. In al other cases, thisfield is zero.
inode = integer() >=0
Givesthei node number. On non-Unix file systems, thisfield is zero.
uid = integer() >= 0
Indicates the owner of the file. On non-Unix file systems, thisfield is zero.
gid = integer() >= 0
Gives the group that the owner of the file belongs to. On non-Unix file systems, thisfield is zero.

Typical error reasons:

Ericsson AB. All Rights Reserved.: Kernel | 123

file

eacces
Missing search permission for one of the parent directories of thefile.

enoent
Thefile does not exist.

enotdir
A component of the filename is not adirectory. On some platforms, enoent isreturned instead.

read line(IoDevice) -> {ok, Data} | eof | {error, Reason}

Types:
IoDevice = io_device() | atom()
Data = string() | binary()
Reason =

posi x() |
badarg | terminated |
{no translation, unicode, latinl}

Reads a line of bytes/characters from the file referenced by | oDevi ce. Lines are defined to be delimited by the
linefeed (LF, \ n) character, but any carriage return (CR, \ r) followed by a newline is also treated as a single
LF character (the carriage return is silently ignored). The line is returned including the LF, but excluding any CR
immediately followed by an LF. This behaviour is consistent with the behaviour of i 0: get _I i ne/ 2. If end of file
is reached without any LF ending the last line, aline with no trailing LF is returned.

The function can be used on files opened in r aw mode. However, it isinefficient to use it on r aw files if the fileis
not opened with option { r ead_ahead, Si ze} specified. Thus, combiningr awand { r ead_ahead, Si ze}
is highly recommended when opening atext file for raw line-oriented reading.

If encodi ng is set to something elsethan | at i n1, ther ead_I| i ne/ 1 call fails if the data contains characters
larger than 255, why modulei o(3) isto be preferred when reading such afile.

The function returns:
{ok, Dat a}

One line from the file is returned, including the trailing LF, but with CRLF sequences replaced by asingle LF
(see above).

If thefile is opened in binary mode, the read bytes are returned in abinary, otherwise in alist.
eof
Returned if end of file was reached before anything at all could be read.
{error, Reason}
An error occurred.
Typical error reasons:
ebadf
Thefileis not opened for reading.
{no_transl ation, unicode, |atinl}

The file is opened with another encodi ng than | ati n1 and the data on the file cannot be translated to the
byte-oriented data that this function returns.

124 | Ericsson AB. All Rights Reserved.: Kernel

file

read link(Name) -> {ok, Filename} | {error, Reason}
Types.

Name = nane_all ()

Filename = fil enane()

Reason = posix() | badarg

Returns{ ok, Fil enane} if Name refersto asymbolic link that is not araw filename, or { err or, Reason}
otherwise. On platforms that do not support symbolic links, the return valueis{ err or, enot sup}.

Typical error reasons:
ei nval

Nane does not refer to a symbolic link or the name of the file that it refers to does not conform to the expected
encoding.

enoent
The file does not exist.
enot sup
Symbolic links are not supported on this platform.

read link all(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = name_al | ()

Filename = filenanme_all ()

Reason = posix() | badarg

Returns{ ok, Fi |l enane} if Nane referstoasymboliclink or { error, Reason} otherwise. On platformsthat
do not support symbalic links, the return valueis{ er r or, enot sup}.

Notice that Fi | enane can be either alist or abinary.
Typical error reasons:
ei nval
Nane does not refer to a symbolic link.
enoent
The file does not exist.
enot sup
Symbolic links are not supported on this platform.

read link info(Name) -> {ok, FileInfo} | {error, Reason}
read link info(Name, Opts) -> {ok, FileInfo} | {error, Reason}
Types.

Name name_al | ()

Opts = [file_info_option()]

FileInfo = file_info()

Reason = posix() | badarg

Workslikeread _file_info/1, 2 except that if Name isasymbolic link, information about the link is returned
inthefi | e_i nf o recordandthet ype field of therecordissettosym i nk.

Ericsson AB. All Rights Reserved.: Kernel | 125

file

If the option r aw s set, the file server is not called and only information about local filesis returned. Note that this
will break this module's atomicity guarantees asit can race with aconcurrent call towrite file_info/ 1, 2

If Narre is not asymbolic link, this function returns the sasmeresult asr ead_fi | e_i nf o/ 1. On platforms that do
not support symbolic links, this function is always equivalenttor ead_fil e_i nf o/ 1.

rename(Source, Destination) -> ok | {error, Reason}
Types:

Source = Destination = name_all ()

Reason posi x() | badarg

Triestorenamethefile Sour ce toDest i nat i on. It can be used to movefiles (and directories) between directories,
but it is not sufficient to specify the destination only. The destination filename must also be specified. For example,
if bar isanormal file and f oo and baz are directories, r enane(" f oo/ bar", "baz") returns an error, but
rename("foo/ bar", "baz/bar") succeeds. Returnsok if it is successful.

| Renaming of open filesis not allowed on most platforms (see eacces below). |

Typical error reasons:
eacces

Missing read or write permissions for the parent directories of Sour ce or Dest i nat i on. On some platforms,
thiserror isgiven if either Sour ce or Dest i nat i on isopen.

eexi st

Dest i nat i on isnot an empty directory. On some platforms, also given when Sour ce and Dest i nati on
are not of the same type.

ei nval
Sour ce isaroot directory, or Dest i nat i on isasubdirectory of Sour ce.
eisdir
Dest i nati onisadirectory, but Sour ce isnot.
enoent
Sour ce does not exist.
enotdir
Sour ce isadirectory, but Dest i nat i on isnot.
exdev

Sour ce and Dest i nat i on are on different file systems.

script(Filename) -> {ok, Value} | {error, Reason}
Types:

Filename = nane_all ()

Value = term()

Reason =

posi x() |
badarg | terminated | system limit |

126 | Ericsson AB. All Rights Reserved.: Kernel

file

{Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '." (or ',', a sequence of expressionsis aso an expression), from
thefile.

Returns one of the following:
{ok, Val ue}
Thefileisread and evaluated. Val ue isthe value of the last expression.
{error, atom)}
An error occurred when opening the file or reading it. For alist of typical error codes, see open/ 2.
{error, {Line, Md, Ternt}}

An error occurred when interpreting the Erlang expressions in the file. Usef or mat _err or/ 1 to convert the
three-element tuple to an English description of the error.

The encoding of Fi | enane can be set by acomment as described in epp(3) .

script(Filename, Bindings) -> {ok, Value} | {error, Reason}

Types:
Filename = nane_all ()
Bindings = erl _eval : bi ndi ng_struct ()
Value = term()
Reason =

posi x() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Thesameasscri pt/ 1 but the variable bindings Bi ndi ngs are used in the evaluation. Seeer | _eval (3) about
variable bindings.

sendfile(Filename, Socket) ->
{ok, integer() >= 0} |
{error, inet:posix() | closed | badarg | not owner}

Types:
Filename = nane_all ()
Socket = inet:socket ()

SendsthefileFi | enane to Socket . Returns{ ok, Byt esSent} if successful, otherwise{error, Reason}.

sendfile(RawFile, Socket, Offset, Bytes, Opts) ->
{ok, integer() >= 0} |
{error, inet:posix() | closed | badarg | not owner}

Types:
RawFile = fd()
Socket = inet:socket ()

Offset = Bytes = integer() >= 0
Opts = [sendfile_option()]
sendfile option() =

Ericsson AB. All Rights Reserved.: Kernel | 127

file

{chunk size, integer() >= 0} | {use threads, boolean()}

SendsByt es fromthefilereferenced by RawFi | e beginningat Of f set toSocket . Returns{ ok, Byt esSent}
if successful, otherwise{ error, Reason}.If Byt es issettoO al data after the specified Of f set issent.

Thefile used must be opened using the r awflag, and the process calling sendf i | e must be the controlling process
of the socket. Seegen_t cp: control | i ng_process/ 2.

If the OS used does not support non-blocking sendf i | e, anErlangfallback usingr ead/ 2 andgen_t cp: send/ 2
is used.

The option list can contain the following options:
chunk_si ze

The chunk size used by the Erlang fallback to send data. If using the fallback, set thisto avalue that comfortably
fitsin the systems memory. Default is 20 MB.

set cwd(Dir) -> ok | {error, Reason}
Types:
Dir = nane() | EncodedBinary
EncodedBinary = binary()
Reason = posix() | badarg | no translation

Sets the current working directory of the file server to Di r . Returns ok if successful.

Thefunctionsinthemodulef i | e usually treat binariesasraw filenames, that is, they are passed "asis"' even when the
encoding of the binary does not agreewith nat i ve_nane_encodi ng() . However, this function expects binaries
to be encoded according to the value returned by nat i ve_nane_encodi ng() .

Typical error reasons are:
enoent
The directory does not exist.
enotdir
A component of Di r isnot adirectory. On some platforms, enoent isreturned.
eacces
Missing permission for the directory or one of its parents.
badar g
Di r has animproper type, such astuple.
no_transl ation

Di r isabinary() with characters coded in 1SO-latin-1 and the VM is operating with unicode filename
encoding.

In afuture release, a bad type for argument Di r will probably generate an exception.

sync(IoDevice) -> ok | {error, Reason}
Types.

128 | Ericsson AB. All Rights Reserved.: Kernel

file

IoDevice = io_device()
Reason = posix() | badarg | terminated

Ensuresthat any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. On some
platforms, this function might have no effect.

A typicd error reason is:
enospc
Not enough space |eft to write the file.

truncate(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()

Reason = posix() | badarg | terminated

Truncates the file referenced by | oDevi ce at the current position. Returns ok if successful, otherwise { err or,
Reason}.

write(IoDevice, Bytes) -> ok | {error, Reason}
Types:

IoDevice = io_device() | atom()

Bytes = iodata()

Reason = posix() | badarg | terminated

Writes Byt es to the file referenced by | oDevi ce. This function is the only way to write to afile opened in r aw
mode (although it worksfor normally opened filestoo). Returnsok if successful, and{ err or, Reason} otherwise.

If thefileis opened with encodi ng set to something elsethan | at i n1, each byte written can result in many bytes
being written to the file, as the byte range 0..255 can represent anything between one and four bytes depending on
value and UTF encoding type.

Typical error reasons:
ebadf

Thefileis not opened for writing.
enospc

No spaceis |eft on the device.

write file(Filename, Bytes) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Bytes = iodata()

Reason = posix() | badarg | terminated | system limit

Writes the contents of thei odat a term Byt es tofileFi | enane. Thefileiscreated if it does not exist. If it exists,
the previous contents are overwritten. Returns ok if successful, otherwise{ error, Reason}.

Typical error reasons:
enoent

A component of the filename does not exist.

Ericsson AB. All Rights Reserved.: Kernel | 129

file

enotdir
A component of the filename is not a directory. On some platforms, enoent isreturned instead.
enospc
No spaceis left on the device.
eacces
Missing permission for writing the file or searching one of the parent directories.
eisdir
The named fileis adirectory.

write file(Filename, Bytes, Modes) -> ok | {error, Reason}
Types:

Filename = nane_all ()

Bytes = iodata()

Modes = [npde()]

Reason = posix() | badarg | terminated | system limit

Sameaswrite fil el 2,buttakesathird argument Modes, alist of possible modes, seeopen/ 2. The mode flags
bi nary andwri t e areimplicit, so they are not to be used.

write file info(Filename, FileInfo) -> ok | {error, Reason}
write file info(Filename, FileInfo, Opts) -> ok | {error, Reason}
Types.

Filename = nane_all ()

Opts = [file_info_option()]

FileInfo = file_info()

Reason = posi x() | badarg

Changes file information. Returns ok if successful, otherwise {error, Reason}. Fil el nfo is a record
file_info,definedintheKernel includefilefi | e. hrl . Includethefollowing directiveinthe module fromwhich
the function is called:

-include lib("kernel/include/file.hrl").

Thetimetypesetinati ne, ntinme,and cti ne dependsonthetimetypesetinOpts :: {tine, Type} as
follows:

| ocal

Interprets the time set as local.
uni ver sal

Interpretsit as universal time.
posi x

Must be seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.
Defaultis{ti ne, |ocal}.
If the option r awis set, the file server is not called and only information about local filesis returned.
The following fields are used from the record, if they are specified:

130 | Ericsson AB. All Rights Reserved.: Kernel

file

atime = date tine() | integer() >= 0
The last time the file was read.
nime = date_time() | integer() >= 0

The last time the file was written.
ctime = date tine() | integer() >=0

On Unix, any value specified for this field is ignored (the "ctime" for the file is set to the current time). On
Windows, thisfield isthe new creation time to set for thefile.

nmode = integer() >= 0
The file permissions as the sum of the following bit values:
8#00400
Read permission: owner
8#00200
Write permission: owner
8#00100
Execute permission: owner
8#00040
Read permission: group
8#00020
Write permission: group
8#00010
Execute permission: group
8#00004
Read permission: other
8#00002
Write permission: other
8#00001
Execute permission: other
16#800
Set user id on execution
16#400
Set group id on execution
On Unix platforms, other bits than those listed above may be set.
uid = integer() >= 0
Indicates the file owner. Ignored for non-Unix file systems.
gid = integer() >= 0
Givesthe group that the file owner belongsto. Ignored for non-Unix file systems.
Typical error reasons:

Ericsson AB. All Rights Reserved.: Kernel | 131

file

eacces
Missing search permission for one of the parent directories of thefile.

enoent
Thefile does not exist.

enotdir
A component of the filename is not adirectory. On some platforms, enoent isreturned instead.

POSIX Error Codes

e eacces - Permission denied

e eagai n - Resource temporarily unavailable
* ebadf - Bad file number

* ebusy - Filebusy

e edquot - Disk quota exceeded

e eexi st - Fileaready exists
 efault -Badaddressin system cal argument
« efbig-Filetoolarge

e eintr -Interrupted system call

e einval -Invaidargument

e eio-l/Oeror

e eisdir -lllegal operation on adirectory
e el oop - Too many levels of symbolic links
« enfil e-Toomany open files

e« enlink - Too many links

* enanet ool ong - Filename too long
 enfil e-Filetable overflow

e enodev - No such device

* enoent - Nosuchfileor directory

e enonem- Not enough memory

* enospc - No space left on device

e enot bl k - Block device required
 enotdir - Notadirectory

* enot sup - Operation not supported

e enxi o - No such device or address

e eper m- Not owner

e epi pe - Broken pipe

» erof s - Read-only file system

e espi pe - Invalid seek

e esrch - No such process

* estal e- Staeremotefile handle

» exdev - Cross-domain link

132 | Ericsson AB. All Rights Reserved.: Kernel

file

Performance
For increased performance, raw files are recommended.

A normal fileisreally aprocesssoit can beused asan 1/O device (seei 0). Therefore, when dataiswritten to anormal
file, the sending of the data to the file process, copies all data that are not binaries. Opening the file in binary mode
and writing binariesis therefore recommended. If the file is opened on another node, or if the file server runs as slave
to the file server of another node, also binaries are copied.

Raw files use the file system of the host machine of the node. For normal files (non-raw), the file server is used to
find thefiles, and if the nodeis running itsfile server as slave to the file server of another node, and the other node
runs on some other host machine, they can have different file systems. However, thisis seldom a problem.

open/ 2 can be given the options del ayed_wri t e and r ead_ahead to turn on caching, which will reduce the
number of operating system calls and greatly improve performance for small reads and writes. However, the overhead
won't disappear completely and it's best to keep the number of file operations to a minimum. As a contrived example,
the following function writes 4MB in 2.5 seconds when tested:

create file slow(Name) ->
{ok, Fd} = file:open(Name, [raw, write, delayed write, binaryl]),
create file slow 1(Fd, 4 bsl 20),
file:close(Fd).

create file slow 1(Fd, 0) ->
ok;

create file slow 1(Fd, M) ->
ok = file:write(Fd, <<0>>),
create file slow 1(Fd, M - 1).

The following functionally equivalent code writes 128 bytes per call towr i t e/ 2 and so does the same work in 0.08
seconds, which isroughly 30 times faster:

create file(Name) ->
{ok, Fd} = file:open(Name, [raw, write, delayed write, binaryl]),
create file 1(Fd, 4 bsl 20),
file:close(Fd),
ok.

create file 1(Fd, 0) ->
ok;
create file 1(Fd, M) when M >= 128 ->
ok = file:write(Fd, <<0:(128)/unit:8>>),
create file 1(Fd, M - 128);
create file 1(Fd, M) ->
ok = file:write(Fd, <<0:(M)/unit:8>>),
create file 1(Fd, M - 1).

When writing datait's generally more efficient to write alist of binaries rather than alist of integers. It is not needed to
flatten adeep list before writing. On Unix hosts, scatter output, which writes a set of buffersin one operation, is used
when possible. Inthisway wite(FD, [Binl, Bin2 | Bin3]) writesthe contents of the binaries without
copying the data at all, except for perhaps deep down in the operating system kernel.

If an error occurs when accessing an open file with module i o0, the process handling the file exits. The dead file
process can hang if a process tries to accessit later. Thiswill be fixed in afuture release.

Ericsson AB. All Rights Reserved.: Kernel | 133

file

See Also

filenane(3)

134 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

gen_sctp

Erlang module

This module provides functions for communicating with sockets using the SCTP protocol. The implementation
assumes that the OS kernel supports SCTP (RFC 2960) through the user-level Sockets API Extensions.

During devel opment, this implementation was tested on:

e Linux Fedora Core 5.0 (kernel 2.6.15-2054 or later is needed)
+ Solaris10, 11

During OTP adaptation it was tested on:

e SUSE Linux Enterprise Server 10 (x86_64) kernel 2.6.16.27-0.6-smp, with Iksctp-tools-1.0.6

» Briefly on Solaris 10

e SUSE Linux Enterprise Server 10 Service Pack 1 (x86_64) kernel 2.6.16.54-0.2.3-smp with Iksctp-tools-1.0.7
* FreeBSD 8.2

This module was written for one-to-many style sockets (type seqpacket). With the addition of peel of f / 2, one-
to-one style sockets (type st r ean) were introduced.

Record definitions for this module can be found using:

-include lib("kernel/include/inet sctp.hrl").

These record definitions use the "new" spelling "adaptation’, not the deprecated 'adaption’, regardless of which spelling
the underlying C APl uses.

Data Types
assoc_id()

An opague term returned in, for example, #sct p_paddr _change{}, which identifies an association for an SCTP
socket. The term is opaque except for the special value 0, which has a meaning such as "the whole endpoint" or "all
future associations'.

option() =
{active, true | false | once | -32768..32767} |
{buffer, integer() >= 0} |
{dontroute, boolean()} |
{high msgq watermark, integer() >= 1} |
{linger, {boolean(), integer() >= 0}} |
{low msgq watermark, integer() >= 1} |
{mode, list | binary} |
list | binary |
{priority, integer() >= 0} |
{recbuf, integer() >= 0} |
{reuseaddr, boolean()} |
{ipv6 v6only, boolean()} |
{sctp adaptation layer, #sctp setadaptation{}} |
{sctp associnfo, #sctp assocparams{}} |
{sctp autoclose, integer() >= 0} |
{sctp default send param, #sctp sndrcvinfo{}} |
{sctp delayed ack time, #sctp assoc value{}} |

Ericsson AB. All Rights Reserved.: Kernel | 135

href
href

gen_sctp

{sctp disable fragments, boolean()} |

{sctp _events, #sctp event subscribe{}} |

{sctp get peer addr info, #sctp paddrinfo{}} |
{sctp_i want mapped v4 addr, boolean()} |
{sctp _initmsg, #sctp initmsg{}} |

{sctp _maxseg, integer() >= 0} |

{sctp _nodelay, boolean()} |

{sctp peer addr params, #sctp paddrparams{}} |
{sctp _primary addr, #sctp prim{}} |

{sctp _rtoinfo, #sctp rtoinfo{}} |

{sctp _set peer primary addr, #sctp setpeerprim{}} |
{sctp _status, #sctp status{}} |

{sndbuf, integer() >= 0} |

{tos, integer() >= 0} |

{tclass, integer() >= 0} |

{ttl, integer() >= 0} |

{recvtos, boolean()} |

{recvtclass, boolean()} |

{recvttl, boolean()}

One of the SCTP Socket Options.

option_name() =
active | buffer | dontroute | high msgq watermark | linger |
low msgq watermark | mode | priority | recbuf | reuseaddr |
ipv6_veonly | sctp adaptation layer | sctp associnfo |
sctp _autoclose | sctp default send param |
sctp _delayed ack time | sctp disable fragments | sctp events |
sctp get peer addr info | sctp i want mapped v4 addr |
sctp_initmsg | sctp maxseg | sctp nodelay |
sctp _peer addr params | sctp primary addr | sctp rtoinfo |
sctp _set peer primary addr | sctp status | sndbuf | tos |
tclass | ttl | recvtos | recvtclass | recvttl

sctp socket()
Socket identifier returned from open/ * .

Exports

abort(Socket, Assoc) -> ok | {error, inet:posix()}
Types:

Socket = sctp_socket ()

Assoc = #sctp assoc_change{}

Abnormally terminates the association specified by Assoc, without flushing of unsent data. The socket itself remains
open. Other associations opened on this socket are still valid, and the socket can be used in new associations.

close(Socket) -> ok | {error, inet:posix()}
Types:

136 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

Socket = sctp_socket ()

Closes the socket and all associations onit. The unsent dataisflushed asineof / 2. Thecl ose/ 1 call isblocking or
otherwise depending of the value of thel i nger socket option. If cl ose does not linger or linger time-out expires,
the call returns and the data is flushed in the background.

connect(Socket, Addr, Port, Opts) ->
{ok, Assoc} | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()

Port = inet: port_nunber ()

Opts [Opt :: option()]

Assoc = #sctp assoc_change{}
Sameasconnect (Socket, Addr, Port, Opts, infinity).

connect(Socket, Addr, Port, Opts, Timeout) ->
{ok, Assoc} | {error, inet:posix()}

Types.
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostnane()

Port = inet: port_nunber ()
Opts [Opt :: option()]
Timeout = timeout()

Assoc = #sctp assoc change{}

Establishes a new association for socket Socket , with the peer (SCTP server socket) specified by Addr and Por t .
Ti meout , isexpressed in milliseconds. A socket can be associated with multiple peers.

Using avalue of Ti neout less than the maximum time taken by the OS to establish an association (around 4.5
minutesif the default values from RFC 4960 are used), can result in inconsistent or incorrect return values. Thisis
especialy relevant for associations sharing the same Socket (that is, source address and port), as the controlling
process blocks until connect / * returns. connect _i ni t / * provides an alternative without this limitation.

Theresult of connect / * isan#sct p_assoc_change{} event that contains, in particular, the new Association
ID:

#sctp _assoc_change{

state = atom(),
error = atom(),
outbound streams = integer(),
inbound streams = integer(),
assoc_id = assoc_id()

}

The number of outbound and inbound streams can be set by givingan sct p_i ni t nsg optionto connect asin:

Ericsson AB. All Rights Reserved.: Kernel | 137

href

gen_sctp

connect(Socket, Ip, Port>,
[{sctp_initmsg,#sctp initmsg{num ostreams=0utStreams,
max_instreams=MaxInStreams}}])

All options Opt are set on the socket before the association is attempted. |f an option record has undefined field values,
the options record is first read from the socket for those values. In effect, Opt option records only define field values
to change before connecting.

Thereturned out bound_st r eans andi nbound_st r eans are the stream numbers on the socket. These can be
different from the requested values (Qut St r eans and Max| nSt r eans, respectively) if the peer requires lower
values.

st at e can have the following values:
comm_up

Association is successfully established. This indicates a successful completion of connect .
cant _assoc

The association cannot be established (connect / * failure).

Other states do not normally occur in the output from connect/*. Rather, they can occur in
#sct p_assoc_change{} events received instead of data in recv/* calls. All of them indicate losing the
association because of various error conditions, and are listed here for the sake of completeness:

comm | ost
restart
shut down_conp

Field er r or can provide more detailed diagnostics.

connect init(Socket, Addr, Port, Opts) ->
ok | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()
Opts = [option()]

Sameasconnect _i nit(Socket, Addr, Port, Opts, infinity).

connect init(Socket, Addr, Port, Opts, Timeout) ->
ok | {error, inet:posix()}

Types:
Socket = sctp_socket ()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_nunber()
Opts = [option()]

Timeout = timeout()
Initiates a new association for socket Socket , with the peer (SCTP server socket) specified by Addr and Port .

The fundamental difference between this APl and connect / * isthat the return value is that of the underlying OS
connect (2) system cal. If ok is returned, the result of the association establishment is received by the calling

138 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

processasan#sct p_assoc_change{} event. The calling process must be prepared to receive this, or poll for it
usingr ecv/ *, depending on the value of the active option.

The parameters are as described in connect / *, except the Ti meout value.

The timer associated with Ti meout only supervises I P resolution of Addr .

controlling process(Socket, Pid) -> ok | {error, Reason}

Types.
Socket = sctp_socket ()
Pid = pid()
Reason = closed | not owner | badarg | inet:posix()
Assigns a new controlling process Pid to Socket. Same implementation as

gen_udp: control I i ng_process/ 2.

eof (Socket, Assoc) -> ok | {error, Reason}
Types.

Socket = sctp_socket ()

Assoc = #sctp assoc_change{}

Reason = term()

Gracefully terminates the association specified by Assoc, with flushing of all unsent data. The socket itself remains
open. Other associations opened on this socket are still valid. The socket can be used in new associations.

error_string(ErrorNumber) -> ok | string() | unknown error
Types:
ErrorNumber = integer()

Trandates an SCTP error number from, for example, #sct p_renote_error{} or #sct p_send_f ai | ed{}
into an explanatory string, or one of the atoms ok for no error or undef i ned for an unrecognized error.

listen(Socket, IsServer) -> ok | {error, Reason}
listen(Socket, Backlog) -> ok | {error, Reason}
Types:

Socket = sctp_socket ()

Backlog = integer()

Reason = term()
Sets up a socket to listen on the IP address and port number it is bound to.

For type seqpacket , sockets (the default) | sSer ver must bet rue or f al se. In contrast to TCP, there is no
listening queue length in SCTP. If | sSer ver ist r ue, the socket accepts new associations, that is, it becomes an
SCTP server socket.

For type st r eam sockets Backlog define the backlog queue length just like in TCP.

Ericsson AB. All Rights Reserved.: Kernel | 139

gen_sctp

open() -> {ok, Socket} | {error, inet:posix()}
open(Port) -> {ok, Socket} | {error, inet:posix()}
open(0Opts) -> {ok, Socket} | {error, inet:posix()}
open(Port, Opts) -> {ok, Socket} | {error, inet:posix()}
Types:
Opts = [Opt]
Opt =
{ip, IP} |
{ifaddr, IP} |
i net:address_famly() |
{port, Port} |
{type, SockType} |
option()
IP = inet:ip_address() | any | loopback
Port = inet:port_nunber()
SockType = seqpacket | stream
Socket = sctp_socket ()
Creates an SCTP socket and binds it to the local addresses specified by al {ip, 1P} (or synonymously

{ifaddr, | P}) options (this feature is called SCTP multi-homing). The default | P and Port are any and O,
meaning bind to al local addresses on any free port.

Other options:
i net6
Sets up the socket for IPv6.
i net
Sets up the socket for IPv4. Thisis the default.

A default set of socket optionsis used. In particular, the socket is opened in binary and passive mode, with SockType
segpacket , and with reasonably large kernel and driver buffers.

If the socket isin passive mode data can be received through ther ecv/ 1, 2 calls.
If the socket isin active mode data received data is delivered to the controlling process as messages:

{sctp, Socket, FromIP, FromPort, {AncData, Data}}

Seerecv/ 1, 2 for adescription of the message fields.

This message format unfortunately differs slightly from the gen_udp message format with ancillary data, and
fromther ecv/ 1, 2 return tuple format.

peeloff(Socket, Assoc) -> {ok, NewSocket} | {error, Reason}
Types:

140 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

Socket = sctp_socket ()

Assoc = #sctp _assoc_change{} | assoc_id()
NewSocket = sctp_socket ()

Reason = term()

Branches off an existing association Assoc inasocket Socket of typeseqpacket (one-to-many style) into anew
socket NewSocket of typest r eam(one-to-one style).

The existing association argument Assoc can be either a#sct p_assoc_change{} record as returned from, for
example, r ecv/ *, connect / *, or from alistening socket in active mode. It can also be just the field assoc_i d
integer from such arecord.

recv(Socket) ->
{ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}

recv(Socket, Timeout) ->
{ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}

Types:
Socket = sctp_socket ()
Timeout = timeout()
FromIP = inet:ip_address()

FromPort = inet: port_nunber()
AncData = [#sctp sndrcvinfo{} | inet:ancillary_data()]
Data =

binary() |

string() |

#sctp _sndrcvinfo{} |
#sctp _assoc_change{} |
#sctp paddr change{} |
#sctp adaptation event{}
Reason =
i net: posix() |
#sctp send failed{} |
#sctp paddr change{} |
#sctp pdapi_event{} |
#sctp remote error{} |
#sctp _shutdown event{}

Receives the Dat a message from any association of the socket. If the receive times out, {error, ti meout} is
returned. The default time-outisi nfi ni ty. From Pand Fr onPor t indicate the address of the sender.

AncDat a isalist of ancillary data items that can be received along with the main Dat a. This list can be empty,
or contain a single #sct p_sndr cvi nfo{} record if receiving of such ancillary data is enabled (see option
sct p_event s). It isenabled by default, as such ancillary data provides an easy way of determining the association
and stream over which the message is received. (An alternative way is to get the association ID from Fr o P and
Fr onPor t using socket optionsct p_get _peer _addr _i nf o, but thisdoesstill not produce the stream number).

AncDat a may also contain ancillary data from the socket optionsr ecvt os,recvt cl ass orrecvttl , if that
is supported by the platform for the socket.

The Dat a received can beabi nary() orali st () of bytes (integersin the range 0 through 255) depending on
the socket mode, or an SCTP event.

Possible SCTP events:

Ericsson AB. All Rights Reserved.: Kernel | 141

gen_sctp

e #sctp_sndrcvinfo{}
e #sctp_assoc_change{}

#sctp_paddr_change{

addr = {ip_address(),port()},
state = atom(),

error = integer(),

assoc_id = assoc_id()

}

Indicates change of the status of the IP address of the peer specified by addr within association assoc_i d.
Possible values of st at e (mostly self-explanatory) include:

addr _unr eachabl e
addr _avail abl e
addr _renoved
addr _added

addr _made_prim
addr _confirned

In case of an error (for example, addr _unr eachabl e), field er r or provides more diagnostics. In such
cases, event#sct p_paddr _change{} isautomatically convertedintoaner r or termreturnedbyr ecv. The
error field value can be converted into astringusinger r or _stri ng/ 1.

#sctp send failed{

flags = true | false,

error = integer(),

info = #sctp _sndrcvinfo{},
assoc_id = assoc_id()

data = binary()

}

The sender can receive this event if a send operation fails.
flags

A Boolean specifying if the data has been transmitted over the wire.
error

Provides extended diagnostics, useer ror _stri ng/ 1.
info

Theoriginal #sct p_sndr cvi nf o{} record used in the failed send/ *.
dat a

Thewhole original data chunk attempted to be sent.

In the current implementation of the Erlang/SCTP binding, this event isinternally convertedintoan er r or term
returned by r ecv/ *.

#sctp_adaptation_event{
adaptation ind = integer(),
assoc_id assoc_id()

}

Delivered when a peer sends an adaptation layer indication parameter (configured through option
sct p_adapt ati on_| ayer). Notice that with the current implementation of the Erlang/SCTP binding, this
event is disabled by defaullt.

142 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

#sctp _pdapi event{
indication
assoc_id

sctp partial delivery aborted,
assoc_id()

}

A partia delivery failure. In the current implementation of the Erlang/SCTP binding, this event is internally
converted intoan er r or termreturned by r ecv/ *.

send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}
Types.
Socket = sctp_socket ()
SndRcvInfo = #sctp sndrcvinfo{}
Data = binary() | iolist()
Reason = term()
Sends the Dat a message with all sending parameters from a#sct p_sndr cvi nf o{} record. This way, the user
can specify the PPID (passed to the remote end) and context (passed to the local SCTP layer), which can be used, for

example, for error identification. However, such afine level of user control israrely required. The function send/ 4
is sufficient for most applications.

send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}
Types:

Socket = sctp_socket ()

Assoc = #sctp _assoc_change{} | assoc_id()

Stream = integer()

Data = binary() | iolist()

Reason = term()
Sends a Dat a message over an existing association and specified stream.

SCTP Socket Options

The set of admissible SCTP socket optionsis by construction orthogonal to the sets of TCP, UDP, and generici net
options. Only options listed here are allowed for SCTP sockets. Options can be set on the socket using open/ 1, 2 or
i net: setopts/2,retrievedusingi net: get opt s/ 2. Options can be changed when calling connect / 4, 5.

{node, list|binary} orjustlist orbinary
Determines the type of datareturned fromrecv/ 1, 2.

{active, true|fal se|once| N}

« Iff al se (passive mode, the default), the caller must do an explicit r ecv call to retrieve the available data
from the socket.

e Iftrue| once| N(active modes) received data or events are sent to the owning process. Seeopen/ 0. . 2
for the message format.

e If true (full active mode) thereis no flow control.

Note that this can cause the message queue to overflow causing for example the virtual machine to run
out of memory and crash.

