ERLANG

orber

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.
orber 3.8.4

March 26, 2018

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: orber | 1

1.1 The Orber Application

1 Orber User's Guide

The Orber application is an Erlang implementation of a CORBA Object Request Broker.

1.1 The Orber Application

1.1.1 Content Overview
The Orber documentation is divided into three sections:

* PART ONE - The User's Guide
Description of the Orber Application including IDL-to-Erlang language mapping, services and a small tutorial
demonstrating the devel opment of asimple service.

* PART TWO - Release Notes
A concise history of Orber.

» PART THREE - The Reference Manual
A quick reference guide, including a brief description, to al the functions available in Orber.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

e ORB kernel and 110P support

» Interface Repository

e |DL to Erlang mapping

e CosNaming Service

e Resolving initia reference from Java or C++
e Tutoria - creating asimple service

* CORBA Exceptions

e Interceptors

e OrberWeb

e Debugging

ORB Kernel and IIOP Support

The ORB kernel which has 110P support will allow the creation of persistent server objects in Erlang. These objects
can also be accessed via Erlang and Java environments. For the moment a Java enabled ORB is needed to generate
Javafrom IDL to use Java server objects (this has been tested using OrbixWeb).

Interface Repository

The IFR is an interface repository used for some type-checking when coding/decoding [1OP. The IFR is capable of
storing all interfaces and declarations of OMG IDL.

IDL to Erlang Mapping

The OMG IDL mapping for Erlang, which is necessary to access the functionality of Orber, is described, The
mapping structure is included as the basic and the constructed OMG IDL types references, invocations and Erlang
characteristics. An example is aso provided.

2 | Ericsson AB. All Rights Reserved.: orber

1.2 Introduction to Orber

CosNaming Service

Orber contains a CosNaming compliant service.

Resolving Initial References from Java or C++
A couple of classes are added to Orber to simplify initial reference access from Javaor C++.

Resolving initial reference from Java
A class with only one method which returns an Interoperable Object Referenceon the external string format to the
INIT object (see "Interoperable Naming Service" specification).

Resolving initial reference from C++
A class (and header file) with only one method which returns an IOR on the external string format to the INIT object
(see"Interoperable Naming Service" specification).

Orber Stub/Skeleton
An example which describes the API and behavior of Orber stubs and skeletons.

CORBA Exceptions

A listing of all system exceptions supported by Orber and how one should handle them. This chapter also describe
how to generate user defined exceptions.

Interceptors

Descibes how to implement and activate interceptors.

OrberWeb
Offers the possibility to administrate and supervise Orber viaa GUI.
Debugging

Describes how to use different tools when debugging and/or developing new applications using Orber. Also includes
aFAQ, which deal with the most common mistakes when using Orber.

1.2 Introduction to Orber

1.2.1 Overview

The Orber application isa CORBA compliant Object Request Brokers (ORB), which provides CORBA functionality
in an Erlang environment. Essentially, the ORB channels communication or transactions between nodes in a
heterogeneous environment.

Common Object Request Broker Architecture is a common communication standard developed by the OMG
(Object Management Group)(Common Object Request Broker Architecture) provides an interface definition language
allowing efficient system integration and also supplies standard specifications for some services.

The Orber application contains the following parts:

e ORB kernel and 110P support

e Interface Repository

* Interface Definition Language Mapping for Erlang
e CosNaming Service

Benefits

Orber provides CORBA functionality in an Erlang environment that enables:

Ericsson AB. All Rights Reserved.: orber | 3

1.2 Introduction to Orber

« Platform interoperability and transparency

Orber enables communication between OTP applications or Erlang environment applications and other platforms;
for example, Windows NT, Solaris etc, allowing platform transparency. This is especialy helpful in situations
wherethere are many userswith different platforms. For example, booking airlineticketswould requirethe airline
database and hundreds of travel agents (who may not have the same platform) to book seats on flights.

» Application level inter operability and transparency
As Orber is a CORBA compliant application, its purpose is to provide interoperability and transparency on the
application level. Orber simplifies the distributed system software by defining the environment as objects, which
in effect, views everything asidentical regardless of programming languages.
Previously, time-consuming programming was required to facilitate communication between different languages.
However, with CORBA compliant Orber the Application Programmer is relieved of this task. This makes
communication on an application level relatively transparent to the user.

Purpose and Dependencies
The system architecture and OTP dependencies of Orber are illustrated in figure 1 below:

Crber
application level
Mnesia
F emel)
eI ot ent
: level
Eirlanz Fun Time System (ERTS)

Figure 2.1: Figure 1: Orber Dependencies and Structure.

Orber is dependent on Mnesia (see the Mnesia documentation) - an Erlang database management application used to
store object information.

Although Orber does not have a run-time application dependency to IC (an Interface Definition Language - IDL is
the OM G specified interface definition language, used to definethe CORBA aobject interfaces.compiler for Erlang),
it is necessary when building services and applications. See the |C documentation for further details.

4 | Ericsson AB. All Rights Reserved.: orber

1.3 The Orber Application

Eilang Mode |

Figure 2.2: Figure 2: ORB interface between Java and Erlang Environment Nodes.

This simplified illustration in figure 2 demonstrates how Orber can facilitate communication in a heterogeneous
environment. The Erlang Nodesrunning OT P and the other Node running applicationswritten in Javacan communicate
via an Object Request Broker - ORB open software bus architecture specified by the OMG which allows object
components to communicate in a heterogeneous environment.(Object Request Broker). Using Orber means that
CORBA functions can be used to achieve this communication.

For example, if one of the above nodes requests an object, it does not need to know if that object is located on the
same, or different, Erlang or Java nodes. The ORB will channel the information creating platform and application
transparency for the user.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming and CORBA (Common Object Request Broker Architecture).

Recommended reading includes Open Telecom Platform Documentation Set and Concurrent Programming in
Erlang.

1.3 The Orber Application
1.3.1 ORB Kernel and IIOP

Thischapter givesabrief overview of the ORB and its relation to objectsin a distributed environment and the usage of
Domainsin Orber. Also Internet-Inter ORB Protocol (Internet-Inter ORB Protocol) is discussed and how this protocol
facilitates communication between ORBs to allow the accessory of persistent server objectsin Erlang.

Ericsson AB. All Rights Reserved.: orber | 5

1.3 The Orber Application

1.3.2 The Object Request Broker (ORB)

An ORB kernel can be best described as the middle-ware, which creates relationships between clients and servers,
but is defined by its interfaces. This allows transparency for the user, as they do not have to be aware of where the
requested object is located. Thus, the programmer can work with any other platform provided that an IDL mapping
and interfaces exist.

The IDL mapping which is described in a later chapter is the trandator between other platforms, and languages.
However, it is the ORB, which provides objects with a structure by which they can communicate with other objects.

ORBsintercept and direct messages from one object, pass this message using I110OP to another ORB, which then directs
the message to the indicated object.

An ORB is the base on which interfaces, communication stubs and mapping can be built to enable communication
between objects. Orber uses A domain allows a more efficient communication protocol to be used between objects
not on the same node without the need of an ORBto group objects of different nodes

How the ORB provides communication is shown very simply in figure 1 below:

CLIENT SHRVER
(Obiject) (Object)

I
mi
1 Stubg:
Object Request Broker (ORB)

- - -3 messace path

Figure 3.1: Figure 1: How the Object Request Broker works.

6 | Ericsson AB. All Rights Reserved.: orber

1.3 The Orber Application

The domain in Orber gives an extra aspect to the distributed object environment as each domain has one ORB, but
it is distributed over a number of object in different nodes. The domain binds objects on nodes more closely than
distributed objects in different domains. The advantage of a domain is that a faster communication exists between
nodes and objects of the same domain. An internal communication protocol (other than 110P) allows a more efficient
communication between these objects.

Unlike objects, domains can only have one name so that no communication ambiguities exist between domains.

1.3.3 Internet Inter-Object Protocol (IIOP)

I1OP is acommunication protocol developed by the OMG to facilitate communication in adistributed object-oriented
environment.

Figure 2 below demonstrates how |10OP works between objects:

domain (x) domain (v)

Cphfectl

domain (z)
Figure 3.2: Figure 2: IIOP communication between domains and objects.

Within the Orber domains the objects communicate without using the [1OP. However, the user is unaware of the
difference in protocols, as this difference is not visible.

Ericsson AB. All Rights Reserved.: orber | 7

1.4 Interface Repository

1.4 Interface Repository

1.4.1 Interface Repository(IFR)

The IFR is an interface repository built on the Mnesia application. Orber uses the IFR for some type-checking when
coding/decoding I1OP. The IFR is capable of storing al interfaces and declarations of OMG IDL.

The interface repository is mainly used for dynamical interfaces, and as none are currently supported this function is
only really used for retrieving information about interfaces.

Functions relating to the manipulation of the IFR including, initialization of the IFR, aswell as, locating, creating and
destroying initial references are detailed further in the Manual Pages.

1.5 Installing Orber

1.5.1 Installation Process

This chapter describes how to install Orber in an Erlang Environment.

Preparation
To begin with, you must decide if you want to run Orber as a

* Singlenode (non-distributed) - al communication with other Orber instances and ORB's supplied by other
vendors use the OMG GIOP protocol.

e Multi node (distributed) - all Orber nodes, within the same donai n, communicate viathe Erlang distribution
protocol. For all other Orber instances, i.e. not part of the same donai n, and ORB's supplied by other vendors,
the OMG GIOP protocol is used.

Which approach to useis highly implementation specific, but afew things you should consider:

» All nodes within an Orber domain should have the same security level.
» | the capacity is greater than load (volume of traffic) a single-node Orber might be a good solution.

* Insome cases the distributed system architecture requires a single-node is the structure of the ORB or ORBs as
defined during the install processis called the "installation"..

e A multi-node Orber makes it possible to load balance and create a more fault tolerant system. The Objects can
also have auniform view if you use distributed Mnesia tables.

* Sincethe GIOP protocol creates alarger overhead than the Erlang distribution protocol, the performance
will be better when communicating with Objects within the same Orber domain compared with inter ORB
communication (GIOP).

You aso have to decide if you want Orber to store internal data using di sc_copi es and/or r am copi es.
Which storage type you should depends if/lhow you intend to use Mnesia in your application. If you intend to use
di sc_copi es you must start with creating a Mnesia schema, which contain information about the location of the
Erlang nodes where Orber is planned to be run. For more background information, see the Mnesia documentation.

In some casesit is absolutely necessary to change the default configuration of Orber. For example, if two Orber-ORB's
shall be able to communicate via GIOP, they must have aunique domai n domain. Consult the configuration settings
section. If you encounter any problems; see the chapter about Debugging in this User's Guide.

Jump Start Orber

The easiest way to start Orber isto use or ber : j unp_st art (Port), which start a single-node ORB with (most
likely) a unique domain (i.e. "I1P-number:Port"). This function may only be used during development and testing.
For any other situation, install and start Orber as described in the following sections. The listen port, i.e. iiop_port
configuration parameter, is set to the supplied Port.

8 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

How Orber is configured when using or ber : j unp_st art (Port) may change at any time without warning.
Hence, this operation must not be used in systems delivered to a customer.

Install Single Node Orber

Since asingle node Orber communicate viathe OMG GIOP protocol it isnot necessary to start the Erlang distribution
(i.e.using - nanme/ - snane).

If weuser am copi es thereisno need for creating adisk based schema. Simply use:

erl> mnesia:start().

erl> corba:orb init([{domain, "MyRAMSingleNodeORB"}]).

erl> orber:install([node()], [{ifr storage type, ram copies}]).
erl> orber:start().

If youinstallation requiresdi sc_copi es you must begin with creating aMnesia schema. Otherwise, theinstallation
issimilar to aRAM installation:

erl> mnesia:create schema([node()]).

erl> mnesia:start().

erl> corba:orb init([{domain, "MyDiskSingleNodeORB"}]).

erl> orber:install([node()], [{ifr storage type, disc copies},
{nameservice storage type, disc copies}]).

erl> orber:start().

You can ill choose to store the IFR data as ram_copies, but then the data must be re-installed (i.e. invoke
orber:install/2) if the node is restarted. Hence, since the IFR data is rather static you should use
di sc_copi es. For moreinformation seethe or ber section in the reference manual.

If you do not need to change Orber's configuration you can skip orb_init/1. But, you should at least set the [1OP
timeout parameters.

Install RAM Based Multi Node Orber

Within adomain Orber uses the Erlang distribution protocol. Hence, you must start it first by, for example, using:
hostA> erl -sname nodeA

In this example, we assume that we want to use two nodes; node A and nodeB. Since Mnesiamust know which other
nodes should a part of the distribution we either need to add the Mnesia configuration parameter ext r a_db_nodes
or use mesi a: change_confi g/ 2. To begin with, Mnesia must be started on all nodes before we can install
Orber:

nodeA@hostA> mnesia:start().
nodeAghostA> mnesia:change config(extra db nodes,
[nodeA@hostA, nodeB@hostB]).

After that the above have been repeated on nodeB we must first make sure that both nodes will use the same domain
name, then we can install Orber:
nodeAghostA> corba:orb _init([{domain, "MyRAMMultiNodeORB"}1).
nodeA@hostA> orber:install([nodeA@hostA, nodeB@hostB],
[{ifr storage type, ram copies}]).
nodeA@hostA> orber:start().

Notethat youcanonly invokeor ber : i nst al | / 1/ 2 on oneof the nodes. Now we can start Orber on the other node:

Ericsson AB. All Rights Reserved.: orber | 9

1.5 Installing Orber

nodeB@hostB> corba:orb _init([{domain, "MyRAMMultiNodeORB"}]).
nodeB@hostB> orber:start().

Install Disk Based Multi Node Orber

Asfor RAM based multi-node Orber installations, the Erlang distribution must be started (e.g. erl -sname nodeA). The
major differenceisthat when it is disk based a Mnesia schema must be created:

nodeA@hostA> mnesia:create schema([nodeA@hostA, nodeB@hostB]).
nodeA@hostA> mnesia:start().

In this example, we assume that we want to use two nodes;, nodeA and nodeB. Since it is not possible to create
a schema on more than one node. Hence, al we have to do is to start Mnesia (i.e. invoke nmesi a: start ()) on
nodeB.

After Mnesia have been started on all nodes, you must confirm that all nodes have the same domain name, then Orber
isready to beinstalled:

nodeA@hostA> corba:orb _init([{domain, "MyDiskMultiNodeORB"}]).
nodeA@hostA> orber:install([nodeA@hostA, nodeB@hostB],

[{ifr _storage type, disc_copies}]).
nodeA@hostA> orber:start().

Notethat youcanonly invokeor ber : i nst al | / 1/ 2 on oneof thenodes. Now we can start Orber on the other node:

nodeB@hostB> corba:orb init([{domain, "MyDiskMultiNodeORB"}1).
nodeB@hostB> orber:start().

1.5.2 Configuration

Itisessential that one configure Orber properly, to avoid, for example, malicious attacks and automatically terminate
I1OP connections no longer in use. An easy way to extract information about Orber's configuration parametersis to
invoke the operation orber:info/1/2. Orber offer the following configuration parameters:

Key Range Default
domain string() "ORBER"
iiop_port integer() >=0 4001
nat_iiop_port i[?'gﬁ?;ga(i)r!tg);?l)}i]r}lteger(), Thesameasi i op_port
iiop_out_ports 0 | {integer(),integer()} 0
iiop_out_ports_attempts integer() >0 1
iiop_out_ports_random true | false fase
iiop_max_fragments integer() > 0 | infinity infinity
iiop_max_in_requests integer() > 0 | infinity infinity
iiop_max_in_connections integer() >0 infinity
iiop_backlog integer() >0 5

10 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

iiop_packet_size integer() > 0 | infinity infinity

ip_address string() | { multiple, [string()]} All interfaces

ip_address |ocal string() Defined by the underlying system
nat_ip_address {Sﬁggg(,)sltiir:;(l)t,i I:[)Etr[iang(r)]?g]r%nlg()}]} Thesameasi p_addr ess
objectkeys gc time integer() > O | infinity infinity

giop_version {1,0} |{1,1} |{1,2} {1,1}
iiop_setup_connection_timeout integer() > 0 | infinity infinity
iiop_connection_timeout integer() > O | infinity infinity
iiop_in_connection_timeout integer() > 0 | infinity infinity

iiop_out_keepalive true | false fase

iiop_in_keepalive true | false fase

iiop_timeout integer() > 0 | infinity infinity

interceptors {native, [atom()]} -

local_interceptors {native, [atom()]} -

orbl nitRef [string()] | undefined undefined
orbDefaultInitRef string() | undefined undefined
orber_debug_level 0-10 0

flags integer() >=0 0
e |

secure no | ss no

ssl_generation 2|3 2

iiop_sd_port integer() >=0 4002
iiop_ssl_accept_timeout integer() > 0 | infinity infinity

iiop_ss_backlog integer() >0 5

iiop_sd_ip address local string() Defined by the underlying system

Ericsson AB. All Rights Reserved.: orber | 11

1.5 Installing Orber

" integer() > 0 | {local, integer(), .
nat_iiop_ssl_port : . Thesameasi i op_ssl _port
OSSP [{integer(), integer(}]} P_S51-P

ssl_sarver_options list(See_theSS_ application for valid
options.

«l_client_options list() See_theSS_ application for valid
options.

iiop_sd_out_keepalive true | false fase

iiop_ss_in_keepalive true | false fase

Table 5.1: Orber Configuration Parameters

Commentson thetable'Orber Configuration Parameters':

domain
Since Orber domains, they are supposed to communicate via [lOP, MUST have unigque names, communication
will fail if two domains have the same name. The domain name MAY NOT contain "G (i.e.\ 007).

iiop_port
If set to O the OS will pick any vacant port.
Note:On aUNIX system it is preferable to have allOP port higher than 1023, since it is hot recommended to
run Erlang as aroot user.

nat_iiop_port
Thevalueiseither aninteger or {| ocal , Def aul t NATPort, [{Port, NATPort}]}.Seeaso
Firewall Configuration.

iiop_out_ports
When set to 0 any available port will be used. If arange is specified, Orber will only use the local ports
within the interval when trying to connect to another ORB (Orber acts as aclient ORB). If all portsarein use
communication will fail. Hence, it is absolutely necessary toseti i op_connecti on_ti meout aswell.
Otherwise, connections no longer in use will block further communication. If one use, for example, er | -
orber iiop_out_ports "{5000, 5020}", Orber will only use port 5000 to 5020 when connecting. If
communicating via SSL, make sure you use aversion that supportsthelocal { port, Port} option. Seeaso
Firewall Configuration.

iiop_out_ports random
Requiresthati i op_out _port s define aport range. If that is the case Orber will select aport randomly from
that sequence.

iiop_out_ports attempts
Requiresthati i op_out _port s define aport range. If so Orber will accept a number of timeouts, defined by
this parameter, when trying to connect to another ORB.

iiop_max_fragments
Limits the number of I10OP fragments allowed per request.

iiop_max_in_requests
Limits the number of concurrent incoming requests per incoming connection.

iiop_max_in_connections
Limits the number of concurrent incoming connections.

iiop_backlog
Defines the maximum length the queue of pending incoming connections may grow to.

iiop_packet_size
Defines the maximum size of incoming requests. If this limit is exceeded, the connection is closed.

