ERLANG

Secure Socket Layer

Copyright © 1999-2020 Ericsson AB. All Rights Reserved.
Secure Socket Layer 9.5.3
februari 14, 2020

Copyright © 1999-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

februari 14, 2020

1.1 Introduction

1 SSL User's Guide

The Secure Socket Layer (SSL) application provides secure communication over sockets.

1.1 Introduction

1.1.1 Purpose

Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of SSL/TLS/DTLS.

1.2 TLS/DTLS and TLS Predecessor, SSL

The Erlang SSL application implements the SSL/TLS/DTLS protocol for the currently supported versions, see the
ssl(3) manual page.

By default SSL/TLSisrun over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) asthegen_t cp modulein Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarentees. Other transports, such as SCTP, may be
supported in future rel eases.

If aclient and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade aregular TCP/
IP connection to an TLS connection, this is supported by the Erlang SSL application API. This can be useful for,
for example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note thisisa TLS
feature only.

1.2.1 Security Overview

To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typicaly
used for encrypting bulk data.

Thekeysfor the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
in the TLS/DTLS handshake.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.3 Using SSL application API

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash M essage A uthenticity Code (MAC), or aHash-based MAC (HMAC), to protect the message dataintegrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose isto detect if the message has been altered.”

1.2.3 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in its turn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificatesareissued by Certification Authorities (CAs) only. A handful of top CAsintheworld issueroot certificates.
Y ou can examine several of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication

Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

» Each certificate in the certificate chain isissued by the previous one.

* Thecertificates attributes are valid.

* Theroot certificate is atrusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty” certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server isto accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions

From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
isrequired. Session datais also invalidated after 24 hours from it was saved, for security reasons. The amount of time
the session datais to be saved can be configured.

By default the TLS/DTL S clientstry to reuse an available session and by default the TLS/DTL S servers agree to reuse
sessions when clients ask for it.

1.3 Using SSL application API

To seerelevant version information for ssl, call ssl : ver si ons/ 0.

To see all supported cipher suites, call ssl : ci pher _sui tes(al |) . Theavailable cipher suitesfor a connection
depend on your certificate. Specific cipher suites that you want your connection to use can also be specified. Default
isto use the strongest available.

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

1.3.1 Setting up Connections

This section shows a small example of how to set up client/server connections using the Erlang shell. The returned
value of thessl socket isabbreviated with[. ..] asit canbefairly large and is opaque.

Minimal Example

| The minimal setup is not the most secure setup of SSL/TLS/DTLS. |

To set up client/server connections:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create an TLS listen socket: (To run DTLS add the option { protocol, dtls})
2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certfile, "cert.pem"}, {keyfile, "key.pem"},{reuseaddr, true}]).
{ok, {sslsocket, [...1}}

Step 3: Do atransport accept on the TLS listen socket:

3 server> {ok, TLSTransportSocket} = ssl:transport accept(ListenSocket).
{ok, {sslsocket, [...]1}}

Step 4: Start the client side:

1 client> ssl:start().
ok

Torun DTLS add the option { protocal, dtls} to third argument.

2 client> {ok, Socket} = ssl:connect("localhost", 9999, [], infinity).
{ok,{sslsocket, [...]1}}

Step 5: Do the TLS handshake:

4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
ok

Step 6: Send amessage over TLS:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message was sent on the server side:

3 client> flush().
Shell got {ssl,{sslsocket,[...]1},"foo"}
ok

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.3 Using SSL application API

Upgrade Example - TLS only

To upgrade a TCP/IP connection to an SSL connection, the client and server must agree to do so. The agreement
can be accomplished by using a protocol, for example, the one used by HTTP specified in RFC 2817.

To upgradeto an SSL connection:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create anormal TCP listen socket:

2 server> {ok, ListenSocket} = gen tcp:listen(9999, [{reuseaddr, true}]).
{ok, #Port<0.475>}

Step 3: Accept client connection:

3 server> {ok, Socket} = gen tcp:accept(ListenSocket).
{ok, #Port<0.476>}

Step 4. Start the client side:

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen tcp:connect("localhost", 9999, [], infinity).

Step 5: Ensureact i ve issettof al se beforetrying to upgrade a connection to an SSL connection, otherwise SSL
handshake messages can be delivered to the wrong process:

4 server> inet:setopts(Socket, [{active, false}l]).
ok

Step 6: Do the TLS handshake:
5 server> {ok, TLSSocket} = ssl:handshake(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}]).
{ok, {sslsocket,[...]1}}

Step 7: Upgrade to an TLS connection. The client and server must agree upon the upgrade. The server must call
ssl : handshake/ 2 beforetheclient callsssl : connect / 3.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}1, infinity).
{ok, {sslsocket,[...]1}}

Step 8: Send amessage over TLS:

4 client> ssl:send(TLSSocket, "foo").
ok

Step 9: Setacti ve true onthe TLS socket:

4 server> ssl:setopts(TLSSocket, [{active, true}]).
ok

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

Step 10: Flush the shell message queue to see that the message was sent on the client side:

5 server> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.2 Customizing cipher suits
Fetch default cipher suite list for an TLS/DTLS version. Change default to al to get al possible cipher suites.

1> Default = ssl:cipher suites(default, 'tlsvl.2').
[#{cipher => aes 256 gcm,key exchange => ecdhe ecdsa,
mac => aead,prf => sha384},]

In OTP 20 it is desirable to remove all cipher suites that uses rsa kexchange (removed from default in 21)

2> NoRSA =
ssl:filter cipher suites(Default,
[{key exchange, fun(rsa) -> false;
() -> true end}]).
[...]

Pick just afew suites

3> Suites =
ssl:filter cipher suites(Default,
[{key exchange, fun(ecdh ecdsa) -> true;
() -> false end},
{cipher, fun(aes 128 cbc) ->true;
() ->false end}]).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

4>ssl:prepend cipher suites(Suites, Default).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf},
#{cipher => aes 256 cbc,key exchange => ecdhe ecdsa,
mac => sha384,prf => sha384}, ...]

1.3.3 Using an Engine Stored Key
Erlang ssl application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
M/Engi ne:

2> {ok, EngineRef} =

crypto:engine load(<<"dynamic">>,

[{<<"SO PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>]1,[]).
{ok,#Ref<0.2399045421.3028942852.173962>}

Create amap with the engine information and the algorithm used by the engine:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

1.3 Using SSL application API

3> PrivKey =
#{algorithm => rsa,
engine => EngineRef,
key id => "id of the private key in Engine"}.

Use the map in the sdl key option:

4> {ok, SSLSocket} =

ssl:connect("localhost", 9999,
[{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"},
{key, PrivKey}], infinity).

See also crypto documentation

1.3.4 Session Tickets and Session Resumption in TLS 1.3

TLS 1.3introduces a new secure way of resuming sessions by using session tickets. A session ticket is an opaque data
structure that is sent inthe pre_shared key extension of a ClientHello, when aclient attempts to resume a session with
keying material from a previous successful handshake.

Session tickets can be stateful or stateless. A stateful session ticket isadatabase reference (session ticket store) and used
with stateful servers, while astatel essticket isaself-encrypted and self-authenticated data structure with cryptographic
keying material and state data, enabling session resumption with statel ess servers.

The choice between stateful or statel ess depends on the server requirements as the session tickets are opaque for the
clients. Generaly, stateful tickets are smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but they offer different guarantees against anti-
replay. Seeaso Anti-Replay Protection in TLS1.3

Session tickets are sent by servers on newly estalished TL S connections. The humber of tickets sent and their lifetime
are configurable by application variables. See also S_'s configuration.

Session tickets are protected by application traffic keys, and in statel esstickets, the opague data structure itself is self-
encrypted.

An example with automatic and manual session resumption:
Step 1 (server): Start the server:

= application:ensure all started(ssl).
[{certfile, "cert.pem"},
{keyfile, "key.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{session tickets, stateless}].
{ok, LSock} = ssl:listen(8001, LOpts).
{ok, CSock} = ssl:transport accept(LSock).

{ok, _}
LOpts =

Step 2 (client): Start the client and connect to server:

{ok, _}
COpts =

= application:ensure all started(ssl).
[{cacertfile, "cert.pem"},

{versions, ['tlsvl.2',6 'tlsvl.3']1},
{log level, debug},

{session tickets, auto}].
ssl:connect("localhost", 8001, COpts).

Step 3 (server): Start the TLS handshake:
ssl:handshake(CSock) .

A connection is established using afull handshake. Below isa summary of the exchanged messages:

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Certificate ...

<<< Handshake, CertificateVerify ...

<<< Handshake, Finished ...

>>> Handshake, Finished ...

<<< Post-Handshake, NewSessionTicket ...

At thispoint the client has stored the received session tickets and ready to use them when establishing new connections
to the same server.

Step 4 (server): Accept anew connection on the server:
{ok, CSock2} = ssl:transport accept(LSock).
Step 5 (client): Make a new connection:
ssl:connect("localhost", 8001, COpts).
Step 6 (server): Start the handshake:
ssl:handshake(CSock2).
The second connection is a session resumption using keying material from the previous handshake:
>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Finished ...
>>> Handshake, Finished ...

<<< Post-Handshake, NewSessionTicket ...

Manual handling of session tickets is also supported. In manual mode, it is the responsibility of the client to handle
received session tickets.

Step 7 (server): Accept a new connection on the server:
{ok, CSock3} = ssl:transport accept(LSock).
Step 8 (client): Make a new connection to server:
{ok, } = application:ensure all started(ssl).
COpts2 = [{cacertfile, "cert.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{log level, debug},
{session tickets, manual}].
ssl:connect("localhost", 8001, COpts).
Step 9 (server): Start the handshake:
ssl:handshake(CSock3).
After the handshake is performed, the user process receives messages with the tickets sent by the server.
Step 10 (client): Receive a new session ticket:
Ticket = receive {ssl, session ticket, { , TicketData}} -> TicketData end.

Step 11 (server): Accept a new connection on the server:

{ok, CSock4} = ssl:transport accept(LSock).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

1.3 Using SSL application API

Step 12 (client): Initiate a new connection to the server with the session ticket received in Step 10:

{ok, _} = application:ensure_all started(ssl).
COpts2 = [{cacertfile, "cert.pem"},

{versions, ['tlsvl.2',6 'tlsvl.3']},

{log _level, debug},

{session tickets, manual},

{use ticket, [Ticket]}].
ssl:connect("localhost", 8001, COpts).

Step 13 (server): Start the handshake:

ssl:handshake(CSock3).

1.3.5 Anti-Replay Protection in TLS 1.3

The TLS 1.3 protocol does not provide inherent protection for replay of O-RTT data but describes mechanisms
that SHOULD be implemented by compliant server implementations. The implementation of TLS 1.3 in the SSL
application employs all standard methods to prevent potential threats.

Single-usetickets

This mechanism is available with stateful session tickets. Session tickets can only be used once, subsequent use of
the sameticket resultsin afull handshake. Stateful servers enforce this rule by maintaining a database of outstanding
valid tickets.

Client Hello Recording

This mechanism is available with stateless session tickets. The server records a unique value derived from
the ClientHello (PSK binder) in a given time window. The ticket's age is verified by using both the
"obsfuscated_ticket_age" and an additional timestamp encrypted in the ticket data. Asthe used datastore allows false
positives, apparent replays will be answered by doing afull 1-RTT handshake.

Freshness Checks

Thismechanismisavailablewith the statel ess session tickets. Astheticket data has an embedded timestamp, the server
can determine if a ClientHello was sent reasonably recently and accept the O-RTT handshake, otherwise if falls back
toafull 1-RTT handshake. This mechanism istightly coupled with the previous one, it prevents storing an unlimited
number of ClientHellos.

The current implementation uses a pair of Bloom filtersto implement the last two mechanisms. Bloom filters are fast,
memory-efficient, probabilistic data structures that can tell if an element may be in a set or if it is definitely not in
the set.

If the option anti_replay is defined in the server, apair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored). The current Bloom filter is used for
W ndowSi ze secondsto store new elements. At the end of thetime window the Bloom filtersarerotated (the current
Bloom filter becomes the old and an empty Bloom filter is set as current.

The Anti-Replay protection feature in statless servers executes in the following steps when a new ClientHello is
received:
* Reported ticket age (obfuscated ticket age) shall be less than ticket lifetime.

» Actual ticket age shall be less than the ticket lifetime (statless session tickets contain the servers timestamp when
the ticket was issued).

e Ticket shall be used within specified time window (freshness checks).

» If al above checks passed both current and old Bloom filters are checked to detect if binder was already seen.
Being a probabilistic data structure, false positives can occur and they trigger a full handshake.

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

e If the binder is not seen, the binder is validated. If the binder is valid, the server proceeds with the O-RTT
handshake.

