ERLANG

SSH

Copyright © 2005-2020 Ericsson AB. All Rights Reserved.
SSH 4.8.2
februari 14, 2020

Copyright © 2005-2020 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

februari 14, 2020

1.1 Introduction

1 SSH User's Guide

The Erlang Secure Shell (SSH) application, ssh, implements the SSH Transport Layer Protocol and provides SSH
File Transfer Protocol (SFTP) clients and servers.

1.1 Introduction

SSH isa protocol for secure remote logon and other secure network services over an insecure network.

1.1.1 Scope and Purpose

SSH providesasingle, full-duplex, and byte-oriented connection between client and server. The protocol also provides
privacy, integrity, server authentication, and man-in-the-middle protection.

The ssh application is an implementation of the SSH Transport, Connection and Authentication Layer Protocolsin
Erlang. It provides the following:

» AP functions to write customized SSH clients and servers applications
e TheErlang shell available over SSH

 AnSFTPclient (ssh_sftp) and server (ssh_sftpd)

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of public keys.

1.1.3 SSH Protocol Overview
Conceptually, the SSH protocol can be partitioned into four layers:

SSH Client/Server Applications

Connection Protocol [Authentication Protocol

Transport Protocol

TCP/IP Stack

Figure 1.1: SSH Protocol Architecture

Ericsson AB. All Rights Reserved.: SSH | 1

1.1 Introduction

Transport Protocol

The SSH Transport Protocol is a secure, low-level transport. It provides strong encryption, cryptographic host
authentication, and integrity protection. A minimum of Message Authentication Code (MAC) and encryption
algorithms are supported. For details, see the ssh(3) manual pageinssh.

Authentication Protocol

The SSH Authentication Protocol is a general -purpose user authentication protocol run over the SSH Transport Layer
Protocol. The ssh application supports user authentication as follows:
» Using public key technology. RSA and DSA, X509-certificates are not supported.

» Using keyboard-interactive authentication. Thisis suitable for interactive authentication methods that do
not need any special software support on the client side. Instead, all authentication datais entered from the
keyboard.

» Using a pure password-based authentication scheme. Here, the plain text password is encrypted before sent over
the network.

Severa configuration options for authentication handling are available in ssh:connect/[3,4] and ssh:daemon/[2,3].

The public key handling can be customized by implementing the following behaviours from ssh:

* Module ssh_client_key api.

e Module ssh_server_key api.

Connection Protocol

The SSH Connection Protocol provides application-support services over the transport pipe, for example, channel
multiplexing, flow control, remote program execution, signal propagation, and connection forwarding. Functions for
handling the SSH Connection Protocol can be found in the module ssh_connection in ssh.

Channels

All terminal sessions, forwarded connections, and so on, are channels. Multiple channels are multiplexed into asingle
connection. All channels are flow-controlled. This means that no data is sent to a channel peer until a message is
received to indicate that window spaceisavailable. Theinitial window size specifies how many bytes of channel data
that can be sent to the channel peer without adjusting the window. Typically, an SSH client opens a channel, sends
data (commands), receives data (control information), and then closes the channel. The ssh_client_channel behaviour
handles generic parts of SSH channel management. This makesit easy to write your own SSH client/server processes
that use flow-control and thus opens for more focus on the application logic.

Channels come in the following three flavors:

e Subsystem - Named services that can be run as part of an SSH server, such as SFTP (ssh_sftpd), that is built
into the SSH daemon (server) by default, but it can be disabled. The Erlang ssh daemon can be configured to
run any Erlang- implemented SSH subsystem.

e Shdll - Interactive shell. By default the Erlang daemon runs the Erlang shell. The shell can be customized
by providing your own read-eval-print loop. Y ou can aso provide your own Command-Line Interface (CLI)
implementation, but that is much more work.

» Exec - One-time remote execution of commands. See function ssh_connection: exec/4 for more information.

1.1.4 Where to Find More Information
For detailed information about the SSH protocoal, refer to the following Request for Comments(RFCs):

e RFC 4250 - Protocol Assigned Numbers
e RFC 4251 - Protocol Architecture
* RFC 4252 - Authentication Protocol

2 | Ericsson AB. All Rights Reserved.: SSH

href
href
href

1.2 Getting Started

 RFC 4253 - Transport Layer Protocol

e RFC 4254 - Connection Protocol

* RFC 4344 - Transport Layer Encryption Modes
e RFC 4716 - Public Key File Format

1.2 Getting Started

1.2.1 General Information

The following examples use the utility function ssh:start/0 to start all needed applications(cr ypt o, publ i ¢_key,
andssh). All examplesareruninan Erlang shell, or in abash shell, using openssh toillustrate how the s s h application
can be used. The examples are run as the user ot pt est on alocal network where the user is authorized to log in
over ssh to the host tarlop.

If nothing else is stated, it is presumed that the ot pt est user has an entry in the authorized keys file of tarlop
(allowed tolog in over ssh without entering a password). Also, tarlop isaknown host in the known_host s file of
the user ot pt est . This means that host-verification can be done without user-interaction.

1.2.2 Using the Erlang ssh Terminal Client

Theuser ot pt est , which has bash asdefault shell, usesthessh: shel | / 1 client to connect to the openssh daemon
running on a host called tarlop:

1> ssh:start().

ok

2> {ok, S} = ssh:shell("tarlop").
otptest@tarlop:> pwd
/home/otptest

otptest@tarlop:> exit

logout

3>

1.2.3 Running an Erlang ssh Daemon

The syst em di r option must be a directory containing a host key file and it defaultsto / et ¢/ ssh. For details,
see Section Configuration Files in ssh(6).

Normally, the/ et c/ ssh directory is only readable by root. ‘

Theoptionuser _di r defaultsto directory users ~/. ssh.
Step 1. To run the example without root privileges, generate new keys and host keys:

$bash> ssh-keygen -t rsa -f /tmp/ssh daemon/ssh host rsa key
[...]
$bash> ssh-keygen -t rsa -f /tmp/otptest user/.ssh/id rsa
[...]

Step 2. Create the file / t np/ ot pt est _user/. ssh/ aut hori zed_keys and add the content of /t np/
ot ptest _user/.ssh/id_rsa. pub.

Step 3. Start the Erlang ssh daemon;

Ericsson AB. All Rights Reserved.: SSH | 3

href
href
href
href

1.2 Getting Started

1> ssh:start().
ok
2> {ok, Sshd} = ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"}1).
{ok,<0.54.0>}
3>

Step 4. Use the openssh client from a shell to connect to the Erlang ssh daemon:

$bash> ssh tarlop -p 8989 -i /tmp/otptest user/.ssh/id rsa \

-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts
The authenticity of host 'tarlop' can't be established.
RSA key fingerprint is 14:81:80:50:b1:1f:57:dd:93:a8:2d:2f:dd:90:ae:a8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'tarlop' (RSA) to the list of known hosts.
Eshell V5.10 (abort with ~G)
1>

There are two ways of shutting down an ssh daemon, see Step 5a and Step 5b.

Step 5a. Shut down the Erlang ssh daemon so that it stops the listener but leaves existing connections, started by
the listener, operational:

3> ssh:stop listener(Sshd).
ok
4>

Step 5b. Shut down the Erlang ssh daemon so that it stops the listener and all connections started by the listener:

3> ssh:stop_daemon(Sshd).
ok
4>

1.2.4 One-Time Execution

Erlang client contacting OS standard ssh server
In the following example, the Erlang shell is the client process that receives the channel replies as Erlang messages.
Do an one-time execution of aremote OS command ("pwd") over ssh to the ssh server of the OS at the host "tarlop":

1> ssh:start().

ok

2> {ok, ConnectionRef} = ssh:connect("tarlop", 22, [1).

{ok,<0.57.0>}

3> {ok, ChannellId} = ssh connection:session channel(ConnectionRef, infinity).
{ok,0}

4> success = ssh connection:exec(ConnectionRef, Channelld, "pwd", infinity).
5> flush(). % Get all pending messages. NOTE: ordering may vary!

Shell got {ssh cm,<0.57.0>,{data,0,0,<<"/home/otptest\n">>}}

Shell got {ssh cm,<0.57.0>,{eof,0}}

Shell got {ssh cm,<0.57.0>,{exit status,0,0}}

Shell got {ssh cm,<0.57.0>,{closed,0}}

ok

6> ssh:connection info(ConnectionRef, channels).

{channels, []}

7>

4 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

See ssh_connection and ssh_connection: exec/4 for finding documentation of the channel messages.

To collect the channel messagesin aprogram, user ecei ve. . . end instead of f | ush/ 1:

5> receive

5> {ssh_cm, ConnectionRef, {data, ChannelIld, Type, Result}} when Type == 0 ->
5> {ok,Result}

5> {ssh_cm, ConnectionRef, {data, ChannelIld, Type, Result}} when Type == 1 ->
5> {error,Result}

5> end.

{ok,<<"/home/otptest\n">>}

6>

Note that only the exec channel is closed after the one-time execution. The connection is still up and can handle
previously opened channels. It is also possible to open a new channel:

% try to open a new channel to check if the ConnectionRef is still open

7> {ok, NewChannelId} = ssh connection:session channel(ConnectionRef, infinity).
{ok, 1}

8>

To close the connection, cal the function ssh: cl ose(Connecti onRef). As an dternative, set the option
{idle_tinme, 1} when opening the connection. This will cause the connection to be closed automaticaly when
there are no channels open for the specified time period, in this case 1 ms.

OS standard client and Erlang daemon (server)

An Erlang SSH daemon could be called for one-time execution of a"command”. The "command" must be asif entered
into the erlang shell, that is a sequence of Erlang expressions ended by a period (.). Variables bound in that sequence
will keep their bindings throughout the expression sequence. The bindings are disposed when the result is returned.

Hereis an example of a suitable expression sequence:

A=1, B=2, 3 == (A + B).

It evaluatesto t r ue if submitted to the Erlang daemon started in Step 3 above:

$bash> ssh tarlop -p 8989 "A=1, B=2, 3 == (A + B)."
true
$bash>

The same example but now using the Erlang ssh client to contact the Erlang server:

1> {ok, ConnectionRef} = ssh:connect("tarlop", 8989, []).

{ok,<0.216.0>}

2> {ok, Channelld} = ssh connection:session_channel(ConnectionRef, infinity).

{ok,0}

3> success = ssh _connection:exec(ConnectionRef, Channelld,
"A=1, B=2, 3 == (A + B).",
infinity).

success

4> flush().

Shell got {ssh cm,<0.216.0>,{data,0,0,<<"true">>}}

Shell got {ssh cm,<0.216.0>,{exit status,0,0}}

Shell got {ssh cm,<0.216.0>,{eof,0}}

Shell got {ssh cm,<0.216.0>,{closed,0}}

ok

5>

Ericsson AB. All Rights Reserved.: SSH | 5

1.2 Getting Started

Note that Erlang shell specific functions and control sequences like for example h() . are not supported.

I/0 from a function called in an Erlang ssh daemon
Output to stdout on the server sideis also displayed as well as the resulting term from the function call:

$bash> ssh tarlop -p 8989 'io:format("Hello!~n~nHow are ~p?~n",[youl).'
Hello!

How are you?
ok
$bash>

And similar for reading from stdin. As an example we use io:read/1 which displays the argument as a prompt on
stdout, reads aterm from stdin and returnsit in an ok-tuple:

$bash> ssh tarlop -p 8989 'io:read("write something: ").'
write something: [a,b,c].

{ok,[a,b,c]}

$bash>

The same exampl e but using the Erlang ssh client:

Eshell V10.5.2 (abort with ~G)
1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect(loopback, 8989, []).
{0k, <0.92.0>}
3> {ok, Channelld} = ssh connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh _connection:exec(ConnectionRef, Channelld,
"io:read(\"write something: \").",

infinity).
success
5> flush().
Shell got {ssh cm,<0.92.0>,{data,0,0,<<"write something: ">>}}
ok

% All data is sent as binaries with string contents:

6> ok = ssh connection:send(ConnectionRef, Channelld, <<"[a,b,c].">>).
ok

7> flush().

=

Nothing is received, because the io:read/1
requires the input line to end with a newline.

® o O

)
"6
)

"6

%% Send a newline (it could have been included in the last send):
8> ssh _connection:send(ConnectionRef, Channelld, <<"\n">>).
ok

9> flush().

Shell got {ssh cm,<0.92.0>,{data,0,0,<<"{ok, [a,b,c]}">>}}
Shell got {ssh cm,<0.92.0>,{exit status,0,0}}

Shell got {ssh cm,<0.92.0>,{eof,0}}

Shell got {ssh cm,<0.92.0>,{closed,0}}

ok

10>

Configuring the server's (daemon's) command execution

Every timeadaemon is started, it enables one-time execution of commands as described in the previous section unless
explicitly disabled.

6 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

There is often a need to configure some other exec evaluator to tailor the input language or restrict the possible
functions to call. There are two ways of doing this which will be shown with examples below. See ssh:daemon/2,3
and exec_daemon_option()) for details.

Examples of the two ways to configure the exec evaluator:

» Disable one-time execution.
To modify the daemon start example above to reject one-time execution requests, we change Step 3 by adding
theoption { exec, di sabl ed} to:

1> ssh:start().

ok

2> {ok, Sshd} = ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"},
{exec, disabled}
1) o

{ok,<0.54.0>}

3>

A call to that daemon will return the text "Prohibited.” on stderr (depending on the client and OS), and the exit
status 255:

$bash> ssh tarlop -p 8989 "test."
Prohibited.

$bash> echo $?

255

$bash>

And the Erlang client library also returns the text "Prohibited.” on data type 1 instead of the normal 0 and exit
status 255:

2> {ok, ConnectionRef} = ssh:connect(loopback, 8989, [1]).
{ok,<0.92.0>}

3> {ok, Channelld} = ssh connection:session_channel(ConnectionRef, infinity).
{ok, 0}

4> success = ssh_connection:exec(ConnectionRef, Channelld, "test."
success

5> flush().

Shell got {ssh cm,<0.106.0>,{data,0,1,<<"Prohibited.">>}}

Shell got {ssh cm,<0.106.0>,{exit status,0,255}}

Shell got {ssh cm,<0.106.0>,{eof,0}}

Shell got {ssh cm,<0.106.0>,{closed,0}}

ok

6>

* Instal an dternative evaluator.
Start the damon with areferenceto af un() that handlesthe evaluation:

Ericsson AB. All Rights Reserved.: SSH | 7

1.2 Getting Started

1> ssh:start().
ok
2> MyEvaluator = fun("1") -> {ok, some value};
("2") -> {ok, some other value};
("3") -> {ok, V} = io:read("input erlang term>> "),
{ok, V};
(Err) -> {error,{bad input,Err}}
end.
3> {ok, Sshd} = ssh:daemon(1234, [{system dir, "/tmp/ssh_daemon"},
{user dir, "/tmp/otptest user/.ssh"},
{exec, {direct,MyEvaluator}}
1.
{ok,<0.275.0>}
4>

and call it:

$bash> ssh localhost -p 1234 1
some_value

$bash> ssh localhost -p 1234 2
some_other value

I/0 works:

$bash> ssh localhost -p 1234 3
input erlang term>> abc.

abc

Check that Erlang evaluation is disabled:
$bash> ssh localhost -p 1234 1+ 2.
Error {bad input,"1+ 2."}
$bash>

Note that spaces are preserved and that no point (.) is needed at the end - that was required by the default
evaluator.

The error return in the Erlang client (The text as datatype 1 and exit_status 255):

2> {ok, ConnectionRef} = ssh:connect(loopback, 1234, []).

{ok,<0.92.0>}

3> {ok, ChannelIld} = ssh connection:session channel(ConnectionRef, infinity).
{ok, 0}

4> success = ssh_connection:exec(ConnectionRef, Channelld, "1+ 2."

success

5> flush().

Shell got {ssh cm,<0.106.0>,{data,0,1,<<"**Error** {bad input,\"1+ 2.\"}">>}}
Shell got {ssh cm,<0.106.0>,{exit status,0,255}}

Shell got {ssh cm,<0.106.0>,{eof,0}}

Shell got {ssh cm,<0.106.0>,{closed,0}}

ok

6>

Thefun() inthe exec option could take up to three arguments (Cnd, User and O i ent Addr ess). Seethe
exec_daemon_option() for the details.

An old, discouraged and undocumented way of installing an alternative evaluator exists.

It still works, but lacksfor example /O possibility. It isbecause of that compatibility weneedthe{ di rect, . . . }
construction.

8 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

1.2.5 SFTP Server
Start the Erlang ssh daemon with the SFTP subsystem:

1> ssh:start().
ok
2> ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},

{user dir, "/tmp/otptest user/.ssh"},

{subsystems, [ssh sftpd:subsystem spec(

[{cwd, "/tmp/sftp/example"}])
1.