Ericsson AB. All Rights Reserved.: Kernel | 143

gen_sctp

« If once, only one message is automatically placed in the message queue, and after that the mode is
automatically reset to passive. This provides flow control and the possibility for the receiver to listen for its
incoming SCTP data interleaved with other inter-process messages.

« Ifactive isspecified as an integer N in the range -32768 to 32767 (inclusive), that number is added to
the socket's counting of data messages to be delivered to the controlling process. If the result of the addition
is negative, the count is set to 0. Once the count reaches 0, either through the delivery of messages or by
being explicitly set withi net : set opt s/ 2, the socket modeisautomatically reset to passive ({ act i ve,
f al se}). When a socket in this active mode transitions to passive mode, the message{ sct p_passi ve,
Socket } issent to the controlling process to notify it that if it wants to receive more data messages from
the socket, it must call i net : set opt s/ 2 to set the socket back into an active mode.

{tos, integer()}

Setsthe Type-Of-Servicefield on the | P datagramsthat are sent, to the specified value. Thiseffectively determines
aprioritization policy for the outbound packets. The acceptable values are system-dependent.

{priority, integer()}
A protocol-independent equivalent of t os above. Setting priority implies setting t os aswell.
{dontroute, true|false}

Defaultstof al se. If t r ue, the kernel does not send packets through any gateway, only sends them to directly
connected hosts.

{reuseaddr, true|false}

Defaultstof al se. If true, thelocal binding address{ | P, Por t} of the socket can be reused immediately. No
waiting in state CLOSE_WAI T is performed (can be required for high-throughput servers).

{sndbuf, integer()}

The size, in bytes, of the OS kernel send buffer for this socket. Sending errors would occur for datagrams larger
thanval (sndbuf) . Setting this option a so adjusts the size of the driver buffer (see buf f er above).

{recbuf, integer()}

Thesize, in bytes, of the OS kernel receive buffer for this socket. Sending errorswould occur for datagrams|larger
thanval (recbuf) . Setting this option a so adjusts the size of the driver buffer (see buf f er above).

{sctp_nodul e, nodul e()}
Overrides which callback module isused. Defaultstoi net _sct p for IPvdandi net 6_sct p for IPv6.
{sctp_rtoinfo, #sctp rtoinfo{}}

#sctp rtoinfo{

assoc_id = assoc_id(),
initial = integer(),
max = integer(),
min = integer()

}
Determines retransmission time-out parameters, in milliseconds, for the association(s) specified by assoc_i d.

assoc_i d = 0 (default) indicates the whole endpoint. See RFC 2960 and Sockets APl Extensionsfor SCTP
for the exact semantics of the field values.

144 | Ericsson AB. All Rights Reserved.: Kernel

href
href

gen_sctp

{sctp_associ nfo, #sctp_assocparans{}}

#sctp_assocparams{

assoc_id = assoc_id(),
asocmaxrxt = integer(),
number peer destinations = integer(),
peer rwnd = integer(),
local rwnd = integer(),
cookie life = integer()

}

Determines association parameters for the association(s) specified by assoc_i d.

assoc_id = 0 (default) indicates the whole endpoint. See Sockets APl Extensions for SCTP for the
discussion of their semantics. Rarely used.

{sctp_initnmsg, #sctp_initmsg{}}

#sctp initmsg{

num_ostreams = integer(),
max_instreams = integer(),
max_attempts = integer(),
max_init timeo = integer()

}

Determines the default parameters that this socket triesto negotiate with its peer while establishing an association
with it. Is to be set after open/ * but before the first connect / *. #sct p_i ni t msg{} can aso be used as
ancillary datawith the first call of send/ * to anew peer (when a new association is created).

num ost r eans

Number of outbound streams
max_i nstreans

Maximum number of inbound streams
max_attenpts

Maximum retransmissions while establishing an association
max_init_tineo

Time-out, in milliseconds, for establishing an association

{sctp_autocl ose, integer() >= 0}

Determines the time, in seconds, after which an idle association is automatically closed. 0 means that the
association is never automatically closed.

{sctp_nodel ay, true|false}

Turns on|off the Nagle algorithm for merging small packets into larger ones. This improves throughput at the
expense of latency.

{sctp_disable fragnents, true|false}

If t rue, induces an error on an attempt to send a message larger than the current PMTU size (which would
require fragmentation/reassembling). Notice that message fragmentation does not affect the logical atomicity of
its delivery; this option is provided for performance reasons only.

{sctp_i_want _mapped_v4_addr, true|false}
Turns on|off automatic mapping of IPv4 addresses into |Pv6 ones (if the socket address family is AF_| NET6).
{sctp_naxseg, integer()}

Determines the maximum chunk size if message fragmentation is used. If 0, the chunk size is limited by the
Path MTU only.

Ericsson AB. All Rights Reserved.: Kernel | 145

href

gen_sctp

{sctp_primary_addr, #sctp_prin{}}

#sctp prim{
assoc_id
addr

assoc_id(),
{IP, Port}

}
IP = ip _address()
Port = port number()

For the association specified by assoc_i d, {1 P, Port} must be one of the peer addresses. This option
determines that the specified address is treated by the local SCTP stack as the primary address of the peer.

{sctp_set _peer_primary_addr, #sctp_setpeerprin{}}

#sctp setpeerprim{
assoc_id = assoc _id(),
addr {IP, Port}

}
IP = ip address()
Port = port number()

When set, informsthe peer touse{ | P, Port} asthe primary address of thelocal endpoint for the association
specified by assoc_i d.

{sctp_adaptation_|l ayer, #sctp_setadaptation{}}

#sctp setadaptation{
adaptation ind = integer()

}

When set, requests that the local endpoint uses the value specified by adapt ati on_i nd as the Adaptation
Indication parameter for establishing new associations. For details, see RFC 2960 and Sockets APl Extenstions
for SCTP.

{sctp_peer_addr_parans, #sctp_paddrparans{}}

#sctp paddrparams{

assoc_id = assoc id(),
address = {IP, Port},
hbinterval = integer(),
pathmaxrxt = integer(),
pathmtu = integer(),
sackdelay = integer(),
flags = list()

}
IP = ip address()
Port = port number()

Determines various per-address parameters for the association specified by assoc_i d and the peer address
addr ess (the SCTP protocol supports multi-homing, so more than one address can correspond to a specified
association).

hbi nt er val
Heartbeat interval, in milliseconds
pat hmaxr xt

Maximum number of retransmissions before this address is considered unreachable (and an alternative
address is selected)

146 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_sctp

pat hnt u

Fixed Path MTU, if automatic discovery isdisabled (seef | ags below)
sackdel ay

Delay, in milliseconds, for SAC messages (if the delay is enabled, seef | ags below)
flags

The following flags are available;

hb_enabl e
Enables heartbeat
hb_di sabl e
Disables heartbeat
hb_denmand
Initiates heartbeat immediately
prmt ud_enabl e
Enables automatic Path MTU discovery
prt ud_di sabl e
Disables automatic Path MTU discovery
sackdel ay_enabl e
Enables SAC delay
sackdel ay_di sabl e
Disables SAC delay

{sctp_default_send _param #sctp_sndrcvinfo{}}

#sctp sndrcvinfo{

stream = integer(),
ssn = integer(),
flags = list(),

ppid = integer(),
context = integer(),
timetolive = integer(),
tsn = integer(),
cumtsn = integer(),
assoc_id = assoc_id()

}

#sct p_sndrcvi nfo{} isused both in this socket option, and as ancillary data while sending or receiving
SCTP messages. When set as an option, it provides default values for subsequent send calls on the association
specified by assoc_i d.

assoc_i d = 0 (default) indicates the whole endpoint.
The following fields typically must be specified by the sender:
sinfo_stream
Stream number (0-base) within the association to send the messages through;
sinfo_fl ags
The following flags are recognised:

unor der ed
The message is to be sent unordered
addr _over
The address specified in send overwrites the primary peer address

Ericsson AB. All Rights Reserved.: Kernel | 147

gen_sctp

abort

Aborts the current association without flushing any unsent data

eof

Gracefully shuts down the current association, with flushing of unsent data
Other fields are rarely used. For complete information, see RFC 2960 and Sockets APl Extensions for

SCTP.

{sctp_events, #sctp_event_subscribe{}}

#sctp event subscribe{

data io event = true |
association event = true |
address event = true |
send failure event = true |
peer _error_event = true |
shutdown event = true |
partial delivery event = true |
adaptation layer event = true |

}

false,
false,
false,
false,
false,
false,
false,
false

This option determines which SCTP Events are to be received (through recv/*) aong with the data
The only exception is dat a_i o_event , which enables or disables receiving of #sct p_sndr cvi nf o{ }
ancillary data, not events. By default, all flags except adapt ati on_| ayer _event are enabled, although
sctp_data_i o_event and associ ati on_event are used by the driver itself and not exported to the

user level.

{sctp_del ayed ack _tinme, #sctp_assoc_val ue{}}

#sctp assoc value{
assoc_id
assoc_value

assoc_id(),
integer()

}

Rarely used. Determines the ACK time (specified by assoc_val ue, in milliseconds) for the specified
association or the whole endpoint if assoc_val ue = 0 (default).

{sctp_status, #sctp_status{}}

#sctp status{

assoc_id = assoc_id(),

state = atom(),

rwnd = integer(),
unackdata = integer(),
penddata = integer(),
instrms = integer(),
outstrms = integer(),
fragmentation point = integer(),
primary = #sctp_paddrinfo{}

}

Thisoption isread-only. It determinesthe status of the SCTP association specified by assoc_i d. Thefollowing
are the possible values of st at e (the state designations are mostly self-explanatory):

sctp_state_enpty

Default. Means that no other stateis active.
sctp_state_cl osed
sctp_state _cookie wait
sctp_state_cooki e_echoed

148 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_sctp

sctp_state_established

sct p_st at e_shut down_pendi ng
sctp_state_shutdown_sent
sctp_state_shutdown_recei ved
sctp_state_shutdown_ack_sent

Semantics of the other fields:

sstat_rwnd
Current receiver window size of the association
sstat _unackdat a
Number of unacked data chunks
sstat _penddat a
Number of data chunks pending receipt
sstat _instrmns
Number of inbound streams
sstat _outstrns
Number of outbound streams
sstat _fragmentation_point
Message size at which SCTP fragmentation occurs
sstat_primary
Information on the current primary peer address (see below for the format of #sct p_paddri nf o{})

{sctp_get peer_addr_info, #sctp_paddrinfo{}}

#sctp paddrinfo{

assoc_id = assoc_id(),

address = {IP, Port},

state = inactive | active | unconfirmed,
cwnd = integer(),

srtt = integer(),

rto = integer(),

mtu = integer()

}
IP = ip address()
Port = port _number()

Thisoption isread-only. It determines the parameters specific to the peer address specified by addr ess within
the association specifiedby assoc_i d. Fieldaddr ess fmust be set by thecaller; al other fieldsarefilledinon
return. If assoc_i d = 0 (default), theaddr ess isautomatically translated into the corresponding association
ID. This option is rarely used. For the semantics of all fields, see RFC 2960 and Sockets API Extensions for
SCTP.

SCTP Examples

Example of an Erlang SCTP server that receives SCTP messages and prints them on the standard output:

Ericsson AB. All Rights Reserved.: Kernel | 149

href
href
href

gen_sctp

-module(sctp_server).

-export([server/0,server/1,server/2]).
-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

server() ->
server(any, 2006).

server([Host,Port]) when is list(Host), is list(Port) ->
{ok, #hostent{h addr list = [IP|]}} = inet:gethostbyname(Host),

io:format("~w -> ~w~n", [Host, IP]),
server([IP, list to integer(Port)]).

server(IP, Port) when is tuple(IP) orelse IP == any orelse IP == loopback,
is_integer(Port) ->
{ok,S} = gen _sctp:open(Port, [{recbuf,65536}, {ip,IP}]),
io:format("Listening on ~w:~w. ~w~n", [IP,Port,S]),
ok = gen_sctp:listen(S, true),
server_loop(S).

server_loop(S) ->
case gen _sctp:recv(S) of
{error, Error} ->
io:format("SCTP RECV ERROR: ~p~n", [Error]);
Data ->
io:format("Received: ~p~n", [Datal)
end,
server_loop(S).

Example of an Erlang SCTP client interacting with the above server. Notice that in this example the client creates
an association with the server with 5 outbound streams. Therefore, sending of " Test 0" over stream O succeeds,
but sending of " Test 5" over stream 5 fails. The client then abor t s the association, which results in that the
corresponding event is received on the server side.

150 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp

-module(sctp client).

-export([client/0, client/1l, client/2]).
-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

client() ->
client([localhost]).

client([Host]) ->
client(Host, 2006);

client([Host, Port]) when is list(Host), is list(Port) ->
client(Host,list to integer(Port)),
init:stop().

client(Host, Port) when is integer(Port) ->
{ok,S} = gen_sctp:open(),
{ok,Assoc} = gen sctp:connect
(S, Host, Port, [{sctp initmsg,#sctp initmsg{num ostreams=5}}]),
io:format("Connection Successful, Assoc=~p~n", [Assoc]),

io:write(gen_sctp:send(S, Assoc, 0, <<"Test 0">>)),
io:nl(),

timer:sleep(10000),

io:write(gen_sctp:send(S, Assoc, 5, <<"Test 5">>)),
io:nl(),

timer:sleep(10000),

io:write(gen sctp:abort(S, Assoc)),

io:nl(),

timer:sleep(1000),
gen_sctp:close(S).

A simple Erlang SCTP client that usesthe connect _i nit API:

Ericsson AB. All Rights Reserved.: Kernel | 151

gen_sctp

-module(ex3).

-export([client/4]).
-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

client(Peerl, Portl, Peer2, Port2)
when is tuple(Peerl), is integer(Portl), is tuple(Peer2), is integer(Port2) ->

{ok,S} = gen_sctp:open(),
SctpInitMsgOpt = {sctp initmsg,#sctp _initmsg{num ostreams=5}},
ActiveOpt = {active, true},
Opts = [SctpInitMsgOpt, ActiveOpt],
ok = gen sctp:connect(S, Peerl, Portl, Opts),
ok = gen sctp:connect(S, Peer2, Port2, Opts),
io:format("Connections initiated~n", []),
client loop(S, Peerl, Portl, undefined, Peer2, Port2, undefined).

client loop(S, Peerl, Portl, AssocIdl, Peer2, Port2, AssocIld2) ->

receive
{sctp, S, Peerl, Portl, { Anc, SAC}}
when is record(SAC, sctp assoc change), AssocIdl == undefined ->

io:format("Association 1 connect result: ~p. AssocId: ~p~n",
[SAC#sctp _assoc_change.state,
SAC#sctp _assoc_change.assoc_id]),
client loop(S, Peerl, Portl, SAC#sctp assoc change.assoc id,
Peer2, Port2, Assocld2);

{sctp, S, Peer2, Port2, { Anc, SAC}}
when is record(SAC, sctp assoc change), AssocId2 == undefined ->
io:format("Association 2 connect result: ~p. AssocId: ~p~n",
[SAC#sctp _assoc_change.state, SAC#sctp assoc change.assoc id]),
client loop(S, Peerl, Portl, AssocIdl, Peer2, Port2,
SAC#sctp assoc_change.assoc_id);

{sctp, S, Peerl, Portl, Data} ->
io:format("Association 1: received ~p~n", [Data]),
client loop(S, Peerl, Portl, AssocIdl,

Peer2, Port2, Assocld2);

{sctp, S, Peer2, Port2, Data} ->
io:format("Association 2: received ~p~n", [Data]),
client loop(S, Peerl, Portl, AssocIdl,

Peer2, Port2, Assocld2);

Other ->
io:format("Other ~p~n", [Other]),
client loop(S, Peerl, Portl, AssocIdl,
Peer2, Port2, Assocld2)

after 5000 ->
ok
end.
See Also

gen_tcp(3), gen_udp(3), inet(3), RFC 2960 (Stream Control Transmission Protocol), Sockets API
Extensionsfor SCTP

152 | Ericsson AB. All Rights Reserved.: Kernel

href
href
href

gen_tcp

gen_tcp

Erlang module

This module provides functions for communicating with sockets using the TCP/IP protocol.

The following code fragment is a simple example of aclient connecting to aserver at port 5678, transferring abinary,
and closing the connection:

client() ->
SomeHostInNet = "localhost", % to make it runnable on one machine
{ok, Sock} = gen tcp:connect(SomeHostInNet, 5678,
[binary, {packet, 0}1),
gen_tcp:send(Sock, "Some Data"),
gen_tcp:close(Sock).

ok
ok

At the other end, a server islistening on port 5678, accepts the connection, and receives the binary:

server() ->
{ok, LSock} = gen tcp:listen(5678, [binary, {packet, 0},
{active, false}l),
{ok, Sock} = gen tcp:accept(LSock),
{ok, Bin} = do _recv(Sock, [1),
ok = gen tcp:close(Sock),
ok = gen _tcp:close(LSock),
Bin.

do recv(Sock, Bs) ->
case gen_tcp:recv(Sock, 0) of
{ok, B} ->
do recv(Sock, [Bs, Bl);
{error, closed} ->
{ok, list to binary(Bs)}
end.

For more examples, see section Examples.

Data Types

option() =
{active, true | false | once | -32768..32767} |
{buffer, integer() >= 0} |
{delay send, boolean()} |
{deliver, port | term} |
{dontroute, boolean()} |
{exit _on close, boolean()} |
{header, integer() >= 0} |
{high msgq watermark, integer() >= 1} |
{high watermark, integer() >= 0} |
{keepalive, boolean()} |
{linger, {boolean(), integer() >= 0}} |
{low _msgq watermark, integer() >= 1} |
{low watermark, integer() >= 0} |
{mode, list | binary} |
list | binary |
{nodelay, boolean()} |
{packet,

Ericsson AB. All Rights Reserved.: Kernel | 153

gen_tcp

0| 1] 2| 4] raw | sunrm | asnl | cdr | fcgi | line |
tpkt | http | httph | http_bin | httph_bin} |

{packet size, integer() >= 0} |

{priority, integer() >= 0} |

{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,

ValueBin :: binary()} |

{recbuf, integer() >= 0} |
{reuseaddr, boolean()} |

{send timeout, integer() >= 0 | infinity} |
{send_timeout close, boolean()} |
{show_econnreset, boolean()} |
{sndbuf, integer() >= 0} |

{tos, integer() >= 0} |

{tclass, integer() >= 0} |

{ttl, integer() >= 0} |

{recvtos, boolean()} |
{recvtclass, boolean()} |
{recvttl, boolean()} |

{ipv6 v6only, boolean()}

pktoptions value() = {pktoptions, inet:ancillary_data()}
If the platform implements the IPv4 option | P_PKTOPTI ONS, or the IPv6 option | PV6_PKTOPTI ONS or

| PV6_2292PKTOPTI ONSfor thesocket thisvalueisreturned fromi net : get opt s/ 2 when called with theoption
name pkt opt i ons.

This option appearsto be VERY Linux specific, and its existence in future Linux kernel versionsis also worrying
since the option is part of RFC 2292 which is since long (2003) obsoleted by RFC 3542 that explicitly removes
this possibility to get packet information from a stream socket. For comparision: it has existed in FreeBSD but is
now removed, at least since FreeBSD 10.

option_name() =
active | buffer | delay send | deliver | dontroute |
exit _on_close | header | high msgq watermark |
high watermark | keepalive | linger | low msgq watermark |
low watermark | mode | nodelay | packet | packet size |
pktoptions | priority |

{raw,

Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,
ValueSpec ::

(ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
recbuf | reuseaddr | send timeout | send timeout close |
show_econnreset | sndbuf | tos | tclass | ttl | recvtos |
recvtclass | recvttl | pktoptions | ipv6 v6only

connect _option() =
{ip, inet:socket_address()} |
{fd, Fd :: integer() >= 0} |
{ifaddr, inet:socket_address()} |

154 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

i net:address_famly() |
{port, inet:port_nunber()} |
{tcp_module, module()} |
{netns, file:filenane_all ()} |
{bind to device, binary()} |
option()

listen option() =
{ip, inet:socket_address()} |
{fd, Fd :: integer() >= 0} |
{ifaddr, inet:socket_address()} |
i net:address_famly() |
{port, inet:port_nunber()} |
{backlog, B :: integer() >= 0} |
{tcp_module, module()} |
{netns, file:filenane_all ()} |
{bind to device, binary()} |
option()

socket()

Asreturned by accept/ 1, 2 and connect/ 3, 4.

Exports

accept(ListenSocket) -> {ok, Socket} | {error, Reason}
accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
Types:

ListenSocket = socket ()

Returned by | i st en/ 2.

Timeout = timeout()

Socket = socket ()

Reason = closed | timeout | system limit | inet: posix()
Accepts an incoming connection request on alistening socket. Socket must be a socket returned from | i st en/ 2.
Ti meout specifies atime-out valuein milliseconds. Defaultstoi nfi ni ty.

Returns:

« {ok, Socket} if aconnectionis established

e {error, closed} ifListenSocket isclosed

« {error, tinmeout} if noconnection is established within the specified time

e {error, systemlimt} ifal availableportsin the Erlang emulator arein use

A POSIX error value if something else goeswrong, seei net (3) for possible error values

Packets can be sent to the returned socket Socket using send/ 2. Packets sent from the peer are delivered as

messages (unless{ acti ve, fal se} isspecifiedinthe option list for the listening socket, in which case packets
areretrieved by calingr ecv/ 2):

{tcp, Socket, Data}

Ericsson AB. All Rights Reserved.: Kernel | 155

gen_tcp

The accept call does not have to be issued from the socket owner process. Using version 5.5.3 and higher of
the emulator, multiple simultaneous accept calls can be issued from different processes, which allows for a pool
of acceptor processes handling incoming connections.

close(Socket) -> ok

Types:
Socket = socket ()
Closes a TCP socket.

Note that in most implementations of TCP, doing acl ose does not guarantee that any data sent is delivered to the
recipient before the close is detected at the remote side. If you want to guarantee delivery of the data to the recipient
there are two common ways to achieve this.

e Use gen_tcp: shutdown(Sock, wite) tosigna that no more datais to be sent and wait for the read
side of the socket to be closed.

» Usethe socket option { packet, N} (or something similar) to make it possible for the receiver to close the
connection when it knowns it has received al the data.

connect(Address, Port, Options) -> {ok, Socket} | {error, Reason}

connect (Address, Port, Options, Timeout) ->
{ok, Socket} | {error, Reason}

Types.
Address = inet:socket_address() | inet:hostnane()
Port = inet:port_nunber()
Options = [connect _option()]
Timeout = timeout()
Socket = socket ()
Reason = timeout | inet: posix()

Connectsto aserver on TCPport Por t onthehost with |PaddressAddr ess. Argument Addr ess can beahostname
or an IP address.

The following options are available:
{ip, Address}
If the host has many network interfaces, this option specifies which one to use.
{ifaddr, Address}
Sameas{i p, Address}. If thehost has many network interfaces, this option specifies which one to use.
{fd, integer() >= 0}

If a socket has somehow been connected without using gen_t cp, use this option to pass the file descriptor for
it. If {i p, Address} and/or {port, port_nunber ()} iscombined with this option, thef d is bound
to the specified interface and port before connecting. If these options are not specified, it is assumed that the f d
is aready bound appropriately.

i net
Sets up the socket for |Pv4.

156 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

i net6
Sets up the socket for 1Pv6.
| ocal
Sets up aUnix Domain Socket. See i net : | ocal _address()
{port, Port}
Specifies which local port number to use.
{tcp_nodul e, nodul e()}
Overrides which callback module is used. Defaultstoi net _t cp for IPv4andi net 6_t cp for IPv6.
Opt
Seei net : set opt s/ 2.
Packets can be sent to the returned socket Socket using send/ 2. Packets sent from the peer are delivered as
messages:
{tcp, Socket, Data}

If thesocketisin{acti ve, N} mode(seei net: set opt s/ 2 for details) and its message counter dropsto 0, the
following message is delivered to indicate that the socket has transitioned to passive ({ act i ve, fal se}) mode:

{tcp passive, Socket}
If the socket is closed, the following message is delivered:
{tcp_closed, Socket}

If an error occurs on the socket, the following message is delivered (unless{ act i ve, fal se} isspecifiedin the
option list for the socket, in which case packets are retrieved by callingr ecv/ 2):

{tcp _error, Socket, Reason}

The optional Ti meout parameter specifies atime-out in milliseconds. Defaultstoi nfinity.

Keep in mind that if the underlying OS connect () cal returnsatimeout, gen_t cp: connect will alsoreturn
atimeout (i.e.{error, etinedout}), evenifalarger Ti meout was specified.

The default values for options specified to connect can be affected by the Kernel configuration parameter
i net _defaul t _connect _opti ons. For details, seei net (3) .

controlling process(Socket, Pid) -> ok | {error, Reason}

Types:
Socket = socket ()
Pid = pid()
Reason = closed | not owner | badarg | inet: posix()

Assignsanew controlling processPi d to Socket . The controlling processisthe processthat receives messages from
the socket. If called by any other process than the current controlling process, { error, not _owner} isreturned.

Ericsson AB. All Rights Reserved.: Kernel | 157

gen_tcp

If the processidentified by Pi d isnot an existing local pid,{ er r or, badar g} isreturned.{error, badar g}
may & so be returned in some cases when Socket is closed during the execution of this function.

If the socket is set in active mode, this function will transfer any messages in the mailbox of the caller to the new
controlling process. If any other processisinteracting with the socket while the transfer is happening, the transfer may
not work correctly and messages may remain in the caller's mailbox. For instance changing the sockets active mode
before the transfere is complete may cause this.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types:
Port = inet:port_nunber()
Options = [listen_option()]
ListenSocket = socket ()
Reason = system limit | inet: posix()
Sets up a socket to listen on port Por t on the local host.
If Port == 0, theunderlying OS assigns an available port number, usei net : port/ 1 toretrieveit.
The following options are available:
list
Recelved Packet isdelivered asalist.
bi nary
Received Packet isdelivered asabinary.
{backl og, B}

Bisaninteger >= 0. The backlog value defines the maximum length that the queue of pending connections can
grow to. Defaultsto 5.

{ip, Address}
If the host has many network interfaces, this option specifies which one to listen on.
{port, Port}
Specifies which local port number to use.
{fd, Fd}
If asocket has somehow been connected without using gen_t cp, usethis option to passthefile descriptor for it.
{ifaddr, Address}
Sameas{i p, Address}. If thehost has many network interfaces, this option specifies which one to use.
i net6
Sets up the socket for |Pv6.
i net
Sets up the socket for 1Pv4.
{tcp_nodul e, nodul e()}
Overrides which callback module isused. Defaultstoi net _t cp for IPv4dandi net 6_t cp for IPv6.
Opt
Seei net: set opt s/ 2.

158 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

The returned socket Li st enSocket should be used in calls to accept/ 1, 2 to accept incoming connection
reguests.

The default values for options specified to | i st en can be affected by the Kernel configuration parameter
i net_default_Iisten_options.Fordetals, seei net (3) .

recv(Socket, Length) -> {ok, Packet} | {error, Reason}
recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}

Types:
Socket = socket ()
Length = integer() >= 0

Timeout = timeout()

Packet string() | binary() | HttpPacket

Reason = closed | timeout | inet: posix()

HttpPacket = term()

See the description of Ht t pPacket inerl ang: decode_packet/ 3 in ERTS.

Receives a packet from a socket in passive mode. A closed socket isindicated by returnvalue{ err or, cl osed}.

Argument Lengt h is only meaningful when the socket is in r aw mode and denotes the number of bytes to read.
If Lengt h is 0, al available bytes are returned. If Lengt h > 0, exactly Lengt h bytes are returned, or an error;
possibly discarding less than Lengt h bytes of datawhen the socket is closed from the other side.

The optional Ti meout parameter specifies atime-out in milliseconds. Defaultstoi nfinity.

send(Socket, Packet) -> ok | {error, Reason}

Types.

Socket = socket ()

Packet = iodata()

Reason = closed | inet: posix()
Sends a packet on a socket.

Thereisno send call with atime-out option, use socket optionsend_t i neout if time-outsare desired. See section
Examples.

shutdown (Socket, How) -> ok | {error, Reason}
Types:
Socket = socket ()
How = read | write | read write
Reason = inet: posi x()
Closes a socket in one or two directions.
How == wri t e means closing the socket for writing, reading from it is still possible.

If How == r ead or there is no outgoing data buffered in the Socket port, the socket is shut down immediately
and any error encountered isreturned in Reason.

Ericsson AB. All Rights Reserved.: Kernel | 159

gen_tcp

If there is data buffered in the socket port, the attempt to shutdown the socket is postponed until that datais written to
the kernel socket send buffer. If any errors are encountered, the socket isclosed and{ er r or, cl osed} isreturned
onthenextrecv/ 2 or send/ 2.

Option{exit_on_cl ose, fal se} isuseful if the peer has done a shutdown on the write side.

Examples

The following example illustrates use of option { act i ve, once} and multiple accepts by implementing a server
as a number of worker processes doing accept on a single listening socket. Function st ar t / 2 takes the number of
worker processes and the port number on which to listen for incoming connections. If LPor t is specified as 0, an
ephemeral port number is used, which iswhy the start function returns the actual port number allocated:

start(Num,LPort) ->
case gen tcp:listen(LPort, [{active, false},{packet,2}]) of
{ok, ListenSock} ->
start servers(Num,ListenSock),
{ok, Port} = inet:port(ListenSock),
Port;
{error,Reason} ->
{error,Reason}
end.

start servers(0,) ->
ok;

start servers(Num,LS) ->
spawn (?MODULE, server, [LS]),
start servers(Num-1,LS).

server(LS) ->
case gen tcp:accept(LS) of

{ok,S} ->
loop(S),
server(LS);
Other ->
io:format("accept returned ~w - goodbye!~n",[Other]),
ok
end.
loop(S) ->
inet:setopts(S, [{active,once}]),
receive

{tcp,S,Data} ->
Answer = process(Data), % Not implemented in this example
gen_tcp:send(S,Answer),
Loop(S);

{tcp closed,S} ->
io:format("Socket ~w closed [~w]~n",[S,self()]),
ok

end.

Example of asimple client:

client(PortNo,Message) ->
{ok,Sock} = gen tcp:connect("localhost",PortNo, [{active,false},
{packet,2}]),
gen tcp:send(Sock,Message),
A = gen tcp:recv(Sock,0),
gen_tcp:close(Sock),
A.

The send call does not accept a time-out option because time-outs on send is handled through socket option
send_t i meout . The behavior of a send operation with no receiver is mainly defined by the underlying TCP stack

160 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp

and the network infrastructure. To write code that handles a hanging receiver that can eventually cause the sender to
hang on asend do like the following.

Consider a process that receives data from a client process to be forwarded to a server on the network. The process
is connected to the server through TCP/IP and does not get any acknowledge for each message it sends, but has to

rely on the send time-out option to detect that the other end is unresponsive. Option send_t i neout can be used
when connecting:

{ok,Sock} = gen tcp:connect(HostAddress, Port,
[{active, false},
{send timeout, 5000},
{packet,2}1]),
loop(Sock), % See below

In the loop where requests are handled, send time-outs can now be detected:

loop(Sock) ->
receive
{Client, send data, Binary} ->
case gen_tcp:send(Sock, [Binary]) of
{error, timeout} ->
io:format("Send timeout, closing!~n",
[1,
handle send timeout(), % Not implemented here
Client ! {self(),{error _sending, timeout}},
%% Usually, it's a good idea to give up in case of a
%% send timeout, as you never know how much actually
%% reached the server, maybe only a packet header?!
gen_tcp:close(Sock);
{error, OtherSendError} ->
io:format("Some other error on socket (~p), closing",
[0therSendError]),

Client ! {self(),{error _sending, OtherSendError}},
gen_tcp:close(Sock);

ok ->
Client ! {self(), data sent},
loop(Sock)

end
end.

Usually it suffices to detect time-outs on receive, as most protocols include some sort of acknowledgment from the
server, but if the protocol is strictly one way, option send_t i neout comesin handy.

Ericsson AB. All Rights Reserved.: Kernel | 161

gen_udp

gen_udp

Erlang module

This module provides functions for communicating with sockets using the UDP protocol.

Data Types

option() =
{active, true | false | once | -32768..32767} |
{add_membership, {inet:ip_address(), inet:ip_address()}} |
{broadcast, boolean()} |
{buffer, integer() >= 0} |
{deliver, port | term} |
{dontroute, boolean()} |
{drop_membership, {inet:ip_address(), inet:ip_address()}} |
{header, integer() >= 0} |
{high msgq watermark, integer() >= 1} |
{low _msgq watermark, integer() >= 1} |
{mode, list | binary} |
list | binary |
{multicast if, inet:ip_address()} |
{multicast loop, boolean()} |
{multicast ttl, integer() >= 0} |
{priority, integer() >= 0} |

{raw,
Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,

ValueBin :: binary()} |
{read packets, integer() >= 0} |
{recbuf, integer() >= 0} |
{reuseaddr, boolean()} |
{sndbuf, integer() >= 0} |
{tos, integer() >= 0} |
{tclass, integer() >= 0} |
{ttl, integer() >= 0} |
{recvtos, boolean()} |
{recvtclass, boolean()} |
{recvttl, boolean()} |
{ipv6_v6only, boolean()}
option name() =
active | broadcast | buffer | deliver | dontroute | header |
high msgq watermark | low msgq watermark | mode |
multicast if | multicast loop | multicast ttl | priority |

{raw,

Protocol :: integer() >= 0,
OptionNum :: integer() >= 0,
ValueSpec ::

(ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
read packets | recbuf | reuseaddr | sndbuf | tos | tclass |
ttl | recvtos | recvtclass | recvttl | pktoptions |

162 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

ipv6e _veonly
socket ()
Asreturned by open/ 1, 2.

