
Secure Socket Layer
Copyright © 1999-2018 Ericsson AB. All Rights Reserved.

Secure Socket Layer 8.2.5
March 26, 2018

Copyright © 1999-2018 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.1 Introduction

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1 SSL User's Guide

The Secure Socket Layer (SSL) application provides secure communication over sockets.

1.1 Introduction
1.1.1 Purpose
Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of SSL/TLS/DTLS.

1.2 TLS/DTLS and TLS Predecessor, SSL
The Erlang SSL application implements the SSL/TLS/DTLS protocol for the currently supported versions, see the
ssl(3) manual page.

By default SSL/TLS is run over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) as the gen_tcp module in Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarentees. Other transports, such as SCTP, may be
supported in future releases.

If a client and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade a regular TCP/
IP connection to an TLS connection, this is supported by the Erlang SSL application API. This can be useful for,
for example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note this is a TLS
feature only.

1.2.1 Security Overview
To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2 Data Privacy and Integrity
A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typically
used for encrypting bulk data.

The keys for the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
in the TLS/DTLS handshake.

1.3 Using SSL application API

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash Message Authenticity Code (MAC), or a Hash-based MAC (HMAC), to protect the message data integrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose is to detect if the message has been altered."

1.2.3 Digital Certificates
A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in its turn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificates are issued by Certification Authorities (CAs) only. A handful of top CAs in the world issue root certificates.
You can examine several of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication
Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

• Each certificate in the certificate chain is issued by the previous one.

• The certificates attributes are valid.

• The root certificate is a trusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty" certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server is to accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions
From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
is required. Session data is also invalidated after 24 hours from it was saved, for security reasons. The amount of time
the session data is to be saved can be configured.

By default the TLS/DTLS clients try to reuse an available session and by default the TLS/DTLS servers agree to reuse
sessions when clients ask for it.

1.3 Using SSL application API
To see relevant version information for ssl, call ssl:versions/0 .

To see all supported cipher suites, call ssl:cipher_suites(all) . The available cipher suites for a connection
depend on your certificate. Specific cipher suites that you want your connection to use can also be specified. Default
is to use the strongest available.

1.3 Using SSL application API

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3.1 Setting up Connections
This section shows a small example of how to set up client/server connections using the Erlang shell. The returned
value of the sslsocket is abbreviated with [...] as it can be fairly large and is opaque.

Minimal Example

Note:

The minimal setup is not the most secure setup of SSL/TLS/DTLS.

To set up client/server connections:

Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create an TLS listen socket: (To run DTLS add the option {protocol, dtls})

2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certfile, "cert.pem"}, {keyfile, "key.pem"},{reuseaddr, true}]).
{ok,{sslsocket, [...]}}

Step 3: Do a transport accept on the TLS listen socket:

3 server> {ok, Socket} = ssl:transport_accept(ListenSocket).
{ok,{sslsocket, [...]}}

Step 4: Start the client side:

1 client> ssl:start().
ok

To run DTLS add the option {protocol, dtls} to third argument.

2 client> {ok, Socket} = ssl:connect("localhost", 9999, [], infinity).
{ok,{sslsocket, [...]}}

Step 5: Do the TLS handshake:

4 server> ok = ssl:ssl_accept(Socket).
ok

Step 6: Send a message over TLS:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message was sent on the server side:

3 client> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3 Using SSL application API

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

Upgrade Example - TLS only

Note:

To upgrade a TCP/IP connection to an SSL connection, the client and server must agree to do so. The agreement
can be accomplished by using a protocol, for example, the one used by HTTP specified in RFC 2817.

To upgrade to an SSL connection:

Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create a normal TCP listen socket:

2 server> {ok, ListenSocket} = gen_tcp:listen(9999, [{reuseaddr, true}]).
{ok, #Port<0.475>}

Step 3: Accept client connection:

3 server> {ok, Socket} = gen_tcp:accept(ListenSocket).
{ok, #Port<0.476>}

Step 4: Start the client side:

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen_tcp:connect("localhost", 9999, [], infinity).

Step 5: Ensure active is set to false before trying to upgrade a connection to an SSL connection, otherwise SSL
handshake messages can be delivered to the wrong process:

4 server> inet:setopts(Socket, [{active, false}]).
ok

Step 6: Do the TLS handshake:

5 server> {ok, TLSSocket} = ssl:ssl_accept(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}]).
{ok,{sslsocket,[...]}}

Step 7: Upgrade to an TLS connection. The client and server must agree upon the upgrade. The server must call
ssl:accept/2 before the client calls ssl:connect/3.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}], infinity).
{ok,{sslsocket,[...]}}

Step 8: Send a message over TLS:

4 client> ssl:send(TLSSocket, "foo").
ok

Step 9: Set active true on the TLS socket:

4 server> ssl:setopts(TLSSocket, [{active, true}]).
ok

1.3 Using SSL application API

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

Step 10: Flush the shell message queue to see that the message was sent on the client side:

5 server> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

1.3.2 Customizing cipher suits
Fetch default cipher suite list for an TLS/DTLS version. Change default to all to get all possible cipher suites.

1> Default = ssl:cipher_suites(default, 'tlsv1.2').
 [#{cipher => aes_256_gcm,key_exchange => ecdhe_ecdsa,
 mac => aead,prf => sha384},]

In OTP 20 it is desirable to remove all cipher suites that uses rsa kexchange (removed from default in 21)

2> NoRSA =
 ssl:filter_cipher_suites(Default,
 [{key_exchange, fun(rsa) -> false;
 (_) -> true end}]).
 [...]

Pick just a few suites

 3> Suites =
 ssl:filter_cipher_suites(Default,
 [{key_exchange, fun(ecdh_ecdsa) -> true;
 (_) -> false end},
 {cipher, fun(aes_128_cbc) ->true;
 (_) ->false end}]).
 [#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
 mac => sha256,prf => sha256},
 #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
 prf => default_prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

 4>ssl:prepend_cipher_suites(Suites, Default).
 [#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
 mac => sha256,prf => sha256},
 #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
 prf => default_prf},
 #{cipher => aes_256_cbc,key_exchange => ecdhe_ecdsa,
 mac => sha384,prf => sha384}, ...]

1.3.3 Using an Engine Stored Key
Erlang ssl application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
MyEngine:

2> {ok, EngineRef} =
crypto:engine_load(<<"dynamic">>,
 [{<<"SO_PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>],[]).
{ok,#Ref<0.2399045421.3028942852.173962>}

Create a map with the engine information and the algorithm used by the engine:

1.4 Using TLS for Erlang Distribution

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

3> PrivKey =
 #{algorithm => rsa,
 engine => EngineRef,
 key_id => "id of the private key in Engine"}.

Use the map in the ssl key option:

4> {ok, SSLSocket} =
ssl:connect("localhost", 9999,
 [{cacertfile, "cacerts.pem"},
 {certfile, "cert.pem"},
 {key, PrivKey}], infinity).

See also crypto documentation

1.4 Using TLS for Erlang Distribution
This section describes how the Erlang distribution can use TLS to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
inet_tcp_dist in the Kernel application. When starting an Erlang node distributed, net_kernel uses this
module to set up listen ports and connections.

In the SSL application, an extra distribution module, inet_tls_dist, can be used as an alternative. All distribution
connections will use TLS and all participating Erlang nodes in a distributed system must use this distribution module.

The security level depends on the parameters provided to the TLS connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

• Step 1: Build boot scripts including the SSL application.

• Step 2: Specify the distribution module for net_kernel.

• Step 3: Specify the security options and other SSL options.

• Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the SSL Application
Boot scripts are built using the systools utility in the SASL application. For more information on systools, see
the SASL documentation. This is only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bin directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under releases/<OTP version>/start_clean.rel.