12 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

ip_address
Thisoption is used if orber only should listen on a specific ip interface on a multi-interface host or if exported
IOR:s should contain multiple components. The valueisthe IPv4 or IPv6 addressasastring or { mul ti pl e,
| PLi st} . Thelatter requiresthat the object is available viathe al |P addresses found in the list.

ip_address local
This option defines the default local interface Orber will use when connecting to another ORB viallOP, i.e.,
Orber act asthe client side ORB. ThevalueisalPv4 or IPv6 address as a string. It is possible to override
i p_address_| ocal bydefiningii op_acl or passing the Orber generici nt er f ace Context. If
this option is not used, the underlying OS will choose which interface to use. For more information, see the
Interface Configuration section.

nat_ip_address
Thevaueistheip addressasastring (IPv4 or IPv6), { mul ti pl e, 1 PList} or{l ocal,
Def aul t NATI PAddr ess, [{| PAddress, NATI PAddress}]}.Seeadso Firewall Configuration.

objectkeys gc time
This option should be set if objects are started using the option { per si st ent, true}.Thevaueis
i nt eger () seconds.

giop_version
Defines the default GIOP protocol version.

iiop_setup_connection_timeout
Thevalueisan integer (seconds) or the atom infinity. This option is only valid for client-side connections. If
this option is set, attempts to connect to other ORB's will timeout after the given time limit. Note, if the time
limit islarge the TCP protocol may timeout before the supplied value.

iiop_connection_timeout
The value is an integer (timeout in seconds between 0 and 1000000) or the atom infinity. This optionisonly
valid for client object connections, i.e., will have no effect on server connections. Setting this option will
cause client connections to be terminated, if and only if, there are no pending requests. If there are aclient still
waiting for areply, Orber will try again after the given seconds have passed. The main purpose for this option
isto reduce the number of open connections; it is, for example, not necessary to keep a connection, only used
once aday, open at al time.

iiop_in_connection_timeout
Thesameasfori i op_connecti on_ti neout . Theonly differenceisthat this option only affects
incoming connections (i.e. Orber act as server-side ORB).

iiop_out_keepalive
Enables periodic transmission on a connected socket, when no other data is being exchanged. If the other
end does not respond, the connection is considered broken and will be terminated. When enabled the
SO_KEEPALIVE socket level option is set.

iiop_in_keepalive
Thesameasfori i op_out _keepal i ve. Theonly differenceis that this option only affectsincoming
connections.

iiop_timeout
The value is an integer (timeout in seconds between 0 and 1000000) or the atom infinity. Thisoptionis
only valid on the client side. Setting this option, cause all intra-ORB requests to timeout and raise a system
exception, e.g. TI MEQUT, if no replies are delivered within the given time limit.

interceptors
If one set this parameter, e.g., erl -orber interceptors "{native, ['nylnterceptor']}",
Orber will use the supplied interceptor(s) for all inter-ORB communication. ' nyl nt er cept or' isthe
module name of the interceptor. For more information, see the interceptor chapter in the User's Guide and the
Reference Manual.

local_inter ceptors
If defined, its value will be used when activating local interceptors via Orber Environment Flags. If not
defined, but the flag is set, Orber will use the value of thei nt er cept or s parameter.

Ericsson AB. All Rights Reserved.: orber | 13

1.5 Installing Orber

orblnitRef
Setting thisoption, eg.,erl -orber orblnitRef [\"NameServi ce=corbal oc:: host. conf
NanmeSer vi ce\ "], will ater thelocation from wherecor ba: resol ve_i ni ti al _ref erences(Key)
tries to find an object matching the given Key. The keys will also appear when invoking
corba:list_initial_services().Thisvariableoverridesor bDef aul t 1 ni t Ref

orbDefaultl nitRef
If amatching Key for or bl ni t Ref isnot found, and this variable is set, it determines the location from
whereor ber:resol ve_ini tial _references(Key) triesto find an object matching the given Key.
Usage: er|l -orber orbDefaultlnitRef \"corbal oc::host.com".

orber_debug_level
Therangeis0to 10. Using level 10 is the most verbose configuration. This option will generate reports, using
theerror _| ogger, for abnormal situations. It is not recommended to use this option for delivered systems
since some of the reportsis not to be considered as errors. The main purpose is to assist during development.

flags
No flags are activated in the default case. The available configuration settings are described in Orber
Environment Flags.

iiop_acl
This option must be activated by setting Orber Environment Flags parameter. The value of this parameter
shal bealistof [{Direction, Filter}] andlor[{Direction, Filter, [Interfaces]}].
TheDi rection,tcp_in,ssl_in,tcp_out orssl_out,determinesif the Access Control List (ACL)
applies to incoming or outgoing connections and 11OP or IIOP over SSL. The Fi | t er uses aextended format
of Classless Inter Domain Routing (CIDR). For example, " 123. 123. 123. 10" limits the connection
to that particular host, while" 123. 123. 123. 10/ 17" alows connectionsto or from any host equal to
the 17 most significant bits. Orber also allow the user to specify a certain port or port range, for example,
"123.123.123. 10/ 17#4001" and" 123. 123. 123. 10/ 17#4001/ 5001" respectively. IPv4 or none
compressed 1Pv6 strings are accepted.
Thelist of | nt er f aces, IPv4 or IPv6 strings, may only contain one address for outgoing connections. For
incoming connections, the | nt er f aces list may contain several IP strings. If set for outgoing connections,
and access is granted, Orber will use that local interface when connecting to the server-side ORB. For incoming
connections, the client-side ORB is required to use one of the listed interfaces locally. If it fail to do so, access
will be denied. The module orber_acl provides operations for eval uating the access control for filters and
addresses. See aso the Interface Configuration and Firewall Configuration chapters.

secure
Determines the security mode Orber will use, which is either no if it is an insecure domain or the type of
security mechanism used. Currently, per default, Orber is compliant with CSI v1 level 0, which means I1OP
via SSL/TLS. The security chapter later in this manual describes how to get security in Orber and how the
options are used.

ss_generation
Defineswhich SSL version, i.e. available AP, isinstalled. The default value, 2, refersto SSL-3.1 or later, but
earlier than SSL-4.0. If set to 3 SSL-4.0, or later, must be available. Currently it not possibleto use 1, it isonly
reserved for future use.

iiop_sd_port
If set, the value must be an integer greater than zero and not equal to iiop_port.

iiop_ss_accept_timeout
Thevalueisan integer (timeout in seconds) or the atom infinity and determine how long the SSL handshake
may take. This option should be set to avoid if aclient never initiate the handshake.

iiop_sd_backlog
Defines the maximum length the queue of pending incoming connections may grow to.

iiop_sd_ip_address local
This option defines the default local interface Orber will use when connecting to another ORB via llOP SSL,
i.e., Orber act asthe client side ORB. ThevalueisalPv4 or IPv6 address as a string. It is possible to override
iiop_ssl_ip_address_| ocal bydefiningii op_acl orpassingthe Orber generici nt er f ace

14 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

Context. If thisoption is not used, the underlying OS will choose which interface to use. For more information,
see the Interface Configuration section.

nat_iiop_ss_port
If set, the value must be an integer greater than zeroor { | ocal , Def aul t NATPort, [{Port,
NATPort}]}. Seealso Firewall Configuration.

ssl_server_options
A list of the SSL options when Orber isthe server. In genera it'sjust to remove the 'sd_server ' prefix from the
oldoptions, i.e. ssl _server _veri fy will justbeveri fy inthisoption list. See the SS_ application for
the correct list of possible options and their values.

sd_client_options
A list of the SSL options when Orber isthe client. In general it'sjust to removethessl _cl i ent _ prefix
from the old options, i.e. ssl _cl i ent _dept h will just bedept h inthisoption list. See the SS. application
for the correct list of possible options and their values.

iiop_ss_out_keepalive
Enables periodic transmission on a connected socket, when no other data is being exchanged. If the other
end does not respond, the connection is considered broken and will be terminated. When enabled the
SO_KEEPALIVE socket level option is set. Requires that the installed SSL version support the keepalive
option and that the ssl_generation pointsto this version.

iiop_sd_in_keepalive
Thesameasforii op_ssl _out _keepal i ve. Theonly differenceisthat this option only affectsincoming
connections.

It is possible to invoke operations using the extra timeout parameter:

erl> module interface:function(ObjRef, Timeout, ..Arguments..).
erl> module interface:function(ObjRef, [{timeout, Timeout}], ..Arguments..).
erl> module interface:function(ObjRef, ..Arguments..).

The extra Timeout argument will override the configuration parameter i i op_t i meout . Itis, however, not possible
tousei nfinity to override the Timeout parameter. The Timeout option is also valid for objects which resides
within the same A domain containing several Erlang nodes, which are communicating by using the Erlang internal
format. An Orber domain looks as one ORB from the environment..

The iiop_setup_connection_timeout, iiop_timeout, iiop_connection_tineout and
iiop_in_connection_timnmeout variables should be used. The specified values is implementation
specific, i.e, WAN or LAN, but they should range from iiop_setup_connection_timeout to
i i op_connection_timeout.

To change these settings in the configuration file, the - conf i g flag must be added to the erl command. See the
Reference Manual config(4) for further information. The values can also be sent separately as options to the Erlang
node when it is started, see the Reference Manual erl(1) for further information.

Orber Environment Flags

The Envi ronnent Fl ags alows the user to activate debugging facilities or change Orber's behavior. The latter
may result in that Orber isno longer compliant with the OM G standard, which may be necessary when communicating
with a non-compliant ORB.

Hexadecimal Value OMG Compliant Description
0001 no Exclude CodeSet Component
0002 yes Local Typechecking

Ericsson AB. All Rights Reserved.: orber | 15

1.5 Installing Orber

0004 yes Use Host Namein IOR
0008 yes Enable NAT

0020 yes Local Interceptors

0080 yes Light IFR

0100 yes Use IPv6

0200 yes EXIT Tolerance

0400 yes Enable Incoming ACL

0800 yes Enable Outgoing ACL

1000 yes Use Current Interfacein IOR

Table 5.2: Orber Environment Flags

Any combination of the flags above may be used and changes the behavior as follows:

Exclude CodeSet Component - instruct Orber to exclude the CodeSet component in exported |OR:s. When
activated, no negotiating regarding character and wide character conversions between the client and the server
will occur. Thisflag will, most likely, cause problems if your IDL specification contains the data types wchar
and/or wstring.

Local Typechecking - If activated, parameters, replies and raised exceptions will be checked to ensure that the
datais correct. If an error occurs, theer r or _| ogger isused to generate reports. One MAY NOT use this
option for delivered systems due to the extra overhead. Since this option activates typechecking for all objects
generated on the target node, it is also possible to usethe option { | ocal _t ypecheck, bool ean()},
wheninvoking oe_create/ 2,0e_create_link/2,corba: create/ 4orcorba:create_link/4,
to override the configuration parameter.

UseHost Namein IOR - normally Orber inserts the IP-number in IOR:s when they are exported. In some
cases, thiswill cause the clients to open two connections instead of one.

Enable NAT - if thisflag isset, it is possible to use the NAT (Network Address Translation) configuration
parameters (nat _iiop_port,nat _iiop_ssl_port andnat i p_address).

Local Interceptors- use interceptors for local invocations.

Light IFR - if the IFR is not explicitly used and thisflag is set, Orber will use aminimal IFR to reduce memory
usage and installation time.

Use | Pv6 - when this option is activated, Orber will use | Pv6 for inter-ORB communication.
EXIT Tolerance - serverswill survive even though the call-back module caused an EXIT.
Enable Incoming ACL - activates access control for incoming connections.

Enable Outgoing ACL - activates access control for outgoing connections.

Use Current Interfacein IOR - when set, Orber will add the interface the request came via to exported local
IOR:s.

Invoking the operation orber:info/1/2 will display the currently set flags in areadable way.

16 | Ericsson AB. All Rights Reserved.: orber

1.5 Installing Orber

1.5.3 Firewall Configuration

Firewalls are used to protect objects from clients in other networks or sub-networks, but also to restrict which hosts
internal objects may connect to (i.e.i nbound pr ot ecti on andout bound pr ot ecti on). A firewall can limit
access based on:

e Transport Level - performs access control decisions based on address information in TCP headers.
e Application Level - understands GIOP messages and the specific transport level inter-ORB Protocol supported
e.g. l1OP.

This section describes how to configure a Transport Level firewall. It must have prior knowledge of
the source to destination mappings, and conceptually has a configuration table containing tuples of the form:
({inhost:inport}, {outhost:outport}).Ifthereareno portrestrictionsitisrather easy to configurethe
firewall. Otherwise, we must consider the following aternatives:

e Incoming Requests - Orber only uses the port-numbers specified by the configuration parametersiiop_port
andiiop_sd_port. Other ORB's may use several ports but it should be possible to change this behavior. Consult
the other ORBs documentation.

* Outgoing Requests - Most ORB's, Orber included, ask the OS to supply avacant local port when connecting
to the server-side ORB. It is possible to change this behavior when using Orber (i.e. set the configuration
parameter iiop_out_ports).

Usingtheoptioni i op_out _port s may result inthat Orber runs out of valid ports numbers. For example, other
applications may steal some of the ports or the number of concurrent outgoing connections to other ORBs may be
higher than expected. To reduce, but not eliminate, the risk you should usei i op_connecti on_ti neout .

Firewall configuration example:

"Plain" IIOP

To: Orber-IPNo: (iiop port) From: ORB-IPNo:X

To: ORB-IPNo:Z From: Orber-IPNo:(iiop out ports | Any Port)
IIOP via SSL

To: Orber-IPNo: (iiop port) From: ORB-IPNo:X

To: Orber-IPNo:(iiop ssl port) From: ORB-IPNo:Y

To: ORB-IPNo:Z From: Orber-IPNo:(iiop out ports | Any Port)

If the communication take place viaa TCP Firewall with NAT (Network Address Trand ation), we must activate this
behavior and define the external address and/or ports.

External Internal

nat_ip address (ip_address)

SRE2S i (—

nat_iiop port

)

flop port

nat_iiop ssl port fiop_ssl port
Figure 5.1: TCP Firewall With NAT

Ericsson AB. All Rights Reserved.: orber | 17

1.5 Installing Orber

Using NAT makes it possible to use different host data for different network domains. This way we can share
Internet Protocol address resources or obscure resources. To enable this feature the Enable NAT flag must be set
andnat _iiop_port,nat_iiop_ssl_port andnat _i p_addr ess configured, whichmapstoi i op_port,
iiop_ssl_port andi p_addr ess respectively. Hence, the firewall must be configured to translate the external
to the internal representation correctly. If these NAT parameters are assigned a single port number or |P address,
only those will be used when an IOR is exported to another ORB. When i p_address issetto {rmul ti pl e,

[1 PAddress] }, nat _i p_addr ess should be configured in the same way, so that each NAT IP address can
be trandated to a valid address by the firewall. If objects are supposed to be accessible via different interfaces
and port, see also Interface Configuration, the options{ | ocal , Def aul t NATI PAddr ess, [{| PAddress,

NATI PAddr ess}]} and/or{l ocal , Defaul t NATPort, [{Port, NATPort}]} shalbeused. Thedefault
NAT IP address and port, should be trandated to the value of i p_addr ess_| ocal and the default listen port by
the firewall. If the IP address and/or port is not found in the list, the default values will be inserted in the IOR. The
firewall must be able to translate these correctly.

If it is necessary to limit the access to an ORB within a secure network, but other applications running on the same
host may not be blocked out, one can use a Application L evel firewall or Orber Access Control List (ACL). Thelatter
makes it possible for the user to define which hosts may communicate, either as server or client, with Orber. This
is achieved by defining the configuration parameter iiop_acl. The Classless Inter Domain Routing (CIDR) Fi | t er

determines which peer interfaces and ports the other ORB may use.

Filter Peer Interface(s) Peer Port(s)
"10.1.1.1" 10111 any
"10.1.1.1/8" 10.0.0.0-10.255.255.255 any
"10.1.1.1/8#4001" 10.0.0.0-10.255.255.255 4001
"10.1.1.1/8#4001/5001" 10.0.0.0-10.255.255.255 4001-5001

Table 5.3: Orber ACL Filters

Orber ACL, also allows the user to define which local interface(s) may be used, but will not detect spoof i ng. The
operation orber_acl:match/2/3 makes it easy to verify whether access would be granted or not. For example, if Orber
would be started withthe ACL [{tcp_out, "10.1.1.1/8#4001/5001"}], thenorber_acl: mtch/2
would behave as follows:

erl> orber acl:match({11,1,1,1}, tcp out).
false

erl> orber acl:match({10,1,1,1}, tcp out).
true

erl> orber acl:match({11,1,1,1}, tcp out, true).
{false,[],0}

erl> orber _acl:match({10,1,1,1}, tcp out, true).
{true, [1,{4001,5001}}

Only if the returned boolean is true the extra return values makes a difference. In the example above, {t r ue,

[1,{4001, 5001}} means that Orber may connect to " 10. 1. 1. 1", using any local interface, if the server-
side ORB listens for incoming connect requests on a port within the range 4001-5001. Note, invoking the
or ber _acl : mat ch/ 2/ 3 operation, will not result in a connect attempt by Orber. The reason for this, is that this

18 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

function may be used on alive node aswell asin test environment. Hence, if alocal interfaceis currently not available
or no server-side ORB available via the given host/port(s), will not be detected by Orber.

1.5.4 Interface Configuration

In many cases it is sufficient to ssmply configure the underlying OS which local interfaces shall be used for all
applications. But, in some cases it is required, due to, for example, the firewall configuration, that different local
interfaces are used for different applications. Some times, it is even necessary to use a specific interface for asingle
CORBA object. This section describe how one can ater thisin different ways.

The default behavior is that Orber lets the OS configuration decide which interface will be added in IOR:s exported
to another ORB and the local interface used when connecting to another ORB (Orber act as client side ORB).
The latter can be overridden by setting the configuration parametersi i op_ssl i p_address_| ocal and/or
i p_address_| ocal , which will affect I1OP via SSL and |10OP respectively. These parameters can be overridden
by using the Orber generic i nt er f ace Context or defining an ACL (Access Control List). The latter always takes
precedence if alocal interface isincluded (eg. [{tcp_out, "10.0.0.0/8", ["10.0.0.1"]}]). If the
interfaceisexcluded (e.g. [{tcp_out, "10.0.0.0/8"}]), theinterface chosen will, in the following order, be
determined by #' | OP_Servi ceContext' {},i p_address |l ocal/iiop_ssl _ip_address_| ocal or
the configuration of the underlying system.

Adding the interface context, for generated stubs/skeletons, is done in the following way:

Ctx = #'IOP ServiceContext'{context id = ?0RBER GENERIC CTX ID,
context data = {interface, "10.0.0.1"}},
'CosNaming NamingContext':resolve(NS, [{context, [Ctx]}], Name),

It is aso possible to add the context to corba:string_to_object/2,
corba:resolve_initial _references/2, corba:resolve_ initial _references_renote/3,
corba:list_initial _services_renote/?2, corba_obj ect:not_existent/ 2,

corba_object:non_existent/2 and corba object:is_a/3. The operations exported by
cor ba_obj ect are affected if the supplied IOR is external. The function cor ba: string to_object/2
might require the interface context if a corbaloc or a corbaloc sring is
passed (See the INS chapter), while corba:resolve_ initial _references renpte/3 and
corba:list_initial_services_renotel/2 aways connect to another ORB and it might be necessary to
add the context. The remaining cor ba operations are affected if calls are re-directed by setting the or bl ni t Ref
and/or or bDef aul t | ni t Ref configuration parameters. For more information, see the Reference Manual for each
module.

Configuring which interface(s) that shall be used when exporting an IOR to another ORB, is determined
by nat i p_address, setting the flag 16#1000 and i p_address, in that order. Orber listens for
incoming connections either via all interffaces or the interface defined by i p_address. It is aso
possible to add and remove extra listen interfaces by using orber:add |isten_interface/2/3 and
orber:renove_listen_interface/ 1. Inthiscase oneshould set the 16#1000 flag and, if necessary, set the
configuration parameters{ | ocal , Def aul t NATI PAddr ess, [{| PAddress, NATI PAddress}]} and/
or{l ocal, Defaul tNATPort, [{Port, NATPort}]}.

1.6 OMG IDL to Erlang Mapping

1.6.1 OMG IDL to Erlang Mapping - Overview

The purpose of OMG IDL, Interface Definition Language, mapping is to act as trandator between platforms and
languages. An IDL specification is supposed to describe data types, object types etc.

CORBA isindependent of the programming language used to construct clients or implementations. In order to use the
ORSB, it isnecessary for programmersto know how to access ORB functionality from their programming languages. It

Ericsson AB. All Rights Reserved.: orber | 19

1.6 OMG IDL to Erlang Mapping

trandates different IDL constructs to a specific programming language. This chapter describes the mapping of OMG
IDL constructs to the Erlang programming language.

1.6.2 OMG IDL Mapping Elements

A complete language mapping will allow the programmer to have access to all ORB functionality in a way that is
convenient for a specified programming language.

All mapping must define the following elements:

e All OMG IDL basic and constructed types

* Referencesto constants defined in OMG IDL

» Referencesto objects defined in OMG IDL

e Invocations of operations, including passing of parameters and receiving of results

» Exceptions, including what happens when an operation raises an exception and how the exception parameters
are accessed

* Accessto attributes
» Signatures for operations defined by the ORB, such as dynamic invocation interface, the object adapters etc.
e Scopes; OMG IDL has severa levels of scopes, which are mapped to Erlang's two scopes.