Exports

close(Socket) -> ok

Types:
Socket = socket ()
Closes a UDP socket.

controlling process(Socket, Pid) -> ok | {error, Reason}

Types:
Socket = socket ()
Pid = pid()
Reason = closed | not owner | badarg | inet: posix()

Assignsanew controlling processPi d to Socket . The controlling processisthe process that receives messagesfrom
the socket. If called by any other process than the current controlling process, { error, not _owner} isreturned.
If the processidentified by Pi d isnot an existing local pid,{ er r or, badar g} isreturned.{error, badar g}
may also be returned in some cases when Socket is closed during the execution of this function.

open(Port) -> {ok, Socket} | {error, Reason}
open(Port, Opts) -> {ok, Socket} | {error, Reason}
Types.
Port = inet: port_numnber()
Opts [Option]
Option =
{ip, inet:socket_address()} |
{fd, integer() >= 0} |
{ifaddr, inet:socket_address()} |
i net:address_famly() |
{port, inet:port_nunber ()
)

{netns, file:filenane_al
{bind to device, binary(
option()

Socket = socket ()

Reason = system limit | inet: posix()

F
O} |
o

Associates a UDP port number (Por t) with the calling process.
The following options are available:
list
Received Packet isdelivered asalist.
bi nary

Received Packet isdelivered as abinary.

Ericsson AB. All Rights Reserved.: Kernel | 163

gen_udp

{ip, Address}

If the host has many network interfaces, this option specifies which one to use.
{ifaddr, Address}

Sameas{i p, Address}. If thehost has many network interfaces, this option specifies which one to use.
{fd, integer() >= 0}

If a socket has somehow been opened without using gen_udp, use this option to pass the file descriptor for it.
If Port isnotsettoO and/or {i p, ip_address()} iscombined with thisoption, thef d isbound to the
specified interface and port after it is being opened. If these options are not specified, it is assumed that the f d
is aready bound appropriately.

inet6

Sets up the socket for 1Pv6.
i net

Sets up the socket for IPv4.
| ocal

Sets up aUnix Domain Socket. See i net : | ocal _addr ess()
{udp_nodul e, nodul e()}

Overrides which callback module isused. Defaultstoi net _udp for IPv4 and i net 6_udp for IPv6.
{mul ticast_if, Address}

Setsthe local device for amulticast socket.
{mul ticast _|oop, true | false}

When't r ue, sent multicast packets are looped back to the local sockets.
{nul ticast_ttl, Integer}

Optionmul ti cast _ttl changesthetime-to-live (TTL) for outgoing multicast datagramsto control the scope
of the multicasts.

Datagramswith a TTL of 1 are not forwarded beyond the local network. Defaultsto 1.
{add_rmenbershi p, {MiltiAddress, InterfaceAddress}}

Joins a multicast group.
{drop_nenbership, {MiltiAddress, InterfaceAddress}}

Leaves amulticast group.
Opt

Seei net : setopt s/ 2.

The returned socket Socket isused to send packets from this port with send/ 4. When UDP packets arrive at the
opened port, if the socket isin an active mode, the packets are delivered as messages to the controlling process:

{udp, Socket, IP, InPortNo, Packet} % Without ancillary data
{udp, Socket, IP, InPortNo, AncData, Packet} % With ancillary data

The message contains an AncDat a field if any of the socket optionsr ecvt os, recvtcl ass orrecvttl| are
active, otherwise it does not.

If the socket is not in an active mode, data can be retrieved through ther ecv/ 2, 3 calls. Notice that arriving UDP
packets that are longer than the receive buffer option specifies can be truncated without warning.

164 | Ericsson AB. All Rights Reserved.: Kernel

gen_udp

When a socket in {active, N} mode(seei net: setopts/ 2 for details), transitions to passive ({ acti ve,
f al se}) mode, the controlling processis notified by a message of the following form:

{udp_passive, Socket}
| P and I nPor t No define the address from which Packet comes. Packet isalist of bytesif option | i st is
specified. Packet isabinary if option bi nary is specified.
Default value for the receive buffer optionis{r ecbuf, 8192}.

If Port == 0, theunderlying OS assigns afree UDP port, usei net : port/ 1 toretrieveit.

recv(Socket, Length) -> {ok, RecvData} | {error, Reason}
recv(Socket, Length, Timeout) -> {ok, RecvData} | {error, Reason}
Types:

Socket = socket ()

Length = integer() >= 0

Timeout = timeout()

RecvData =

{Address, Port, Packet} | {Address, Port, AncData, Packet}
Address = inet:ip_address() | inet:returned_non_ip_address()
Port = inet: port_nunber ()
AncData = inet:ancillary_data()
Packet = string() | binary()
Reason = not owner | timeout | inet: posix()

Receives a packet from a socket in passive mode. Optional parameter Ti neout specifies atime-out in milliseconds.
Defaultstoi nfinity.

If any of the socket options r ecvt 0s, recvt cl ass or recvtt| are active, the RecvDat a tuple contains an
AncDat a field, otherwise it does not.

send(Socket, Address, Port, Packet) -> ok | {error, Reason}
Types.

Socket = socket ()

Address = inet:socket_address() | inet:hostnane()

Port = inet: port_numnber()

Packet = iodata()

Reason = not owner | inet: posix()

Sends a packet to the specified address and port. Argument Addr ess can be a hostname or a socket address.

Ericsson AB. All Rights Reserved.: Kernel | 165

global

global

Erlang module

This module consists of the following services:

* Registration of global names
+ Global locks
* Maintenance of the fully connected network

These services are controlled through the process gl obal _nane_ser ver that exists on every node. The global
name server starts automatically when a node is started. With the term global is meant over a system consisting of
many Erlang nodes.

The ability to globally register names is a central concept in the programming of distributed Erlang systems. In this
module, the equivalent of ther egi st er/ 2 and wher ei s/ 1 BIFs (for local name registration) are provided, but
for a network of Erlang nodes. A registered name is an dlias for a process identifier (pid). The globa name server
monitors globally registered pids. If a process terminates, the name is also globally unregistered.

The registered names are stored in replica global name tables on every node. There is no central storage point. Thus,
the trandation of anameto apidisfast, asit isaways done locally. For any action resulting in a change to the global
name table, all tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For example, the specified resource can be a pid.
When aglobal lock is set, accessto the locked resource is denied for al resources other than the lock requester.

Both the registration and lock services are atomic. All nodes involved in these actions have the same view of the
information.

The global name server also performs the critical task of continuously monitoring changes in node configuration. If
a node that runs a globally registered process goes down, the name is globally unregistered. To this end, the global
name server subscribes to nodeup and nodedown messages sent from module net _ker nel . Relevant Kernel
application variables in this context are net _set upti me, net _ti ckti me, and di st _aut o_connect . See
asokernel (6).

The name server also maintains a fully connected network. For example, if node N1 connects to node N2 (which is
already connected to N3), the global name servers on the nodes N1 and N3 ensure that also N1 and N3 are connected.
If thisis not desired, command-lineflag - connect _al | fal se canbeused (seeasoer!| (1)).Inthiscase, the
name registration service cannot be used, but the lock mechanism still works.

If the global name server fails to connect nodes (N1 and N3 in the example), a warning event is sent to the error
logger. The presence of such an event does not exclude the nodes to connect later (you can, for example, try command
rpc:call (N1, net_adm ping, [N2]) intheErlang shell), but it indicates a network problem.

If the fully connected network is not set up properly, try first to increase the value of net _set upti ne.

166 | Ericsson AB. All Rights Reserved.: Kernel

global

Data Types
id() = {Resourceld :: term(), LockRequesterId :: term()}

Exports

del lock(Id) -> true
del lock(Id, Nodes) -> true
Types.

Id = id()

Nodes = [node()]
Deletesthelock | d synchronously.

notify all name(Name, Pidl, Pid2) -> none
Types:
Name = term()
Pidl = Pid2 = pid()
Can be used as a name resolving function for r egi st er _name/ 3 andre_r egi st er _nane/ 3.

The function unregisters both pids and sends the message { gl obal _nane_conflict, Nane, O herPid}
to both processes.

random exit name(Name, Pidl, Pid2) -> pid()

Types:
Name = term()
Pidl = Pid2 = pid()

Can be used as a name resolving function for r egi st er _name/ 3 andr e_r egi st er _nane/ 3.

The function randomly selects one of the pids for registration and kills the other one.

random notify name(Name, Pidl, Pid2) -> pid()

Types.
Name = term()
Pidl = Pid2 = pid()

Can be used as aname resolving function for r egi st er _nane/ 3 andre_regi ster _nane/ 3.

Thefunction randomly selects one of the pidsfor registration, and sendsthe message{ gl obal _name_confli ct,
Nane} to the other pid.

re register name(Name, Pid) -> yes
re register name(Name, Pid, Resolve) -> yes
Types:

Name = term()

Pid = pid()

Resolve = net hod()

method() =

Ericsson AB. All Rights Reserved.: Kernel | 167

global

fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->
pid() | none)
{Mbdul e, Funct i on} isaso alowed

Atomically changes the registered name Nane on all nodesto refer to Pi d.
Function Resol ve hasthe same behavior asinr egi st er _nane/ 2, 3.

register name(Name, Pid) -> yes | no
register name(Name, Pid, Resolve) -> yes | no
Types.

Name = term()

Pid = pid()

Resolve = net hod()

method() =
fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->
pid() | none)
{Mbdul e, Funct i on} isaso allowed for backward compatibility, but its use is deprecated.

Globally associates name Nane with a pid, that is, globally notifies all nodes of a new global name in a network of
Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered names that already exist. The
network isalso informed of any global namesin newly connected nodes. If any name clashes are discovered, function
Resol ve iscaled. Its purposeisto decide which pid is correct. If the function crashes, or returns anything other than
one of the pids, the nameis unregistered. This function is called once for each name clash.

If you plan to change code without restarting your system, you must use an external fun (fun
Modul e: Functi on/ Ari ty) asfunction Resol ve. If you use alocal fun, you can never replace the code for
the module that the fun belongs to.

Three predefined resolve functions exist: random exit _nane/3, random notify_ name/3, and
noti fy all _nane/ 3.If no Resol ve function is defined, r andom exi t _nane isused. This means that one
of the two registered processes is selected as correct while the other is killed.

Thisfunction is completely synchronous, that is, when this function returns, the name is either registered on all nodes
or none.

The function returnsyes if successful, no if it fails. For example, no isreturned if an attempt is made to register an
already registered process or to register a process with anamethat is already in use.

Releases up to and including Erlang/OTP R10 did not check if the process was already registered. The global name
table could therefore becomeinconsistent. Theold (buggy) behavior can be chosen by giving the Kernel application
variablegl obal _rmul ti _name_acti on thevaueal | ow.

If a process with a registered name dies, or the node goes down, the name is unregistered on all nodes.

registered names() -> [Name]
Types:

168 | Ericsson AB. All Rights Reserved.: Kernel

global

Name = term()
Returnsalist of all globally registered names.

send (Name, Msg) -> Pid

Types:
Name = Msg = term()
Pid = pid()

Sends message Ms g to the pid globally registered as Narme.
If Narre is not aglobally registered name, the calling function exits with reason { badar g, {Narme, Msg}}.

set lock(Id) -> boolean()
set lock(Id, Nodes) -> boolean()
set lock(Id, Nodes, Retries) -> boolean()
Types.
Id = id()
Nodes = [node()]
Retries = retries()
id() = {Resourceld :: term(), LockRequesterId :: term()}
retries() = integer() >= 0 | infinity
Sets alock on the specified nodes (or on all nodes if none are specified) on Resour cel d for LockRequest er | d.
If alock already existson Resour cel d for another requester than LockRequest er | d,andRet ri es isnot equal
to 0, the process sleeps for awhile and tries to execute the action later. When Ret r i es attempts have been made,

f al se isreturned, otherwisetrue. If Retries isinfinity, true iseventualy returned (unless the lock is
never released).

If novaluefor Ret ri es isspecified, i nfinity isused.
This function is completely synchronous.
If aprocess that holds alock dies, or the node goes down, the locks held by the process are del eted.

The global name server keeps track of all processes sharing the same lock, that is, if two processes set the same lock,
both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur as long as processes only lock
one resource at atime. A deadlock can occur if some processes try to lock two or more resources. It is up to the
application to detect and rectify a deadlock.

Avoid the following values of Resour cel d, otherwise Erlang/OTP does not work properly:
- dist_ac

* gl obal

* mesia adjust _log wites

e mesia_table | ock

* pg2

Ericsson AB. All Rights Reserved.: Kernel | 169

global

sync() -> ok | {error, Reason :: term()}

Synchronizes the global name server with all nodes known to this node. These are the nodes that are returned from
er |l ang: nodes() . When this function returns, the global name server receives global information from all nodes.
This function can be called when new nodes are added to the network.

The only possible error reason Reason is{ " gl obal _groups definition error”, Error}.

trans(Id, Fun) -> Res | aborted
trans(Id, Fun, Nodes) -> Res | aborted
trans(Id, Fun, Nodes, Retries) -> Res | aborted
Types.

Id = id()

Fun = trans_fun()

Nodes = [node()]

Retries = retries()

Res = term()

retries() = integer() >= 0 | infinity

trans fun() = function() | {module(), atom()}

Setsalockonl d (usingset | ock/ 3). If thissucceeds, Fun() isevaluated and the result Res isreturned. Returns
abort ed if thelock attempt fails. If Ret ri es issettoi nfi ni ty, the transaction does not abort.

i nfinity isthedefault setting and is used if no valueis specified for Ret ri es.

unregister name(Name) -> term()
Types:
Name = term()
Removes the globally registered name Narre from the network of Erlang nodes.

whereis name(Name) -> pid() | undefined
Types:
Name = term()
Returns the pid with the globally registered name Name. Returnsundef i ned if the name is not globally registered.

See Also
gl obal _group(3),net_kernel (3)

170 | Ericsson AB. All Rights Reserved.: Kernel

global_group

global _group

Erlang module

This module makes it possible to partition the nodes of a system into global groups. Each global group hasits own
global namespace, see gl obal (3).

The main advantage of dividing systems into global groupsis that the background load decreases while the number
of nodes to be updated is reduced when manipulating globally registered names.

The Kernel configuration parameter gl obal _gr oups defines the global groups (see also kernel (6) and
config(4)):
{global groups, [GroupTuple :: group tuple()]}

For the processes and nodes to run smoothly using the global group functionality, the following criteria must be met:

« An instance of the global group server, gl obal _gr oup, must be running on each node. The processes are
automatically started and synchronized when a node is started.

* All involved nodes must agree on the global group definition, otherwise the behavior of the system is undefined.
* All nodesin the system must belong to exactly one global group.

In the following descriptions, agroup node is a node belonging to the same global group as the local node.

Data Types

group_tuple() =
{GroupName :: group_narme(), [node()]} |

{GroupName :: group_nare(),
PublishType :: publish_type(),
[node()]}

A G oupTupl e without Publ i shType isthesameasa G oupTupl e with Publ i shType equal to nor mal .

group name() = atom()
publish type() = hidden | normal

A node started with command-lineflag - hi dden (seeer| (1))issaidtobeahidden node. A hidden node establishes
hidden connections to nodes not part of the same globa group, but normal (visible) connections to nodes part of the
same global group.

A globa group defined with Publ i shType equa to hi dden is said to be a hidden global group. All nodesin a
hidden global group are hidden nodes, whether they are started with command-line flag - hi dden or not.

name() = atom()
A registered name.
where() = {node, node()} | {group, group_nane()}

Exports

global groups() -> {GroupName, GroupNames} | undefined
Types:

Ericsson AB. All Rights Reserved.: Kernel | 171

global_group

GroupName = group_nane()
GroupNames = [GroupName]

Returns a tuple containing the name of the global group that the local node belongs to, and the list of all other known
group names. Returnsundef i ned if no global groups are defined.

info() -> [info_item)]
Types:
info item() =
{state, State :: sync_state()} |
{own_group name, GroupName :: group_nane()} |
{own_group nodes, Nodes :: [node()]} |
{synched nodes, Nodes :: [node)1} |
{sync_error, Nodes :: [node()]} |
{no_contact, Nodes :: [node()]} |
{other _groups, Groups :: [group_tuple()]} |
{monitoring, Pids :: [pid()]1}
sync_state() = no _conf | synced

Returns a list containing information about the global groups. Each list element is a tuple. The order of the tuples
is undefined.

{state, State}

If the local node is part of aglobal group, St at e isequal to synced. If no global groups are defined, St at e
isequal tono_conf .

{own_group_nane, G oupNane}

The name (atom) of the group that the local hode belongs to.
{own_group_nodes, Nodes}

A list of node names (atoms), the group nodes.
{synced_nodes, Nodes}

A list of node names, the group nodes currently synchronized with the local node.
{sync_error, Nodes}

A list of node names, the group nodes with which the local node has failed to synchronize.
{no_contact, Nodes}

A list of node names, the group nodes to which there are currently no connections.
{ot her _groups, G oups}

G oups isalist of tuples{ G oupNane, Nodes}, specifying the name and nodes of the other global groups.
{noni toring, Pids}

A list of pids, specifying the processes that have subscribed to nodeup and nodedown messages.

monitor nodes(Flag) -> ok
Types:
Flag = boolean()

Depending on FI ag, the calling process starts subscribing (Fl ag equal tot r ue) or stops subscribing (FI ag equal
tof al se) to node status change messages.

172 | Ericsson AB. All Rights Reserved.: Kernel

global_group

A process that has subscribed receives the messages{ nodeup, Node} and{ hodedown, Node} when agroup
node connects or disconnects, respectively.

own nodes() -> Nodes
Types:
Nodes = [Node :: node()]
Returns the names of all group nodes, regardless of their current status.

registered names(Where) -> Names

Types:
Where = where()
Names = [Name :: nane()]

Returns alist of all namesthat are globally registered on the specified node or in the specified global group.

send(Name, Msg) -> pid() | {badarg, {Name, Msg}}
send(Where, Name, Msg) -> pid() | {badarg, {Name, Msg}}
Types:
Where = where()
Name = nane()
Msg = term()
Searches for Nane, globally registered on the specified node or in the specified global group, or (if argument Wher e

is not provided) in any global group. The global groups are searched in the order that they appear in the value of
configuration parameter gl obal _gr oups.

If Narre isfound, message Ms g is sent to the corresponding pid. The pid is aso the return value of the function. If the
name is not found, the function returns { badar g, {Name, Msg}}.

sync() -> ok

Synchronizes the group nodes, that is, the globa name servers on the group nodes. Also checks the names globally
registered in the current global group and unregisters them on any known node not part of the group.

If synchronization is not possible, an error report is sent to the error logger (seeasoerr or _| ogger (3) .

Returns {error, {'invalid global_groups definition', Bad}} if configuration parameter
gl obal _gr oups hasan invalid value Bad.

whereis name(Name) -> pid() | undefined
whereis name(Where, Name) -> pid() | undefined
Types.
Where = where()
Name = nane()
Searchesfor Nane, globally registered on the specified node or in the specified global group, or (if argument Wher e

is not provided) in any global group. The globa groups are searched in the order that they appear in the value of
configuration parameter gl obal _gr oups.

If Narre isfound, the corresponding pid is returned. If the nameis not found, the function returnsundef i ned.

Ericsson AB. All Rights Reserved.: Kernel | 173

global_group

Notes

» In the situation where a node has lost its connections to other nodes in its global group, but has connections to
nodes in other global groups, a request from another global group can produce an incorrect or misleading result.
For example, the isolated node can have inaccurate information about registered namesin its global group.

* Functionsend/ 2, 3 isnot secure.

» Distribution of applications is highly dependent of the global group definitions. It is not recommended that an
application is distributed over many global groups, as the registered names can be moved to another global group
at failover/takeover. Nothing prevents this to be done, but the application code must then handle the situation.

See Also
gl obal (3),erl (1)

174 | Ericsson AB. All Rights Reserved.: Kernel

heart

heart

Erlang module

This modules contains the interface to the heart process. heart sends periodic heartbeats to an external port
program, which is aso named heart. The purpose of the heart port program is to check that the Erlang
runtime system it is supervising is dtill running. If the port program has not received any heartbeats within
HEART _BEAT_TI MEQUT seconds (defaults to 60 seconds), the system can be rebooted.

An Erlang runtime system to be monitored by a heart program is to be started with command-lineflag - heart (see
asoerl (1)). Theheart processisthen started automatically:

% erl -heart ...

If the system is to be rebooted because of missing heartbeats, or a terminated Erlang runtime system, environment
variable HEART_COMVAND must be set before the system is started. If thisvariableisnot set, awarning text is printed
but the system does not reboot.

To reboot on Windows, HEART_COVMAND can be set to heart - shut down (included in the Erlang delivery) or
to any other suitable program that can activate a reboot.

The environment variable HEART _BEAT_TI MEQUT can be used to configure the heart time-outs; it can be set in the
operating system shell before Erlang is started or be specified at the command line:

% erl -heart -env HEART BEAT TIMEOUT 30 ...

The vaue (in seconds) must be in the range 10 < X <= 65535.

When running on OSslacking support for monotonic time, hear t is susceptible to system clock adjustments of more
than HEART _BEAT_TI MEQUT seconds. When this happens, hear t times out and tries to reboot the system. This
can occur, for example, if the system clock is adjusted automatically by use of the Network Time Protocol (NTP).

If acrash occurs,aner | _crash. dunp isnot written unless environment variable ERL_ CRASH DUMP_SECONDS
iS sat:
% erl -heart -env ERL_CRASH DUMP SECONDS 10 ...

If aregular core dump is wanted, let heart know by setting the kill signal to abort using environment variable
HEART_KI LL_SI GNAL=SI GABRT. If unset, or not set to SI GABRT, the default behavior is a kill signal using
SI &KI LL:

% erl -heart -env HEART KILL SIGNAL SIGABRT ...

If heart should not kill the Erlang runtime system, this can be indicated using the environment variable
HEART _NO_KI LL=TRUE. Thiscan be useful if the command executed by heart takes care of this, for example as part
of aspecific cleanup sequence. If unset, or not set to TRUE, the default behaviour will be to kill as described above.

% erl -heart -env HEART NO KILL 1 ...

Furthermore, ERL_ CRASH DUMP_SECONDS has the following behavior on hear't :

Ericsson AB. All Rights Reserved.: Kernel | 175

heart

ERL_CRASH DUMP_SECONDS=0

Suppresses the writing of a crash dump file entirely, thus rebooting the runtime system immediately. Thisisthe
same as hot setting the environment variable.

ERL_CRASH_DUMP_SECONDS=- 1

Setting the environment variable to a negative value does not reboot the runtime system until the crash dump
fileis completly written.

ERL_CRASH_DUMP_SECONDS=S

heart waitsfor S seconds to let the crash dump file be written. After S seconds, hear t reboots the runtime
system, whether the crash dump file iswritten or not.

In the following descriptions, all functions fail with reason badar g if heart isnot started.

Data Types

heart option() = check schedulers

Exports

set cmd(Cmd) -> ok | {error, {bad cmd, Cmd}}
Types:
Cmd = string()

Sets a temporary reboot command. This command is used if a HEART _COVMAND other than the one specified with
the environment variable is to be used to reboot the system. The new Erlang runtime system uses (if it misbehaves)
environment variable HEART _COVMAND to reboot.

Limitations. Command string Cnd is sent to the heart program as an 1SO Latin-1 or UTF-8 encoded binary,
depending on the filename encoding mode of the emulator (seef i | e: nati ve_nanme_encodi ng/ 0). The size of
the encoded binary must be less than 2047 bytes.

clear cmd() -> ok
Clears the temporary boot command. If the system terminates, the normal HEART _COMMVAND is used to reboot.

get cmd() -> {ok, Cmd}
Types:
Cmd = string()
Gets the temporary reboot command. If the command is cleared, the empty string is returned.

set callback(Module, Function) ->
ok | {error, {bad callback, {Module, Function}}}

Types:
Module = Function = atom()

Thisvalidation callback will be executed before any heartbeat is sent to the port program. For the validation to succeed
it needs to return with the value ok.

An exception within the callback will be treated as a validation failure.
The callback will be removed if the system reboots.

176 | Ericsson AB. All Rights Reserved.: Kernel

heart

clear callback() -> ok
Removes the validation callback call before heartbeats.

get callback() -> {ok, {Module, Function}} | none
Types:
Module = Function = atom()

Get the validation callback. If the callback is cleared, none will be returned.

set options(Options) -> ok | {error, {bad options, Options}}
Types:
Options = [heart_option()]
Valid optionsset _opti ons are:
check _schedul ers

If enabled, asignal will be sent to each scheduler to check itsresponsiveness. The system check occurs before any
heartbeat sent to the port program. If any scheduler is not responsive enough the heart program will not receive
its heartbeat and thus eventually terminate the node.

Returns with the value ok if the options are valid.

get options() -> {ok, Options} | none
Types:
Options = [atom()]

Returns{ ok, Opti ons} whereOpti ons isalist of current options enabled for heart. If the callback is cleared,
none will be returned.

Ericsson AB. All Rights Reserved.: Kernel | 177

inet

inet

Erlang module

This module provides access to TCP/IP protocols.

See dlso ERTS User's Guide: Inet Configuration for more information about how to configure an Erlang runtime
system for |P communication.

The following two Kernel configuration parameters affect the behavior of all sockets opened on an Erlang node:

e inet_default_connect options cancontainalist of default options used for all sockets returned when
doing connect .
e inet_default_listen_options cancontainalist of default optionsused whenissuingal i st en call.

When accept isissued, the values of the listening socket options are inherited. No such application variable is
therefore needed for accept .

Using the Kernel configuration parameters above, one can set default options for all TCP sockets on a node, but use
thiswith care. Optionssuch as{ del ay_send, t r ue} can be specified in thisway. The following is an example of
starting an Erlang node with all sockets using delayed send:

$ erl -sname test -kernel \
inet default connect options '[{delay send,true}]' \
inet default listen options '[{delay send,true}]’

Notice that default option { act i ve, true} cannot be changed, for internal reasons.

Addresses as inputs to functions can be either a string or a tuple. For example, the IP address 150.236.20.73 can be
passed to get host byaddr/ 1, either asstring " 150. 236. 20. 73" or astuple{ 150, 236, 20, 73}.

| Pv4 addr ess examples:

Address ip address()
127.0.0.1 {127,0,0,1}
192.168.42.2 {192,168,42,2}

| Pv6 addr ess examples:

Address ip address()
HE | {0,0,0,0,0,0,
::192.168.42.2 {0,0,0,0,0,0,
::FFFF:192.168.42.2

{0,0,0,0,0,16#FFFF, (192 bsl 8) bor 168, (42 bsl 8) bor 2}
3ffe:b80:1f8d:2:204:acff:fel7:bf38

{16#3ffe, 16#b80,16#1f8d, 16#2,16#204, 16#acff,16#fel7,16#bf38}
fe80::204:acff:fel7:bf38

{16#fe80,0,0,0,0,16#204,16#acff,16#fel7,16#bf38}

Il}
192 bsl 8) bor 168, (42 bsl 8) bor 2}

Function par se_addr ess/ 1 can be useful:

1> inet:parse address("192.168.42.2").

{ok, {192,168,42,2}}

2> inet:parse address("::FFFF:192.168.42.2").
{ok,{0,0,0,0,0,65535,49320,10754}}

178 | Ericsson AB. All Rights Reserved.: Kernel

inet

Data Types

hostent () =
#hostent{h name = inet: hostname(),
h aliases = [inet: hostnanme()],
h addrtype = inet | inet6,
h length = integer() >= 0,
h addr list = [inet:ip_address() 1}

Therecord isdefined in the Kerndl includefile"i net . hrl ™.
Add the following directive to the module:

-include lib("kernel/include/inet.hrl").

hostname() = atom() | string()
ip address() = ip4_address() | ip6_address()
ip4 address() {0..255, 0..255, 0..255, 0..255}

ip6 address()
{0..65535,
.65535,
.65535,
.65535,
.65535,
.65535,
.65535,
.65535}

port number() = 0..65535
local address() = {local, File :: binary() | string()}

[cNoNoNoNoNONO]

This address family only works on Unix-like systems.

Fi | e isnormally afile pathname in alocal filesystem. It is limited in length by the operating system, traditionally
to 108 bytes.

A bi nary() ispassed asisto the operating system, but ast ri ng() isencoded according to the system filename
encoding mode.

Other addresses are possible, for example Linux implements "Abstract Addresses"’. See the documentation for Unix
Domain Sockets on your system, normally uni x in manual section 7.

In most API functions where you can use this address family the port number must be 0.
socket address() =
i p_address() | any | loopback | | ocal _address()

socket getopt() =

gen_sct p: opti on_name() |

gen_tcp: option_name() |

gen_udp: opti on_nane()
socket setopt() =

gen_sctp:option() | gen_tcp:option() | gen_udp: option()
returned non ip address() =

{local, binary()} | {unspec, <<>>} | {undefined, any()}

Addresses besides i p_address() ones that are returned from socket API functions. See in particular
| ocal _address(). Theunspec family corresponds to AF_UNSPEC and can occur if the other side has no

Ericsson AB. All Rights Reserved.: Kernel | 179

inet

socket address. The undef i ned family can only occur in the unlikely event of an address family that the VM does
not recognize.

ancillary data() =
[{tos, byte()} | {tclass, byte()} | {ttl, byte()}]

Ancillary data received with the data packet or read with the socket option pkt opti ons from a TCP socket.
The value(s) correspond to the currently active socket optionsr ecvt os, recvt cl ass andrecvttl .

getifaddrs ifopts() =
[Ifopt ::
{flags,
Flags
[up | broadcast | loopback | pointtopoint |
running | multicast]} |
{addr, Addr :: ip_address()} |
{netmask, Netmask :: ip_address()} |
{broadaddr, Broadaddr :: ip_address()} |
{dstaddr, Dstaddr :: ip_address()} |
{hwaddr, Hwaddr :: [byte()1}]

Interface addressdescription list returnedfromget i f addr s/ 0, 1 for anamedinterface, trandated fromthereturned
data of the POSIX API function get addr i nf o() .

Hwaddr is hardware dependent, for example, on Ethernet interfacesiit is the 6-byte Ethernet address (MAC address
(EUI-48 address)).

The tuples {addr, Addr}, {netmask, Netmask}, and possibly {broadaddr, Broadaddr} or
{dst addr, Dst addr } are repeated in the list if the interface has got multiple addresses. An interface may
have multiple {f| ag, _} tuples for example if it has different flags for different address families. Multiple
{ hwaddr , Hwaddr } tuplesishard to say anything definite about, though. Thetuple{ f | ag, Fl ags} ismandatory,
all others are optional.

Do not rely too much on the order of Fl ags atomsor the | f opt tuples. There are however somerules:

« A{flag, } tupleappliesto all other tuplesthat follow.
e Immediately after { addr, _} follows{ net mask, _}.

e Immediately thereafter may { br oadaddr, _} followif br oadcast ismember of FI ags, or{dst addr, }
if poi ntt opoi nt ismember of FI ags. Both{dst addr, _} and{br oadaddr, } doesnot occur for the
same{addr, }.

e Any {netmask, _}, {broadaddr, }, or {dstaddr, _} tuples that follow an {addr, Addr} tuple
concerns the address Addr .

Thetuple{ hwaddr, _} isnot returned on Solaris, as the hardware address historically belongsto the link layer and
it is not returned by the Solaris API function get addr i nf o() .

On Windows, the data is fetched from different OS API functions, so the Net nask and Br oadaddr values may
be calculated, just as some FI ags values.

posix() =
eaddrinuse | eaddrnotavail | eafnosupport | ealready |
econnaborted | econnrefused | econnreset | edestaddrreq |
ehostdown | ehostunreach | einprogress | eisconn | emsgsize |
enetdown | enetunreach | enopkg | enoprotoopt | enotconn |

180 | Ericsson AB. All Rights Reserved.: Kernel

inet

enotty | enotsock | eproto | eprotonosupport | eprototype |
esocktnosupport | etimedout | ewouldblock | exbadport |
exbadseq |
file:posix()

An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.

See section POSI X Error Codes.

socket ()

Seegen_t cp: type-socket andgen_udp: t ype- socket.

address family() = inet | inet6 | local

socket protocol() = tcp | udp | sctp

stat option() =

recv.cnt | recv.max | recv_avg | recv oct | recv dvi |
send cnt | send max | send avg | send oct | send pend

Exports

close(Socket) -> ok
Types:

Socket = socket ()
Closes a socket of any type.

format error(Reason) -> string()
Types:
Reason = posix() | system limit

Returns a diagnostic error string. For possible POSIX values and corresponding strings, see section POS X Error
Codes.

get rc() ->
[{Par :: atom(), Val :: any()} |
{Par :: atom(), Vall :: any(), Val2 :: any()}]

Returnsthe state of the | net configuration database in form of alist of recorded configuration parameters. For more
information, see ERTS User's Guide: Inet Configuration.

Only actual parameterswith other than default valuesare returned, for example not directivesthat specify other sources
for configuration parameters nor directives that clear parameters.

getaddr(Host, Family) -> {ok, Address} | {error, posix()}
Types.