1.4 Using TLS for Erlang Distribution

This section describes how the Erlang distribution can use TL S to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
i net _tcp_di st in the Kernel application. When starting an Erlang node distributed, net _ker nel uses this
module to set up listen ports and connections.

Inthe SSL application, an extradistribution module, i net _t 1 s_di st , canbeused asan aternative. All distribution
connectionswill use TLS and al participating Erlang nodesin a distributed system must use this distribution module.

The security level depends on the parameters provided to the TL S connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

e Step 1: Build boot scripts including the SSL application.

e Step 2: Specify the distribution module for net _ker nel .
e Step 3: Specify the security options and other SSL options.
e Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the SSL Application

Boot scriptsare built using the sy st ool s utility in the SASL application. For moreinformation onsyst ool s, see
the SASL documentation. Thisis only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bi n directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under r el eases/ <OTP version>/start_clean.rel.

Do the following:

e Copy that script to another location (and preferably another name).

e Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example. r el filewith TLS added:

{release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
[{kernel,"2.15"},

{stdlib,"1.18"},

{crypto, "2.0.3"},

{public key, "0.12"},

{asnl, "4.0"},

{ssl, "5.0"}

1}.

Theversion numbersdiffer inyour system. Whenever one of the applicationsincluded in the script isupgraded, change
the script.

Do the following:
* Build the boot script.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

1.4 Using TLS for Erlang Distribution

Assumingthe.rel fileisstoredinafilestart _ssl.rel inthe current directory, a boot script can be
built as follows:

1> systools:make script("start ssl",[]).

Thereisnow ast art _ssl . boot filein the current directory.

Do the following:

» Test the boot script. To do this, start Erlang with the - boot command-line parameter specifying this boot script
(with itsfull path, but without the . boot suffix). In UNIX it can look asfollows:

$ erl -boot /home/me/ssl/start ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
1> whereis(ssl manager).
<0.41.0>

Thewher ei s function-call verifies that the SSL application is started.

Asan alternative to building abootscript, you can explicitly add the path to the SSL ebi n directory on the command
line. Thisisdone with command-line option - pa. Thisworksasthe SSL application does not need to be started for the
distribution to come up, as a clone of the SSL application is hooked into the Kernel application. So, aslong as the SSL
application code can be reached, the distribution starts. The - pa method is only recommended for testing purposes.

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as needed to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

1.4.2 Specifying Distribution Module for net_kernel

Thedistribution modulefor SSL/TLSisnamedi net _t | s_di st andisspecified onthe command linewith option -
prot o_di st.Theargumentto- pr ot o_di st istobethe module namewithout suffix _di st . So, thisdistribution
moduleis specified with - pr ot o_di st i net _t| s onthecommand line.

Extending the command line gives the following:
$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
For the distribution to be started, give the emulator a name as well:

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)
(ssl test@myhost)1>

However, a node started in this way refuses to talk to other nodes, as no TLS parameters are supplied (see the next
section).
1.4.3 Specifying SSL/TLS Options

The SSL/TLS distribution options can be written into afile that is consulted when the node is started. This file name
is then specified with the command line argument - ssl _di st _optfile.

Any available SSL/TLS option can be specified in an options file, but note that options that takeaf un() hasto use
thesyntax f un Mod: Func/ Ari t y since afunction body cannot be compiled when consulting afile.

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

Do not tamper with the socket options | i st, bi nary, acti ve, packet, nodel ay and del i ver since they
are used by the distribution protocol handler itself. Other raw socket options such as packet _si ze may interfere
severely, so beware!
For SSL/TLS to work, at least a public key and a certificate must be specified for the server side. In the following
example, the PEM file "/ home/ me/ ssl / er| server. pem' contains both the server certificate and its private
key.
Create afile named for example” / home/ e/ ssl / ssl _t est @ryhost . conf™:
[{server,
[{certfile, "/home/me/ssl/erlserver.pem"},
{secure _renegotiate, true}l},

{client,
[{secure renegotiate, true}l}].

And then start the node like this (line breaks in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

Theoptionsinthe{ server, Opts} tupleareused when calling ssl : ssl _accept/ 3, and the options in the
{client, Opts} tupleareusedwhencalingssl:connect/ 4.

For the client, the option { ser ver _nane_i ndi cati on, atomto_list(Target Node)} isadded when
connecting. This makes it possible to use the client option { veri fy, verify_peer}, andthe client will verify
that the certificate matches the node name you are connecting to. This only worksif the the server certificate isissued
tothenameat om to_I| i st (Tar get Node) .

For the server it is aso possible to use the option { verify, verify_peer} and the server will only accept
client connections with certificates that are trusted by a root certificate that the server knows. A client that presents
an untrusted certificate will be rejected. This option is preferably combined with {fai |l _i f _no_peer _cert,
t rue} or aclient will still be accepted if it does not present any certificate.

A node started in thisway is fully functional, using TL S as the distribution protocol.

1.4.4 Specifying SSL/TLS Options (Legacy)

Asin the previous section the PEM file" / home/ e/ ssl / er | server. pem' contains both the server certificate
and its private key.

Ontheer| command line you can specify options that the SSL/TL S distribution adds when creating a socket.

The simplest SSL/TLS options in the following list can be specified by adding the prefix server _orclient _
to the option name:

« certfile

o keyfile

e password

 cacertfile

e verify

o verify_fun (writeas{ Modul e, Function, Initial UserState})

e crl_check

e crl _cache (write as Erlang term)

e reuse_sessions

e secure_renegotiate

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

1.4 Using TLS for Erlang Distribution

 depth
e hibernate_after
e ci phers (useold string format)

Note that veri fy_f un needsto be written in a different form than the corresponding SSL/TLS option, since funs
are not accepted on the command line.

The server can also takethe optionsdhfil eandfail _if_no _peer cert (aso prefixed).

cl i ent _-prefixed options are used when the distribution initiates a connection to another node. ser ver _-prefixed
options are used when accepting a connection from a remote node.

Raw socket options, such aspacket and si ze must not be specified on the command line.

The command-line argument for specifying the SSL/TLS optionsisnamed - ssl _di st _opt andisto be followed
by pairs of SSL options and their values. Argument - ssl _di st _opt can be repeated any number of times.

An example command line doing the same as the exampl e in the previous section can now look asfollows (line breaks
in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile "/home/me/ssl/erlserver.pem"
-ssl dist opt server secure renegotiate true client secure renegotiate true
-sname ssl_test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)
(ssl_test@myhost)1>

1.4.5 Setting up Environment to Always Use SSL/TLS (Legacy)

A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the SSL/TL S distribution can be specified in that variable and are then interpreted as command-line arguments
for all subseguent invocations of Erlang.

In aUnix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

$ ERL_FLAGS="-boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile /home/me/ssl/erlserver.pem
-ssl dist opt server secure renegotiate true client secure renegotiate true"
$ export ERL FLAGS
$ erl -sname ssl test
Erlang (BEAM) emulator version 5.0 [sourcel

Eshell V5.0 (abort with "G)

(ssl test@myhost)1l> init:get arguments().

[{root,["/usr/local/erlang"]},

{progname, ["erl "1},

{sname, ["ss1 test"]},

{boot, ["/home/me/ss1/start ssl"]},

{proto dist,["inet tls"]},

{ssl dist opt,["server certfile","/home/me/ssl/erlserver.pem"]},

{ssl dist opt,["server secure renegotiate","true",
"client secure renegotiate","true"]

{home, ["/home/me"]}]

Theinit: get_argument s() cal verifiesthat the correct arguments are supplied to the emulator.

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

1.4.6 Using SSL/TLS distribution over IPv6

It is possible to use SSL/TLS distribution over IPv6 instead of 1Pv4. To do this, pass the option - prot o_di st
inet6 tl s instead of - proto_di st inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

An example command line with this option would look like this:
$ erl -boot /home/me/ssl/start ssl -proto dist inet6 tls

-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

A node started in this way will only be able to communicate with other nodes using SSL/TL S distribution over | Pv6.

1.5 Standards Compliance

1.5.1 Purpose

This section describes the current state of standards compliance of the ssl application.

1.5.2 Common (pre TLS 1.3)

» For security reasons RSA key exchange cipher suites are no longer supported by default, but can be configured.
(OTP21)

» For security reasons DES cipher suites are no longer supported by default, but can be configured. (OTP 20)

» For security reasons 3DES cipher suites are no longer supported by default, but can be configured. (OTP 21)

* Renegotiation Indication Extension RFC 5746 is supported

* Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

« Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.

« Export cipher suites are not supported as the U.S. lifted its export restrictions in early 2000.

* |IDEA cipher suites are not supported as they have become deprecated by the TLS 1.2 specification so it is not
motivated to implement them.

e Compression is not supported.

1.5.3 Common

e CRL validation is supported.
« Poalicy certificate extensions are not supported.
e 'Server Name Indication' extension (RFC 6066) is supported.

« Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

e |tispossibleto use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by defaullt.

1.5.4 SSL 2.0
For security reasons SSL-2.0 is hot supported. Interoperability with SSL-2.0 enabled clients dropped. (OTP 21)

1.5.5 SSL 3.0

For security reasons SSL-3.0 is no longer supported at all. (OTP 23)
For security reasons SSL-3.0 is ho longer supported by default, but can be configured. (OTP 19)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

href
href

1.5 Standards Compliance

1.5.6 TLS 1.0
For security reasons TLS-1.0 is no longer supported by default, but can be configured. (OTP 22)

157 TLS1.1
For security reasons TLS-1.1 is no longer supported by default, but can be configured. (OTP 22)

1.5.8 TLS 1.2
Supported

1.5.9 DTLS 1.0
For security reasons DTLS-1.0 (based on TLS 1.1) isno longer supported by default, but can be configured. (OTP 22)

1.5.10 DTLS 1.2
Supported (based on TLS 1.2)

1.5.11 DTLS 1.3
Not yet supported

1.5.12 TLS 1.3

OTP-22 introduces support for TLS 1.3. The current implementation supports a selective set of cryptographic
algorithms:

* Key Exchange: ECDHE

e Groups: dl standard groups supported for the Diffie-Hellman key exchange

« Ciphers TLS AES 128 GCM_SHA256, TLS AES 256 GCM_SHA384,
TLS CHACHA20 POLY1305 SHA256 and TLS AES 128 CCM_SHA256

e Signature Algorithms: rsa_pkcsl sha256, rsa_pkcsl sha384, rsa pkcsl shabl2, ecdsa secp256rl sha256,
ecdsa secp384rl sha384, ecdsa secp521rl shabl2, rsa pss rsae sha2b6, rsa pss rsae sha3s4,
rsa_pss rsae shabl2, rsa pkcsl shal and ecdsa shal

e Certificates: RSA (it MUST use the rsaEncryption OID) and ECDSA keys

Other notable features:

e PSK and session resumption is supported (stateful and statel ess tickets)
* Anti-replay protection using Bloom-filters with statel ess tickets

e Early dataand O-RTT not supported

» Key and Initialization Vector Update not supported

For more detailed information see the Sandards Compliance below.
The following table describes the current state of standards compliance for TLS 1.3.
(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not Applicable)

Section Feature State Since

1.3. Updates Affecting

TLS12 c 22

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

1.5 Standards Compliance

Version downgrade C 2
protection mechanism
RSASSA-PSS signature PC 2
schemes
supported versions C 2
(ClientHello) extension
signature_algorithms_cert c 2
extension
2. Protocol Overview PC 22
(EC)DHE C 22
PSK-only NC
PSK with (EC)DHE C 222
2.1. Incorrect DHE
share HelloRetryRequest C 22
2.2. Resumption and
Pre-Shared Key (PSK) ¢ 222
2.3.0-RTT Data NC
4.1.1. Cryptographic C 29
Negotiation '
supported_groups C 2
extension
signature_algorithms c 2
extension
pre_shared key extension |C 22.2
4.1.2. Client Hello Client PC 221
server_name (RFC6066) PC 22.2
max_fragment_length NG
(RFC6066)
status_request (RFC6066) | NC
supported_groups
(RFC7919) c 221
signature_algorithms
(RFCB8446) ¢ 221

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

?S;ID:I é; C%I(;)B_I ayer _protocol_ng;ou ation 221
signed_certificate timestam N

(RFC6962)

client_certificate type NG

(RFC7250)

server_certificate type NG

(RFC7250)

padding (RFC7685) NC

key_share (RFC8446) C 22.1
?g;—g‘szeg—key c 22
E)Fs:::_clgezz g;(Change_mods C 299
early data (RFC8446) NC

cookie (RFC8446) NC

?;ﬁ):ré)&ezld(s_)vers ons c 221
certificate_authorities NC

(RFC8446)

oid_filters (RFC8446) NC

post_handshake auth NC

(RFC8446)