{ok,<0.54.0>}
3>

Run the OpenSSH SFTP client:

$bash> sftp -oPort=8989 -o IdentityFile=/tmp/otptest user/.ssh/id rsa \
-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts tarlop
Connecting to tarlop...
sftp> pwd
Remote working directory: /tmp/sftp/example
sftp>

1.2.6 SFTP Client
Fetch afile with the Erlang SFTP client:

1> ssh:start().

ok

2> {ok, ChannelPid, Connection} = ssh sftp:start channel("tarlop", []).
{0k,<0.57.0>,<0.51.0>}

3> ssh sftp:read file(ChannelPid, "/home/otptest/test.txt").
{ok,<<"This is a test file\n">>}

1.2.7 SFTP Client with TAR Compression

Basic example

Thisis an example of writing and then reading atar file:

{ok,HandleWrite} = ssh sftp:open tar(ChannelPid, ?tar file name, [writel),

ok = erl tar:add(HandleWrite,),

ok = erl tar:add(HandleWrite,),

ék.= erl tar:add(HandleWrite,),

ok = erl tar:close(HandleWrite),

%% And for reading

{ok,HandleRead} = ssh sftp:open tar(ChannelPid, ?tar file name, [read]),
{ok,NameValueList} = erl tar:extract(HandleRead, [memory]),

ok = erl tar:close(HandleRead),

Example with encryption

The previous Basic example can be extended with encryption and decryption as follows:

Ericsson AB. All Rights Reserved.: SSH | 9

1.2 Getting Started

%% First three parameters depending on which crypto type we select:
Key = <<"This is a 256 bit key. abcdefghi">>,

IvecO = crypto:strong rand bytes(16),

DataSize = 1024, % DataSize rem 16 = 0 for aes cbc

%% Initialization of the CryptoState, in this case it is the Ivector.
InitFun = fun() -> {ok, IvecO, DataSize} end,

%% How to encrypt:
EncryptFun =
fun(PlainBin,Ivec) ->
EncryptedBin = crypto:block encrypt(aes cbc256, Key, Ivec, PlainBin),
{ok, EncryptedBin, crypto:next iv(aes cbc,EncryptedBin)}
end,

%% What to do with the very last block:
CloseFun =
fun(PlainBin, Ivec) ->
EncryptedBin = crypto:block encrypt(aes cbc256, Key, Ivec,
pad(16,PlainBin) %% Last chunk
)I
{ok, EncryptedBin}
end,

Cw = {InitFun,EncryptFun,CloseFun},
{ok,HandleWrite} = ssh sftp:open_tar(ChannelPid, ?tar file name, [write,{crypto,Cw}]),
ok = erl tar:add(HandleWrite,),

ok erl tar:add(HandleWrite,),
ok = erl tar:add(HandleWrite,),
ok = erl tar:close(HandleWrite),

%% And for decryption (in this crypto example we could use the same InitFun
%% as for encryption):
DecryptFun =
fun(EncryptedBin,Ivec) ->
PlainBin = crypto:block decrypt(aes cbc256, Key, Ivec, EncryptedBin),
{ok, PlainBin, crypto:next iv(aes cbc,EncryptedBin)}
end,

Cr = {InitFun,DecryptFun},
{ok,HandleRead} = ssh sftp:open tar(ChannelPid, ?tar file name, [read,{crypto,Cw}]),

{ok,NameValueList} = erl tar:extract(HandleRead, [memoryl]),
ok = erl tar:close(HandleRead),

1.2.8 Creating a Subsystem

A small ssh subsystem that echoes N bytes can be implemented as shown in the following example:

10 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

-module(ssh _echo server).
-behaviour(ssh _server channel). % replaces ssh _daemon channel
-record(state, {
n,
id,
cm
1.
-export([init/1, handle msg/2, handle ssh msg/2, terminate/2]).

init([N]) ->
{ok, #state{n = N}}.

handle msg({ssh channel up, Channelld, ConnectionManager}, State) ->
{ok, State#state{id = Channelld,
cm = ConnectionManager}}.

handle ssh msg({ssh cm, CM, {data, Channelld, 0, Data}}, #state{n = N} = State) ->
M =N - size(Data),
case M > 0 of
true ->
ssh_connection:send(CM, Channelld, Data),
{ok, State#state{n = M}};
false ->
<<SendData:N/binary, /binary>> = Data,
ssh _connection:send(CM, Channelld, SendData),
ssh _connection:send eof(CM, Channelld),
{stop, Channelld, State}
end;
handle ssh msg({ssh cm, ConnectionManager,
{data, Channelld, 1, Data}}, State) ->

error_logger:format(standard error, " ~p~n", [binary to list(Data)l),

{ok, State};
handle ssh msg({ssh cm, ConnectionManager, {eof, Channelld}}, State) ->
{ok, State};
handle ssh msg({ssh cm, , {signal, , }}, State) ->
%% Ignore signals according to RFC 4254 section 6.9.
{ok, State};
handle ssh msg({ssh cm, , {exit signal, Channelld, , Error, }},
State) ->

{stop, Channelld, State};

handle ssh msg({ssh cm, , {exit status, Channelld, Status}}, State) ->
{stop, Channelld, State}.

terminate(Reason, State) ->
ok.

The subsystem can be run on the host tarlop with the generated keys, as described in Section Running an Erlang
ssh Daemon:

1> ssh:start().
ok
2> ssh:daemon(8989, [{system dir, "/tmp/ssh_daemon"},
{user dir, "/tmp/otptest user/.ssh"}
{subsystems, [{"echo n", {ssh echo server, [10]}}]}]).
{ok,<0.54.0>}
3>

Ericsson AB. All Rights Reserved.: SSH | 11

1.3 Terminology

1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect("tarlop", 8989,

[{user dir, "/tmp/otptest user/.ssh"}]).

{0k, <0.57.0>}
3> {ok, Channelld} = ssh connection:session_channel(ConnectionRef, infinity).
4> success = ssh_connection:subsystem(ConnectionRef, Channelld, "echo n", infinity).
5> ok = ssh _connection:send(ConnectionRef, Channelld, "0123456789", infinity).
6> flush().

{ssh msg, <0.57.0>, {data, 0, 1, "0123456789"}}

{ssh msg, <0.57.0>, {eof, 0}}

{ssh _msg, <0.57.0>, {closed, 0}}
7> {error, closed} = ssh connection:send(ConnectionRef, Channelld, "10", infinity).

See also ssh_client_channel (3) (replaces ssh_channel (3)).

1.3 Terminology

1.3.1 General Information

In the following terms that may cause confusion are explained.

1.3.2 The term "user"

A "user" is aterm that everyone understands intuitively. However, the understandings may differ which can cause
confusion.

The term is used differently in OpenSSH and SSH in Erlang/OTP. The reason is the different environments and use
cases that are not immediatly obvious.

This chapter aims at explaining the differences and giving arationale for why Erlang/OTP handles "user” asit does.

In OpenSSH

Many have been in contact with the command 'ssh' on a Linux machine (or similar) to remotly log in on another
machine. One types

ssh host

to log in on the machine named host . The command prompts for your password on the remote host and then you
can read, write and execute as your user name has rights on the remote host . There are stronger variants with pre-
distributed keys or certificates, but that are for now just details in the authentication process.

You could log in asthe user anot her user with
ssh anotheruser@host

and you will then be enabled to act asanot her user onthehost if authorized correctly.

So what does "your user name has rights' mean? In a UNIX/Linux/etc context it is exactly as that context: The user
could read, write and execute programs according to the OS rules. In addition, the user has a home directory ($HOVE)
and thereisa$HOVE/ . ssh/ directory with ssh-specific files.

SSH password authentication

When SSH tries to log in to a host, the ssh protocol communicates the user name (as a string) and a password. The
remote ssh server checks that there is such a user defined and that the provided password is acceptable.

If so, the user is authorized.

12 | Ericsson AB. All Rights Reserved.: SSH

href

1.3 Terminology

SSH public key authentication

Thisis a stronger method where the ssh protocol brings the user name, the user's public key and some cryptographic
information which we could ignore here.

The ssh server on the remote host checks:

e That the user has ahome directory,
» that home directory contains a .ssh/ directory and
e the.ssh/ directory contains the public key just received inthe aut hori zed_keys file

if so, the user is authorized.
The SSH server on UNIX/Linux/etc after a succesful authentication
After asuccesful incoming authentication, a new process runs as the just authenticated user.

Next step is to start a service according to the ssh request. In case of arequest of a shell, a new one is started which
handles the OS-commands that arrives from the client (that's "you").

In case of a sftp request, an sftp server is started in with the user's rights. So it could read, write or delete files if
allowed for that user.

In Erlang/OTP SSH

For the Erlang/OTP SSH server the situation is different. The server executes in an Erlang process in the Erlang
emulator which in turn executesin an OS process. The emulator does not try to changeits user when authenticated over
the SSH protocol. So the remote user name is only for authentication purposes in the Erlang/OTP SSH application.

Password authentication in Erlang SSH
The Erlang/OTP SSH server checks the user name and password in the following order:

e |f apwdf un isdefined, that oneis called and the returned boolean is the authentication result.

* Elsg if theuser _passwor ds optionis defined and the username and the password matches, the
authentication is a success.

e Elsg if the option passwor d is defined and matches the password the authentication is a success. Note that the
use of this option is not recommended in non-test code.
Public key authentication in Erlang SSH

The user name, public key and cryptographic data (a signature) that is sent by the client, are used as follows (some
steps |eft out for clearity):
e A calback moduleis selected using the optionskey_cb.

e Thecallback module is used to check that the provided public key is one of the user's pre-stored. In case of the
default callback module, thefilesaut hori zed_keys and aut hori zed_keys2 are searched in adirectory
found in the following order:

e |ftheoptionuser dir_fun isdefined, that funiscaled and the returned directory is used,
* Elsg If theoption user _di r isdefined, that directory is used,

e Elsethe subdirectory . ssh in the home directory of the user executing the OS process of the Erlang
emulator is used.

If the provided public key is not found, the authentication fails.
« Finaly, if the provided public key isfound, the signature provided by the client is checked with the public key.

The Erlang/OTP SSH server after a succesful authentication

After a successful authentication an Erlang process is handling the service request from the remote ssh client. The
rights of that process are those of the user of the OS process running the Erlang emulator.

Ericsson AB. All Rights Reserved.: SSH | 13

1.4 Configuring algorithms in SSH

If ashell service request arrives to the server, an Erlang shell is opened in the server's emulator. The rights in that
shell isindependent of the just authenticated user.

In case of an sftp request, an sftp server is started with the rights of the user of the Erlang emulator's OS process. So
with sftp the authenticated user does not influence the rights.

So after an authentication, the user name is not used anymore and has no influence.

1.4 Configuring algorithms in SSH
1.4.1 Introduction

To fully understand how to configure the algorithms; it is essential to have a basic understanding of the SSH protocol
and how OTP SSH app handles the corresponding items

Thefirst subsection will give ashort background of the SSH protocol whilelater sections describesthe implementation
and provides some examples
Basics of the ssh protocol's algorithms handling

SSH uses different sets of algorithms in different phases of a session. Which algorithms to use is negotiated by the
client and the server at the beginning of asession. See RFC 4253, "The Secure Shell (SSH) Transport Layer Protocol”
for details.

The negotiation is simple: both peers sends their list of supported alghorithms to the other part. The first algorithm
on the client's list that also in on the server's list is selected. So it is the client's orderering of the list that gives the
priority for the agorithms.

There are five lists exchanged in the connection setup. Three of them are also divided in two directions, to and from
the server.

Thelists are (named as in the SSH application's options):
kex
Key exchange.

An agorithm is selected for computing a secret encryption key. Among examples are: the old nowadays
week ' di ffi e-hel | man- gr oup- exchange- shal' and the very strong and modern ' ecdh- sha2-
ni st p512'.

public_key
Server host key

The asymetric encryption algorithm used in the server's private-public host key pair. Examplesinclude the well-
known RSA ' ssh-rsa' and dliptic curve' ecdsa- sha2-ni st p521' .

ci pher

Symetric cipher algorithm used for the payload encryption. This agorithm will use the key calculated in the kex
phase (together with other info) to genereate the actual key used. Examples are tripple-DES ' 3des- cbc' and
one of many AESvariants' aes192-ctr' .

Thislist isactually two - one for each direction server-to-client and client-to-server. Therefore it is possible but
rare to have different algorithms in the two directions in one connection.

nmac
M essage authentication code

"Check sum" of each message sent between the peers. Examplesare SHA ' hnac- shal' and SHA2' hmac-
sha2-512".

14 | Ericsson AB. All Rights Reserved.: SSH

href

1.4 Configuring algorithms in SSH

Thislist isalso divided into two for the both directions

conpr essi on
If and how to compress the message. Examples are none, that is, no compression and z1 i b.
Thislist is also divided into two for the both directions

The SSH app's mechanism
The set of algorithms that the SSH app uses by default depends on the algoritms supported by the:

e Crypto app,
e Thecryptolib OTPislinked with, usally the one the OS uses, probably OpenSSL,
e and finaly what the SSH app implements

Dueto this, it impossible to list in documentation what algorithms that are available in a certain installation.
There is an important command to list the actual algorithms and their ordering: ssh:default_algorithms/O.

0> ssh:default algorithms().

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521',
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512"',
'diffie-hellman-groupl8-sha512"',
'diffie-hellman-groupl4-sha256"',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal'l},

{public key,['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521',
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']1},

{cipher, [{client2server, ['aes256-gcm@openssh.com',

'aes256-ctr', 'aesl92-ctr', 'aes128-gcm@openssh.com',
'aesl28-ctr', 'aesl28-chc', '3des-cbc']},

{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl28-cbc', '3des-cbc']1}1},

{mac, [{client2server, ['hmac-sha2-256', 'hmac-sha2-512",

‘hmac-shal'l},
{server2client, ['hmac-sha2-256', 'hmac-sha2-512"',
‘hmac-shal'l1}]1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}1}]

To change the algorithm list, there are two options which can be used in ssh:connect/2,3,4 and ssh:daemon/2,3. The
options could of course be used in all other functions that initiates connections.

The options are pr ef erred_al gori t hns and nodi fy_al gori t hns. The first one replaces the default set,
while the latter modifies the default set.

1.4.2 Replacing the default set: preferred_algorithms
See the Reference Manual for details

Here follows a series of examples ranging from simple to more complex.

To forsee the effect of an option there is an experimental function ssh: chk_al gos_opts(Opts). It
mangles the optionspr ef er r ed_al gori t hns and nodi fy_al gori t hns in the sameway asssh: daneon,
ssh: connect and their friends does.

Example 1
Replace the kex algorithms list with the single algorithm ' di f fi e- hel | man- gr oup14- sha256' :

Ericsson AB. All Rights Reserved.: SSH | 15

1.4 Configuring algorithms in SSH

1> ssh:chk algos opts(
[{preferred algorithms,
[{kex, ['diffie-hellman-groupl4-sha256']}
1
}

1.
[{kex,['diffie-hellman-groupl4-sha256']},
{public_key, ['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521",
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},
{cipher, [{client2server, ['aes256-gcm@openssh.com',
'aes256-ctr', 'aesl92-ctr', 'aes128-gcm@openssh.com',
'aesl28-ctr', 'aesl28-cbc', '3des-cbc']},
{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl28-cbc', '3des-cbc']1}1},
{mac, [{client2server, ['hmac-sha2-256', 'hmac-sha2-512",
‘hmac-shal'l},
{server2client, ['hmac-sha2-256', 'hmac-sha2-512",
‘hmac-shal'l}]1},
{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},
{server2client, [none, 'zlib@openssh.com',zlib]}1}]

Note that the unmentioned lists (publ i ¢_key, ci pher, mac and conpr essi on) are un-changed.

Example 2

Intheliststhat are divided in two for the two directions (c.f ci pher) itis possibleto change both directions at once:

2> ssh:chk algos opts(
[{preferred algorithms,
[{cipher,['aesl28-ctr']}
1
}

1.

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521',
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
‘diffie-hellman-groupl6-sha512"',
‘diffie-hellman-groupl8-sha512"',
‘diffie-hellman-groupl4-sha256"',
‘diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal'l},

{public_key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521",
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},

{cipher, [{client2server,['aesl128-ctr'l]},

{server2client,['aes128-ctr']}]},
{mac, [{client2server, ['hmac-sha2-256', 'hmac-sha2-512"',
‘hmac-shal'l},
{server2client, ['hmac-sha2-256', 'hmac-sha2-512",
‘hmac-shal'l}]1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}1}]

Note that both listsin ci pher has been changed to the provided value (' aes128-ctr').

Example 3

Intheliststhat aredivided intwo for thetwo directions(c.f ci pher) itispossibleto change only one of the directions:

16 | Ericsson AB. All Rights Reserved.: SSH

1.4 Configuring algorithms in SSH

3> ssh:chk algos opts(
[{preferred algorithms,
[{cipher, [{client2server,['aes128-ctr']}]}
]

)
1.

[{kex, ['ecdh-sha2-nistp384', 'ecdh-sha2-nistp521",
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512"',
'diffie-hellman-groupl8-sha512"',
'diffie-hellman-groupl4-sha256"',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal'l},

{public_key, ['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521",
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256",
'rsa-sha2-512"', 'ssh-dss']},

{cipher, [{client2server,['aesl28-ctr'l]},

{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl28-cbc', '3des-cbc']1}1},
{mac, [{client2server, ['hmac-sha2-256', 'hmac-sha2-512",
‘hmac-shal'l},
{server2client, ['hmac-sha2-256"', 'hmac-sha2-512",
‘hmac-shal'l1}]1},
{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},
{server2client, [none, 'zlib@openssh.com',zlib]}]1}]

Example 4
It is of course possible to change more than one list:

4> ssh:chk algos opts(
[{preferred algorithms,
[{cipher,['aes128-ctr'l]},
{mac, ['hmac-sha2-256"'1},
{kex, ['ecdh-sha2-nistp384'1]},
{public_key, ['ssh-rsa'l},
{compression, [{server2client, [nonel},
{client2server,[zlib]}]}
1
)
1.
[{kex, ['ecdh-sha2-nistp384'1},
{public_key,['ssh-rsa'l},
{cipher, [{client2server,['aesl128-ctr'l]},
{server2client,['aes128-ctr']1}1},
{mac, [{client2server,['hmac-sha2-256"']},
{server2client, ['hmac-sha2-256"']1}]},
{compression, [{client2server, [zlib]},
{server2client, [none]}]}]

Note that the ordering of the tuplesin the lists didn't matter.

1.4.3 Modifying the default set: modify algorithms

A situation where it might be useful to add an algorithm is when one need to use a supported but disabled one. An
exampleisthe' di f fi e- hel | man- gr oupl-shal' which nowadaysisvery unsecure and therefore disabled. It
is however still supported and might be used.

The option pr ef erred_al gori t hns may be complicated to use for adding or removing single algorithms. First
one hasto list them with ssh: def aul t _al gori t hnms() and then do changesin thelists.

Ericsson AB. All Rights Reserved.: SSH | 17

1.4 Configuring algorithms in SSH

To facilitate addition or removal of algorithms the option modi fy_al gori t hns is available. See the Reference

Manual for details.