Host = i p_address() | hostnane()

Family = address_family()

Address = i p_address()

Returns the IP address for Host as atuple of integers. Host can be an IP address, a single hostname, or a fully
qualified hostname.

Ericsson AB. All Rights Reserved.: Kernel | 181

inet

getaddrs(Host, Family) -> {ok, Addresses} | {error, posix()}
Types.

Host = i p_address() | hostnane()

Family = address_fam | y()

Addresses = [i p_address()]

Returnsalist of all IPaddressesfor Host . Host canbean |P address, asingle hostname, or afully qualified hostname.

gethostbyaddr(Address) -> {ok, Hostent} | {error, posix()}

Types.
Address = string() | ip_address()
Hostent = hostent ()

Returnsahost ent record for the host with the specified address.

gethostbyname(Hostname) -> {ok, Hostent} | {error, posix()}
Types:

Hostname = host nane()

Hostent = hostent ()
Returnsahost ent record for the host with the specified hostname.

If resolver optioni net 6 ist r ue, an IPv6 address is |ooked up.

gethostbyname(Hostname, Family) ->
{ok, Hostent} | {error, posix()}

Types:
Hostname = host nane()
Family = address_fam | y()
Hostent = hostent ()

Returnsahost ent record for the host with the specified name, restricted to the specified address family.

gethostname() -> {ok, Hostname}
Types.

Hostname = string()
Returns the local hostname. Never fails.

getifaddrs() ->
{ok,
[{Ifname :: string(),
Ifopts :: getifaddrs_ifopts()}1} |
{error, posix()}

Returns a list of 2-tuples containing interface names and the interfaces addresses. | f namne is a Unicode string and
| f opt s isalist of interface address description tuples.

The interface address description tuples are documented under the type of the | f opt s value.

getifaddrs(Opts) -> {ok, [{Ifname, Ifopts}]1} | {error, Posix}
Types:

182 | Ericsson AB. All Rights Reserved.: Kernel

inet

Opts = [{netns, Namespace}]

Namespace = file:filename_all ()

| fnane = string()

Ifopts = getifaddrs_ifopts()

Posi x = posi x()
Thesameasget i f addr s/ 0 buttheQpt i on {net ns, Nanmespace} setsanetwork namespace for the OScall,
on platforms that supports that feature.

See the socket option { net ns, Namespace} under set opt s/ 2.

getopts(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types:
Socket = socket ()
Options = [socket getopt ()]
OptionValues = [socket_setopt() | gen_tcp: pktoptions_val ue()]
Gets one or more options for a socket. For alist of available options, see set opt s/ 2. See aso the description for
thetype gen_t cp: pkt opti ons_val ue() .

Thenumber of elementsinthereturned Opt i onVal ues list doesnot necessarily correspond to the number of options
asked for. If the operating system fails to support an option, it isleft out in the returned list. An error tupleis returned
only when getting options for the socket isimpossible (that is, the socket is closed or the buffer sizein araw reguest
istoo large). This behavior is kept for backward compatibility reasons.

A raw option request RawOpt Req = {raw, Protocol, OptionNum Val ueSpec} can be used to get
information about socket options not (explicitly) supported by the emulator. The use of raw socket options makes the
code non-portable, but allows the Erlang programmer to take advantage of unusual features present on a particular
platform.

RawOpt Req consists of tag r awfollowed by the protocol level, the option number, and either abinary or the size, in
bytes, of the buffer in which the option valueisto be stored. A binary isto be used when the underlying get sockopt
reguires input in the argument field. In this case, the binary size is to correspond to the required buffer size of the
return value. The supplied valuesin aRawOpt Req correspond to the second, third, and fourth/fifth parametersto the
get sockopt call inthe C socket API. The value stored in the buffer is returned as a binary Val ueBi n, where all
values are coded in the native endianess.

Asking for and inspecting raw socket options require low-level information about the current operating system and
TCP stack.

Example:

Consider a Linux machine where option TCP_I NFO can be used to collect TCP statistics for a socket. Assume you
areinterested infieldt cpi _sacked of struct tcp_i nf o filled in when asking for TCP_I NFQ. To be able to
access this information, you need to know the following:

e Thenumeric value of protocol level | PPROTO_TCP

e The numeric value of option TCP_I NFO

e Thesizeof struct tcp_info

e Thesizeand offset of the specific field

By inspecting the headers or writing a small C program, it is found that | PPROTO_TCP is 6, TCP_I NFOis 11, the

structure size is 92 (bytes), the offset of t cpi _sacked is 28 bytes, and the value is a 32-bit integer. The following
code can be used to retrieve the value:

Ericsson AB. All Rights Reserved.: Kernel | 183

inet

get tcpi sacked(Sock) ->

{ok, [{raw, , ,Info}]} = inet:getopts(Sock, [{raw,6,11,92}]),
<< :28/binary,TcpiSacked:32/native, /binary>> = Info,
TcpiSacked.

Preferably, you would check the machine type, the operating system, and the Kernel version before executing anything
similar to this code.

getstat(Socket) -> {ok, OptionValues} | {error, posix()}
getstat(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types:
Socket = socket ()
Options = [stat_option()]
OptionValues = [{stat_option(), integer()}]
stat _option() =
recv_cnt | recv_max | recv_avg | recv_oct | recv dvi |
send cnt | send max | send avg | send oct | send pend

Gets one or more statistic options for a socket.

get st at (Socket) is equivdent to get stat (Socket, [recv_avg, recv_cnt, recv_dvi,
recv_nax, recv_oct, send avg, send_cnt, send_dvi, send_nax, send_oct]).

The following options are available:
recv_avg

Average size of packets, in bytes, received by the socket.
recv_cnt

Number of packets received by the socket.
recv_dvi

Average packet size deviation, in bytes, received by the socket.
recv_max

Size of the largest packet, in bytes, received by the socket.
recv_oct

Number of bytes received by the socket.
send_avg

Average size of packets, in bytes, sent from the socket.
send_cnt

Number of packets sent from the socket.
send_dvi

Average packet size deviation, in bytes, sent from the socket.
send_nax

Size of the largest packet, in bytes, sent from the socket.
send_oct

Number of bytes sent from the socket.

184 | Ericsson AB. All Rights Reserved.: Kernel

inet

i() -> ok
i(Proto :: socket protocol()) -> ok
i(X1 :: socket_protocol (), Fs :: [atom()]) -> ok

Listsall TCP, UDP and SCTP sockets, including those that the Erlang runtime system uses as well as those created
by the application.

The following options are available:
port
Theinternal index of the port.
nodul e
The callback module of the socket.
recv
Number of bytes received by the socket.
sent
Number of bytes sent from the socket.
owner
The socket owner process.
| ocal _address
The local address of the socket.
forei gn_address
The address and port of the other end of the connection.
state
The connection state.
type
STREAM or DGRAM or SEQPACKET.

ntoa(IpAddress) -> Address | {error, einval}
Types.

Address = string()

IpAddress = i p_address()

Parsesani p_addr ess() andreturnsan IPv4 or IPv6 address string.

parse_address(Address) -> {ok, IPAddress} | {error, einval}
Types:

Address = string()

IPAddress = i p_address()

Parses an IPv4 or 1Pv6 address string and returnsan i p4_addr ess() ori p6_addr ess() . Accepts a shortened
IPv4 address string.

parse ipv4 address(Address) -> {ok, IPv4Address} | {error, einval}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 185

inet

Address = string()
IPv4Address = i p_address()

Parses an |Pv4 address string and returnsan i p4_addr ess() . Accepts a shortened |Pv4 address string.

parse ipv4strict address(Address) ->
{ok, IPv4Address} | {error, einval}

Types:
Address = string()
IPv4Address = i p_address()

Parses an |Pv4 address string containing four fields, that is, not shortened, and returnsani p4_addr ess() .

parse ipv6 address(Address) -> {ok, IPv6Address} | {error, einval}
Types:

Address = string()

IPv6Address = i p_address()

Parsesan IPv6 address string and returnsani p6_addr ess() . If an|Pv4 address string is specified, an |Pv4-mapped
IPv6 addressis returned.

parse ipv6bstrict address(Address) ->
{ok, IPv6Address} | {error, einval}

Types.
Address = string()
IPv6Address = i p_address()

Parses an |Pv6 address string and returnsan i p6_addr ess() . Does not accept | Pv4 addresses.

ipv4 mapped ipv6 address(X1l :: ip_address()) -> ip_address()

Convert an IPv4 address to an 1Pv4-mapped |Pv6 address or the reverse. When converting from an |Pv6 address all
but the 2 low words are ignored so this function also works on some other types of addresses than | Pv4-mapped.

parse strict address(Address) -> {ok, IPAddress} | {error, einval}
Types:

Address = string()

IPAddress = i p_address()

Parses an IPv4 or |Pv6 address string and returns an i p4_addr ess() ori p6_address() . Does not accept a
shortened | Pv4 address string.

peername(Socket :: socket()) ->
{ok,
{i p_address(), port_nunber()} |
returned_non_i p_address() } |
{error, posix()}

Returns the address and port for the other end of a connection.

Notice that for SCTP sockets, this function returns only one of the peer addresses of the socket. Function
peer nanes/ 1, 2 returnsal.

186 | Ericsson AB. All Rights Reserved.: Kernel

inet

peernames(Socket :: socket()) ->
{ok,
[{i p_address(), port_nunber()} |
returned_non_i p_address()]} |
{error, posix()}

Equivalent to peer nanes(Socket, 0).

Notice that the behavior of this function for an SCTP one-to-many style socket is not defined by the SCTP Sockets
API Extensions.

peernames(Socket, Assoc) ->
{ok, [{Address, Port}1} | {error, posix()}

Types.
Socket = socket ()
Assoc = #sctp _assoc_change{} | gen_sctp:assoc_id()
Address = i p_address()
Port = integer() >= 0
Returns alist of al address/port number pairs for the other end of an association Assoc of a socket.

Thisfunction can return multiple addresses for multihomed sockets, such as SCTP sockets. For other socketsit returns
aone-element list.

Notice that parameter Assoc is by the SCTP Sockets API Extensions defined to be ignored for one-to-one style
sockets. What the special value 0 means, hence its behavior for one-to-many style sockets, is unfortunately undefined.

port(Socket) -> {ok, Port} | {error, any()}
Types:

Socket = socket ()

Port = port_nunber ()

Returns the local port number for a socket.

setopts(Socket, Options) -> ok | {error, posix()}
Types:
Socket = socket ()
Options = [socket setopt ()]
Sets one or more options for a socket.
The following options are available:
{active, true | false | once | N

If thevalueist r ue, whichisthe default, everything received from the socket is sent as messagesto thereceiving
process.

If the value is fal se (passive mode), the process must explicitly receive incoming data by caling
gen_tcp:recv/ 2, 3,gen_udp: recv/ 2, 3,orgen_sct p: recv/ 1, 2 (depending onthetype of socket).

If thevalueisonce ({acti ve, once}), one datamessage from the socket is sent to the process. To receive
one more message, set opt s/ 2 must be called again with option{ acti ve, once}.

If thevalueisaninteger Nin therange-32768 to 32767 (inclusive), the valueis added to the socket's count of data
messages sent to the controlling process. A socket's default message count is 0. If anegative value is specified,

Ericsson AB. All Rights Reserved.: Kernel | 187

href
href
href

inet

and its magnitude is equal to or greater than the socket's current message count, the socket's message count is set
to 0. Once the socket's message count reaches 0, either because of sending received data messagesto the process
or by being explicitly set, the processisthen notified by a special message, specific to the type of socket, that the
socket has entered passive mode. Once the socket enters passive mode, to receive more messages set opt s/ 2
must be called again to set the socket back into an active mode.

Whenusing { acti ve, once} or{active, N}, thesocketchangesbehavior automatically when datais
received. This can be confusing in combination with connection-oriented sockets (that is, gen_t cp), asasocket
with{acti ve, fal se} behavior reportsclosing differently than asocket with{acti ve, true} behavior.
To simplify programming, a socket where the peer closed, and this is detected whilein { act i ve, fal se}

mode, till generates message {t cp_cl osed, Socket} when set to {active, once}, {active,

true}, or {active, N mode. It is therefore safe to assume that message {t cp_cl osed, Socket },
possibly followed by socket port termination (depending on optionexi t _on_cl ose) eventually appearswhen
asocket changes back and forth between{ acti ve, true} and{active, fal se} mode. However, when
peer closing is detected it is all up to the underlying TCP/IP stack and protocaol.

Noticethat { acti ve, true} mode provides no flow control; afast sender can easily overflow the receiver
with incoming messages. Thesameistruefor{ acti ve, N} mode, whilethe message count isgreater than zero.

Use active mode only if your high-level protocol provides its own flow control (for example, acknowledging
received messages) or the amount of dataexchangedissmall.{act i ve, fal se} mode, useof the{acti ve,
once} mode, or { acti ve, N mode with values of N appropriate for the application provides flow control.
The other side cannot send faster than the receiver can read.

{broadcast, Bool ean} (UDP sockets)
Enabl es/disables permission to send broadcasts.
{buffer, Size}

The size of the user-level buffer used by the driver. Not to be confused with options sndbuf and r ecbuf ,
which correspond to the Kernel socket buffers. For TCP it is recommended to have val (buffer)

>= val (recbuf) to avoid performance issues because of unnecessary copying. For UDP the same
recommendation applies, but the max should not be larger than the MTU of the network path. val (buf f er)

is automatically set to the above maximum when r ecbuf is set. However, as the size set for r ecbuf usually
become larger, you are encouraged to use get opt s/ 2 to analyze the behavior of your operating system.

Note that this is also the maximum amount of data that can be received from a single recv call. If you are using
higher than normal MTU consider setting buffer higher.

{del ay_send, Bool ean}

Normally, when an Erlang process sends to a socket, the driver tries to send the data immediately. If that fails,
the driver uses any means available to queue up the message to be sent whenever the operating system saysit can
handle it. Setting { del ay_send, true} makes all messages queue up. The messages sent to the network
are then larger but fewer. The option affects the scheduling of send requests versus Erlang processes instead of
changing any real property of the socket. The option isimplementation-specific. Defaultsto f al se.

{deliver, port | ternt

When {active, true},dataisdeliveredontheformport :{S, {data, [Hl,..Hsz | Data]}}
orterm:{tcp, S, [Hl..Hsz | Data]}.

{dontrout e, Bool ean}

Enables/disables routing bypass for outgoing messages.
{exit_on_cl ose, Bool ean}

Thisoptionissettot r ue by default.

188 | Ericsson AB. All Rights Reserved.: Kernel

inet

Theonly reasonto set it to f al se isif you want to continue sending data to the socket after a close is detected,
for example, if the peer usesgen_t cp: shut down/ 2 to shut down the write side.

{header, Size}

Thisoption is only meaningful if option bi nar y was specified when the socket was created. If option header
isspecified, thefirst Si ze number bytes of datareceived from the socket are elements of alist, and the remaining
data is a binary specified as the tail of the same list. For example, if Si ze == 2, the data received matches
[Byt el, Byt e2| Bi nary].

{hi gh_nsgq_wat ermark, Size}
The socket message queue is set to a busy state when the amount of data on the message queue reaches this

limit. Notice that this limit only concerns datathat has not yet reached the ERTS internal socket implementation.
Defaultsto 8 kB.

Senders of datato the socket are suspended if either the socket message queue is busy or the socket itself is busy.
For more information, see options| ow_nsgq_wat er nmar k, hi gh_wat er mar k, and| ow_wat er mar k.

Notice that distribution sockets disable the use of hi gh_nsgq_wat er mar k and | ow_nmsgqg_wat er mar k.
Instead use the distribution buffer busy limit, which is asimilar feature.

{hi gh_wat ermark, Size} (TCP/IP sockets)

The socket is set to a busy state when the amount of data queued internally by the ERTS socket implementation
reaches thislimit. Defaultsto 8 kB.

Senders of datato the socket are suspended if either the socket message queue is busy or the socket itself is busy.

For more information, see options |ow watermark, high nsgq waternark, and
| ow_nmsqg_wat er mar k.

{ipv6_v6only, Bool ean}

Restricts the socket to use only 1Pv6, prohibiting any |Pv4 connections. Thisis only applicable for 1Pv6 sockets
(optioni net 6).

On most platforms this option must be set on the socket before associating it to an address. It is therefore only
reasonableto specify it when creating the socket and not to useit when calling function (set opt s/ 2) containing
this description.

The behavior of a socket with thisoption settot r ue isthe only portable one. The original ideawhen IPv6 was
new of using IPv6 for all traffic is now not recommended by FreeBSD (you canuse{i pv6_v6onl y, f al se}
to override the recommended system default value), forbidden by OpenBSD (the supported GENERIC kernel),
and impossible on Windows (which has separate IPv4 and |Pv6 protocol stacks). Most Linux distros still have
a system default value of f al se. This policy shift among operating systems to separate |Pv6 from IPv4 traffic
has evolved, asit gradually proved hard and complicated to get adual stack implementation correct and secure.

On some platforms, the only allowed valuefor thisoptionist r ue, for example, OpenBSD and Windows. Trying
to set thisoptionto f al se, when creating the socket, failsin this case.

Setting this option on platforms where it does not exist isignored. Getting this option with get opt s/ 2 returns
no value, that is, the returned list does not containan{i pv6_v6only, } tuple. On Windows, the option does
not exist, but it is emulated as a read-only option with valuet r ue.

Therefore, setting thisoptiontot r ue when creating asocket never fails, except possibly on aplatform whereyou
have customized thekernel toonly allow f al se, which can be doable (but awkward) on, for example, OpenBSD.

If you read back the option value using get opt s/ 2 and get no value, the option does not exist in the host
operating system. The behavior of both an 1Pv6 and an IPv4 socket listening on the same port, and for an IPv6
socket getting | Pv4 traffic is then no longer predictable.

Ericsson AB. All Rights Reserved.: Kernel | 189

inet

{keepal i ve, Bool ean} (TCP/IP sockets)

Enables/disables periodic transmission on a connected socket when no other data is exchanged. If the other end
does not respond, the connection is considered broken and an error message is sent to the controlling process.
Defaultsto di sabl ed.

{l'inger, {true|false, Seconds}}
Determines the time-out, in seconds, for flushing unsent datainthe cl ose/ 1 socket call.

Thefirst component isif linger is enabled, the second component is the flushing time-out, in seconds. There are
3 alternatives:

{false, }

close/1 or shutdown/2 returns immediately, not waiting for data to be flushed, with closing happening in
the background.

{true, 0}

Aborts the connection when it is closed. Discards any data still remaining in the send buffers and sends
RST to the peer.

This avoids TCP's TIME_WAIT state, but leaves open the possibility that another "incarnation” of this
connection being created.

{true, Tinme} when Tine > 0

close/1 or shutdown/2 will not return until all queued messages for the socket have been successfully sent
or the linger timeout (Time) has been reached.

{l ow_nsgq_wat er mark, Size}

If the socket message queueisin abusy state, the socket message queueis set in anot busy state when the amount
of data queued in the message queue falls below this limit. Notice that this limit only concerns data that has not
yet reached the ERTS internal socket implementation. Defaults to 4 kB.

Sendersthat are suspended because of either abusy message queue or abusy socket are resumed when the socket
message queue and the socket are not busy.

For more information, see optionshi gh_nmsgq_wat er nar k, hi gh_wat er mar k, and | ow_wat er nar k.

Notice that distribution sockets disable the use of hi gh_nsgq_wat er mar k and | ow_nsgqg_wat er nar k.
Instead they use the distribution buffer busy limit, which is asimilar feature.

{Iow wat er mark, Si ze} (TCP/IP sockets)

If the socket isin abusy state, the socket is set in anot busy state when the amount of data queued internally by
the ERTS socket implementation falls below this limit. Defaultsto 4 kB.

Senders that are suspended because of a busy message queue or a busy socket are resumed when the socket
message queue and the socket are not busy.

For more information, see options hi gh_watermark, high_nsgq_waternmark, and
| ow_nsgq_wat er mar k.

{node, Mode :: binary | list}
Received Packet isdelivered as defined by Mode.
{netns, Nanespace :: file:filename_all ()}

Sets a network namespace for the socket. Parameter Nanespace is a filename defining the namespace, for
example, "/ var/ run/ net ns/ exanpl e", typicaly created by command i p netns add exanpl e.
This option must be used in a function call that creates a socket, that is, gen_t cp: connect/ 3, 4,
gen_tcp:listen/2,gen_udp: open/ 1, 2orgen_sctp:open/0,1,2,andasogetifaddrs/ 1.

190 | Ericsson AB. All Rights Reserved.: Kernel

inet

This option uses the Linux-specific syscall set ns(), such asin Linux kernel 3.0 or later, and therefore only
exists when the runtime system is compiled for such an operating system.

The virtual machine also needs elevated privileges, either running as superuser or (for Linux) having
capability CAP_SYS_ADM N according to the documentation for set ns(2) . However, during testing also
CAP_SYS_PTRACE and CAP_DAC_READ_SEARCH have proven to be necessary.

Example:
setcap cap_sys admin,cap sys ptrace,cap dac read search+epi beam.smp

Notice that the filesystem containing the virtual machine executable (beam snp in the example) must be local,
mounted without flag noset ui d, support extended attributes, and the kernel must support file capabilities. All
this runs out of the box on at least Ubuntu 12.04 LTS, except that SCTP sockets appear to not support network
namespaces.

Nanespace isafilenameand isencoded and decoded as discussed in modul efile, with thefoll owing exceptions:

e Emulator flag +f nu isignored.

e get opt s/ 2 for thisoption returns abinary for the filename if the stored filename cannot be decoded. This
is only to occur if you set the option using a binary that cannot be decoded with the emulator's filename
encoding: fi |l e: nati ve_name_encodi ng/ 0.

{bind _to _device, Ifnane :: binary()}

Binds a socket to a specific network interface. This option must be used in a function cal that
creates a socket, that is, gen_t cp: connect/ 3, 4, gen_tcp:listen/ 2, gen_udp: open/ 1, 2, or
gen_sctp: open/ 0, 1, 2.

Unlikeget i f addr s/ 0, Ifnameisencoded abinary. Inthe unlikely case that a system isusing non-7-bit-ASCI|
charactersin network device names, special care has to be taken when encoding this argument.

This option uses the Linux-specific socket option SO_BI NDTODEVI CE, such asin Linux kernel 2.0.30 or |ater,
and therefore only exists when the runtime system is compiled for such an operating system.

Before Linux 3.8, this socket option could be set, but could not retrieved with get opt s/ 2. Since Linux 3.8,
itisreadable.

The virtual machine also needs elevated privileges, either running as superuser or (for Linux) having capability
CAP_NET_RAW

The primary use case for this option is to bind sockets into Linux VRF instances.
list

Received Packet isdelivered asalist.
bi nary

Received Packet isdelivered as abinary.
{nodel ay, Bool ean} (TCP/IP sockets)

If Bool ean == true, option TCP_NODELAY isturned onfor the socket, which meansthat also small amounts
of dataare sent immediately.

{nopush, Bool ean} (TCP/IP sockets)
Thistrandatesto TCP_NOPUSH on BSD and to TCP_CORK on Linux.

If Bool ean == tr ue, the corresponding option is turned on for the socket, which means that small amounts
of data are accumulated until afull MSS-worth of datais available or this option is turned off.

Note that while TCP_NOPUSH socket option is available on OSX, its semanticsis very different (e.g., unsetting
it does not cause immediate send of accumulated data). Hence, nopush optionisintentionally ignored on OSX.

Ericsson AB. All Rights Reserved.: Kernel | 191

href

inet

{packet, Packet Type} (TCP/IP sockets)
Defines the type of packetsto use for a socket. Possible values:
raw | O
No packaging is done.
11 2] 4
Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes.

The header length can be one, two, or four bytes, and containing an unsigned integer in big-endian byte
order. Each send operation generates the header, and the header is stripped off on each receive operation.

The 4-byte header is limited to 2Gb.

asnl | cdr | sunrm| fcgi | tpkt | line
These packet types only have effect on receiving. When sending a packet, it is the responsibility of the
application to supply acorrect header. On receiving, however, one message is sent to the controlling process

for each complete packet received, and, similarly, each call togen_t cp: r ecv/ 2, 3 returns one complete
packet. The header is not stripped off.

The meanings of the packet types are as follows:
« asnl-ASN.1BER

e sunr m- Sun's RPC encoding

« cdr - CORBA (GIOP 1.1)

e fcgi -FastCGI

e tpkt - TPKT format [RFC1006]

e |ine-Linemode, apacket is aline-terminated with newline, lines longer than the receive buffer are
truncated

http | http_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to Ht t pPacket
described in erl ang: decode_packet/3 in ERTS. A socket in passive mode returns { ok,
Ht t pPacket } fromgen_t cp: r ecv while an active socket sends messages like{ htt p, Socket,
Ht t pPacket }.

httph | httph_bin

These two types are often not needed, as the socket automatically switches from htt p/http_bin to
ht t ph/ht t ph_bi n internally after the first line is read. However, there can be occasions when they are
useful, such as parsing trailers from chunked encoding.

{packet si ze, |nteger} (TCP/IP sockets)

Setsthe maximum allowed length of the packet body. If the packet header indicatesthat the length of the packet is
longer than the maximum allowed length, the packet is considered invalid. The same occursiif the packet header
istoo large for the socket receive buffer.

For line-oriented protocols(l i ne, ht t p*), option packet _si ze also guaranteesthat lines up to the indicated
length are accepted and not considered invalid because of internal buffer limitations.

{l'ine_delimter, Char} (TCP/IP sockets)

Sets the line delimiting character for line-oriented protocols (I i ne). Defaultsto $\ n.
{raw, Protocol, OptionNum Val ueBin}

See below.

192 | Ericsson AB. All Rights Reserved.: Kernel

inet

{read_packets, |nteger} (UDP sockets)

Sets the maximum number of UDP packets to read without intervention from the socket when datais available.
When this many packets have been read and delivered to the destination process, new packets are not read until
a new notification of available data has arrived. Defaults to 5. If this parameter is set too high, the system can
become unresponsive because of UDP packet flooding.

{recbuf, Size}

The minimum size of the receive buffer to use for the socket. Y ou are encouraged to use get opt s/ 2 toretrieve
the size set by your operating system.

{recvtcl ass, Bool ean}

If set to true activates returning the received TCLASS vaue on platforms that implements the protocol
| PPROTO _| PV6 option | PV6_RECVTCLASS or | PV6_2292RECVTCLASS for the socket. The value is
returned as a {t cl ass, TCLASS} tuple regardiess of if the platform returns an | PV6_TCLASS or an
| PV6_RECVTCLASS CMSG value.

For packet oriented sockets that supports receiving ancillary data with the payload data (gen_udp and
gen_sct p), the TCLASS value is returned in an extended return tuple contained in an ancillary data list.
For stream oriented sockets (gen_t cp) the only way to get the TCLASS value is if the platform supports the
pkt opt i ons option.

{recvtos, Bool ean}

If set to true activates returning the received TOS value on platforms that implements the protocol
| PPROTO | P option | P_RECVTCS for the socket. The valueisreturned asa{t os, TOS} tuple regardless of
if the platform returnsan 1 P_TOS or an| P_RECVTOS CMSG value.

For packet oriented sockets that supports receiving ancillary data with the payload data (gen_udp and
gen_sct p), the TOS valueisreturned in an extended return tuple contained in an ancillary data list. For stream
oriented sockets (gen_t cp) the only way to get the TOS value is if the platform supports the pkt opti ons
option.

{recvttl, Bool ean}

If set to true activates returning the received TTL vaue on platforms that implements the protocol
| PPROTO | Poption| P_RECVTTL for the socket. Thevaueisreturnedasa{ttl, TTL} tupleregardless of
if the platform returnsan | P_TTL or an| P_RECVTTL CMSG vaue.

For packet oriented sockets that supports receiving ancillary data with the payload data (gen_udp and
gen_sct p), the TTL valueisreturned in an extended return tuple contained in an ancillary data list. For stream
oriented sockets (gen_t cp) the only way to get the TTL vaue isif the platform supports the pkt opti ons
option.

{reuseaddr, Bool ean}

Allows or disallows local reuse of port numbers. By default, reuse is disallowed.
{send_tineout, |nteger}

Only allowed for connection-oriented sockets.

Specifies alongest timeto wait for a send operation to be accepted by the underlying TCP stack. When the limit
is exceeded, the send operation returns{ er r or , t i meout } . How much of a packet that got sent is unknown;
the socket is therefore to be closed whenever a time-out has occurred (see send_t i meout _cl ose below).
Defaultstoi nfinity.

{send_ti meout cl ose, Bool ean}

Only allowed for connection-oriented sockets.

Ericsson AB. All Rights Reserved.: Kernel | 193

inet

Used together with send_t i meout to specify whether the socket is to be automatically closed when the send
operation returns { er r or , t i meout } . The recommended setting ist r ue, which automatically closes the
socket. Defaultsto f al se because of backward compatibility.

{show_econnreset, Bool ean} (TCP/IP sockets)

When this option is set to f al se, which is default, an RST received from the TCP peer is treated as a normal
close (asthough an FIN was sent). A callertogen_t cp: recv/ 2 gets{error, cl osed}. Inactive mode,
the controlling processreceivesa{t cp_cl osed, Socket} message, indicating that the peer has closed the
connection.

Setting this option to t r ue alows you to distinguish between a connection that was closed normally, and
one that was aborted (intentionally or unintentionally) by the TCP peer. A call to gen_t cp: recv/ 2 returns
{error, econnreset}. In active mode, the controlling process receives a{tcp_error, Socket,

econnr eset } messagebeforetheusua {t cp_cl osed, Socket}, asisthecasefor any other socket error.
Callstogen_tcp: send/ 2 dsoreturns{error, econnreset} whenitis detected that a TCP peer has
sent an RST.

A connected socket returned from gen_t cp: accept/ 1 inherits the show_econnr eset setting from the
listening socket.

{sndbuf, Size}

The minimum size of the send buffer to use for the socket. Y ou are encouraged to use get opt s/ 2, to retrieve
the size set by your operating system.

{priority, Integer}

Setsthe SO_PRI ORI TY socket level option on platforms where this isimplemented. The behavior and allowed
range varies between different systems. The option is ignored on platforms where it is not implemented. Use
with caution.

{tos, Integer}

Sets| P_TGS | P level options on platforms where thisisimplemented. The behavior and allowed range varies
between different systems. The option isignored on platforms where it is not implemented. Use with caution.

{tclass, Integer}

Sets| PV6_TCLASS | P level options on platforms where thisisimplemented. The behavior and allowed range
varies between different systems. The option is ignored on platforms where it is not implemented. Use with
caution.

In addition to these options, raw option specifications can be used. The raw options are specified as a tuple of arity
four, beginning with tag r aw, followed by the protocol level, the option number, and the option value specified as
abinary. This corresponds to the second, third, and fourth arguments to the set sockopt call in the C socket API.
The option value must be coded in the native endianess of the platform and, if a structure is required, must follow the
structure alignment conventions on the specific platform.

Using raw socket options requires detailed knowledge about the current operating system and TCP stack.
Example:

This example concerns the use of raw options. Consider aLinux system where you want to set option TCP_LI NGER2
on protocol level | PPROTO_TCP in the stack. Y ou know that on this particular system it defaultsto 60 (seconds), but
you want to lower it to 30 for aparticular socket. Option TCP_LI NGERZ isnot explicitly supported by i net , but you
know that the protocol level trandates to number 6, the option number to number 8, and the value isto be specified as
a 32-bit integer. Y ou can use this code line to set the option for the socket named Sock:

inet:setopts(Sock, [{raw,6,8,<<30:32/native>>}]),

194 | Ericsson AB. All Rights Reserved.: Kernel

inet

As many options are silently discarded by the stack if they are specified out of range; it can be a good idea to check
that araw option is accepted. The following code places the value in variable TcpLi nger 2:

{ok, [{raw,6,8,<<TcpLinger2:32/native>>}]}=inet:getopts(Sock, [{raw,6,8,4}1),

Code such as these examples is inherently non-portable, even different versions of the same OS on the same platform
can respond differently to this kind of option manipulation. Use with care.

Noticethat the default optionsfor TCP/IP sockets can be changed with the Kernel configuration parameters mentioned
in the beginning of this manual page.

sockname(Socket :: socket()) ->
{ok,
{i p_address(), port_nunber()} |
returned_non_i p_address() } |
{error, posix()}

Returns the local address and port number for a socket.

Notice that for SCTP sockets this function returns only one of the socket addresses. Function socknanes/ 1, 2
returns all.

socknames (Socket :: socket()) ->
{ok,
[{i p_address(), port_nunber()} |
returned_non_i p_address()]} |
{error, posix()}

Equivalent to socknanes(Socket, 0).

socknames (Socket, Assoc) ->
{ok, [{Address, Port}]} | {error, posix()}

Types.
Socket = socket ()
Assoc = #sctp assoc change{} | gen_sctp:assoc_id()
Address = i p_address()
Port = integer() >= 0
Returnsalist of all local address/port number pairs for a socket for the specified association Assoc.

Thisfunction can return multiple addresses for multihomed sockets, such as SCTP sockets. For other socketsit returns
aone-element list.

Notice that parameter Assoc is by the SCTP Sockets API Extensions defined to be ignored for one-to-one style
sockets. For one-to-many style sockets, the special value O is defined to mean that the returned addresses must be
without any particular association. How different SCTP implementations interpret this varies somewhat.