1.6.3 Getting Started

To begin with, we should decide which type of objects (i.e. servers) we need and if two, or more, should export the
same functionality. Let us assume that we want to create a system for DB (database) access for different kind of
users. For example, anyone with a valid password may extract data, but only a few may update the DB. Usually, an
application isdefined within anodul e, and all global datatypes are defined on the top-level. To begin with we create
amodule and the interfaces we need:

// DB IDL

#ifndef DB IDL

#define DB IDL

// A module is simply a container
module DB {

// An interface maps to a CORBA::0bject.
interface CommonUser {

}

// Inherit the Consumer interface
interface Administrator : CommonUser {

}
interface Access {
}

175
#endif

Since the Admi ni st rat or should be able to do the same things as the ConmonUser , the previous inherits from
the latter. The Access interface will grant access to the DB. Now we are ready to define the functionality and data
types we need. But, this requires that we know alittle bit more about the OMG IDL.

20 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

The OMG definesa set of reserved case insensitive key-words, which may NOT be used asidentifiers (e.g. module
name). For more information, see Reserved Compiler Names and Keywords

1.6.4 Basic OMG IDL Types

The OMG IDL mapping is strongly typed and, even if you have a good knowledge of CORBA types, it is essential
to read carefully the following mapping to Erlang types.

The mapping of basic typesis straightforward. Note that the OMG IDL double type is mapped to an Erlang float which
does not support the full double value range.

OMG IDL type Erlang type Note

float Erlang float

double Erlang float value range not supported
short Erlang integer -2n15.. 2M5-1

unsigned short Erlang integer 0..2M16-1

long Erlang integer -2°31 .. 2"31-1

unsigned long Erlang integer 0..2°32-1

long long Erlang integer -2"63 .. 2°63-1

unsigned long long Erlang integer 0..2"64-1

char Erlang integer SO-8859-1

wchar Erlang integer UTF-16 (1SO-10646-1:1993)
boolean Erlang atom true/false

octet Erlang integer

any Erlang record #any{ typecode, value}
long double Not supported

Object Orber object reference Internal Representation
void Erlang atom ok

Table 6.1: OMG IDL basic types

The any value is written as a record with the field typecode which contains the Type Code is a full definition of a
type representation, see also the Type Code table, and the value field itself.

Functions with return type voi d will return the atom ok.

Ericsson AB. All Rights Reserved.: orber | 21

1.6 OMG IDL to Erlang Mapping

1.6.5 Template OMG IDL Types and Complex Declarators
Constructed types al have native mappings as shown in the table below.

Type IDL code Mapsto Erlang code
. typedef string S; . ok = op(Obj, "Hello
string void op(in S a); Erlang string World"),
. typedef wstring S; . ok = op(Obj, "Hello
wstring void op(in S a)- Erlang list of Integers World"),
typedef sequence <long,
sequence 3>S; Erlang list ok = op(0hj, [1, 2, 3]),
void op(in S a);
typedef string §2]; ok = op(Obj, {"one",
array void op(in S a); Erlang tuple "twa"}),
typedef fixed<3,2> MF = fixed:create(3, 2,
fixed myFixed; Erlang tuple 314),
void op(in myFixed a); ok = op(Obj, MF),

Table 6.2: OMG IDL Template and Complex Declarators

String/WString Data Types

A string consists of all possible 8-bit quantities except null. Most ORB:s uses, including Orber, the character set
Latin-1 (1SO-8859-1). Thewst r i ng type is represented as a list of integers, where each integer represents a wide
character. In this case Orber uses, as most other ORB:s, the UTF-16 (1SO-10646-1:1993) character set.

When defining a a string or wstring they can be of limited length or null terminated:

// Null terminated

typedef string myString;

typedef wstring myWString;

// Maximum length 10

typedef string<l10> myStringl0;
typedef wstring<l0> myWStringl0;

If we want to define a char/string or wchar/wstring constant, we can use octal (\OOO - one, two or three octal digits),
hexadecimal (\xHH - one or two hexadecimal digits) and unicode \uHHHH - one, two, three or four hexadecimal
digits.) representation as well. For example:

const string SwedensBestSoccerTeam
const wstring SwedensBestHockeyTeam
const char aChar = '\uG04B';
const wchar aWchar = L'\u@04C';

"\101" "\x49" "\u@04B":
L"\101\x49\u004B";

Naturally, wecanuse” Er | ang",L" Rocks"," A" andL' A" aswell.

Sequence Data Type

A sequence can be defined to be of a maximum length or unbounded, and may contain Basic and Template types
and scoped names:

22 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

typedef sequence <short, 1> aShortSequence;
typedef sequence <long> alLongSequence;
typedef sequence <alongSequence> anEvenLongerSequence;

Array Data Type

Arrays are multidimensional, fixed-size arrays. The indices is language mapping specific, which is why one should
not pass them as arguments to another ORB.

typedef long myMatrix[2][3];

Fixed Data Type

A Fixed Point literal consists of an integer part (decimal digits), decimal point and a fraction part (decimal digits),
followed by a D or d. Either the integer part or the fraction part may be missing; the decimal point may be missing,
but not d/D. The integer part must be a positive integer less than 32. The Fraction part must be a positive integer less
than or equal to the Integer part.

const fixed myFixedl = 3.14D;
const fixed myFixed2 = .14D;
const fixed myFixed3 = 0.14D;
const fixed myFixed4 = 3.D;
const fixed myFixed5 = 3D;

It isalso possible to use unary (+-) and binary (+-*/) operators:

const fixed myFixed6
const fixed myFixed7

3D + 0.14D;
-3.14D;

The Fixed Point examples above are, so caled, anonymous definitions. In later CORBA specifications these have
been deprecated as function parameters or return values. Hence, we strongly recommend that you do not use them.
Instead, you should use:

typedef fixed<5,3> myFixed53;

const myFixed53 myFixed53constant = 03.140d;
typedef fixed<3,2> myFixed32;
const myFixed32 myFixed32constant = 3.14d;

myFixed53 foo(in myFixed32 MF); // OK
void bar(in fixed<5,3> MF); // Illegal

For more information, see Fixed in Orber's Reference Manual.

Now we continue to work on our IDL specification. To begin with, we want to limit the size of the logon parameters
(Id and password). Since the User | D and Passwor d parameters, only will be used when invoking operations on
the Access interface, we may choose to define them within the scope that interface. To keep it simple our DB will
contain employee information. Hence, as the DB key we choose an integer (Enpl oyeeNo).

Ericsson AB. All Rights Reserved.: orber | 23

1.6 OMG IDL to Erlang Mapping

// DB IDL
#ifndef DB IDL
#define DB IDL
module DB {
typedef unsigned long EmployeeNo;
interface CommonUser {
any lookup(in EmployeeNo ENo);
+
interface Administrator : CommonUser {
void delete(in EmployeeNo ENo);
+
interface Access {

typedef string<l10> UserlID;
typedef string<l0> Password;

CommonUser logon(in UserID ID, in Password PW);
}i

+
#endif

But what should, for example, thel ookup operation return? One option isto use the any data type. But, depending
on what kind of data it encapsulates, this datatype can be rather expensive to use. We might find a solution to our
problems among the Const r uct ed IDL types.

1.6.6 Constructed OMG IDL Types
Constructed types al have native mappings as shown in the table below.

Type IDL code Mapsto Erlang code
struct myStruct {
long a; ok = op(Obj,
struct short b; Erlang record #myStruct'{ a=300,
h b=127}),

void op(in myStruct a);

union myUnion

switch(long) { ok = op(Obj,
union case 1: long &; Erlang record #myUnion'{label=1,
} value=66}),

void op(in myUnion a);

enum myEnum {one,
enum two}; Erlang atom ok = op(Obj, one),
void op(in myEnum a);

Table 6.3: OMG IDL constructed types

24 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

Struct Data Type

A struct may have Basic, Template, Scoped Names and Constructed types as members. By using forward
declaration we can define arecursive struct:

struct myStruct; // Forward declaration
typedef sequence<myStruct> myStructSeq;
struct myStruct {

myStructSeq chain;

};

// Deprecated definition (anonymous) not supported by IC
struct myStruct {
sequence<myStruct> chain;

};

Enum Data Type

The maximum number of identifiers which may defined in an enumeration is 232, The order in which the identifiers
are named in the specification of an enumeration defines the relative order of the identifiers.

Union Data Type
A uni on may consist of:

e ldentifier
« Switch - may be an integer, char, boolean, enum or scoped name.
e Body - with or without adef aul t case; may appear at most once.

A case label must match the defined type of the discriminator, and may only contain a default case if the values given
in the non-default labels do not cover the entire range of the union's discriminant type. For example;

// Illegal default; all cases covered by
// non-default cases.
union BooleanUnion switch(boolean) {
case TRUE: 1long TrueValue;
case FALSE: long FalseValue;
default: long DefaultValue;
I
// OK
union BooleanUnion2 switch(boolean) {
case TRUE: 1long TrueValue;
default: long DefaultValue;

b

It is not necessary to list all possible values of the union discriminator in the body. Hence, the value of aunion isthe
value of the discriminator and, in given order, one of the following:

e |f thediscriminator match alabel, explicitly listed in a case statement, the value must be of the same type.

« |f the union contains a default 1abel, the value must match the type of the default [abel.

* Novaue. Orber then inserts the Erlang atom undef i ned in the value field when receiving a union from an
external ORB.

The above can be summed up to:

Ericsson AB. All Rights Reserved.: orber | 25

1.6 OMG IDL to Erlang Mapping

// If the discriminator equals 1 or 2 the value
// is a long. Otherwise, the atom undefined.
union LongUnion switch(long) {

case 1:

case 2: long TrueValue;
};
// If the discriminator equals 1 or 2 the value
// is a long. Otherwise, a boolean.
union LongUnion2 switch(long) {

case 1:

case 2: long TrueValue;

default: boolean DefaultValue;

+i

In the same way as structs, unions can be recursive if forward declaration is used (anonymous types is deprecated
and not supported):

// Forward declaration
union myUnion;
typedef sequence<myUnion>myUnionSeq;
union myUnion switch (long) {
case 1 : myUnionSeq chain;
default: boolean DefaultValue;

s

Recursive types (union and struct) require Light IFR. |.e. the IC option {light_ifr, true} is used and that Orber is
configured in such away that Light IFR is activated. Recursive TypeCodeis currently not supported, which iswhy
these cannot be encapsulated in an any data type.

Every field in, for example, a struct must be initiated. Otherwise it will be set to the atom undef i ned,
which Orber cannot encode when communicating via IlOP. In the example above, invoking the operation with
#myStruct'{ a=300} will fail (equal to #myStruct'{a=300, b=undefined})

Now we can continue to work on our IDL specification. To begin with, we should determine the return value of the
| ookup operation. Since the any type can be rather expensive we can use ast r uct or auni on instead. If we
intend to return the same information about a employee every time we can use a struct. Let us assume that the DB
contains the name, address, employee number and department.

26 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

// DB IDL
#ifndef DB IDL
#define DB IDL
module DB {
typedef unsigned long EmployeeNo;
enum Department {Departmentl, Department2};
struct employee {
EmployeeNo No;
string Name;
string Address;

Department Dpt;
}i

typedef employee EmployeeData;

interface CommonUser {
EmployeeData lookup(in EmployeeNo ENo);

}i

interface Administrator : CommonUser {
void delete(in EmployeeNo ENo);

}i

interface Access {

typedef string<l10> UserlID;
typedef string<l0> Password;

// Since Administrator inherits from CommonUser

// the returned Object can be of either type.
CommonUser logon(in UserID ID, in Password PW);

};

+
#endif

We can also define exceptions (i.e. not system exception) thrown by each interface. Since exceptions are thoroughly
described in the chapter System and User Defined Exceptions, we choose not to. Hence, we are now ready to compile
our IDL-file by invoking:

$ erlc DB.idl

or:

$ erl
Erlang (BEAM) emulator version 5.1.1 [threads:0]

Eshell V5.1.1 (abort with "G)
1> ic:gen('DB').

ok

2> halt().

Ericsson AB. All Rights Reserved.: orber | 27

1.6 OMG IDL to Erlang Mapping

The next step is to implement our servers. But, to be able to do that, we need to know how we can access data type
definitions. For example, since a struct is mapped to an Erlang record we must include an hrl-file in our callback
module.

1.6.7 Scoped Names and Generated Files

Scoped Names

Within ascope all identifiers must be unique. The following kinds of definitions form scopesinthe OMG IDL:

* module

e interface
e operation
e valuetype
e struct

e union

e exception
For example, since enumerants do not form a scope, the following IDL code is not valid:

module MyModule {

// 'two' is not unique

enum MyEnum {one, two};

enum MyOtherEnum {two, three};
+;

But, since Erlang only has two levels of scope, module and function, the OMG IDL scope is mapped as follows:

* Function Scope - used for constants, operations and attributes.
» Erlang Module Scope - the Erlang modul e scope handles the remaining OMG IDL scopes.

An Erlang module, corresponding to an IDL global name, is derived by converting occurrences of "::" to underscore,
and eliminating the leading "::". Hence, accessing My Enumfrom another module, one use MyModul e: : MyEnum

For example, an operation f oo defined in interface | , which is defined in module M would be written in IDL as
M:l::fooandas' M |':fooinErlang-f oo isthefunctionnameand' M | ' isthe name of the Erlang module.
Applying this knowledge to a stripped version of the DB.idl gives:

28 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

// DB IDL

#ifndef DB IDL

#define DB IDL

// ++ topmost scope ++

// IC generates oe XX.erl and oe XX.hrl.

// XX is equal to the name of the IDL-file.

// Tips: create one IDL-file for each top module
// and give the file the same name (DB.idl).

// The oe XX.erl module is used to register data
// in the IFR.

module DB {

// ++ Module scope ++

// To access 'EmployeeNo' from another scope, use:
// DB::EmployeeNo, DB::Access etc.

typedef unsigned long EmployeeNo;

enum Department {Departmentl, Department2};

// Definitions of this struct is contained in:
// DB.hrl
// Access functions exported by:
// DB_employee.erl
struct employee {
. CUT ...
+

typedef employee EmployeeData;
. CUT ...

// If this interface should inherit an interface
// in another module (e.g. OtherModule) use:

// interface Access : OtherModule::0therInterface
interface Access {

// ++ interface scope ++

// Types within this scope is accessible via:
// DB::Access::UserID

// The Stub/Skeleton for this interface is
// placed in the module:

// DB _Access.erl

typedef string<10> UserID;

typedef string<l0> Password;

// Since Administrator inherits from CommonUser
// the returned Object can be of either type.
// This operation is exported from:

// DB _Access.erl

CommonUser logon(in UserID ID, in Password PW);

};

+
#endif

Using underscores in IDL names can lead to ambiguities due to the name mapping described above. It is advisable
to avoid the use of underscores in identifiers. For example, the following definition would generate two structures
namedx_y z.

Ericsson AB. All Rights Reserved.: orber | 29

1.6 OMG IDL to Erlang Mapping

module x {

struct y z {
I}3
interface y {

struct z {

};
};

Generated Files

Severa files can be generated for each scope.

An Erlang source codefile (. er |) is generated for top level scope as well asthe Erlang header file.

An Erlang header file (. hr |) will be generated for each scope. The header file will contain record definitions
forall struct,uni on and except i on typesin that scope.

Modules that contain at least one constant definition, will produce Erlang source code files (. er |). That Erlang
file will contain constant functions for that scope. Modules that contain no constant definitions are considered
empty and no code will be produced for them, but only for their included modul es/interfaces.

Interfaces will produce Erlang source codefiles (. er |), this code will contain al operation stub code and
implementation functions.

In addition to the scope-related files, an Erlang source file will be generated for each definition of the types
struct,uni on and except i on (these are the types that will be represented in Erlang as records). Thisfile
will contain specia access functions for that record.

The top level scope will produce two files, one header file (. hr |) and one Erlang sourcefile (. er |). These
filesare named asthe IDL file, prefixed with oe_.

After compiling DB.idl, the following files have been generated:

oe_DB. hrl andoe_DB. er| for the top scope level.

DB. hr | for the module DB.

DB _Access. hrl andDB_Access. erl fortheinterface DB_Access.

DB_ConmonUser . hrl and DB_CommonUser . er | for theinterface DB_ConmmonUser .

DB _Admi nistrator. hrl andDB_Adni ni strator. erl fortheinterfface DB_Adni ni strat or.
DB_enpl oyee. erl| for the structure enpl oyee in module DB.

Since the enpl oyee struct is defined in the top level scope, the Erlang record definition is found in
DB. hr| . IC aso generates stubs/skeletons (e.g. DB_ConmonUser . er |) and access functions for some datatypes
(e.g. DB_enpl oyee. erl). How the stubs/skeletons are used is thoroughly described in Stubs/Skeletons and
Module_Interface.

1.6.8 Typecode, Identity and Name Access Functions

As mentioned in a previous section, st r uct, uni on and except i on types yield record definitions and access
code for that record. For st ruct, uni on, excepti on, arr ay and sequence types, a specia file is generated
that holds access functions for TypeCode, | dent i t y and Nane. These functions are put in the file corresponding
to the scope where they are defined. For example, the module DB_enpl oyee. er |, representing the enpl oyee
struct, exports the following functions:

tc/0 - returns the type code for the struct.

30 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

e id/O- returnsthe IFR identity of the struct. In this case the returned valueis" | DL: DB/ enpl oyee: 1. 0",
but if the struct was defined in the scope of ConmonUser , the result would be" | DL: DB/ CommonUser /
enpl oyee: 1. 0" . However, the user usually do not need to know the Id, just which Erlang module contains
the correct Id.

e name/0 - returns the scoped name of the struct. The enpl oyee struct nameis" DB_enpl oyee".

Type codes give a compl ete description of the type including all its components and structure.are, for example, used
in Any values. Hence, we can encapsulate the enpl oyee struct in an any type by:

%% Erlang code

AnEmployee = #'DB_employee'{'No"' =1,
'Name' = "Adam Ivan Kendall",
'Address' = "Rasunda, Solna",
'‘Dpt'’ = 'Departmentl'},

EmployeeTC = 'DB_employee':tc(),
EmployeeAny = any:create(EmployeeTC, AnEmployee),

For more information, see the Type Code listing.

1.6.9 References to Constants

Constants are generated as Erlang functions, and are accessed by a single function call. The functions are put in the
file corresponding to the scope where they are defined. Thereisno need for an object to be started to access a constant.

Example:

// m.idl
module m {
const float pi

3.14;

interface i {
const float pi = 3.1415;
1

}

Since the two constants are defined in different scopes, the IDL code above is valid, but not necessarily a good
approach. After compilingm i dl , the constant definitions can be extracted by invoking:

$ erlc m.idl

$ erlc m.erl

$ erl

Erlang (BEAM) emulator version 5.1.1 [threads:0]

Eshell V5.1.1 (abort with "G)
1> m:pi().

3.14

2> m i:pi().

3.1415

3> halt().

1.6.10 References to Objects Defined in OMG IDL

Objects are accessed by object references. An object reference is an opagque Erlang term created and maintained by
the ORB.

Objects are implemented by providing implementations for al operations and attributes of the Object, see operation
implementation.

Ericsson AB. All Rights Reserved.: orber | 31

1.6 OMG IDL to Erlang Mapping

1.6.11 Exceptions

Exceptions are handled as Erlang catch and throws. Exceptions are translated to messages over an 11OP bridge but
converted back to athrow on the receiving side. Object implementations that invoke operations on other objects must
be aware of the possibility of a non-loca return. This includes invocation of ORB and IFR services. See aso the
Exceptions section.

Exception parameters are mapped as an Erlang record and accessed as such.

An object implementation that raises an exception will use the cor ba: r ai se/ 1 function, passing the exception
record as parameter.

1.6.12 Access to Attributes

Attributes are accessed through their access functions. An attributeimplicitly definesthe _get and _set operations.
These operations are handled in the same way as normal operations. The _get operationisdefined asar eadonl y
attribute.

readonly attribute long RAttribute;
attribute long RWAttribute;

The RAttri bute requires that you implement, in your call-back module, _get _RAttri bute. For the
RWAt t ri but e itisnecessary toimplement _get _RWAttri bute and_set RWAttri bute.

1.6.13 Invocations of Operations

A standard Erlang gen_ser ver behavior isused for object implementation. Thegen_ser ver stateisthenused as
the object internal state. Implementation of the object function is achieved by implementing its methods and attribute
operations. Thesefunctionswill usually havetheinternal state astheir first parameter, followed by any i n andi nout
parameters.

Do not confuse the object internal state with its object reference. The object internal state is an Erlang term which
has aformat defined by the user.

Itisnot alwaysthe casethat theinternal state will be thefirst parameter, as stubs can use their own object reference
asthefirst parameter (see the |C documentation).

A function call will invoke an operation. Thefirst parameter of the function should be the object reference and then all
i nandi nout parameters follow in the same order as specified in the IDL specification. The result will be areturn
value unlessthefunction hasi nout or out parameters specified; in which case, atuple of the return value, followed
by the parameters will be returned.