:(; Fgggg;jg?l gorithms_cert C 21
Server PC 22
server_name (RFC6066) PC 222
max_fragment_length NC

(RFC6066)

status_request (RFC6066) | NC

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

supported_groups

(RFC7919) c 22

signature_algorithms

(RFCB8446) c 22

use_srtp (RFC5764) NC

heartbeat (RFC6520) NC

application_layer_protocol_hegotiation

(RFC7301) & 221

signed_certificate_timestam PNC

(RFC6962)

client_certificate type NC

(RFC7250)

server_certificate type NC

(RFC7250)

padding (RFC7685) NC

key share (RFC8446) C 22

pre_shared key

(RFC8446) c 222

psk_key exchange modes

(RFC8446) c 222

early_data (RFC8446) NC

cookie (RFC8446) NC

supported versions

(RFCB8446) ¢ 22

certificate_authorities NG

(RFCB8446)

oid_filters (RFC8446) NC

post_handshake auth NG

(RFC8446)

signature_algorithms_cert

(RFC8446) c 22
4.1.3. Server Hello Client C 222

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

href

1.5 Standards Compliance

Version downgrade

. C 221
protection
key_share (RFC8446) C 221
pre_shared key
(RFCB8446) c 222
supported _versions
(RFC8446) c 221
Server C 22.2
Version downgrade C 2
protection
key share (RFC8446) C 22
pre_shared key
(RFCB8446) c 222
supported versions
(RFCB8446) c 22
4.1.4. Hello Retry
Request Server PC 22
key share (RFC8446) C 22
cookie (RFC8446) NC
supported versions
(RFCB8446) c 22
4.2.1. Supported Client c 221
Versions
Server C 22
4.2.2. Cookie Client NC
Server NC
4.2.3. Signature Client PC 21
Algorithms
rsa_pkcsl sha256 C 221
rsa_pkcsl sha384 C 221
rsa_pkcsl shab12 C 22.1
ecdsa secp256rl sha256 |C 22.1

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href

1.5 Standards Compliance

ecdsa secp384rl sha3g84d | C 22.1
ecdsa_secp521rl shab12 | C 22.1
rsa_pss rsae sha256 C 22.1
rsa_pss rsae sha3g4 C 22.1
rsa_pss rsae shab12 C 221
ed25519 NC

ed448 NC

rsa_pss pss sha?56 NC

rsa_pss pss sha3g4 NC

rsa_pss pss shabl2 NC

rsa_pkcsl shal C 22.1
ecdsa_shal C 221
Server PC 22
rsa_pkcsl sha256 C 22
rsa_pkcsl sha384 C 22
rsa_pkcsl sha512 C 22
ecdsa secp256rl sha256 |C 22.1
ecdsa secp384rl sha384 | C 221
ecdsa_secp521rl shab12 | C 221
rsa_pss rsae sha?56 C 22
rsa_pss rsae sha3g4 C 22
rsa_pss rsae shab12 C 22
ed25519 NC

ed448 NC

rsa_pss pss sha256 NC

rsa_pss pss sha3d4 NC

rsa_pss pss shabl2 NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

1.5 Standards Compliance

rsa_pkesl shal C 22
ecdsa_shal C 22

Aubories | |Cliet NC
Server NC

4.25.0ID Filters Client NC
Server NC

Chont Authenication | Clien NC
Server NC

4.2.7. Supported Groups | Client C 22.1
secp256rl C 22.1
secp384rl C 22.1
secp521rl C 22.1
x25519 C 221
x448 C 221
ffdhe2048 C 22.1
ffdhe3072 C 22.1
ffdhe4096 C 22.1
ffdhe6144 C 22.1
ffdhe8192 C 22.1
Server C 22
secp256rl C 22
secp384rl C 22
secp521rl C 22
x25519 C 22
x448 C 22
ffdhe2048 C 22

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href

1.5 Standards Compliance

ffdhe3072 C 22
ffdhed096 C 22
ffdhe6144 C 22
ffdhe8192 c 22
4.2.8.Key Share Client C 221
Server c 22
Exchangetodes | Clien c =2
Server C 22.2
4.2.10. I_Early Data Client NC
Indication
Server NC
4.2.11. _PreShared Key Client C 22.2
Extension
Server C 222
42.11.1. Ticket Age Client C 22.2
Server C 22.2
4.2.11.2. PSK Binder Client c 222
Server C 22.2
4.2.11.3. Processing Client NC
Order
Server NC
4.3.1. E_ncrypted Client PC 221
Extensions
server_name (RFC6066) | NC
max_fragment_length NC
(RFC6066)
supported_groups NC
(RFC7919)
use _srtp (RFC5764) NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

(RFC8446)

heartbeat (RFC6520) NC
application_layer _protocol_nﬁgti ation
(RFC7301)
client_certificate type NC
(RFC7250)
server_certificate type NC
(RFC7250)
early data (RFC8446) NC
supported versions NG
(RFC8446)
Server PC 22
server_name (RFC6066) NC
max_fragment_length NC
(RFC6066)
supported_groups NC
(RFC7919)
use_srtp (RFC5764) NC
heartbeat (RFC6520) NC
application_layer Jarotocol_nﬁ&)ti ation
(RFC7301)
client_certificate type NC
(RFC7250)
server_certificate type NC
(RFC7250)
early data (RFC8446) NC
supported versions NG
(RFC8446)

4.3.2. Certificate .

Request Client PC 221
status_request (RFC6066) | NC
signature_algorithms C 221

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

1.5 Standards Compliance

signed_certificate_timestam PNC
(RFC6962)
certificate_authorities NC
(RFCB8446)
oid_filters (RFC8446) NC
signature_algorithms_cert
(RFC8446) c 22.1
Server PC 22
status_request (RFC6066) | NC
signature_algorithms
(RFC8446) c 22
signed_certificate_timestam N
(RFC6962)
certificate_authorities NC
(RFCB8446)
oid_filters (RFC8446) NC
signature_algorithms_cert C 2
(RFC8446)
4.4.1. The Transcript
Hash C 22
4.4.2. Certificate Client PC 22.1
status _request (RFC6066) | NC
signed_certificate timestam N
(RFC6962)
Server PC 22
status_request (RFC6066) | NC
signed_certificate_timestam PNC
(RFC6962)
4.4.2.1. OCSP Statusand .
SCT Extensions Client NC
Server NC
4.4.2.2. Server
Certificate Selection PC 22

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

href
href
href
href
href
href
href

1.5 Standards Compliance

The certificate type
MUST be X.509v3, unless
explicitly negotiated
otherwise

22

The server's end-entity
certificate's public

key (and associated
restrictions) MUST be
compatible with the
selected authentication
algorithm from the client's
"signature_algorithms'
extension (currently RSA,
ECDSA, or EdDSA).

22

The certificate MUST
allow the key to be
used for signing with

a signature scheme
indicated in the client's

"signature_algorithms'/"signature_algorithms_cert

extensions

C

22

The"server_name" and
"certificate_authorities'
extensions are used to
guide certificate selection.
Asservers MAY require
the presence of the
"server_name" extension,
clients SHOULD send
this extension, when
applicable.

NC

4.4.2.3. Client Certificate
Selection

PC

221

The certificate type
MUST be X.509v3, unless
explicitly negotiated
otherwise

221

If the
"certificate_authorities'
extension in the
CertificateRequest
message was present, at
least one of the certificates
in the certificate chain
SHOULD beissued by one
of the listed CAs.

NC

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

1.5 Standards Compliance

The certificates MUST be
signed using an acceptable | C 221
signature algorithm
If the CertificateRequest
message contained a
non-empty "oid_filters"
extension, the end-entity NC
certificate MUST match
the extension OlDs that are
recognized by the client
4.4.2.4. Receiving a .
Certificate M essage Client ¢ 221
Server C 22
4.4.3. Certificate Verify | Client C 221
Server C 22
4.4.4. Finished Client C 221
Server C 22
45. End of Early Data Client NC
Server NC
4.6.1. New Session Ticket Client PC 29
M essage
early data (RFC8446) NC
Server PC 22.2
early_data (RFC8446) NC
4.6.2. Post-Handshake .
Authentication Client NC
Server NC
4.6.3. Key and
Initialization Vector Client C 22.3
Update
Server C 22.3
5.1. Record L ayer C 22
MUST NOT be interleaved c 2
with other record types

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

MUST NOT span key c 2o
changes
MUST NOT send zero-
C 22
length fragments
Alert messages MUST C 2
NOT be fragmented
5.2. Re(_:ord Payload C 2
Protection
5.3. Per-Record Nonce C 22
5.4. Record Padding PC 22
MAY choose to pad NC
MUST NOT send
Handshake and
Alert records that NC
have a zero-length
TL SInnerPlaintext.content
The padding sent is c 2
automatically verified
5.5. Limitson Key Usage C 22.3
6.1. ClosureAlerts NC
close_notify NC
user_cancelled NC
6.2. Error Alerts PC 22
7.1. Key Schedule C 22
7.2. Updating Traffic
Secrets c 22
7.3. Traffic Key
Calculation ¢ 22
7.5. Exporters NC
8. 0-RTT and Anti- c 229
Replay
8.1. Single-Use Tickets C 22.2

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

8.2. Cll_ent Hello C 29
Recording
8.3. Freshness Checks C 22.2
9.1. Mandatory-to-
Implement Cipher Suites ¢ 221
MUST implement the 2
TLS AES 128 GCM_SHA £36
SHOULD implement the
TLS AES 256 GCM_SHAS84 22
SHOULD implement the 2
TLS CHACHA20 POLY1 355_8HA256
Digital signatures C 221
MUST support
rsa_pkesl sha256 (for C 22
certificates)
MUST support
rsa_pss rsae sha256 (for C 2
CertificateVerify and
certificates)
MUST support
ecdsa_secp256rl_sha256 ¢ 221
Key Exchange C 22
MUST support key C 2
exchange with secp256r1
SHOULD support key C 2o
exchange with X25519
9.2. M andatory-toi PC 2
Implement Extensions
Supported Versions C 22
Cookie NC
Signature Algorithms C 22
Signature Algorithms
Certificate c 22
Negotiated Groups C 22

Ericsson AB. All Rights Reserved.:

Secure Socket Layer | 27

href
href
href
href
href
href
href

1.5 Standards Compliance

Key Share C 22

Server Name Indication NC

MUST send and use

these extensions c 222

"supported versions'

is REQUIRED for
ClientHello, ServerHello
and HelloRetryRequest

C 221

"signature_algorithms' is
REQUIRED for certificate | C 22
authentication

"supported_groups"
is REQUIRED for
ClientHello messages C 22
using (EC)DHE key
exchange

"key share" is
REQUIRED for (EC)DHE | C 22
key exchange

"pre_shared key" is
REQUIRED for PSK key |C 222
agreement

"psk_key_exchange_modes
isREQUIRED for PSK | C 22
key agreement

TLS1.3ClientHello C 221

If not containing a
"pre_shared key"
extension, it MUST
contain both a
"signature_algorithms'
extension and a
"supported_groups"
extension.

C 221

If containing a
"supported_groups"
extension, it MUST also
contain a"key_share"
extension, and vice
versa. An empty

C 221

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

KeyShare.client_shares
vector is permitted.

TLS 1.3 ServerHello

PC

22

MUST support the use
of the "server_name"
extension

NC

9.3. Protocol Invariants

221

MUST correctly handle
extensible fields

221

A client sending a
ClientHello MUST support
all parameters advertised
init. Otherwise, the server
may fail to interoperate

by selecting one of those
parameters.

221

A server receiving a
ClientHello MUST
correctly ignore all
unrecognized cipher suites,
extensions, and other
parameters. Otherwise, it
may fail to interoperate
with newer clients. In
TLS 1.3, aclient receiving
a CertificateRequest

or NewSessionTicket
MUST alsoignore al
unrecognized extensions.

221

A middlebox which
terminatesaTLS
connection MUST behave
asacompliant TLS server

NA

A middlebox which
forwards ClientHello
parameters it does not
understand MUST NOT
process any messages
beyond that ClientHello.
It MUST forward all
subsequent traffic
unmodified. Otherwise,
it may fail to interoperate

NA

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

href

1.5 Standards Compliance

with newer clients and
Servers.