The option takes a list with instructions to append, prepend or remove algorithms:

{modify algorithms, [{append, ...},
{prepend, ...},
{rm, ...}
1}

Eachof the. .. canbeaal gs_I|i st () astheargumenttothepr ef erred_al gori t hims option.

Example 5

Asanexamplelet'sadd the Diffie-Hellman Groupl firstinthekex list. It issupported according to Supported algoritms.

5> ssh:chk algos opts(
[{modify algorithms,
[{prepend,
[{kex,['diffie-hellman-groupl-shal']}]

1
}
1.

[{kex,['diffie-hellman-groupl-shal', 'ecdh-sha2-nistp384',
'ecdh-sha2-nistp521', 'ecdh-sha2-nistp256',
'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512"',
'diffie-hellman-groupl8-sha512"',
'diffie-hellman-groupl4-sha256',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal'l},

{public key,['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521',
'ecdsa-sha2-nistp256', 'ssh-rsa', 'rsa-sha2-256"',
'rsa-sha2-512"', 'ssh-dss'1},

{cipher, [{client2server, ['aes256-gcm@openssh.com',

'aes256-ctr', 'aesl92-ctr', 'aes128-gcm@openssh.com',
'aesl28-ctr', 'aesl28-cbhc', '3des-cbc']},

{server2client, ['aes256-gcm@openssh.com', 'aes256-ctr',
'aesl92-ctr', 'aesl28-gcm@openssh.com', 'aesl28-ctr',
'aesl128-cbc', '3des-cbc']1}1},

{mac, [{client2server, ['hmac-sha2-256"', 'hmac-sha2-512",

'hmac-shal'l},
{server2client, ['hmac-sha2-256', 'hmac-sha2-512",
'hmac-shal'l}1},

{compression, [{client2server, [none, 'zlib@openssh.com',zlib]},

{server2client, [none, 'zlib@openssh.com',zlib]}1}]

And the result shows that the Diffie-Hellman Groupl is added at the head of the kex list

Example 6

In this example, we in put the 'diffie-hellman-groupl-shal' first and also move the' ecdh- sha2- ni st p521'

theend in the kex ligt, that is, append it.

18 | Ericsson AB. All Rights Reserved.: SSH

to

1.4 Configuring algorithms in SSH

6> ssh:chk algos opts(
[{modify algorithms,
[{prepend,
[{kex, ['diffie-hellman-groupl-shal']}
1},
{append,
[{kex, ['ecdh-sha2-nistp521']}
1}
|
}

1.

[{kex,['diffie-hellman-groupl-shal', 'ecdh-sha2-nistp384"',
'ecdh-sha2-nistp256', 'diffie-hellman-group-exchange-sha256',
'diffie-hellman-groupl6-sha512"',
'diffie-hellman-groupl8-sha512"',
'diffie-hellman-groupl4-sha256"',
'diffie-hellman-groupl4-shal',
'diffie-hellman-group-exchange-shal', 'ecdh-sha2-nistp521']},

{public_key, ['ecdsa-sha2-nistp384', 'ecdsa-sha2-nistp521",

Note that the appended algorithm is removed from its original place and then appended to the samellist.

Example 7

In this example, we use both options (pr ef erred_al gori t hns and nodi fy_al gori t hns) and aso try to
prepend an unsupported algorithm. Any unsupported algorithm is quietly removed.

7> ssh:chk algos opts(
[{preferred algorithms,
[{cipher,['aes128-ctr']},
{mac, ['hmac-sha2-256']},
{kex, ['ecdh-sha2-nistp384'1]},
{public_key,['ssh-rsa']},
{compression, [{server2client, [nonel},
{client2server, [zlib]}]}
]

}!
{modify algorithms,
[{prepend,
[{kex, ['some unsupported algorithm']}
1},
{append,

[{kex, ['diffie-hellman-groupl-shal']}
1}
|
}

1.
[{kex, ['ecdh-sha2-nistp384', 'diffie-hellman-groupl-shal'l},
{public_key, ['ssh-rsa']},
{cipher, [{client2server,['aesl28-ctr'l]},
{server2client,['aes128-ctr']}]},
{mac, [{client2server, ['hmac-sha2-256"'1]},
{server2client, ['hmac-sha2-256"']1}]},
{compression, [{client2server, [zlib]},
{server2client, [none]}]}]

It is of course questionable why anyone would like to use the both these options together, but it is possible if an
unforeseen need should arise.

Ericsson AB. All Rights Reserved.: SSH | 19

1.4 Configuring algorithms in SSH

2 Reference Manual

The ssh application is an Erlang implementation of the Secure Shell Protocol (SSH) as defined by RFC 4250 - 4254.

20 | Ericsson AB. All Rights Reserved.: SSH

SSH

SSH

Application

Thessh applicationisanimplementation of the SSH protocol in Erlang. ssh offers API functionsto write customized
SSH clients and servers as well as making the Erlang shell available over SSH. An SFTP client, ssh_sft p, and
server, ssh_sft pd, areaso included.

DEPENDENCIES

The ssh application uses the applications public_key and crypto to handle public keys and encryption. Hence, these
applications must be loaded for the ssh application to work. In an embedded environment this means that they must
be started with application: start/1,2 before the ssh application is started.

CONFIGURATION

Thessh application does not have an application- specific configurationfile, as described in application(3). However,
by default it use the following configuration files from OpenSSH:

e known_host s

e authorized_keys

 authorized_keys2

e id_dsa

e id_rsa

e id_ecdsa

 ssh_host _dsa_key

e ssh_host _rsa_key

e ssh_host _ecdsa_key

By default, ssh looks for i d_dsa,id rsa,id ecdsa key, known_hosts, and aut hori zed_keys in

~/.ssh, and for the host key filesin / et ¢/ ssh. These locations can be changed by the options user _di r and
systemdir.

Public key handling can aso be customized through a callback module that implements the behaviors
ssh_client_key api and ssh_server_key_api.

See a'so the default callback module documentation in ssh_file.

Public Keys

i d_dsa,id_rsaandi d_ecdsa arethe usersprivate key files. Notice that the public key is part of the private key
so the ssh application does not usethei d_<*>. pub files. These are for the user's convenience when it is needed
to convey the user's public key.

Known Hosts

The known_host s file contains a list of approved servers and their public keys. Once a server is listed, it can be
verified without user interaction.

Authorized Keys

Theaut hori zed_key file keeps track of the user's authorized public keys. The most common use of thisfileisto
let userslog in without entering their password, which is supported by the Erlang ssh daemon.

Ericsson AB. All Rights Reserved.: SSH | 21

SSH

Host Keys

RSA, DSA and ECDSA host keys are supported and are expected to befound in filesnamed ssh_host _rsa_key,
ssh_host dsa_key andssh_host ecdsa_key.

ERROR LOGGER AND EVENT HANDLERS

The ssh application uses the default OTP error logger to log unexpected errors or print information about special
events.

SUPPORTED SPECIFICATIONS AND STANDARDS
The supported SSH version is 2.0.

Algorithms

The actual set of algorithms may vary depending on which OpenSSL crypto library that is installed on the machine.
For the list on a particular installation, use the command ssh:default_algorithms/O. The user may override the
default algorithm configuration both on the server side and the client side. See the options preferred algorithms and
modify_algorithmsin the ssh: daemon/1,2,3 and ssh: connect/3,4 functions.

Supported algorithms are (in the default order):

Key exchange algorithms
e ecdh-sha2-nistp384
¢ ecdh-sha2-nistp521
e ecdh-sha2-nistp256
» diffie-hellman-group-exchange-sha256
o diffie-hellman-group16-shab12
e diffie-hellman-group18-sha512
» diffie-hellman-group14-sha256
e curve25519-sha?256
e curve25519-sha256@libssh.org
e curved48-shabl2
e diffie-hellman-groupl4-shal
e diffie-hellman-group-exchange-shal

e (diffie-hellman-groupl-shal, retired: It can be enabled with the preferred_algorithms or
modify_algorithms options. Use for example the Option value{ nodi fy_al gori t hms, [{append,
[{kex,["diffie-hellman-groupl-shal']}]}1})

Public key algorithms
e ecdsa-sha2-nistp384
e ecdsa-shaz-nistp521
e ecdsa-sha2-nistp256

e ssh-ed25519
e ssh-ed448

e sshrsa

e rsasha2-256
e rsashaz2-512
e ssh-dss

22 | Ericsson AB. All Rights Reserved.: SSH

SSH

MAC agorithms

hmac-sha2-256
hmac-sha2-512
hmac-shal

(hmac-shal-96 It can be enabled with the preferred_algorithms or modify_algorithms options. Use
for example the Option value{ nodi fy_al gori t hnms, [{append, [{mac,[' hmac-
shal-96']}]}1})

Encryption algorithms (ciphers)

chacha20-poly1305@openssh.com
aes256-gcm@openssh.com

aes256-ctr

aes192-ctr

aes128-gcm@openssh.com

aes128-ctr

aes256-che

aes192-che

aes128-chc

3des-chc

(AEAD_AES 128 GCM, not enabled per default)
(AEAD_AES 256 _GCM, not enabled per default)

Seethetext at the description of the rfc 5647 further down for moreinformation regarding AEAD_AES * GCM.

Following the internet de-facto standard, the cipher and mac algorithm AEAD_AES 128 GCM is selected when
the cipher aes128-gcm@openssh.com is negotiated. The cipher and mac algorithm AEAD_AES 256 GCM is
selected when the cipher aes256-gcm@openssh.com is negotiated.

Compression algorithms

none
Zlib@openssh.com
zlib

Unicode support

Unicode filenames are supported if the emulator and the underlaying OS support it. See section DESCRIPTION in
the file manual page in Kernel for information about this subject.

The shell and the cli both support unicode.

Rfcs

The following rfc:s are supported:
* RFC 4251, The Secure Shell (SSH) Protocol Architecture.
Except

9.4.6 Host-Based Authentication
9.5.2 Proxy Forwarding
9.5.3 X11 Forwarding

e RFC 4252, The Secure Shell (SSH) Authentication Protocol.

Ericsson AB. All Rights Reserved.: SSH | 23

href
href

SSH

Except
e 9. Host-Based Authentication: "hostbased"

* RFC 4253, The Secure Shell (SSH) Transport Layer Protocol.
Except

« 8.1 diffie-hellman-groupl-shal. Disabled by default, can be enabled with the preferred_algorithms or
modify_algorithms options.

* RFC 4254, The Secure Shell (SSH) Connection Protocol.
Except
e 6.3. X11 Forwarding
e 7. TCP/IP Port Forwarding
» RFC 4256, Generic Message Exchange Authentication for the Secure Shell Protocol (SSH).
Except
* numpronmpts > 1
e password changing
» other identification methods than userid-password

* RFC 4419, Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport Layer Protocol.
* RFC 4716, The Secure Shell (SSH) Public Key File Format.

e RFC 5647, AES Galois Counter Mode for the Secure Shell Transport Layer Protocol.

There is an ambiguity in the synchronized selection of cipher and mac algorithm. Thisis resolved by OpenSSH
in the ciphers aes128-gcm@openssh.com and aes256-gcm@openssh.com which are implemented. If the explicit
ciphers and macs AEAD_AES 128 GCM or AEAD_AES 256 GCM are needed, they could be enabled with
the options preferred _algorithms or modify_algorithms.

If the client or the server is not Erlang/OTP, it is the users responsibility to check that other implementation
has the same interpretation of AEAD_AES *_GCM asthe Erlang/OTP SSH before enabling them. The aes*-
gcm@openssh.com variants are always safe to use since they lack the ambiguity.

The second paragraph in section 5.1 is resolved as:
» |If the negotiated cipher iSAEAD_AES 128 GCM, the mac algorithm isset to AEAD_AES 128 GCM.
» If thenegotiated cipher isAEAD_AES _256_GCM, the mac algorithm is set to AEAD_AES 256 _GCM.
e |f themac algorithm isAEAD_AES 128 GCM, thecipher isset to AEAD_AES 128 GCM.
» |f themac algorithm isAEAD_AES 256 _GCM, the cipher isset to AEAD_AES 256 GCM.
Thefirst rule that matches when read in order from the top is applied
* RFC 5656, Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer.
Except
5 ECMQV Key Exchange
* 6.4. ECMQV Key Exchange and Verification Method Name
e 7.2. ECMQV Message Numbers
e 10.2. Recommended Curves

24 | Ericsson AB. All Rights Reserved.: SSH

href
href
href
href
href
href
href

SSH

RFC 6668, SHA-2 Data Integrity Verification for the Secure Shell (SSH) Transport Layer Protocol

Comment: Defines hmac-sha2-256 and hmac-sha2-512

Draft-ietf-curdle-ssh-kex-sha2 (work in progress), Key Exchange (KEX) Method Updates and

Recommendations for Secure Shell (SSH).

Devidtions:

e« Thediffie-hell man-groupl-shal isnot enabled by default, but is still supported and can be
enabled with the options preferred_algorithms or modify_algorithms.

* The questionable shal-based algorithmsdi f f i e- hel | man- gr oup- exchange- shal anddi ffi e-
hel | man- gr oupl14- shal arestill enabled by default for compatibility with ancient clients and servers.
They can be disabled with the options preferred_algorithms or modify_algorithms. They will be disabled
by default when the draft is turned into an RFC.

RFC 8332, Use of RSA Keyswith SHA-256 and SHA-512 in the Secure Shell (SSH) Protocol.
RFC 8308, Extension Negotiation in the Secure Shell (SSH) Protocol.

Implemented are;

* The Extension Negotiation Mechanism

e Theextensonserver-sig-al gs

Secure Shell (SSH) Key Exchange M ethod using Curve25519 and Curved48 (work in progress)
Ed25519 and Ed448 public key algorithmsfor the Secure Shell (SSH) protocol (work in progress)

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: SSH | 25

href
href
href
href
href
href

ssh

ssh

Erlang module

Thisisthe interface module for the SSH application. The Secure Shell (SSH) Protocol is a protocol for secure remote
login and other secure network services over an insecure network. See ssh(6) for details of supported RFCs, versions,
algorithms and unicode handling.

With the SSH application it is possible to start clients and to start daemons (servers).

Clients are started with connect/2, connect/3 or connect/4. They open an encrypted connection on top of TCP/IP. In
that encrypted connection one or more channels could be opened with ssh_connection: session_channel/2,4.

Each channel is an isolated "pipe" between a client-side process and a server-side process. Those process pairs could
handle for example file transfers (sftp) or remote command execution (shell, exec and/or cli). If a custom shell is
implemented, the user of the client could execute the special commands remotely. Note that the user is not necessarily
ahuman but probably a system interfacing the SSH app.

A server-side subssystem (channel) server is requested by the client with ssh_connection: subsystem/4.

A server (daemon) is started with daemon/1, daemon/2 or daemon/3. Possible channel handlers (subsystems) are
declared with the subsystem option when the daemon is started.

To just run a shell on a remote machine, there are functions that bundles the needed three steps needed into one:
shell/1,2,3. Similarily, to just open an sftp (file transfer) connection to a remote machine, the simplest way is to use
ssh_sftp:start_channel/1,2,3.

To write your own client channel handler, use the behaviour ssh_client_channel. For server channel handlers use
ssh_server_channel behaviour (replaces ssh_daemon_channel).

Both clients and daemons accepts options that controls the exact behaviour. Some options are common to both. The
three sets are called Client Options, Daemon Options and Common Options.

The descriptions of the options uses the Erlang Type Language with explaining text.

‘ The User's Guide has examples and a Getting Started section. ‘

Keys and files

A number of objects must be present for the SSH application to work. Those objects are per default stored infiles. The
default names, paths and file formats are the same as for OpenSSH. Keys could be generated with thessh- keygen
program from OpenSSH. See the User's Guide.

The paths could easily be changed by options: user _di r andsystem di r.

A completly different storage could be interfaced by writing call-back modules using the behaviours
ssh_client_key api and/or ssh_server_key api. A callback module is installed with the option key_cb to the client
and/or the daemon.

Daemons

The keys are by default stored in files:

* Mandatory: one or more Host key(s), both private and public. Default is to store them in the directory / et ¢/
sshinthefiles

e ssh_host _dsa_key andssh_host dsa_key. pub

26 | Ericsson AB. All Rights Reserved.: SSH

href

ssh

e ssh_host_rsa_key andssh_host _rsa_key. pub
e ssh_host _ecdsa_key andssh_host ecdsa_key. pub

The host keys directory could be changed with the option syst em di r .
e Optional: one or more User's public key in case of publ i ckey authorization. Default is to store them
concatenated inthefile. ssh/ aut hori zed_keys inthe user's home directory.

The user keys directory could be changed with the optionuser _di r.

Clients
The keys and some other data are by default stored in filesin the directory . ssh in the user's home directory.
The directory could be changed with the optionuser _di r.

e Optional: alist of Host public key(s) for previously connected hosts. Thislist is handled by the SSH application
without any need of user assistance. The default isto storethemin thefile known_host s.

The host_accepting_client_options() are associated with thislist of keys.
e Optional: one or more User's private key(s) in case of publ i ckey authorization. The default files are
e id dsaandid _dsa.pub
e id_rsaandid_rsa.pub
e id_ecdsaandi d_ecdsa. pub

Data Types

Client Options

client options() = [client_option()]

client option() =
ssh_fil e: pubkey_passphrase_client_options() |
host _accepting_client_options() |
aut hentication_client_options() |
di ffie_hell man_group_exchange_client_option() |
connect _timeout_client_option() |
recv_ext _info_client_option() |
opaque_client_options() |
gen_t cp: connect _option() |
comon_option()

Optionsfor clients. The individual options are further explained below or by following the hyperlinks.

host accepting client options() =
{silently accept hosts, accept_hosts()} |
{user_interaction, boolean()} |
{save_accepted host, boolean()} |
{quiet mode, boolean()}

accept hosts() =
boolean() |
accept _cal | back() |
{HashAlgoSpec :: fp digest _alg(), accept_callback()}

fp_digest alg() = md5 | crypto:shal() | crypto:sha2()
accept callback() =

Ericsson AB. All Rights Reserved.: SSH | 27

ssh

fun((PeerName :: string(), fingerprint()) -> boolean())
fingerprint() = string() | [string()]
silently_accept _hosts
This option guidesthe connect function on how to act when the connected server presents a Host Key that the
client has not seen before. The default isto ask the user with a question on stdio of whether to accept or reject the

new Host Key. See the option user _di r for specifying the path to the file known_host s where previously
accepted Host Keys are recorded. See also the option key _cb for the general way to handle keys.