Example:

// IDL
module m {
interface i {
readonly attribute long RAttribute;
attribute long RWAttribute;
long foo(in short a);
long bar(in char c, inout string s, out long count);
void baz(out long Id);
b
15

Isusedin Erlang as:

32 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

%% Erlang code

Obj = ... %% get object reference

RAttr = m i:' get RAttribute'(0Obj),

RWAttr = m i:' get RWAttribute'(0bj),

ok = m i:' set RWAttribute'(Obj, Long),

Rl = m i:foo(0Obj, 55),

{R2, S, Count} = m i:bar(Obj, $a, "hello"),

Note how the i nout parameter is passed and returned. There is no way to use a single occurrence of a variable
for this in Erlang. Also note, that ok, Orber's representation of the IDL-type voi d, must be returned by baz and
' _set RWAttri bute'. These operations can beimplemented in the call-back module as:

' set RWAttribute'(State, Long) ->
{reply, ok, State}.

' get RWAttribute'(State) ->
{reply, Long, State}.

' get RAttribute'(State) ->
{reply, Long, State}.

foo(State, AShort) ->
{reply, ALong, State}.

bar(State, AShort, AString) ->
{reply, {ALong, "MyString", ALong}, State}.

baz(State) ->
{reply, {ok, AId}, State}.

The operations may require more arguments (depends on | C options used). For more information, see Subs/Skeletons
and Module_Interface.

A function can also be defined to be oneway, i.e. asynchronous. But, since the behavior of a oneway operation
is not defined in the OMG specifications (i.e. the behavior can differ depending on which other ORB Orber is
communicating with), one should avoid using it.

1.6.14 Implementing the DB Application

Now we are ready to implement the call-back modules. There are three modules we must cregate:
« DB_Access impl.erl

+ DB_CommonUser_impl.erl

 DB_Administrator_impl.erl

An easy way to accomplish that, is to use the IC backend er | _t enpl at e, which will generate a complete call-
back module. One should also add the same compile options, for examplet hi s or f r om used when generating the
stub/skeleton modules:

$> erlc +"{be,erl template}" DB.idl

We begin with implementing the DB_Access_i npl . er| module, which, if weused er| _t enpl at e, will look
like the following. All we need to do isto add the logic to thel ogon operation.

Ericsson AB. All Rights Reserved.: orber | 33

1.6 OMG IDL to Erlang Mapping

% <LICENSE>
% $I1d$

Module : DB Access impl.erl

Source : /home/user/example/DB.1id1l

% Description
% Creation date: 2005-05-20

export([init/1,
terminate/2,
code change/3,
handle info/2]).

% Function : logon/3

% Arguments : State - term()

% ID = String()

% PW = String()

% Returns : ReturnValue = OE _Reply
% OE_Reply = Object Ref()
% Raises
% Description:

logon(State, ID, PW) ->
% Check if the ID/PW is valid and what
% type of user it is (Common or Administrator).
E Reply
= case check user(ID, PW) of
{ok, administrator} ->
'DB_Administrator':oe create();
{ok, common} ->
'DB_CommonUser':oe create();
error ->

%
%
0

34 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

%% Here we should throw an exception
corba:raise(....)
end,
{reply, OE Reply, State}.

nO

o

©

nO
O S
()

%% Function init/1

%% Arguments Env = term()

%% Returns {ok, State} |

%% {ok, State, Timeout} |

%% ignore |

%% {stop, Reason}

%% Raises -

%% Description: Initiates the server

8676 = = = == =)= = =l=lm = = o ololols s s sle oo o slslois s o soisi s s slei s s slsls s s lsis s ssls s s o e s s

(_Env) ->
{ok, #state{}}.

L
%% Function terminate/2

%% Arguments Reason = normal | shutdown | term()

%% State = term()

%% Returns ok

%% Raises -

%% Description: Invoked when the object is terminating.
L

ok.
%% Function code change/3
%% Arguments 0ldVsn = undefined | term()
%% State = NewState = term()
%% Extra = term()
%% Returns {ok, NewState}
%% Raises -
%% Description: Invoked when the object should update its internal state
%% due to code replacement.

code change(0ldVsn, State, Extra) ->

{ok, State}.
%% Function handle_info/2
%% Arguments Info = normal | shutdown | term()
%% State = NewState = term()
%% Returns {noreply, NewState}
%% {noreply, NewState, Timeout} |
%% {stop, Reason, NewState}
%% Raises -
%% Description: Invoked when, for example, the server traps exits.

handle info(Info, State) ->
{noreply, State}.

Since
del et e

DB_Adni ni strat or inherits from DB_CommonUser ,
in the DB _Adnministrator _inpl.erl module,

must
| ookup

we
and

implement
in

Ericsson AB. All Rights Reserved.: orber | 35

1.6 OMG IDL to Erlang Mapping

DB_Adni ni strator_i npl . erl andDB_ConmonUser _i npl . erl . But wait, is that really necessary?
Actually, it is not. We simple use the |C compile option impl:

$ erlc +'{{impl, "DB::CommonUser"}, "DBUser impl"}'\
+'{{impl, "DB::Administrator"}, "DBUser impl"}' DB.idl
$ erlc *.erl

Instead of creating, and not the least, maintaining two call-back modules, we only have to dea with
DBUser _i npl . erl . If we generated the templates, we simply rename DB_Adni ni strator _i npl . erl to
DBUser _i npl . er | . Seeaso the Exceptions chapter. In thefollowing example, only theimplementation of the AP
functions are shown:

e
%% API Functions
0.0

O

%% Function : delete/2

%% Arguments : State - term()

%% ENo = unsigned Long()
%% Returns : ReturnValue = ok

%% Raises

%% Description:

delete(State, ENo) ->
%% How we access the DB, for example mnesia, is not shown here.
case delete employee(No) of

ok ->
{reply, ok, State};
error ->

%% Here we should throw an exception if
%% there is no match.
corba:raise(....)

% Function : lookup/2

% Arguments : State - term()

% ENo = unsigned Long()

% Returns : ReturnValue = OE Reply

% OE Reply = #'DB_employee'{No,Name,Address,Dpt}
% No = unsigned Long()

% Name = String()

% Address = String()

% Dpt = Department

% Department = 'Departmentl' | 'Department2’
% Raises

% Description:

lookup(State, ENo) ->
%% How we access the DB, for example mnesia, is not shown here.
case lookup employee(ENo) of
%% We assume that we receive a 'DB employee' struct
{ok, Employee} ->
OE_Reply = Employee,
{reply, OE Reply, State};
error ->
%% Here we should throw an exception if
%% there is no match.
corba:raise(....)
end.

36 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

After you have compiled both call-back modules, and
lookup_employee/1), we can test our application:

implemented the missing functionality (e.g.

%% Erlang code
%% Create an Access object
Acc = 'DB Access':oe create(),

%% Login is Common user and Administrator
Adm 'DB_Access':logon(A, "admin", "pw"),
Com 'DB_Access':logon(A, "comm", "pw"),

%% Lookup existing employee
Employee 'DB_Administrator':lookup(Adm, 1),
Employee 'DB_CommonUser' :lookup (Adm, 1),

% If we try the same using the DB CommonUser interface
it result in an exit since that operation is not exported.
{'EXIT', } = (catch 'DB_CommonUser':delete(Adm, 1)),

ry to delete the employee via the CommonUser Object

T
XCEPTION', } = (catch 'DB Administrator':delete(Com, 1)),

{'E

% Invoke delete operation on the Administrator object
ok =

'DB_Administrator':delete(Adm, 1),

1.6.15 Reserved Compiler Names and Keywords

The use of some names is strongly discouraged due to ambiguities. However, the use of some names is prohibited
when using the Erlang mapping , asthey are strictly reserved for IC.

IC reserves al identifiers starting with OE_ and oe__ for internal use.

Note also, that an identifier in IDL can contain aphabetic, digits and underscore characters, but the first character
must be alphabetic.

The OMG defines a set of reserved words, shown below, for use as keywords. These may not be used as, for example,
identifiers. The keywords which are not in bold face was introduced in the OMG CORBA -3.0 specification.

abstract exception inout provides truncatable
any emits interface public typedef
attribute enum local publishes typeid
boolean eventtype long raises typeprefix
case factory module readonly unsigned
char FALSE multiple setraises union
component finder native sequence uses

const fixed Object short ValueBase
consumes float octet string valuetype
context getraises oneway struct void

Ericsson AB. All Rights Reserved.: orber | 37

1.6 OMG IDL to Erlang Mapping

custom home out supports wchar
default import primarykey switch wstring
double in private TRUE

Table 6.4: OMG IDL keywords

The keywords listed above must be written exactly as shown. Any usage of identifiers that collide with a keyword
isillegal. For example, long is avalid keyword; Long and LONG areillegal as keywords and identifiers. But, since
the OMG must be able to expand the IDL grammar, it is possible to use Escaped | dentifiers. For example, it is not
unlikely that nat i ve have been used in IDL-specifications as identifiers. One option is to change al occurrences
tomyNat i ve. Usually, it is necessary to change programming language code that depends upon that IDL as well.
Since Escaped Identifiers just disable type checking (i.e. if it is a reserved word or not) and leaves everything else
unchanged, it is only necessary to update the IDL-specification. To escape an identifier, simply prefix it with _. The

following IDL-codeisillegal:

typedef string native;

interface i {

18
s

void foo(in native Arg);

With Escaped Identifiers the code will look like:

typedef string native;

interface i {

void foo(in native Arg);

};
s

1.6.16 Type Code Representation

Type Codes are used in any values. To avoid mistakes, you should use access functions exported by the Data Types

modules (e.g. struct, union etc) or the orber_tc module.

Type Code

Example

tk_null

tk_void

tk_short

tk_long

tk_longlong

tk_ushort

tk_ulong

tk_ulonglong

38 | Ericsson AB. All Rights Reserved.: orber

1.6 OMG IDL to Erlang Mapping

tk_float

tk_double

tk_boolean

tk_char

tk_wchar

tk_octet

tk_any

tk_TypeCode

tk_Principal

{tk_objref, IFRId, Name}

{tk_objref, "IDL:M1\I1:1.0", "11"}

{tk_struct, IFRId, Name, [{ ElemName, ElemTC}]}

{tk_struct, "IDL:M1\S1:1.0", "S1", [{"d", tk_long},
{"b", tk_char}]}

{tk_union, IFRId, Name, DiscrTC, DefaultNr, [{ Label,
ElemName, ElemTC}]}

Note: DefaultNr tells which of tuplesin the case list that
is default, or -1 if no default

{tk_union, "IDL:U1:1.0","U1", tk long, 1, [{1, "a",
tk_long}, { default, "b", tk_char}]}

{tk_enum, IFRId, Name, [ElemName]}

{tk_enum, "IDL:E1:1.0", "E1", ["al", "a2"]}

{tk_string, Length} {tk_string, 5}
{tk_wstring, Length} {tk_wstring, 7}
{tk_fixed, Digits, Scal€} {tk_fixed, 3, 2}

{tk_sequence, ElemTC, Length}

{tk_sequence, tk_long, 4}

{tk_array, ElemTC, Length}

{tk_array, tk_char, 9}

{tk_dlias, IFRId, Name, TC}

{tk_alias, "IDL:T1:1.0", "T1", tk_short}

{tk_except, IFRId, Name, [{ ElemName, ElemTC}]}

{tk_except, "IDL:ExcL:1.0", "Excl", [{"a", tk_long},
{"b", {tk_string, 0} }]}

Table 6.5: Type Code tuples

Ericsson AB. All Rights Reserved.: orber | 39

1.7 CosNaming Service

1.7 CosNaming Service

1.7.1 Overview of the CosNaming Service

The CosNaming Service is a service developed to help users and programmers identify objects by human readable
names rather than by a reference. By binding a name to a naming context (another object), a contextual reference is
formed. This is helpful when navigating in the object space. In addition, identifying objects by name allows you to
evolve and/or relocate objects without client code modification.

The CosNaming service has some concepts that are important:

e namebinding - aname to object association.

* namingcontext - isan object that contains a set of name bindingsin which each nameisunique. Different names
can be bound to the same object.

* tobind aname- isto create a name binding in a given context.

e toresolve a name - isto determine the object associated with the name in a given context.

A name is aways resolved in a context, there no absolute names exist. Because a context is like any other object, it

can also be bound to aname in a naming context. Thiswill result in a naming graph (a directed graph with notes and

labeled edges). The graph allows more complex names to refer to an object. Given a context, you can use a sequence

to reference an object. This sequenceis henceforth referred to as name and the individual elementsin the sequence as

name components. All but the last name component are bound to naming contexts.

The diagram in figure 1 illustrates how the Naming Service provides a contextual relationship between objects,
NamingContexts and NameBindings to create an object locality, as the object itself, has no name.

40 | Ericsson AB. All Rights Reserved.: orber

1.7 CosNaming Service

. Marmng Context O Object

EReany
—— NameBinding .1 Maming Service

Figure 7.1: Figure 1: Contextual object relationships using the Naming Service.

The naming contexts provide adirectory of contextual reference and naming for objects (an object can appear to have
more than one name).

In figure 1 the object to the right can either be called al pha from one context or ganmra from another.

Ericsson AB. All Rights Reserved.: orber | 41

1.7 CosNaming Service

The Naming Service hasan initial naming context, which is shown in the diagram as the top-most object in the naming
graph. It hastwo namesbet a and epsi | on, which are bound to other naming contexts. Theinitial naming context is
awell known location used to share acommon name space between multiple programs. Y ou can traverse the naming
graph until you reach a name, which is bound to an object, which is not a naming context.

We recommend reading chapter 12, CORBA Fundamentalsand Programming, for detailed information regarding
the Naming Service.

1.7.2 The Basic Use-cases of the Naming Service
The basic use-cases of the Naming Service are:

e Fetchinitia reference to the naming service.
e Creating anaming context.

» Binding and unbinding names to objects.

e Resolving aname to an object.

o Listing the bindings of a naming context.

« Destroying a naming context.

Fetch Initial Reference to the Naming Service

In order to use the naming service you have to fetch an initial referenceto it. Thisis done with:

NS = corba:resolve initial references("NameService").

NS in the other use-cases refersto thisinitial reference.

Creating a Naming Context
Therearetwo functionsfor creating anaming context. Thefirst function, which only createsanaming context object is:
NC = 'CosNaming NamingContext':new_ context(NS).

The other function creates a naming context and binds it to a name in an already existing naming context (the initial
context in this example):

NC = 'CosNaming NamingContext':bind new context(NS, lname:new(["new"])).

Binding and Unbinding Names to Objects

The following stepsillustrate how to bind/unbind an object reference to/from aname. For the example below, assume
that the NamingContexts in the path are already bound to the name / wor kgr oup/ ser vi ces, and that reference
to the services context are in the variable Sc.

e Usethe naming library functions to create a name

Name = lname:new(["object"]).

¢ Use CosNaming::NamingContext::bind() to bind a name to an object

'CosNaming NamingContext':bind(Sc, Name, Object).

e Use CosNaming::NamingContext::unbind() to remove the NameBinding from an object

'CosNaming NamingContext':unbind(Sc, Name).

42 | Ericsson AB. All Rights Reserved.: orber

1.7 CosNaming Service

Objects can have more than one name, to indicate different paths to the same object.

Resolving a Name to an Object
The following steps show how to retrieve the object reference to the service context above (/workgroup/services).

e Usethe naming library functions to create a name path:

Name = lname:new(["workgroup", "services"]).

» Use CosNaming::NamingContext::resolve() to to resolve the name to an object
Sc = 'CosNaming NamingContext':resolve(NS, Name).
An aternative isto use:
Sc = corba:string to object("corbaname:rir:/NameService#workgroup/services/").
The cor banane schemais described further in the Interoperable Naming Service section.

Listing the Bindings in a NamingContext
e Use CosNaming::NamingContext::list() to list all the bindingsin a context
The following code retrieves and lists up to 10 bindings from a context.

{BList, BIterator} = 'CosNaming NamingContext':list(Sc, 10).

lists:foreach(fun({{Id, Kind},BindingType}) -> case BindingType of
nobject ->
io:format("id: %s, kind: %s, type: object~n", [Id, Kind]);
->
io:format("id: %s, kind: %s, type: ncontext~n", [Id, Kind])
end end,
Blist).

Normally a The binding iterator (Like a book mark) indicates which objects have been read from the list.is helpful
in situations where you have alarge number of objectsin alist, asthe programmer then can traverse it more easily.
In Erlang it is not needed, because lists are easily handled in the language itself.

Remember that the Bindingl terator (Blterator in the example) isan object and thereforemust ber emoved otherwise
dangling processes will occur. Use CosNani ng: : Bi ndi nglt erator:: destroy() toremoveit.

'CosNaming NamingContext':destroy(BIterator).

Destroying a Naming Context

The naming contexts are persistent and must be explicitly removed. (they are also removed if al Orber nodes in the
domain are stopped).

e Use CosNaming::NamingContext::destroy() to remove a NamingContext

Ericsson AB. All Rights Reserved.: orber | 43

1.7 CosNaming Service

'CosNaming NamingContext':destroy(Sc).

1.7.3 Interoperable Naming Service

The OMG specifies URL schemes, which represent a CORBA object and a CORBA object bound in aNamingContext,
for resolving references from other ORB:s. As of today, three schemes are defined:

o IOR

e corbaloc

e corbaname
IOR

A stringified IOR isavalid URL format but difficult for humans to handle through non-electronic means. This URL
format does not depend on a specific Name Service and, thus, is robust and insulates the client from the encapsul ated
transport information and object key used to reference the object.

corbaloc

The notation of this schemeis similar to the more well known URL HTTP, and the full cor bal oc BNFis:

<corbaloc> "corbaloc:"<obj addr list>["/"<key string>]
<obj addr list> [<obj addr>","]*<obj addr>
<obj addr> <prot _addr> | <future prot addr>

<prot_addr>

<rir prot addr>
<rir prot token>
<future prot addr>
<future prot id>
<iiop prot addr>
<iiop id>

<iiop default>

<rir prot addr> | <iiop prot addr>
<rir prot token>":"

rir

<future prot id><future prot addr>
<future prot token>":"

<iiop id><iiop addr>

<iiop default> | <iiop prot token>":"

<iiop prot token> "iiop"

<iiop_addr> <version><host>[":"<port>]

<host> <DNS-style Host Name> | <ip v4 address> | "["<ip v6 address>"]"
<version> <major>"."<minor>"@" | empty string

<port> number

<major> number

<minor> number

<DNS-style Host Name> string

<ip v4 address> string

<ip v6 address> string

<key string> for example NameService

The cor bal oc scheme consists of 3 parts:

* Protocol - asof today i i op orrir issupported. Usingri r meansthat we will resolve the given Key localy,
i.e, thesameasusingcor ba: resol ve_initial _references("NameService").

e 1IOP address - this address can be divided into Ver si on, Host and Por t . If the version or port are left out
they will be set to the default values 1. 0 and 2809 respectively.

* KeyString - an object key, e.g., "NameService". If no Key is supplied the default value "NameService” will be
used.

A cor bal oc can be passed used together with
corba:string_to_object("corbal oc::1.0@rl ang. org: 4001/ NaneService") or st as
the configuration variables orbl nitil Ref or orbDefaul tlnitil Ref and calling
corba:resolve_initial _references("NanmeService"). For more information see the Orber
installation chapter. cor bal oc can also be used together with cor banane to gain an easy accessto aName Service.

44 | Ericsson AB. All Rights Reserved.: orber

1.7 CosNaming Service

Currently, the OMG defines a set of reserved keys and the type of object, listed below, they should be associated
with. The NaneSer vi ce key may not be changed in Orber. If you want to add one of the reserved keys as an initial

service, smply use:

1> Factory = cosNotificationApp:start global factory().
2> corba:add initial service("NotificationService", Factory).

This object can then be easily resolved by any other ORB, supporting the Interoperable Naming Service, by using:

3> NF = corba:string to object("corbaloc::1.0@erlang.org:4001/NotificationService").

String Name Object Type
RootPOA PortableServer::POA
POA Current PortableServer::Current
InterfaceRepository CORBA::Repository
NameService CosNaming::NamingContext
TradingService CosTrading::Lookup
SecurityCurrent SecurityLevel 1::Current/SecurityL evel 2::Current

TransactionCurrent

CosTransaction::Current

DynAnyFactory

DynamicAny::DynAnyFactory

ORBPolicyManager

CORBA::PolicyManager

PolicyCurrent

CORBA::PalicyCurrent

NotificationService

CosNotifyChannel Admin::EventChannel Factory

TypedNotificationService

CosTypedNotifyChannel Admin:: TypedEventChannel Fag

tory

CodecFactory

| OP::CodecFactory

PlCurrent

Portablel nterceptors::Current

Table 7.1: Currently reserved key strings

corbaname

Thecor bananme URL schemeis an extension of the cor bal oc scheme, and the full cor banane BNF is:

<corbaname>
<obj addr list>
<key string>

as described above.
as described above.