POSIX Error Codes

e e2bi g-Toolong argument list

e eacces - Permission denied

e eaddrinuse - Addressaready in use

e eaddrnot avai | - Cannot assign requested address
e eadv - Advertise error

Ericsson AB. All Rights Reserved.: Kernel | 195

href

inet

» eaf nosupport - Addressfamily not supported by protocol family
e eagai n - Resource temporarily unavailable
e ealign-EALIGN

» eal ready - Operation already in progress
* ebade - Bad exchange descriptor

e ebadf - Bad file number

e ebadf d - Filedescriptor in bad state

* ebadnsg - Not adata message

e ebadr - Bad request descriptor

e ebadr pc - Bad RPC structure

» ebadr gc - Bad request code

e ebadslt -Invaliddot

» ebfont - Badfont file format

e ebusy - Filebusy

e« echil d-Nochildren

» echr ng - Channel number out of range

e econm- Communication error on send

e econnabort ed - Software caused connection abort
» econnr ef used - Connection refused

e econnreset - Connection reset by peer

» edeadl k - Resource deadlock avoided

» edeadl ock - Resource deadlock avoided

* edest addr r eq - Destination address required
e edirty - Mounting adirty fswithout force
» edom- Math argument out of range

e edot dot - Cross mount point

e edquot - Disk quota exceeded

» eduppkg - Duplicate package name

e eexi st - Fileaready exists

 efault -Badaddressin system call argument
« efbig-Filetoolarge

* ehost down - Host isdown

» ehost unreach - Host is unreachable

e ei dr m- Identifier removed

e einit -Initidization error

e einprogress - Operation now in progress
e eintr -Interrupted system call

e einval -Invaidargument

e eio-Il/Oeror

e ei sconn - Socket is already connected

e eisdir -lllegal operation on adirectory

* ei snam- Isanamed file

el 2hlt -Leve 2 hated

196 | Ericsson AB. All Rights Reserved.: Kernel

inet

el 2nsync - Level 2 not synchronized

el 3hlt - Level 3 halted

el 3rst - Level 3reset

el bi n-ELBIN

el i bacc - Cannot access a needed shared library
el i bbad - Accessing a corrupted shared library
el i bexec - Cannot exec ashared library directly
el i bmax - Attempting to link in more shared libraries than system limit
elibscn-.libsectionina. out corrupted

el nr ng - Link number out of range

el oop - Too many levels of symbolic links

enfi | e - Too many open files

emnl i nk - Too many links

ensgsi ze - Message too long

enul t i hop - Multihop attempted

enanet ool ong - Filename too long

enavai | - Unavailable

enet - ENET

enet down - Network is down

enet r eset - Network dropped connection on reset
enet unr each - Network is unreachable

enfil e - Filetable overflow

enoano - Anode table overflow

enobuf s - No buffer space available

enocsi - No CSl structure available

enodat a - No data available

enodev - No such device

enoent - No such file or directory

enoexec - Exec format error

enol ck - Nolocks available

enol i nk - Link has been severed

enomem- Not enough memory

enomnsg - No message of desired type

enonet - Machineisnot on the network
enopkg - Package not installed

enopr ot oopt - Bad protocol option

enospc - No space left on device

enosr - Out of stream resources or not a stream device
enosym- Unresolved symbol name

enosys - Function not implemented

enot bl k - Block device required

enot conn - Socket is not connected

enot di r - Not adirectory

Ericsson AB. All Rights Reserved.: Kernel | 197

inet

198

enot enpt y - Directory not empty

enot nam- Not anamed file

enot sock - Socket operation on non-socket
enot sup - Operation not supported

enot t y - Inappropriate devicefor i oct |

enot uni g - Name not unique on network
enxi o - No such device or address

eopnot supp - Operation not supported on socket
eper m- Not owner

epf nosupport - Protocol family not supported
epi pe - Broken pipe

epr ocl i m- Too many processes
eprocunavai | - Bad procedure for program
epr ogm smat ch - Wrong program version
eprogunavai | - RPC program unavailable
epr ot o - Protocol error

epr ot onosupport - Protocol not supported
epr ot ot ype - Wrong protocol type for socket
er ange - Math result unrepresentable

er ef used - EREFUSED

er enthg - Remote address changed

er endev - Remote device

er enot e - Pathname hit remote filesystem

er enot ei o - Remote 1/O error

er enot er el ease - EREMOTERELEASE
er of s - Read-only filesystem

er pcm smat ch - Wrong RPC version

err enot e - Object isremote

eshut down - Cannot send after socket shutdown
esockt nosupport - Socket type not supported
espi pe - Invalid seek

esr ch - No such process

esrmt - Srmount error

est al e - Staleremotefile handle

esuccess - Error 0

eti me - Timer expired

eti medout - Connection timed out

et oonanyr ef s - Too many references

et xt bsy - Text file or pseudo-device busy
eucl ean - Structure needs cleaning

eunat ch - Protocol driver not attached

euser s - Too many users

ever si on - Version mismatch

| Ericsson AB. All Rights Reserved.: Kernel

inet

ewoul dbl ock - Operation would block

exdev - Cross-domain link

exful | - Message tables full

nxdomai n - Hostname or domain hame cannot be found

Ericsson AB. All Rights Reserved.: Kernel | 199

inet_res

inet_res

Erlang module

This module performs DNS name resolving to recursive name servers.

See dlso ERTS User's Guide: Inet Configuration for more information about how to configure an Erlang runtime
system for IP communication, and how to enable this DNS client by defining' dns' as alookup method. The DNS
client then acts as a backend for the resolving functionsini net .

This DNS client can resolve DNS records even if it is not used for normal name resolving in the node.
Thisis not afull-fledged resolver, only a DNS client that relies on asking trusted recursive name servers.

Name Resolving

UDP queries are used unless resolver option usevc ist r ue, which forces TCP queries. If the query istoo large for
UDP, TCPisused instead. For regular DNS queries, 512 bytesisthe size limit.

When EDNS is enabled (resolver option edns is set to the EDNS version (that is, O instead of f al se), resolver
optionudp_payl oad_si ze setsthelimit. If a name server replies with the TC bit set (truncation), indicating that
the answer isincomplete, the query isretried to that name server using TCP. Resolver option udp_pay! oad_si ze
also sets the advertised size for the maximum allowed reply size, if EDNS is enabled, otherwise the name server uses
the limit 512 bytes. If the reply islarger, it gets truncated, forcing a TCP requery.

For UDP queries, resolver options ti meout and retry control retransmission. Each name server in the
naneser ver s lististried with atime-out of t i meout /r et r y. Then all name servers are tried again, doubling the
time-out, for atotal of r et ry times.

For queries not using the sear ch ligt, if the query to al naneser ver s resultsin { er r or, nxdomai n} or an
empty answer, the same query istried for al t _naneser vers.

Resolver Types

The following data types concern the resolver:

Data Types

res option() =
{alt_nameservers, [nanmeserver()]} |
{edns, 0 | false} |
{inet6, boolean()} |
{nameservers, [nameserver()]} |
{recurse, boolean()} |
{retry, integer()} |
{timeout, integer()} |
{udp_payload size, integer()} |
{usevc, boolean()}

nameserver() = {inet:ip_address(), Port :: 1..65535}

res_error() =
formerr | gfmterror | servfail | nxdomain | notimp | refused |
badvers | timeout

DNS Types

The following data types concern the DNS client:

200 | Ericsson AB. All Rights Reserved.: Kernel

inet_res

Data Types

dns name() = string()

A string with no adjacent dots.

rr_type() =
a | aaaa | cname | gid | hinfo | ns | mb | md | mg | mf |
minfo | mx | naptr | null | ptr | soa | spf | srv | txt |
uid | uinfo | unspec | wks

dns class() = in | chaos | hs | any

dns msg() = term()

This is the start of a hiearchy of opague data structures that can be examined with access functionsini net _dns,
which return listsof { Fi el d, Val ue} tuples. The arity 2 functions only return the value for a specified field.

Ericsson AB. All Rights Reserved.: Kernel | 201

inet_res

dns _msg() = DnsMsg
inet dns:msg(DnsMsg) ->
[{header, dns header()}
| {qdlist, dns query()}
| {anlist, dns rr()}
| {nslist, dns rr()}
| {arlist, dns rr()} 1
inet dns:msg(DnsMsg, header) -> dns _header() % for example
inet dns:msg(DnsMsg, Field) -> Value

dns_header() = DnsHeader
inet _dns:header(DnsHeader) ->
[{id, integer()}
| {qr, boolean()}
| {opcode, query | iquery | status | integer()}
| {aa, boolean()}
| {tc, boolean()}
| {rd, boolean()}
| {ra, boolean()}
| {pr, boolean()}
| {rcode, integer(0..16)} 1
inet dns:header(DnsHeader, Field) -> Value

query type() = axfr | mailb | maila | any | rr_type()

dns_query() = DnsQuery
inet _dns:dns_query(DnsQuery) ->
[{domain, dns name()}
| {type, query type()}
| {class, dns class()} 1
inet dns:dns_query(DnsQuery, Field) -> Value

dns rr() = DnsRr
inet _dns:rr(DnsRr) -> DnsRrFields | DnsRrOptFields
DnsRrFields = [{domain, dns name()}
| {type, rr_type()}
| {class, dns class()}
| {ttl, integer()}
| {data, dns data()} 1
DnsRrOptFields = [{domain, dns name()}
{type, opt}
{udp_payload size, integer()}
{ext _rcode, integer()}
{version, integer()}
{z, integer()}
{data, dns data()} 1
inet dns:rr(DnsRr, Field) -> Value

There is an information function for the types above:

inet dns:record type(dns msg()) -> msg;
inet dns:record type(dns header()) -> header;
inet dns:record type(dns query()) -> dns query;
inet dns:record type(dns rr()) -> rr;

(

inet dns:record type() -> undefined.

So, inet_dns: (inet_dns:record_type(X))(X) converts any of
{Fi el d, Val ue} list.

dns_data() =
dns_name() |
i net:ip4_address() |

202 | Ericsson AB. All Rights Reserved.: Kernel

these data structures

into a

inet_res

i net:ip6_address() |

{MName :: dns_nane(),
RName :: dns_nane(),
Serial :: integer(),
Refresh :: integer(),

Retry :: integer(),

Expiry :: integer(),

Minimum :: integer()} |

{inet:ipd4_address(), Proto :: integer(), BitMap :: binary()} |
{CpuString :: string(), 0sString :: string()} |

{RM :: dns_nanme(), EM :: dns_nane()} |

{Prio :: integer(), dns_nane()} |
{Prio :: integer(),

Weight :: integer(),

Port :: integer(),

dns_name() } |
{Order :: integer(),

Preference :: integer(),
Flags :: string(),
Services :: string(),

Regexp :: string(),
dns_name() } |
[string()] |
binary()

Regexp isastring with characters encoded in the UTF-8 coding standard.

Exports

getbyname(Name, Type) -> {ok, Hostent} | {error, Reason}
getbyname(Name, Type, Timeout) -> {ok, Hostent} | {error, Reason}

Types:
Name = dns_name()
Type = rr_type()
Timeout = timeout()
Hostent = inet: hostent()
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type for the specified host, of classi n. Returns, on success, ahost ent ()
record with dns_dat a() elementsin the addresslist field.

This function uses resolver option sear ch that isalist of domain names. If the name to resolve contains no dots, it
is prepended to each domain name in the search list, and they are tried in order. If the name contains dots, it is first
tried as an absolute name and if that fails, the search list is used. If the name has a trailing dot, it is supposed to be
an absolute name and the search list is not used.

gethostbyaddr(Address) -> {ok, Hostent} | {error, Reason}

gethostbyaddr(Address, Timeout) -> {ok, Hostent} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 203

inet_res

Address = inet:ip_address()

Timeout = timeout()

Hostent = i net: hostent ()

Reason = inet:posix() | res_error()

Backend functionsused by i net : get host byaddr/ 1.

gethostbyname(Name) -> {ok, Hostent} | {error, Reason}
gethostbyname(Name, Family) -> {ok, Hostent} | {error, Reason}

gethostbyname (Name, Family, Timeout) ->
{ok, Hostent} | {error, Reason}

Types:
Name = dns_name()
Hostent = inet: hostent()
Timeout = timeout()
Family = inet:address_famly()
Reason = inet:posix() | res_error()

Backend functionsused by i net : get host bynane/ 1, 2.
This function uses resolver option sear ch just like get bynane/ 2, 3.
If resolver optioni net 6 ist r ue, an IPv6 address is |ooked up.

lookup (Name, Class, Type) -> [dns_data()]
lookup(Name, Class, Type, Opts) -> [dns_data()]
lookup (Name, Class, Type, Opts, Timeout) -> [dns_data()]
Types:
Name = dns_nane() | inet:ip_address()
Class = dns_cl ass()
Type = rr_type()
Opts = [res_option() | verbose]
Timeout = timeout()
Resolves the DNS data for the record of the specified type and class for the specified name. On success, filters out
the answer records with the correct Cl ass and Type, and returns a list of their data fields. So, a lookup for type

any gives an empty answer, as the answer records have specific typesthat are not any. An empty answer or afailed
lookup returns an empty list.

Callsr esol ve/ * with the same arguments and filters the result, so Opt s is described for those functions.

resolve(Name, Class, Type) -> {ok, dns_nsg()} | Error
resolve(Name, Class, Type, Opts) -> {ok, dns_nsg()} | Error

resolve(Name, Class, Type, Opts, Timeout) ->
{ok, dns_nsg()} | Error

Types:

204 | Ericsson AB. All Rights Reserved.: Kernel

inet_res

Name = dns_nane() | inet:ip_address()

Class = dns_cl ass()

Type = rr_type()

Opts = [Opt]

Opt = res_option() | verbose | atom()

Timeout = timeout()

Error = {error, Reason} | {error, {Reason, dns_msg() }}
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type and class for the specified name. The returned dns_nsg() can be
examined using access functionsini net _db, as described in section in DNS Types.

If Nanme is an i p_address(), the domain name to query for is generated as the standard reverse ". | N-
ADDR. ARPA. " name for an IPv4 address, or the" . | P6. ARPA. " name for an IPv6 address. In this case, you most
probably wanttouseCl ass = i nand Type = ptr, butitisnot done automaticaly.

Opt s overrides the corresponding resolver options. If option naneservers is specified, it is assumed that
it is the complete list of name serves, so resolver option al t _naneserves is ignored. However, if option
al t _naneser ves isalso specified to this function, it is used.

Option ver bose (or rather { ver bose, t rue}) causes diagnostics printout through i o: f or mat / 2 of queries,
replies retransmissions, and so on, similar to from utilities, such asdi g and nsl ookup.

If Opt is any atom, it is interpreted as { Opt, t rue} unless the atom string starts with " no", making the
interpretation { Opt , f al se}. For example, usevc isan diasfor { usevc, t rue} and nousevc isan adias for
{usevc, fal se}.

Optioni net 6 has no effect on this function. You probably want touse Type = a | aaaa instead.

Example

This access functions example shows how | ookup/ 3 can be implemented using r esol ve/ 3 from outside the
module;

example lookup(Name, Class, Type) ->
case inet res:resolve(Name, Class, Type) of
{ok,Msg} ->
[inet dns:rr(RR, data)
|| RR <- inet dns:msg(Msg, anlist),
inet dns:rr(RR, type) =:= Type,
inet dns:rr(RR, class) =:= Class];
{error, } ->
[1

end.

Legacy Functions

These are deprecated because the annoying double meaning of the name servers/time-out argument, and because they
have no decent place for aresolver options|list.

Exports

nslookup(Name, Class, Type) -> {ok, dns_nsg()} | {error, Reason}

nslookup(Name, Class, Type, Timeout) ->
{ok, dns_msg()} | {error, Reason}

nslookup (Name, Class, Type, Nameservers) ->

Ericsson AB. All Rights Reserved.: Kernel | 205

inet_res

{ok, dns_msg()} | {error, Reason}

Types.

Name = dns_nane() | inet:ip_address()

Class = dns_cl ass()

Type = rr_type()

Timeout = timeout()

Nameservers = [naneserver()]

Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type and class for the specified name.

nnslookup(Name, Class, Type, Nameservers) ->
{ok, dns_nsg()} | {error, Reason}

nnslookup(Name, Class, Type, Nameservers, Timeout) ->
{ok, dns_msg()} | {error, Reason}

Types:
Name = dns_nane() | inet:ip_address()
Class = dns_cl ass()
Type = rr_type()
Timeout = timeout()
Nameservers = [naneserver ()]
Reason = inet: posi x()

Resolves a DNS record of the specified type and class for the specified name.

206 | Ericsson AB. All Rights Reserved.: Kernel

init

init

Erlang module

This moduleis moved to the ERTS application.

Ericsson AB. All Rights Reserved.: Kernel | 207

logger

logger

Erlang module

This module implements the main API for logging in Erlang/OTP. To create a log event, use the API functions or
the log macros, for example:

?LOG_ERROR("error happened because: ~p", [Reason]). % With macro
logger:error("error happened because: ~p", [Reason]). % Without macro

To configure the Logger backend, use Kernel configuration parameters or configuration functionsin the Logger API.

By default, the Kernel application installsonelog handler at system start. Thishandler isnamed def aul t . It receives
and processes standard |og events produced by the Erlang runtime system, standard behaviours and different Erlang/
OTP applications. The log events are by default printed to the terminal .

If you want your systems logs to be printed to a file instead, you must configure the default handler to do so. The
simplest way is to include the following in your sys. confi g:

[{kernel,

[{logger,
[{handler, default, logger std h,
#{config => #{file => "path/to/file.log"}}}1}1}1].

For more information about:

» theLogger facility in general, see the User's Guide.

« how to configure Logger, see the Configuration section in the User's Guide.
e thebuilt-in handlers, seelogger_std _h and logger_disk log_h.

» thebuilt-in formatter, see logger _formatter.

e built-infilters, seelogger_filters.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce changes to the Logger APl and
functionality in patches following this release. These changes might or might not be backwards compatible with
theinitia version.

Data Types

filter() =
{fun((log_event(), filter_arg()) -> filter_return()),
filter_arg()}

A filter which can be installed as a handler filter, or as a primary filter in Logger.
filter arg() = term()

The second argument to the filter fun.

filter id() = atom()

A uniqueidentifier for afilter.

filter return() = stop | ignore | | og_event()

The return value from the filter fun.

208 | Ericsson AB. All Rights Reserved.: Kernel

logger

formatter_config() = #{atom() => term()}
Configuration datafor the formatter. See | ogger _f or mat t er (3) for an example of aformatter implementation.
handler config() =
#{id => handl er_id(),

config => term(),

level => level () | all | none,

module => module(),

filter default => log | stop,

filters => [{filter_id(), filter()}],

formatter => {module(), formatter_config()}}

Handler configuration datafor Logger. The following default values apply:

e level => all

e filter_default => 1o0g

o filters =>[]

« formatter => {logger formatter, DefaultFormatterConfig}

In addition to these, the following fields are automatically inserted by Logger, values taken from the two first
parametersto add_handl er/ 3

e jid => Handlerld
« nodul e => Mdul e

These are read-only and cannot be changed in runtime.

Handler specific configuration dataisinserted by the handler callback itself, in asub structure associated with the field
named confi g. See thel ogger _std_h(3) and | ogger di sk_| og_h manua pages for information about
the specifc configuration for these handlers.

Seethe | ogger formatter(3) manua page for information about the default configuration for this formatter.
handler id() = atom()

A unique identifier for ahandler instance.

level() =
emergency | alert | critical | error | warning | notice |
info | debug

The severity level for the message to be logged.

log event() =
#{level := level (),
msg :=
{io:format(), [term()1} |
{report, report()} |
{string, uni code: chardata() },

meta := netadata()}
metadata() =
#{pid => pid(),
gl => pid(),

time => tinmestamp(),

mfa => {module(), atom(), integer() >= 0},
file => file:fil enane(),

line => integer() >= 0,

Ericsson AB. All Rights Reserved.: Kernel | 209

logger

domain => [atom()],
report _cb => report_cb(),
atom() => term()}

Metadata for the log event.

Logger adds the following metadata to each log event:

e pid => self()

e gl => group_Il eader ()

e time => |logger:tinestanp()

When alog macro is used, Logger aso inserts location information:

e nfa => {?MODULE, ?FUNCTI ON_NANME, ?FUNCTI ON_ARI TY}
« file => ?FILE
e |line => ?LINE

You can add custom metadata, either by specifying a map as the last parameter to any of the log
macros or the API functions, or by setting process metadata with set process_netadata/ 1l or
updat e_process_net adat a/ 1.

Logger merges all the metadata maps before forwarding the log event to the handlers. If the same keys occur, values
from the log call overwrite process metadata, which in turn overwrite values set by Logger.

The following custom metadata keys have special meaning:
donai n

Thevalue associated with thiskey isused by filtersfor grouping log events originating from, for example, specific
functional areas. See | ogger _fil t ers: domai n/ 2 for adescription of how thisfield can be used.

report_cb

If the log message is specified as areport (), thereport _cb key can be associated with a fun (report
callback) that converts the report to aformat string and arguments, or directly to a string. See the type definition
of report _cb(), and section Log Message in the User's Guide for more information about report callbacks.

msg_ fun() =
fun((term()) ->
{io:format(), [term()]} |
report() |
uni code: chardata())

olp config() =

#{sync mode glen => integer() >= 0,
drop mode glen => integer() >= 1
flush qlen => integer() >= 1,
burst limit enable => boolean(),
burst limit max count => integer() >= 1,
burst limit window time => integer() >= 1,
overload kill enable => boolean(),
overload kill glen => integer() >= 1,
overload kill mem size => integer() >= 1,
overload kill restart after => integer() >= 0 | infinity}

’

primary config() =
#{level => level () | all | none,
filter default => log | stop,

210 | Ericsson AB. All Rights Reserved.: Kernel

logger

filters => [{filter_id(), filter()}]1}
Primary configuration data for Logger. The following default values apply:
e level =>info
o filter_default => |og
e filters =>[]
report() = map() | [{atom(), term()}]

report cb() =
fun((report()) -> {io:format(), [term()]}) |
fun((report(), report_cb_config()) -> unicode: chardata())

A funwhich convertsar eport () toaformat string and arguments, or directly to astring. See section Log Message
in the User's Guide for more information.

report cb config() =
#{depth := integer() >= 1 | unlimited,
chars limit := integer() >= 1 | unlimited,
single line := boolean()}

timestamp() = integer()
A timestamp produced with | ogger: ti nest anp() .

Macros

The following macros are defined in| ogger . hr | , which isincluded in a module with the directive

-include lib("kernel/include/logger.hrl").

e 7?LOG EMERGENCY(StringOrReport[, Met adat a])
e ?LOG_EMERGENCY(FunOr For mat , Ar gs[, Met adat a])
e 7?LOG ALERT(StringO Report[, Metadata])

e ?LOG ALERT(FunOr For mat, Args[, Met adat a])

e ?LOG CRITICAL(StringOrReport[, Metadat a])

e ?LOG CRITI CAL(FunOr For mat , Args|[, Met adat a])
e ?LOG ERROR(StringO Report[, Metadata])

e ?LOG ERROR(FunOr Format, Args|[, Met adat a])

e ?LOG WARNI NG StringOrReport[, Metadat a])

e ?LOG WARNI NG FunOr For mat , Ar gs[, Met adat a])
e 7?LOG NOTICE(StringOrReport[, Met adat a])

e ?LOG _NOTI CE(FunOr For mat , Ar gs[, Met adat a])

e Z?LOG INFQ(StringOrReport[, Met adat a])

e ?LOG | NFQ(FunOr For mat , Ar gs[, Met adat a])

e ?L0OG DEBUE StringOr Report[, Metadatal)

e ?LOG DEBUE FunOr For mat , Args[, Met adat a])

e ?LOF Level, StringO Report[, Metadata])

e ?LOF Level, FunOr Format, Args|[, Met adat a])

All macros expand to a call to Logger, where Level istaken from the macro name, or from the first argument in the
case of the ?LOG macro. Location datais added to the metadata as described under the met adat a() typedefinition.

Ericsson AB. All Rights Reserved.: Kernel | 211

logger

The call iswrapped in a case statement and will be evaluated only if Level isequal to or below the configured log
level.

Logging API functions

Exports

emergency(StringOrReport[,Metadatal)
emergency(Format,Args[,Metadatal)
emergency(Fun, FunArgs[,Metadata])

Equivalentto |l og(ener gency, . ..).

alert(StringOrReport[,Metadatal)
alert(Format,Args[,Metadata])
alert(Fun,FunArgs[,Metadata])

Equivalenttol og(al ert,...).

critical(StringOrReport[,Metadatal)
critical(Format,Args[,Metadata])
critical(Fun,FunArgs[,Metadata])

Equivalenttol og(critical,...).

error(StringOrReport[,Metadatal)
error(Format,Args[,Metadatal)
error(Fun,FunArgs[,Metadata])

Equivalenttol og(error,...).

warning(StringOrReport[,Metadatal)
warning(Format,Args[,Metadata])
warning(Fun,FunArgs[,Metadatal)

Equivalenttol og(warning, ...).

notice(StringOrReport[,Metadatal)
notice(Format,Args[,Metadata])
notice(Fun,FunArgs[,Metadata])

Equivalenttol og(notice,...).

info(StringOrReport[,Metadata])
info(Format,Args[,Metadatal)
info(Fun,FunArgs[,Metadata])

Equivalentto! og(i nfo, ...).

212 | Ericsson AB. All Rights Reserved.: Kernel

logger

debug(StringOrReport[,Metadata]l)
debug(Format,Args[,Metadata])
debug(Fun, FunArgs[,Metadata])

Equivalentto| og(debug, . ..).

log(Level, StringOrReport) -> ok
log(Level, StringOrReport, Metadata) -> ok
log(Level, Format, Args) -> ok

log(Level, Fun, FunArgs) -> ok

log(Level, Format, Args, Metadata) -> ok
log(Level, Fun, FunArgs, Metadata) -> ok

Types:
Level = | evel ()
StringOrReport = uni code: chardata() | report()
Format = io:format ()

Args = [term()]

Fun = msg_fun()
FunArgs = term()
Metadata = netadata()

Log the given message.
Configuration API functions

Exports

add handler(HandlerId, Module, Config) -> ok | {error, term()}
Types:

HandlerId = handl er _id()

Module = module()

Config = handl er _confi g()
Add a handler with the given configuration.

Handl er | d isaunique identifier which must be used in all subsequent calls referring to this handler.

add handler filter(HandlerId, FilterId, Filter) ->
ok | {error, term()}

Types:
HandlerId = handl er _id()
FilterId = filter_id()
Filter = filter()

Add afilter to the specified handler.

The filter fun is called with the log event as the first parameter, and the specifiedfi | t er _ar gs() asthe second
parameter.

Thereturn value of the fun specifiesif alog event isto be discarded or forwarded to the handler callback:

Ericsson AB. All Rights Reserved.: Kernel | 213

logger

| og_event ()

Thefilter passed. The next handler filter, if any, isapplied. If no more filters exist for this handler, the log event
isforwarded to the handler callback.

stop
Thefilter did not pass, and the log event is immediately discarded.
i gnore

The filter has no knowledge of the log event. The next handler filter, if any, is applied. If no more filters exist
for thishandler, thevalue of thef i | t er _def aul t configuration parameter for the handler specifiesif thelog
event shall be discarded or forwarded to the handler callback.

See section Filtersin the User's Guide for more information about filters.

Some built-in filters exist. These are definedinl ogger _filters.

add handlers(Application) -> ok | {error, term()}
Types:
Application = atom()
Reads the application configuration parameter | ogger and callsadd_handl er s/ 1 with its contents.

add handlers(HandlerConfig) -> ok | {error, term()}
Types:
HandlerConfig = [config_handler()]
config handler() =
{handler, handl er __id(), module(), handler_config()}

Thisfunction should be used by custom Logger handlers to make configuration consistent no matter which handler the
system uses. Normal usageisto add acall tol ogger : add_handl er s/ 1 just after the processes that the handler
needs are started, and pass the application's| ogger configuration as the argument. For example:

-behaviour(application).

start(_, [1) ->
case supervisor:start link({local, my sup}, my sup, []) of
{ok, Pid} ->
ok = logger:add handlers(my app),
{ok, Pid, [1};
Error -> Error
end.

Thisreadsthel ogger configuration parameter fromtheny__app application and starts the configured handlers. The
contents of the configuration use the same rules as the logger handler configuration.

If the handler is meant to replace the default handler, the Kernel's default handler have to be disabled before the new
handler isadded. A sys. conf i g filethat disablesthe Kernel handler and adds a custom handler could ook likethis:

[{kernel,
[{logger,
%% Disable the default Kernel handler
[{handler, default, undefined}]}1},
{my_app,
[{logger,
%% Enable this handler as the default
[{handler, default, my handler, #{}}1}1}].

214 | Ericsson AB. All Rights Reserved.: Kernel

logger

add primary filter(FilterId, Filter) -> ok | {error, term()}
Types.

FilterId = filter_id()

Filter = filter()
Add aprimary filter to Logger.

The filter fun is called with the log event as the first parameter, and the specifiedfi | t er _ar gs() asthe second
parameter.

Thereturn value of the fun specifiesif alog event isto be discarded or forwarded to the handlers:
| og_event ()

The filter passed. The next primary filter, if any, is applied. If no more primary filters exist, the log event is
forwarded to the handler part of Logger, where handler filters are applied.

stop
Thefilter did not pass, and the log event isimmediately discarded.
i gnore

Thefilter has no knowledge of thelog event. The next primary filter, if any, isapplied. If no more primary filters
exist, the value of the primary fi | t er _def aul t configuration parameter specifies if the log event shall be
discarded or forwarded to the handler part.

See section Filtersin the User's Guide for more information about filters.
Some built-in filters exist. These aredefinedinl ogger _filters.

get config() ->
#{primary => primary_config(),
handlers => [handl er _config()],
proxy => ol p_config(),
module levels =>
[{module(), level () | all | none}l}

Look up all current Logger configuration, including primary, handler, and proxy configuration, and module level
Settings.

get handler config() -> [Config]
Types:

Config = handl er _confi g()
Look up the current configuration for all handlers.

get handler config(HandlerId) -> {ok, Config} | {error, term()}
Types:

HandlerId = handl er _id()

Config = handl er _confi g()

Look up the current configuration for the given handler.

get handler ids() -> [HandlerId]
Types:

Ericsson AB. All Rights Reserved.: Kernel | 215

logger

HandlerId = handl er _id()
Look up the identities for all installed handlers.

get primary config() -> Config
Types:
Config = primary_config()
Look up the current primary configuration for Logger.

get proxy config() -> Config
Types:
Config = ol p_config()
Look up the current configuration for the Logger proxy.
For more information about the proxy, see section Logger Proxy in the Kernel User's Guide.

get module level() -> [{Module, Level}]

Types:
Module = module()
Level = level () | all | none

Look up all current module levels. Returns a list containing one { Mbdul e, Level } element for each module for
which the module level was previously set with set _nodul e_| evel / 2.

get module level(Modules) -> [{Module, Level}]
Types.

Modules = [Module] | Module

Module = module()

Level = level () | all | none

Look up the current level for the given modules. Returns a list containing one { Modul e, Level } element for each
of the given modules for which the module level was previously set with set _nodul e_| evel / 2.

get process metadata() -> Meta | undefined
Types:
Meta = net adat a()
Retrieve data set with set _process_net adat a/ 1 or updat e_process_net adat a/ 1.

i() -> ok
i(What) -> ok
Types:
What = primary | handlers | proxy | modules | handl er_id()
Pretty print the Logger configuration.

remove handler(HandlerId) -> ok | {error, term()}
Types:

216 | Ericsson AB. All Rights Reserved.: Kernel

logger

HandlerId = handl er _id()
Remove the handler identified by Handl er | d.

remove handler filter(HandlerId, FilterId) -> ok | {error, term()}
Types:

HandlerId = handl er _id()

FilterId = filter_id()
Remove thefilter identified by Fi | t er | d from the handler identified by Handl er | d.

remove primary filter(FilterId) -> ok | {error, term()}
Types.

FilterId = filter_id()
Remove the primary filter identified by Fi | t er | d from Logger.

set application level(Application, Level) ->
ok | {error, not loaded}

Types.
Application = atom()
Level = level () | all | none

Set the log level for all the modules of the specified application.

This function is a convenience function that calls logger:set_module level/2 for each module associated with an
application.

set _handler config(HandlerId, Config) -> ok | {error, term()}
Types:

HandlerId = handl er _id()

Config = handl er _confi g()

Set configuration data for the specified handler. This overwrites the current handler configuration.

To modify the existing configuration, use updat e_handl er _confi g/ 2, or, if a more complex merge is
needed, read the current configuration with get _handl er _confi g/ 1, then do the merge before writing the new
configuration back with this function.

If akey isremoved compared to the current configuration, and the key is known by Logger, the default value is used.
If itisacustom key, then it is up to the handler implementation if the value is removed or a default value isinserted.

set _handler config(HandlerId, Key :: level, Level) -> Return
set handler config(HandlerlId,

Key :: filter default,

FilterDefault) ->

Return
set _handler config(HandlerId, Key :: filters, Filters) -> Return
set handler config(HandlerId, Key :: formatter, Formatter) ->
Return

set _handler config(HandlerId, Key :: config, Config) -> Return
Types:

Ericsson AB. All Rights Reserved.: Kernel | 217

logger

HandlerId = handl er _id()

Level = level () | all | none

FilterDefault = log | stop

Filters = [{filter_id(), filter()}]
Formatter = {module(), formatter_config()}
Config = term()

Return = ok | {error, term()}

Add or update configuration data for the specified handler. If the given Key aready exists, its associated value will
be changed to the given value. If it does not exist, it will be added.