The option can be given in three different forms as seen above:
« Thevaueisabool ean() . Thevauet r ue will make the client accept any unknown Host Key without
any user interaction. The valuef al se preservesthe default behaviour of asking the user on stdio.

e Anaccept _cal | back() will be called and the boolean return valuet r ue will make the client accept
the Host Key. A return value of f al se will make the client to reject the Host Key and as a result the
connection will be closed. The arguments to the fun are:

e Peer Nan® - astring with the name or address of the remote host.
e FingerPrint -thefingerprint of the Host Key as public_key:ssh_hostkey fingerprint/1 calculates
it.

e Atuple{HashAl goSpec, accept_cal |l back}.TheHashAl goSpec specifies
which hash agorithm shall be used to cal culate the fingerprint used in the call of the
accept _cal | back() . TheHashALgoSpec iseither an atom or alist of atoms as the first argument
in public_key:ssh_hostkey fingerprint/2. If itisalist of hash algorithm names, the Fi nger Pri nt
argument intheaccept _cal | back() will bealist of fingerprintsin the same order as the
corresponding namein the HashAl goSpec list.

user _interaction

If f al se, disablestheclient to connect to the server if any user interaction is needed, such as accepting the server
to be added to the known_host s file, or supplying a password.

Even if user interaction is allowed it can be suppressed by other options, suchassi | ently_accept _hosts
and passwor d. However, those options are not always desirable to use from a security point of view.

Defaultstot r ue.
save_accept ed_host

If true, the client saves an accepted host key to avoid the accept question the next time the same host is
connected. If theoptionkey _cb isnot present, thekey issavedinthefile"known_hosts'. Seeoptionuser _di r
for the location of that file.

If f al se, thekey isnot saved and the key will still be unknown at the next access of the same host.
Defaultstot r ue
qui et _node
If t r ue, the client does not print anything on authorization.
Defaultstof al se

authentication client options() =
{user, string()} | {password, string()}
user

Provides the username. If this option is not given, ssh reads from the environment (LOGNAME or USER on
UNIX, USERNAME on Windows).

28 | Ericsson AB. All Rights Reserved.: SSH

ssh

password

Provides a password for password authentication. If this option is not given, the user is asked for a password, if
the password authentication method is attempted.

diffie hellman_group exchange client option() =
{dh_gex_limits,
{Min :: integer() >= 1,
I :: integer() >= 1,
Max :: integer() >= 1}}

Sets the three diffie-hellman-group-exchange parameters that guides the connected server in choosing a group. See
RFC 4419 for the details. The default valueis{ 1024, 6144, 8192}.

connect timeout client option() = {connect timeout, timeout()}

Sets a timeout on the transport layer connect time. For gen_t cp the time is in milli-seconds and the default value
isinfinity.

Seethe parameter Ti meout in connect/4 for atimeout of the negotiation phase.
recv_ext info client option() = {recv_ext info, boolean()}

Maketheclient tell the server that the client accepts extension negotiation, that is, includeext - i nf o- ¢ inthekexinit
message sent. See RFC 8308 for details and ssh(6) for alist of currently implemented extensions.

Default valueist r ue which is compatible with other implementations not supporting ext-info.

Daemon Options (Server Options)
daemon_options() = [daenon_option()]
daemon option() =
subsyst em daenon_option() |
shel | _daenon_option() |
exec_daenon_option() |
ssh_cli _daermon_option() |
t cpi p_tunnel _out _daenon_option() |
tcpi p_tunnel _i n_daenon_option() |
aut henti cati on_daenon_options() |
di ffie_hell man_group_exchange_daenon_option() |
negoti ati on_ti nmeout _daenon_option() |
har deni ng_daenon_options() |
cal | backs_daenon_options() |
send_ext _i nf o_daenon_option() |
opaque_daenon_options() |
gen_tcp:listen_option() |
conmmon_option()

Options for daemons. The individual options are further explained below or by following the hyperlinks.

subsystem daemon option() = {subsystems, subsystem specs()}
subsystem specs() = [subsystem spec()]

subsystem spec() = {Name :: string(), nod_args()}

Defines a subsystem in the daemon.

Thesubsyst em nane isthe namethat aclient requests to start with for example ssh_connection: subsystem/4.

Ericsson AB. All Rights Reserved.: SSH | 29

href
href

ssh

Thechannel _cal | back isthe module that implements the ssh_server_channel (replaces ssh_daemon_channel)
behaviour in the daemon. See the section Creating a SQubsystem in the User's Guide for more information and an
example.

If the subsystems optionisnot present, thevalueof ssh_sft pd: subsyst em spec([]) isused. Thisenablesthe
sftp subsystem by default. The option can be set to the empty list if you do not want the daemon to run any subsystems.
shell daemon option() = {shell, shell _spec()}

shell spec() = nod_fun_args() | shell _fun() | disabled

shell fun() = 'shell_fun/1'() | 'shell _fun/2' ()

"shell fun/1'() fun((User :: string()) -> pid())

"shell fun/2'()
fun((User :: string(), PeerAddr :: inet:ip_address()) -> pid())

Defines the read-eval-print loop used in a daemon when a shell is requested by the client. The default is to use the
Erlang shell: { shel |, start, []}

See the option exec- opt i on for a description of how the daemon executes shell-requests and exec-requests
depending on the shell- and exec-options.
exec_daemon option() = {exec, exec_spec()}

exec _spec() =
{direct, exec_fun()} | disabled | deprecated_exec_opt()

exec_fun() = "exec_fun/1' () | '"exec_fun/2' () | 'exec_fun/3' ()
'exec_fun/1'() = fun((Cmd :: string()) -> exec_result())
'exec_fun/2'() =

fun((Cmd :: string(), User :: string()) -> exec_result())

'exec_fun/3'() =
fun((Cmd :: string(),
User :: string(),
ClientAddr :: ip_port()) ->
exec_result())
exec result() =
{ok, Result :: term()} | {error, Reason :: term()}

This option changes how the daemon executes exec-requests from clients. The term in the return value is formatted to
astring if it isanon-string type. No trailing newline is added in the ok-case.

See the User's Guide section on One-Time Execution for examples.

Error texts are returned on channel-type 1 which usualy is piped to st derr on e.g Linux systems. Texts from a
successful execution are returned on channel-type 0 and will in similar manner be piped to st dout . The exit-status
code is set to O for success and 255 for errors. The exact results presented on the client side depends on the client
and the client's operating system.

Incaseof the{di rect, exec_fun()} variant or no exec-option at al, al readsfrom st andar d_i nput will
be from the received data-events of type 0. Those are sent by the client. Similarily all writesto st andar d_out put
will be sent as data-events to the client. An OS shell client like the command 'ssh’ will usally use stdin and stdout
for the user interface.

The option cooperates with the daemon-option shel | in the following way:
1. If neither theexec- opt i on nor theshel | - opti on ispresent:
The default Erlang evaluator is used both for exec and shell requests. The result is returned to the client.

30 | Ericsson AB. All Rights Reserved.: SSH

ssh

2. If theexec_spec'svaueisdi sabl ed (theshel | - opt i on may or may not be present):
No exec-requests are executed but shell-requests are not affected, they follow theshel | _spec'svalue.

3. If theexec- opt i on ispresent and theexec_spec vaue=/=di sabl ed (theshel | - opti on may or may
not be present):

Theexec_spec fun() iscaled with the same number of parameters as the arity of the fun, and the result is
returned to the client. Shell-requests are not affected, they follow theshel | _spec'svalue.

4. 1f theexec- opti on isabsent, andtheshel | - opt i on is present with the default Erlang shell asthe
shel | _spec'svalue:

The default Erlang evaluator is used both for exec and shell requests. The result is returned to the client.

5. 1f theexec- opt i on isabsent, and theshel | - opt i on is present with avalue that is neither the default
Erlang shell nor the value di sabl ed:

The exec-request is not evaluated and an error message is returned to the client. Shell-requests are executed
according to the value of theshel | _spec.

6. If theexec- opt i on isabsent, andtheshel | _spec'svaueisdi sabl ed:
Exec requests are executed by the default shell, but shell-requests are not executed.

If acustom CLI isinstalled (seethe option ssh_cl i) the rules above are replaced by thoose implied by the custom
CLI.

Theexec- opt i on has existed for along time but has not previously been documented. The old definition and
behaviour are retained but obey the rules 1-6 above if conflicting. The old and undocumented style should not be
used in new programs.

deprecated exec opt() = function() | nmod_fun_args()

Old-style exec specification that are kept for compatibility, but should not be used in new programs
ssh_cli daemon option() = {ssh cli, nod_args() | no cli}

Provides your own CLI implementation in a daemon.

It isachannel callback module that implements a shell and command execution. The shell's read-eval-print loop can
be customized, using the option shel | . This means less work than implementing an own CLI channel. If ssh_cl i
issettono_cl i, theCLI channelslikeshel | and exec are disabled and only subsystem channels are allowed.

authentication daemon options() =
ssh_file:systemdir_daenon_option() |
{auth_method kb interactive data, pronpt_texts()} |
{user passwords, [{UserName :: string(), Pwd :: string()}1} |
{password, string()} |
{pwdfun, pwdfun_2() | pwdfun_4()}
prompt texts() = kb_int_tuple() | kb_int_fun_3()
kb int tuple() =
{Name :: string(),
Instruction :: string(),
Prompt :: string(),
Echo :: boolean()}
kb int fun 3() =
fun((Peer :: ip_port(), User :: string(), Service :: string()) ->

Ericsson AB. All Rights Reserved.: SSH | 31

ssh

kb_int_tuple())
pwdfun 2() =
fun((User :: string(), Password :: string()) -> boolean())
pwdfun 4() =
fun((User :: string(),
Password :: string(),
PeerAddress :: ip_port(),
State :: any()) ->
boolean() |
disconnect |
{boolean(), NewState :: any()})

aut h_nmet hod_kb_interactive_data

Sets the text strings that the daemon sends to the client for presentation to the user when using keyboar d-
i nteracti ve authentication.

If the fun/3 isused, it is called when the actual authentication occurs and may therefore return dynamic data like
time, remoteip etc.

The parameter Echo guides the client about need to hide the password.

The default value is: {auth_nethod_kb_interactive data, {"SSH server", "Enter
password for \""++User++"\"", 6 "password: ", false}>

user _passwor ds

Provides passwords for password authentication. The passwords are used when someone tries to connect to
the server and public key user-authentication fails. The option provides a list of valid usernames and the
corresponding passwords.

password
Provides a global password that authenticates any user.

Intended to facilitate testing.
From a security perspective this option makes the server very vulnerable.

pwdf un with pwdf un_4()

Providesafunctionfor password validation. Thiscould used for calling an external system or handeling passwords
stored as hash values.

This fun can aso be used to make delays in authentication tries for example by calling timer:sleep/1.

To facilitate for instance counting of failed tries, the St at e variable could be used. This state is per connection
only. Thefirst time the pwdfun is called for a connection, the St at e variable has the value undef i ned.

The fun should return:

e trueif theuser and passwordisvalid
« fal seif theuser or passwordisinvalid

e disconnect if aSSH_MSG_DISCONNECT message should be sent immediately. It will be followed
by a close of the underlying tcp connection.

e {true, NewState:any()} iftheuserand passwordisvalid
« {false, NewState:any()} iftheuserorpasswordisinvalid

32 | Ericsson AB. All Rights Reserved.: SSH

ssh

A third usage isto block login attempts from a missbehaving peer. The St at e described above can be used for
this. Thereturn value di sconnect isuseful for this.

pwdf un with pwdf un_2()
Providesafunction for password validation. Thisfunctionis called with user and password as strings, and returns:

e trueif theuser and passwordisvalid
o fal seif the user or password isinvalid
Thisvariant is kept for compatibility.
diffie hellman group exchange daemon option() =
{dh_gex_groups,
[explicit_group()] |
explicit_group_file() |
ssh_modul i _file()} |
{dh_gex limits, {Min :: integer() >= 1, Max :: integer() >= 1}}
explicit group() =
{Size :: integer() >= 1,
G :: integer() >= 1,
P :: integer() >= 1}
explicit group file() = {file, string()}
ssh moduli file() = {ssh moduli file, string()}
dh_gex_groups
Defines the groups the server may choose among when diffie-hellman-group-exchange is negotiated. See RFC
4419 for details. The three variants of this option are:
{Si ze=i nteger (), Gsinteger(), P=integer()}
The groups are given explicitly in thislist. There may be several elementswith the same Si ze. Insuch a
case, the server will choose one randomly in the negotiated Size.
{file,filenane()}
The file must have one or more three-tuples{ Si ze=i nt eger (), G=i nteger (), P=i nteger ()}
terminated by a dot. The fileis read when the daemon starts.
{ssh_moduli _file,filename()}
The file must be in ssh-keygen moduli file format. The file is read when the daemon starts.

The default list is fetched from the public_key application.
dh_gex limts

Limits what a client can ask for in diffie-hellman-group-exchange. The limits will be { MaxUsed =
m n(Maxd i ent, Max), M nUsed = max(M nCl i ent, M n)} whereMaxC i ent andM nCl i ent
are the values proposed by a connecting client.

The default valueis{ 0, i nfinity}.
If MaxUsed < M nUsed inakey exchange, it will fail with a disconnect.
See RFC 4419 for the function of the Max and Min values.

negotiation timeout daemon option() =
{negotiation timeout, timeout()}

Maximum time in milliseconds for the authentication negotiation. Defaults to 120000 ms (2 minutes). If the client
failsto log in within this time, the connection is closed.

hardening daemon options() =
{max_sessions, integer() >= 1} |

Ericsson AB. All Rights Reserved.: SSH | 33

href
href
href

ssh

{max_channels, integer() >= 1} |

{parallel login, boolean()} |

{minimal remote max packet size, integer() >= 1}
max_sessi ons

The maximum number of simultaneous sessions that are accepted at any time for this daemon. This includes
sessionsthat are being authorized. Thus, if set to N, and N clients have connected but not started the login process,
connection attempt N+1 is aborted. If N connections are authenticated and still logged in, no more logins are
accepted until one of the existing ones log out.

The counter isper listening port. Thus, if two daemons are started, onewith { max_sessi ons, N} andtheother
with { max_sessi ons, M, intotal N+Mconnections are accepted for the whole ssh application.

Notice that if paral | el _| ogi nisf al se, only one client at atime can be in the authentication phase.
By default, this option is not set. This means that the number is not limited.
max_channel s

The maximum number of channels with active remote subsystem that are accepted for each connection to this
daemon

By default, this option is not set. This means that the number is not limited.
paral l el _I ogin

If set to false (the default value), only oneloginis handled at atime. If set to true, an unlimited number of login
attempts are allowed simultaneously.

If the max_sessi ons option isset to Nand paral | el _| ogi n isset tot rue, the maximum number of
simultaneous login attempts at any time is limited to N- K, where K is the number of authenticated connections
present at this daemon.

Do not enable par al | el _| ogi ns without protecting the server by other means, for example, by the
max_sessi ons optionor afirewall configuration. If settot r ue, thereisno protection against DOS attacks.

m ni mal _renote_nax_packet _size

Theleast maximum packet size that the daemon will accept in channel open requests from the client. The default
valueisO.

callbacks daemon options() =
{failfun,
fun((User :: string(),
PeerAddress :: inet:ip_address(),
Reason :: term()) ->
term())} |
{connectfun,
fun((User :: string(),
PeerAddress :: inet:ip_address(),
Method :: string()) ->
term())}

connect f un
Provides afun to implement your own logging when a user authenticates to the server.

34 | Ericsson AB. All Rights Reserved.: SSH

ssh

failfun
Provides afun to implement your own logging when a user failsto authenticate.
send ext info daemon option() = {send ext info, boolean()}

Make the server (daemon) tell the client that the server accepts extension negotiation, that is, include ext - i nf o- s
in the kexinit message sent. See RFC 8308 for details and ssh(6) for alist of currently implemented extensions.

Default valueist r ue which is compatible with other implementations not supporting ext-info.
tcpip tunnel in daemon option() = {tcpip tunnel in, boolean()}
Enables(t r ue) or disables(f al se) the possibility to tunnel a TCP/IP connection into aserver. Disabled per default.

tcpip_tunnel out daemon option() =
{tcpip_tunnel out, boolean()}

Enables(t r ue) or disables(f al se) thepossibility totunnel aTCP/IP connection out of aserver. Disabled per default.

Options common to clients and daemons
common_options() = [common_option()]
common_option() =
ssh_file:user_dir_comon_option() |
profile_comon_option() |
max_i dl e_ti me_common_option() |
key_cb_common_option() |
di sconnect fun_common_option() |
unexpect edf un_common_option() |
ssh_nmsg_debug_f un_common_option() |
rekey_limt_common_option() |
id_string_common_option() |
pref _public_key_al gs_common_option() |
preferred_al gorithns_common_option() |
nmodi fy_al gorit hns_common_option() |
aut h_met hods_common_option() |
i net _common_option() |
fd_comon_option()

The options above can be used both in clients and in daemons (servers). They are further explained below.
profile common option() = {profile, atom()}

Used together with i p- addr ess and port to uniquely identify a ssh daemon. This can be useful in a virtualized
environment, where there can be more that one server that has the samei p- addr ess and por t . If thisproperty is
not explicitly set, it is assumed that the thei p- addr ess and por t uniquely identifies the SSH daemon.
max_idle time common option() = {idle time, timeout()}
Sets a time-out on a connection when no channels are open. Defaultstoi nf i ni t y. The unit is milliseconds.
The timeout is not active until channels are started, so it does not limit the time from the connection creation to the
first channel opening.
rekey limit common option() =
{rekey limit,
Bytes
limt_bytes() |

Ericsson AB. All Rights Reserved.: SSH | 35

href

ssh

{Minutes :: Iimt _tine(), Bytes :: Iimt_bytes()}}
limit bytes() = integer() >= 0 | infinity
limit time() = integer() >= 1 | infinity
Sets the limit when rekeying is to be initiated. Both the max time and max amount of data could be configured:

« {M nutes, Bytes} initiaterekeying when any of the limits are reached.
* Byt es initiate rekeying when Byt es number of bytes are transferred, or at latest after one hour.