"corbaname: "<obj addr list>["/"<key string>]["#"<string name>]

The st ri ng_name, concatenated to the cor bal oc string, identifies a binding in a naming context. A name
component consists of two parts, i.e., i d and ki nd, which is represented as follows:

Ericsson AB. All Rights Reserved.: orber | 45

1.8 How to use security in Orber

String Name Name Sequence Comment

The first component has no
"id1/./id3.kind3" [{"ig2",""},{"",""},{"id3","kind3"}] | kind defined while the second
component's both fields are empty.

Not allowed, must insert a".'

"id1//id3.kind3" ERROR between the /.

The first component's fields are both
"idl.kindl/." [{"id1","kind1"} {"",""}] set while the second component's
both fields are empty.

An ld with atrailing '." is not

"id1.kindl/id2." ERROR allowed.

Since'.' and /' are used to separate
"I\Wdv/i\.d2" [{"i/d1",""} {"i.d2",""}] the components, these tokens must
be escaped to be correctly converted.

Table 7.2: Stringified Name representation

After creating a stringified Name we can either use:

NameStr = "org.erlang",
NS = corba:resolve initial references("NameService"),
Obj = 'CosNaming NamingContextExt':resolve str(NS, NameStr),

or concatenate the Name String using:

NameStr = "Swedish/Soccer/Champions",

Address = "corbaname:iiop:1l.0@www.aik.se:2000/NameService",

NS = corba:resolve initial references("NameService"),

URLStr = 'CosNaming NamingContextExt':to url(NS, Address, NameStr),
0bj = corba:string to object(URLStr),

Using the first aternative, the configuration variables or bl ni ti | Ref and orbDefaul tinitil Ref, will
determine which other ORB's or the local Name Service Orber will try to resolve the given string from. The second
alternative allows us to override any settings of the configuration variables.

The function to_url /3 will perform any necessary escapes compliant with IETF/RFC 2396. US-ASCII
adphanumeric charactersand™, " | "/" | ":" | "?" | "@ | "& | "=" | "+ "$" | ;|
St L L e o (] arenot escaped.

1.8 How to use security in Orber
1.8.1 Security in Orber

Introduction

Orber SSL provides authentication, privacy and integrity for your Erlang applications. Based on the Secure Sockets
Layer protocol, the Orber SSL ensuresthat your Orber clientsand servers can communicate securely over any network.
Thisisdone by tunneling I1OP through an SSL connection. To get the node secure you will also need to have afirewall
which only lets through connections to certain ports.

46 | Ericsson AB. All Rights Reserved.: orber

1.9 Orber Stubs/Skeletons

Enable Usage of Secure Connections

To enable a secure Orber domain you have to set the configuration variable secur e which currently only can have one
of two values; no if no security for 1OP should be used and ssl if secure connections is needed (ssl is currently the
only supported security mechanism).

The default is no security.

Configurations when Orber is Used on the Server Side
Thereisavariable to conficure Orber's SSL behavior on the server side.

e sd _server_options- whichisalist of optionsto sdl. See the SS. application for further descriptions on these
options.

There also exist an API function for accessing the value of this variable:
e orber:sd_server _options/0

Configurations when Orber is Used on the Client Side

When the Orber enabled application is the client side in the secure connection the different configurations can be set
per client process instead and not for the whole domain as for incoming calls.

Thereisavariable to set default values for the domain but they can be changed per client process.

e sd client_options- whichisalist of optionsto ssl. Seethe SSL application for further descriptions on these
options.

There also exist two API functions for accessing and changing the values of this variable in the client processes.
Access function:

e orber:sd_client_options/O

Modify function:

e orber:set_sd_client_options/1

1.9 Orber Stubs/Skeletons

1.9.1 Orber Stubs and Skeletons Description
This example describes the API and behavior of Orber stubs and skeletons.

Server Start

Orber servers can be started in several ways. The chosen start functions determines how the server can be accessed
and its behavior.

Using Modul e_I nterface: oe create() oroe_create |ink():
* Noinitial data can be passed.

e Cannot be used as a supervisor child start function.

* Only accessible through the object reference returned by the start function. The object reference is no longer
valid if the server dies and isrestarted.

Using Modul e_I nterface: oe_create(Env) oroe_create_|ink(Env):

e Initial datacan be passed using Env.
e Cannot be used as a supervisor child start function.

Ericsson AB. All Rights Reserved.: orber | 47

1.9 Orber Stubs/Skeletons

» Only accessible through the object reference returned by the start function. The object reference is no longer
valid if the server dies and is restarted.

Using Modul e_I nterface: oe_create(Env, Options):

* Initial data can be passed using Env.
e Cannot be used as a supervisor child start function.

» Accessible through the object reference returned by the start function. If the option { r egnane, RegNane}
is used the object reference stays valid even if the server has been restarted.

« Iftheoptions{persi stent, true} and{regnane, {global, Name}} isused, theresult froman
object invocation will be the exception 'OBJECT_NOT_EXIST" only if the object has terminated with reason
nor mal or shut down. If the object isin the process of restarting, the result will be{ error, Reason} or
a system exception is raised.

e Theoption{pseudo, true} makesit possibleto start create non-server objects. There are, however, some
limitations, which are further described in the Pseudo obj ect s section.

Using Modul e_I nterface: oe _create_|ink(Env, Options):

» Initial data can be passed using Env.
e Can beused as a supervisor child start function if theoption{ sup_chi | d, true} used.

» Accessible through the object reference returned by the start function. If the option { r egnane, RegNane}
is used the object reference stays valid even if the server has been restarted.

« |ftheoptions{persistent, true} and{regnane, {global, Nane}} isused, theresult froman
object invocation will be the exception 'OBJECT_NOT_EXIST" only if the object has terminated with reason
nor mal or shut down. If the object isin the process of restarting, the result will be{ error, Reason} or
a system exception is raised.

» For starting a server as a supervisor child you should use the options [{ per si stent, true},
{regnane, {global, Nane}}, {sup_child, true}] andof typetransient. Thisconfiguration
allows you to delegate restarts to the supervisor and still be able to use the same object reference and be able to
seeif the server is permanently terminated. Please note you must use super visor/stdlib-1.7 or later and that the
itreturns{ ok, Pi d, Cbject} instead of just Obj ect .

» Usingtheoption{ pseudo, true} havethe sameeffect asusing oe_cr eat e/ 2.

To avoid flooding Orber with old object references start erlang using the flag -orber objectkeys gc time Time,
which will remove all object references related to servers being dead for Time seconds. To avoid extra overhead,
i.e., performing garbage collect if no persistent objects are started, the objectkeys gc_time default valueisinfinity.
For more information, see the orber and corba documentation.

Orber dtill allow oe_create(Env, {Type, RegNane}) and oe _create_link(Env,
{ Type, RegNane}) to be used, but may not in future releases.

Pseudo Objects
This section describes Orber pseudo objects.

The Orber stub can be used to start apseudo obj ect, which will create a non-server implementation. A pseudo
object introduce some limitations:

e Thefunctionsoe create |ink/2isequa tooe_create/2,i.e,nolink canor will be created.

48 | Ericsson AB. All Rights Reserved.: orber

1.9 Orber Stubs/Skeletons

e TheBlF:s self() andprocess_flag(trap_exit,true) behavesincorrectly.

e Thel Coption{{inmpl, "M:I"}, "other _inpl"} hasno effect. The cal-back functions must be
implemented in afilecalledM | _i mpl . er |

* The call-back functions must be implemented asif thel Coption{t hi s, "M : 1"} wasused.

* Thegen_server St at e changes have no effect. The user can provide information viathe Env start parameter
and the State returned fromi ni t / 2 will be the State passed in following invocations.

e Theserver reply Ti neout hasno effect.

* Thecompileoption f r omhas no effect.

e« Theoption{pseudo, true} overridesal other start options.

* Only the functions, besides own definitions, i ni t / 2 (called viaoe_create*/2) andt er mi nat e/ 2 (called via
corba:dispose/1) must be implemented.

By adopting therulesfor pseudo objectsdescribed abovewecanuseoe_cr eat e/ 2 tocreateser ver or pseudo
objects, by excluding or including the option { pseudo, t rue}, without changing the call-back module.

To create a pseudo object do the following:

fingolfin 127> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)

1> ic:gen(myDefinition, [{this, "MyModule::MyInterface"}]).

Erlang IDL compiler version 20

ok

2> make:all().

Recompile: oe MyDefinition

Recompile: MyModule MyInterface

Recompile: MyModule MyInterface impl

up_to date

3> PseudoObj = MyModule MyInterface:oe create(Env, [{pseudo, true}l).

The call-back functions must be implemented as MyFuncti on(OE_THI S, State, Args), and caled by
MyModul e_MyI nterface: MyFuncti on(PseudoQbj, Args).

Call-back Module

This section provides an example of how a call-back module may be implemented.

Arguments and Replies are determined by the IDL-code and, hence, not further described here.

Ericsson AB. All Rights Reserved.: orber | 49

1.9 Orber Stubs/Skeletons

o

o

o

Cl

% Purpose :
% Created
0

-module('Module Interface impl').

Ofmccscssssssssos TNELUDES ccccssssssscssscoccccsassasssssaaas
-include lib("orber/include/corba.hrl").
-include lib(".. ..").

%% === mmmmmm EXPORTS - - - mm i m e e e e
%% Arity depends on IC configuration parameters and the IDL

%% specification.
-export([own function/X]).

%%----mmmmmmmmm- gen_server specifiC ------------mmmaiiin
-export([init/1, terminate/2, code change/3, handle info/2]).

(InitialData) ->
%% 'trap_exit' optional (have no effect if pseudo object).
r

%%--- Possible replies ---
%% Reply and await next request
{ok, State}.

Reply and if no more requests within Time the special

timeout message should be handled in the

Module Interface impl:handle info/2 call-back function (use the
5% IC option {{handle info, "Module::Interface"}, true}).

{ok, State, Timeout}

X o o of
° o° o° o°

Return ignore in order to inform the parent, especially if it is a
supervisor, that the server, as an example, did not start in
accordance with the configuration data.

nore

If the initializing procedure fails, the reason

is supplied as StopReason.

stop, StopReason}

o o of
o o o°

i

® XQ

~ o o

terminate(Reason, State) ->
ok.

code change(0ldVsn, State, Extra) ->
{ok, NewState}.

%% If use IC option {{handle info, "Module::Interface"}, true}.
%% (have no effect if pseudo object).
handle info(Info, State) ->

%%--- Possible replies ---

%% Await the next invocation.

{noreply, State}.

%% Stop with Reason.

{stop, Reason, State}.

%--- two-way ------------------ oo
% If use IC option {this, "Module:Interface"}
% (Required for pseudo objects)

o o o°

50 | Ericsson AB. All Rights Reserved.: orber

1.10 CORBA System and User Defined Exceptions

own function(This, State, .. Arguments ..) ->

%% IC options this and from

own function(This, From, State, .. Arguments ..) ->
%% IC option from

own function(From, State, .. Arguments ..) ->

%% Send explicit reply to client.
corba:reply(From, Reply),

%%--- Possible replies ---
{noreply, State}

{noreply, State, Timeout}

%% If not use IC option {this, "Module:Interface"}
own function(State, .. Arguments ..) ->

%%--- Possible replies ---

%% Reply and await next request

{reply, Reply, State}

Reply and if no more requests within Time the special

timeout message should be handled in the

Module Interface impl:handle info/2 call-back function (use the
IC option {{handle info, "Module::Interface"}, true}).
eply, Reply, State, Timeout}

s P o o o
=5 o° o° o° o°

%% Stop the server and send Reply to invoking object.
{stop, StopReason, Reply, State}

%% Stop the server and send no reply to invoking object.
{stop, StopReason, State}

%% Raise exception. Any changes to the internal State is lost.
corba:raise(Exception).

fgoce QME-WRY cccccccc0e00000000000000000000000000055555555500
% If use IC option {this, "Module:Interface"}
% (Required for pseudo objects)

own function(This, State, .. Arguments ..) ->

o o o

%% If not use IC option {this, "Module:Interface"}
own function(State, .. Arguments ..) ->

%%--- Possible results ---

{noreply, State}

% Release and if no more requests within Time the special

% timeout message should be handled in the

% Module_Interface_impl:handle_info/2 call-back function (use the
% IC option {{handle info, "Module::Interface"}, true}).
noreply, State, Timeout}

~s P o o o

%% Stop the server with StopReason.
{stop, StopReason, State}

o°

mmam e nonasaoas 2 OF [JRULE ccccnscosanpanancnasasoanaanon s

1.10 CORBA System and User Defined Exceptions
1.10.1 System Exceptions

O ber, or any other ORB, may raise a Syst em Except i ons. These exceptions contain status- and minor-fields
and may not appear in the operations raises exception IDL-definition.

Ericsson AB. All Rights Reserved.: orber | 51

1.10 CORBA System and User Defined Exceptions

Status Field
The status field indicates if the request was completed or not and will be assigned one of the following Erlang atoms:

Status Description

The operation was invoked on the target object but

an error occurred after the object replied. This occur,
for example, if a server replies but Orber is not able to
marshal and send the reply to the client ORB.

'COMPLETED_YES

Orber failed to invoke the operation on the target object.

COMPLETED_NO This occur, for example, if the object no longer exists.

Orber invoked the operation on the target object but
'COMPLETED_MAYBE' an error occurred and it isimpossible to decide if the
request really reached the object or not.

Table 10.1: System Exceptions Status

Minor Field

The minor field contains an integer (VMCID), which is related to a more specific reason why an invocation failed.
Thefunction or ber : except i on_i nf o/ 1 can be used to map the minor code to a string. Note, for VMCID:s not
assigned by the OMG or Orber, the documentation for that particular ORB must be consulted.

Supported System Exceptions
The OMG CORBA specification defines the following exceptions:

* 'BAD_CONTEXT" - if arequest does not contain a correct context this exception is raised.

« 'BAD_INV_ORDER' - this exception indicates that operations has been invoked operationsin the wrong
order, which would cause, for example, a dead-lock.

« 'BAD_OPERATION' - raised if the target object exists, but that the invoked operation is not supported.
« 'BAD_PARAM' - isthrown if, for example, a parameter is out of range or otherwise considered illegal.

« 'BAD_TYPECODE' - if illegal type code is passed, for example, encapsulated in an any data type the
' BAD_TYPECODE' exception will be raised.

'BAD_QOS - raised whenever an object cannot support the required quality of service.

e 'CODESET_INCOMPATIBLE' - raised if two ORB's cannot communicate due to different representation of,
for example, char and/or wehar .

e 'COMM_FAILURE' - raised if an ORB is unable to setup communication or it islost while an operationisin
progress.

e 'DATA_CONVERSION' - raised if an ORB cannot convert data received to the native representation. See also
the' CODESET | NCOMPATI BLE' exception.

« 'FREE_MEM' - the ORB failed to free dynamic memory and failed.

e 'IMP_LIMIT" - animplementation limit was exceeded in the ORB at run time. A object factory may, for
example, limit the number of object clients are allowed to create.

* 'INTERNAL' - aninternal failure occurred in an ORB, which is unrecognized. Y ou may consider contacting
the ORB providers support.

 'INTF_REPOS - the ORB was not able to reach the interface repository, or some other failure relating to the
interface repository is detected.

52 | Ericsson AB. All Rights Reserved.: orber

1.10 CORBA System and User Defined Exceptions

'INITIALIZE' - the ORB initialization failed due to, for example, network or configuration error.
'INVALID_TRANSACTION' - israised if the request carried an invalid transaction context.

'INV_FLAG' - an invalid flag was passed to an operation, which caused, for example, a connection to be
closed.

'INV_IDENT" - this exception indicates that an IDL identifier isincorrect.

'INV_OBJREF' - thisexception israised if an object reference is malformed or anil reference (see also
corba:create nil_objref/0).

'INV_POLICY' - theinvocation cannot be made due to an incompatibility between policy overrides that apply
to the particular invocation.

'"MARSHAL' - this exception may be raised by the client- or server-side when either ORB is unable to marshal/
unmarshal requests or replies.

'NO_IMPLEMENT' - if the operation exists but no implementation exists, this exception is raised.
'NO_MEMORY' - the ORB has run out of memory.

'NO_PERMISSION' - the caller has insufficient privileges, such as, for example, bad SSL certificate.
'NO_RESOURCES - ageneral platform resource limit exceeded.

'NO_RESPONSE' - no response available of a deferred synchronous request.

'OBJ_ADAPTER' - indicates administrative mismatch; the object adapter is not able to associate an object
with the implementation repository.

'OBJECT_NOT_EXIST' - the object have been disposed or terminated; clients should remove all copies of
the object reference and initiate desired recovery process.

'PERSIST_STORE' - the ORB was not able to establish a connection to its persistent storage or data contained
in the the storage is corrupted.

'REBIND' - arequest resulted in, for example, a' LOCATI ON_FORWARD message; if the policies are
incompatible this exception is rai sed.

'"TIMEOUT" - raised if arequest fail to complete within the given time-limit.

'"TRANSACTION_MODE' - atransaction policy mismatch detected.

'"TRANSACTION_REQUIRED' - atransaction is required for the invoked operation but the request contained
no transaction context.

'"TRANSACTION_ROLLEDBACK" - the transaction associated with the request has already been rolled back
or will be.

'"TRANSACTION_UNAVAILABLE' - no transaction context can be supplied since the ORB is unable to
contact the Transaction Service.

'"TRANSIENT' - the ORB could not determine the current status of an object sinceit could not be reached. The
error may be temporary.

'"UNKNOWN' - isthrown if an implementation throws a non-CORBA, or unrecognized, exception.

1.10.2 User Defined Exceptions

User exceptions is defined in IDL-files and is listed in operations raises exception listing. For example, if we have
the following IDL code:

Ericsson AB. All Rights Reserved.: orber | 53

1.10 CORBA System and User Defined Exceptions

module MyModule {

exception MyException {};
exception MyExceptionMsg { string ExtraInfo; };

interface MyInterface {

void foo()
raises(MyException);

void bar()
raises(MyException, MyExceptionMsg);

void baz();
};
+i

1.10.3 Throwing Exceptions
To be able to raise MyExcept i on or MyExcept i onMsg exceptions, the generated MyModul e. hrl1 must be
included, and typical usageis:

-module('MyModule MyInterface impl').
-include("MyModule.hrl").

bar(State) ->
case TestingSomething of
ok ->
{reply, ok, State};
{error, Reason} when list(Reason) ->
corba:raise(#'MyModule MyExceptionMsg'{'ExtraInfo' = Reason});

error ->
corba:raise(#'MyModule MyException'{})

end.

1.10.4 Catching Exceptions
Depending on which operation we invoke we must be able to handle:

» foo- MyExcepti on or asystem exception.

 bar- MyExcepti on, MyExcept i onMsg or asystem exception.
* baz - asystem exception.

Catching and matching exceptions can bee done in different ways:

case catch 'MyModule MyInterface':bar(MIReference) of
ok ->
%% The operation raised no exception.
ok;
{'EXCEPTION', #'MyModule MyExceptionMsg'{'ExtraInfo' = Reason}} ->
%% If we want to log the Reason we must extract 'ExtraInfo'.
error_logger:error _msg("Operation 'bar' raised: ~p~n", [Reason]),
... do something ...;
{'EXCEPTION', E} when record(E, 'OBJECT NOT EXIST') ->
... do something ...;
{'EXCEPTION', E} ->
. do something ...
end.

54 | Ericsson AB. All Rights Reserved.: orber

1.11 Orber Interceptors

1.11 Orber Interceptors
1.11.1 Using Interceptors

For Inter-ORB communication, e.g., via | | OP, it is possible to intercept requests and replies. To be able to use
I nt er cept or s Orber the configuration parameter i nt er cept or s must be defined.

Configure Orber to Use Interceptors

The configuration parameter i nt er cept or s must be defined, e.g., as command line option:
erl -orber interceptors "{native, ['myInterceptor']}"

It is possible to use more than one interceptor; simply add them to the list and they will be invoked in the same order
asthey appear inthelist.

One can aso active and deactivate an interceptor during run-time, but this will only affect currently
existing connections. For more information, consult Orber's Reference Manua regarding the operations
orber:activate audit _trail/0/1andorber:activate audit trail/0/1.