Backward Compatibility

B.4. Cipher Suites PC 22
TLS AES 128 GCM_SHAZ56 22
TLS AES 256_GCM_SHA3B4 22
TLS CHACHA20 POLY 18@5_SHA256 22
TLS AES 128 CCM_SHAZ56 22
TLS AES 128 CCM_8 SHINE56

C.1. Random Number C 2

Generation and Seeding

C.2. Certificatesand

Authentication ¢ 22

C.3. Implementation

Pitfalls PC 22

C.4. Cllt_ent Tracking c 299

Prevention

C5. Uqauthentlcated C 2

Operation

D.1. Negotiating with an

Older Server ¢ 222

D.2. Negotiating with an

Older Client c 22

D.3. O-RTT Backward NC

Compaitibility

D.4. Middlebox

Compatibility Mode PC 22

D.5. Security

Restrictions Related to C 22

Table 5.1: Standards Compliance

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

2 Reference Manual

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31

ssl

ssl
Application

The sdl application is an implementation of the SSL, TLSand DTLS protocolsin Erlang.
For current statement of standards compliance see the User's Guide.

DEPENDENCIES

The SSL application uses the publ i ¢_key, asnl and Crypto application to handle public keys and encryption,
hence these applications must be loaded for the SSL application to work. In an embedded environment this means
they must be started with appl i cati on: start/[1, 2] beforethe SSL application is started.

CONFIGURATION

The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:
erl -ssl protocol _version "["tlsvl.2", "tlsvl.1']"
prot ocol _version = sd:s9_tls protocol()<opti onal >

Protocol supported by started clients and servers. If thisoption isnot set, it defaultsto all TLS protocols currently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl :listen/2.

dtls_protocol version = sd:dtls protocol()<opti onal >

Protocol supported by started clientsand servers. If thisoptionisnot set, it defaultsto all DTL S protocolscurrently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl:listen/2.

session_lifetinme = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may beinvalidated earlier due to the maximum limitation of the session
cache table.

session_cb = atom() <optional >

Name of the session cache callback module that implements the ssl _sessi on_cache_api behavior.
Defaultstossl _sessi on_cache.

session_cb init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .
session_cache_client_nmax = integer() <optional>

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessions is reached, the current cache entries will
be invalidated regardless of their remaining lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this
option to work as intended.

session_cache_server_max = integer() <optional >

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If the
maximum number of sessionsisreached, the current cache entrieswill beinvalidated regardless of their remaining
lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

32 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

ssl _pem cache_clean = integer() <optional >
Number of milliseconds between PEM cache validations. Defaults to 2 minutes.

sdl:clear_pem cache/O
bypass_pem cache = bool ean() <optional >

Introduced in ss1-8.0.2. Disables the PEM-cache. Can be used as a workaround for the PEM-cache bottleneck
before ss1-8.1.1. Defaults to false.

alert _tinmeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the aert so it may shutdown gracefully. Defaults to 5000
milliseconds.

internal _active_n = integer() <optional>

For TLS connections this value is used to handle the internal socket. As the implementation was changed from
an active onceto an active N behavior (N = 100), for performance reasons, this option exist for possible tweaking
or restoring of the old behavior (internal_active_n = 1) in unforeseen scenarios. The option will not affect erlang
distribution over TLS that will always run in active N mode. Added in sdl-9.1 (OTP-21.2).

server_session_tickets_amunt = integer() <optional>
Number of session tickets sent by the server. It must be greater than 0. Defaultsto 3.
server_session_ticket |lifetime = integer() <optional>

Lifetime of session tickets sent by the server. Servers must not use any value greater than 604800 seconds (7
days). Expired tickets are automatically removed. Defaults to 7200 seconds (2 hours).

server_session_ticket_store_size = integer() <optional>

Sets the maximum size of the server session ticket store (stateful tickets). Defaultsto 1000. Size limit is enforced
by dropping old tickets.

client_session_ticket |lifetime = integer() <optional>

Lifetime of session ticketsin the client ticket store. Expired tickets are automatically removed. Defaultsto 7200
seconds (2 hours).

client_session_ticket store size = integer() <optional>

Sets the maximum size of the client session ticket store. Defaults to 1000. Size limit is enforced by dropping
old tickets.

ERROR LOGGER AND EVENT HANDLERS

The SSL application uses OTP logger. TLS/DTLS alerts are logged on naotice level. Unexpected errors are logged on
error level. These log entries will by default end up in the default Erlang log. The option | og_| evel may be used
to in run-time to set the log level of a specific TLS connection, which is handy when you want to use level debug to
inspect the TL S handshake setup.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33

ssl

ssli

Erlang module

This module contains interface functions for the SSL/TLS/DTLS protocol. For detailed information about the
supported standards see sdl(6).

Data Types

Types used in SSL/TLS/DTLS

socket() = gen_tcp: socket ()

sslsocket() = any()

An opaque reference to the TLS/DTL S connection, may be used for equality matching.

tls option() = tls_client_option() | tls_server_option()

tls client option()
client_option()
comon_opti on()
socket _option()
transport_optio

tls server option()
server_option()
common_option()
socket _option()
transport _option()

socket _option() =
gen_t cp: connect _option() |
gen_tcp:listen_option() |
gen_udp: option()

I
I
I
n()
I
I
I
(

The default socket optionsare[{ node, | i st}, { packet, 0}, {header, 0},{active, true}].

For valid options, seetheinet(3), gen_tcp(3) and gen_udp(3) manual pagesin Kernel. Notethat stream oriented options
such as packet are only relevant for SSL/TLS and not DTLS

active msgs() =
{ssl, sslsocket(), Data :: binary() | list()} |
{ssl closed, sslsocket()} |
{ssl error, sslsocket(), Reason :: any()} |
{ssl passive, sslsocket()}

When aTLS/DTL S socket isin active mode (the default), data from the socket is delivered to the owner of the socket
in the form of messages as described above.

Thessl _passi ve messageis sent only when the socket isin{ acti ve, N} mode and the counter dropped to O.
It indicates that the socket has transitioned to passive ({ act i ve, fal se}) mode.

transport option() =
{cb_info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom()}} |

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

{cb _info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom(),
PassiveTag :: atom()}}

Defaults to { gen_tcp, tcp, tcp_closed, tcp_error, tcp_passive} for TLS (for backward
compatibility a four tuple will be converted to a five tuple with the last element "second_element”_passive) and
{gen_udp, udp, udp_closed, udp_error} for DTLS (might aso be changed to five tuplein the future).
Can be used to customize the transport layer. The tag values should be the values used by the underlying transport
in its active mode messages. For TL S the callback module must implement a reliable transport protocol, behave as
gen_t cp, and have functions corresponding to i net : set opt s/ 2,i net: get opts/ 2,i net: peer nane/ 1,
i net: socknane/ 1,andi net : port/ 1. Thecallback gen_t cp istreated specially and callsi net directly. For
DTL S this feature must be considered exprimental .

host() = hostnane() | ip_address()

hostname() = string()

ip _address() = inet:ip_address()

protocol version() = tls_version() | dtls_version()

tls version() = '"tlsvl.2' | 'tlsvl.3' | tls_legacy_version()
dtls version() = 'dtlsvl.2' | dtls_l egacy_version()

tls legacy version() = tlsvl | 'tlsvl.1'
dtls legacy version() = dtlsvl
prf random() = client random | server random
verify type() = verify none | verify peer
ciphers() = [erl _cipher_suite()] | string()
erl cipher suite() =
#{key exchange := kex_al go(),
cipher := cipher(),
mac := hash() | aead,
prf := hash() | default prf}
cipher() =
aes 128 cbc | aes 256 cbc | aes 128 gcm | aes 256 gcm |
aes 128 ccm | aes 256 ccm | aes 128 ccm 8 | aes 256 ccm 8 |
chacha20 poly1305 |
| egacy_ci pher ()
legacy cipher() = rc4 128 | des cbc | '3des ede cbc'
cipher filters() =
[{key exchange | cipher | mac | prf, algo_filter()}]
hash() = sha | sha2() | | egacy_hash()
sha2() = sha224 | sha256 | sha384 | sha512
legacy hash() = md5
old cipher suite() =
{kex_al go(), cipher(), hash()} |
{kex_al go(), cipher(), hash() | aead, hash()}

signature _algs() = [{hash(), sign_al go() }]
sign algo() = rsa | dsa | ecdsa
sign _scheme() =

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 35

ssl

rsa_pkcsl sha256 | rsa pkcsl sha384 | rsa pkcsl sha512 |
ecdsa secp256rl sha256 | ecdsa secp384rl sha384 |
ecdsa secp521rl sha512 | rsa pss_rsae sha256 |
rsa _pss rsae sha384 | rsa pss rsae sha512 |
rsa _pss pss sha256 | rsa pss pss sha384 | rsa pss pss sha512 |
rsa_pkcsl shal | ecdsa shal

group() =
secp256rl | secp384rl | secp521rl | ffdhe2048 | ffdhe3072 |
ffdhed4096 | ffdhe6144 | ffdhe8192

kex algo() =
rsa | dhe rsa | dhe dss | ecdhe ecdsa | ecdh ecdsa |
ecdh rsa | srp rsa | srp _dss | psk | dhe psk | rsa psk |
dh_anon | ecdh anon | srp_anon | any

algo filter() =
fun((kex_algo() | cipher() | hash() | aead | default prf) ->

true | false)

named curve()

sect571rl | sect571kl | secp521rl | brainpoolP512rl1 |
sect409kl | sect409rl | brainpoolP384rl | secp384rl |
sect283kl | sect283rl | brainpoolP256rl | secp256kl |
secp256rl | sect239kl | sect233kl | sect233rl | secp224kl |
secp224rl | sectl93rl | sectl93r2 | secpl92kl | secpl92rl |
sectle3kl | sectl63rl | sectl63r2 | secpl6Okl | secpl6Orl |
secpl6Or2

psk identity() = string()

srp_identity() = {Username :: string(), Password :: string()}

srp_param_type() =
srp 1024 | srp 1536 | srp 2048 | srp 3072 | srp 4096 |
srp_6144 | srp 8192

app_level protocol() = binary()

protocol extensions() =
#{renegotiation info => binary(),
signature algs => signature_al gs(),
alpn => app_l evel _protocol (),
srp => binary(),
next protocol => app_Il evel _protocol (),
ec_point formats => [0..2],
elliptic curves => [public_key:o0id()],
sni => hostnane() }
error _alert() =
{tls alert, {tls_alert(), Description :: string()}}

tls alert() =
close notify | unexpected message | bad record mac |
record overflow | handshake failure | bad certificate |
unsupported certificate | certificate revoked |
certificate expired | certificate unknown |
illegal parameter | unknown ca | access denied |
decode error | decrypt error | export restriction |
protocol version | insufficient security | internal error |
inappropriate fallback | user canceled | no_renegotiation |

36 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

unsupported extension | certificate unobtainable |
unrecognized name | bad certificate status response |
bad certificate hash value | unknown psk identity |
no_application protocol

reason() = any()

bloom filter window size() = integer()

bloom filter hash functions() = integer()

bloom filter bits() = integer()

client session_tickets() = disabled | manual | auto
server_session tickets() = disabled | stateful | stateless

TLS/DTLS OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT

common_option() =
{protocol, protocol ()} |
{handshake, handshake_conpletion()} |
{cert, cert()} |
{certfile, cert_pem()} |
{key, key()} |
{keyfile, key_pem()} |
{password, key_password() } |
{ciphers, cipher_suites()} |
{eccs, [naned_curve()]} |
{signature_algs cert, signature_schenmes()} |
{supported groups, supported_groups()} |
{secure_renegotiate, secure_renegotiation()} |
{depth, allowed_cert_chain_length()} |
{verify fun, customverify()} |
{crl _check, crl _check()} |
{crl _cache, crl_cache_opts()} |
{max_handshake size, handshake_size()} |
{partial chain, root_fun()} |
{versions, protocol _versions()} |
{user_lookup fun, custom user_I| ookup()} |
{log_level, logging_level ()} |
{log alert, log_alert()} |
{hibernate after, hibernate_after()} |
{padding check, paddi ng_check()} |
{beast mitigation, beast_mitigation()} |
{ssl _imp, ssl_inp()} |
{session tickets, session_tickets()} |
{key update at, key_update_at()}
protocol() = tls | dtls

Choose TLS or DTLS protocol for the transport layer security. Defaultstot | s. For DTLS other transports than UDP
are not yet supported.

handshake completion() = hello | full

Defaults to ful | . If hello is specified the handshake will pause after the hello message and give the user a
possibility make decisions based on hello extensions before continuing or aborting the handshake by calling
handshake continue/3 or handshake cancel/1

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 37

ssl

cert() = public_key:der_encoded()

The DER-encoded users certificate. If this option is supplied, it overridesoptioncertfil e.
cert pem() = file:filenane()

Path to afile containing the user certificate on PEM format.

key() =
{'RSAPrivateKey' | 'DSAPrivateKey' | 'ECPrivateKey' |
'PrivateKeyInfo',
public_key: der _encoded() } |
#{algorithm := rsa | dss | ecdsa,
engine := crypto:engine_ref(),
key id := crypto: key_id(),
password => crypto: password() }

The DER-encoded user's private key or a map refering to a crypto engine and its key reference that optionally can be
password protected, seealso crypto:engine load/4 and Crypto's Users Guide. If thisoption is supplied, it overrides
optionkeyfil e.

key pem() = file:filenane()

Path to the file containing the user's private PEM-encoded key. As PEM-files can contain several entries, this option
defaultsto the samefile asgiven by optioncertfil e.

key password() = string()

String containing the user's password. Only used if the private keyfile is password-protected.
cipher suites() = ciphers()

A list of cipher suites that should be supported

The function sdl:cipher_suites/2 can be used to find al cipher suites that are supported by default and all cipher
suites that may be configured.