When arekeying is done, both the timer and the byte counter are restarted. Defaults to one hour and one GByte.

If M nutes issettoinfinity, norekeying will ever occur due to that max time has passed. Setting Byt es
toi nfinity will inhibit rekeying after a certain amount of data has been transferred. If the option value is set
to{infinity, infinity},norekeyingwill beinitiated. Note that rekeying initiated by the peer will still be
performed.

key cb _common option() =
{key cb,
Module :: atom() | {Module :: atom(), Opts :: [term()]}}

Module implementing the behaviour ssh_client_key api and/or ssh _server key api. Can be used to customize the
handling of public keys. If callback options are provided aong with the module name, they are made available to the
callback module viathe options passed to it under the key 'key cb_private'.

The Opt s defaultsto[] when only the Modul e is specified.
The default value of thisoptionis{ssh_file, []}.Seealsothemanpage of ssh_file.
A call to the call-back function F will be

Module:F(..., [{key cb private,Opts}|UserOptions])

where . . . are arguments to F as in ssh_client_key api and/or ssh_server_key api. The User Opt i ons are the
options given to ssh:connect, ssh:shell or ssh: daemon.

pref public key algs common option() =
{pref _public key algs, [pubkey_alg() 1}

List of user (client) public key algorithmsto try to use.
The default valueisthe publ i ¢_key entry in thelist returned by ssh:default_algorithms/0.

If there is no public key of a specified type available, the corresponding entry is ignored. Note that the available set
is dependent on the underlying cryptolib and current user's public keys.

See also the option user _di r for specifying the path to the user's keys.

disconnectfun _common option() =
{disconnectfun, fun((Reason :: term()) -> void | any())}

Provides a fun to implement your own logging when the peer disconnects.

unexpectedfun common option() =
{unexpectedfun,
fun((Message :: term(), {Host :: term(), Port :: term()}) ->
report | skip)}

Provides afun to implement your own logging or other action when an unexpected message arrives. If the fun returns
r eport theusua inforeportisissued but if ski p isreturned no report is generated.

ssh msg debug fun common option() =
{ssh msg debug fun,
fun((ssh: connection_ref(),

36 | Ericsson AB. All Rights Reserved.: SSH

ssh

AlwaysDisplay :: boolean(),

Msg :: binary(),

LanguageTag :: binary()) ->
any())}

Provide a fun to implement your own logging of the SSH message SSH_MSG_DEBUG. The last three parameters
are from the message, see RFC 4253, section 11.3. Theconnect i on_r ef () isthereference to the connection on
which the message arrived. The return value from the fun is not checked.

The default behaviour is ignore the message. To get a printout for each message with Al waysDi spl ay = true,

usefor example{ ssh_nsg_debug_fun, fun(_,true,M)-> io:format("DEBUG ~p~n", [M)
end}

id string common option() =
{id string,
string() |
random |
{random, Nmin :: integer() >= 1, Nmax :: integer() >= 1}}

The string the daemon will present to a connecting peer initially. The default value is "Erlang/VSN" where VSN is
the ssh application version number.

The valuer andomwill cause arandom string to be created at each connection attempt. Thisisto make it abit more
difficult for amalicious peer to find the ssh software brand and version.

Thevalue{random Nmi n, Nmax} will make arandom string with at least Nimi n characters and at most Nnax
characters.

preferred algorithms common option() =
{preferred algorithms, algs_list()}
algs list() [alg_entry()]
alg entry() =
{kex, [kex_alg()1} |
{public_key, [pubkey_alg()]1} |
{cipher, doubl e_al gs(cipher_alg())} |
{mac, double_algs(mac_alg())} |
{compression, doubl e_al gs(conpression_alg())}
kex alg() =
'diffie-hellman-group-exchange-shal' |
'diffie-hellman-group-exchange-sha256"' |
'diffie-hellman-groupl-shal' | 'diffie-hellman-groupl4-shal' |
'diffie-hellman-groupl4-sha256' |
'diffie-hellman-groupl6-sha512"' |

'diffie-hellman-groupl8-sha512' | 'curve25519-sha256' |
'curve25519-sha256@libssh.org' | 'curve448-sha512' |
'ecdh-sha2-nistp256' | 'ecdh-sha2-nistp384' |

'ecdh-sha2-nistp521"
pubkey alg() =

'ecdsa-sha2-nistp256' | 'ecdsa-sha2-nistp384' |

'ecdsa-sha2-nistp521' | 'ssh-ed25519' | 'ssh-ed448' |

‘rsa-sha2-256' | 'rsa-sha2-512' | 'ssh-dss' | 'ssh-rsa'
cipher _alg() =

‘3des-cbc' | 'AEAD_AES 128 GCM' | 'AEAD_AES 256 GCM' |

'aes128-cbc' | 'aesl28-ctr' | 'aesl28-gcm@openssh.com' |

'aes192-ctr' | 'aesl92-cbc' | 'aes256-cbc' | 'aes256-ctr' |

Ericsson AB. All Rights Reserved.: SSH | 37

href

ssh

'aes256-gcm@openssh.com' | 'chacha20-polyl305@openssh.com’
mac_alg() =
"AEAD AES 128 GCM' | 'AEAD AES 256 GCM' | 'hmac-shal' |
"hmac-shal-96' | 'hmac-sha2-256' | 'hmac-sha2-512'
compression alg() = none | zlib | 'zlib@openssh.com'
double algs(AlgType) =
[{client2server, [AlgTypel} | {server2client, [AlgTypel}] |
[AlgType]

List of algorithms to use in the algorithm negotiation. The default al gs_1ist() can be obtained from
default_algorithms/O.

If an alg_entry() ismissing in the algs list(), the default valueis used for that entry.
Hereis an example of this option:

{preferred algorithms,

[{public key,['ssh-rsa', 'ssh-dss']},

{cipher, [{client2server,['aes128-ctr']},
{server2client,['aes128-cbhc', '3des-cbc']1}1},

{mac, ["hmac-sha2-256"', 'hmac-shal']},

{compression, [none,zlib]}

1

}

The example specifies different algorithms in the two directions (client2server and server2client), for cipher but
specifies the same algorithms for mac and compression in both directions. The kex (key exchange) is implicit but
public_key is set explicitly.

For background and more examples see the User's Guide.

If an algorithm name occurs more than once in alist, the behaviour is undefined. The tags in the property lists are
also assumed to occur at most one time.

Changing the values can make a connection less secure. Do not change unless you know exactly what you are
doing. If you do not understand the val ues then you are not supposed to change them.

modify algorithms common option() =
{modify algorithms, nodify_algs_list()}
modify algs list() =
[{append, algs_list()} |
{prepend, algs_list()} |
{rm, algs_list()}]
Modifies the list of algorithms to use in the algorithm negotiation. The modifications are applied after the option
preferred_al gorithns (if existing) is applied.
The agoritm for modifications works like this:
e Inputisthermodi fy_al gs_li st () andaset of algorithms A obtained fromthepr ef erred_al gori t hns
option if existing, or el se from the ssh: default_algorithms/0.
e Theheadof thenodi fy_al gs_Ii st () modifiesAgivingtheresult A" .

The possible modifications are:

» Append or prepend supported but not enabled algorithm(s) to the list of algorithms. If the wanted algorithms
aready arein Athey will first be removed and then appended or prepended,

38 | Ericsson AB. All Rights Reserved.: SSH

ssh

e Remove (rm) one or more algorithms from A.
* Repeat the modification step with the tail of nodi fy_al gs_|i st () andtheresulting A" .

If an unsupported algorithmisinthenodi fy_al gs_|i st (), itwill besilently ignored
If there are more than one modify_algorithms options, the result is undefined.
Hereis an example of this option:

{modify algorithms,

[{prepend, [{kex, ['diffie-hellman-groupl-shal']}],
{rm, [{compression, [none]}1}

]

}

The example specifies that:

« the old key exchange agorithm 'diffie-hellman-groupl-shal' should be the main alternative. It will be the main
aternative since it is prepened to the list

e The compression algorithm none (= no compression) is removed so compression is enforced
For background and more examples see the User's Guide.

inet common option() = {inet, inet | inet6}

IP version to use when the host addressis specified asany.

auth _methods common option() = {auth methods, string()}

Commarseparated string that determines which authentication methods that the client shall support and in which order
they aretried. Defaultsto " publ i ckey, keyboar d-i nt eracti ve, passwor d"

Note that the client is free to use any order and to exclude methods.
fd common option() = {fd, gen_tcp:socket()}
Allows an existing file-descriptor to be used (passed on to the transport protocol).

Other data types

host() = string() | inet:ip_address() | loopback
ip _port() = {inet:ip_address(), inet:port_nunber()}
mod args() = {Module :: atom(), Args :: list()}
mod fun args() =
{Module :: atom(), Function :: atom(), Args :: list()}
open_socket() = gen_tcp: socket ()

The socket is supposed to be result of a gen_tcp:connect or a gen_tcp:accept. The socket must be in passive mode
(that is, opened with the option { act i ve, f al se}).

daemon_ref ()

Opague data type representing a daemon.

Returned by the functionsdaenon/ 1, 2, 3.

connection ref()

Opaque data type representing a connection between aclient and a server (daemon).
Returned by the functionsconnect / 2, 3, 4 andssh_sftp: start_channel / 2, 3.
channel id()

Opague data type representing a channel inside a connection.

Ericsson AB. All Rights Reserved.: SSH | 39

ssh

Returned by the functions ssh_connection: session_channel/2,4.

connection_info tuple() =
{client version, version()} |
{server_version, version()} |
{user, string()} |
{peer, {inet:hostnanme(), ip_port()}} |
{sockname, ip_port()} |
{options, client_options()} |
{algorithms, conn_info_algs()} |
{channels, conn_info_channel s()}
version() = {protocol version(), software_version()}

protocol version() =
{Major :: integer() >= 1, Minor :: integer() >= 0}

software version() = string()

conn_info algs() =
[{kex, kex_alg()} |
{hkey, pubkey alg()}
{encrypt, cipher_alg
{decrypt, cipher_alg
{send mac, nec_al g()
{recv_mac, nmac_al g()}
{compress, conpression_alg()} |
{decompress, conpression_alg()} |
{send _ext _info, boolean()} |
{recv_ext info, boolean()}]

conn_info _channels() = [proplists:proplist()]

O} |
0
}

}
b
|
|

Return values from the connection_info/1 and connection_info/2 functions.
Intheopt i on info tuple are only the optionsincluded that differs from the default values.

daemon_info tuple() =
{port, inet:port_nunber()} |
{ip, inet:ip_address()} |
{profile, atom()} |
{options, daenon_options()}

Return values from the daemon_info/1 and daemon_info/2 functions.

Intheopt i on info tuple are only the options included that differs from the default values.
opaque client optionsopaque daemon optionsopaque common options
Opague types that define experimental options that are not to be used in products.

Exports

close(ConnectionRef) -> ok | {error, term()}
Types.

ConnectionRef = connection_ref()
Closes an SSH connection.

40 | Ericsson AB. All Rights Reserved.: SSH

ssh

connect(Host, Port, Options) -> Result
connect(Host, Port, Options, NegotiationTimeout) -> Result
connect(TcpSocket, Options) -> Result
connect(TcpSocket, Options, NegotiationTimeout) -> Result

Types:
Host = host ()
Port = inet:port_nunber()

Options = client_options()

TcpSocket = open_socket ()

Negoti ati onTi neout = tineout()

Result = {ok, connection_ref()} | {error, term)}

Connects to an SSH server at the Host onPort .

As an dternative, an aready open TCP socket could be passed to the function in TcpSocket . The SSH initiation
and negotiation will be initiated on that one with the SSH that should be at the other end.

No channel is started. Thisis done by calling ssh_connection: session_channel/[2, 4].

TheNegoti ati onTi neout isin milli-seconds. The default valueisi nf i ni t y. For connection timeout, use the
optionconnect _ti meout .

connection info(ConnectionRef) -> InfoTupleList

connection info(ConnectionRef, Key :: ItemList | Item) ->
InfoTupleList | InfoTuple

Types:
ConnectionRef = connection_ref ()
ItemList = [Item]

Item =
client version | server version | user | peer | sockname |
options | algorithms | sockname

InfoTupleList = [InfoTuple]
InfoTuple = connection_info_tuple()
Returns information about a connection intended for e.g debugging or logging.

Whenthe Key isasinglel t em theresultisasingle| nf oTupl e

daemon(Port | TcpSocket) -> Result
daemon(Port | TcpSocket, Options) -> Result
daemon(HostAddress, Port, Options) -> Result
Types.

Port = integer()

TcpSocket = open_socket ()

Options = daenon_opti ons()

Host Address = host() | any

Result = {ok, daenon_ref()} | {error, atom()}

Starts a server listening for SSH connections on the given port. If the Por t is0, arandom free port is selected. See
daemon_info/1 about how to find the selected port number.

Ericsson AB. All Rights Reserved.: SSH | 41

ssh

As an dternative, an aready open TCP socket could be passed to the function in TcpSocket . The SSH initiation
and negotiation will beinitiated on that one when an SSH starts at the other end of the TCP socket.

For a description of the options, see Daemon Options.

Please note that by historical reasons both the Host Addr ess argument and the gen tcp connect_option()
{i p, Addr ess} setthelistening address. Thisis a source of possible inconsistent settings.

Therules for handling the two address passing options are;
« if Host Addr ess isan IP-address, that | P-address is the listening address. An 'ip'-option will be discarded if
present.

« if Host Addr ess istheatom | oopback, the listening addressis| oopback and an loopback address will be
choosen by the underlying layers. An 'ip'-option will be discarded if present.

» if Host Addr ess isthe atom any and no 'ip'-option is present, the listening addressis any and the socket will
listen to all addresses

e if Host Addr ess isany and an 'ip'-option is present, the listening address is set to the value of the 'ip'-option

daemon_info(DaemonRef) ->
{ok, InfoTupleList} | {error, bad daemon ref}

daemon_info(DaemonRef, Key :: ItemList | Item) ->
InfoTupleList | InfoTuple | {error, bad daemon ref}

Types:
DaemonRef = daenon_ref ()
ItemList = [Item]
Item = ip | port | profile | options
InfoTupleList = [InfoTuple]
InfoTuple = daenon_i nfo_tuple()
Returns information about a daemon intended for e.g debugging or logging.
Whenthe Key isasinglel t em theresultisasinglel nf oTupl e

Note that daenon_i nf o/ 1 and daenon_i nf o/ 2 returns different types due to compatibility reasons.

default algorithms() -> algs_list()

Returns a key-value list, where the keys are the different types of algorithms and the values are the agorithms
themselves.

See the User's Guide for an example.

shell(Host | TcpSocket) -> Result
shell(Host | TcpSocket, Options) -> Result
shell(Host, Port, Options) -> Result
Types.

Host = host ()

TcpSocket = open_socket ()

Port = inet:port_numnber()

Options = client_options()

Result = ok | {error, Reason::term)}

Connectsto an SSH server at Host and Por t (defaultsto 22) and starts an interactive shell on that remote host.

42 | Ericsson AB. All Rights Reserved.: SSH

ssh

Asan dternative, an already open TCP socket could be passed to the functionin TcpSocket . The SSH initiation and
negotiation will beinitiated on that one and finaly ashell will be started on the host at the other end of the TCP socket.

For a description of the options, see Client Options.

The function waits for user input, and does not return until the remote shell is ended (that is, exit from the shell).

start() -> ok | {error, term()}
start(Type) -> ok | {error, term()}
Types:
Type = permanent | transient | temporary

Utility function that startsthe applicationscr ypt o, publ i ¢_key, and ssh. Default typeist enpor ar y. For more
information, see the application(3) manua page in Kernel.

stop() -> ok | {error, term()}
Stops the ssh application. For more information, see the application(3) manual page in Kernel.

stop daemon(DaemonRef :: daenon_ref()) -> ok
stop_daemon(Address :: inet:ip_address(),
Port :: inet:port_nunber()) ->
ok
stop _daemon(Address :: any | inet:ip_address(),
Port :: inet:port_nunber(),
Profile :: atom()) ->
ok

Stops the listener and all connections started by the listener.

stop listener(SysSup :: daenmobn_ref()) -> ok
stop listener(Address :: inet:ip_address(),
Port :: inet:port_nunber()) ->
ok
stop listener(Address :: any | inet:ip_address(),
Port :: inet:port_nunber(),
Profile :: term()) ->
ok

Stops the listener, but leaves existing connections started by the listener operational.

tcpip tunnel from server(ConnectionRef, ListenHost, ListenPort,
ConnectToHost, ConnectToPort) ->
{ok, TrueListenPort} | {error, term()}
tcpip tunnel from server(ConnectionRef, ListenHost, ListenPort,
ConnectToHost, ConnectToPort, Timeout) ->
{ok, TrueListenPort} | {error, term()}

Types:

Ericsson AB. All Rights Reserved.: SSH | 43

ssh

ConnectionRef = connection_ref()
ListenHost host ()

ListenPort = inet: port_nunber ()
ConnectToHost = host ()

ConnectToPort = inet: port_nunber ()
Timeout = timeout()
TrueListenPort = inet:port_nunber ()

Asks the remote server of Connect i onRef tolistento Li st enHost : Li st enPor t . When someone connects
that address, the connection is forwarded in an encrypted channel from the server to the client. The client (that is, at
the node that calls this function) then connectsto Connect ToHost : Connect ToPort .

The returned Tr uelLi st enPort is the port that is listened to. It is the same as Li st enPort, except when
Li stenPort = 0. Inthat caseafree port is selected by the underlying OS.