Creating Interceptors
Each supplied interceptor must export the following functions:

e new_out_connection/3/5 - one of these operationsiis called when a client application calls an object residing
on remote ORB. If an interceptor exports both versions, arity 3 and 5, which operation that will be invoked is
Orber internal .

* new_in_connection/3/5 - one of these operationsis invoked when aclient side ORB triesto set up a connection
to the target ORB. If an interceptor exports both versions, arity 3 and 5, which operation that will beinvoked is
Orber internal .

e out_request/6 - supplies al request data on the client side ORB.
e out_request_encoded/6 - similar to out _r equest but the request body is encode.

e in_request_encoded/6 - after anew request arrives at the target ORB the request datais passed to the
interceptor in encoded format.

e in_request/6 - prior to invoking the operation on the target object, the interceptor i n_r equest iscalled.

e out_reply/6 - after the target object replied the out _r epl y operation is called with the result of the object
invocation.

e out_reply_encoded/6 - before sending areply back to the client side ORB this operation is called with the
result in encoded format.

* in_reply_encoded/6 - after the client side ORB receives areply thisfunction is called with the reply in encoded
format.

e in_reply/6 - before delivering the reply to the client this operation isinvoked.

e closed_in_connection/1 - when a connection is terminated on the client side this function is called.

e closed_out_connection/1 - if an outgoing connection is terminated this operation will be invoked.

The operations new out connection, new_in_connection, closed in_connection and

cl osed_out connect i on operationsare only invoked once per connection. The remaining operationsare called,
as shown below, for every Request/Reply to/from remote CORBA Objects.

Ericsson AB. All Rights Reserved.: orber | 55

1.11 Orber Interceptors

nm@cﬁon dosed_@cﬁon
est
_reque

in re coded out reply encoded
in st O RB out peply
W [R—
Server

Figure 11.1: The Invocation Order of Interceptor Functions.

1.11.2 Interceptor Example
Assume we want to create a simple access service which purpose is to:

* Only alow incoming request from ORB's residing on a certain set of nodes.

* Restrict the objects any client may invoke operations on.

» Only alow outgoing requests to call alimited set of external ORB's.

e Add achecksum to each binary request/reply body.

To restricts the access we use a pr ot ect ed and naned ets-table holding all information. How the ets-table is
initiated and maintained isimplementation specific, but it contain { Node, bj ect Tabl e, Checksumvbdul e}
where Node is used as ets-key, Obj ect Tabl e is areference to another ets-table in which we store which objects
the clients are alowed to invoke operations on and Checksunivodul e determines which module we should use to
handle the checksums.

56 | Ericsson AB. All Rights Reserved.: orber

1.11 Orber Interceptors

new in connection(Arg, Host, Port) ->
%% Since we only use one interceptor we do not care about the
%% input Arg since it is set do undefined by Orber.
case ets:lookup(in_access table, Host) of
[1-»
%% We may want to log the Host/Port to see if someone tried
%% to hack in to our system.
exit("Access not granted");
[{Host, ObjTable, ChecksumModule}] ->
{ObjTable, ChecksumModule}
end.

The returned tuple, i.e., { ObjTable, ChecksumModule}, will be passed as the first argument whenever invoking one
of the interceptor functions. Unless the connection attempt did not fail we are now ready for receiving requests from
the client side ORB.

When anew request comesinthefirst interceptor functionto beinvokedisi n_r equest _encoded. Wewill remove
the checksum from the coded request body in the following way:

in_request encoded({ObjTable, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:remove checksum(Bin),
{NewBin, Extra}.

If the checksum check fails the Checksunivbdul e should invoke exit/1. But if the check succeeded we are now
ready to check if the client-ORB objects are allowed to invoke operations on the target object. Please note, itispossible
to run both checks ini n_r equest _encoded. Please note, the checksum calculation must be relatively fast to
ensure a good throughput.

If we want to we can restrict any clientsto only use a subset of operations exported by a server:

in request({ObjTable, ChecksumModule}, ObjKey, Ctx, Op, Params, Extra) ->
case ets:lookup(ObjTable, {ObjKey, Op}) of
[1-»
exit("Client tried to invoke illegal operation");
[SomeData] ->
{Params, Extra}
end.

At this point Orber are now ready to invoke the operation on the target object. Since we do not care about what the
reply istheout _r epl y function do nothing, i.e.:

out reply(, , , , Reply, Extra) ->
{Reply, Extra}.

If the client side ORB expects a checksum to be added to the reply we add it by using:

out _reply encoded({ObjTable, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:add checksum(Bin),
{NewBin, Extra}.

If we manipulate the binary as above the behavior must be Bin ==
renmove_checksun(add_checksum(Bi n)).

For outgoing requests the principle is the same. Hence, it is not further described here. The complete interceptor
module would look like:

Ericsson AB. All Rights Reserved.: orber | 57

1.11 Orber Interceptors

-module(myInterceptor).

%% Interceptor functions.
-export([new out connection/3,
new_in connection/3,
closed in connection/1,
closed out connection/1,

in_request _encoded/6,
in_reply encoded/6,
out _reply encoded/6,
out request encoded/6,
in_request/6,
in_reply/6,

out reply/6,

out request/6]).

new _in connection(Arg, Host, Port) ->
%% Since we only use one interceptor we do not care about the
%% input Arg since it is set do undefined by Orber.
case ets:lookup(in_access table, Host) of
[1 -»
%% We may want to log the Host/Port to see if someone tried
%% to hack in to our system.
exit("Access not granted");
[{Host, ObjTable, ChecksumModule}] ->
{ObjTable, ChecksumModule}
end.

new out connection(Arg, Host, Port) ->
case ets:lookup(out access table, Host) of
[1-»
exit("Access not granted");
[{Host, ObjTable, ChecksumModule}] ->
{ObjTable, ChecksumModule}
end.

in _request encoded({ , ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:remove checksum(Bin),
{NewBin, Extra}.

in _request({ObjTable, }, ObjKey, Ctx, Op, Params, Extra) ->
case ets:lookup(ObjTable, {ObjKey, Op}) of
[1 ->
exit("Client tried to invoke illegal operation");
[SomeData] ->
{Params, Extra}
end.

out reply(, , , _, Reply, Extra) ->
{Reply, Extra}.

out reply encoded({ , ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:add checksum(Bin),
{NewBin, Extra}.

out request({ObjTable, }, ObjKey, Ctx, Op, Params, Extra) ->
case ets:lookup(ObjTable, {ObjKey, Op}) of
[1 ->
exit("Client tried to invoke illegal operation");
[SomeData] ->
{Params, Extra}
end.

out request encoded({ , ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule:add checksum(Bin),

58 | Ericsson AB. All Rights Reserved.: orber

1.12 OrberWeb

{NewBin, Extra}.

in_reply encoded({ , ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
NewBin = ChecksumModule: remove checksum(Bin),
{NewBin, Extra}.

in reply(, , , , Reply, Extra) ->
{Reply, Extra}.

closed _in connection(Arg) ->
%% Nothing to clean up.
Arg.

closed out connection(Arg) ->
%% Nothing to clean up.
Arg.

One can also use interceptors for debugging purposes, e.g., print which objects and operations are invoked
with which arguments and the outcome of the operation. In conjunction with the configuration parameter
or ber _debug_|I evel itisrather easy to find out what went wrong or just to log the traffic.

1.12 OrberWeb

1.12.1 Using OrberWeb

O ber Wb isintended to make things easier when devel oping and testing applicationsusing Or ber . The user isable
to interact with Or ber viaa GUI by using aweb browser.

O ber Wb requiresthat the application WebTool isavailable and started on at least one node; if so Or ber Wb can
usualy be used to to access Or ber nodes supporting the Interoperable Naming Service. How to start OrberWeb is
described in Sarting OrberWeb

The Or ber Wb GUI consists of aMenu Frame and a Data Frames.

The Menu Frame
The menu frame consists of ;

* NodelList - which node to access.

e Configuration - see how Orber on the current node is configured.

* Name Service - browse the NameService and add/remove a Context/Object.

e |FR Types- seewhich types areregisteredin IFR.

« Create Object - create a new object and, possibly, storeit in the NameService.

Ericsson AB. All Rights Reserved.: orber | 59

1.12 OrberWeb

maln@shagrat

Menu

Configuration

Name Service

IER Types

Create Object

Reload

Figure 12.1: The Menu Frame.

Which nodes we can access is determined by what is returned when invoking [node() | nodes()] . If you cannot
seeadesired nodeinthelist, you haveto call net _adm pi ng(Node) . But thisrequiresthat the nodeis started with
the distribution switched on (e.g. er| - snane myNode); thisalso goes for the node Or ber Wb is running on.

The Configuration Data Frame

When accessing the Configuration page OrberWeb presents atable containing the configuration settingsfor the target
node.

60 | Ericsson AB. All Rights Reserved.: orber

1.12 OrberWeb

Configuration

Key Value
IIOP Request Timeout infinity
IIOP Connection Timeout infinity
[IOP Setup Connection Timeout infinity
I[IOP Port 4001
Bootstrap Port 4001
Orber Domain Wy Domaln
Nodes in Domain [main@shazrat]
Default GIOP Version 11,1}
Objectkeys GC infinity
Using Interceptors false
Debug Level 10
ORBInitRef undefined
ORBDefaultinitRef undefined

[l {key, value}] Change it

Figure 12.2: Configuration Settings.

It is also possible to change those configuration parameters which can be changed when Orber is already started. The
Key-Vauepairsisgiven asalist of tuples, e.g., [{orber_debug_level, 5}, {iiop_timeout, 60}, {giop_version, {1,2}}].
If one tries to update a parameter which may not be changed an error message will be displayed.

The IFR Data Frame

All typesregistered in the IFR (Interface Repository) which have an associated | FR-id can be viewed viathe IFR Data
Frame. Thisgivesthe user an easy way to confirm that all necessary DL -specifications have been properly registered.
All available types are listed when choosing | FR Types in the menu frame:

Ericsson AB. All Rights Reserved.: orber | 61

1.12 OrberWeb

Interface Repository

Modules
Interfaces

Structs
Unions

Exceptions

Constants

Enumerants
Aliases
Attributes

Operations
Contained

Typedef

Figure 12.3: Select Type.

After selecting atype all definitions of that particular type will be displayed. If no such bindings exists the table will
be empty.

Since Orber adds definitions to the IFR when it isinstalled (e.g. CosNaming), not only types defined by the user will
show up in the table. In the figure below you find the the NameService exceptions listed.

62 | Ericsson AB. All Rights Reserved.: orber

1.12 OrberWeb

Interface Repository
ir ExceptionDef
[DL:omg.org/CosNaming/NamingContext/AlreadyBound: 1.0
IDL:omg.org/CosNaming/NamingContext/CannotProceed: 1.0
IDL:omg. org/ CosNaming/ NamingContext InvalidName: 1.0

IDL:omg. org/CosNaming/NamingContext/NotEmpty: 1.0
IDL:omg. org/ CosNaming/NamingContext/NotFound: 1.0
IDL:omg. org/CosNaming/ NamingContextExt/InvalidAddress: 1.0

Go Backl

Figure 12.4: List Registered Exceptions.

The NameService Data Frame

The NameService main purposeisto make possibleto bind object references, which can client applications can resolve
and invoke operations on. Initially, the NameService is empty. The most common scenario, is that user applications
create Contexts and add objectsin the NameService. OrberWeb allows the user to do the very same thing.

When referencing an object or context you must use stringified NameComponents. For more information see the
Interoperable Naming Service. In the following example we will use the string or g/erlang/T heObj ectName, where
org and erlang will be contexts and TheObjectName the name the object will be bound to.

Since the NameService is empty in the beginning, the only thing we can do is creating a new context. Simply write
org in the input field and press New Cont ext . If OrberWeb was able to create the context or not, is shown in the
completion message. If successful, just pressthe Go Back button. Now, alink named or g should belisted in thetable.
In the right column the context typeis displayed. Contexts are associated with ncontext and objects with nobj ect.

NameService

Root Context
EMPTY

MNeswr Content

Figure 12.5: Add a New Context.

Ericsson AB. All Rights Reserved.: orber | 63

1.12 OrberWeb

To create the next level context (i.e. erlang), simply follow the link and repeat the procedure. If done correctly, atable
containing the same data as the following figure should be the result if you follow the erlang link. Note, that the path
is displayed in the yellow field.

If a context does not contain any sub-contexts or object bindings, it is possible to delete the context. If these
requirements are met, aDel et e Cont ext button will appear. A completion status message will be displayed after
deleting the context.

NameService
org/erlang

‘ Delete Context)

EMPTY

‘ MNew Contest

Figure 12.6: Delete Context.

Now it is possible to bind an object using the complete name string. To find out how thisis done using OrberWeb see
Object Creation. For now, we will just assume that an object have been created and bound as TheObjectName.

NameService

org/erlang
TheObjectName nobject

I New Context

(Go Backl

Figure 12.7: Object Stored in the NameService.

64 | Ericsson AB. All Rights Reserved.: orber

1.12 OrberWeb

If you follow the TheObjectName link, data about the bound object will be presented. Note, depending on which
type of object it is, the information given differs. It would, for example, not be possible to display a Pid for all types
of objects since it might reside on a Java-ORB. In the figure below a CosNotification FilterFactory have been bound
under the name or g/erlang/T heObjectName.

NameService

Key Value
IFR Id IDL:omg.org/CosNotifyFilter /FilterFactory: 1.0
Stored As org/erlang/TheObjectName
External Object false
Non Existent false
Pid < (0.597.0=
IR 00

IOR String

Operations create_mapping_filter/2
create filter/1

Go Back| ‘ Unbind] ‘ Unbind & Dispose

Figure 12.8: Object Data.

OrberWeb also makesit possible to remove a binding and dispose the associated object. Pressing Unbind the binding
will be removed but the object will still exist. But, if the Unbind and Dispose button is pressed, the binding will be
removed and the object terminated.

The Object Creation Data Frame

This part makes it possible to create a new object and, if wanted, store it the NameService.

Ericsson AB. All Rights Reserved.: orber | 65

1.12 OrberWeb

Create a New Object

Module Interface
["String", {logfile, "/tmp/MyLoggFile"}[]
[{regname, {global, "The@bjectName_.E“ 1]

Name String org/erlang/Thedb]ectName

Operation to use (@Bind Rebind

Create it|

* Module- simply type the name of the module of the object type you want to create. |f the module begins with a
capital letter, we normally must write' Modul e_I| nt er f ace' . But, when using OrberWeb, you shall NOT.
Since we cannot create linked objects thisis not an option.

e Arguments - the supplied arguments must be written asa single Erlang term. That is, asalist or tuple
containing other Erlang terms. The arguments will be passed to thei ni t function of the object. It is, however,
not possible to use Erlang records. If OrberWeb is not able to parse the arguments, an error message will be
displayed. If left empty, an empty list will be passed.

» Options - the options can be the ones listed under Module_|Interface in Orber's Reference manual. Hence,
they are not further described here. But, as an example, in the figure above we started the object as globally
registered. If no options supplied the object will be started as default.

« Name String - if left empty the object will not be registered in the NameService. Hence, it is important that
you can access the object in another way, otherwise a zombie processis created. In the previous section we used
the name string or g/er lang/TheObjectName. If we choose the same name here, the listed contexts (i.e. org and
erlang) must be created befor e we can create and bind the object to TheObjectName. If this requirement is not
met, OrberWeb cannot bind the object. Hence, the object will be terminated and an error message displayed.

e Operation to use - which option choosed will determine the behavior of OrberWeb. If you choose bind and a
binding already exists an error message will be displayed and the newly started object terminated. But if you
choose rebind any existing binding will over-written.

1.12.2 Starting OrberWeb

You may choose to start OrberWeb on node, on which Orber is running or not. But the Erlang distribution must be
started (e.g. by using -sname aNodeName). Now, all you have to do isto invoke:

Figure 12.9: Create a New Object.

erl> webtool:start().
WebTool is available at http://localhost:8888/
Or http://127.0.0.1:8888/

Type one of the URL:sin your web-browser. If you want to access the WebTool application from different machine,
just replacel ocal host with its name. For more information, see the WebTool documentation.

66 | Ericsson AB. All Rights Reserved.: orber

1.13 Debugging

1.13 Debugging
1.13.1 Tools and FAQ

Persons who use Orber for the first time may find it hard to tell what goes wrong when trying to setup communication
between an Orber-ORB and ORB:s supplied by another vendor or another Orber-ORB. The purpose of this chapter is
to inform about the most common mistakes and what tools one can use to overcome these problems.

Tools
To begin with, Orber can be configured to run in debug mode. There are four ways to set this parameter:

e erl-orber orber_debug_level 10 - can be added to a start-script.

e corba:orb_init([{orber_debug level, 10}]) - this operation must be invoked befor e starting Orber.

e orber:configure(orber_debug level, 10) - this operation can be invoked at any time.

e OrberWeb - viathe Conf i gur at i on menu one can easily change the configuration. For more information,
see the OrberWeb chapter in this User's Guide.

When Orber runs i debug mode, printouts will be generated if anything abnormal occurs (not necessarily an error).
An error message typically looks like:

=ERROR REPORT==== 29-Nov-2001::14:09:55 ===
Orber
[410] corba:common create(orber test server, [{pseudo,truce}]);
not a boolean(truce).

In the example above, we tried to create an object with an incorrect option (i.e. should have been { pseudo, t rue}).

If you are not able to solve the problem, you should include all generated reports when contacting support or using
the erlang-questions mailing list.

Itiseasy toforget to, for example, set all fieldsin astruct, which one may not discover when devel oping an application
using Orber. When using a typed language, such faults would cause a compile time error. To avoid these mistakes,
Orber allows the user to activate automatic typechecking of all local invocations of CORBA Objects. For this feature
to bereally useful, the user must create test suiteswhich cover asmuch as possible. For example, invoking an operation
with invalid or incorrect arguments should also be tested. This option can be activated for one object or al object via:

« 'MyModuyle Mylnterface':oe _create(Env, [{local_typecheck, true}]) - This approach will only
activate, or deactivate, typechecking for the returned instance. Naturally, this option can aso be passed to
oe create link/2,corba:create/ 4andcorba: create_ |ink/4.

e erl-orber flags 2 - can be added to a start-script. All object invocations will be typechecked, unless overridden
by the previous option.

e corba:orb_init([{flags, 16#0002}]) - this operation must be invoked befor e starting Orber. Behaves as the
previous option.

If incorrect datais passed or returned, Orber usestheer r or _| ogger to generate logs, which can look like:

=ERROR REPORT==== 10-Jul-2002::12:36:09 ===

========= (rber Typecheck Request =========

Invoked......: MyModule MyInterface:foo/1

Typecode.....: [{tk enum,"IDL:MyModule/enumerant:1.0",
"enumerant",
["one","two"]1}]

Arguments....: [three]

Result.......: {'EXCEPTION',{'MARSHAL',[]1,102,'COMPLETED NO'}}

Ericsson AB. All Rights Reserved.: orber | 67

1.13 Debugging

Note, that the arity isequivalent tothe IDL-file. Inthe example above, an undefined enumerant was used. In most cases,
it is useful to set the configuration parameter or ber _debug_| evel 10 aswell. Due to the extra overhead, this
option MAY ONLY be used during testing and development. For more information, see also configuration settings.

It isaso possible to trace all communication between an Orber-ORB and, for example, a Java-ORB, communicating
via IIOP. All you need to do is to activate an interceptor. Normally, the users must implement the interceptor
themselves, but for your convenience Orber includes three pre-compiled interceptorscalled or ber _i i op_t racer,
orber _iiop_tracer_silent andorber _iiop_tracer_stealth.

Logging al traffic is expensive. Hence, only use the supplied interceptors during test and devel opment.

The orber _iiop tracer and orber_iiop_tracer_silent interceptors uses the error_| ogger
module to generate the logs. If the traffic is intense you probably want to write the reports to alog-file. Thisis done
by, for example, invoking:

erl> error_logger:tty(false).
erl> error_logger:logfile({open, "/tmp/II0PTrace"}).

Thel | OPTr ace filewill contain, if you usetheor ber _i i op_t racer interceptor, reports which looks like:

=INFO REPORT==== 13-Jul-2005::18:22:39 ===
e = new_out_connection ===

Node : myNode@myHost

From : 192.0.0.10:47987

To : 192.0.0.20:4001

=INFO REPORT==== 29-Nov-2001::15:26:28 ===

=============== 0Ut_request ==============
Connection: {"192.0.0.20",4001,"192.0.0.10",47987}
Operation : resolve
Parameters: [[{'CosNaming NameComponent',
"AIK","SwedishIcehockeyChampions"}]1]
Context : [{'IOP ServiceContext',1,
{'CONV_FRAME_CodeSetContext',65537,65801}}]

Theorber _iiop_tracer_sil ent will notlog GIOP encoded data. To activate one the interceptors, you have
two options:

e erl-orber interceptors” {native[orber_iiop_tracer]}" - can be added to a start-script.

e corbaorb_init([{interceptors, {native, [orber_iiop_tracer_silent]}}]) - this operation must be invoked
befor e starting Orber.