Do the following:

• Copy that script to another location (and preferably another name).

• Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example .rel file with TLS added:

1.4 Using TLS for Erlang Distribution

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

 {release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
 [{kernel,"2.15"},
 {stdlib,"1.18"},
 {crypto, "2.0.3"},
 {public_key, "0.12"},
 {asn1, "4.0"},
 {ssl, "5.0"}
]}.

The version numbers differ in your system. Whenever one of the applications included in the script is upgraded, change
the script.

Do the following:

• Build the boot script.

Assuming the .rel file is stored in a file start_ssl.rel in the current directory, a boot script can be
built as follows:

 1> systools:make_script("start_ssl",[]).

There is now a start_ssl.boot file in the current directory.

Do the following:

• Test the boot script. To do this, start Erlang with the -boot command-line parameter specifying this boot script
(with its full path, but without the .boot suffix). In UNIX it can look as follows:

$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
1> whereis(ssl_manager).
<0.41.0>

The whereis function-call verifies that the SSL application is started.

As an alternative to building a bootscript, you can explicitly add the path to the SSL ebin directory on the command
line. This is done with command-line option -pa. This works as the SSL application does not need to be started for the
distribution to come up, as a clone of the SSL application is hooked into the Kernel application. So, as long as the SSL
application code can be reached, the distribution starts. The -pa method is only recommended for testing purposes.

Note:

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as needed to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

1.4.2 Specifying Distribution Module for net_kernel
The distribution module for SSL/TLS is named inet_tls_dist and is specified on the command line with option -
proto_dist. The argument to -proto_dist is to be the module name without suffix _dist. So, this distribution
module is specified with -proto_dist inet_tls on the command line.

Extending the command line gives the following:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls

For the distribution to be started, give the emulator a name as well:

1.4 Using TLS for Erlang Distribution

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>

However, a node started in this way refuses to talk to other nodes, as no TLS parameters are supplied (see the next
section).

1.4.3 Specifying SSL/TLS Options
The SSL/TLS distribution options can be written into a file that is consulted when the node is started. This file name
is then specified with the command line argument -ssl_dist_optfile.

Any available SSL/TLS option can be specified in an options file, but note that options that take a fun() has to use
the syntax fun Mod:Func/Arity since a function body can not be compiled when consulting a file.

Do not tamper with the socket options list, binary, active, packet, nodelay and deliver since they
are used by the distribution protocol handler itself. Other raw socket options such as packet_size may interfere
severely, so beware!

For SSL/TLS to work, at least a public key and a certificate must be specified for the server side. In the following
example, the PEM file "/home/me/ssl/erlserver.pem" contains both the server certificate and its private
key.

Create a file named for example "/home/me/ssl/ssl_test@myhost.conf":

[{server,
 [{certfile, "/home/me/ssl/erlserver.pem"},
 {secure_renegotiate, true}]},
 {client,
 [{secure_renegotiate, true}]}].

And then start the node like this (line breaks in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
 -sname ssl_test

The options in the {server, Opts} tuple are used when calling ssl:ssl_accept/3, and the options in the
{client, Opts} tuple are used when calling ssl:connect/4.

For the client, the option {server_name_indication, atom_to_list(TargetNode)} is added when
connecting. This makes it possible to use the client option {verify, verify_peer}, and the client will verify
that the certificate matches the node name you are connecting to. This only works if the the server certificate is issued
to the name atom_to_list(TargetNode).

For the server it is also possible to use the option {verify, verify_peer} and the server will only accept
client connections with certificates that are trusted by a root certificate that the server knows. A client that presents
an untrusted certificate will be rejected. This option is preferably combined with {fail_if_no_peer_cert,
true} or a client will still be accepted if it does not present any certificate.

A node started in this way is fully functional, using TLS as the distribution protocol.

1.4.4 Specifying SSL/TLS Options (Legacy)
As in the previous section the PEM file "/home/me/ssl/erlserver.pem" contains both the server certificate
and its private key.

On the erl command line you can specify options that the SSL/TLS distribution adds when creating a socket.

1.4 Using TLS for Erlang Distribution

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

The simplest SSL/TLS options in the following list can be specified by adding the prefix server_ or client_
to the option name:

• certfile

• keyfile

• password

• cacertfile

• verify

• verify_fun (write as {Module, Function, InitialUserState})

• crl_check

• crl_cache (write as Erlang term)

• reuse_sessions

• secure_renegotiate

• depth

• hibernate_after

• ciphers (use old string format)

Note that verify_fun needs to be written in a different form than the corresponding SSL/TLS option, since funs
are not accepted on the command line.

The server can also take the options dhfile and fail_if_no_peer_cert (also prefixed).

client_-prefixed options are used when the distribution initiates a connection to another node. server_-prefixed
options are used when accepting a connection from a remote node.

Raw socket options, such as packet and size must not be specified on the command line.

The command-line argument for specifying the SSL/TLS options is named -ssl_dist_opt and is to be followed
by pairs of SSL options and their values. Argument -ssl_dist_opt can be repeated any number of times.

An example command line doing the same as the example in the previous section can now look as follows (line breaks
in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem"
 -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true
 -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>

1.4.5 Setting up Environment to Always Use SSL/TLS (Legacy)
A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the SSL/TLS distribution can be specified in that variable and are then interpreted as command-line arguments
for all subsequent invocations of Erlang.

In a Unix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

1.4 Using TLS for Erlang Distribution

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

$ ERL_FLAGS="-boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_opt server_certfile /home/me/ssl/erlserver.pem
 -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1> init:get_arguments().
[{root,["/usr/local/erlang"]},
 {progname,["erl "]},
 {sname,["ssl_test"]},
 {boot,["/home/me/ssl/start_ssl"]},
 {proto_dist,["inet_tls"]},
 {ssl_dist_opt,["server_certfile","/home/me/ssl/erlserver.pem"]},
 {ssl_dist_opt,["server_secure_renegotiate","true",
 "client_secure_renegotiate","true"]
 {home,["/home/me"]}]

The init:get_arguments() call verifies that the correct arguments are supplied to the emulator.

1.4.6 Using SSL/TLS distribution over IPv6
It is possible to use SSL/TLS distribution over IPv6 instead of IPv4. To do this, pass the option -proto_dist
inet6_tls instead of -proto_dist inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

An example command line with this option would look like this:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet6_tls
 -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
 -sname ssl_test

A node started in this way will only be able to communicate with other nodes using SSL/TLS distribution over IPv6.

1.4 Using TLS for Erlang Distribution

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

2 Reference Manual

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

ssl
Application

The ssl application is an implementation of the SSL/TLS/DTLS protocol in Erlang.

• Supported SSL/TLS/DTLS-versions are SSL-3.0, TLS-1.0, TLS-1.1, TLS-1.2, DTLS-1.0 (based on TLS-1.1),
DTLS-1.2 (based on TLS-1.2)

• For security reasons SSL-2.0 is not supported. Interoperability with SSL-2.0 enabled clients dropped. (OTP 21)

• For security reasons SSL-3.0 is no longer supported by default, but can be configured. (OTP 19)

• For security reasons RSA key exchange cipher suites are no longer supported by default, but can be configured.
(OTP 21)

• For security reasons DES cipher suites are no longer supported by default, but can be configured. (OTP 20)

• For security reasons 3DES cipher suites are no longer supported by default, but can be configured. (OTP 21)

• Renegotiation Indication Extension RFC 5746 is supported

• Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

• Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.

• Export cipher suites are not supported as the U.S. lifted its export restrictions in early 2000.

• IDEA cipher suites are not supported as they have become deprecated by the latest TLS specification so it is not
motivated to implement them.