Note that in case of an Erlang/OTP SSH server (daemon) as peer, that server must have been started with the option
tcpip_tunnel _out to allow the connection.

tcpip tunnel to server(ConnectionRef, ListenHost, ListenPort,
ConnectToHost, ConnectToPort) ->
{ok, TrueListenPort} | {error, term()}

tcpip tunnel to server(ConnectionRef, ListenHost, ListenPort,
ConnectToHost, ConnectToPort, Timeout) ->
{ok, TrueListenPort} | {error, term()}

Types.
ConnectionRef = connection_ref()
ListenHost = host ()
ListenPort = inet: port_nunber()
ConnectToHost = host ()
ConnectToPort = inet: port_nunber()
Timeout = timeout()
TrueListenPort = inet:port_nunber ()
Tells the local client to listen to Li st enHost : Li st enPort. When someone connects to that address, the

connection is forwarded in an encrypted channel to the peer server of Connect i onRef . That server then connects
to Connect ToHost : Connect ToPort .

The returned Tr uelLi st enPort is the port that is listened to. It is the same as Li st enPort, except when
Li stenPort = 0. Inthat caseafree port is selected by the underlying OS.

Note that in case of an Erlang/OTP SSH server (daemon) as peer, that server must have been started with the option
tcpip_tunnel_in to allow the connection.

44 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_channel

ssh_client_channel

Erlang module

This module replaces ssh_channel.

The old module is till available for compatibility, but should not be used for new programs. The old module will
not be maintained except for some error corrections

SSH services (clients and servers) are implemented as channels that are multiplexed over an SSH connection and
communicates over the SSH Connection Protocol. This module provides a callback API that takes care of generic
channel aspects for clients, such as flow control and close messages. It lets the callback functions take care of the
service (application) specific parts. Thisbehavior also ensuresthat the channel process honorsthe principal of an OTP-
process so that it can be part of asupervisor tree. Thisisareguirement of channel processesimplementing asubsystem
that will be added to the ssh applications supervisor tree.

When implementing a ssh subsystem for daemons, use -behaviour(ssh server _channel) (Replaces
ssh_daemon_channel) instead.

Functionsin this module are not supposed to be called outside a module implementing this behaviour!

Exports

call(ChannelRef, Msg) ->
call(ChannelRef, Msg, Timeout) -> Reply | {error, Reason}
Types:
Channel Ref = pid()
Asreturned by start_link/4
Msg = term()
Ti meout = timeout ()
Reply = term()
Reason = cl osed | tineout
Makes a synchronous call to the channel process by sending a message and waiting until areply arrives, or atime-

out occurs. The channel calls Module:handle call/3 to handle the message. If the channel process does not exist,
{error, closed} isreturned.

cast(ChannelRef, Msg) -> ok
Types:
Channel Ref = pid()
Asreturned by start_link/4

Ericsson AB. All Rights Reserved.: SSH | 45

href

ssh_client_channel

Meg = term)
Sends an asynchronous message to the channel process and returns ok immediately, ignoring if the destination node
or channel process does not exist. The channel calls Module:handle_cast/2 to handle the message.

enter loop(State) ->
Types:
State = term)
asreturned by init/1

Makes an existing process an ssh_cl i ent _channel (replaces ssh_channel) process. Does not return, instead
the calling process entersthe ssh_cl i ent _channel (replaces ssh _channel) process receive loop and become an
ssh_client _channel process. The process must have been started using one of the start functionsinpr oc_|I i b,
see the proc_lib(3) manual page in STDLIB. The user is responsible for any initialization of the process and must
cal init/1.

init(Options) -> {ok, State} | {ok, State, Timeout} | {stop, Reason}
Types.

Options = [{Option, Value}]

State = term)

Ti meout = tinmeout ()

Reason = term()

The following options must be present:
{channel _cb, atom()}
The module that implements the channel behaviour.
{init_args(), list()}
Thelist of argumentsto thei ni t function of the callback module.
{cm ssh:connection_ref()}
Reference to the ssh connection as returned by ssh: connect/3.
{channel _i d, ssh:channel_id()}
Id of the ssh channel as returned by ssh_connection:session_channel/2,4.

This function is normally not called by the user. The user only needs to call if the channel process needs to be
started with help of proc_1 i b instead of callingstart/4 orstart _|ink/ 4.

reply(Client, Reply) -> _
Types:
dient = opaque()
Reply = term)
This function can be used by a channel to send areply to aclient that called cal | / [2, 3] when the reply cannot be
defined in the return value of Module:handle_call/3.

d i ent must be the Fr omargument provided to the callback function handl e_cal | / 3. Repl y is an arbitrary
term, which is given back to the client as the return value of call/[2,3].

46 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_channel

start(SshConnection, Channelld, ChannelCb, CbInitArgs) ->

start_link(SshConnection, Channelld, ChannelCb, CbInitArgs) -> {ok,
ChannelRef} | {error, Reason}

Types:
SshConnection = ssh: connection_ref()
As returned by ssh:connect/3
Channel Id = ssh: channel _id()
Asreturned by ssh_connection;session_channel/[2,4].
Channel Cb = aton()
Name of the module implementing the service-specific parts of the channel.
ColnitArgs = [term()]
Argument list for thei ni t function in the callback module.
Channel Ref = pid()

Starts aprocessthat handles an SSH channel. It iscalled internally, by the ssh daemon, or explicitly by thessh client
implementations. The behavior setsthet rap_exit flagtot r ue.

Callback Functions

The following functions are to be exported fromassh_cl i ent _channel callback module.

Callback timeouts

The timeout values that can be returned by the callback functions have the same semantics asin a gen_server. If the
time-out occurs, handle_ msg/2 iscalled ashandl e_nsg(ti neout, State).

Exports

Module:code change(OldVsn, State, Extra) -> {ok, NewState}
Types:
A dvsn = tern()

In the case of an upgrade, O dVsn isVsn, and in the case of adowngrade, O dVsn is{ down, Vsn}.Vsn
is defined by the vsn attribute(s) of the old version of the callback module Modul e. If no such attribute is
defined, the version is the checksum of the BEAM file.

State = term))

Internal state of the channel.

Extra = tern()

Passed "as-is' fromthe { advanced, Ext r a} part of the update instruction.
Converts process state when code is changed.

This function is called by a client-side channel when it is to update its interna state during a
release upgrade or downgrade, that is, when the instruction {updat e, Modul e, Change, ...}, where
Change={ advanced, Extra}, isgivenintheappup file. For more information, refer to Section 9.11.6 Release
Handling Instructions in the System Documentation.

Ericsson AB. All Rights Reserved.: SSH | 47

ssh_client_channel

Soft upgrade according to the OTP release concept is not straight forward for the server side, as subsystem channel
processes are spawned by the ssh application and hence added to its supervisor tree. The subsystem channels can
be upgraded when upgrading the user application, if the callback functions can handle two versions of the state,
but this function cannot be used in the normal way.

Module:init(Args) -> {ok, State} | {ok, State, timeout()} | {stop, Reason}
Types:

Args = term()

Last argumenttost art _| i nk/ 4.

State = term)

Reason = term()

Makes necessary initializations and returnsthe initial channel stateif the initializations succeed.
For more detailed information on time-outs, see Section Callback timeouts.

Module:handle call(Msg, From, State) -> Result
Types:

Msg = term)

From = opaque()

Isto be used as argument to reply/2

State = term))

Result = {reply, Reply, NewState} | {reply, Reply, NewState, tineout()}
| {noreply, NewState} | {noreply , NewState, tinmeout()} | {stop, Reason,
Reply, NewState} | {stop, Reason, NewState}

Reply = term)
Will be the return value of call/[2,3]
NewState = term()
Reason = term()
Handles messages sent by calling call/[2,3]

For more detailed information on time-outs,, see Section Callback timeouts.

Module:handle cast(Msg, State) -> Result
Types.

Meg = term)

State = term()

Result = {noreply, NewState} | {noreply, NewState, tineout()} | {stop,
Reason, NewSt at e}

NewState = term()
Reason = term()

Handles messages sent by calling cast / 2.
For more detailed information on time-outs, see Section Callback timeouts.

48 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_channel

Module:handle msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types.

Msg = tineout | tern()

Channel I d = ssh: channel _i d()

State = term))

Handles other messages than SSH Connection Protocol, call, or cast messages sent to the channel.
Possible Erlang 'EXIT' messagesisto be handled by thisfunction and all channels are to handle the following message.
{ssh_channel _up, ssh:channel_id(), ssh:connection ref()}

Thisis the first message that the channel receives. It is sent just before the init/1 function returns successfully.
Thisisespecially useful if the server wants to send amessage to the client without first receiving a message from
it. If the message is not useful for your particular scenario, ignore it by immediately returning { ok, St at e}.

Module:handle ssh msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types:

Msg = ssh_connection: event ()

Channel Id = ssh: channel _id()

State = term)

Handles SSH Connection Protocol messages that may need service-specific attention. For details, see
ssh_connection: event().

The following message is taken care of by thessh_cl i ent _channel behavior.
{cl osed, ssh:channel_id()}

The channel behavior sends a close message to the other side, if such a message has not already been sent. Then
it terminates the channel with reason nor nal .

Module:terminate(Reason, State) ->
Types:
Reason = term)
State = term()
This function is called by a channel process when it is about to terminate. Before this function is called,

ssh_connection:close/2 iscalled, if it has not been called earlier. This function does any necessary cleaning up. When
it returns, the channel process terminates with reason Reason. The return value isignored.

Ericsson AB. All Rights Reserved.: SSH | 49

ssh_server_channel

ssh_server _channel

Erlang module

This module replaces ssh_daemon_channel.

The old module is still available for compatibility, but should not be used for new programs. The old module will
not be maintained except for some error corrections

SSH services (clients and servers) are implemented as channels that are multiplexed over an SSH connection and
communicates over the SSH Connection Protocol. This module provides a callback API that takes care of generic
channel aspects for daemons, such as flow control and close messages. It |ets the callback functions take care of the
service (application) specific parts. Thisbehavior also ensuresthat the channel process honorsthe principal of an OTP-
process so that it can be part of asupervisor tree. Thisisarequirement of channel processesimplementing a subsystem
that will be added to the ssh applications supervisor tree.

| When implementing a client subsystem handler, use -behaviour(ssh_client_channel) instead. |

Callback Functions

The following functions are to be exported from assh_ser ver _channel callback module.

Exports

Module:init(Args) -> {ok, State} | {ok, State, timeout()} | {stop, Reason}
Types.

Args = term)

Last argumenttostart | i nk/ 4.

State = term)

Reason = term()
Makes necessary initializations and returnsthe initial channel stateif the initializations succeed.

The time-out values that can be returned have the same semantics as in a gen_server. If the time-out occurs,
handle msg/2iscaled ashandl e_nsg(ti neout, State).

Module:handle msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types:

Msg = tineout | tern()

Channel Id = ssh: channel _id()

State = term)
Handles other messages than SSH Connection Protocol, call, or cast messages sent to the channel.

Possible Erlang 'EXIT' messagesisto be handled by thisfunction and all channels are to handl e the following message.

50 | Ericsson AB. All Rights Reserved.: SSH

href

ssh_server_channel

{ssh_channel _up, ssh:channel_id(), ssh:connection ref()}

Thisisthe first message that the channel receives. Thisis especially useful if the server wants to send a message
to the client without first receiving a message from it. If the message is not useful for your particular scenario,
ignoreit by immediately returning { ok, State}.

Module:handle ssh msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types:

Msg = ssh_connection: event ()

Channel Id = ssh: channel _id()

State = term)

Handles SSH Connection Protocol messages that may need service-specific attention. For details, see
ssh_connection: event().

The following message is taken care of by thessh_ser ver _channel behavior.
{cl osed, ssh:channel_id()}

The channel behavior sends a close message to the other side, if such a message has not already been sent. Then
it terminates the channel with reason nor nal .

Module:terminate(Reason, State) ->
Types:
Reason = term)
State = term)
This function is called by a channel process when it is about to terminate. Before this function is called,

ssh_connection:close/2 iscalled, if it has not been called earlier. Thisfunction does any necessary cleaning up. When
it returns, the channel process terminates with reason Reason. The return value isignored.

Ericsson AB. All Rights Reserved.: SSH | 51

ssh_connection

ssh_connection

Erlang module

The SSH Connection Protocol is used by clients and servers, that is, SSH channels, to communicate over the SSH
connection. The API functions in this module send SSH Connection Protocol events, which are received as messages
by the remote channel handling the remote channel. The Erlang format of thoose messagesis (see also below):

{ssh_cm ssh:connection_ref(), channel _nsg()}

If the ssh_client_channel behavior is used to implement the channel process, these messages are handled by
handle_ssh_msg/2.

Data Types
ssh data type code() = integer() >= 0
Thevalid valuesare 0 ("norma") and 1 ("stderr"), see RFC 4254, Section 5.2.

result()
reason()

req_status() | {error, reason()}
closed | timeout

The result of acal.

If the request reached the peer, was handled and the response reached the requesting node thereq_status() isthe status
reported from the peer.

If not, the reason() indicates what went wrong:

cl osed

indicates that the channel or connection was closed when trying to send the request
ti meout

indicates that the operation exceeded atime limit

req status() = success | failure

The status of arequest. Coresponds to the SSH_MSG_CHANNEL _SUCCESS and SSH_MSG_CHANNEL _FAI LURE
valuesin RFC 4254, Section 5.4.

SSH Connection Protocol: General

event() = {ssh cm, ssh:connection_ref(), channel _nsg()}

channel msg() =
data_ch_msg() |
eof _ch_msg() |
cl osed_ch_msg() |
pty_ch_msg() |
env_ch_msg() |
shel | _ch_msg() |
exec_ch_msg() |
signal _ch_msg() |
wi ndow_change_ch_nsg() |
exit_status_ch_msg() |
exit_signal _ch_msg()

As mentioned in the introduction, the SSH Connection Protocol events are handled as messages. When writing a
channel handling processwithout using the support by the ssh_client_channel behavior the process must handle thoose

messages.

52 | Ericsson AB. All Rights Reserved.: SSH

href
href
href
href

ssh_connection

want _reply() = boolean()

Messages that include a Want Repl y expect the channel handling process to call ssh_connection:reply request/4
with the boolean value of Want Repl y asthe second argument.

Data Transfer (RFC 4254, section 5.2)

data ch msg() =
{data,
ssh: channel _id(),
ssh_data_type code(),
Data :: binary()}

Data has arrived on the channel. This event is sent as aresult of calling ssh_connection:send/[3,4,5].

Closing a Channel (RFC 4254, section 5.3)

eof ch msg() = {eof, ssh:channel _id()}

Indicates that the other side sends no more data. This event is sent asaresult of calling ssh_connection:send_eof/2.
closed ch msg() = {closed, ssh:channel _id()}

Thisevent is sent asaresult of calling ssh_connection: close/2. Both the handling of this event and sending it are taken
care of by the ssh_client_channel behavior.

Requesting a Pseudo-Terminal (RFC 4254, section 6.2)

pty ch msg() =
{pty,
ssh: channel _id(),
want _reply(),
{Terminal :: string(),
CharWidth :: integer() >
RowHeight :: integer() > ,
PixelWidth :: integer() >= 0,
PixelHeight :: integer() >= 0,
TerminalModes :: [term node()]1}}
term _mode() =
{Opcode :: atom() | byte(), Value :: integer() >= 0}

0,
0

A pseudo-terminal has been requested for the session. Ter m nal isthe value of the TERM environment variable
value, that is, vt 100. Zero dimension parameters must be ignored. The character/row dimensions override the
pixel dimensions (when non-zero). Pixel dimensions refer to the drawable area of the window. Qpcode in the
Ter m nal Mbdes list isthe mnemonic name, represented as alowercase Erlang atom, defined in RFC 4254, Section
8. It can al'so be an Opcode if the mnemonic nameisnot listed in the RFC. Example: OP code: 53, nmenoni c
nane ECHO erl ang atom echo. Thiseventissent asaresult of calling ssh_connection:ptty alloc/4.

Environment Variable Passing (RFC 4254, section 6.4)

env_ch msg() =
{env,
ssh: channel _id() ,
want _reply(),
Var :: string(),
Value :: string()}

Environment variables can be passed to the shell/command to be started later. This event is sent asaresult of calling
ssh_connection: setenv/5.

Ericsson AB. All Rights Reserved.: SSH | 53

href

ssh_connection

Starting a Shell or Command (RFC 4254, section 6.5)
shell ch msg() = {shell, ssh:channel _id(), want_reply()}

This message requests that the user default shell is started at the other end. This event is sent as a result of caling
ssh_connection: shell/2.

exec_ch msg() =
{exec, ssh:channel _id(), want_reply(), Command :: string()}

This message requests that the server starts execution of the given command. This event is sent as a result of calling
ssh_connection: exec/4 .

Window Dimension Change Message (RFC 4254, section 6.7)

window change ch msg() =
{window change,
ssh: channel _id(),
CharWidth :: integer(0,
RowHeight :: integer(0,
PixelWidth :: integer() >= 0,
PixelHeight :: integer() >= 0}

) >=
) >=

When the window (terminal) size changes on the client side, it can send a message to the server side to inform it of
the new dimensions. No API function generates this event.

Signals (RFC 4254, section 6.9)

signal ch msg() =
{signal, ssh:channel _id(), SignalName :: string()}

A signal can be delivered to the remote process/service using the following message. Some systems do not support
signals, in which case they are to ignore this message. There is currently no function to generate this event as the
signalsreferred to are on OS-level and not something generated by an Erlang program.

Returning Exit Status (RFC 4254, section 6.10)

exit status ch msg() =
{exit_status,
ssh: channel _id(),
ExitStatus :: integer() >= 0}

When the command running at the other end terminates, the following message can be sent to return the exit status
of thecommand. A zeroexi t _st at us usually meansthat the command terminated successfully. This event is sent
asaresult of calling ssh_connection: exit_status/3.

exit_signal ch msg() =
{exit signal,
ssh: channel _id() ,
ExitSignal :: string(),
ErrorMsg :: string(),
LanguageString :: string()}

A remote execution can terminate violently because of a signal. Then this message can be received. For details on
valid string values, see RFC 4254 Section 6.10, which shows a specia case of these signals.