It is also possible to active and deactivate an interceptor during run-time, but this will only affect currently
existing connections. For more information, consult Orber's Reference Manua regarding the operations
orber:activate_ audit _trail/0O/1andorber:activate_ audit _trail/0/1.

FAQ
Q: When my client, typically written in C++ or Java, invoke narrow on an Orber object referenceit fails?

A: You must register your application inthe IFR by invoking oe_r egi st er () . If the object was created by aCOS-
application, you must runinstall (e.g. cosEvent App:install ()).

A: Confirm, by consulting the IDL specifications, that the received object reference really inherit from the interface
you are trying to narrow it to.

68 | Ericsson AB. All Rights Reserved.: orber

1.13 Debugging

Q: | am trying toregister my application in the |FR but it fails. Why?

A: If one, or more, interface in your IDL-specification inherits from other interface(s), you must register them before
registering your application. Note, thisalso apply when you inherit interfaces supported by a COS-application. Hence,
they must beinstalled prior to registration of your application.

Q: | have a Orber client and server residing on two different Orber instances but | only get the
'OBJECT_NOT_EXIST' exception, even though | am surethat the object is still alive?

A: If thetwo Orber-ORB's are not intended to be a part of multi-node ORB, make sure that the two Orber-ORB's have
different domain names set (see configuration settings). The easiest way to confirmthisistoinvokeor ber : i nf o()
on each node.

Q: When I'm trying to install and/or start Orber it fails?

A: Make sure that no other Orber-ORB is already running on the same node. If so, change the i i op_port
configuration parameter (see configuration settings).

Q: My Orber server isinvoked via I[lOP but Orber cannot marshal thereply?

A: Consult your IDL file to confirm that your replies are of the correct type. If it is correct and the return type is,
for example, a struct, make sure you have set every field in the struct. If you do not do that it will be set to the atom
‘'undefined’, which most certainly is not correct.

A: Check that you handlei nout and out parameters correctly (seethe IDL specification). For example, afunction
which have one out-parameter and should return void, then your call-back module should return {repl y, {0k,
Qut Parant}, St at e} . Note, even though the return valueisvoid (IDL) you must reply with ok.

Q: | cannot run Orber asa multi-node ORB?

A: Make sure that the Erlang distribution have been started for each node and the cooki es are correct. For more
information, consult the Syst em Docunent ati on

Ericsson AB. All Rights Reserved.: orber | 69

1.13 Debugging

2 Reference Manual

The Orber application is an Erlang implementation of a CORBA Object Request Broker.

70 | Ericsson AB. All Rights Reserved.: orber

any

any

Erlang module

This module contains functions that gives an interface to the CORBA any type.

Note that the any interface in orber does not contain a destroy function because the any type is represented as an
Erlang record and therefor will be removed by the garbage collector when not in use.

The type TC used below describes an IDL type and is a tuple according to the to the Erlang language mapping.
The type Any used below is defined as:

-record(any, {typecode, value}).

wheret ypecode isaTC tupleand val ue isan Erlang term of the type defined by the typecode field.

Exports

create() -> Result
create(Typecode, Value) -> Result
Types:

Typecode = TC

Value = term)

Result = Any

The create/0 function creates an empty any record and the create/2 function creates an initialized record.

set typecode(A, Typecode) -> Result
Types:

A = Any

Typecode = TC

Result = Any

This function sets the typecode of A and returns anew any record.

get typecode(A) -> Result

Types:
A = Any
Result = TC

This function returns the typecode of A.

set value(A, Value) -> Result
Types.

A = Any

Value = term))

Result = Any

This function sets the value of A and returns a new any record.

Ericsson AB. All Rights Reserved.: orber | 71

any

get value(A) -> Result
Types.

A = Any

Result = term()
This function returns the value of A.

72 | Ericsson AB. All Rights Reserved.: orber

fixed

fixed

Erlang module

This module contains functions that gives an interface to the CORBA fixed type.
Thetype Fi xed used below is defined as:

-record(fixed, {digits, scale, value}).

where di gi t s isthe total amount of digitsit consists of and scal e isthe number of fractional digits. Theval ue
field contains the actual Fixed value represented as an integer. The limitations of each field are:

+ Digits- integer(), -1 > Digits < 32

+ Scae- integer(), -1 > Scale =< Digits

« Vaue- integer(), range (31 digits): £9999999999999999999999999999999

Sincethe Value part is represented by aninteger, it isvital that the Digits and Scale values are correct. Thisalso means
that trailing zeros cannot be left out in some cases:

« fixed<5,3> eg. 03.140d eg. 3140

o fixed<3,2> eg. 3.14d eq. 314

Leading zeros can be left out.

For your convenience, this module exports functions which handle unary (-) and binary (+- */) operations legal for
the Fixed type. Since aunary + have no effect, this module do not export such afunction. Any of the binary operations
may cause an overflow (i.e. morethan 31 significant digits; leading and trailing zeros are not considered significant). If
thisisthe case, the Digit and Scale values are adjusted and the VValue truncated (no rounding performed). This behavior
is compliant with the OMG CORBA specification. Each binary operation have the following upper bounds:

e Fixedl + Fixed2-fi xed<max(d1-s1, d2-s2) + max(sl,s2) + 1, nmax(sl,s2)>

* Fixedl- Fixed2-fi xed<max(d1l-s1, d2-s2) + max(sl,s2) + 1, max(sl,s2)>

e Fixedl* Fixed2-fi xed<d1+d2, si1+s2>

e Fixedl/Fixed2-fi xed<(dl-sl1+s2) + Sinf ,Sinf >

A quotient may have an arbitrary number of decimal places, which is denoted by a scale of Sinf.

Exports

create(Digits, Scale, Value) -> Result
Types:
Result = Fixed Type | {' EXCEPTION , # BAD PARAM {}}

Thisfunction createsanew instance of aFi xed Type. If thelimitationsisnot fulfilled (e.g. overflow) an exception
israised.

get typecode(Fixed) -> Result
Types.
Result = TypeCode | {' EXCEPTION , #' BAD_PARAM {}}

Returnsthe TypeCode which representsthe supplied Fixed type. If the parameter is not of the correct type, an exception
israised.

Ericsson AB. All Rights Reserved.: orber | 73

fixed

add(Fixedl, Fixed2) -> Result
Types:
Result = Fixedl + Fixed2 | {'EXCEPTION , # BAD _PARAM {}}
Performs a Fixed type addition. If the parameters are not of the correct type, an exception is raised.

subtract(Fixedl, Fixed2) -> Result
Types.
Result = Fixedl - Fixed2 | {'EXCEPTION , # BAD PARAM {}}

Performs a Fixed type subtraction. If the parameters are not of the correct type, an exception is raised.

multiply(Fixedl, Fixed2) -> Result
Types:
Result = Fixedl * Fixed2 | {'EXCEPTION,6 # BAD PARAM {}}
Performs a Fixed type multiplication. If the parameters are not of the correct type, an exception is raised.

divide(Fixedl, Fixed2) -> Result
Types:
Result = Fixedl / Fixed2 | {'EXCEPTION , # BAD PARAM {}}
Performs a Fixed type division. If the parameters are not of the correct type, an exception is raised.

unary minus(Fixed) -> Result
Types:
Result = -Fixed | {'EXCEPTION , # BAD PARAM {}}
Negates the supplied Fixed type. If the parameter is not of the correct type, an exception is raised.

74 | Ericsson AB. All Rights Reserved.: orber

corba

corba

Erlang module

This module contains functions that are specified on the CORBA module level. It also contains some functions for
creating and disposing objects.

Exports

create(Module, TypelID) -> Object
create(Module, TypeID, Env) -> Object
create(Module, TypelD, Env, Optonsl) -> Object
create link(Module, TypeID) -> Object
create link(Module, TypelID, Env) -> Object
create link(Module, TypeID, Env, Options2) -> Reply
Types:

Modul e = atom()

Typel D = string()

Env = term)

Optionsl = [{persistent, Bool} | {regnanme, RegNane} | {local _typecheck,
Bool }]

Options2 = [{sup_child, Bool} | {persistent, Bool} | {regnane, RegNane} |
{pseudo, Bool} | {local typecheck, Bool}]

RegNane = {local, aton()} | {global, term)}

Reply = #objref | {ok, Pid, #objref}

Bool = true | false

oj ect = #obj ref
These functions start anew server object. If you start it without RegName it can only be accessed through the returned
object key. Started with a RegName the name is registered locally or globally.
Typel D isthe repository 1D of the server object type and could for example look like "I1DL:StackM odule/Stack:1.0".
M oduleisthe name of the interface APl module.
Env isthe arguments passed which will be passed to the implementations init call-back function.
A server started with create/2, create/3 or create/4 does not care about the parent, which means that the parent is not
handled explicitly in the generic process part.

A server started with create link2, create link/3 or create_link/4 isinitially linked to the caller, the parent, and it will
terminate whenever the parent process terminates, and with the same reason as the parent. If the server traps exits, the
terminate/2 call-back function is called in order to clean up before the termination. These functions should be used
if the server isaworker in asupervision tree.

If you use the option {sup_chi I d, true} create link/4 will return { ok, Pid, #objref}, otherwise
#obj r ef , and make it possible to start a server as a supervisor child (stdlib-1.7 or later).

If you use the option { per si st ent, true} youasomust usetheoption{regnane, {global, Nane}}.
This combination makes it possible to tell the difference between a server permanently terminated or in the process
of restarting.

Ericsson AB. All Rights Reserved.: orber | 75

corba

The option { pseudo, true}, alow us to create an object which is not a server. Using { pseudo, true}
overrides al other start options. For more information see section Modul e_I nt er f ace.

If aserver isstarted using theoption{ per si st ent, true} theobject key will not be removed unlessit terminates
with reason normal or shutdown. Hence, if persistent serversisused as supervisor children they should be transient
and the objectkeys gc_time should be modified (default equalsi nfi ni ty).

Theoption{ | ocal _t ypecheck, bool ean() },whichoverridesthe Local Typechecking environment flag, turns
on or off typechecking. If activated, parameters, replies and raised exceptions will be checked to ensure that the data
is correct, when invoking operations on CORBA Objects within the same Orber domain. Due to the extra overhead,
thisoption MAY ONLY be used during testing and devel opment.

Example:

corba:create('StackModule Stack', "IDL:StackModule/Stack:1.0", {10, test})

dispose(Object) -> ok
Types:
hj ect = #objref
Thisfunction isused for terminating the execution of aserver object. Invoking thisoperation on aNIL object reference,

e.g., thereturnvalueof cor ba: creat e_ni | _obj r ef / 0, awaysreturn ok. For valid object references, invoking
this operation more than once, will result in a system exception.

create nil objref() -> Object
Types.
oj ect = #objref representing N L.

Creates an object reference that represents the NIL value. Attempts to invoke operations using the returned object
reference will return a system exception.

create subobject key(Object, Key) -> Result

Types:
bj ect = #obj ref
Key = term)

Result = #obj ref

This function is used to create a subobject in a server object. It can for example be useful when one wants unique
access to separate rows in amnesia or an ETS table. The Result is an object reference that will be seen as a unique
reference to the outside world but will access the same server object where one can use the get_subobject_key/1
function to get the private key value.

Key is stored in the object reference Object. If it is a binary it will be stored as is and otherwise it is converted to
abinary before storage.

get subobject key(Object) -> Result

Types:
oj ect = #obj ref
Result = #binary

Thisfunctionisused to fetch asubobject key from the object reference Object. Theresultisaawaysabinary, if it was
an Erlang term that was stored with create_subobject_key/2 one can to do binary_to_term/1 to get the real value.

76 | Ericsson AB. All Rights Reserved.: orber

corba

get pid(Object) -> Result
Types.
oj ect = #obj ref
Result = #pid | {error, Reason} | {'EXCEPTION , E}

This function is to get the process id from an object, which is a must when CORBA objects is started/handled in a
supervisor tree. The function will throw exceptionsiif the key is not found or some other error occurs.

raise(Exception)
Types:
Exception = record()

This function is used for raising corba exceptions as an Erlang user generated exit signal. It will throw the tuple
{' EXCEPTI ON' , Exception}.

reply(To, Reply) -> true
Types:
To = client reference
Reply = IDL type
This function can be used by a CORBA abject to explicitly send areply to a client that invoked a two-way operation.
If this operation is used, it is not possible to return areply in the call-back module.

To must be the From argument provided to the callback function, which requires that the IC option from was used
when compiling the IDL-file.

resolve initial references(ObjectId) -> Object
resolve initial references(ObjectId, Contexts) -> Object
Types:

Qoj ectld = string()

Contexts = [Cont ext]

Context = #'10P_ServiceContext'{context_id = Gxld, context_data =
Ct xDat a}

Ctxld = ?0RBER GENERI C_CTX_I D

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl _client_options

Val ue = all owed val ue associated with the given key

Ohj ect = #objref
This function returns the object reference associated with the given object id. Initialy, only " NaneSer vi ce" is
available. To add or remove servicesuseadd_i ni ti al _service/2orrenove_initial _service/1.

The configuration context is used to override the global SSL client side configuration.
add initial service(ObjectId, Object) -> boolean()

Types:
hjectld = string()

Ericsson AB. All Rights Reserved.: orber | 77

corba

bj ect = #objref

This operation alows wus to add initial servicess which can be accessed by using
resol ve_initial _references/1 orthecorbal oc schema. If using an 1d defined by the OMG, the given
object must be of the correct type; for more information see the Interoperable Naming Service. Returnsf al se if the
given id already exists.

remove initial service(ObjectId) -> boolean()
Types:
ojectld = string()

If we don not want a certain service to be accessible, invoking thisfunction will remove the association. Returnst r ue
if ableto terminate the binding. If no such binding existed f al se isreturned.

list initial services() -> [ObjectId]
Types:

hjectld = string()
Thisfunction returns alist of allowed object id's.

resolve initial references remote(ObjectId, Address) -> Object
resolve initial references remote(ObjectId, Address, Contexts) -> Object
Types.

ohjectld = string()

Address = [Renot eModi fi er]

Renmot eModi fier = string()

Contexts = [Cont ext]

Context = #'10P_ServiceContext'{context_id = CGxld, context_data =
Ct xDat a}

Ctxld = ?0RBER_GENERI C_CTX_I D

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()
Options = [{Key, Value}]
Key = ssl _client_options
Val ue = all owed val ue associated with the given key
hj ect = #objref
This function returns the object reference for the object id asked for. The remote modifier string has the following

format: "iiop://"<host>":"<port>where<host> = <DNS hostnane> | <IPv4 address> |
"["<I Pv6 address>"]".

The configuration context is used to override the global SSL client side configuration.

‘This operation is not supported by most ORB's. Hence, usecor ba: st ri ng_t o_obj ect/ 1 instead. ‘

78 | Ericsson AB. All Rights Reserved.: orber

corba

list initial services remote(Address) -> [ObjectId]
list initial services remote(Address, Contexts) -> [ObjectId]
Types:

Address = [RenoteModifi er]

Renmot eModi fier = string()

Contexts = [Context]

Context = #'10P_ServiceContext'{context_id = CGxld, context_data =
Ct xDat a}

Ctxld = ?0RBER_GENERI C_CTX_I D

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()
Options = [{Key, Value}]
Key = ssl _client_options
Val ue = all owed val ue associated with the given key
hjectld = string()
This function returns a list of alowed object id's. The remote modifier string has the following format:

"iiop://"<host>":"<port>where<host> = <DNS host nanme> | <IPv4 address>| "["<IPv6
address>"]".

The configuration context is used to override the global SSL client side configuration.

| This operation is not supported by most ORB's. Hence, avoid using it. |

object to string(Object) -> IOR string
Types:
bj ect = #objref
IOR string = string()
This function returns the object reference as the external string representation of an IOR.

string to object(IOR string) -> Object
string to object(IOR string, Contexts) -> Object
Types.

IOR string = string()

Cont exts = [Cont ext]

Context = #'10P_ServiceContext'{context id = Cxld, context data =
Ct xDat a}

Ctxld = ?0RBER_GENERI C_CTX_I D

Ctxbata = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()
Options = [{Key, Value}]
Key = ssl _client_options

Ericsson AB. All Rights Reserved.: orber | 79

corba

Val ue = all owed val ue associated with the given key
hj ect = #objref

Thisfunction takesacor banane, cor bal oc or an IOR on the external string representation and returns the object
reference.

To lookup the NameService reference, simply use:
corbaloc:iiop:1.2@123.0.0.12:4001/NameService

We can aso resolve an object from the NameService by using:
corbaname:iiop:1.2@123.0.0.12:4001/NameService#org/Erlang/My0Obj

To lookup the NameService reference with an IPv6 address, smply use:
corbaloc:iiop:1.2@[FEC1:0:3:0:0312:44AF:FAB1:3D01]:4001/NameService

For more information about cor banamne and cor bal oc, seethe User's Guide (Interoperable Naming Service).
The configuration context is used to override the global SSL client side configuration.
How to handle the interface context is further described in the User's Guide.

print object(Data [, Typel) -> ok | {'EXCEPTION', E} | {'EXIT', R} | string()
Types.

Data = |OR string | #objref (local or external) | corbal oc/corbaname
string
Type = loDevice | error_report | {error_report, Reason} | info_nsg |

{info_nsg, Comment} | string

| oDevi ce = see the io-nodule

Reason = Comment = string()
The object represented by the supplied datais dissected and presented in a more readable form. The Type parameter is
optional; if not supplied standard output isused. For er r or _report andi nf o_nsg theerror _| ogger module

is used, with or without Reason or Comment. If the atom st r i ng issupplied this function will return aflat list. The
| oDevi ce ispassed to the operationi o: f or mat/ 2.

If the supplied object is alocal reference, the output is equivalent to an object exported from the node this function
isinvoked on.

add alternate iiop address(Object, Host, Port) -> NewObject | {'EXCEPTION',
E}

Types:
bj ect = NewObj ect = |l ocal #objref
Host = string()
Port = integer()

This operation creates a new instance of the supplied object containing an ALTERNATE IIOP_ADDRESS
component. Only the new instance contains the new component. When this object is passed to another ORB, which
supports the ALTERNATE_IIOP_ADDRESS, requests will be routed to the alternate address if it is not possible to
communicate with the main address.

The ALTERNATE_IIOP_ADDRESS component requiresthat 110P-1.2 is used. Hence, make sure both Orber and the
other ORB is correctly configured.

80 | Ericsson AB. All Rights Reserved.: orber

corba

Make sure that the given Obj ect is accessible viathe aternate Host/port. For example, if the object is correctly
started as| ocal or pseudo, the object should be available on al nodes within a multi-node Orber installation.
Since only one instance exists for other object types, it will not be possible to access it if the node it was started
on terminates.

orb init(KeyValuelList) -> ok | {'EXIT', Reason}

Types:
KeyVal ueLi st = [{Key, Val ue}]
Key = any key listed in the configuration chapter
Val ue = all owed val ue associated with the given key

This function allows the user to configure Orber in, for example, an Erlang shell. Orber may NOT be started prior to
invoking this operation. For more information, see configuration settings in the User's Guide.

Ericsson AB. All Rights Reserved.: orber | 81

corba_object

corba_object

Erlang module

This module contains the CORBA Object interface functions that can be called for al objects.

Exports

get interface(Object) -> InterfaceDef
Types:

Cbj ect = #obj ref

InterfaceDef = term)
This function returns the full interface description for an object.

is nil(Object) -> boolean()
Types:
bj ect = #obj ref
This function checks if the object reference has a nil object value, which denotes no object. It isthe reference that is
tested and no object implementation isinvolved in the test.

is a(Object, Logical type id) -> Return
is a(Object, Logical type id, Contexts) -> Return
Types:

hj ect = #objref

Logical _type_ id = string()

Contexts = [Cont ext]

Context = #'10P_ServiceContext' {context id = CGxld, context data =
Ct xDat a}

Ctxld = ?0RBER_GENERI C_CTX_I D

CxbData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl _client_options

Val ue = all owed val ue associated with the given key
Return = bool ean() | {' EXCEPTION , E}

TheLogical_type idisastring that is a share type identifier (repository id). The function returnstrueif the object is
an instance of that type or an ancestor of the "most derived" type of that object.