If you compose your own cipher_suites() make sure they are filtered for cryptolib support
sdl:filter_cipher_suites/’2 Additionaly the functions ssl:append cipher_suites/2 , sd:prepend_cipher_suites/2,
sdl:suite to_str/1, sdl:str_to suite/1, and sdl:suite_to_openssl_str/1 also exist to help creating customized cipher suite
lists.

Note that TLS-1.3 and TLS-1.2 cipher suites are not overlapping sets of cipher suites so to support both these
versions cipher suites from both versions need to be included. If supporting TLS-1.3 versions prior to TLS-1.2
can not be supported.

Non-default cipher suitesincluding anonymous cipher suites (PRE TL S-1.3) are supported for interop/testing purposes
and may be used by adding them to your cipher suite list. Note that they must also be supported/enabled by the peer
to actually be used.

signature schemes() = [sign_schene()]

In addition to the signature algorithms extension from TLS 1.2, TLS 1.3 (RFC 5246 Section 4.2.3)adds the
signature_algorithms_cert extension which enables having special requirements on the signatures used in the
certificates that differs from the requirements on digital signatures as a whole. If this is not required this extension
is not needed.

The client will send a signature_algorithms_cert extension (ClientHello), if TLS version 1.3 or later is used, and the
signature_algs_cert option is explicitly specified. By default, only the signature_algs extension is sent.

38 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

The signature schemes shall be ordered according to the client's preference (favorite choice first).
supported _groups() = [group()]

TLS 1.3 introduces the "supported _groups" extension that is used for negotiating the Diffie-Hellman parametersin a
TLS 1.3 handshake. Both client and server can specify alist of parameters that they are willing to use.

Ifitisnot specifiedit will useadefault list ([x25519, x448, secp256r1, secp384rl]) that isfiltered based ontheinstalled
crypto library version.

secure renegotiation() = boolean()

Specifiesif to reject renegotiation attempt that does not live up to RFC 5746. By default secur e_r enegoti at e is
settot r ue, that is, securerenegotiationisenforced. If settof al se securerenegotiation will still be used if possible,
but it falls back to insecure renegotiation if the peer does not support RFC 5746.

allowed cert chain length() = integer()

Maximum number of non-self-issued intermediate certificatesthat can follow the peer certificatein avalid certification
path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can be PEER, CA,
ROQOT-CA,; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default valueis 1.

custom verify() =
{Verifyfun :: function(), InitialUserState :: any()}

The verification fun is to be defined as follows:

fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad cert, Reason :: atom() |
{revoked, atom()}} |

{extension, #'Extension'{}}, InitialUserState :: term()) ->
{valid, UserState :: term()} | {valid peer, UserState :: term()} |
{fail, Reason :: term()} | {unknown, UserState :: term()}.

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application is encountered. It isalso called when a certificate is considered valid by the path validation to allow access
to each certificatein the path to the user application. It differentiates between the peer certificate and the CA certificates
by using val i d_peer or val i d as second argument to the verification fun. See the public_key User's Guide for
definitionof # OTPCertificate' {} and# Extension'{}.

e |f theverify callback funreturns{f ai | , Reason}, the verification process is immediately stopped, an aert
is sent to the peer, and the TLS/DTL S handshake terminates.

» If theverify callback funreturns{val i d, User St at e}, the verification process continues.

e |ftheverify callback funawaysreturns{val i d, User St at e}, the TLS/DTL S handshake does not terminate
regarding verification failures and the connection is established.

« |If called with an extension unknown to the user application, return value { unknown, User St at e} isto be
used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.
Default optionverify funinverify peer node:

{fun(_,{bad cert, } = Reason,) ->
{fail, Reason};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

Default optionveri fy_funinmodeverify_none:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 39

href
href

ssl

{fun(_,{bad cert, }, UserState) ->
{valid, UserState};
(_,{extension, #'Extension'{critical = true}}, UserState) ->
{valid, UserState};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->

{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

The possible path validation errors are givenon form{ bad_cert, Reason} whereReason is;
unknown_ca

No trusted CA was found in the trusted store. The trusted CA isnormally a so called ROOT CA, which isaself-
signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be self-signed
according to X-509) by using option parti al _chai n.

sel f si gned_peer

The chain consisted only of one self-signed certificate.
PKI X X-509-path validation error

For possible reasons, see public_key:pkix_path_validation/3
crl check() = boolean() | peer | best effort

Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls validate/3) on all the certificatesduring
the path validation (public_key:pkix_path validation/3) of the certificate chain. Defaultstof al se.

peer
check is only performed on the peer certificate.

best effort
if certificate revocation status cannot be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLSs.
The CRLs will be fetched from alocal or external cache. See sd_crl_cache _api(3).
crl _cache opts() = [any()]

Specify how to perform lookup and caching of certificate revocation lists. Modul e defaults to sd_crl_cache with
DbHandl e beingi nt er nal and an empty argument list.

There are two implementations available:
ssl _crl _cache

This module maintains a cache of CRLs. CRLs can be added to the cache using the function
ssl_crl_cacheiinsert/1, and optionally automatically fetched through HTTPif thefollowing argument is specified:

{http, timeout()}

Enables fetching of CRLs specified as http URIs inX509 certificate extensions. Requires the OTP inets
application.

ssl _crl _hash_dir
This module makes use of a directory where CRLs are stored in files named by the hash of the issuer name.

Thefile names consist of eight hexadecimal digitsfollowed by . r N, where Nisaninteger, e.g. 1a2b3c4d. r 0.
For thefirst version of the CRL, Nstartsat zero, and for each new version, Nisincremented by one. The OpenSSL
utility c_r ehash creates symlinks according to this pattern.

40 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

For a given hash value, this module finds all consecutive . r * files starting from zero, and those files taken
together make up the revocation list. CRL fileswhose next Updat e fields are in the past, or that are issued by
adifferent CA that happens to have the same name hash, are excluded.

The following argument is required:
{dir, string()}
Specifies the directory in which the CRLs can be found.
root fun() = function()

fun(Chain::[public_key:der encoded()]) ->
{trusted ca, DerCert::public key:der encoded()} | unknown ca}

Claim an intermediate CA in the chain as trusted. TLS then performs public_key:pkix_path_validation/3 with the
selected CA as trusted anchor and the rest of the chain.

protocol versions() = [protocol _version()]

TLS protocol versions supported by started clients and servers. This option overrides the application environment
optionpr ot ocol _versionanddt| s_protocol versi on. If theenvironment option is not set, it defaultsto
all versions, supported by the SSL application. See also sd(6).

custom user lookup() =
{Lookupfun :: function(), UserState :: any()}

The lookup funisto defined as follows:

fun(psk, PSKIdentity ::string(), UserState :: term()) ->

{ok, SharedSecret :: binary()} | error;

fun(srp, Username :: string(), UserState :: term()) ->

{ok, {SRPParams :: srp param type(), Salt :: binary(),
DerivedKey :: binary()}} | error.

For Pre-Shared Key (PSK) cipher suites, the lookup funiscalled by the client and server to determine the shared secret.
When called by the client, PSKI dent i t y is set to the hint presented by the server or to undefined. When called by
the server, PSKI dent i t y istheidentity presented by the client.

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses to generate
its session keys. Der i vedKey isto be derived according to RFC 2945 and RFC 5054: cr ypt o: sha([Sal t,
crypto: sha([Usernanme, <<$:>> Password])])

session _id() = binary()
Identifiesa TLS session.
log alert() = boolean()

If settof al se, TLS/DTLS Alert reports are not displayed. Deprecated in OTP 22, use {log_level, logging_level()}
instead.

logging level() = | ogger:|level ()

Specifies the log level for a TLS/DTLS connection. Alerts are logged on not i ce level, which is the default level.
Thelevel debug triggers verbose logging of TLS/DTLS protocol messages. See also ssl(6)

hibernate after() = timeout()

When an integer-value is specified, TLS/ DTLS- connect i on goesinto hibernation after the specified number of
milliseconds of inactivity, thus reducing its memory footprint. When undef i ned is specified (this is the default),
the process never goes into hibernation.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 41

href
href

ssl

handshake size() = integer()

Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks. Defaults to
256*1024.

padding check() = boolean()

Affects TLS-1.0 connectionsonly. If settof al se, it disablesthe block cipher padding check to be ableto interoperate
with legacy software.

Using { paddi ng_check, bool ean()} makes TLS vulnerable to the Poodle attack. |

beast mitigation() = one n minus one | zero n | disabled

Affects TLS-1.0 connectionsonly. Used to change the BEAST miitigation strategy to interoperate with legacy software.
Defaultstoone_n_m nus_one.

one_n_m nus_one - Perform 1/n-1 BEAST mitigation.
zer o_n - Perform O/n BEAST mitigation.
di sabl ed - Disable BEAST mitigation.

Using{ beast _m tigation, disabl ed} makesTLS-1.0vulnerabletothe BEAST attack.

ssl imp() = new | old
Deprecated since OTP-17, has no affect.

session tickets() =
client_session_tickets() | server_session_tickets()

Configures the session ticket functionalty in TLS 1.3 client and server.
key update at() = integer() >=1

Configures the maximum amount of bytes that can be sent on a TLS 1.3 connection before an automatic key update
is performed.

There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.
The current default ensures that data integrity will not be breached with probability greater than 1/2"57. For more
information see Limits on Authenticated Encryption Usein TLS.

The default value of this option shall provide the above mentioned security guarantees and it shall be reasonable
for most applications (~353 TB).

TLS/DTLS OPTION DESCRIPTIONS - CLIENT

client option() =
{verify, client_verify_type()} |
{reuse_session, client_reuse_session()} |
{reuse_sessions, client_reuse_sessions()} |
{cacerts, client_cacerts()} |
{cacertfile, client_cafile()} |

42 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

{alpn_advertised protocols, client_alpn()} |
{client _preferred next protocols,
client_preferred_next_protocols()} |
{psk _identity, client_psk_identity()} |
{srp_identity, client_srp_identity()} |
{server_name_indication, sni ()} |

{customize hostname check, custom ze_host nane_check() } |
{signature algs, client_signature_algs()} |

{fallback, fallback()} |

{session tickets, client_session_tickets()} |

{use ticket, use_ticket()}

client verify type() = verify_type()

)
)

Inmodeveri fy_none the default behavior isto alow all x509-path validation errors. See also option verify_fun.
client reuse session() = session_id()

Reuses a specific session earlier saved with the option { r euse_sessi ons, save} since OIP-21.3
client reuse sessions() = boolean() | save

When save is specified anew connection will be negotiated and saved for later reuse. The session ID can be fetched
with connection_information/2 and used with the client option reuse_session The boolean value true specifies that if
possible, automatized session reuse will be performed. If anew session is created, and is unique in regard to previous
stored sessions, it will be saved for possible later reuse. Since OTP-21.3

client cacerts() = [public_key: der_encoded()]
The DER-encoded trusted certificates. If this option is supplied it overridesoptioncacertfi | e.
client cafile() = file:filenane()

Path to afile containing PEM-encoded CA certificates. The CA certificates are used during server authentication and
when building the client certificate chain.

client alpn() = [app_Il evel _protocol ()]

The list of protocols supported by the client to be sent to the server to be used for an Application-Layer Protocol
Negotiation (ALPN). If the server supports ALPN then it will choose a protocol from this list; otherwise it will fail
the connection with a"no_application_protocol" aert. A server that does not support ALPN will ignore this value.

Thelist of protocols must not contain an empty binary.
The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.
client preferred next protocols() =

{Precedence :: server | client,
ClientPrefs :: [app_l evel _protocol ()1} |
{Precedence :: server | client,
ClientPrefs :: [app_l evel _protocol ()],

Default :: app_l evel protocol ()}
Indicates that the client isto try to perform Next Protocol Negotiation.

If precedence is server, the negotiated protocol is the first protocol to be shown on the server advertised list, which
isalso on the client preference list.