• Compression is not supported.

• CRL validation is supported.

• Policy certificate extensions are not supported.

• 'Server Name Indication' extension (RFC 6066) is supported.

• Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

• It is possible to use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by default.

DEPENDENCIES
The SSL application uses the public_key, asn1 and Crypto application to handle public keys and encryption,
hence these applications must be loaded for the SSL application to work. In an embedded environment this means
they must be started with application:start/[1,2] before the SSL application is started.

CONFIGURATION
The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:

erl -ssl protocol_version "['tlsv1.2', 'tlsv1.1']"

protocol_version = ssl:ssl_tls_protocol()<optional>

Protocol supported by started clients and servers. If this option is not set, it defaults to all TLS protocols currently
supported by the SSL application. This option can be overridden by the version option to ssl:connect/
[2,3] and ssl:listen/2.

href
href

ssl

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

dtls_protocol_version = ssl:dtls_protocol()<optional>

Protocol supported by started clients and servers. If this option is not set, it defaults to all DTLS protocols currently
supported by the SSL application. This option can be overridden by the version option to ssl:connect/
[2,3] and ssl:listen/2.

session_lifetime = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may be invalidated earlier due to the maximum limitation of the session
cache table.

session_cb = atom() <optional>

Name of the session cache callback module that implements the ssl_session_cache_api behavior.
Defaults to ssl_session_cache.

session_cb_init_args = proplist:proplist() <optional>

List of extra user-defined arguments to the init function in the session cache callback module. Defaults to [].

session_cache_client_max = integer() <optional>

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessions is reached, the current cache entries will
be invalidated regardless of their remaining lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this
option to work as intended.

session_cache_server_max = integer() <optional>

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If the
maximum number of sessions is reached, the current cache entries will be invalidated regardless of their remaining
lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

ssl_pem_cache_clean = integer() <optional>

Number of milliseconds between PEM cache validations. Defaults to 2 minutes.

ssl:clear_pem_cache/0
bypass_pem_cache = boolean() <optional>

Introduced in ssl-8.0.2. Disables the PEM-cache. Can be used as a workaround for the PEM-cache bottleneck
before ssl-8.1.1. Defaults to false.

alert_timeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the alert so it may shutdown gracefully. Defaults to 5000
milliseconds.

ERROR LOGGER AND EVENT HANDLERS
The SSL application uses the default OTP error logger to log unexpected errors and TLS/DTLS alerts. The logging
of TLS/DTLS alerts may be turned off with the log_alert option.

SEE ALSO
application(3)

href

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

ssl
Erlang module

This module contains interface functions for the SSL/TLS/DTLS protocol. For detailed information about the
supported standards see ssl(6).

DATA TYPES
The following data types are used in the functions for SSL/TLS/DTLS:

boolean() =

true | false

option() =

socketoption() | ssl_option() | transport_option()

socketoption() =

proplists:property()

The default socket options are [{mode,list},{packet, 0},{header, 0},{active, true}].

For valid options, see the inet(3), gen_tcp(3) and gen_udp(3) manual pages in Kernel. Note that stream oriented
options such as packet are only relevant for SSL/TLS and not DTLS

ssl_option() =

{verify, verify_type()}

| {verify_fun, {fun(), term()}}

| {fail_if_no_peer_cert, boolean()}

| {depth, integer()}

| {cert, public_key:der_encoded()}

| {certfile, path()}

| {key, {'RSAPrivateKey'| 'DSAPrivateKey' | 'ECPrivateKey' |
'PrivateKeyInfo', public_key:der_encoded()} | #{algorithm := rsa | dss |
ecdsa, engine := crypto:engine_ref(), key_id := crypto:key_id(), password
=> crypto:password()}

| {keyfile, path()}

| {password, string()}

| {cacerts, [public_key:der_encoded()]}

| {cacertfile, path()}

| {dh, public_key:der_encoded()}

| {dhfile, path()}

| {ciphers, ciphers()}

| {user_lookup_fun, {fun(), term()}}, {psk_identity, string()},
{srp_identity, {string(), string()}}

| {reuse_sessions, boolean()}

ssl

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

| {reuse_session, fun()} {next_protocols_advertised, [binary()]}

| {client_preferred_next_protocols, {client | server, [binary()]} | {client
| server, [binary()], binary()}}

| {log_alert, boolean()}

| {server_name_indication, hostname() | disable}

| {sni_hosts, [{hostname(), [ssl_option()]}]}

| {sni_fun, SNIfun::fun()}

transport_option() =

{cb_info, {CallbackModule::atom(), DataTag::atom(), ClosedTag::atom(),
ErrTag:atom()}}

Defaults to {gen_tcp, tcp, tcp_closed, tcp_error} for TLS and {gen_udp, udp,
udp_closed, udp_error} for DTLS. Can be used to customize the transport layer. For TLS the
callback module must implement a reliable transport protocol, behave as gen_tcp, and have functions
corresponding to inet:setopts/2, inet:getopts/2, inet:peername/1, inet:sockname/1, and
inet:port/1. The callback gen_tcp is treated specially and calls inet directly. For DTLS this feature
must be considered exprimental.

CallbackModule =

atom()

DataTag =

atom()

Used in socket data message.

ClosedTag =

atom()

Used in socket close message.

verify_type() =

verify_none | verify_peer

path() =

string()

Represents a file path.

public_key:der_encoded() =

binary()

ASN.1 DER-encoded entity as an Erlang binary.

host() =

hostname() | ipaddress()

hostname() =

string() - DNS hostname

ip_address() =

{N1,N2,N3,N4} % IPv4 | {K1,K2,K3,K4,K5,K6,K7,K8} % IPv6

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

sslsocket() =

opaque()

protocol_version() =

ssl_tls_protocol() | dtls_protocol()

sslv3 | tlsv1 | 'tlsv1.1' | 'tlsv1.2'

dtls_protocol() =

'dtlsv1' | 'dtlsv1.2'

ciphers() =

= [ciphersuite()]

Tuples and string formats accepted by versions before ssl-8.2.4 will be converted for backwards compatibility

ciphersuite() =

#{key_exchange := key_exchange(), cipher := cipher(), mac := MAC::hash() |
aead, prf := PRF::hash() | default_prf}

key_exchange()=

rsa | dhe_dss | dhe_rsa | dh_anon | psk | dhe_psk | rsa_psk | srp_anon
| srp_dss | srp_rsa | ecdh_anon | ecdh_ecdsa | ecdhe_ecdsa | ecdh_rsa |
ecdhe_rsa

cipher() =

rc4_128 | des_cbc | '3des_ede_cbc' | aes_128_cbc | aes_256_cbc | aes_128_gcm
| aes_256_gcm | chacha20_poly1305

hash() =

md5 | sha | sha224 | sha256 | sha348 | sha512

prf_random() =

client_random | server_random

cipher_filters() =

[{key_exchange | cipher | mac | prf, algo_filter()}])

algo_filter() =

fun(key_exchange() | cipher() | hash() | aead | default_prf) -> true | false

srp_param_type() =

srp_1024 | srp_1536 | srp_2048 | srp_3072 | srp_4096 | srp_6144 | srp_8192

SNIfun::fun()

= fun(ServerName :: string()) -> [ssl_option()]

named_curve() =

sect571r1 | sect571k1 | secp521r1 | brainpoolP512r1 | sect409k1 | sect409r1
| brainpoolP384r1 | secp384r1 | sect283k1 | sect283r1 | brainpoolP256r1 |
secp256k1 | secp256r1 | sect239k1 | sect233k1 | sect233r1 | secp224k1 |
secp224r1 | sect193r1 | sect193r2 | secp192k1 | secp192r1 | sect163k1 |
sect163r1 | sect163r2 | secp160k1 | secp160r1 | secp160r2

ssl

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

TLS/DTLS OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT
The following options have the same meaning in the client and the server:

{protocol, tls | dtls}

Choose TLS or DTLS protocol for the transport layer security. Defaults to tls Introduced in OTP 20, DTLS
support is considered experimental in this release. DTLS over other transports than UDP are not yet supported.