If thevalueisincomplete, which for example can bethecasefor theconf i g key, itisup tothe handler implementation
how the unspecified parts are set. For all handlers in the Kernel application, unspecified data for the confi g
key is set to default values. To update only specified data, and keep the existing configuration for the rest, use
updat e_handl er _confi g/ 3.

See the definition of the handl er _confi g() typefor more information about the different parameters.

set primary config(Config) -> ok | {error, term()}
Types:
Config = primary_config()
Set primary configuration data for Logger. This overwrites the current configuration.

To modify the existing configuration, use update_primary_confi g/ 1, or, if a more complex merge is
needed, read the current configuration withget _pri mary_confi g/ 0, then do the merge before writing the new
configuration back with this function.

If akey isremoved compared to the current configuration, the default value is used.

set primary config(Key :: level, Level) -> ok | {error, term()}

set primary config(Key :: filter default, FilterDefault) ->
ok | {error, term()}

set primary config(Key :: filters, Filters) ->
ok | {error, term()}
Types:
Level = level () | all | none
FilterDefault = log | stop
Filters = [{filter_id(), filter()}]

Add or update primary configuration data for Logger. If the given Key already exists, its associated value will be
changed to the given value. If it does not exigt, it will be added.

set proxy config(Config) -> ok | {error, term()}
Types:
Config = ol p_config()

Set configuration datafor the Logger proxy. Thisoverwritesthe current proxy configuration. Keysthat are not specified
inthe Conf i g map gets default values.

To modify the existing configuration, use updat e_pr oxy_conf i g/ 1, or, if amorecomplex mergeisneeded, read
the current configuration with get _pr oxy_confi g/ 0 , then do the merge before writing the new configuration
back with this function.

218 | Ericsson AB. All Rights Reserved.: Kernel

logger

For more information about the proxy, see section Logger Proxy in the Kernel User's Guide.

set module level(Modules, Level) -> ok | {error, term()}

Types:
Modules = [module()] | module()
Level = level () | all | none

Set the log level for the specified modules.

The log level for a module overrides the primary log level of Logger for log events originating from the module in
guestion. Notice, however, that it does not override the level configuration for any handler.

For example: Assume that the primary log level for Logger isi nf o, and there is one handler, h1, with level i nf o
and one handler, h2, with level debug.

With this configuration, no debug messages will be logged, since they are all stopped by the primary log level.

If the level for mynodul e isnow set to debug, then debug events from this module will be logged by the handler
h2, but not by handler h1.

Debug events from other modules are still not logged.
To change the primary log level for Logger, use set _primary_confi g(l evel, Level).
To changethelog level for ahandler, use set _handl er _confi g(Handl erld, |evel, Level) .

The originating module for alog event is only detected if the key nf a exists in the metadata, and is associated
with { Modul e, Function, Arity}.Whenlog macrosare used, this association is automatically added to
al log events. If an API function is called directly, without using a macro, the logging client must explicitly add
thisinformation if module levels shall have any effect.

set process metadata(Meta) -> ok
Types:
Meta = net adat a()
Set metadata which Logger shall automatically insert in all log events produced on the current process.

L ocation data produced by the log macros, and/or metadata given as argument to thelog call (API function or macro),
are merged with the process metadata. If the same keys occur, values from the metadata argument to the log call
overwrite values from the process metadata, which in turn overwrite values from the location data.

Subsequent calls to this function overwrites previous data set. To update existing data instead of overwriting it, see
updat e_process_net adat a/ 1.

unset application level(Application) -> ok | {error, not loaded}
Types:

Application = atom()
Unset the log level for all the modules of the specified application.

This function is a convinience function that calls logger:unset_module level/2 for each module associated with an
application.

Ericsson AB. All Rights Reserved.: Kernel | 219

logger

unset module level() -> ok

Remove modul e specific log settings. After this, the primary log level is used for all modules.

unset module level(Modules) -> ok
Types:
Modules = [module()] | module()
Remove modul e specific log settings. After this, the primary log level is used for the specified modules.

unset process metadata() -> ok
Delete dataset with set _process_net adat a/ 1 or updat e_process_net adat a/ 1.

update formatter config(HandlerId, FormatterConfig) ->
ok | {error, term()}

Types:
HandlerId = handl er_id()
FormatterConfig = formatter_config()

Update the formatter configuration for the specified handler.
The new configuration is merged with the existing formatter configuration.

To overwrite the existing configuration without any merge, use

set _handl er _config(Handlerld, formatter,
{FormatterMdul e, FormatterConfig}) .

update formatter config(HandlerId, Key, Value) ->
ok | {error, term()}

Types:
HandlerId = handl er _id()
Key = atom()

Value = term()
Update the formatter configuration for the specified handler.
Thisisequivalent to

update_formatter_config(Handl erld, #{Key => Val ue})

update handler config(HandlerId, Config) -> ok | {error, term()}
Types:

HandlerId = handl er _id()

Config = handl er _confi g()

Update configuration data for the specified handler. This function behaves asif it was implemented as follows:

{ok, { , 0ld}} = logger:get handler config(HandlerId),
logger:set handler config(HandlerId, maps:merge(0ld, Config)).

To overwrite the existing configuration without any merge, useset _handl er _config/ 2.

220 | Ericsson AB. All Rights Reserved.: Kernel

logger

update handler config(HandlerId, Key :: level, Level) -> Return
update handler config(HandlerId,

Key :: filter default,

FilterDefault) ->

Return

update handler config(HandlerId, Key :: filters, Filters) ->
Return

update handler config(HandlerId, Key :: formatter, Formatter) ->
Return

update handler config(HandlerId, Key :: config, Config) -> Return
Types:

HandlerId = handl er _id()

Level = level () | all | none

FilterDefault = log | stop

Filters = [{filter_id(), filter()}]

Formatter = {module(), formatter _config()}

Config = term()

Return = ok | {error, term()}

Add or update configuration data for the specified handler. If the given Key already exists, its associated value will
be changed to the given value. If it does not exist, it will be added.

If thevalueisincompl ete, which for example can bethecasefor theconf i g key, itisup tothe handler implementation
how the unspecified parts are set. For al handlersin the Kernel application, unspecified data for theconf i g key is
not changed. To reset unspecified data to default values, use set _handl er _confi g/ 3.

See the definition of the handl er _confi g() typefor more information about the different parameters.

update primary config(Config) -> ok | {error, term()}
Types:
Config = primary_config()
Update primary configuration data for Logger. This function behaves asif it was implemented as follows:

0ld = logger:get primary config(),
logger:set primary config(maps:merge(0ld, Config)).

To overwrite the existing configuration without any merge, useset _primary_config/ 1.

update process metadata(Meta) -> ok
Types:
Meta = net adat a()
Set or update metadata to use when logging from current process

If process metadata exists for the current process, this function behaves asif it was implemented as follows:
logger:set process metadata(maps:merge(logger:get process metadata(), Meta)).

If no process metadata exists, the function behavesas set _process_netadata/ 1.

update proxy config(Config) -> ok | {error, term()}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 221

logger

Config = ol p_config()

Update configuration data for the Logger proxy. This function behaves asif it was implemented as follows:

0ld = logger:get proxy config(),
logger:set proxy config(maps:merge(0ld, Config)).

To overwrite the existing configuration without any merge, useset _proxy_confi g/ 1.
For more information about the proxy, see section Logger Proxy in the Kernel User's Guide.

Miscellaneous API functions

Exports

compare levels(Levell, Level2) ->eq | gt | 1t
Types:
Levell = Level2 = level ()

Compare the severity of two log levels. Returns gt if Level 1 ismore severethan Level 2,1t if Level 1 isless
severe, and eq if thelevels are equal .

format report(Report) -> FormatArgs
Types:

Report = report ()

FormatArgs = {io:format(), [term()]}

Convert a log message on report form to { Format, Args}. This is the default report callback used by
| ogger _f or mat t er when no custom report callback isfound. See section Log Messagein the Kernel User's Guide
for information about report callbacks and valid forms of log messages.

The function produces lines of Key: Val ue from key-value lists. Strings are printed with ~t s and other terms
with ~t p.

If Report isamap, itisconverted to akey-value list before formatting as such.

timestamp() -> tinmestanp()

Return a timestamp that can be inserted as the t i ne field in the meta data for a log event. It is produced with
os:systemtinme(m crosecond).

Noticethat Logger automatically inserts atimestamp in the metadata unlessit already exists. Thisfunction isexported
for the rare case when the timestamp must be taken at a different point in time than when the log event is issued.
Handler Callback Functions

The following functions are to be exported from a handler callback module.

Exports

HModule:adding handler(Configl) -> {ok, Config2} | {error, Reason}
Types:

Configl = Config2 = handl er_config()

Reason = term()

222 | Ericsson AB. All Rights Reserved.: Kernel

logger

This callback function is optional.

The function is called on atemporary process when an new handler is about to be added. The purposeisto verify the
configuration and initiate all resources needed by the handler.

The handler identity is associated with thei d key in Conf i g1.

If everything succeeds, the callback function can add possible default values or internal state values to the
configuration, and return the adjusted map in{ ok, Confi g2}.

If the configuration is faulty, or if the initiation fails, the callback function must return{ er r or , Reason} .

HModule:changing config(SetOrUpdate, 0ldConfig, NewConfig) -> {ok, Config} |
{error, Reason}

Types:
Set Or Update = set | update
A dConfig = NewConfig = Config = handl er_config()
Reason = term()

This callback function is optional.

The function is called on a temporary process when the configuration for a handler is about to change. The purpose
isto verify and act on the new configuration.

QA dConf i g isthe existing configuration and NewConf i g isthe new configuration.
The handler identity is associated with thei d key in A dConfi g.

Set Or Update has the vaue set if the configuration change originates from a cal to
set _handl er _confi g/ 2, 3, and updat e if it originates from updat e_handl er _confi g/ 2, 3. The
handler can use this parameteter to decide how to update the value of the conf i g field, that is, the handler specific
configuration data. Typically, if Set Or Updat e equalsset , valuesthat are not specified must be given their default
values. If Set Or Updat e equalsupdat e, the valuesfound in O dConf i g must be used instead.

If everything succeeds, the callback function must return a possibly adjusted configurationin{ ok, Confi g} .
If the configuration is faulty, the callback function must return{ er r or , Reason}.

HModule:filter config(Config) -> FilteredConfig
Types:

Config = FilteredConfig = handl er_config()
This callback function is optional.

The function is called when one of the Logger API functions for fetching the handler configuration is called, for
example | ogger : get _handl er _confi g/ 1.

It allows the handler to remove internal data fields from its configuration data before it is returned to the caler.

HModule:log(LogEvent, Config) -> void()
Types:

LogEvent = log_event ()

Config = handl er _config()
This callback function is mandatory.

The function is called when al primary filters and all handler filters for the handler in question have passed for the
given log event. It is called on the client process, that is, the process that issued the log event.

Ericsson AB. All Rights Reserved.: Kernel | 223

logger

The handler identity is associated with thei d key in Confi g.
The handler must log the event.

The return value from this function isignored by Logger.

HModule: removing handler(Config) -> ok
Types:

Config = handl er _config()
This callback function is optional.

The function is called on a temporary process when a handler is about to be removed. The purpose is to release all
resources used by the handler.

The handler identity is associated with thei d key in Confi g.
Thereturn value isignored by Logger.

Formatter Callback Functions

The following functions are to be exported from a formatter callback module.

Exports

FModule:check config(FConfig) -> ok | {error, Reason}
Types:

FConfig = formatter_config()

Reason = term()
This callback function is optional.

The function is called by a Logger when formatter configuration is set or modified. The formatter must validate the
given configuration and return ok if itis correct, and{ er r or , Reason} if itisfaulty.

The following Logger API functions can trigger this callback:
* logger:add_handler/3

« logger:set _handler_config/2,3

|l ogger:update_handl er_config/2,3

« logger:update formatter config/2

See | ogger _formatter(3) for an example implementation. | ogger _f or mat t er is the default formatter
used by Logger.

FModule: format(LogEvent, FConfig) -> FormattedLogEntry
Types:

LogEvent = log_event ()

FConfig = formatter_config()

For matt edLogEntry = uni code: chardat a()

This callback function is mandatory.

The function can be called by alog handler to convert alog event term to a printable string. The returned value can,
for example, be printed as alog entry to the console or afileusing i o: put _chars/ 1, 2.

224 | Ericsson AB. All Rights Reserved.: Kernel

logger

See | ogger_formatter(3) for an example implementation. | ogger _f or mat t er is the default formatter
used by Logger.

See Also

config(4), erl ang(3), io(3), | ogger _di sk_| og_h(3), | ogger _filters(3),
| ogger _formatter(3),l ogger_std_h(3),uni code(3)

Ericsson AB. All Rights Reserved.: Kernel | 225

logger filters

logger filters

Erlang module

All functions exported from this module can be used as primary or handler filters. See
| ogger:add_primary_filter/2 and | ogger:add_handler_filter/3 for more information about
how filters are added.

Filters are removed with | ogger:renmove_primary filter/1 and
| ogger:renmove_handler _filter/2.

Exports

domain(LogEvent, Extra) -> logger:filter_return()
Types:
LogEvent = | ogger: | og_event ()
Extra = {Action, Compare, MatchDomain}
Action = log | stop
Compare = super | sub | equal | not equal | undefined
MatchDomain = [atom()]
Thisfilter provides away of filtering log events based on adomai n field in Met adat a. Thisfield is optional, and

the purpose of using it is to group log events from, for example, a specific functional area. This allows filtering or
other specialized treatment in aLogger handler.

A domain field must be alist of atoms, creating smaller and more specialized domains as the list grows longer. The
greatest domainis|[] , which comprises al possible domains.

For example, consider the following domains:

D1
D2

[otp]
[otp, sasl]

D1 is the greatest of the two, and is said to be a super-domain of D2. D2 is a sub-domain D1. Both D1 and D2 are
sub-domainsof [] .

The above domains are used for logs originating from Erlang/OTP. D1 specifiesthat the log event comes from Erlang/
OTPin general, and D2 indicates that the log event isa so called SASL report.

The Extra parameter to the dommin/2 function is specified when adding the filter via
| ogger:add_primary_filter/2or | ogger:add_handler_filter/3.

The filter compares the value of the donmai n field in the log event's metadata (Domai n) against Mat chDomai n.
Thefilter matchesif the value of Conpar e is:

sub

and Domai n isequal to or asub-domain of Mat chDonai n, that is, if Mat chDomai n isaprefix of Domai n.
super

and Donmai n isequal to or asuper-domain of Mat chDonai n, that is, if Donai n isaprefix of Mat chDomai n.
equal

and Domai n isequal to Mat chDomai n.

226 | Ericsson AB. All Rights Reserved.: Kernel

logger filters

not _equal

and Domai n differsfrom Mat chDonai n, or if there isno domain field in metadata.
undefi ned

and there isno domain field in metadata. In this case Mat chDonai n must besetto[] .

If the filter matches and Act i on isl og, the log event is alowed. If the filter matches and Act i on is st op, the
log event is stopped.

If the filter does not match, it returnsi gnor e, meaning that other filters, or the value of the configuration parameter
filter_default,decideif theeventisallowed or not.

L og eventsthat do not contain any domain field, match only when Conpar e isequal toundef i ned ornot _equal .

Example: stop all eventswith domain[ot p, sasl | _]

logger:set handler config(hl, filter default, log). % this is the default
Filter = {fun logger filters:domain/2, {stop, sub, [otp, sasll}}.
logger:add handler filter(hl, no sasl, Filter).

ok

level(LogEvent, Extra) -> logger:filter_return()
Types:
LogEvent = | ogger: | og_event ()
Extra = {Action, Operator, MatchLevel}
Action = log | stop
Operator = neq | eq | 1t | gt | lteq | gteq
MatchLevel = | ogger:|level ()

Thisfilter provides a way of filtering log events based on the log level. It matches log events by comparing the log
level with a specified Mat chLevel

The Extra parameter is specified when adding the filter via | ogger:add _primary filter/2 or
| ogger: add_handl er _filter/3.

The filter compares the value of the event's log level (Level) to WMatchLevel by caling
| ogger: conpare_| evel s(Level, MatchLevel). Thefilter matchesif the value of Oper at or is:

neq
and the compare function returns| t or gt .
eq
and the compare function returns eq.
It
and the compare function returns| t .
gt
and the compare function returns gt .
I teq
and the compare function returns| t or eq.
gteq
and the compare function returns gt or eq.

Ericsson AB. All Rights Reserved.: Kernel | 227

logger filters

If the filter matches and Act i on is| og, the log event is allowed. If the filter matches and Act i on is st op, the
log event is stopped.

If the filter does not match, it returnsi gnor e, meaning that other filters, or the value of the configuration parameter
filter_default,will decideif the event isalowed or not.

Example: only alow debug level log events

logger:set handler config(hl, filter default, stop).
Filter = {fun logger filters:level/2, {log, eq, debug}}.
logger:add handler filter(hl, debug only, Filter).

ok

progress(LogEvent, Extra) -> logger:filter_return()
Types:

LogEvent = | ogger: | og_event ()

Extra = log | stop

Thisfilter matches all progress reports from super vi sor andappl i cati on_control |l er.
If Extraisl og, the progress reports are allowed. If Ext r a isst op, the progress reports are stopped.

Thefilter returnsi gnor e for all other log events.

remote gl(LogEvent, Extra) -> logger:filter_return()
Types:

LogEvent = | ogger: | og_event ()

Extra = log | stop

Thisfilter matches all events originating from a process that has its group leader on aremote node.
If Ext raisl| og, the matching events are allowed. If Ext r a isst op, the matching events are stopped.

Thefilter returnsi gnor e for all other log events.

See Also
| ogger (3)

228 | Ericsson AB. All Rights Reserved.: Kernel

logger_formatter

logger _formatter

Erlang module

Each Logger handler has a configured formatter specified as a module and a configuration term. The purpose of the
formatter istotrandatethelog eventsto afinal printablestring (uni code: char dat a()) whichcanbewrittentothe
output device of the handler. See sections Handlers and Formattersin the Kernel User's Guide for more information.

| ogger _formatt er isthe default formatter used by Logger.

Data Types

config() =
#{chars_limit => integer() >= 1 | unlimited,
depth => integer() >= 1 | unlimited,
legacy header => boolean(),
max_size => integer() >= 1 | unlimited,
report cb => | ogger:report_cb(),
single line => boolean(),
template => tenplate(),
time designator => byte(),
time offset => integer() | [byte()]}

The configuration term for | ogger _f ormatt er is a map, and the following keys can be set as configuration
parameters:

chars_limt =integer() >0 | unlinmted

A positive integer representing the value of the option with the same name to be used when calling
i o_lib:format/ 3. Thisvaue limits the total number of characters printed for each log event. Notice that
thisis asoft limit. For a hard truncation limit, see option max_si ze.

Defaultstounl i m t ed.
depth = integer() >0 | unlimted

A positive integer representing the maximum depth to which terms shall be printed by this formatter. Format
strings passed to this formatter are rewritten. The format controls ~p and ~w are replaced with ~P and ~W,
respectively, and the value is used as the depth parameter. For details, seei o: f or mat / 2, 3in STDLIB.

Defaultstounl i mi t ed.
| egacy_header = bool ean()

If settot r ue aheader field is added to logger_formatter's part of Met adat a. The value of thisfield isastring
similar to the header created by the old er r or _| ogger event handlers. It can be included in the log event by
adding the list [| ogger _formatter, header] to the template. See the description of thet enpl at e()
type for more information.

Defaultstof al se.
max_size = integer() >0 | unlimted

A positive integer representing the absolute maximum size a string returned from this formatter can have. If the
formatted string is longer, after possibly being limited by chars_| i mi t or dept h, itistruncated.

Defaultstounl i m t ed.

Ericsson AB. All Rights Reserved.: Kernel | 229

logger_formatter

report _cb = 1ogger:report_cb()

A report callback is used by the formatter to transform log messages on report form to a format string and
arguments. The report callback can be specified in the metadata for the log event. If no report callback existsin
metadata, | ogger _formatter willuse | ogger: f ormat _report/ 1 asdefault callback.

If this configuration parameter is set, it replaces both the default report callback, and any report callback found
in metadata. That is, all reports are converted by this configured function.

single |ine = bool ean()

If settot rue, each log event is printed as asingle line. To achieve this, | ogger fornmatter setsthefield
width to O for al ~p and ~P control sequences in the format a string (see i o: f or nat / 2), and replaces all
newlines in the message with ", " . White spaces following directly after newlines are removed. Notice that
newlines added by thet enpl at e parameter are not replaced.

Defaultstot r ue.
tenplate = tenpl ate()

The template describes how the formatted string is composed by combining different data values from the log
event. See the description of thet enpl at e() type for more information about this.

ti me_designator = byte()

Timestamps are formatted according to RFC3339, and the time designator is the character used as date and time
separator.

Defaultsto $T.

The vaue of this paameter is wused as the tine_designator option to
cal endar:systemtinme_to_rcf3339/2.

time_offset = integer() | [byte()]
Thetime offset, either astring or an integer, to be used when formatting the timestamp.

An empty string isinterpreted aslocal time. Thevalues” Z"," z" or O areinterpreted as Universal Coordinated
Time (UTC).

Strings, otherthan™ Z" ," z" ,or" " ,must beontheform+[hh] : [nm , for example" - 02: 00" or" +00: 00" .
Integers must be in microseconds, meaning that the offset 7200000000 isequivalentto" +02: 00" .

Defaults to an empty string, meaning that timestamps are displayed in loca time. However, for backwards
compatibility, if the SASL configuration parameter ut c_| og=t r ue, the default ischanged to " Z" , meaning
that timestamps are displayed in UTC.

The value of this parameter isused asthe of f set optionto cal endar: systemtime_to_rcf 3339/ 2.
metakey() = atom() | [atom()]

template() =
[met akey() | {metakey(), tenplate(), tenplate()} | string()]

The template is alist of atoms, atom lists, tuples and strings. The atoms | evel or nsg, are treated as placeholders
for the severity level and the log message, respectively. Other atoms or atom lists are interpreted as placeholders for
metadata, where atoms are expected to match top level keys, and atom lists represent paths to sub keys when the
metadata is a nested map. For example the list [key1, key2] is replaced by the value of the key?2 field in the
nested map below. The atom key1 on its own is replaced by the complete value of the key 1 field. The values are
converted to strings.

230 | Ericsson AB. All Rights Reserved.: Kernel

logger_formatter

#{keyl => #{key2 => my value,
..}

Tuples in the template express if-exist tests for metadata keys. For example, the following tuple says that if key 1
exists in the metadata map, print " keyl1=Val ue", where Val ue isthe value that key1 is associated with in the
metadata map. If key 1 does not exist, print nothing.

{keyl, ["keyl=",keyl], [I}

Strings in the template are printed literally.

The default value for the t enpl at e configuration parameter depends on the value of the si ngl e | i ne and
| egacy_header configuration parameters as follows.

Thelog event used in the examplesis:

?LOG_ERROR("name: ~p~nexit reason: ~p", [my name, "It crashed"])
| egacy_header = true, single line = fal se
Default template: [[| ogger _formatter, header], "\ n", nsg, "\ n"]
Example log entry:

=ERROR REPORT==== 17-May-2018::18:30:19.453447 ===
name: my_name
exit reason: "It crashed"

Notice that all eight levels can occur in the heading, not only ERROR, WARNI NGor | NFOaser r or _| ogger
produces. And microseconds are added at the end of the timestamp.

| egacy_header = true, single_line = true
Default template: [[| ogger _formatter, header], "\ n", nsg, "\ n"]

Notice that the template is here the same as for si ngl e_I i ne=f al se, but the resulting log entry differsin
that there is only one line after the heading:

=ERROR REPORT==== 17-May-2018::18:31:06.952665 ===
name: my name, exit reason: "It crashed"

| egacy_header = false, single_line = true

Default template: [tine, " ",level ,": ", nsg,"\n"]

Example log entry:
2018-05-17T18:31:31.152864+02:00 error: name: my name, exit reason: "It crashed"
| egacy_header = false, single_line = fal se
Default template: [tinme, " ", level ,":\n", neg, "\ n"]
Example log entry:
2018-05-17T18:32:20.105422+02:00 error:

name: my_name
exit reason: "It crashed"

Ericsson AB. All Rights Reserved.: Kernel | 231

logger_formatter

Exports

check config(Config) -> ok | {error, term()}
Types:
Config = config()

Thefunctionis called by Logger when the formatter configuration for ahandler is set or modified. It returns ok if the
configuration isvalid, and{error, term() } if itisfaulty.

The following Logger API functions can trigger this callback:

e« |logger:add _handler/3
 logger:set_handl er_config/2,3

|l ogger:update handl er _config/2

e logger:update formatter_config/2

format(LogEvent, Config) -> unicode: chardata()
Types:

LogEvent = | ogger: | og_event ()

Config = config()

This the formatter callback function to be called from handlers. The log event is processed as follows:

» |If the messageis on report form, it is converted to { For mat , Ar gs} by calling the report callback. See section
Log Message in the Kernel User's Guide for more information about report callbacks and valid forms of 1og
messages.

e Themessage sizeislimited according to the values of configuration parameters chars_|i mi t and dept h.

» Thefull log entry is composed according to thet enpl at e.

« |f thefinal string istoo long, it istruncated according to the value of configuration parameter max_si ze.

See Also
cal endar (3),error_l ogger(3),io(3),io_lib(3),logger(3),maps(3),sasl (6),unicode(3)

232 | Ericsson AB. All Rights Reserved.: Kernel

logger_std_h

logger std _h

Erlang module

Thisisthe standard handler for Logger. Multiple instances of this handler can be added to L ogger, and each instance
printslogsto st andard_i o, st andard_error, ortofile

The handler has an overload protection mechanism that keeps the handler process and the Kernel application alive
during high loads of log events. How overload protection works, and how to configureit, isdescribed intheUser ' s
Qui de..

To add anew instance of the standard handler, usel ogger : add_handl er/ 3. Thehandler configuration argument
is amap which can contain general configuration parameters, as documented in the User ' s Gui de , and handler
specific parameters. The specific data is stored in a sub map with the key conf i g, and can contain the following
parameters:

type = standard_io | standard_error | file

Specifies the log destination.

The value is set when the handler is added, and it cannot be changed in runtime.

Defaultsto st andar d_i o, unless parameter f i | e isgiven, in which caseit defaultstofi | e.
file = file:fil ename()

This specifies the name of the log file when the handler is of typefi | e.

The value is set when the handler is added, and it cannot be changed in runtime.

Defaults to the same name as the handler identity, in the current directory.
nodes = [file: nmode()]

This specifies the file modes to use when opening the log file, seef i | e: open/ 2. If nodes are not specified,
thedefault listusedis[r aw, append, del ayed_wri t e] . If nrodes arespecified, thelist replacesthe default
modes list with the following adjustments:

e Ifrawisnot foundinthelist, it isadded.
« Ifnoneofwrite,append orexcl usi ve isfoundinthelist, append isadded.

 Ifnoneof del ayed_writeor{del ayed wite, Size, Del ay} isfoundinthelist,
del ayed_writ e isadded.

Log files are aways UTF-8 encoded. The encoding cannot be changed by setting the mode
{encodi ng, Encodi ng}.

The value is set when the handler is added, and it cannot be changed in runtime.
Defaultsto[r aw, append, del ayed _write].
max_no_bytes = pos_integer() | infinity

This parameter specifies if the log file should be rotated or not. The value i nf i ni t y means the log file will
grow indefinitely, while an integer value specifies at which file size (bytes) the file is rotated.

Defaultstoi nfinity.
max_no _files = non_neg_integer()

This parameter specifies the number of rotated log file archives to keep. This has meaning only if
max_no_byt es isset to an integer value.

Ericsson AB. All Rights Reserved.: Kernel | 233

logger_std _h

The log archives are named Fi | eNane. 0, Fi | eNane. 1, ... Fi | eNane. N, where Fi | eNane is the name
of the current log file. Fi | eNane. O is the newest of the archives. The maximum value for N is the value of
max_no_fil es minus 1l

Notice that setting this value to O does not turn of rotation. It only specifies that no archives are kept.
Defaultsto 0.
conpress_on_rotate = bool ean()

This parameter specifiesif the rotated log file archives shall be compressed or not. If settot r ue, al archives
are compressed with gzi p, and renamed to Fi | eName. N. gz

conpr ess_on_r ot at e hasno meaning if max_no_byt es hasthevaluei nfinity.
Defaultstof al se.
file_check = non_neg_integer()

Whenl ogger _st d_h logsto afile, it readsthefileinformation of thelog file prior to each write operation. This
isto make sure thefile still exists and has the same inode as when it was opened. This implies some performance
loss, but ensures that no log events are lost in the case when the file has been removed or renamed by an external
actor.

In order to allow minimizing the performance loss, thef i | e_check parameter can be set to a positive integer
value, N. The handler will then skip reading the file information prior to writing, as long as no more than N
milliseconds have passed since it was last read.

Notice that the risk of loosing log events growswhen thef i | e_check value grows.
Defaultsto 0.
filesync_repeat _interval = pos_integer() | no_repeat

This value, in milliseconds, specifies how often the handler does afile sync operation to write buffered data to
disk. The handler attempts the operation repeatedly, but only performs anew sync if something has actually been
logged.

If no_r epeat isset asvalue, therepeated file sync operation is disabled, and it is the operating system settings
that determine how quickly or slowly data is written to disk. The user can also call thefi | esync/ 1 function
to perform afile sync.

Defaults to 5000 milliseconds.

Other configuration parameters exist, to be used for customizing the overload protection behaviour. The same
parameters are used both in the standard handler and thedisk_log handler, and aredocumentedintheUser ' s Gui de.

Notice that if changing the configuration of the handler in runtime, thet ype, fi | e, or modes parameters must not
be modified.

Example of adding a standard handler:

logger:add handler(my standard h, logger std h,
#{config => #{file => "./system info.log",
filesync_repeat interval => 1000}}).

To set the default handler, that starts initially with the Kernel application, to log to file instead of st andar d_i o,
change the Kernel default logger configuration. Example:

erl -kernel logger '[{handler,default,logger std h,
#{config => #{file => "./log.log"}}}1'

An example of how to replace the standard handler with a disk log handler at startup is found in the
| ogger _di sk_| og_h manual.

234 | Ericsson AB. All Rights Reserved.: Kernel

logger_std_h

Exports

filesync(Name) -> ok | {error, Reason}
Types.

Name = atom()

Reason = handler busy | {badarg, term()}

Write buffered datato disk.

See Also
| ogger (3), | ogger _di sk_I og_h(3)

Ericsson AB. All Rights Reserved.: Kernel | 235

logger_disk log h

logger_disk log h

Erlang module

Thisisahandler for Logger that offerscircular (wrapped) logsby usingdi sk_I og. Multipleinstances of thishandler
can be added to Logger, and each instance printsto its own disk log file, created with the name and settings specified
in the handler configuration.

The default standard handler, | ogger _st d_h, can be replaced by a disk_log handler at startup of the Kernel
application. See an example of this below.

The handler has an overload protection mechanism that keeps the handler process and the Kernel application alive
during high loads of log events. How overload protection works, and how to configure it, isdescribed inthe User ' s
Gui de .

Toadd anew instance of thedisk _log handler, usel ogger : add_handl er/ 3. Thehandler configuration argument
is a map which can contain general configuration parameters, as documented inthe User' s Gui de , and handler
specific parameters. The specific data is stored in a sub map with the key conf i g, and can contain the following
parameters:

file

Thisisthe full name of the disk log file. The option correspondsto the nane property inthedl og_opti on()
datatype.

The valueis set when the handler is added, and it cannot be changed in runtime.
Defaults to the same name as the handler identity, in the current directory.
type

Thisisthedisk log type, wr ap or hal t . The option correspondstothet ype property inthedl og_opti on()
datatype.

Thevalueis set when the handler is added, and it cannot be changed in runtime.
Defaultstowr ap.
max_no_files

This is the maximum number of files that disk_log uses for its circular logging. The option corresponds to the
MaxNoFi | es element inthesi ze property inthedl og_opti on() datatype.

The valueis set when the handler is added, and it cannot be changed in runtime.
Defaultsto 10.
The setting has no effect on a halt log.

max_no_bytes

Thisis the maximum number of bytes that is written to alog file before disk_|log proceeds with the next filein
order, or generates an error in case of afull halt log. The option corresponds to the MaxNoByt es element in the
si ze property inthedl og_opti on() datatype.

The valueis set when the handler is added, and it cannot be changed in runtime.
Defaultsto 1048576 bytesfor awrap log, and i nfi ni ty for ahalt log.
filesync_repeat interval

Thisvalue, in milliseconds, specifies how often the handler doesadisk_log sync operation to write buffered data
to disk. The handler attempts the operation repeatedly, but only performs a new sync if something has actually
been logged.

236 | Ericsson AB. All Rights Reserved.: Kernel

logger_disk _log h

Defaultsto 5000 milliseconds.

If no_r epeat isset asvalue, the repeated sync operation is disabled. The user can also call thefi | esync/ 1
function to perform adisk_log sync.

Other configuration parameters exist, to be used for customizing the overload protection behaviour. The same
parametersare used both in the standard handler and thedisk_log handler, and aredocumentedintheUser ' s CGui de .