54 | Ericsson AB. All Rights Reserved.: SSH

href

ssh_connection

Exports

adjust window(ConnectionRef, Channelld, NumOfBytes) -> ok
Types.

ConnectionRef = ssh: connection_ref()

Channelld = ssh: channel _id()

NumOfBytes = integer()

Adjusts the SSH flow control window. Thisisto be done by both the client- and server-side channel processes.

Channels implemented with the ssh_client_channel behavior do not normally need to call this function as flow
control is handled by the behavior. The behavior adjusts the window every time the callback handle_ssh_msg/2
returns after processing channel data.

close(ConnectionRef, Channelld) -> ok
Types:
ConnectionRef = ssh:connection_ref()
Channelld = ssh: channel _id()

A server- or client-channel process can choose to close their session by sending a close event.

This function is caled by the ssh_client channel behavior when the channd is terminated, see
ssh_client_channel (3). Thus, channels implemented with the behavior are not to call this function explicitly.

exec(ConnectionRef, Channelld, Command, Timeout) -> result()
Types:

ConnectionRef = ssh: connection_ref()

Channelld = ssh: channel _id()

Command string()

Timeout = timeout()

Isto be called by aclient-channel process to request that the server starts executing the given command. Theresult is
several messages according to the following pattern. The last messageisachannel close message, astheexec request
is a one-time execution that closes the channel when it is done.

N x data message(s)
The result of executing the command can be only one line or thousands of lines depending on the command.
0 or 1 x eof message
Indicates that no more dataisto be sent.
O or 1 x exit signal message
Not all systems send signals. For details on valid string values, see RFC 4254, Section 6.10
0 or 1 x exit status message
It is recommended by the SSH Connection Protocol to send this message, but that is not always the case.

Ericsson AB. All Rights Reserved.: SSH | 55

ssh_connection

1 x closed status message
Indicatesthat thessh_cl i ent _channel started for the execution of the command has now been shut down.

See the User's Guide section on One-Time Execution for examples.

exit status(ConnectionRef, Channelld, Status) -> ok
Types.

ConnectionRef = ssh:connection_ref()

Channelld = ssh: channel _id()

Status = integer()

Isto be called by a server-channel process to send the exit status of acommand to the client.

ptty alloc(ConnectionRef, Channelld, Options) -> result()
ptty alloc(ConnectionRef, Channelld, Options, Timeout) -> result()
Types:
ConnectionRef = ssh:connection_ref()
Channelld = ssh: channel _id()
Options = proplists:proplist()
Timeout = timeout()
Sends an SSH Connection Protocol pt y_r eq, to allocate a pseudo-terminal. Isto be called by an SSH client process.
Options:
{term, string()}
Defaultsto os.getenv(" TERM™") or vt100 if it is undefined.
{width, integer()}
Defaultsto 80 if pi xel _wi dt h isnot defined.
{height, integer()}
Defaultsto 24 if pi xel _hei ght isnot defined.
{pixel_width, integer()}
Isdisregarded if wi dt h isdefined.
{pixel_height, integer()}
Isdisregarded if hei ght isdefined.
{pty_opts, [{ posix_atom(), integer()}]}
Option can be an empty list. Otherwise, see possible POSI X namesin Section 8in RFC 4254,

reply request(ConnectionRef, WantReply, Status, Channelld) -> ok
Types:

56 | Ericsson AB. All Rights Reserved.: SSH

href

ssh_connection

ConnectionRef = ssh:connection_ref()
WantReply = boolean()
Status = reqg_status()
Channelld = ssh: channel _id()
Sends status replies to requests where the requester has stated that it wants a status report, thet is, Want Reply =

true. If WVant Repl y isf al se, calling this function becomes a "noop". Is to be called while handling an SSH
Connection Protocol message containing a\Want Repl y boolean value.

send(ConnectionRef, Channelld, Data) ->
send(ConnectionRef, Channelld, Data, Timeout) ->
send(ConnectionRef, Channelld, Type, Data) ->
send(ConnectionRef, Channelld, Type, Data, TimeOut) -> ok | Error
Types:

Connecti onRef = ssh: connection_ref()

Channel Id = ssh: channel _id()

Data = iodata()

Type = ssh_data_type_code()

Ti meout = timeout ()

Error = {error, reason()}

Isto be called by client- and server-channel processes to send data to each other.
The function subsystem/4 and subsequent calls of send/ 3, 4, 5 must be executed in the same process.

send eof(ConnectionRef, Channelld) -> ok | {error, closed}
Types.

ConnectionRef = ssh:connection_ref()

Channelld = ssh: channel _id()

Sends EOF on channel Channel | d.

session_channel(ConnectionRef, Timeout) -> Result

session_channel(ConnectionRef, InitialWindowSize, MaxPacketSize,
Timeout) ->
Result

Types:
ConnectionRef = ssh: connection_ref()

InitialWindowSize = MaxPacketSize = integer() >=1
Timeout = timeout()

Result = {ok, ssh:channel _id()} | {error, reason()}

Opens a channel for an SSH session. The channd id returned from this function is the id used as input to the other
functionsin this module.

setenv(ConnectionRef, Channelld, Var, Value, Timeout) -> result()
Types.

Ericsson AB. All Rights Reserved.: SSH | 57

ssh_connection

ConnectionRef = ssh:connection_ref()
Channelld = ssh: channel _id()

Var = Value = string()

Timeout = timeout()

Environment variables can be passed before starting the shell/command. Isto be called by a client channel processes.

shell(ConnectionRef, Channelld) -> Result
Types.
ConnectionRef = ssh:connection_ref()
Channelld = ssh: channel _id()
Result = ok | success | failure | {error, timeout}

Isto be called by a client channel process to request that the user default shell (typically defined in /etc/passwd in
Unix systems) is executed at the server end.

Note: the return value is ok instead of success unlike in other functions in this module. This is a fault that was
introduced so long ago that any change would break alarge number of existing software.

subsystem(ConnectionRef, Channelld, Subsystem, Timeout) ->
result()

Types.
ConnectionRef = ssh: connection_ref()
Channelld = ssh: channel _id()
Subsystem = string()
Timeout = timeout ()
Isto be called by a client-channel process for requesting to execute a predefined subsystem on the server.

The function subsyst en1 4 and subsequent calls of send/3,4,5 must be executed in the same process.

58 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_key api

ssh_client_key api

Erlang module

Behavior describing the API for public key handling of an SSH client. By implementing the callbacks defined in this
behavior, the public key handling of an SSH client can be customized. By default the ssh application implementsthis
behavior with help of the standard OpenSSH files, see the ssh(6) application manual.

Data Types

client key cb options() =
[{key cb private, term()} | ssh:client_option()]

Options provided to ssh:connect/[3,4].
The option list givenin thekey_cb option is available with the key key_cb_pri vat e.

Exports

Module:add host key(HostNames, PublicHostKey, ConnectOptions) -> ok | {error,
Reason}

Types:
Host Names = string()
Description of the host that ownsthe Publ i cHost Key.
Publ i cHost Key = public_key: public_key()
Of ECDSA keys, only the Normally an RSA, DSA or ECDSA public key, but handling of other public keys can
be added.
Connect Options = client_key cb_options()
Adds ahost key to the set of trusted host keys.

Module:is host key(Key, Host, Algorithm, ConnectOptions) -> Result
Types:
Key = public_key: public_key()
Normally an RSA, DSA or ECDSA public key, but handling of other public keys can be added.
Host = string()
Description of the host.
Al gorithm = ssh: pubkey_al g()
Host key algorithm.
Connect Options = client_key cb_options()
Result = bool ean()
Checks if ahost key istrusted.

Module:user key(Algorithm, ConnectOptions) -> {ok, PrivateKey} | {error,
Reason}

Types:
Al gorithm = ssh: pubkey_al g()
Host key algorithm.

Ericsson AB. All Rights Reserved.: SSH | 59

ssh_client_key_api

Connect Options = client_key cb_options()
Privat eKey = public_key: private_key()
Private key of the user matching the Al gori t hm
Reason = tern()

Fetches the users public key matching the Al gor i t hm

The private key contains the public key.

60 | Ericsson AB. All Rights Reserved.: SSH

ssh_server_key api

ssh_server key api

Erlang module

Behaviour describing the API for public key handling of an SSH server. By implementing the callbacks defined in this
behavior, the public key handling of an SSH server can be customized. By default the SSH application implements
this behavior with help of the standard OpenSSH files, see the ssh(6) application manual .

Data Types

daemon_key cb options() =
[{key cb private, term()} | ssh:daenon_option()]

Options provided to ssh:daemon/2,3.
The option list givenin thekey_cb option is available with the key key_cb_pri vat e.

Exports

Module:host key(Algorithm, DaemonOptions) -> {ok, Key} | {error, Reason}

Types:
Al gorithm = ssh: pubkey_al g()
Host key algorithm.

DaenonOpti ons = daenon_key cb_options()

PrivateKey = public_key:private_key() | crypto:engine_key ref()

Private key of the host matching the Al gor i t hm It may be areference to a'ssh-rsa, rsa-sha2-* or 'ssh-
dss (NOT ecdsa) key stored in aloaded Engine.

Reason = term()

Fetches the private key of the host.

Module:is auth key(PublicUserKey, User, DaemonOptions) -> Result
Types:
Publ i cUser Key = public_key: public_key()
Normally an RSA, DSA or ECDSA public key, but handling of other public keys can be added
User = string()
User owning the public key.
DaenonOpti ons = daenon_key_cb_options()
Result = bool ean()
Checks if the user key is authorized.

Ericsson AB. All Rights Reserved.: SSH | 61

ssh_file

ssh_file

Erlang module

This module is the default callback handler for the client's and the server's user and host "database”" operations. All
data, for instance key pairs, are stored in filesin the normal file system. This page documents the files, where they are
stored and configuration options for this callback module.

The intention is to be compatible with the OpenSSH storage in files. Therefore it mimics directories and filenames
of OpenSSH.

Ssh_file implements the ssh_server_key api and the ssh client_key api. This enables the user to make an own
interface using for example a database handler.

Such another callback module could be used by setting the option key _cb when starting a client or a server (with
for example ssh:connect, ssh:daemon of ssh:shell).

| The functions are Callbacks for the SSH app. They are not intended to be called from the user's code! |

Files, directories and who uses them

Daemons

Daemons uses all files stored in the SYSDIR directory.

Optionaly, in case of publ i ckey authorization, one or more of the remote user's public keys in the USERDIR
directory are used. Seethefiles USERDI R/ aut hori zed_keys and USERDI R/ aut hori zed_keys2.
Clients

Clients uses dl files stored in the USERDIR directory.

Directory contents
LOCALUSER

The user name of the OS process running the Erlang virtual machine (emulator).
SYSDIR
Thisisthe directory holding the server'sfiles:

« ssh_host _dsa_key - private dss host key (optional)

e ssh_host _rsa_key - privatersahost key (optional)

e ssh_host _ecdsa_key - private ecdsa host key (optional)

e ssh_host _ed25519_key - private eddsa host key for curve 25519 (optional)
e ssh_host ed448 key - private eddsa host key for curve 448 (optional)

At least one host key must be defined. The default value of SYSDIR is/ et ¢/ ssh.
For security reasons, this directory is normally accessible only to the root user.
To change the SY SDIR, see the system dir option.
USERDIR
Thisisthe directory holding thefiles:

62 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh_file

e authorized_keys and, assecond aternative aut hor i zed_keys2 - the user's public keys are stored
concatenated in one of thosefiles.

« known_host s - host keys from hosts visited concatenated. Thefileis created and used by the client.
e id_dsa - private dss user key (optional)

e« id_rsa - privatersauser key (optional)

e id_ecdsa - private ecdsa user key (optional)

e id_ed25519 - private eddsa user key for curve 25519 (optional)

e id_ed448 - private eddsa user key for curve 448 (optional)

The default value of USERDIR is/ hone/ LOCALUSER/ . ssh.
To change the USERDIR, seethe user_dir option

Data Types

Options for the default ssh_file callback module

user _dir common option() = {user dir, string()}

Sets the user directory.

user dir fun_common option() = {user dir fun, user2dir()}

user2dir() =
fun((RemoteUserName :: string()) -> UserDir :: string())

Setsthe user directory dynamically by evaluating theuser 2di r function.
system dir daemon option() = {system dir, string()}
Sets the system directory.

pubkey passphrase client options() =
{dsa_pass phrase, string()} |
{rsa _pass phrase, string()} |
{ecdsa pass phrase, string()}

If the user's DSA, RSA or ECDSA key is protected by a passphrase, it can be supplied with thoose options.
Note that EDDSA passhrases (Curves 25519 and 448) are not implemented.

Exports

host key(Algorithm, DaemonOptions) -> {ok, Key} | {error, Reason}
Typesand description

See the api description in ssh_server_key api, Module:host_key/2.
Options

e system dir

Files

e SYSDI R/ ssh_host _rsa_key

e SYSDI R/ ssh_host _dsa_ key

e SYSDI R/ ssh_host _ecdsa_key

* SYSDI R/ ssh_host _ed25519_key

e SYSDI R/ ssh_host ed448 keyc>

Ericsson AB. All Rights Reserved.: SSH | 63

ssh_file

is auth key(PublicUserKey, User, DaemonOptions) -> Result
Types and description

See the api description in ssh_server_key api: Moduleiis_auth_key/3.

Options

o user_dir_fun

e user_dir

Files

e« USERDI R/ aut hori zed_keys

« USERDI R/ aut hori zed_keys?2

add host key(HostNames, PublicHostKey, ConnectOptions) -> ok | {error,
Reason}

Types and description

See the api description in ssh_client_key api, Module:add_host_key/3.
Option

e user_dir

File

e USERDI R/ known_host s

is host key(Key, Host, Algorithm, ConnectOptions) -> Result
Types and description

See the api descriptionin ssh_client_key api, Module:is_host_key/4.

Option

o user_dir

File

e« USERDI R known_host s

user key(Algorithm, ConnectOptions) -> {ok, PrivateKey} | {error, Reason}
Types and description

See the api description in ssh_client_key api, Module:user_key/2.

Options

e user_dir

* dsa pass phrase

e rsa_pass phrase

e ecdsa_pass phrase

Note that EDDSA passhrases (Curves 25519 and 448) are not implemented.
Files

e USERDI R/'id _dsa

e« USERDIR/id rsa

64 | Ericsson AB. All Rights Reserved.: SSH

ssh_file

e USERDI R/id _ecdsa
« USERDI R/id_ed25519
« USERDI R/id_ed448

Ericsson AB. All Rights Reserved.: SSH | 65

ssh_sftp

ssh_sftp

Erlang module

Thismoduleimplementsan SSH FTP (SFTP) client. SFTPisasecure, encrypted filetransfer service availablefor SSH.

Data Types

sftp _option() =
{timeout, timeout()} |
{sftp_vsn, integer() >= 1} |
{window size, integer() >= 1} |
{packet size, integer() >= 1}

Error cause
reason() = atom() | string() | tuple()
A description of the reason why an operation failed.

Theat on{) vaueisformed from the sftp error codesin the protocol-level responses as defined in dr aft-ietf-secsh-
filexfer-13 section 9.1. The codes are named as SSH _FX_ * which are transformed into lowercase of the star-part.
E.g. the error code SSH FX NO SUCH_FI LE will causether eason() tobeno_such _fil e.

Thestring() reasonistheerror information from the server in case of an exit-signal. If that information is empty,
the reason is the exit signal name.

Thet upl e() reason are other errorslike for example{ exit _status, 1}.

Crypto operations for open_tar

tar crypto spec() = encrypt_spec() | decrypt_spec()

encrypt spec() = {init_fun(), crypto_fun(), final_fun()}

decrypt spec() = {init_fun(), crypto_fun()}

Specifies the encryption or decryption applied to tar files when using open_tar/3 or open_tar/4.

The encryption or decryption is applied to the generated stream of bytes prior to sending the resulting stream to the
SFTP server.

For code examples see Section Example with encryption in the ssh Users Guide.

init fun() =
fun(() -> {ok, crypto_state()}) |
fun(() -> {ok, crypto_state(), chunk_size()})

chunk size() = undefined | integer() >=1
crypto state() = any()
Theinit_fun() inthetar_crypto spec is applied once prior to any other cr ypt o operation. The intention is

that this function initiates the encryption or decryption for example by calling crypto:crypto_init/4 or similar. The
crypt o_stat e() isthe state such afunction may return.

If the selected cipher needs to have the input data partioned into blocks of a certain size, thei ni t _f un() should
return the second form of return value with the chunk_si ze() set to the block size. If the chunk_si ze()
is undef i ned, the size of the Pl ai nBi ns varies, because this is intended for stream crypto, whereas a fixed
chunk_si ze() is intended for block crypto. A chunk_si ze() can be changed in the return from the
crypt o_fun() . Thevalue can be changed between pos_i nt eger () and undef i ned.

crypto _fun() =

66 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh_sftp

fun((TextIn :: binary(), crypto_state()) -> crypto result())

crypto_result() =
{ok, TextOut :: binary(), crypto_state()} |
{ok, TextOut :: binary(), crypto_state(), chunk_size()}

The initia crypto_state() returned from the init fun() is folded into repeated applications of the
crypto_fun() inthetar_crypto_spec. The binary returned from that fun is sent to the remote SFTP server and the
new crypt o_st at e() isusedinthenext cal of thecrypto_fun().

If the crypto_fun() reurns a chunk_si ze(), that value is as block size for further blocks in calls to
crypto_fun().

final fun() =
fun((FinalTextIn :: binary(), crypto_state()) ->
{ok, FinalTextOut :: binary()})

If doingencryption, thef i nal _f un() inthetar_crypto_specisappliedtothelast pieceof data. Thef i nal _f un()
isresponsible for padding (if needed) and encryption of that last piece.

Exports

apread(ChannelPid, Handle, Position, Len) -> {async, N} | Error
Types.