{cert, public_key:der_encoded()}

The DER-encoded users certificate. If this option is supplied, it overrides option certfile.

{certfile, path()}

Path to a file containing the user certificate.

{key, {'RSAPrivateKey'| 'DSAPrivateKey' | 'ECPrivateKey' |'PrivateKeyInfo',
public_key:der_encoded()} | #{algorithm := rsa | dss | ecdsa,
engine := crypto:engine_ref(), key_id := crypto:key_id(), password =>
crypto:password()}

The DER-encoded user's private key or a map refering to a crypto engine and its key reference that optionally
can be password protected, seealso crypto:engine_load/4 and Crypto's Users Guide. If this option is supplied,
it overrides option keyfile.

{keyfile, path()}

Path to the file containing the user's private PEM-encoded key. As PEM-files can contain several entries, this
option defaults to the same file as given by option certfile.

{password, string()}

String containing the user's password. Only used if the private keyfile is password-protected.

{ciphers, ciphers()}

Supported cipher suites. The function cipher_suites/0 can be used to find all ciphers that are supported by
default. cipher_suites(all) can be called to find all available cipher suites. Pre-Shared Key (RFC 4279
and RFC 5487), Secure Remote Password (RFC 5054), RC4 cipher suites, and anonymous cipher suites only
work if explicitly enabled by this option; they are supported/enabled by the peer also. Anonymous cipher suites
are supported for testing purposes only and are not be used when security matters.

{eccs, [named_curve()]}

Allows to specify the order of preference for named curves and to restrict their usage when using a cipher suite
supporting them.

{secure_renegotiate, boolean()}

Specifies if to reject renegotiation attempt that does not live up to RFC 5746. By default
secure_renegotiate is set to true, that is, secure renegotiation is enforced. If set to false secure
renegotiation will still be used if possible, but it falls back to insecure renegotiation if the peer does not support
RFC 5746.

{depth, integer()}

Maximum number of non-self-issued intermediate certificates that can follow the peer certificate in a valid
certification path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can
be PEER, CA, ROOT-CA; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default value is 1.

{verify_fun, {Verifyfun :: fun(), InitialUserState :: term()}}

The verification fun is to be defined as follows:

href
href
href
href
href

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad_cert, Reason :: atom() | {revoked,
atom()}} |
 {extension, #'Extension'{}}, InitialUserState :: term()) ->
 {valid, UserState :: term()} | {valid_peer, UserState :: term()} |
 {fail, Reason :: term()} | {unknown, UserState :: term()}.

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application is encountered. It is also called when a certificate is considered valid by the path validation to allow
access to each certificate in the path to the user application. It differentiates between the peer certificate and the
CA certificates by using valid_peer or valid as second argument to the verification fun. See the public_key
User's Guide for definition of #'OTPCertificate'{} and #'Extension'{}.

• If the verify callback fun returns {fail, Reason}, the verification process is immediately stopped, an
alert is sent to the peer, and the TLS/DTLS handshake terminates.

• If the verify callback fun returns {valid, UserState}, the verification process continues.

• If the verify callback fun always returns {valid, UserState}, the TLS/DTLS handshake does not
terminate regarding verification failures and the connection is established.

• If called with an extension unknown to the user application, return value {unknown, UserState} is
to be used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.

Default option verify_fun in verify_peer mode:

{fun(_,{bad_cert, _} = Reason, _) ->
 {fail, Reason};
 (_,{extension, _}, UserState) ->
 {unknown, UserState};
 (_, valid, UserState) ->
 {valid, UserState};
 (_, valid_peer, UserState) ->
 {valid, UserState}
 end, []}

Default option verify_fun in mode verify_none:

{fun(_,{bad_cert, _}, UserState) ->
 {valid, UserState};
 (_,{extension, #'Extension'{critical = true}}, UserState) ->
 {valid, UserState};
 (_,{extension, _}, UserState) ->
 {unknown, UserState};
 (_, valid, UserState) ->
 {valid, UserState};
 (_, valid_peer, UserState) ->
 {valid, UserState}
 end, []}

The possible path validation errors are given on form {bad_cert, Reason} where Reason is:

unknown_ca

No trusted CA was found in the trusted store. The trusted CA is normally a so called ROOT CA, which is
a self-signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be
self-signed according to X-509) by using option partial_chain.

selfsigned_peer

The chain consisted only of one self-signed certificate.

ssl

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

PKIX X-509-path validation error

For possible reasons, see public_key:pkix_path_validation/3

{crl_check, boolean() | peer | best_effort }

Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls_validate/3) on all the certificates
during the path validation (public_key:pkix_path_validation/3) of the certificate chain. Defaults to false.

peer
check is only performed on the peer certificate.

best_effort
if certificate revocation status can not be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLs.

The CRLs will be fetched from a local or external cache. See ssl_crl_cache_api(3).

{crl_cache, {Module :: atom(), {DbHandle :: internal | term(), Args ::
list()}}}

Specify how to perform lookup and caching of certificate revocation lists. Module defaults to ssl_crl_cache with
DbHandle being internal and an empty argument list.

There are two implementations available:

ssl_crl_cache

This module maintains a cache of CRLs. CRLs can be added to the cache using the function
ssl_crl_cache:insert/1, and optionally automatically fetched through HTTP if the following argument is
specified:

{http, timeout()}

Enables fetching of CRLs specified as http URIs inX509 certificate extensions. Requires the OTP inets
application.

ssl_crl_hash_dir

This module makes use of a directory where CRLs are stored in files named by the hash of the issuer name.

The file names consist of eight hexadecimal digits followed by .rN, where N is an integer, e.g.
1a2b3c4d.r0. For the first version of the CRL, N starts at zero, and for each new version, N is incremented
by one. The OpenSSL utility c_rehash creates symlinks according to this pattern.

For a given hash value, this module finds all consecutive .r* files starting from zero, and those files taken
together make up the revocation list. CRL files whose nextUpdate fields are in the past, or that are issued
by a different CA that happens to have the same name hash, are excluded.

The following argument is required:

{dir, string()}

Specifies the directory in which the CRLs can be found.

max_handshake_size

Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks.
Defaults to 256*1024.

{partial_chain, fun(Chain::[DerCert]) -> {trusted_ca, DerCert} | unknown_ca }

Claim an intermediate CA in the chain as trusted. TLS then performs public_key:pkix_path_validation/3 with the
selected CA as trusted anchor and the rest of the chain.

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

{versions, [protocol_version()]}

TLS protocol versions supported by started clients and servers. This option overrides the application environment
option protocol_version and dtls_protocol_version. If the environment option is not set, it
defaults to all versions, except SSL-3.0, supported by the SSL application. See also ssl(6).

{hibernate_after, integer()|undefined}

When an integer-value is specified, TLS/DTLS-connection goes into hibernation after the specified number
of milliseconds of inactivity, thus reducing its memory footprint. When undefined is specified (this is the
default), the process never goes into hibernation.

{user_lookup_fun, {Lookupfun :: fun(), UserState :: term()}}

The lookup fun is to defined as follows:

fun(psk, PSKIdentity ::string(), UserState :: term()) ->
 {ok, SharedSecret :: binary()} | error;
fun(srp, Username :: string(), UserState :: term()) ->
 {ok, {SRPParams :: srp_param_type(), Salt :: binary(), DerivedKey :: binary()}} | error.