If precedence is client, the negotiated protocoal is the first protocol to be shown on the client preference list, which is
also on the server advertised list.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 43

ssl

If the client does not support any of the server advertised protocols or the server does not advertise any protocols, the
client falls back to thefirst protocol initslist or to the default protocol (if adefault is supplied). If the server does not
support Next Protocol Negotiation, the connection terminates if no default protocol is supplied.

client psk identity() = psk_identity()

Specifies the identity the client presents to the server. The matching secret isfound by callinguser _| ookup_f un
client_srp_identity() = srp_identity()

Specifies the username and password to use to authenticate to the server.

sni() = hostnane() | disable

Specify the hostname to be used in TLS Server Name Indication extension. If not specified it will default to the Host
argument of connect/[3,4] unlessit is of type inet:ipaddress().

The Host Name will aso be used in the hostname verification of the peer -certificate using
public_key:pkix_verify _hostname/2.

Thespecia valuedi sabl e preventsthe Server Name Indication extension from being sent and disablesthe hostname
verification check public_key: pkix_verify _hostname/2

customize hostname check() = list()

Customizes the hostname verification of the peer certificate, as different protocols that use TLS such as HTTP or
LDAP may want to do it differently, for possible options see public_key:pkix_verify _hostname/3

fallback() = boolean()
Send special cipher suite TLS FALLBACK_SCSV to avoid undesired TLS version downgrade. Defaults to false

Note this option is not needed in normal TLS usage and should not be used to implement new clients. But legacy
clients that retries connections in the following manner

ssl:connect(Host, Port, [...{versions, ['tlsv2', "tlsvl. 1", "tlsvl']}])
ssl:connect(Host, Port, [...{versions, [tlsvl.1', ‘'tlsvl']}, {fallback,
true}])

ssl:connect(Host, Port, [...{versions, ['tlsvl']}, {fallback, true}])

may useit to avoid undesired TL S version downgrade. Notethat TLS FALLBACK _SCSV must a so be supported
by the server for the prevention to work.

client signature algs() = signature_al gs()

In addition to the algorithms negotiated by the cipher suite used for key exchange, payload encryption, message
authentication and pseudo random calculation, the TL S signature algorithm extension Section 7.4.1.4.1in RFC 5246
may be used, from TL S 1.2, to negotiate which signature algorithm to use during the TL S handshake. If no lower TLS
versionsthan 1.2 are supported, the client will send a TL S signature algorithm extension with the algorithms specified
by this option. Defaults to

44 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

[

%% SHA2

{sha512, ecdsa},
{sha512, rsa},
{sha384, ecdsa},
{sha384, rsa},
{sha256, ecdsa},
{sha256, rsa},
{sha224, ecdsa},
{sha224, rsa},
%% SHA

{sha, ecdsa},
{sha, rsa},
{sha, dsa},

1

The algorithms should be in the preferred order. Selected signature algorithm can restrict which hash functions that
may be selected. Default support for { md5, rsa} removed in ssl-8.0

client session tickets() = disabled | manual | auto

Configuresthe session ticket functionality. Allowed valuesaredi sabl ed, manual andaut o. If itissettomanual
the client will send the ticket information to user processin a 3-tuple:

{ssl, session_ticket, {SNI, TicketData}}

where SNI isthe ServerNamelndication and Ti cket Dat a isthe extended ticket data that can be used in subsequent
session resumptions.

If it is set to aut o, the client automatically handles received tickets and tries to use them when making new TLS
connections (session resumption with pre-shared keys).

Note:

This option is supported by TLS 1.3 and above. See also S9.'s Users Guide, Session Tickets and Session
Resumption in TLS 1.3

use ticket() = [binary()]

Configures the session tickets to be used for session resumption. It is a mandatory option in manual mode
(session_tickets = manual).

Note:

Session tickets are only sent to user if option session_ticketsis set to manual

This option is supported by TLS 1.3 and above. See also S9.'s Users Guide, Session Tickets and Session
Resumption in TLS 1.3

TLS/DTLS OPTION DESCRIPTIONS - SERVER

server _option() =
{cacerts, server_cacerts()} |
{cacertfile, server_cafile()} |
{dh, dh_der()} |
{dhfile, dh_file()} |
{verify, server_verify_type()} |
{fail if no_peer cert, fail _if_no_peer_cert()} |
{reuse _sessions, server_reuse_sessions()} |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 45

ssl

{reuse session, server_reuse_session()} |

{alpn _preferred protocols, server_alpn()} |
{next_protocols advertised, server_next_protocol ()} |
{psk _identity, server_psk_identity()} |

{honor cipher order, boolean()} |

{sni hosts, sni_hosts()} |

{sni fun, sni_fun()} |

{honor_cipher order, honor_ci pher_order()} |
{honor_ecc_order, honor_ecc_order()} |

{client renegotiation, client_renegotiation()} |
{signature algs, server_signature_algs()} |
{session tickets, server_session_tickets()} |
{anti replay, anti_replay()}

server cacerts() = [public_key:der_encoded()]
The DER-encoded trusted certificates. If this option is supplied it overridesoptioncacertfi | e.
server cafile() = file:filenane()

Path to a file containing PEM-encoded CA certificates. The CA certificates are used to build the server certificate
chain and for client authentication. The CAsare also used in the list of acceptable client CAs passed to the client when
a certificate is requested. Can be omitted if there is no need to verify the client and if there are no intermediate CAs
for the server certificate.

dh_der() = binary()
The DER-encoded Diffie-Hellman parameters. If specified, it overridesoption dhf i | e.

| Thedh_der optionisnot supported by TLS 1.3. Usethe suppor t ed_gr oups option instead. |

dh file() = file:filename()

Path to afile containing PEM-encoded Diffie Hellman parametersto be used by the server if acipher suite using Diffie
Hellman key exchange is negotiated. If not specified, default parameters are used.

Thedh_fi | e optionisnot supported by TLS 1.3. Usethe suppor t ed_gr oups option instead. |

server verify type() = verify_type()

A server only does x509-path validation in mode veri fy peer, as it then sends a certificate request to the
client (this message is not sent if the verify option isveri fy_none). You can then also want to specify option
fail _if_no_peer_cert.

fail if no peer cert() = boolean()

Used together with {veri fy, verify_peer} by an TLS/DTLS server. If set tot r ue, the server fails if the
client does not have a certificate to send, that is, sends an empty certificate. If settof al se, it failsonly if the client
sends an invalid certificate (an empty certificate is considered valid). Defaults to false.

server _reuse sessions() = boolean()

The boolean value true specifies that the server will agree to reuse sessions. Setting it to false will result in an empty
session table, that is no sessions will be reused. See also option reuse_session

46 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

server reuse session() = function()

Enablesthe TLS/DTLS server to have alocal policy for deciding if a session isto be reused or not. Meaningful only
if reuse_sessions issettotrue. Suggest edSessi onl d isabi nary(), Peer Cert isaDER-encoded
certificate, Conpr essi on isan enumeration integer, and Ci pher Sui t e isof typeci phersuite().

server_alpn() = [app_| evel _protocol ()]
Indicates the server will try to perform Application-Layer Protocol Negotiation (ALPN).

The list of protocols is in order of preference. The protocol negotiated will be the first in the list that matches
one of the protocols advertised by the client. If no protocol matches, the server will fail the connection with a
"no_application_protocol" aert.

The negotiated protocol can be retrieved using the negot i at ed_pr ot ocol / 1 function.
server_next protocol() = [app_Il evel _protocol ()]

List of protocolsto send to the client if the client indicates that it supports the Next Protocol extension. The client can
select a protocol that is not on thislist. Thelist of protocols must not contain an empty binary. If the server negotiates
aNext Protocol, it can be accessed using the negot i at ed_next _pr ot ocol / 1 method.

server _psk identity() = psk_identity()

Specifies the server identity hint, which the server presents to the client.

honor cipher order() = boolean()

If settot r ue, usethe server preference for cipher selection. If set to f al se (the default), use the client preference.

sni hosts() =
[{hostname(), [server_option() | common_option()]1}]

If the server receivesa SNI (Server Name Indication) from the client matching ahost listed inthesni _host s option,
the specific options for that host will override previously specified options. The option sni _f un, andsni _host s
are mutually exclusive.

sni fun() = function()

If the server receives a SNI (Server Name Indication) from the client, the given function will be called to retrieve
[server_option()] for the indicated server. These options will be merged into predefined [server_option()] list. The
function should be defined as. fun(ServerName :: string()) -> [server_option()] and can be specified as afun or as
named f un nodul e: functi on/ 1 Theoptionsni _fun,andsni _host s are mutually exclusive.

client renegotiation() = boolean()

In protocolsthat support client-initiated renegotiation, the cost of resources of such an operation ishigher for the server
than the client. This can act as a vector for denial of service attacks. The SSL application aready takes measures to
counter-act such attempts, but client-initiated renegotiation can be strictly disabled by setting this option to f al se.
The default valueist r ue. Note that disabling renegotiation can result in long-lived connections becoming unusable
due to limits on the number of messages the underlying cipher suite can encipher.

honor cipher order() = boolean()

If true, use the server's preference for cipher selection. If false (the default), use the client's preference.
honor ecc order() = boolean()

If true, use the server's preference for ECC curve selection. If false (the default), use the client's preference.
server signature algs() = signature_al gs()

The algorithms specified by this option will be the ones accepted by the server in a signature algorithm negotiation,
introduced in TLS-1.2. The algorithms will also be offered to the client if a client certificate is requested. For more
details see the corresponding client option.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 47

ssl

server session tickets() = disabled | stateful | stateless
Configures the session ticket functionality. Allowed valuesaredi sabl ed, st at ef ul and st at el ess.

Ifitissettost at ef ul or st at el ess, session resumption with pre-shared keysis enabled and the server will send
stateful or stateless session tickets to the client after successful connections.

A stateful sessionticket isadatabasereferencetointernal stateinformation. A stateless session ticket isaself-encrypted
binary that contains both cryptographic keying material and state data.

This option is supported by TLS 1.3 and above. See also S3.'s Users Guide, Session Tickets and Session
Resumption in TLS 1.3

anti replay() =
"10k' | '100k' |
{bl oom filter_w ndow_size(),
bl oom filter_hash_functions(),
bloomfilter bits()}

Configures the server's built-in anti replay feature based on Bloom filters.

Allowed values are the pre-defined * 10k' , * 100k’ or a custom 3-tuple that defines the properties of the bloom

filters. { W ndowSi ze, HashFuncti ons, Bits}.W ndowSi ze isthe number of seconds after the current

Bloom filter is rotated and also the window size used for freshness checks. HashFunct i ons is the number hash

functionsand Bi t s isthe number of bitsinthebit vector.' 10k' and' 100k’ are simple defaultswith the following

properties:

e " 10k': Bloom filters can hold 10000 elements with 3% probability of false positives. W ndowSi ze: 10,
HashFuncti ons: 5, Bi ts: 72985 (8.91 KiB).

e '100k' : Bloom filters can hold 100000 elements with 3% probability of false positives. W ndowSi ze: 10,
HashFuncti ons: 5, Bi t s: 729845 (89.09 KiB).

This optionis supported by TLS 1.3 and above and only with stateless session tickets. Ticket lifetime, the number
of tickets sent by the server and the maximum number of tickets stored by the server in stateful mode are configured
by application variables. Seealso SS.'s Users Guide, Anti-Replay Protection in TLS 1.3

Exports

append cipher suites(Deferred, Suites) -> ciphers()
Types:
Deferred = ciphers() | cipher_filters()
Suites = ci phers()
Make Def er r ed suites become the least preferred suites, that is put them at the end of the cipher suite list Sui t es

after removing them from Sui t es if present. Def er r ed may bealist of cipher suitsor alist of filtersin which case
thefiltersare use on Sui t es to extract the Deferred cipher list.

48 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

cipher suites() -> [old_cipher_suite()] | [string()]
cipher suites(Type) -> [old_cipher_suite() | string()]
Types:

Type = erlang | openssl | all
Deprecated in OTP 21, use cipher_suites/2 instead.

cipher suites(Supported, Version) -> ciphers()
Types:
Supported = default | all | anonymous
Version = protocol _version()

Returns all default or all supported (except anonymous), or al anonymous cipher suitesfor aTLS version

The cipher suites returned by this function are the cipher suites that the OTP sdl application can support provided
that they are supported by the cryptolib linked with the OTP crypto application. Use sdl:filter_cipher_suites(Suites,
[D. to filter the list for the current cryptolib. Note that cipher suites may be filtered out because they are too old
or too new depending on the cryptolib

cipher suites(Supported, Version, StringType :: rfc | openssl) ->
[string()]
Types.
Supported = default | all | anonymous
Version = protocol version()

Same as cipher_suites/2 but lists RFC or OpenSSL string names instead of erl_cipher_suite()

eccs() -> NamedCurves
eccs(Version) -> NamedCurves
Types:
Version = protocol _version()
NamedCurves = [naned_curve()]

Returns alist of supported ECCs. eccs() isequivaent to callingeccs(Pr ot ocol) with all supported protocols
and then deduplicating the output.

clear pem cache() -> ok

PEM files, used by ssl API-functions, are cached. The cacheisregularly checked to seeif any cache entries should be
invalidated, however this function provides away to unconditionally clear the whole cache.

connect (TCPSocket, TLSOptions) ->
{ok, sslsocket()} |
{error, reason()} |
{option_not a key value tuple, any()}
connect (TCPSocket, TLSOptions, Timeout) ->
{ok, sslsocket()} | {error, reason()}

Types.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 49

ssl

TCPSocket = socket ()
TLSOptions = [tls_client_option()]
Timeout = timeout()

Upgrades a gen_t cp, or equivalent, connected socket to an TLS socket, that is, performs the client-side TLS
handshake.