Notice that when changing the configuration of the handler in runtime, the disk log options (fil e, type,
max_no_fil es,max_no_byt es) must not be modified.
Example of adding adisk_log handler:
logger:add handler(my disk log h, logger disk log h,
#{config => #{file => "./my disk log",
type => wrap,
max_no files => 4,

max_no_bytes => 10000},
filesync repeat interval => 1000}}).

To use the disk_log handler instead of the default standard handler when starting an Erlang node, change the Kernel
default logger to use | ogger _di sk_| og_h. Example:

erl -kernel logger '[{handler,default,logger disk log h,
#{config => #{file => "./system disk log"}}}]"'

Exports

filesync(Name) -> ok | {error, Reason}
Types:

Name = atom()

Reason = handler busy | {badarg, term()}

Write buffered data to disk.

See Also
| ogger (3),! ogger _std_h(3),di sk _|og(3)

Ericsson AB. All Rights Reserved.: Kernel | 237

net adm

net_ adm

Erlang module

This module contains various network utility functions.

Exports

dns_hostname(Host) -> {ok, Name} | {error, Host}

Types:
Host = atom() | string()
Name = string()

Returnsthe official name of Host , or { error, Host} if nosuch nameisfound. Seeasoi net (3).

host file() -> Hosts | {error, Reason}
Types.
Hosts = [Host :: atom()]

Reason =
file:posix() |
badarg | terminated | system limit |
{Line :: integer(), Mod :: module(), Term :: term()}

Readsfile. host s. er | ang, see section Files. Returnsthe hostsin thisfileasalist. Returns{ err or, Reason}
if the file cannot be read or the Erlang terms on the file cannot be interpreted.

localhost() -> Name
Types:
Name = string()

Returns the name of the local host. If Erlang was started with command-line flag - name, Nane isthe fully qualified
name.

names() -> {ok, [{Name, Port}1} | {error, Reason}
names (Host) -> {ok, [{Name, Port}1} | {error, Reason}

Types.
Host = atom() | string() | inet:ip_address()
Name = string()
Port = integer() >= 0

Reason = address | file: posix()

Similar toepnd - nanes, seeerts: epnd(1) . Host defaultstotheloca host. Returns the names and associated
port numbers of the Erlang nodesthat epnd registered at the specified host. Returns{ er r or , addr ess} if epnd
is not operational.

Example:

(arne@dunn)1> net _adm:names().
{ok, [{"arne",40262}1}

238 | Ericsson AB. All Rights Reserved.: Kernel

net_ adm

ping(Node) -> pong | pang
Types:
Node = atom()
Sets up a connection to Node. Returns pong if it is successful, otherwise pang.

world() -> [node()]
world(Arg) -> [node()]
Types:
Arg = verbosity()
verbosity() = silent | verbose
Callsnames(Host) for all hosts that are specified in the Erlang host file . host s. er | ang, collects the replies,
and then evaluates pi ng(Node) on all those nodes. Returns the list of all nodes that are successfully pinged.

Ar g defaultsto si | ent . If Arg == ver bose, the function writes information about which nodes it is pinging
tost dout .

This function can be useful when anode is started, and the names of the other network nodes are not initially known.
Returns{error, Reason} ifhost _file() retuns{error, Reason}.

world list(Hosts) -> [node()]
world list(Hosts, Arg) -> [node()]
Types.

Hosts = [atom()]

Arg = verbosity()

verbosity() = silent | verbose

Sameaswor | d/ 0, 1, but the hosts are specified as argument instead of being read from . host s. er | ang.

Files

File. host s. er| ang consists of a number of host names written as Erlang terms. It is looked for in the current
work directory, the user's home directory, and $OTP_ROOT (the root directory of Erlang/OTP), in that order.

Theformat of file. host s. er | ang must be one host name per line. The host names must be within quotes.

Example:

'super.eua.ericsson.se'.
'renat.eua.ericsson.se'.
'grouse.eua.ericsson.se'.
'gauffinl.eua.ericsson.se'.
~ (new line)

Ericsson AB. All Rights Reserved.: Kernel | 239

net kernel

net kernel

Erlang module

The net kernel is a system process, registered asnet _ker nel , which must be operational for distributed Erlang to
work. The purpose of this processisto implement parts of the BIFsspawn/ 4 and spawn_I| i nk/ 4, and to provide
monitoring of the network.

An Erlang node is started using command-line flag - nane or - snamne:

$ erl -sname foobar

Itisalsopossibleto call net _kernel : start ([foobar]) directly from the normal Erlang shell prompt:

1> net kernel:start([foobar, shortnames]).
{ok,<0.64.0>}
(foobar@gringotts)2>

If the node is started with command-line flag - snane, the node name isf oobar @Host , where Host is the short
name of the host (not the fully qualified domain name). If started with flag - name, the node nameisf oobar @ost ,
where Host isthefully qualified domain name. For more information, seeer | .

Normally, connections are established automatically when another node is referenced. This functionality can be
disabled by setting Kernel configuration parameter di st _aut o_connect to never, see ker nel (6). In this
case, connections must be established explicitly by calling connect _node/ 1.

Which nodes that are allowed to communicate with each other is handled by the magic cookie system, see section
Distributed Erlang in the Erlang Reference Manual.

Starting adistributed node without also specifying - pr ot o_di st i net _t | s will exposethenodeto attacksthat
may give the attacker complete access to the node and in extension the cluster. When using un-secure distributed
nodes, make sure that the network is configured to keep potential attackers out. See the Using SS_ for Erlang
Distribution User's Guide for details on how to setup a secure distributed node.

Exports

allow(Nodes) -> ok | error
Types:

Nodes = [node()]
Permits access to the specified set of nodes.

Beforethefirst call toal | ow 1, any node with the correct cookie can be connected. When al | ow/ 1 iscalled, alist
of allowed nodes is established. Any access attempts made from (or to) nodes not in that list will be rejected.

Subsequent callsto al | ow/ 1 will add the specified nodes to the list of allowed nodes. It is not possible to remove
nodes from the list.

Returnser r or if any element in Nodes is not an atom.

240 | Ericsson AB. All Rights Reserved.: Kernel

net kernel

connect node(Node) -> boolean() | ignored
Types.
Node = node()

Establishesaconnectionto Node. Returnst r ue if aconnection was established or was aready established or if Node
isthe local node itself. Returnsf al se if the connection attempt failed, and i gnor ed if the local node is not alive.

get net ticktime() -> Res
Types:
Res = NetTicktime | {ongoing change to, NetTicktime} | ignored
NetTicktime = integer() >=1
Getsnet _ti ckti me (seeker nel (6)).
Defined return values (Res):
Net Ti ckti me
net ticktimeisNetTi ckti ne seconds.
{ongoi ng_change_to, NetTi ckti ne}
net _kernel iscurrently changingnet ti ckti me toNet Ti ckti ne seconds.
i gnor ed
Thelocal nodeisnot aive

getopts(Node, Options) ->
{ok, OptionValues} | {error, Reason} | ignored

Types:
Node = node()
Options = [inet:socket getopt()]
OptionValues = [inet:socket setopt()]
Reason = inet:posix() | noconnection

Get one or more options for the distribution socket connected to Node.

If Node isaconnected nodethereturn valueisthe sameasfromi net : get opt s(Sock, Opti ons) whereSock
isthe distribution socket for Node.

Returnsi gnor ed if thelocal nodeisnot diveor { error, noconnecti on} if Node isnot connected.

monitor nodes(Flag) -> ok | Error
monitor nodes(Flag, Options) -> ok | Error
Types.
Flag = boolean()
Options = [Option]
Option = {node type, NodeType} | nodedown reason
NodeType = visible | hidden | all
Error = error | {error, term()}
The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered

to all subscribing processes when a new node is connected, and a nodedown message is delivered when anode is
disconnected.

Ericsson AB. All Rights Reserved.: Kernel | 241

net kernel

If Fl ag istrue, anew subscription is started. If Fl ag isf al se, all previous subscriptions started with the same
Opt i ons are stopped. Two option lists are considered the same if they contain the same set of options.

Asfrom Kernel version 2.11.4, and ERTS version 5.5.4, the following is guaranteed:

* nodeup messages are delivered before delivery of any message from the remote node passed through the newly
established connection.

* nodedown messages are not delivered until all messages from the remote node that have been passed through
the connection have been delivered.

Notice that thisis not guaranteed for Kernel versions before 2.11.4.

As from Kernel version 2.11.4, subscriptions can also be made before the net _ker nel server is started, that is,
net _kernel : moni t or _nodes/[1, 2] doesnot returni gnor ed.

Asfrom Kernel version 2.13, and ERTS version 5.7, the following is guaranteed:

e nodeup messages are delivered after the corresponding node appearsin resultsfrom er | ang: nodes/ X.

e nodedown messages are delivered after the corresponding node has disappeared in results from
erl ang: nodes/ X.

Notice that thisis not guaranteed for Kernel versions before 2.13.
The format of the node status change messages depends on Qpt i ons. If Opt i ons is[], which is the default, the
format isasfollows:

{nodeup, Node} | {nodedown, Node}
Node = node()

If Optionsisnot[],theformatisasfollows:

{nodeup, Node, InfoList} | {nodedown, Node, InfolList}
Node = node()
InfoList = [{Tag, Val}]

I nf oLi st isalist of tuples. Its contents depends on Opt i ons, see below.

Also,whenOpt i onLi st == [], only visible nodes, that is, hodes that appear intheresult of er | ang: nodes/ 0,
are monitored.

Opt i on can be any of the following:

{node_type, NodeType}
Valid values for NodeType:
visible

Subscribe to node status change messages for visible nodes only. The tuple { node_t ype, vi si bl e}
isincludedin | nf oLi st .

hi dden

Subscribe to node status change messages for hidden nodes only. Thetuple{ node_t ype, hi dden} is
included in| nf oLi st .

al |

Subscribe to node status change messages for both visible and hidden nodes. The tuple { node_t ype,
vi si bl e | hidden} isincludedin| nf oLi st .

nodedown_r eason

Thetuple{ nodedown_r eason, Reason} isincludedinl| nf oLi st innodedown messages.

242 | Ericsson AB. All Rights Reserved.: Kernel

net kernel

Reason can, depending on which distribution module or process that is used be any term, but for the standard

TCP distribution moduleit is any of the following:
connection_setup_failed
The connection setup failed (after nodeup messages were sent).
no_net wor k
No network isavailable.
net _kernel _terminated
Thenet _ker nel processterminated.
shut down
Unspecified connection shutdown.
connection_cl osed
The connection was closed.
di sconnect
The connection was disconnected (forced from the current node).
net tick tineout
Net tick time-out.
send_net tick failed
Failed to send net tick over the connection.
get _status failed
Status information retrieval from the Por t holding the connection failed.

set net ticktime(NetTicktime) -> Res
set net ticktime(NetTicktime, TransitionPeriod) -> Res
Types.

NetTicktime = integer() >=1

TransitionPeriod = integer() >= 0

Res =
unchanged | change initiated |
{ongoing change to, NewNetTicktime}
NewNetTicktime = integer() >=1

Setsnet _ticktime (seekernel (6))toNet Ti ckti ne seconds. Tr ansi ti onPeri od defaultsto 60.

Some definitions:
Minimum transition traffic interval (MI'TI)

m ni murm(Net Ti ckti ne, PreviousNet Ticktine)*1000 di v 4 milliseconds.

Transition period

The time of the least number of consecutive MT Tl sto cover Tr ansi ti onPer i od seconds following the call

toset _net ticktinme/2 (thatis, ((TransitionPeriod*1000 - 1) div MITI

milliseconds).

+ 1)*MITI

Ericsson AB. All Rights Reserved.: Kernel | 243

net kernel

If Net Ti ckti me < Previ ousNet Ti ckti me, thenet _ti ckti ne changeisdone at the end of the transition
period; otherwise at the beginning. During the transition period, net _ker nel ensuresthat there is outgoing traffic
on all connections at least every MI'TI millisecond.

The net _ti ckti nme changes must be initiated on al nodes in the network (with the same Net Ti ckt i ne)
before the end of any transition period on any node; otherwise connections can erroneously be disconnected.

Returns one of the following:
unchanged

net _ti ckti me aready hasthevalue of Net Ti ckt i me and isleft unchanged.
change_initiated

net _ker nel initiated the change of net _ti ckti nme to Net Ti ckt i ne seconds.
{ongoi ng_change_t o, NewNet Ti ckti ne}

The request is ignored because net _ker nel is busy changing net ti cktinme to NewNet Ti ckti ne
seconds.

setopts(Node, Options) -> ok | {error, Reason} | ignored
Types.

Node = node() | new

Options = [inet:socket setopt()]

Reason = inet:posix() | noconnection

Set one or more options for distribution sockets. Argument Node can be either one node name or the atom new to
affect the distribution sockets of all future connected nodes.

Thereturnvalueisthesameasfromi net : setopt s/ 2or{error, noconnecti on} if Node isnot aconnected
node or new.

If Node isnewthe Opt i ons will then also be added to kernel configration parametersinet_dist_listen options and
inet_dist_connect_options.

Returnsi gnor ed if the local nodeis not aive.

start([Name]) -> {ok, pid()} | {error, Reason}
start([Name, NameTypel) -> {ok, pid()} | {error, Reason}
start([Name, NameType, Ticktime]) -> {ok, pid()} | {error, Reason}

Types:
Name = atom()
NameType = shortnanes | |ongnanes

Reason = {already_started, pid()} | term)
Turns a non-distributed node into a distributed node by starting net _ker nel and other necessary processes.

Notice that the argument is alist with exactly one, two, or three arguments. Narme Ty pe defaultsto | ongnamnes and
Ti ckt i me to 15000.

stop() -> ok | {error, Reason}
Types.

244 | Ericsson AB. All Rights Reserved.: Kernel

net kernel

Reason = not allowed | not found

Turns adistributed node into a non-distributed node. For other nodes in the network, thisis the same asthe node going
down. Only possible when the net kernel was started using st art/ 1, otherwise{error, not_all owed} is
returned. Returns{ error, not _f ound} if thelocal nodeisnot alive.

Ericsson AB. All Rights Reserved.: Kernel | 245

0s

0S

Erlang module

The functions in this module are operating system-specific. Careless use of these functions results in programs that
will only run on a specific platform. On the other hand, with careful use, these functions can be of help in enabling
aprogram to run on most platforms.

File operations used to accept filenames containing null characters (integer value zero). This caused the nameto be
truncated and in some cases argumentsto primitive operationsto be mixed up. Filenames containing null characters
inside the filename are now r e ected and will cause primitive file operations to fail.

Also environment variable operations used to accept names and values of environment variables containing null
characters (integer value zero). This caused operations to silently produce erroneous results. Environment variable
names and values containing null charactersinside the name or value are now r gj ected and will cause environment
variable operations to fail.

Data Types
env_var _name() = nonempty string()

A string containing valid characters on the specific OS for environment variable names using
file:native_nane_encodi ng() encoding. Note that specifically null characters (integer value zero) and $=
characters are not allowed. However, note that not all invalid characters necessarily will cause the primitiv operations
to fail, but may instead produce invalid results.

env_var value() = string()

A string containing valid characters on the specific OS for environment variable values using
file:native_nane_encodi ng() encoding. Note that specifically null characters (integer value zero) are not
allowed. However, note that not al invalid characters necessarily will cause the primitiv operations to fail, but may
instead produceinvalid results.

env_var name value() = nonempty string()

Assuming that environment variables has been correctly set, a strings containing valid characters on the specific OS
for environment variable names and values using fi | e: nati ve_nanme_encodi ng() encoding. The first $=
characters appearing in the string separates environment variable name (on the left) from environment variable value
(on theright).

os _command() = atom() | io_lib:chars()

All characters needsto bevalid characterson the specificOSusingf i | e: nati ve_nane_encodi ng() encoding.
Note that specifically null characters (integer value zero) are not allowed. However, note that not all invalid characters
not necessarily will cause os: cnd/ 1 to fail, but may instead produce invalid results.

os_command opts() = #{max size => integer() >= 0 | infinity}
Optionsfor os: cnd/ 2
max_si ze
The maximum size of the datareturned by theos: cnd call. Seetheos: cnd/ 2 documentation for more details.

246 | Ericsson AB. All Rights Reserved.: Kernel

(01

Exports

cmd (Command) -> string()
cmd (Command, Options) -> string()

Types:
Command = os_conmmand()
Options = os_conmand_opt s()

Executes Conmrand in a command shell of the target OS, captures the standard output of the command, and returns
thisresult asa string.

Previous implementation used to alow all characters as long as they were integer values greater than or equal to
zero. This sometimes lead to unwanted results since null characters (integer value zero) often are interpreted as
string termination. The current implementation rejects these.

Examples:

LsOut = os:cmd("1s"), % on unix platform
DirOut = os:cmd("dir"), % on Win32 platform

Noticethat in some cases, standard output of acommand when called from another program (for example, os: cnd/ 1)
can differ, compared with the standard output of the command when called directly from an OS command shell.

os: cnd/ 2 wasadded in kernel-5.5 (OTP-20.2.1). It makesit possible to pass an options map as the second argument
in order to control the behaviour of os: cnd. The possible options are;
max_si ze

The maximum size of the data returned by the os: cnd call. This option is a safety feature that should be used
when the command executed can return avery large, possibly infinite, result.

> os:cmd("cat /dev/zero", #{ max size => 20 }).
[e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

find _executable(Name) -> Filename | false
find executable(Name, Path) -> Filename | false
Types:
Name = Path = Filename = string()
These two functions look up an executable program, with the specified name and a search path, in the same way as

theunderlying OS. f i nd_execut abl e/ 1 usesthe current execution path (that is, the environment variable PATH
on Unix and Windows).

Pat h, if specified, is to conform to the syntax of execution paths on the OS. Returns the absolute filename of the
executable program Nane, or f al se if the program is not found.

getenv() -> [env_var_nane_val ue()]

Returns a list of al environment variables. Each environment variable is expressed as a single string on the format
"Var Nane=Val ue" , where Var Nane is the name of the variable and Val ue itsvalue.

If Unicodefilenameencoding isin effect (seetheer | manual page), the strings can contain characterswith codepoints
> 255.

Ericsson AB. All Rights Reserved.: Kernel | 247

0s

getenv(VarName) -> Value | false
Types.
VarName = env_var_nane()
Value = env_var _val ue()
Returnsthe Val ue of the environment variable Var Nane, or f al se if the environment variable is undefined.

If Unicode filename encoding is in effect (seethe er | manual page), the strings Var Nane and Val ue can contain
characters with codepoints > 255.

getenv(VarName, DefaultValue) -> Value
Types:

VarName = env_var _nane()

DefaultValue = Value = env_var_val ue()

Returns the Val ue of the environment variable Var Nane, or Def aul t Val ue if the environment variable is
undefined.

If Unicode filename encoding is in effect (seethe er | manual page), the strings Var Nane and Val ue can contain
characters with codepoints > 255.

getpid() -> Value
Types:
Value = string()
Returns the process identifier of the current Erlang emulator in the format most commonly used by the OS
environment. Returns Val ue as a string containing the (usually) numerical identifier for a process. On Unix,

this is typically the return value of the get pi d() system call. On Windows, the process id as returned by the
Get Current Processl d() system cal isused.

putenv(VarName, Value) -> true
Types:
VarName = env_var _nane()
Value = env_var_val ue()
Setsanew Val ue for environment variable Var Nane.

If Unicode filename encoding is in effect (seethe er | manual page), the strings Var Nane and Val ue can contain
characters with codepoints > 255.

On Unix platforms, the environment is set using UTF-8 encoding if Unicode filename trandlation is in effect. On
Windows, the environment is set using wide character interfaces.

Var Nane is not alowed to contain an $= character. Previous implementations used to just et the $= character
through which silently caused erroneous results. Current implementation will instead throw abadar g exception.

set signal(Signal, Option) -> ok
Types:
Signal =
sighup | sigquit | sigabrt | sigalrm | sigterm | sigusrl |

248 | Ericsson AB. All Rights Reserved.: Kernel

(01

sigusr2 | sigchld | sigstop | sigtstp
Option = default | handle | ignore
Enables or disables OS signals.
Each signal my be set to one of the following options:

i gnore
Thissignal will beignored.
def aul t
Thissignal will use the default signal handler for the operating system.
handl e
Thissignal will notify er | _si gnal _ser ver whenitisreceived by the Erlang runtime system.

system time() -> integer()
Returnsthe current OSsystemtimein nat i ve time unit.

Thistimeis not amonotonically increasing time.

system time(Unit) -> integer()
Types:
Unit = erlang:tinme_unit()
Returns the current OS system time converted into the Uni t passed as argument.

Callingos: system time(Unit) isequivalenttoer| ang: convert _time_unit (os: systemtime(),
native, Unit).

|Thistime isnot amonotonically increasing time. |

timestamp() -> Timestamp
Types:
Timestamp = erl ang:ti mestanp()
Timestamp = { MegaSecs, Secs, MicroSecs}
Returns the current OS system time in the same format aser | ang: t i nest anp/ 0. The tuple can be used together
with function cal endar: now to_uni versal tine/1 or cal endar: now to_local tinme/l to get

calendar time. Using the calendar time, together with the M cr oSecs part of the return tuple from this function,
allows you to log time stamps in high resolution and consistent with the time in the rest of the OS.

Example of code formatting a string in format "DD Mon YYYY HH:MM:SS.mmmmmm", where DD is the day of
month, Monisthetextual monthname, YY Y'Y istheyear, HH:MM:SSisthetime, and mmmmmm isthe microseconds
in six positions:

Ericsson AB. All Rights Reserved.: Kernel | 249

0s

-module(print_time).

-export([format utc timestamp/0]).

format utc_timestamp() ->
TS = { , ,Micro} = os:timestamp(),
{{Year,Month,Day}, {Hour,Minute,Second}} =

calendar:now_to universal time(TS),
Mstr = element(Month,{"Jan","Feb", "Mar", "Apr", "May", "Jun","Jul",
"Aug","Sep","Oct","Nov","Dec"}),
io lib:format("~2w ~s ~4w ~2w:~2..0w:~2..0w.~6..0w",
[Day,Mstr,Year,Hour,Minute,Second,Micro]).

This module can be used as follows:

1> io:format("~s~n", [print time:format utc timestamp()]).
29 Apr 2009 9:55:30.051711

OS system time can also be retreived by system ti me/ O andsystem ti me/ 1.

perf counter() -> Counter
Types:
Counter = integer()

Returns the current performance counter value in per f _count er time unit. This is a highly optimized call that
might not be traceable.

perf counter(Unit) -> integer()
Types:
Unit = erlang:tinme_unit()
Returns a performance counter that can be used as a very fast and high resolution timestamp. This counter is read
directly from the hardware or operating system with the same guarantees. This means that two consecutive callsto the

function are not guaranteed to be monotonic, though it most likely will be. The performance counter will be converted
to the resolution passed as an argument.

1> T1 = os:perf _counter(1000),receive after 10000 -> ok end,T2 = os:perf counter(1000).
176525861

2> T2 - T1.

10004

type() -> {Osfamily, Osname}
Types:
Osfamily = unix | win32
Osname = atom()
Returnsthe Gsf ani | y and, in some cases, the s nane of the current OS.

On Unix, Gsnane has the same value as uname - s returns, but in lower case. For example, on Solaris 1 and 2,
itissunos.

On Windows, Gsnane isnt .

Think twice before using this function. Use module f i | enane if you want to inspect or build filenames in a
portable way. Avoid matching on atom OGsnane.

250 | Ericsson AB. All Rights Reserved.: Kernel

(01

unsetenv(VarName) -> true
Types.

VarName = env_var_namne()
Deletes the environment variable Var Name.

If Unicode filename encoding is in effect (see the er | manual page), the string Var Nane can contain characters
with codepoints > 255.

version() -> VersionString | {Major, Minor, Release}

Types.
VersionString
Major = Minor

string()
Release = integer() >= 0

Returns the OS version. On most systems, this function returns a tuple, but a string is returned instead if the system
has versions that cannot be expressed as three numbers.

|Think twice before using this function. If you still need to useit, lwayscal | os: type() first. |

Ericsson AB. All Rights Reserved.: Kernel | 251

pg2

Pg2

Erlang module

This module implements process groups. Each message can be sent to one, some, or al group members.

A group of processes can be accessed by a common name. For example, if thereisagroup named f oobar , there can
be a set of processes (which can be located on different nodes) that are all members of the group f oobar . There are
no special functions for sending a message to the group. Instead, client functions are to be written with the functions
get _nenbers/ 1 andget | ocal _nenbers/ 1 to determine which processes are members of the group. Then
the message can be sent to one or more group members.

If amember terminates, it is automatically removed from the group.

This module is used by module di sk_| og for managing distributed disk logs. The disk log names are used as
group names, which means that some action can be needed to avoid name clashes.

Data Types
name() = any()
The name of a process group.

Exports

create(Name :: name()) -> ok
Creates a new, empty process group. The group is globally visible on all nodes. If the group exists, nothing happens.

delete(Name :: nane()) -> ok
Deletes a process group.

get closest pid(Name) -> pid() | {error, Reason}
Types:
Name = nane()
Reason = {no process, Name} | {no such group, Name}

A useful dispatch function that can be used from client functions. It returns a process on the local node, if such a
process exists. Otherwise, it selects one randomly.

get local members(Name) ->
[pid()]1 | {error, {no such group, Name}}

Types:
Name = nane()

Returns all processes running on the local node in the group Nane. This function is to be used from within a client
function that accesses the group. It is therefore optimized for speed.

252 | Ericsson AB. All Rights Reserved.: Kernel

pg2

get members(Name) -> [pid()] | {error, {no such group, Name}}
Types.
Name = nane()

Returns all processes in the group Nane. This function is to be used from within a client function that accesses the
group. It is therefore optimized for speed.

join(Name, Pid :: pid()) -> ok | {error, {no such group, Name}}
Types.
Name = nane()

Joins the process Pi d to the group Nare. A process can join a group many times and must then leave the group the
same number of times.

leave(Name, Pid :: pid()) -> ok | {error, {no such group, Name}}
Types:
Name = nane()
Makes the process Pi d leave the group Nan®e. If the processis not a member of the group, ok is returned.

start() -> {ok, pid()} | {error, any()}
start_link() -> {ok, pid()} | {error, any()}

Starts the pg2 server. Normally, the server does not need to be started explicitly, as it is started dynamically if it
is needed. This is useful during development, but in a target system the server is to be started explicitly. Use the
configuration parametersfor ker nel (6) for this.

which groups() -> [Name :: nane()]
Returnsalist of all known groups.

See Also
kernel (6)

Ericsson AB. All Rights Reserved.: Kernel | 253

rpc

rpc

Erlang module

This module contains services similar to Remote Procedure Calls. It also contains broadcast facilities and parallel
evaluators. A remote procedure call isamethod to call afunction on aremote node and collect the answer. It isused for
collecting information on aremote node, or for running a function with some specific side effects on the remote node.

Data Types

key ()
Asreturned by async_cal | / 4.

Exports

abcast(Name, Msg) -> abcast

Types:
Name = atom()
Msg = term()

Equivalent toabcast ([node() | nodes()], Nane, MsgQ).

abcast(Nodes, Name, Msg) -> abcast
Types:

Nodes = [node()]

Name = atom()

Msg = term()

Broadcasts the message Ms g asynchronously to the registered process Name on the specified nodes.

async_call(Node, Module, Function, Args) -> Key
Types:
Node = node()
Module = module()
Function = atom()
Args = [term()]
Key = key()
Implements call streams with promises, atype of RPC that does not suspend the caller until the result is finished.

Instead, akey is returned, which can be used later to collect the value. The key can be viewed as a promise to deliver
the answer.

In this case, the key Key is returned, which can be used in a subsequent call toyi el d/ 1 ornb_yi el d/ 1, 2 to
retrieve the value of evaluating appl y(Modul e, Function, Args) onnodeNode.

yi el d/ Landnb_yi el d/ 1, 2 must be called by the same process from which this function was made otherwise
they will never yield correctly.

254 | Ericsson AB. All Rights Reserved.: Kernel

rpc

block call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types.

Node = node()

Module = module()

Function = atom()

Args = [term()]

Res = Reason = term()

Sameascal | / 4, but the RPC server at Node does not create a separate process to handle the call. Thus, thisfunction
can be used if the intention of the call is to block the RPC server from any other incoming requests until the request
has been handled. The function can also be used for efficiency reasons when very small fast functions are evaluated,
for example, BIFs that are guaranteed not to suspend.

block call(Node, Module, Function, Args, Timeout) ->
Res | {badrpc, Reason}

Types:
Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Timeout = timeout()

Sameasbl ock_cal | / 4, but with atime-out value in the same manner ascal | / 5.

call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types.
Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Evaluates appl y(Modul e, Function, Args) on node Node and returns the corresponding value Res, or
{badr pc, Reason} if thecal fails.

call(Node, Module, Function, Args, Timeout) ->
Res | {badrpc, Reason}

Types:

Ericsson AB. All Rights Reserved.: Kernel | 255

rpc

Node = node()

Module = module()
Function = atom()
Args = [term()]

Res = Reason = term()
Timeout = timeout()

Evaluates appl y(Modul e, Function, Args) onnode Node and returns the corresponding value Res, or
{badr pc, Reason} if thecall fails. Ti meout isatime-out value in milliseconds. If the call times out, Reason
isti meout.

If thereply arrives after the call times out, no message contaminates the call er's message queue, asthisfunction spawns
off amiddleman processto act as (avoid) destination for such an orphan reply. This feature also makes this function
more expensivethan cal | / 4 at the caller's end.

cast(Node, Module, Function, Args) -> true
Types:

Node = node()

Module = module()

Function = atom()

Args = [term()]

Evaluatesappl y(Mbdul e, Functi on, Args) onnodeNode. Noresponseisdelivered and the calling process
is not suspended until the evaluation is complete, asisthe casewithcal | / 4, 5.

eval everywhere(Module, Function, Args) -> abcast
Types:
Module = module()
Function = atom()
Args = [term()]
Equivalenttoeval _ever ywher e([node()| nodes()], Modul e, Function, Args).

eval everywhere(Nodes, Module, Function, Args) -> abcast
Types:
Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]
Evauatesappl y(Modul e, Functi on, Args) onthe specified nodes. No answers are collected.

multi server call(Name, Msg) -> {Replies, BadNodes}
Types:

256 | Ericsson AB. All Rights Reserved.: Kernel

rpc

Name = atom()

Msg = term()

Replies = [Reply :: term()]

BadNodes = [node()]
Equivalenttormul ti _server _cal | ([node()| nodes()], Nane, Msg).

multi server call(Nodes, Name, Msg) -> {Replies, BadNodes}
Types:

Nodes = [node()]

Name = atom()

Msg = term()

Replies = [Reply :: term()]

BadNodes = [nhode()]
Can be used when interacting with servers called Nanre on the specified nodes. It is assumed that the servers receive
messages in the format { Fr om Msg} and reply using From ! {Nane, Node, Repl y}, where Node isthe
name of the node where the server islocated. The function returns{ Repl i es, BadNodes}, whereRepl i es is
alist of al Repl y values, and BadNodes is one of the following:
« Aligt of the nodes that do not exist
e Aligt of the nodes where the server does not exist
e A list of the nodes where the server terminated before sending any reply.

multicall(Module, Function, Args) -> {ResL, BadNodes}
Types.
Module = module()
Function = atom()
Args = [term()]
ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

Equivalenttonul ti cal | ([node()| nodes()], Mdule, Function, Args, infinity).

multicall(Nodes, Module, Function, Args) -> {ResL, BadNodes}
Types.

Nodes = [node()]

Module = module()

Function = atom()

Args = [term()]

ResL = [Res :: term() | {badrpc, Reason :: term()}]

BadNodes = [node()]

Equivalenttormul ti cal | (Nodes, Moddul e, Function, Args, infinity).

multicall(Module, Function, Args, Timeout) -> {ResL, BadNodes}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 257

rpc

Module = module()

Function = atom()

Args = [term()]

Timeout = timeout()

ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

Equivalenttorul ti cal | ([node() | nodes()], Modul e, Function, Args, Tineout).

multicall(Nodes, Module, Function, Args, Timeout) ->
{ResL, BadNodes}

Types:

Nodes = [node()]

Module = module()

Function = atom()

Args = [term()]

Timeout = timeout()

ResL = [Res :: term() | {badrpc, Reason :: term()}]

BadNodes = [node()]
In contrast to an RPC, amulticall isan RPC that is sent concurrently from one client to multiple servers. Thisis useful
for collecting information from a set of nodes, or for calling a function on a set of nodes to achieve some side effects.

It is semantically the same asiteratively making a series of RPCson all the nodes, but the multicall isfaster, as all the
requests are sent at the same time and are collected one by one as they come back.

The function evaluates appl y(Modul e, Function, Args) on the specified nodes and collects the answers.
It returns{ ResL, BadNodes}, where BadNodes isalist of the nodes that do not exist, and ResL isalist of the
returnvalues, or { badr pc, Reason} forfailing calls. Ti meout isatime (integer) in milliseconds, ori nfi nity.

The following example is useful when new object codeisto beloaded on all nodesin the network, and indicates some
side effects that RPCs can produce;

%% Find object code for module Mod
{Mod, Bin, File} = code:get object code(Mod),

%% and load it on all nodes including this one
{ResL, } = rpc:multicall(code, load binary, [Mod, File, Bin]),

%% and then maybe check the ResL list.

nb yield(Key) -> {value, Val} | timeout
Types.