For Pre-Shared Key (PSK) cipher suites, the lookup fun is called by the client and server to determine the shared
secret. When called by the client, PSKIdentity is set to the hint presented by the server or to undefined. When
called by the server, PSKIdentity is the identity presented by the client.

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses
to generate its session keys. DerivedKey is to be derived according to RFC 2945 and RFC 5054:
crypto:sha([Salt, crypto:sha([Username, <<$:>>, Password])])

{padding_check, boolean()}

Affects TLS-1.0 connections only. If set to false, it disables the block cipher padding check to be able to
interoperate with legacy software.

Warning:

Using {padding_check, boolean()} makes TLS vulnerable to the Poodle attack.

{beast_mitigation, one_n_minus_one | zero_n | disabled}

Affects SSL-3.0 and TLS-1.0 connections only. Used to change the BEAST mitigation strategy to interoperate
with legacy software. Defaults to one_n_minus_one.

one_n_minus_one - Perform 1/n-1 BEAST mitigation.

zero_n - Perform 0/n BEAST mitigation.

disabled - Disable BEAST mitigation.

Warning:

Using {beast_mitigation, disabled} makes SSL or TLS vulnerable to the BEAST attack.

TLS/DTLS OPTION DESCRIPTIONS - CLIENT SIDE
The following options are client-specific or have a slightly different meaning in the client than in the server:

{verify, verify_type()}

In mode verify_none the default behavior is to allow all x509-path validation errors. See also option
verify_fun.

href
href

ssl

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

{reuse_sessions, boolean()}

Specifies if the client is to try to reuse sessions when possible.

{cacerts, [public_key:der_encoded()]}

The DER-encoded trusted certificates. If this option is supplied it overrides option cacertfile.

{cacertfile, path()}

Path to a file containing PEM-encoded CA certificates. The CA certificates are used during server authentication
and when building the client certificate chain.

{alpn_advertised_protocols, [binary()]}

The list of protocols supported by the client to be sent to the server to be used for an Application-Layer Protocol
Negotiation (ALPN). If the server supports ALPN then it will choose a protocol from this list; otherwise it will fail
the connection with a "no_application_protocol" alert. A server that does not support ALPN will ignore this value.

The list of protocols must not contain an empty binary.

The negotiated protocol can be retrieved using the negotiated_protocol/1 function.

{client_preferred_next_protocols, {Precedence :: server | client,
ClientPrefs :: [binary()]}}
{client_preferred_next_protocols, {Precedence :: server | client,
ClientPrefs :: [binary()], Default :: binary()}}

Indicates that the client is to try to perform Next Protocol Negotiation.

If precedence is server, the negotiated protocol is the first protocol to be shown on the server advertised list,
which is also on the client preference list.

If precedence is client, the negotiated protocol is the first protocol to be shown on the client preference list, which
is also on the server advertised list.

If the client does not support any of the server advertised protocols or the server does not advertise any protocols,
the client falls back to the first protocol in its list or to the default protocol (if a default is supplied). If the server
does not support Next Protocol Negotiation, the connection terminates if no default protocol is supplied.

{psk_identity, string()}

Specifies the identity the client presents to the server. The matching secret is found by calling
user_lookup_fun.

{srp_identity, {Username :: string(), Password :: string()}

Specifies the username and password to use to authenticate to the server.

{server_name_indication, HostName :: hostname()}

Specify the hostname to be used in TLS Server Name Indication extension. If not specified it will default to the
Host argument of connect/[3,4] unless it is of type inet:ipaddress().

The HostName will also be used in the hostname verification of the peer certificate using
public_key:pkix_verify_hostname/2.

{server_name_indication, disable}

Prevents the Server Name Indication extension from being sent and disables the hostname verification check
public_key:pkix_verify_hostname/2

{fallback, boolean()}

Send special cipher suite TLS_FALLBACK_SCSV to avoid undesired TLS version downgrade. Defaults to false

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 23

Warning:

Note this option is not needed in normal TLS usage and should not be used to implement new clients. But
legacy clients that retries connections in the following manner

ssl:connect(Host, Port, [...{versions, ['tlsv2', 'tlsv1.1', 'tlsv1',
'sslv3']}])

ssl:connect(Host, Port, [...{versions, [tlsv1.1', 'tlsv1', 'sslv3']},
{fallback, true}])

ssl:connect(Host, Port, [...{versions, ['tlsv1', 'sslv3']}, {fallback,
true}])

ssl:connect(Host, Port, [...{versions, ['sslv3']}, {fallback, true}])

may use it to avoid undesired TLS version downgrade. Note that TLS_FALLBACK_SCSV must also be
supported by the server for the prevention to work.

{signature_algs, [{hash(), ecdsa | rsa | dsa}]}

In addition to the algorithms negotiated by the cipher suite used for key exchange, payload encryption, message
authentication and pseudo random calculation, the TLS signature algorithm extension Section 7.4.1.4.1 in RFC
5246 may be used, from TLS 1.2, to negotiate which signature algorithm to use during the TLS handshake. If
no lower TLS versions than 1.2 are supported, the client will send a TLS signature algorithm extension with the
algorithms specified by this option. Defaults to

[
%% SHA2
{sha512, ecdsa},
{sha512, rsa},
{sha384, ecdsa},
{sha384, rsa},
{sha256, ecdsa},
{sha256, rsa},
{sha224, ecdsa},
{sha224, rsa},
%% SHA
{sha, ecdsa},
{sha, rsa},
{sha, dsa},
]

The algorithms should be in the preferred order. Selected signature algorithm can restrict which hash functions
that may be selected. Default support for {md5, rsa} removed in ssl-8.0

TLS/DTLS OPTION DESCRIPTIONS - SERVER SIDE
The following options are server-specific or have a slightly different meaning in the server than in the client:

{cacerts, [public_key:der_encoded()]}

The DER-encoded trusted certificates. If this option is supplied it overrides option cacertfile.

{cacertfile, path()}

Path to a file containing PEM-encoded CA certificates. The CA certificates are used to build the server certificate
chain and for client authentication. The CAs are also used in the list of acceptable client CAs passed to the
client when a certificate is requested. Can be omitted if there is no need to verify the client and if there are no
intermediate CAs for the server certificate.

href
href

ssl

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

{dh, public_key:der_encoded()}

The DER-encoded Diffie-Hellman parameters. If specified, it overrides option dhfile.

{dhfile, path()}

Path to a file containing PEM-encoded Diffie Hellman parameters to be used by the server if a cipher suite using
Diffie Hellman key exchange is negotiated. If not specified, default parameters are used.

{verify, verify_type()}

A server only does x509-path validation in mode verify_peer, as it then sends a certificate request to the
client (this message is not sent if the verify option is verify_none). You can then also want to specify option
fail_if_no_peer_cert.

{fail_if_no_peer_cert, boolean()}

Used together with {verify, verify_peer} by an TLS/DTLS server. If set to true, the server fails if the
client does not have a certificate to send, that is, sends an empty certificate. If set to false, it fails only if the
client sends an invalid certificate (an empty certificate is considered valid). Defaults to false.

{reuse_sessions, boolean()}

Specifies if the server is to agree to reuse sessions when requested by the clients. See also option
reuse_session.

{reuse_session, fun(SuggestedSessionId, PeerCert, Compression, CipherSuite) -
> boolean()}

Enables the TLS/DTLS server to have a local policy for deciding if a session is to be reused or not.
Meaningful only if reuse_sessions is set to true. SuggestedSessionId is a binary(), PeerCert
is a DER-encoded certificate, Compression is an enumeration integer, and CipherSuite is of type
ciphersuite().