ChannelPid = pid()

Handle = term()

Position = Len = integer()

Error = {error, reason()}

N = term()

Theapr ead/ 4 function reads from a specified position, combining the posi ti on/ 3 and ar ead/ 3 functions.

apwrite(ChannelPid, Handle, Position, Data) -> {async, N} | Error
Types:

ChannelPid = pid()

Handle = term()

Position = integer()

Data = binary()

Error = {error, reason()}

N = term()

Theapwr i t e/ 4 function writes to a specified position, combining the posi ti on/ 3 andawr i t e/ 3 functions.

aread(ChannelPid, Handle, Len) -> {async, N} | Error
Types:

Ericsson AB. All Rights Reserved.: SSH | 67

ssh_sftp

ChannelPid = pid()

Handle = term()

Len = integer()

Error = {error, reason()}

N = term()
Reads from an open file, without waiting for the result. If the handle is valid, the function returns { async, N},
where Nisaterm guaranteed to be unique between calls of ar ead. The actual datais sent as a message to the calling

process. This message hastheform {async_reply, N, Result},where Resul t istheresult from the read,
either { ok, Data},eof,or{error, reason()}.

awrite(ChannelPid, Handle, Data) -> {async, N} | Error
Types.
ChannelPid = pid()
Handle = term()
Data = binary()
Error = {error, reason()}
N = term()
Writes to an open file, without waiting for the result. If the handleisvalid, the function returns{ async, N}, where
Nisaterm guaranteed to be unique between callsof awr i t e. Theresult of thewr i t e operation is sent as a message

to the calling process. This message hasthe form { async_reply, N, Result}, where Resul t isthe result
from the write, either ok, or{ error, reason()}.

close(ChannelPid, Handle) -> ok | Error
close(ChannelPid, Handle, Timeout) -> ok | Error
Types:

ChannelPid = pid()

Handle = term()

Timeout = timeout()

Error = {error, reason()}

Closes ahandle to an open file or directory on the server.

delete(ChannelPid, Name) -> ok | Error
delete(ChannelPid, Name, Timeout) -> ok | Error
Types.

ChannelPid = pid()

Name = string()

Timeout = timeout()

Error = {error, reason()}

Deletes the file specified by Name.

del dir(ChannelPid, Name) -> ok | Error
del dir(ChannelPid, Name, Timeout) -> ok | Error
Types:

68 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

ChannelPid = pid()

Name = string()

Timeout = timeout()

Error = {error, reason()}

Deletes a directory specified by Nane. The directory must be empty before it can be successfully deleted.

list dir(ChannelPid, Path) -> {ok, FileNames} | Error
list dir(ChannelPid, Path, Timeout) -> {ok, FileNames} | Error
Types.

ChannelPid = pid()

Path = string()

Timeout = timeout()

FileNames = [FileName]

FileName = string()

Error = {error, reason()}

Lists the given directory on the server, returning the filenames as alist of strings.

make dir(ChannelPid, Name) -> ok | Error
make dir(ChannelPid, Name, Timeout) -> ok | Error
Types:

ChannelPid = pid()

Name = string()

Timeout = timeout()

Error = {error, reason()}

Creates adirectory specified by Name. Nanme must be afull path to anew directory. The directory can only be created
in an existing directory.

make symlink(ChannelPid, Name, Target) -> ok | Error
make symlink(ChannelPid, Name, Target, Timeout) -> ok | Error
Types:

ChannelPid = pid()

Name = Target = string()
Timeout = timeout()

Error = {error, reason()}
Creates a symbolic link pointing to Tar get with the name Nane.

open(ChannelPid, Name, Mode) -> {ok, Handle} | Error
open(ChannelPid, Name, Mode, Timeout) -> {ok, Handle} | Error
Types.

Ericsson AB. All Rights Reserved.: SSH | 69

ssh_sftp

ChannelPid = pid()

Name = string()

Mode = [read | write | append | binary | raw]
Timeout = timeout()

Handle = term()

Error = {error, reason()}

Opens afile on the server and returns a handle, which can be used for reading or writing.

opendir(ChannelPid, Path) -> {ok, Handle} | Error
opendir(ChannelPid, Path, Timeout) -> {ok, Handle} | Error
Types:

ChannelPid = pid()

Path = string()

Timeout = timeout()

Handle = term()

Error = {error, reason()}

Opens a handle to a directory on the server. The handle can be used for reading directory contents.

open_tar(ChannelPid, Path, Mode) -> {ok, Handle} | Error
open_tar(ChannelPid, Path, Mode, Timeout) -> {ok, Handle} | Error
Types.
ChannelPid = pid()
Path = string()
Mode = [read | write | {crypto, tar_crypto_spec() }]
Timeout = timeout()
Handle = term()
Error = {error, reason()}
Opensahandleto atar file onthe server, associated with Channel Pi d. The handle can be used for remotetar creation

and extraction. The actual writing and reading is performed by calls to erl_tar:add/3,4 and erl_tar:extract/2. Note:
The erl_tar:init/3 function should not be called, that one is called by this open_tar function.

For code examples see Section SFTP Client with TAR Compression in the ssh Users Guide.

Thecr ypt o mode option isexplainedin the datatypes section above, see Crypto operationsfor open_tar. Encryption
isassumed if the Mbde containswr i t e, and decryption if the Mbde containsr ead.

position(ChannelPid, Handle, Location) ->
{ok, NewPosition} | Error

position(ChannelPid, Handle, Location, Timeout) ->
{ok, NewPosition} | Error

Types:
ChannelPid = pid()
Handle = term()

Location =
Offset |
{bof, Offset} |

70 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

{cur, Offset} |
{eof, Offset} |
bof | cur | eof

Timeout = timeout()
Offset = NewPosition = integer()
Error = {error, reason()}

Sets the file position of the file referenced by Handl e. Returns { ok, NewPosi ti on} (as an absolute offset) if
successful, otherwise{ error, reason()}.Locati on isoneof thefollowing:

O fset
Thesameas{bof, O fset}.
{bof, Ofset}
Absolute offset.
{cur, Ofset}
Offset from the current position.
{eof, O fset}
Offset from the end of file.
bof | cur | eof
The same as eariler with Of f set O, thatis, { bof, 0} | {cur, 0} | {eof, O}.

pread(ChannelPid, Handle, Position, Len) ->
{ok, Data} | eof | Error

pread(ChannelPid, Handle, Position, Len, Timeout) ->
{ok, Data} | eof | Error

Types.
ChannelPid = pid()
Handle = term()
Position = Len = integer()
Timeout = timeout()
Data = string() | binary()
Error = {error, reason()}

Thepr ead/ 3, 4 function reads from a specified position, combining the posi ti on/ 3 and r ead/ 3, 4 functions.

pwrite(ChannelPid, Handle, Position, Data) -> ok | Error
pwrite(ChannelPid, Handle, Position, Data, Timeout) -> ok | Error
Types.

ChannelPid = pid()

Handle = term()

Position = integer()

Data = iolist()

Timeout = timeout()

Error = {error, reason()}

Thepwri t e/ 3, 4 function writesto aspecified position, combining theposi ti on/ 3 andwri t e/ 3, 4 functions.

Ericsson AB. All Rights Reserved.: SSH | 71

ssh_sftp

read(ChannelPid, Handle, Len) -> {ok, Data} | eof | Error
read (ChannelPid, Handle, Len, Timeout) -> {ok, Data} | eof | Error
Types:

ChannelPid = pid()

Handle = term()

Len = integer()

Timeout = timeout()

Data = string() | binary()

Error = {error, reason()}

Reads Len bytes from the file referenced by Handl e. Returns{ ok, Dat a},eof ,or{error, reason()}.If
thefileis opened with bi nar y, Dat a isabinary, otherwiseit isastring.

If thefileisread past eof , only the remaining bytes are read and returned. If no bytes are read, eof isreturned.

read file(ChannelPid, File) -> {ok, Data} | Error
read file(ChannelPid, File, Timeout) -> {ok, Data} | Error

Types.
ChannelPid = pid()
File = string()
Data = binary()

Timeout = timeout()
Error = {error, reason()}

Reads a file from the server, and returns the datain a binary.

read file info(ChannelPid, Name) -> {ok, FileInfo} | Error

read file info(ChannelPid, Name, Timeout) ->
{ok, FileInfo} | Error

Types.
ChannelPid = pid()
Name = string()
Timeout = timeout()
FileInfo = file:file_info()
Error = {error, reason()}

Returnsafi | e_i nf o record from the file system object specified by Nane or Handl e. Seefileiread file info/2
for information about the record.

Depending on the underlying OS.es links might be followed and info on the fina file, directory etc is returned. See
read_link info/2 on how to get information on links instead.

read link(ChannelPid, Name) -> {ok, Target} | Error

read link(ChannelPid, Name, Timeout) -> {ok, Target} | Error
Types:

72 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

ChannelPid = pid()

Name = Target = string()
Timeout = timeout()
Error = {error, reason()}

Reads the link target from the symbolic link specified by nane.

read link info(ChannelPid, Name) -> {ok, FileInfo} | Error

read link info(ChannelPid, Name, Timeout) ->
{ok, FileInfo} | Error

Types:
ChannelPid = pid()
Name = string()
FileInfo = file:file_info()
Timeout = timeout()
Error = {error, reason()}

Returnsafi | e_i nf o record from the symbolic link specified by Nane or Handl e. Seefilerread_link_info/2 for

information about the record.

rename (ChannelPid, OldName, NewName) -> ok | Error
rename (ChannelPid, OldName, NewName, Timeout) -> ok | Error
Types:

ChannelPid = pid()

OldName = NewName = string()
Timeout = timeout()

Error = {error, reason()}
Renames afile named O dNane and givesit the name NewNane.

start _channel(ConnectionRef) ->

start channel(ConnectionRef, SftpOptions) -> {ok, ChannelPid} | Error

(
(
start _channel(Host) ->

start _channel(Host, Options) ->

start _channel(Host, Port, Options) ->
start _channel(TcpSocket) ->

(

start channel(TcpSocket, Options) -> {ok, ChannelPid, ConnectionRef} | Error

Types:
Host = ssh: host ()
Port = inet:port_nunber()

TcpSocket = ssh: open_socket ()

Options = [sftp_option() | ssh:client_option()]
SftpOptions = [sftp_option()]

Channel Pid = pid()

Connecti onRef = ssh: connection_ref()

Error = {error, reason()}

Ericsson AB. All Rights Reserved.: SSH | 73

ssh_sftp

If no connection reference is provided, a connection is set up, and the new connection is returned. An SSH channel
processis started to handle the communication with the SFTP server. The returned pi d for this processisto be used
asinput to all other API functionsin this module.
Options:
{tinmeout, timeout()}
There are two ways to set atimeout for the underlying ssh connection:
< |f the connection timeout option connect _ti meout isset, that valueis used aso for the negotiation
timeout and this option (t i meout) isignored.
« Otherwise, thisoption (t i meout) is used as the negotiation timeout only and there is no connection
timeout set
Thevalue defaultstoi nfinity.
{sftp_vsn, integer()}

Desired SFTP protocol version. The actua version is the minimum of the desired version and the maximum
supported versions by the SFTP server.

All other options are directly passed to ssh:connect/3 or ignored if a connection is already provided.

stop_channel(ChannelPid) -> ok
Types:
ChannelPid = pid()
Stops an SFTP channel. Does not close the SSH connection. Use ssh:close/1 to closeit.

write(ChannelPid, Handle, Data) -> ok | Error
write(ChannelPid, Handle, Data, Timeout) -> ok | Error
Types.

ChannelPid = pid()

Handle = term()

Data = iodata()

Timeout = timeout()

Error = {error, reason()}

Writes dat a to the file referenced by Handl e. Thefileis to be opened withwr i t e or append flag. Returns ok
if successful or { error, reason()} otherwise.

write file(ChannelPid, File, Data) -> ok | Error
write file(ChannelPid, File, Data, Timeout) -> ok | Error
Types:

ChannelPid = pid()

File = string()

Data = iodata()

Timeout = timeout()

Error = {error, reason()}

Writes afileto the server. Thefileis created if it does not exist but overwritten if it exists.

74 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

write file info(ChannelPid, Name, FileInfo) -> ok | Error
write file info(ChannelPid, Name, FileInfo, Timeout) -> ok | Error
Types:

ChannelPid = pid()

Name = string()

FileInfo = file:file_info()

Timeout = timeout()

Error = {error, reason()}

Writes file information from afi | e_i nf o record to the file specified by Narme. See file:write file_info/[2,3] for
information about the record.

Ericsson AB. All Rights Reserved.: SSH | 75

ssh_sftpd

ssh_sftpd

Erlang module

Specifies a channel process to handle an SFTP subsystem.

Exports

subsystem spec(Options) -> Spec
Types:
Options =
[{cwd, string()} |
{file handler, CbMod | {CbMod, FileState}} |
{max files, integer()} |
{root, string()} |
{sftpd vsn, integer()}]
Spec = {Name, {CbMod, Options}}
Name string()
CbMod = atom()
FileState = term()

Isto be used together with ssh: daenon/ [1, 2, 3]

The Nane is "sft p" and CbMod is the name of the Erlang module implementing the subsystem using the
ssh_server_channel (replaces ssh_daemon_channel) behaviour.

Options:
cwd

Setstheinitial current working directory for the server.
file_handl er

Determines which module to call for accessing the file server. The default valueisssh_sft pd_fi | e, which
uses the file and filelib APIs to access the standard OTP file server. This option can be used to plug in other
file servers.

max_files

The default value is 0, which means that there is no upper limit. If supplied, the number of filenames returned to
the SFTP client per READDI Rrequest is limited to at most the given value.

r oot

Setsthe SFTProot directory. Then the user cannot see any files abovethisroot. If, for example, theroot directory
is set to / t mp, then the user sees this directory as/ . If the user then writescd / et ¢, the user movesto /
tmp/ et c.

sftpd_vsn
Setsthe SFTP version to use. Defaultsto 5. Version 6 is under development and limited.

76 | Ericsson AB. All Rights Reserved.: SSH

	SSH
	SSH User's Guide
	Introduction
	Scope and Purpose
	Prerequisites
	SSH Protocol Overview
	Transport Protocol
	Authentication Protocol
	Connection Protocol
	Channels

	Where to Find More Information

	Getting Started
	General Information
	Using the Erlang ssh Terminal Client
	Running an Erlang ssh Daemon
	One-Time Execution
	Erlang client contacting OS standard ssh server
	OS standard client and Erlang daemon (server)
	I/O from a function called in an Erlang ssh daemon
	Configuring the server's (daemon's) command execution

	SFTP Server
	SFTP Client
	SFTP Client with TAR Compression
	Basic example
	Example with encryption

	Creating a Subsystem

	Terminology
	General Information
	The term "user"
	In OpenSSH
	SSH password authentication
	SSH public key authentication
	The SSH server on UNIX/Linux/etc after a succesful authentication

	In Erlang/OTP SSH
	Password authentication in Erlang SSH
	Public key authentication in Erlang SSH
	The Erlang/OTP SSH server after a succesful authentication

	Configuring algorithms in SSH
	Introduction
	Basics of the ssh protocol's algorithms handling
	The SSH app's mechanism

	Replacing the default set: preferred_algorithms
	Example 1
	Example 2
	Example 3
	Example 4

	Modifying the default set: modify_algorithms
	Example 5
	Example 6
	Example 7

	Reference Manual
	SSH
	ssh
	close/1
	connect/3
	connect/4
	connect/2
	connect/3
	connection_info/1
	connection_info/2
	daemon/1
	daemon/2
	daemon/3
	daemon_info/1
	daemon_info/2
	default_algorithms/0
	shell/1
	shell/2
	shell/3
	start/0
	start/1
	stop/0
	stop_daemon/1
	stop_daemon/2
	stop_daemon/3
	stop_listener/1
	stop_listener/2
	stop_listener/3
	tcpip_tunnel_from_server/5
	tcpip_tunnel_from_server/6
	tcpip_tunnel_to_server/5
	tcpip_tunnel_to_server/6

	ssh_client_channel
	call/2
	call/3
	cast/2
	enter_loop/1
	init/1
	reply/2
	start/4
	start_link/4
	Module:code_change/3
	Module:init/1
	Module:handle_call/3
	Module:handle_cast/2
	Module:handle_msg/2
	Module:handle_ssh_msg/2
	Module:terminate/2

	ssh_server_channel
	Module:init/1
	Module:handle_msg/2
	Module:handle_ssh_msg/2
	Module:terminate/2

	ssh_connection
	adjust_window/3
	close/2
	exec/4
	exit_status/3
	ptty_alloc/3
	ptty_alloc/4
	reply_request/4
	send/3
	send/4
	send/4
	send/5
	send_eof/2
	session_channel/2
	session_channel/4
	setenv/5
	shell/2
	subsystem/4

	ssh_client_key_api
	Module:add_host_key/3
	Module:is_host_key/4
	Module:user_key/2

	ssh_server_key_api
	Module:host_key/2
	Module:is_auth_key/3

	ssh_file
	host_key/2
	is_auth_key/3
	add_host_key/3
	is_host_key/4
	user_key/2

	ssh_sftp
	apread/4
	apwrite/4
	aread/3
	awrite/3
	close/2
	close/3
	delete/2
	delete/3
	del_dir/2
	del_dir/3
	list_dir/2
	list_dir/3
	make_dir/2
	make_dir/3
	make_symlink/3
	make_symlink/4
	open/3
	open/4
	opendir/2
	opendir/3
	open_tar/3
	open_tar/4
	position/3
	position/4
	pread/4
	pread/5
	pwrite/4
	pwrite/5
	read/3
	read/4
	read_file/2
	read_file/3
	read_file_info/2
	read_file_info/3
	read_link/2
	read_link/3
	read_link_info/2
	read_link_info/3
	rename/3
	rename/4
	start_channel/1
	start_channel/2
	start_channel/1
	start_channel/2
	start_channel/3
	start_channel/1
	start_channel/2
	stop_channel/1
	write/3
	write/4
	write_file/3
	write_file/4
	write_file_info/3
	write_file_info/4

	ssh_sftpd
	subsystem_spec/1