If theoptionveri fyissettoveri fy peer theoptionserver nane_i ndi cati on shall also be specified,
if itisnot no Server Name I ndication extension will be sent, and public_key:pkix_verify _hostname/2 will be called
with the IP-address of the connection as Ref er encel D, which is proably not what you want.

If the option { handshake, hel | 0} isused the handshake is paused after receiving the server hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake_cancel / 1.

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_msgs()

connect(Host, Port, TLSOptions) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol _extensions()} |
{error, reason()} |
{option not a key value tuple, any()}
connect(Host, Port, TLSOptions, Timeout) ->
{ok, sslsocket()} |
{ok, sslsocket(), Ext :: protocol _extensions()} |
{error, reason()} |
{option_not a key value tuple, any()}
Types:
Host host ()
Port = inet:port_nunber()
TLSOptions = [tls_client_option()]
Timeout = timeout()
Opensan TLS/DTLS connection to Host , Por t .

Whentheoptionverify issettoveri fy_peer the check public_key:pkix verify _hostname/2 will be performed
in addition to the usual x509-path validation checks. If the check fails the error { bad_cert, hosthame_check_failed}
will be propagated to the path validation fun verify_fun, where it is possible to do customized checks by using the
full possibilities of the public_key: pkix_verify_hostname/3 API. When the option ser ver _nane_i ndi cati onis
provided, its value (the DNS name) will be used as Ref er encel D to public_key:pkix_verify_hostname/2. When
no server _nane_i ndi cati on option is given, the Host argument will be used as Server Name Indication
extension. The Host argument will also be used for the public_key:pkix_verify_hosthame/2 check and if the Host

argument isani net: i p_address() the Ref er encel D used for the check will be{i p, Host} otherwise
dns_i d will be assumed with afallback toi p if that fails.

According to good practices certificates should not use | P-addresses as " server names”. It would be very surprising
if this happen outside a closed network.

50 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

If the option { handshake, hel | 0} isused the handshake is paused after receiving the server hello message and
the success responseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket}. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake_cancel / 1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_msgs()

close(SslSocket) -> ok | {error, Reason}
Types:

Ss1Socket = ssl socket ()

Reason = any()

Closes an TLS/DTLS connection.

close(SslSocket, How) -> ok | {ok, port()} | {error, Reason}
Types.
SslSocket = sslsocket ()
How = timeout() | {NewController :: pid(), timeout()}
Reason = any()
Closes or downgrades an TLS connection. In the latter case the transport connection will be handed over to the

NewCont r ol | er process after receiving the TLS close alert from the peer. The returned transport socket will have
thefollowing options set: [{ acti ve, fal se}, {packet, 0}, {node, binary}]

controlling process(SslSocket, NewOwner) -> ok | {error, Reason}
Types.

SslSocket = ssl socket ()

NewOwner = pid()

Reason = any()

Assignsanew controlling processto the SSL socket. A controlling processisthe owner of an SSL socket, and receives
all messages from the socket.

connection information(SslSocket) ->
{ok, Result} | {error, reason()}

Types.
SslSocket = ssl socket ()
Result = [{OptionName, OptionValue}]
OptionName = atom()
OptionValue = any()
Returns the most relevant information about the connection, sd options that are undefined will be filtered out.

Note that values that affect the security of the connection will only be returned if explicitly reguested by
connection_information/2.

Thelegacy | t em = ci pher _sui t e isstill supported and returnsthe cipher suite on its (undocumented) legacy
format. It should bereplaced by sel ect ed_ci pher _sui te.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 51

ssl

connection_information(SslSocket, Items) ->
{ok, Result} | {error, reason()}

Types.
SslSocket = ssl socket ()
Items = [OptionName]
Result = [{OptionName, OptionValue}]
OptionName = atom()
OptionValue = any()

Returns the requested information items about the connection, if they are defined.

Note that client_random, server random and master_secret are values that affect the security of connection.
Meaningful atoms, not specified above, are the sl option names.

If only undefined options are requested the resulting list can be empty. |

filter cipher suites(Suites, Filters) -> Ciphers
Types:

Suites = ci phers()

Filters ci pher _filters()

Ciphers = ci phers()

Removes cipher suitesif any of the filter functions returns false for any part of the cipher suite. If no filter functionis
supplied for some part the default behaviour regardsit asif there was afilter function that returned true. For examples
see Customizing cipher suits Additionaly this function also filters the cipher suites to exclude cipher suites not
supported by the cryptolib used by the OTP crypto application. That is calling sdl:filter_cipher_suites(Suites, []) will
be equivalent to only applying the filters for cryptolib support.

format _error(Reason :: {error, Reason}) -> string()
Types:

Reason = any()
Presents the error returned by an SSL function as a printable string.

getopts(SslSocket, OptionNames) ->
{ok, [gen_tcp:option()1} | {error, reason()}

Types:

Ss1Socket = ssl socket ()

OptionNames = [gen_tcp: opti on_nane()]
Gets the values of the specified socket options.

getstat(SslSocket) -> {ok, OptionValues} | {error, inet:posix()}

getstat(SslSocket, Options) ->
{ok, OptionValues} | {error, inet:posix()}

Types:

52 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Ss1Socket = ssl socket ()

Options = [inet:stat_option()]

OptionValues = [{inet:stat_option(), integer()}]
Gets one or more statistic options for the underlying TCP socket.
See inet:getstat/2 for statistic options description.

handshake (HsSocket) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

handshake(HsSocket, Timeout) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

Types:
HsSocket = ssl socket ()
Timeout = timeout()
Ss1Socket = ssl socket ()
Ext = protocol extensions()
Reason = closed | timeout | error_alert()

Performsthe SSL/TLS/DTLS server-side handshake.
Returnsanew TLS/DTLS socket if the handshake is successful.

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_msgs()

handshake(Socket, Options) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

handshake(Socket, Options, Timeout) ->
{ok, SslSocket} |
{ok, SslSocket, Ext} |
{error, Reason}

Types:
Socket = socket() | sslsocket()
SslSocket = ssl socket ()
Options [server _option()]
Timeout timeout()
Ext = protocol _extensions()
Reason = closed | timeout | {options, any()} | error_alert()

If Socket isaordinary socket () : upgradesagen_t cp, or equivalent, socket to an SSL socket, that is, performs
the SSL/TL S server-side handshake and returns a TL S socket.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 53

ssl

The Socket shall be in passive mode ({active, false}) before calling this function or else the behavior of this
function is undefined.

If Socket isan sslsocket() : provides extra SSL/TLS/DTLS optionsto those specified in listen/2 and then performs
the SSL/TLS/DTLS handshake. Returns anew TLS/DTLS socket if the handshake is successful.

If option { handshake, hel | o} isspecified the handshake is paused after receiving the client hello message and
the successresponseis{ ok, Ssl| Socket, Ext} instead of { ok, Ssl Socket }. Thereafter the handshakeis
continued or canceled by calling handshake_cont i nue/ 3 or handshake _cancel / 1

If theoptionact i veissettoonce,t r ue or aninteger value, the process owning the sslsocket will receive messages
of type active_msgs()

handshake cancel(Sslsocket :: #sslsocket{}) -> any()
Cancel the handshake with afatal USER_CANCELED alert.

handshake continue(HsSocket, Options) ->
{ok, SslSocket} | {error, Reason}

handshake continue(HsSocket, Options, Timeout) ->
{ok, SslSocket} | {error, Reason}

Types:
HsSocket = ssl socket ()
Options = [tls_client_option() | tls_server_option()]
Timeout = timeout()
SslSocket = ssl socket ()
Reason = closed | timeout | error_alert()

Continue the SSL/TL S handshake possiby with new, additional or changed options.

listen(Port, Options) -> {ok, ListenSocket} | {error, reason()}
Types:

Port = inet:port_nunber()

Options = [tls_server_option()]

ListenSocket = ssl socket ()
Createsan SSL listen socket.

negotiated protocol(SslSocket) -> {ok, Protocol} | {error, Reason}
Types:

Ss1Socket = ssl socket ()

Protocol = binary()

Reason = protocol not negotiated

Returns the protocol negotiated through ALPN or NPN extensions.

peercert(SslSocket) -> {ok, Cert} | {error, reason()}
Types:

54 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

Ss1Socket = ssl socket ()
Cert = binary()

The peer certificate is returned as a DER-encoded binary. The certificate can be decoded with
public_key:pkix_decode cert/2

peername(SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

SslSocket = ssl socket ()

Address = inet:ip_address()

Port = inet:port_nunber()

Returns the address and port number of the peer.

prepend cipher suites(Preferred, Suites) -> ciphers()
Types:
Preferred = ciphers() | cipher_filters()
Suites = ci phers()
Make Pr ef er r ed suites become the most preferred suitesthat is put them at the head of the cipher suitelist Sui t es

after removing them from Sui t es if present. Pr ef er r ed may be alist of cipher suits or alist of filters in which
case thefiltersare use on Sui t es to extract the preferred cipher list.

prf(SslSocket, Secret, Label, Seed, WantedLength) ->
{ok, binary()} | {error, reason()}

Types:
Ss1Socket = ssl socket ()
Secret = binary() | master_secret
Label = binary()
Seed = [binary() | prf_randomn()]
WantedLength = integer() >= 0

Usesthe Pseudo-Random Function (PRF) of aTL S session to generate extrakey material. It either takes user-generated
valuesfor Secr et and Seed or atoms directing it to use a specific value from the session security parameters.

recv(SslSocket, Length) -> {ok, Data} | {error, reason()}
recv(SslSocket, Length, Timeout) -> {ok, Data} | {error, reason()}
Types:

Ss1Socket = ssl socket ()

Length = integer()

Data = binary() | list() | HttpPacket

Timeout = timeout()

HttpPacket = any()

Seethedescription of Ht t pPacket inerl ang: decode_packet/ 3 in ERTS

Receives a packet from a socket in passive mode. A closed socket isindicated by return value{ er r or, cl osed}.

Argument Lengt h is meaningful only when the socket isin mode r aw and denotes the number of bytes to read. If
Lengt h =0, al available bytesarereturned. If Lengt h >0, exactly Lengt h bytesarereturned, or an error; possibly
discarding lessthan Lengt h bytes of datawhen the socket gets closed from the other side.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 55

ssl

Optiona argument Ti neout specifies atime-out in milliseconds. The default valueisi nfinity.

renegotiate(SslSocket) -> ok | {error, reason()}
Types:
Ss1Socket = ssl socket ()
Initiates a new handshake. A notablereturn valueis{error, renegoti ati on_rej ect ed} indicating that the

peer refused to go through with the renegotiation, but the connection is still active using the previously negotiated
session.

update keys(SslSocket, Type) -> ok | {error, reason()}
Types:
Ss1Socket = ssl socket ()
Type = write | read write
There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.

If the amount of data surpasses those limits, a key update is triggered and a new set of keys are installed. See also
the option key_update_at.

This function can be used to explicitly start a key update on a TLS 1.3 connection. There are two types of the key
update: if Type is set to write, only the writing key is updated; if Typeis set to read_write, both the reading and
writing keys are updated.

send(Ss1Socket, Data) -> ok | {error, reason()}
Types:

Ss1Socket = ssl socket ()

Data = iodata()
WritesDat a to Ssl Socket .

A notablereturn valueis{ error, cl osed} indicating that the socket is closed.

setopts(SslSocket, Options) -> ok | {error, reason()}
Types:

Ss1Socket = ssl socket ()

Options = [gen_tcp:option()]
Sets options according to Opt i ons for socket Ssl Socket .

shutdown (Ss1Socket, How) -> ok | {error, reason()}
Types.

Ss1Socket = ssl socket ()

How = read | write | read write

Immediately closes a socket in one or two directions.