{alpn_preferred_protocols, [binary()]}

Indicates the server will try to perform Application-Layer Protocol Negotiation (ALPN).

The list of protocols is in order of preference. The protocol negotiated will be the first in the list that matches
one of the protocols advertised by the client. If no protocol matches, the server will fail the connection with a
"no_application_protocol" alert.

The negotiated protocol can be retrieved using the negotiated_protocol/1 function.

{next_protocols_advertised, Protocols :: [binary()]}

List of protocols to send to the client if the client indicates that it supports the Next Protocol extension. The client
can select a protocol that is not on this list. The list of protocols must not contain an empty binary. If the server
negotiates a Next Protocol, it can be accessed using the negotiated_next_protocol/1 method.

{psk_identity, string()}

Specifies the server identity hint, which the server presents to the client.

{log_alert, boolean()}

If set to false, error reports are not displayed.

{honor_cipher_order, boolean()}

If set to true, use the server preference for cipher selection. If set to false (the default), use the client
preference.

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

{sni_hosts, [{hostname(), [ssl_option()]}]}

If the server receives a SNI (Server Name Indication) from the client matching a host listed in the sni_hosts
option, the specific options for that host will override previously specified options. The option sni_fun, and
sni_hosts are mutually exclusive.

{sni_fun, SNIfun::fun()}

If the server receives a SNI (Server Name Indication) from the client, the given function will be called to retrieve
[ssl_option()] for the indicated server. These options will be merged into predefined [ssl_option()].
The function should be defined as: fun(ServerName :: string()) -> [ssl_option()] and can
be specified as a fun or as named fun module:function/1 The option sni_fun, and sni_hosts are
mutually exclusive.

{client_renegotiation, boolean()}
In protocols that support client-initiated renegotiation, the cost of resources of such an operation is higher for
the server than the client. This can act as a vector for denial of service attacks. The SSL application already
takes measures to counter-act such attempts, but client-initiated renegotiation can be strictly disabled by setting
this option to false. The default value is true. Note that disabling renegotiation can result in long-lived
connections becoming unusable due to limits on the number of messages the underlying cipher suite can
encipher.

{honor_cipher_order, boolean()}
If true, use the server's preference for cipher selection. If false (the default), use the client's preference.

{honor_ecc_order, boolean()}
If true, use the server's preference for ECC curve selection. If false (the default), use the client's preference.

{signature_algs, [{hash(), ecdsa | rsa | dsa}]}

The algorithms specified by this option will be the ones accepted by the server in a signature algorithm negotiation,
introduced in TLS-1.2. The algorithms will also be offered to the client if a client certificate is requested. For
more details see the corresponding client option.

General
When an TLS/DTLS socket is in active mode (the default), data from the socket is delivered to the owner of the socket
in the form of messages:

• {ssl, Socket, Data}

• {ssl_closed, Socket}

• {ssl_error, Socket, Reason}

A Timeout argument specifies a time-out in milliseconds. The default value for argument Timeout is infinity.

Exports

append_cipher_suites(Deferred, Suites) -> ciphers()
Types:

Deferred = ciphers() | cipher_filters()

Suites = ciphers()

Make Deferred suites become the least preferred suites, that is put them at the end of the cipher suite list Suites
after removing them from Suites if present. Deferred may be a list of cipher suits or a list of filters in which case
the filters are use on Suites to extract the Deferred cipher list.

ssl

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

cipher_suites() ->
cipher_suites(Type) -> old_ciphers()
Types:

Type = erlang | openssl | all

Returns a list of supported cipher suites. This function will become deprecated in OTP 21, and replaced
by ssl:cipher-suites/2 cipher_suites() is equivalent to cipher_suites(erlang). Type openssl
is provided for backwards compatibility with the old SSL, which used OpenSSL. cipher_suites(all)
returns all available cipher suites. The cipher suites not present in cipher_suites(erlang) but included in
cipher_suites(all) are not used unless explicitly configured by the user.

cipher_suites(Supported, Version) -> ciphers()
Types:

Supported = default | all | anonymous

Version = protocol_version()

Returns all default or all supported (except anonymous), or all anonymous cipher suites for a TLS version

eccs() ->
eccs(protocol_version()) -> [named_curve()]
Returns a list of supported ECCs. eccs() is equivalent to calling eccs(Protocol) with all supported protocols
and then deduplicating the output.

clear_pem_cache() -> ok
PEM files, used by ssl API-functions, are cached. The cache is regularly checked to see if any cache entries should be
invalidated, however this function provides a way to unconditionally clear the whole cache.

connect(Socket, SslOptions) ->
connect(Socket, SslOptions, Timeout) -> {ok, TLSSocket} | {error, Reason}
Types:

Socket = socket()

SslOptions = [ssl_option()]

Timeout = integer() | infinity

TLSSocket = sslsocket()

Reason = term()

Upgrades a gen_tcp, or equivalent, connected socket to an TLS socket, that is, performs the client-side TLS
handshake.

Note:

If the option verify is set to verify_peer the option server_name_indication shall also be specified,
if it is not no Server Name Indication extension will be sent, and public_key:pkix_verify_hostname/2 will be called
with the IP-address of the connection as ReferenceID, which is proably not what you want.

connect(Host, Port, Options) ->
connect(Host, Port, Options, Timeout) -> {ok, SslSocket} | {error, Reason}
Types:

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

Host = host()

Port = integer()

Options = [option()]

Timeout = integer() | infinity

SslSocket = sslsocket()

Reason = term()

Opens an TLS/DTLS connection to Host, Port.

When the option verify is set to verify_peer the check public_key:pkix_verify_hostname/2 will be performed
in addition to the usual x509-path validation checks. If the check fails the error {bad_cert, hostname_check_failed}
will be propagated to the path validation fun verify_fun, where it is possible to do customized checks by using the
full possibilities of the public_key:pkix_verify_hostname/3 API. When the option server_name_indication is
provided, its value (the DNS name) will be used as ReferenceID to public_key:pkix_verify_hostname/2. When
no server_name_indication option is given, the Host argument will be used as Server Name Indication
extension. The Host argument will also be used for the public_key:pkix_verify_hostname/2 check and if the Host
argument is an inet:ip_address() the ReferenceID used for the check will be {ip, Host} otherwise
dns_id will be assumed with a fallback to ip if that fails.

Note:

According to good practices certificates should not use IP-addresses as "server names". It would be very surprising
if this happen outside a closed network.

close(SslSocket) -> ok | {error, Reason}
Types:

SslSocket = sslsocket()

Reason = term()

Closes an TLS/DTLS connection.

close(SslSocket, How) -> ok | {ok, port()} | {error, Reason}
Types:

SslSocket = sslsocket()

How = timeout() | {NewController::pid(), timeout()}

Reason = term()

Closes or downgrades an TLS connection. In the latter case the transport connection will be handed over to the
NewController process after receiving the TLS close alert from the peer. The returned transport socket will have
the following options set: [{active, false}, {packet, 0}, {mode, binary}]

controlling_process(SslSocket, NewOwner) -> ok | {error, Reason}
Types:

SslSocket = sslsocket()

NewOwner = pid()

Reason = term()

Assigns a new controlling process to the SSL socket. A controlling process is the owner of an SSL socket, and receives
all messages from the socket.

ssl

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

connection_information(SslSocket) -> {ok, Result} | {error, Reason}
Types:

Item = protocol | cipher_suite | sni_hostname | ecc | session_id | atom()

Meaningful atoms, not specified above, are the ssl option names.