Key = key()

Val = (Res :: term()) | {badrpc, Reason :: term()}
Equivalenttonb_yi el d(Key, 0).

nb yield(Key, Timeout) -> {value, Val} | timeout
Types:

258 | Ericsson AB. All Rights Reserved.: Kernel

rpc

Key = key()
Timeout = timeout()
Val = (Res :: term()) | {badrpc, Reason :: term()}

Non-blocking version of yi el d/ 1. It returns the tuple { val ue, Val } when the computation is finished, or
ti meout when Ti meout milliseconds has elapsed.

This function must be called by the same process from which async_cal | / 4 was made otherwise it will only
returnt i meout .

parallel eval(FuncCalls) -> ResL
Types:
FuncCalls = [{Module, Function, Args}]
Module = module()
Function = atom()
Args = ResL = [term()]

Evaluates, for every tuplein FuncCal | s, appl y(Modul e, Function, Args) onsomenodein the network.
Returnsthelist of return values, in the same order asin FuncCal | s.

pinfo(Pid) -> [{Item, Info}] | undefined
Types:

Pid = pid()

Item = atom()

Info = term()

Location transparent version of the BIF er | ang: process_i nf o/ 1 in ERTS.

pinfo(Pid, Item) -> {Item, Info} | undefined | []
pinfo(Pid, ItemList) -> [{Item, Info}] | undefined | []
Types.

Pid = pid()

Item = atom()

ItemList = [Item]

Info = term()

Location transparent version of the BIF er | ang: process_i nf o/ 2 in ERTS.

pmap(FuncSpec, ExtraArgs, Listl) -> List2
Types:

Ericsson AB. All Rights Reserved.: Kernel | 259

rpc

FuncSpec = {Module, Function}
Module = module()

Function = atom()

ExtraArgs = [term()]

Listl = [Elem :: term()]
List2 = [term()]

Evaluatesappl y(Modul e, Function, [El enj ExtraArgs]) foreveryelementEl eminLi st 1,inparallé.
Returnsthelist of return values, in the same order asin Li st 1.

sbcast(Name, Msg) -> {GoodNodes, BadNodes}

Types:
Name = atom()
Msg = term()

GoodNodes = BadNodes = [node()]
Equivalenttosbcast ([node() | nodes()], Nane, Msg).

sbcast(Nodes, Name, Msg) -> {GoodNodes, BadNodes}

Types:
Name = atom()
Msg = term()

Nodes = GoodNodes = BadNodes = [node()]

Broadcasts the message Ms g synchronously to the registered process Narre on the specified nodes.
Returns{ GoodNodes, BadNodes} ,whereGoodNodes isthelist of nodesthat have Nane asaregistered process.

The function is synchronous in the sense that it is known that all servers have received the message when the call
returns. It is not possible to know that the servers have processed the message.

Any further messages sent to the servers, after thisfunction hasreturned, arereceived by all serversafter this message.

server_call(Node, Name, ReplyWrapper, Msg) ->
Reply | {error, Reason}

Types:
Node node()
Name = atom()
ReplyWrapper = Msg = Reply = term()
Reason = nodedown

Can be used when interacting with aserver called Nanme on node Node. It isassumed that the server receives messages
in the format { From Msg} and repliesusing From ! { Repl yW apper, Node, Reply}. Thisfunction
makes such a server call and ensures that the entire call is packed into an atomic transaction, which either succeeds
or fails. It never hangs, unless the server itself hangs.

The function returns the answer Repl y as produced by the server Narne, or { err or, Reason}.

yield(Key) -> Res | {badrpc, Reason}
Types:

260 | Ericsson AB. All Rights Reserved.: Kernel

rpc

Key
Res

key()
Reason = term()

Returnsthe promised answer from apreviousasync_cal | / 4. If theanswer isavailable, it isreturned immediately.
Otherwise, the calling process is suspended until the answer arrives from Node.

This function must be called by the same process from whichasync_cal | / 4 was made otherwise it will never
return.

Ericsson AB. All Rights Reserved.: Kernel | 261

seq_trace

seq_trace

Erlang module

Sequential tracing makes it possible to trace all messages resulting from one initial message. Sequential tracing
is independent of the ordinary tracing in Erlang, which is controlled by the er | ang: t race/ 3 BIF. For more
information about what sequential tracing is and how it can be used, see section Sequential Tracing.

seq_t r ace provides functions that control all aspects of sequential tracing. There are functions for activation,
deactivation, inspection, and for collection of the trace outpuit.

Data Types
token() = {integer(), boolean(), term(), term(), term()}
An opague term (atuple) representing a trace token.

Exports

set token(Token) -> PreviousToken | ok
Types:
Token = PreviousToken = [] | token()

Sets the trace token for the calling process to Token. If Token == [] then tracing is disabled, otherwise
Token should be an Erlang term returned fromget _t oken/ 0 or set _t oken/ 1.set _t oken/ 1 can beused to
temporarily exclude message passing from the trace by setting the trace token to empty like this:

0ldToken = seq trace:set token([]), % set to empty and save
% old value
% do something that should not be part of the trace
io:format("Exclude the signalling caused by this~n"),
seq trace:set token(0ldToken), % activate the trace token again

Returns the previous value of the trace token.

set token(Component, Val) -> {Component, OldVal}
Types:
Component = conponent ()

Val = Oldval = val ue()
component() = label | serial | flag()

flag() =
send | 'receive' | print | timestamp | monotonic_timestamp |
strict monotonic timestamp
value() =
(Label :: term()) |
{Previous :: integer() >= 0, Current :: integer() >= 0} |

(Bool :: boolean())
Setstheindividual Conponent of the trace token to Val . Returns the previous value of the component.

262 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

set _token(l abel, Label)

Thel abel component is aterm which identifies al events belonging to the same sequentia trace. If several
sequential traces can be active ssimultaneoudly, | abel isused to identify the separate traces. Default is 0.

Labels were restricted to small signed integers (28 hits) prior to OTP 21. The trace token will be silenty
dropped if it crosses over to a node that does not support the label.

set _token(serial, Serial Value)

Serial Val ue = {Previous, Current}.Theserial component containscounterswhich enablesthe
traced messagesto be sorted, should never be set explicitly by the user asthese countersare updated automatically.
Defaultis{ 0, O0}.

set _token(send, Bool)

A tracetokenflag (t rue | fal se) which enables/disables tracing on message sending. Default isf al se.
set _token('receive', Bool)

A tracetokenflag (t rue | fal se)which enables/disablestracing on message reception. Default isf al se.
set _token(print, Bool)

Atracetokenflag(t rue | fal se)whichenables/disablestracingonexplicitcalstoseq_t race: print/ 1.
Defaultisf al se.

set _token(ti mestanp, Bool)

A tracetokenflag (t rue | f al se) which enables/disables atimestamp to be generated for each traced event.
Defaultisf al se.

set _token(strict_nonotonic_tinmestanp, Bool)

A trace token flag (true | fal se) which enables/disables a strict monotonic timestamp to be
generated for each traced event. Default is f al se. Timestamps will consist of Erlang monotonic time
and a monatonically increasing integer. The time-stamp has the same format and value as produced by
{erl ang: nonot oni c_ti ne(nanosecond), erl ang: uni que_i nteger ([nonotonic])}.

set _token(nonotonic_tinestanp, Bool)

A tracetokenflag (t rue | fal se) which enables/disables a strict monotonic timestamp to be generated for
each traced event. Default isf al se. Timestampswill use Erlang monotonic time. The time-stamp has the same
format and value as produced by er | ang: nonot oni c_t i ne(nanosecond) .

If multiple timestamp flags are passed, t i mest anp has precedence over stri ct _nonot oni c_ti mest anp
which in turn has precedence over nonot oni c_t i mest anp. All timestamp flags are remembered, so if two are
passed and the one with highest precedence later is disabled the other one will become active.

get token() -> [] | token()

Returns the value of the trace token for the calling process. If [] isreturned, it means that tracing is not active. Any
other valuereturned isthevalue of an activetrace token. Thevaluereturned can beused asinputtotheset _t oken/ 1
function.

get token(Component) -> {Component, Val}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 263

seq_trace

Component = conponent ()
Val = val ue()
component() = label | serial | flag()

flag() =
send | 'receive' | print | timestamp | monotonic timestamp |
strict monotonic timestamp
value() =
(Label :: term()) |
{Previous :: integer() >= 0, Current :: integer() >= 0} |

(Bool :: boolean())

Returns the value of the trace token component Conponent . See set_token/2 for possible values of Conponent
and Val .

print(TraceInfo) -> ok
Types.
TraceInfo = term()

Puts the Erlang term Tr acel nf o into the sequential trace output if the calling process currently is executing within
asequential trace and the pr i nt flag of the trace token is set.

print(Label, TraceInfo) -> ok
Types.
Label = integer()
TraceInfo = term()

Same as pri nt/ 1 with the additiona condition that Tr acel nf o is output only if Label is egua to the label
component of the trace token.

reset trace() -> true

Setsthe trace token to empty for all processes on the local node. The process internal counters used to create the serial
of the trace token is set to 0. The trace token is set to empty for all messages in message queues. Together this will
effectively stop all ongoing sequential tracing in the local node.

set system tracer(Tracer) -> OldTracer

Types.
Tracer = OldTracer = tracer()
tracer() =
(Pid :: pid()) |
port() |
(TracerModule :: {module(), term()}) |
false

Sets the system tracer. The system tracer can be either a process, port or tracer module denoted by Tr acer . Returns
the previous value (which can bef al se if no system tracer is active).

Failure: { badar g, |Info}} if Pi disnotanexistinglocal pid.

get system tracer() -> Tracer
Types:

264 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

Tracer = tracer()

tracer() =
(Pid :: pid()) |
port() |
(TracerModule :: {module(), term()}) |
false

Returnsthe pid, port identifier or tracer module of the current system tracer or f al se if no system tracer is activated.

Trace Messages Sent to the System Tracer

The format of the messages is one of the following, depending on if flag t i mest anp of the trace token is set to
trueorfal se:

{seq_trace, Label, SeqTraceInfo, TimeStamp}
or

{seq_trace, Label, SeqTraceInfo}

Where:
Label = int()
TimeStamp = {Seconds, Milliseconds, Microseconds}
Seconds = Milliseconds = Microseconds = int()

SeqTr acel nf o can have the following formats:
{send, Serial, From To, Message}

Used when a process Fr omwith itstrace token flag pri nt settot r ue has sent amessage.
{'receive', Serial, From To, Message}

Used when a process To receives a message with atrace token that hasflag' recei ve' settot r ue.
{print, Serial, From _, Info}

Used when a process Fr omhas called seq_t race: pri nt (Label, Tracel nf o) and has atrace token
withflagpri nt settotrue,and| abel settolLabel .

Seri al isatuple{ Previ ousSerial, ThisSerial},where

e Integer Previ ousSeri al denotes the seria counter passed in the last received message that carried a trace
token. If the processis the first in a new sequential trace, Pr evi ousSer i al isset to the value of the process
internal "trace clock".

* Integer Thi sSeri al isthe serial counter that a process sets on outgoing messages. It is based on the process
internal "trace clock", which isincremented by one before it is attached to the trace token in the message.

Sequential Tracing

Sequential tracing is away to trace a sequence of messages sent between different local or remote processes, where
the sequenceisinitiated by a single message. In short, it works as follows:

Each process has a trace token, which can be empty or not empty. When not empty, the trace token can be seen as
thetuple{ Label , Fl ags, Serial, Front.Thetracetokenispassedinvisibly with each message.

To start a sequential trace, the user must explicitly set the trace token in the process that will send the first message
in a sequence.

The trace token of a process is set each time the process matches a message in a receive statement, according to the
trace token carried by the received message, empty or not.

Ericsson AB. All Rights Reserved.: Kernel | 265

seq_trace

On each Erlang node, a process can be set as the system tracer. This process will receive trace messages each time a
message with atrace token is sent or received (if thetracetokenflagsend or ' r ecei ve' isset). The system tracer
can then print each trace event, writeit to afile, or whatever suitable.

The system tracer only receives those trace events that occur locally within the Erlang node. To get the whole
picture of a sequential trace, involving processes on many Erlang nodes, the output from the system tracer on each
involved node must be merged (offline).

The following sections describe sequential tracing and its most fundamental concepts.

Trace Token

Each process has a current trace token. Initially, the token is empty. When the process sends a message to another
process, a copy of the current token is sent "invisibly" along with the message.

The current token of aprocessis set in one of the following two ways:

« Explicitly by the processitself, through acall toseq_t race: set _t oken/ 1, 2
* When amessageis received

In both cases, the current token is set. In particular, if the token of a received message is empty, the current token of
the processis set to empty.

A trace token contains alabel and a set of flags. Both the label and the flags are set in both alternatives above.

Serial

The trace token contains a component called seri al . It consists of two integers, Previ ous and Current.
The purpose is to uniquely identify each traced event within a trace sequence, as well as to order the messages
chronologically and in the different branches, if any.

The algorithm for updating Ser i al can be described as follows:

Let each process have two counters, pr ev_cnt and curr _cnt, both are set to O when a process is created. The
counters are updated at the following occasions:

* When the processisabout to send a message and the trace token isnot empty.

Let the serial of thetracetoken bet prev andt curr.

curr_cnt := curr_cnt + 1
tprev := prev_cnt
tcurr := curr_cnt

The trace token with t prev andt cur r isthen passed a ong with the message.

e Whentheprocesscallsseq trace: print(Label, Info),Label matchesthelabe part of thetrace
token and thetracetoken print flagist r ue.

The agorithm is the same as for send above.
* When a messageisreceived and contains a non-empty trace token.

The process trace token is set to the trace token from the message.
Let the serial of thetracetokenbet prev andt curr.

266 | Ericsson AB. All Rights Reserved.: Kernel

seq_trace

if (curr_cnt < tcurr)
curr_cnt := tcurr
prev_cnt := tcurr

curr _cnt of aprocessisincremented each time the processisinvolved in a sequentia trace. The counter can reach
its limit (27 bits) if aprocessis very long-lived and is involved in much sequential tracing. If the counter overflows,
the serial for ordering of the trace events cannot be used. To prevent the counter from overflowing in the middle of a
sequential trace, functionseq_trace: reset _trace/ 0 canbecaledtoresetprev_cnt andcurr_cnt of al
processes in the Erlang node. This function also sets all trace tokens in processes and their message queues to empty,
and thus stops all ongoing sequentia tracing.

Performance Considerations

The performance degradation for a system that is enabled for sequential tracing is negligible as long as no tracing
is activated. When tracing is activated, there is an extra cost for each traced message, but all other messages are
unaffected.

Ports
Sequential tracing is not performed across ports.

If the user for some reason wants to pass the trace token to a port, this must be done manually in the code of the port
controlling process. The port controlling processes have to check the appropriate sequential trace settings (as obtained
fromseq_trace: get _t oken/ 1) andinclude trace information in the message data sent to their respective ports.

Similarly, for messages received from a port, a port controller has to retrieve trace-specific information, and set
appropriate sequentia trace flagsthrough callstoseq_t race: set _t oken/ 2.

Distribution

Sequential tracing between nodes is performed transparently. This applies to C-nodes built with Er | _| nt er f ace
too. A C-node built with Er | _I nt er f ace only maintains one trace token, which means that the C-node appears as
one process from the sequential tracing point of view.

Example of Use
This example gives arough idea of how the new primitives can be used and what kind of output it produces.
Assume that you have an initiating processwith Pi d == <0. 30. 0> likethis:

-module(seqgex) .
-compile(export all).

loop(Port) ->
receive
{Port,Message} ->
seq trace:set token(label,17),
seq trace:set token('receive',true),
seq trace:set token(print,true),
seq trace:print(17,"**** Trace Started ****x"),
call server ! {self(),the message};
{ack,Ack} ->
ok
end,
loop(Port).

And aregistered processcal | _server withPi d == <0. 31. 0> likethis:

Ericsson AB. All Rights Reserved.: Kernel | 267

seq_trace

loop() ->
receive
{PortController,Message} ->

Ack = {received, Message},
seq_trace:print(17,"We are here now"),
PortController ! {ack,Ack}

end,

loop().

A possible output from the system'ssequent i al _t racer canbelikethis:

17:<0.30.0> Info {0,1} WITH

k*k*kk Trgce Started *xxx!

17:<0.31.0> Received {0,2} FROM <0.30.0> WITH
{<0.30.0>,the message}

17:<0.31.0> Info {2,3} WITH

"We are here now"

17:<0.30.0> Received {2,4} FROM <0.31.0> WITH
{ack,{received, the message}}

The implementation of a system tracer process that produces this printout can look like this:

tracer() ->
receive
{seq trace,Label,TraceInfo} ->
print trace(Label,TraceInfo,false);
{seq trace,Label,TraceInfo,Ts} ->
print trace(Label,TracelInfo,Ts);
Other -> ignore
end,
tracer().

print trace(Label,TraceInfo,false) ->
io:format("~p:", [Labell),
print trace(TraceInfo);

print trace(Label,TraceInfo,Ts) ->
io:format("~p ~p:",[Label,Ts]),
print trace(TraceInfo).

print trace({print,Serial,From, ,Info}) ->
io:format("~p Info ~p WITH~n~p~n", [From,Serial,Infol);
print trace({'receive',Serial,From,To,Message}) ->
io:format("~p Received ~p FROM ~p WITH~n~p~n",
[To,Serial,From,Messagel);
print trace({send,Serial,From,To,Message}) ->
io:format("~p Sent ~p TO ~p WITH~n~p~n",
[From,Serial,To,Messagel]).

The codethat creates aprocessthat runsthistracer function and setsthat process asthe system tracer can look like this:

start() ->
Pid = spawn(?MODULE, tracer,[1]),
seq_trace:set system tracer(Pid), % set Pid as the system tracer
ok.

With afunction liket est / 0, the whole example can be started:

test() ->
P = spawn(?MODULE, loop, [port]),
register(call _server, spawn(?MODULE, loop, [1)),
start(),
P ! {port,message}.

268 | Ericsson AB. All Rights Reserved.: Kernel

user

user

Erlang module

user isaserver that responds to all messages defined in the I/O interface. The codein user . er| can be used as
amodel for building alternative I/O servers.

Ericsson AB. All Rights Reserved.: Kernel | 269

wrap_log_reader

wrap_log reader

Erlang module

Thismodule makesit possibleto read internally formatted wrap disk logs, seedi sk_| og(3) .wap_| og_r eader
does not interferewith di sk_| og activities; there is however abug in thisversion of thewr ap_| og_r eader , see
section Known Limitations.

A wrap disk log file consists of many files, called index files. A log file can be opened and closed. Also, asingleindex
file can be opened separately. If anon-existent or non-internally formatted file is opened, an error message isreturned.
If thefileis corrupt, no attempt is made to repair it, but an error message is returned.

If alog is configured to be distributed, it is possible that all items are not logged on all nodes. wr ap_| og_r eader
only reads the log on the called node; it is up to the user to be sure that all items are read.

Data Types
continuation()
Continuation returned by open/ 1, 2 or chunk/ 1, 2.

Exports

chunk(Continuation) -> chunk_ret ()
chunk(Continuation, N) -> chunk_ret()
Types:

Continuation = continuation()

N = infinity | integer() >=1

chunk ret() =

{Continuation2, Terms :: [term()]} |
{Continuation2,
Terms :: [term()],

Badbytes :: integer() >= 0} |
{Continuation2, eof} |
{error, Reason :: term()}

Enables to efficiently read the terms that are appended to alog. Minimises disk 1/O by reading 64 kilobyte chunks
from thefile.

Thefirst timechunk() iscaled, aninitia continuation returned from open/ 1 or open/ 2 must be provided.

When chunk/ 3 iscalled, N control s the maximum number of termsthat are read from thelog in each chunk. Defaults
toi nfi nity, which meansthat all the terms contained in the 8K chunk are read. If less than N terms are returned,
this does not necessarily mean that end of file is reached.

Returnsatuple{ Cont i nuati on2, Ternms},whereTer s isalist of termsfoundinthelog. Cont i nuati on2
is yet another continuation that must be passed on to any subsequent calls to chunk() . With a series of calls to
chunk() , itisthen possible to extract all terms from alog.

Returns atuple{ Cont i nuati on2, Terns, Badbyt es} if thelogisopenedinread only mode and the read
chunk is corrupt. Badbyt es indicates the number of non-Erlang terms found in the chunk. Notice that the log is
not repaired.

Returns{ Cont i nuati on2, eof} whentheendof thelogisreached,and{ error, Reason} if anerror occurs.

270 | Ericsson AB. All Rights Reserved.: Kernel

wrap_log_reader

The returned continuation either is or is not valid in the next call to this function. This is because the log can wrap
and delete the file into which the continuation points. To ensure this does not occur, the log can be blocked during
the search.

close(Continuation) -> ok | {error, Reason}
Types:

Continuation = continuation()

Reason = fil e: posi x()

Closesalog file properly.

open(Filename) -> open_ret()
open(Filename, N) -> open_ret()
Types:
Filename = string() | atom()
N = integer()

open ret() =
{ok, Continuation :: continuation()} |
{error, Reason :: tuple()}

Fi | ename specifies the name of thefile to be read.

N specifies the index of the file to be read. If Nis omitted, the whole wrap log file is read; if it is specified, only the
specified index fileis read.

Returns{ ok, Conti nuati on} if thelog/index file is opened successfully. Cont i nuat i on isto be used when
chunking or closing thefile.

Returns{error, Reason} foral errors.

Known Limitations

This version of wr ap_| og_r eader does not detect if di sk_| og wraps to a new index file between a cdl to
wrap_| og_reader: open() and the first cal to wrap_| og_r eader: chunk() . If this occurs, the call to
chunk() readsthelast logged itemsin the log file, as the opened index file was truncated by di sk_I og.

See Also
di sk_1 og(3)

Ericsson AB. All Rights Reserved.: Kernel | 271

zlib

zlib

Erlang module

This moduleis moved to the ERTS application.

272 | Ericsson AB. All Rights Reserved.: Kernel

	Kernel
	Kernel User's Guide
	Introduction
	Scope
	Prerequisites

	Logging
	Overview
	Logger API
	Log Level
	Log Message
	Metadata

	Filters
	Handlers
	Formatters
	Configuration
	Primary Logger Configuration
	Handler Configuration
	Kernel Configuration Parameters
	Configuration Examples

	Backwards Compatibility with error_logger
	Error Handling
	Example: Add a handler to log info events to file
	Example: Implement a handler
	Protecting the Handler from Overload
	Message Queue Length
	Controlling Bursts of Log Requests
	Terminating an Overloaded Handler

	Logger Proxy
	See Also

	Reference Manual
	kernel
	app
	application
	ensure_all_started/1
	ensure_all_started/2
	ensure_started/1
	ensure_started/2
	get_all_env/0
	get_all_env/1
	get_all_key/0
	get_all_key/1
	get_application/0
	get_application/1
	get_env/1
	get_env/2
	get_env/3
	get_key/1
	get_key/2
	load/1
	load/2
	loaded_applications/0
	set_env/1
	set_env/2
	permit/2
	set_env/3
	set_env/4
	start/1
	start/2
	start_type/0
	stop/1
	takeover/2
	unload/1
	unset_env/2
	unset_env/3
	which_applications/0
	which_applications/1
	Module:start/2
	Module:start_phase/3
	Module:prep_stop/1
	Module:stop/1
	Module:config_change/3

	auth
	cookie/0
	cookie/1
	is_auth/1
	node_cookie/1
	node_cookie/2

	code
	set_path/1
	get_path/0
	add_path/1
	add_pathz/1
	add_patha/1
	add_paths/1
	add_pathsz/1
	add_pathsa/1
	del_path/1
	replace_path/2
	load_file/1
	load_abs/1
	ensure_loaded/1
	load_binary/3
	atomic_load/1
	prepare_loading/1
	finish_loading/1
	ensure_modules_loaded/1
	delete/1
	purge/1
	soft_purge/1
	is_loaded/1
	all_loaded/0
	which/1
	get_object_code/1
	root_dir/0
	lib_dir/0
	lib_dir/1
	lib_dir/2
	compiler_dir/0
	priv_dir/1
	objfile_extension/0
	stick_dir/1
	unstick_dir/1
	is_sticky/1
	where_is_file/1
	clash/0
	module_status/1
	modified_modules/0
	is_module_native/1
	get_mode/0

	config
	disk_log
	accessible_logs/0
	alog/2
	balog/2
	alog_terms/2
	balog_terms/2
	block/1
	block/2
	change_header/2
	change_notify/3
	change_size/2
	chunk/2
	chunk/3
	bchunk/2
	bchunk/3
	chunk_info/1
	chunk_step/3
	close/1
	format_error/1
	inc_wrap_file/1
	info/1
	lclose/1
	lclose/2
	log/2
	blog/2
	log_terms/2
	blog_terms/2
	open/1
	pid2name/1
	reopen/2
	reopen/3
	breopen/3
	sync/1
	truncate/1
	truncate/2
	btruncate/2
	unblock/1

	erl_boot_server
	add_slave/1
	delete_slave/1
	start/1
	start_link/1
	which_slaves/0

	erl_ddll
	demonitor/1
	format_error/1
	info/0
	info/1
	info/2
	load/2
	load_driver/2
	loaded_drivers/0
	monitor/2
	reload/2
	reload_driver/2
	try_load/3
	try_unload/2
	unload/1
	unload_driver/1

	erl_epmd
	start_link/0
	register_node/2
	register_node/3
	port_please/2
	port_please/3
	address_please/3
	names/1

	erl_prim_loader
	erlang
	error_handler
	raise_undef_exception/3
	undefined_function/3
	undefined_lambda/3

	error_logger
	add_report_handler/1
	add_report_handler/2
	delete_report_handler/1
	error_msg/1
	error_msg/2
	format/2
	error_report/1
	error_report/2
	get_format_depth/0
	info_msg/1
	info_msg/2
	info_report/1
	info_report/2
	logfile/1
	logfile/1
	logfile/1
	tty/1
	warning_map/0
	warning_msg/1
	warning_msg/2
	warning_report/1
	warning_report/2

	file
	advise/4
	allocate/3
	change_group/2
	change_mode/2
	change_owner/2
	change_owner/3
	change_time/2
	change_time/3
	close/1
	consult/1
	copy/2
	copy/3
	datasync/1
	del_dir/1
	delete/1
	eval/1
	eval/2
	format_error/1
	get_cwd/0
	get_cwd/1
	list_dir/1
	list_dir_all/1
	make_dir/1
	make_link/2
	make_symlink/2
	native_name_encoding/0
	open/2
	path_consult/2
	path_eval/2
	path_open/3
	path_script/2
	path_script/3
	pid2name/1
	position/2
	pread/2
	pread/3
	pwrite/2
	pwrite/3
	read/2
	read_file/1
	read_file_info/1
	read_file_info/2
	read_line/1
	read_link/1
	read_link_all/1
	read_link_info/1
	read_link_info/2
	rename/2
	script/1
	script/2
	sendfile/2
	sendfile/5
	set_cwd/1
	sync/1
	truncate/1
	write/2
	write_file/2
	write_file/3
	write_file_info/2
	write_file_info/3

	gen_sctp
	abort/2
	close/1
	connect/4
	connect/5
	connect_init/4
	connect_init/5
	controlling_process/2
	eof/2
	error_string/1
	listen/2
	listen/2
	open/0
	open/1
	open/1
	open/2
	peeloff/2
	recv/1
	recv/2
	send/3
	send/4

	gen_tcp
	accept/1
	accept/2
	close/1
	connect/3
	connect/4
	controlling_process/2
	listen/2
	recv/2
	recv/3
	send/2
	shutdown/2

	gen_udp
	close/1
	controlling_process/2
	open/1
	open/2
	recv/2
	recv/3
	send/4

	global
	del_lock/1
	del_lock/2
	notify_all_name/3
	random_exit_name/3
	random_notify_name/3
	re_register_name/2
	re_register_name/3
	register_name/2
	register_name/3
	registered_names/0
	send/2
	set_lock/1
	set_lock/2
	set_lock/3
	sync/0
	trans/2
	trans/3
	trans/4
	unregister_name/1
	whereis_name/1

	global_group
	global_groups/0
	info/0
	monitor_nodes/1
	own_nodes/0
	registered_names/1
	send/2
	send/3
	sync/0
	whereis_name/1
	whereis_name/2

	heart
	set_cmd/1
	clear_cmd/0
	get_cmd/0
	set_callback/2
	clear_callback/0
	get_callback/0
	set_options/1
	get_options/0

	inet
	close/1
	format_error/1
	get_rc/0
	getaddr/2
	getaddrs/2
	gethostbyaddr/1
	gethostbyname/1
	gethostbyname/2
	gethostname/0
	getifaddrs/0
	getifaddrs/1
	getopts/2
	getstat/1
	getstat/2
	i/0
	i/1
	i/2
	ntoa/1
	parse_address/1
	parse_ipv4_address/1
	parse_ipv4strict_address/1
	parse_ipv6_address/1
	parse_ipv6strict_address/1
	ipv4_mapped_ipv6_address/1
	parse_strict_address/1
	peername/1
	peernames/1
	peernames/2
	port/1
	setopts/2
	sockname/1
	socknames/1
	socknames/2

	inet_res
	getbyname/2
	getbyname/3
	gethostbyaddr/1
	gethostbyaddr/2
	gethostbyname/1
	gethostbyname/2
	gethostbyname/3
	lookup/3
	lookup/4
	lookup/5
	resolve/3
	resolve/4
	resolve/5
	nslookup/3
	nslookup/4
	nslookup/4
	nnslookup/4
	nnslookup/5

	init
	logger
	emergency/1
	emergency/2
	emergency/2
	alert/1
	alert/2
	alert/2
	critical/1
	critical/2
	critical/2
	error/1
	error/2
	error/2
	warning/1
	warning/2
	warning/2
	notice/1
	notice/2
	notice/2
	info/1
	info/2
	info/2
	debug/1
	debug/2
	debug/2
	log/2
	log/3
	log/3
	log/3
	log/4
	log/4
	add_handler/3
	add_handler_filter/3
	add_handlers/1
	add_handlers/1
	add_primary_filter/2
	get_config/0
	get_handler_config/0
	get_handler_config/1
	get_handler_ids/0
	get_primary_config/0
	get_proxy_config/0
	get_module_level/0
	get_module_level/1
	get_process_metadata/0
	i/0
	i/1
	remove_handler/1
	remove_handler_filter/2
	remove_primary_filter/1
	set_application_level/2
	set_handler_config/2
	set_handler_config/3
	set_handler_config/3
	set_handler_config/3
	set_handler_config/3
	set_handler_config/3
	set_primary_config/1
	set_primary_config/2
	set_primary_config/2
	set_primary_config/2
	set_proxy_config/1
	set_module_level/2
	set_process_metadata/1
	unset_application_level/1
	unset_module_level/0
	unset_module_level/1
	unset_process_metadata/0
	update_formatter_config/2
	update_formatter_config/3
	update_handler_config/2
	update_handler_config/3
	update_handler_config/3
	update_handler_config/3
	update_handler_config/3
	update_handler_config/3
	update_primary_config/1
	update_process_metadata/1
	update_proxy_config/1
	compare_levels/2
	format_report/1
	timestamp/0
	HModule:adding_handler/1
	HModule:changing_config/3
	HModule:filter_config/1
	HModule:log/2
	HModule:removing_handler/1
	FModule:check_config/1
	FModule:format/2

	logger_filters
	domain/2
	level/2
	progress/2
	remote_gl/2

	logger_formatter
	check_config/1
	format/2

	logger_std_h
	filesync/1

	logger_disk_log_h
	filesync/1

	net_adm
	dns_hostname/1
	host_file/0
	localhost/0
	names/0
	names/1
	ping/1
	world/0
	world/1
	world_list/1
	world_list/2

	net_kernel
	allow/1
	connect_node/1
	get_net_ticktime/0
	getopts/2
	monitor_nodes/1
	monitor_nodes/2
	set_net_ticktime/1
	set_net_ticktime/2
	setopts/2
	start/1
	start/1
	start/1
	stop/0

	os
	cmd/1
	cmd/2
	find_executable/1
	find_executable/2
	getenv/0
	getenv/1
	getenv/2
	getpid/0
	putenv/2
	set_signal/2
	system_time/0
	system_time/1
	timestamp/0
	perf_counter/0
	perf_counter/1
	type/0
	unsetenv/1
	version/0

	pg2
	create/1
	delete/1
	get_closest_pid/1
	get_local_members/1
	get_members/1
	join/2
	leave/2
	start/0
	start_link/0
	which_groups/0

	rpc
	abcast/2
	abcast/3
	async_call/4
	block_call/4
	block_call/5
	call/4
	call/5
	cast/4
	eval_everywhere/3
	eval_everywhere/4
	multi_server_call/2
	multi_server_call/3
	multicall/3
	multicall/4
	multicall/4
	multicall/5
	nb_yield/1
	nb_yield/2
	parallel_eval/1
	pinfo/1
	pinfo/2
	pinfo/2
	pmap/3
	sbcast/2
	sbcast/3
	server_call/4
	yield/1

	seq_trace
	set_token/1
	set_token/2
	get_token/0
	get_token/1
	print/1
	print/2
	reset_trace/0
	set_system_tracer/1
	get_system_tracer/0

	user
	wrap_log_reader
	chunk/1
	chunk/2
	close/1
	open/1
	open/2

	zlib