How == wri t e means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, option { exi t _on_cl ose, fal se}
is useful.

ssl accept(SslSocket) -> ok | {error, Reason}

ssl accept(Socket, TimeoutOrOptions) ->

56 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ok | {ok, sslsocket()} | {error, Reason}
Types.
Socket = sslsocket() | socket ()
TimeoutOrOptions = timeout() | [tls_server_option()]
Reason = timeout | closed | {options, any()} | error_alert()

Deprecated in OTP 21, use handshake/[1,2] instead.

| handshake/[1,2] always returns a new socket.

ssl accept(Socket, Options, Timeout) ->
ok | {ok, sslsocket()} | {error, Reason}

Types:
Socket = sslsocket() | socket ()
Options = [tls_server_option()]
Timeout = timeout()
Reason = timeout | closed | {options, any()} | error_alert()

Deprecated in OTP 21, use handshake/[2,3] instead.

| handshake/[2,3] aways returns a new socket.

sockname (SslSocket) -> {ok, {Address, Port}} | {error, reason()}
Types:

SslSocket = ssl socket ()

Address = inet:ip_address()

Port = inet:port_nunber()

Returns the local address and port number of socket Ssl Socket .

start() -> ok | {error, reason()}
start(Type) -> ok | {error, Reason}

Starts the SSL application. Default typeist enpor ar y.

stop() -> ok
Stops the SSL application.

str _to suite(CipherSuiteName) -> erl _cipher_suite()
Types:
CipherSuiteName =
string() |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 57

ssl

{error, {not recognized, CipherSuiteName :: string()}}

Convertsan RFC or OpenSSL name string to an erl_cipher_suite() Returns an error if the cipher suiteis not supported
or the name is not avalid cipher suite name.

suite to openssl str(CipherSuite) -> string()
Types:

CipherSuite = erl _ci pher_suite()
Convertserl_cipher_suite() to OpenSSL name string.
PRE TLS-1.3 these names differ for RFC names

suite to str(CipherSuite) -> string()
Types:

CipherSuite = erl _ci pher_suite()
Convertserl_cipher_suite() to RFC name string.

transport accept(ListenSocket) ->
{ok, SslSocket} | {error, reason()}

transport accept(ListenSocket, Timeout) ->
{ok, SslSocket} | {error, reason()}

Types:
ListenSocket = ssl socket ()
Timeout = timeout()
SslSocket = ssl socket ()
Acceptsan incoming connection request on alisten socket. Li st enSocket must be asocket returned from listen/2.

The socket returned is to be passed to handshake/[2,3] to complete handshaking, that is, establishing the SSL/TLS
DTLS connection.

Most API functions require that the TLS/DTLS connection is established to work as expected.

The accepted socket inherits the options set for Li st enSocket in listen/2.

The default value for Ti meout isinfinity. If Ti meout is specified and no connection is accepted within the
giventime, {error, tineout} isreturned.

versions() -> [VersionInfol]
Types.
VersionInfo =

{ss1 app, string()} |
{supported | available, [tls_version()]} |
{supported dtls | available dtls, [dtls_version()]1}

Returns version information relevant for the SSL application.

app_vsn
The application version of the SSL application.

58 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

supported
SSL/TL S versions supported by default. Overridden by a version option on connect/[2,3,4], listen/2, and
ssl_accept/[1,2,3]. For the negotiated SSL/TL S version, see connection_information/1 .
supported_dtls
DTLS versions supported by default. Overridden by a version option on connect/[2,3,4], listen/2, and
ssl_accept/[1,2,3]. For the negotiated DTL S version, see connection_information/1 .
avai | abl e
All SSL/TLS versions supported by the SSL application. TLS 1.2 requires sufficient support from the Crypto
application.
avail abl e _dtls
All DTLS versions supported by the SSL application. DTLS 1.2 requires sufficient support from the Crypto
application.

SEE ALSO
inet(3) and gen_tcp(3) gen_udp(3)

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 59

ssl_crl_cache

ssl_crl_cache

Erlang module

Implements an internal CRL (Certificate Revocation List) cache. In addition to implementing the sd_crl_cache api
behaviour the following functions are available.

Data Types

DATA TYPES

crl src() =
{file, file:filenane()} | {der, public_key:der_encoded() }

uri() = wuri_string:uri_string()
Exports

delete(Entries) -> ok | {error, Reason}
Types.

Entries = crl _src()]}

Reason = crl _reason()

Delete CRLs from the ssl applications local cache.

insert(CRLSrc) -> ok | {error, Reason}
insert(URI, CRLSrc) -> ok | {error, Reason}

Types.
CRLSrc = crl _src()]}
URI = uri()

Reason = term()
Insert CRLs, available to fetch on DER format from URI , into the sdl applications local cache.

60 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_crl_cache_api

ssl_crl_cache_api

Erlang module

When SSL/TLS performs certificate path validation according to RFC 5280 it should also perform CRL validation
checks. To enable the CRL checks the application needs access to CRLs. A database of CRLS can be set up in many
different ways. This module provides the behavior of the APl needed to integrate an arbitrary CRL cache with the
erlang ssl application. It is also used by the application itself to provide a simple default implementation of a CRL
cache.

Data Types
crl _cache ref() = any()
Reference to the CRL cache.
dist point() = #'DistributionPoint'{}
For description see X509 certificates records
logger _info() =
{l ogger:level (),

Report :: #{description => string(), reason => term()},
| ogger: netadata() }

Information for ssl applications use of Logger(3)

Exports

fresh crl(DistributionPoint, CRL) -> FreshCRL
fresh crl(DistributionPoint, CRL) -> FreshCRL | {LoggerInfo, FreshCRL}
Types:

Di stributionPoint = dist_point()

CRL = [public_key:der_encoded()]

FreshCRL = [public_key: der_encoded()]

Loggerinfo = {logger, |logger_info() }}

fun fresh_crl/2 will beused asinput option updat e_cr| to public_key:pkix crls validate/3
Itis possible to return logger info that will be used by the TL S connection to produce log events.

lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs |
{LoggerInfo, CRLs}

lookup(DistributionPoint, Issuer, DbHandle) -> not available | CRLs
lookup(DistributionPoint, DbHandle) -> not available | CRLs
Types:

Di stributionPoint = dist_point()

| ssuer = public_key:issuer_nane()

DbHandl e = crl _cache_ref()

CRLs = [public_key: der_encoded()]

Loggerinfo = {logger, |logger_info() }}

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 61

href

ssl_crl_cache_api

Lookup the CRLs belonging to the distribution point Di st ri but i onpoi nt . This function may choose to only
look in the cache or to follow distribution point links depending on how the cache is administrated.

Thel ssuer argument contains the issuer name of the certificate to be checked. Normally the returned CRL should
be issued by this issuer, except if the cRLI ssuer field of Di stri buti onPoi nt hasavalue, in which case that
value should be used instead.

In an earlier version of this API, thel ookup function received two arguments, omitting | ssuer . For compatibility,
thisis still supported: if thereisno| ookup/ 3 function in the callback module, | ookup/ 2 iscalled instead.

It is possible to return logger info that will be used by the TL 'S connection to produce log events.

select(Issuer, DbHandle) -> CRLs | {LoggerInfo, CRLs}
select(Issuer, DbHandle) -> CRLs
Types:
| ssuer = public_key:issuer_nane() | list()
DbHandl e = cache_ref ()
Loggerinfo = {logger, |logger_info() }
Select the CRLs in the cache that are issued by | ssuer unless the value is a list of so called general names, see
X509 certificates records, originating form #' Di st ri buti onPoi nt' . cRLi ssuer and representing different

mechanism to obtain the CRLs. The cache callback needs to use the appropriate entry to retrive the CRLs or return
an empty list if it does not exist.

It is possible to return logger info that will be used by the TL S connection to produce log events.

62 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_session_cache_api

ssl_session_cache_api

Erlang module

Definesthe API for the TL S session cache so that the data storage scheme can be replaced by defining a new callback
module implementing this API.

Data Types

session_cache ref()
session_cache key()

any ()
{partial _key(), ssl:session_id()}

A key to an entry in the session cache.

partial key()

The opaque part of the key. Does not need to be handled by the callback.
session()

The session data that is stored for each session.

Exports

delete(Cache, Key) ->

Types:
Cache = session_cache_ref()
Key = session_cache_key()

Deletes a cache entry. Isonly called from the cache handling process.

foldl(Fun, AccO, Cache) -> Acc

Types:
Fun = fun()
AccO = Acc = term)
Cache = session_cache_ref()
CdlsFun(El em Accl n) on successive elements of the cache, starting with Accl n == AccO. Fun/ 2 must

return a new accumulator, which is passed to the next call. The function returns the fina value of the accumulator.
AccO isreturned if the cache is empty.

init(Args) -> Cache
Types:
Cache = session_cache_ref()
Args = proplists:proplist()
Includes property {rol e, client | server}.Currently thisisthe only predefined property, there can aso be
user-defined properties. See aso application environment variable session_cb_init_args.

Performs possible initializations of the cache and returns a reference to it that is used as parameter to the other AP
functions. Is called by the cache handling processesi ni t function, hence putting the same requirements on it as a
normal processi ni t function. This function is called twice when starting the SSL application, once with the role
client and once with the role server, as the SSL application must be prepared to take on both roles.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 63

ssl_session_cache_api

lookup(Cache, Key) -> Entry

Types.
Cache = session_cache_ref()
Key = session_cache_key()
Session = session() | undefined

Looks up a cache entry. Isto be callable from any process.

select session(Cache, PartialKey) -> [Session]
Types.

Cache = session_cache_ref()

Partial Key = partial _key()

Session = session()

Selects sessions that can be reused. Isto be callable from any process.

size(Cache) -> integer()
Types:
Cache = session_cache_ref()

Returnsthe number of sessionsin the cache. If size exceeds the maximum number of sessions, the current cache entries
will beinvalidated regardless of their remaining lifetime. Is to be callable from any process.

terminate(Cache) ->

Types.
Cache = session_cache ref()
Asreturned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

update(Cache, Key, Session) ->
Types:
Cache = session_cache_ref()
Key = session_cache_key()
Session = session()

Caches anew session or updates an aready cached one. Isonly called from the cache handling process.

64 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

	Secure Socket Layer
	SSL User's Guide
	Introduction
	Purpose
	Prerequisites

	TLS/DTLS and TLS Predecessor, SSL
	Security Overview
	Data Privacy and Integrity
	Digital Certificates
	Peer Authentication
	TLS Sessions

	Using SSL application API
	Setting up Connections
	Minimal Example
	Upgrade Example - TLS only

	Customizing cipher suits
	Using an Engine Stored Key
	Session Tickets and Session Resumption in TLS 1.3
	Anti-Replay Protection in TLS 1.3

	Using TLS for Erlang Distribution
	Building Boot Scripts Including the SSL Application
	Specifying Distribution Module for net_kernel
	Specifying SSL/TLS Options
	Specifying SSL/TLS Options (Legacy)
	Setting up Environment to Always Use SSL/TLS (Legacy)
	Using SSL/TLS distribution over IPv6

	Standards Compliance
	Purpose
	Common (pre TLS 1.3)
	Common
	SSL 2.0
	SSL 3.0
	TLS 1.0
	TLS 1.1
	TLS 1.2
	DTLS 1.0
	DTLS 1.2
	DTLS 1.3
	TLS 1.3

	Reference Manual
	ssl
	ssl
	append_cipher_suites/2
	cipher_suites/0
	cipher_suites/1
	cipher_suites/2
	cipher_suites/3
	eccs/0
	eccs/1
	clear_pem_cache/0
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	close/2
	controlling_process/2
	connection_information/1
	connection_information/2
	filter_cipher_suites/2
	format_error/1
	getopts/2
	getstat/1
	getstat/2
	handshake/1
	handshake/2
	handshake/2
	handshake/3
	handshake_cancel/1
	handshake_continue/2
	handshake_continue/3
	listen/2
	negotiated_protocol/1
	peercert/1
	peername/1
	prepend_cipher_suites/2
	prf/5
	recv/2
	recv/3
	renegotiate/1
	update_keys/2
	send/2
	setopts/2
	shutdown/2
	ssl_accept/1
	ssl_accept/2
	ssl_accept/3
	sockname/1
	start/0
	start/1
	stop/0
	str_to_suite/1
	suite_to_openssl_str/1
	suite_to_str/1
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_crl_cache
	delete/1
	insert/1
	insert/2

	ssl_crl_cache_api
	fresh_crl/2
	fresh_crl/2
	lookup/3
	lookup/3
	lookup/2
	select/2
	select/2

	ssl_session_cache_api
	delete/2
	foldl/3
	init/1
	lookup/2
	select_session/2
	size/1
	terminate/1
	update/3