Result = [{Item::atom(), Value::term()}]

Reason = term()

Returns the most relevant information about the connection, ssl options that are undefined will be filtered out.
Note that values that affect the security of the connection will only be returned if explicitly requested by
connection_information/2.

connection_information(SslSocket, Items) -> {ok, Result} | {error, Reason}
Types:

Items = [Item]

Item = protocol | cipher_suite | sni_hostname | ecc | session_id |
client_random | server_random | master_secret | atom()

Note that client_random, server_random and master_secret are values that affect the security of connection.
Meaningful atoms, not specified above, are the ssl option names.

Result = [{Item::atom(), Value::term()}]

Reason = term()

Returns the requested information items about the connection, if they are defined.

Note:

If only undefined options are requested the resulting list can be empty.

filter_cipher_suites(Suites, Filters) -> ciphers()
Types:

Suites = ciphers()

Filters = cipher_filters()

Removes cipher suites if any of the filter functions returns false for any part of the cipher suite. This function also
calls default filter functions to make sure the cipher suites are supported by crypto. If no filter function is supplied for
some part the default behaviour is fun(Algorithm) -> true.

format_error(Reason) -> string()
Types:

Reason = term()

Presents the error returned by an SSL function as a printable string.

getopts(Socket, OptionNames) -> {ok, [socketoption()]} | {error, Reason}
Types:

Socket = sslsocket()

OptionNames = [atom()]

Gets the values of the specified socket options.

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

getstat(Socket) -> {ok, OptionValues} | {error, inet:posix()}
getstat(Socket, OptionNames) -> {ok, OptionValues} | {error, inet:posix()}
Types:

Socket = sslsocket()

OptionNames = [atom()]

OptionValues = [{inet:stat_option(), integer()}]

Gets one or more statistic options for the underlying TCP socket.

See inet:getstat/2 for statistic options description.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types:

Port = integer()

Options = options()

ListenSocket = sslsocket()

Creates an SSL listen socket.

negotiated_protocol(Socket) -> {ok, Protocol} | {error,
protocol_not_negotiated}
Types:

Socket = sslsocket()

Protocol = binary()

Returns the protocol negotiated through ALPN or NPN extensions.

peercert(Socket) -> {ok, Cert} | {error, Reason}
Types:

Socket = sslsocket()

Cert = binary()

The peer certificate is returned as a DER-encoded binary. The certificate can be decoded with
public_key:pkix_decode_cert/2.

peername(Socket) -> {ok, {Address, Port}} | {error, Reason}
Types:

Socket = sslsocket()

Address = ipaddress()

Port = integer()

Returns the address and port number of the peer.

prepend_cipher_suites(Preferred, Suites) -> ciphers()
Types:

Preferred = ciphers() | cipher_filters()

Suites = ciphers()

ssl

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

Make Preferred suites become the most preferred suites that is put them at the head of the cipher suite list Suites
after removing them from Suites if present. Preferred may be a list of cipher suits or a list of filters in which
case the filters are use on Suites to extract the preferred cipher list.

prf(Socket, Secret, Label, Seed, WantedLength) -> {ok, binary()} | {error,
reason()}
Types:

Socket = sslsocket()

Secret = binary() | master_secret

Label = binary()

Seed = [binary() | prf_random()]

WantedLength = non_neg_integer()

Uses the Pseudo-Random Function (PRF) of a TLS session to generate extra key material. It either takes user-generated
values for Secret and Seed or atoms directing it to use a specific value from the session security parameters.

Can only be used with TLS/DTLS connections; {error, undefined} is returned for SSLv3 connections.

recv(Socket, Length) ->
recv(Socket, Length, Timeout) -> {ok, Data} | {error, Reason}
Types:

Socket = sslsocket()

Length = integer()

Timeout = integer()

Data = [char()] | binary()

Receives a packet from a socket in passive mode. A closed socket is indicated by return value {error, closed}.

Argument Length is meaningful only when the socket is in mode raw and denotes the number of bytes to read. If
Length = 0, all available bytes are returned. If Length > 0, exactly Length bytes are returned, or an error; possibly
discarding less than Length bytes of data when the socket gets closed from the other side.

Optional argument Timeout specifies a time-out in milliseconds. The default value is infinity.

renegotiate(Socket) -> ok | {error, Reason}
Types:

Socket = sslsocket()

Initiates a new handshake. A notable return value is {error, renegotiation_rejected} indicating that the
peer refused to go through with the renegotiation, but the connection is still active using the previously negotiated
session.

send(Socket, Data) -> ok | {error, Reason}
Types:

Socket = sslsocket()

Data = iodata()

Writes Data to Socket.

A notable return value is {error, closed} indicating that the socket is closed.

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31

setopts(Socket, Options) -> ok | {error, Reason}
Types:

Socket = sslsocket()

Options = [socketoption]()

Sets options according to Options for socket Socket.

shutdown(Socket, How) -> ok | {error, Reason}
Types:

Socket = sslsocket()

How = read | write | read_write

Reason = reason()

Immediately closes a socket in one or two directions.

How == write means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, option {exit_on_close, false}
is useful.

ssl_accept(Socket) ->
ssl_accept(Socket, Timeout) -> ok | {error, Reason}
Types:

Socket = sslsocket()

Timeout = integer()

Reason = term()

Performs the SSL/TLS/DTLS server-side handshake.

Socket is a socket as returned by ssl:transport_accept/[1,2]

ssl_accept(Socket, SslOptions) ->
ssl_accept(Socket, SslOptions, Timeout) -> {ok, Socket} | ok | {error,
Reason}
Types:

Socket = socket() | sslsocket()

SslOptions = [ssl_option()]

Timeout = integer()

Reason = term()

If Socket is a socket(): upgrades a gen_tcp, or equivalent, socket to an SSL socket, that is, performs the SSL/
TLS server-side handshake and returns the SSL socket.

Warning:

The listen socket is to be in mode {active, false} before telling the client that the server is ready to upgrade
by calling this function, else the upgrade succeeds or does not succeed depending on timing.

If Socket is an sslsocket(): provides extra SSL/TLS/DTLS options to those specified in ssl:listen/2 and then
performs the SSL/TLS/DTLS handshake.

ssl

32 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

sockname(Socket) -> {ok, {Address, Port}} | {error, Reason}
Types:

Socket = sslsocket()

Address = ipaddress()

Port = integer()

Returns the local address and port number of socket Socket.

start() ->
start(Type) -> ok | {error, Reason}
Types:

Type = permanent | transient | temporary

Starts the SSL application. Default type is temporary.

stop() -> ok
Stops the SSL application.

transport_accept(ListenSocket) ->
transport_accept(ListenSocket, Timeout) -> {ok, NewSocket} | {error, Reason}
Types:

ListenSocket = NewSocket = sslsocket()

Timeout = integer()

Reason = reason()

Accepts an incoming connection request on a listen socket. ListenSocket must be a socket returned from
ssl:listen/2. The socket returned is to be passed to ssl:ssl_accept[2,3] to complete handshaking, that is, establishing
the SSL/TLS/DTLS connection.

Warning:

The socket returned can only be used with ssl:ssl_accept[2,3]. No traffic can be sent or received before that call.

The accepted socket inherits the options set for ListenSocket in ssl:listen/2.

The default value for Timeout is infinity. If Timeout is specified and no connection is accepted within the
given time, {error, timeout} is returned.

versions() -> [versions_info()]
Types:

versions_info() = {app_vsn, string()} | {supported | available,
[ssl_tls_protocol()]} | {supported_dtls | available_dtls,
[dtls_protocol()]}

Returns version information relevant for the SSL application.

app_vsn
The application version of the SSL application.

supported
SSL/TLS versions supported by default. Overridden by a version option on connect/[2,3,4], listen/2, and
ssl_accept/[1,2,3]. For the negotiated SSL/TLS version, see ssl:connection_information/1 .

ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33

supported_dtls
DTLS versions supported by default. Overridden by a version option on connect/[2,3,4], listen/2, and
ssl_accept/[1,2,3]. For the negotiated DTLS version, see ssl:connection_information/1 .

available
All SSL/TLS versions supported by the SSL application. TLS 1.2 requires sufficient support from the Crypto
application.

available_dtls
All DTLS versions supported by the SSL application. DTLS 1.2 requires sufficient support from the Crypto
application.

SEE ALSO
inet(3) and gen_tcp(3) gen_udp(3)

ssl_crl_cache

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl_crl_cache
Erlang module

Implements an internal CRL (Certificate Revocation List) cache. In addition to implementing the ssl_crl_cache_api
behaviour the following functions are available.

Exports

delete(Entries) -> ok | {error, Reason}
Types:

Entries = uri_string:uri_string() | {file, string()} | {der, [
public_key:der_encoded()]}

Reason = term()

Delete CRLs from the ssl applications local cache.

insert(CRLSrc) -> ok | {error, Reason}
insert(URI, CRLSrc) -> ok | {error, Reason}
Types:

CRLSrc = {file, string()} | {der, [public_key:der_encoded()]}

URI = uri_string:uri_string()

Reason = term()

Insert CRLs into the ssl applications local cache.

ssl_crl_cache_api

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 35

ssl_crl_cache_api
Erlang module

When SSL/TLS performs certificate path validation according to RFC 5280 it should also perform CRL validation
checks. To enable the CRL checks the application needs access to CRLs. A database of CRLs can be set up in many
different ways. This module provides the behavior of the API needed to integrate an arbitrary CRL cache with the
erlang ssl application. It is also used by the application itself to provide a simple default implementation of a CRL
cache.

DATA TYPES
The following data types are used in the functions below:

cache_ref() =
opaque()

dist_point() =

#'DistributionPoint'{} see X509 certificates records

Exports

fresh_crl(DistributionPoint, CRL) -> FreshCRL
Types:

DistributionPoint = dist_point()

CRL = [public_key:der_encoded()]

FreshCRL = [public_key:der_encoded()]

fun fresh_crl/2 will be used as input option update_crl to public_key:pkix_crls_validate/3

lookup(DistributionPoint, Issuer, DbHandle) -> not_available | CRLs
lookup(DistributionPoint, DbHandle) -> not_available | CRLs
Types:

DistributionPoint = dist_point()

Issuer = public_key:issuer_name()

DbHandle = cache_ref()

CRLs = [public_key:der_encoded()]

Lookup the CRLs belonging to the distribution point Distributionpoint. This function may choose to only
look in the cache or to follow distribution point links depending on how the cache is administrated.

The Issuer argument contains the issuer name of the certificate to be checked. Normally the returned CRL should
be issued by this issuer, except if the cRLIssuer field of DistributionPoint has a value, in which case that
value should be used instead.

In an earlier version of this API, the lookup function received two arguments, omitting Issuer. For compatibility,
this is still supported: if there is no lookup/3 function in the callback module, lookup/2 is called instead.

select(Issuer, DbHandle) -> CRLs
Types:

Issuer = public_key:issuer_name()

href

ssl_crl_cache_api

36 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

DbHandle = cache_ref()

Select the CRLs in the cache that are issued by Issuer

ssl_session_cache_api

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 37

ssl_session_cache_api
Erlang module

Defines the API for the TLS session cache so that the data storage scheme can be replaced by defining a new callback
module implementing this API.

DATA TYPES
The following data types are used in the functions for ssl_session_cache_api:

cache_ref() =

opaque()

key() =

{partialkey(), session_id()}

partialkey() =

opaque()

session_id() =

binary()

session() =

opaque()

Exports

delete(Cache, Key) -> _
Types:

Cache = cache_ref()

Key = key()

Deletes a cache entry. Is only called from the cache handling process.

foldl(Fun, Acc0, Cache) -> Acc
Types:

Calls Fun(Elem, AccIn) on successive elements of the cache, starting with AccIn == Acc0. Fun/2 must
return a new accumulator, which is passed to the next call. The function returns the final value of the accumulator.
Acc0 is returned if the cache is empty.

init(Args) -> opaque()
Types:

Args = proplists:proplist()

Includes property {role, client | server}. Currently this is the only predefined property, there can also be
user-defined properties. See also application environment variable session_cb_init_args.

Performs possible initializations of the cache and returns a reference to it that is used as parameter to the other API
functions. Is called by the cache handling processes init function, hence putting the same requirements on it as a

ssl_session_cache_api

38 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

normal process init function. This function is called twice when starting the SSL application, once with the role
client and once with the role server, as the SSL application must be prepared to take on both roles.

lookup(Cache, Key) -> Entry
Types:

Cache = cache_ref()

Key = key()

Entry = session() | undefined

Looks up a cache entry. Is to be callable from any process.

select_session(Cache, PartialKey) -> [session()]
Types:

Cache = cache_ref()

PartialKey = partialkey()

Session = session()

Selects sessions that can be reused. Is to be callable from any process.

size(Cache) -> integer()
Types:

Cache = cache_ref()

Returns the number of sessions in the cache. If size exceeds the maximum number of sessions, the current cache entries
will be invalidated regardless of their remaining lifetime. Is to be callable from any process.

terminate(Cache) -> _
Types:

Cache = term() - as returned by init/0

Takes care of possible cleanup that is needed when the cache handling process terminates.

update(Cache, Key, Session) -> _
Types:

Cache = cache_ref()

Key = key()

Session = session()

Caches a new session or updates an already cached one. Is only called from the cache handling process.

	Secure Socket Layer
	SSL User's Guide
	Introduction
	Purpose
	Prerequisites

	TLS/DTLS and TLS Predecessor, SSL
	Security Overview
	Data Privacy and Integrity
	Digital Certificates
	Peer Authentication
	TLS Sessions

	Using SSL application API
	Setting up Connections
	Minimal Example
	Upgrade Example - TLS only

	Customizing cipher suits
	Using an Engine Stored Key

	Using TLS for Erlang Distribution
	Building Boot Scripts Including the SSL Application
	Specifying Distribution Module for net_kernel
	Specifying SSL/TLS Options
	Specifying SSL/TLS Options (Legacy)
	Setting up Environment to Always Use SSL/TLS (Legacy)
	Using SSL/TLS distribution over IPv6

	Reference Manual
	ssl
	ssl
	append_cipher_suites/2
	cipher_suites/0
	cipher_suites/1
	cipher_suites/2
	eccs/0
	eccs/1
	clear_pem_cache/0
	connect/2
	connect/3
	connect/3
	connect/4
	close/1
	close/2
	controlling_process/2
	connection_information/1
	connection_information/2
	filter_cipher_suites/2
	format_error/1
	getopts/2
	getstat/1
	getstat/2
	listen/2
	negotiated_protocol/1
	peercert/1
	peername/1
	prepend_cipher_suites/2
	prf/5
	recv/2
	recv/3
	renegotiate/1
	send/2
	setopts/2
	shutdown/2
	ssl_accept/1
	ssl_accept/2
	ssl_accept/2
	ssl_accept/3
	sockname/1
	start/0
	start/1
	stop/0
	transport_accept/1
	transport_accept/2
	versions/0

	ssl_crl_cache
	delete/1
	insert/1
	insert/2

	ssl_crl_cache_api
	fresh_crl/2
	lookup/3
	lookup/2
	select/2

	ssl_session_cache_api
	delete/2
	foldl/3
	init/1
	lookup/2
	select_session/2
	size/1
	terminate/1
	update/3