The configuration context is used to override the global SSL client side configuration.

Note: Other ORB suppliers may not support this function completely according to the OMG specification. Thus, a
is a call may raise an exception or respond unpredictable if the Object islocated on aremote node.

is remote(Object) -> boolean()
Types:

82 | Ericsson AB. All Rights Reserved.: orber

corba_object

bj ect = #objref

This function returns true if an object reference is remote otherwise false.

non_existent(Object) -> Return
non_existent(0Object, Contexts) -> Return
Types:

hj ect = #objref

Contexts = [Context]

Context = #'10P_ServiceContext'{context_id = Gxld, context_data =
Ct xDat a}

Ctxld = ?0RBER GENERI C_CTX_I D

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl _client_options

Val ue = all owed val ue associated with the given key
Return = bool ean() | {' EXCEPTION , E}

This function can be used to test if the object has been destroyed. It does this without invoking any application level
code. The ORB returns true if it knows that the object is destroyed otherwise false.

The configuration context is used to override the global SSL client side configuration.

Note: The OMG have specified two different operators, _not _exi st ent (CORBA version 2.0 and 2.2) and
_non_exi st ent (CORBA version 2.3), to be used for this function. It is not mandatory to support both versions.
Thus, anon_existent call may raise an exception or respond unpredictable if the Object islocated on a remote node.
Depending on which version, ORB:s you intend to communicate with supports, you can either use this function or
not existent/ 1.

not existent(Object) -> Return
not existent(Object, Contexts) -> Return
Types:

hj ect = #objref

Contexts = [Context]

Context = #'10P_ServiceContext'{context_id = CGxld, context_data =
Ct xDat a}

Ctxld = ?0RBER GENERI C_CTX_I D

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl _client_options

Val ue = all owed val ue associated with the given key
Return = bool ean() | {' EXCEPTION , E}

This function is implemented due to Interoperable purposes. Behaves as non_exi st ent except the operator
_not _exi st ent isused when communicating with other ORB:s.

Ericsson AB. All Rights Reserved.: orber | 83

corba_object

The configuration context is used to override the global SSL client side configuration.

is equivalent(Object, OtherObject) -> boolean()
Types:

hj ect = #objref

O her Cbj ect = #obj ref

This function is used to determine if two object references are equivalent so far the ORB easily can determine. It
returnstrueif the target object reference is equal to the other object reference and fal se otherwise.

hash(Object, Maximum) -> int()
Types:
hj ect = #obj ref
Maxi mum = int ()
This function returns a hash value based on the object reference that not will change during the lifetime of the object.
The Maximum parameter denotes the upper bound of the value.

84 | Ericsson AB. All Rights Reserved.: orber

orber

orber

Erlang module

This module contains the functions for starting and stopping the application. It also has some utility functions to get
some of the configuration information from running application.

Exports

start() -> ok
start(Type) -> ok
Types:
Type = tenporary | permanent
Starts the Orber application (it also starts mnesiaif it is not running). Which Ty pe parameter is supplied determines

the behavior. If not supplied Orber is started ast enpor ar y. See the Reference Manual application(3) for further
information.

jump start(Attributes) -> ok | {'EXIT', Reason}

Types:
Attributes = Port | Options
Port = integer()

Options = [{Key, Value}]

Key = any key listed in the configuration chapter

Val ue = allowed val ue associated with the given key
Installs and starts the Orber and the M nesia applications with the configuration parametersdomai nandi i op_port
setto" | P- nunber : Port" and the supplied Port respectively. Theses settings are in most cases sufficient to ensure
that no clash with any other Orber instance occur. If this operation fails, check if the listen port (iiop_port) is aready

in use. Thisfunction MAY ONLY be used during development and tests; how Orber is configured when using this
operation may change at any time without warning.

stop() -> ok
Stops the Orber application.

info() -> ok
info(IoType) -> ok | {'EXIT', Reason} | string()
Types:
loType = info_msg | string | io | {io, |oDevice}
Generates an Info Report, which contain Orber's configuration settings. If no | o Ty pe issupplied, i nf o_nsg isused

(seethe error_logger documentation). When the atom string is supplied this function will return aflat list. For i o and
{io, loDevice},io:format/1andi o:format/ 3 isused respectively.

exception info(Exception) -> {ok, string()} | {error, Reason}

Returns a printable string, which describes the supplied exception in greater detail. Note, this function is mainly
intended for system exceptions.

Ericsson AB. All Rights Reserved.: orber | 85

orber

is system exception(Exception) -> true | false
Returnstrueif the supplied exception is a system defined exception, otherwise false.

get tables() -> [Tables]
Returns alist of the Orber specific Mnesiatables. Thislist is required to restore Mnesiaiif it has been partitioned.

get ORBInitRef() -> string() | undefined

This function returns undefined if we will resolve references locally, otherwise a string describing which host
we will contact if the Key givento cor ba: resol ve_initial _references/ 1 matchesthe Key set in this
configuration variable. For more information see the user's guide.

get ORBDefaultInitRef() -> string() | undefined

This function returns undefined if we will resolve references locally, otherwise a string describing which host, or
hosts, fromwhichwewill try toresolvetheKey giventocor ba: resol ve_ini ti al _ref erences/ 1. Formore
information see the user's guide.

domain() -> string()
This function returns the domain name of the current Orber domain as a string.

iiop port() -> int()

This function returns the port-number, which is used by the 11OP protocol. It can be configured by setting the
application variableiiop_port, if it isnot set it will have the default number 4001.

iiop out ports() -> 0 | {Min, Max}

The return value of this operation is what the configuration parameter iiop_out_ports has been set to.

iiop out ports random() -> true | false
Return the value of the configuration parameter iiop_out_ports random.

iiop out ports attempts() -> int()
Return the value of the configuration parameter iiop_out_ports_attempts.

iiop ssl port() -> int()

This function returns the port-number, which is used by the secure I10OP protocol. It can be configured by setting the
application variableiiop_ssl_port, if it isnot set it will have the default number 4002 if Orber isto configured to run
in secure mode. Otherwise it returns -1.

iiop timeout() -> int() (milliseconds)

This function returns the timeout value after which outgoing I1OP requests terminate. It can be configured by setting
the application variable iiop_timeout TimeVal (seconds), if it is not set it will have the default value infinity. If a
regquest times out a system exception, e.g. TIMEOUT, israised.

Note: theiiop_timeout configuration parameter (TimeVal) may only range between 0 and 1000000 seconds. Otherwise,
the default value is used.

86 | Ericsson AB. All Rights Reserved.: orber

orber

Note: Earlier IC versions required that the compile option {ti meout, "nodul e: : i nt erface"}, was used,
which alow the user to add an extra timeout parameter, e.g., nodul e_i nterface: functi on(Obj Ref,

Timeout, ... Argunments ...) or nodule_interface:function(ObjRef, [{tineout,
Tinmeout}], ... Argunents ...), instead of nodul e_i nterface: functi on(j Ref,
Arguments ...). Thisis no longer the case and if the extra Timeout is used, argument will override the

configuration parameter i i op_t i nmeout . It is, however, not possible to use i nf i ni ty to override the Timeout
parameter. The Timeout option is also valid for objects which resides within the same Orber domain.

iiop connection timeout() -> int() (milliseconds)

This function returns the timeout value after which outgoing I1OP connections terminate. It can be configured by
setting the application variable iiop_connection_timeout TimeVal (seconds), if it is not set it will have the default
value infinity. The connection will not be terminated if there are pending requests.

Note: the iiop_connection_timeout configuration parameter (TimeVal) may only range between 0 and 1000000
seconds. Otherwise, the default value is used.

iiop _connections() -> Result
iiop connections(Direction) -> Result
Types.
Direction =in | out | inout
Result = [{Host, Port}] | [{Host, Port, Interface}] | {'EXIT , Reason}
Host = string()
Port = integer()
Interface = string()
Reason = term()

Thelist returned by this operation contain tuples of remote hosts/ports Orber is currently connected to. If no Direction
is not supplied, both incoming and outgoing connections are included.

If aspecific local interface has been defined for the connection, this will be added to the returned tuple.

iiop connections pending() -> Result

Types:
Result = [{Host, Port}] | [{Host, Port, Interface}] | {'EXIT , Reason}
Host = string()
Port = integer()

Interface = string()
Reason = tern()

In some cases a connection attempt (i.e. trying to communicate with another ORB) may block due to a number of
reasons. This operation allows the user to check if thisis the case. The returned list contain tuples of remote hosts/
ports. Normally, the list is empty.

If aspecific local interface has been defined for the connection, this will be added to the returned tuple.

iiop_in connection_ timeout() -> int() (milliseconds)

This function returns the timeout value after which incoming I10OP connections terminate. It can be configured by
setting the application variableiiop_in_connection_timeout TimeVal (seconds), if itisnot set it will have the default
value infinity. The connection will not be terminated if there are pending requests.

Ericsson AB. All Rights Reserved.: orber | 87

orber

Note: the iiop_in_connection_timeout configuration parameter (TimeVa) may only range between 0 and 1000000
seconds. Otherwise, the default value is used.

iiop acl() -> Result
Types:
Result = [{Direction, Filter}] | [{Drection, Filter, [Interface]}]
Direction = tcp_in | ssl_in | tcp_out | ssl_out
Filter = string()
Interface = string()
Returns the ACL configuration. The Fi | t er uses a extended format of Classless Inter Domain Routing (CIDR).
For example, " 123. 123. 123. 10" limitsthe connection to that particular host, while" 123. 123. 123. 10/ 17"
allowsconnectionsto or from any host equal tothe 17 most significant bits. Orber also allow the user to specify acertain
port or port range, for example, " 123. 123. 123. 10/ 17#4001" and " 123. 123. 123. 10/ 17#4001/ 5001"
respectively. IPv4 or none compressed | Pv6 strings are accepted.
Thelistof | nt er f aces, IPv4 or IPv6 strings, are currently only used for outgoing connections and may only contain

one address. If set and access is granted, Orber will use that local interface when connecting to the other ORB. The
module orber_acl provides operations for evaluating the access control for filters and addresses.

activate audit trail() -> Result
activate audit trail(Verbosity) -> Result
Types:
Verbosity = stealth | normal | verbose
Result = ok | {error, Reason}
Reason = string()
Activatesaudit/trail for all existingincoming and outgoing I1OP connections. TheVer bosi t y parameter, st eal t h,
nor mal or ver bose, determines which of the built in interceptorsis used (or ber _ii op_tracer_steal th,

orber _iiop_tracer_silent ororber_iiop_tracer respectively). If no verbosity level is supplied, then
thenor mal will be used.

In case Orber is configured to use other interceptors, the audit/trail interceptors will smply be added to that list.

deactivate audit trail() -> Result
Types.
Result = ok | {error, Reason}
Reason = string()

Deactivates audit/trail for al existing incoming and outgoing 11OP connections. In case Orber is configured to use
other interceptors, those will still be used.

add listen interface(IP, Type) -> Result

add listen interface(IP, Type, Port) -> Result

add listen interface(IP, Type, ConfigurationParameters) -> Result
Types:

IP = string
Type = normal | ssli
Port = integer() >0

ConfigurationParaneters = [{Key, Value}]

88 | Ericsson AB. All Rights Reserved.: orber

orber

Key = flags | ip_famly | iiop_in_connection_tineout | iiop_nax_fragnents

| iiop_max_in_requests | interceptors | iiop_port | iiop_ssl_port |

ssl _server_options

Val ue = as described in the User's CGuide or bel ow

Result = {ok, Ref} | {error, Reason} | {' EXCEPTION , # BAD PARAM {}}

Ref = #Ref

Reason = string()
Createanew processthat handle requestsfor creating anew incoming I1OP connection viathe given interface and port.
If the latter is excluded, Orber will usethe value of thei i op_port orii op_ssl _port configuration parameters.

The Type parameter determinesiif it is supposed to be [IOP or 11OP via SSL. If successful, the returned #Ref shall
bepassedto or ber : renpve_| i st en_i nt er f ace/ 1 when the connection shall be terminated.

It is aso possible to supply configuration parameters that override the global configuration. The
iiop_in_connection_timeout, iiop_max_fragments, iiop_max_in_requests and interceptors parameters simply
overridesthe global counterparts (See the Configuration chapter in the User's Guide). But for the following parameters
there are afew restrictions:
» flags- currently it isonly possible to override the global setting for theUse Current Interface in

| ORand Excl ude CodeSet Conponent flags.

e ip_family-canbesettoi net ori net 6 andisused to get alisten interface that uses another IP version than
the default set with flags at startup.

e iiop_port - requiresthat Use Current Interface in | ORisactivated and the supplied Type is
nor mal . If so, exported IOR:swill contain the I1OP port defined by this configuration parameter. Otherwise,
the global setting will be used.

e iiop_sd_port - dmost equivalenttoi i op_port . Thedifferenceisthat Type shall bess| and that exported
IOR:swill contain the I1OP via SSL port defined by this configuration parameter.

If it is not possible to add a listener based on the supplied interface and port, the error message is one of the ones
describedini net and/or ssl documentation.

remove listen interface(Ref) -> ok
Types:
Ref = #Ref
Terminates the listen process, associated with the supplied #Ref , for incoming a connection. The Ref parameter is

the return value from the or ber : add_| i sten_i nt er f ace/ 2/ 3 operation. When terminating the connection,
all associated requests will not deliver areply to the clients.

close connection(Connection) -> Result
close connection(Connection, Interface) -> Result
Types:

Connection = Cbject | [{Host, Port}]

oj ect = #objref (external)

Host = string()

Port = string()

Interface = string()

Result = ok | {' EXCEPTION , # BAD PARAM {}}

Will try to close all outgoing connections to the host/port combinations found in the supplied object reference or
the given list of hosts/ports. If a#' | OP_Ser vi ceCont ext ' {} containing alocal interface has been used when

Ericsson AB. All Rights Reserved.: orber | 89

orber

communicating with the remote object (see also Module _Interface), that interface shall be passed as the second
argument. Otherwise, connections viathe default local interface, will be terminated.

Since several clients maybe communicates via the same connection, they will be affected when invoking this
operation. Other clients may re-create the connection by invoking an operation on the target object.

secure() -> no | ssl

This function returns the security mode Orber is running in, which is either no if it is an insecure domain or the type
of security mechanism used. For the moment the only security mechanism is s3l. This is configured by setting the
application variable secure.

ssl server options() -> list()

This function returns the list of SSL options set for the Orber domain as server. This is configured by setting the
application variable ssl_server_options.

ssl client options() -> list()

Thisfunctionreturnsthelist of SSL optionsusedin outgoing callsinthe current process. Thedefault valueisconfigured
by setting the application variable ss_client_options.

set ssl client options(Options) -> ok
Types:
Options = list()
Thisfunction takes alist of SSL options as parameter and setsit for the current process.

objectkeys gc time() -> int() (seconds)

This function returns the timeout value after which after which terminated object keys, related to servers started with
theconfiguration parameter { per si st ent, true},will beremoved. It can beconfigured by setting the application
variable objectkeys gc time TimeVal (seconds), if it isnot set it will have the default value infinity.

Objects terminating with reason normal or shutdown are removed automatically.

Note: the objectkeys gc_time configuration parameter (TimeVal) may only range between 0 and 1000000 seconds.
Otherwise, the default valueis used.

orber nodes() -> RetVal
Types.
Ret Val = [node()]
This function returns the list of node names that this orber domain consists of.

install(NodelList) -> ok
install(NodelList, Options) -> ok
Types:

NodelLi st = [node()]

Options = [Option]

90 | Ericsson AB. All Rights Reserved.: orber

orber

Option = {install _tinmeout, Tineout} | {ifr_storage type, Tabl eType} |
{naneservi ce_storage_type, TableType} | {initialreferences_storage_ type,
Tabl eType} | {load _order, Priority}

Timeout = infinity | integer()
Tabl eType = di sc_copies | ramcopies
Priority = integer()
This function installs al the necessary mnesia tables and load default data in some of them. If one or more Orber

tables already exists the installation fails. The function uninstall may be used, if it is safe, i.e., no other application
isrunning Orber.

Preconditions:
*« amnesiaschemamust exist before the installation
e mnesiaisrunning on the other nodes if the new installation shall be amulti node domain

Mnesiawill be started by the function if it is not already running on the installation node and if it was started it will
be stopped afterwards.

The options that can be sent to the installation program is:
e ({install _tineout, Timeout} -thistimeoutishow longwewill wait for the tables to be created. The
Timeout value can be infinity or an integer number in milliseconds. Default isinfinity.

« ({ifr_storage_type, Tabl eType} - thisoption setsthe type of tables used for the interface repository.
The TableType can be disc_copies or ram_copies. Default isdisc_copies.

« {initialreferences_storage type, Tabl eType} -thisoption setsthetype of table used for
storing initial references. The TableType can be disc_copies or ram_copies. Default isram_copies.

« {naneservice_storage_type, Tabl eType} -thedefault behavior of Orber istoinstall the
NameService as ram_copies. This option makes it possible to change this to disc_copies. But the user should be
aware of that if anode isrestarted, all local object references stored in the NameService is not valid. Hence, you
cannot switch to disc_copies and expect exactly the same behavior as before.

e {load order, Priority} -perdefaultthepriority issetto 0. Using this option it will change the
priority of in which order Mnesiawill load Orber internal tables. For more information, consult the Mnesia
documentation.

uninstall() -> ok
This function stops the Orber application, terminates all server objects and removes all Orber related mnesia tables.

Note: Since other applications may be running on the same node using mnesia uninstall will not stop the mnesia
application.

add node(Node, Options) -> RetVal

Types:
Node = node()
Options = | FRSt or ageType | [KeyVal ue]
| FRSt or ageType = St orageType
St orageType = disc_copies | ramcopies
KeyVal ue = {ifr_storage_type, StorageType} |
{initialreferences_storage_ type, StorageType} | {naneservice_storage_type,
St orageType} | {type, Type}
Type = tenporary | pernmanent
RetVal = ok | exit()

Ericsson AB. All Rights Reserved.: orber | 91

orber

This function add given node to a existing Orber node group and starts Orber on the new node. or ber : add_node
is called from a member in the Orber node group.

Preconditions for new node:

» Erlang started on the new node using the option - mesi a extra_db_nodes, eg., erl -snane
new _node_nane -nnmesia extra_db_nodes Connect ToNodes_ Li st

* Thenew node'sdomai n nameisthe same for the nodes we want to connect to.

e Mnesiais running on the new node (no new schema created).

* |If thenew nodewill usedi sc_copi es the schema type must be changed using:
mesi a: change_t abl e_copy_type(schema, node(), disc_copies).

Orber will be started by the function on the new node.

Failsif:

e Orber aready installed on given node.

e Mnesianot started as described above on the new node.

» Impossibleto copy datain Mnesiatables to the new node.

* Not able to start Orber on the new node, due to, for example, thei i op_port isaready in use.

Thefunction do not remove aready copied tables after afailure. Useor ber : r enove_node to removethesetables.

remove node(Node) -> RetVal
Types.

Node = node()

RetVal = ok | exit()

This function removes given node from a Orber node group. The Mnesia application is not stopped.

configure(Key, Value) -> ok | {'EXIT', Reason}

Types:
Key = orbDefaultlnitRef | orblnitRef | giop_version | iiop_timeout
| iiop_connection_timeout | iiop_setup _connection_tineout
iiop_in_connection_tinmeout | objectkeys gc_time | orber_debug | evel
Val ue = all owed val ue associated with the given key

Thisfunction allows the user to configure Orber in, for example, an Erlang shell. It ispossibleto invokeconf i gur e
at any time the keys specified above.

Any other key must be set before installing and starting Orber.
Trying to change the configuration in any other way isNOT allowed since it may affect the behavior of Orber.
For more information regarding allowed values, see configuration settings in the User's Guide.

Configuring the I1OP timeout values will not affect already existing connections. If you want a guaranteed uniform
behavior, you must set these parameters from the start.

92 | Ericsson AB. All Rights Reserved.: orber

orber _ifr

orber _ifr

Erlang module

This module contains functions for managing the Interface Repository (IFR). This documentation should be used in
conjunction with the documentation in chapter 6 of 2.3. Whenever the term IFR object is used in this manual page, it
refersto a pseudo object used only for interaction with the IFR rather than a CORBA object.

Initialization of the IFR

The following functions are used to initialize the Interface Repository and to obtain the initial reference to the
repository.

Exports

init(Nodes,Timeout) -> ok

Types.
Nodes = list()
Timeout = integer() | infinity

This function should be called to initialize the IFR. It creates the necessary mnesia-tables. A mnesia schema should
exist, and mnesia must be running.

find repository() -> #IFR Repository objref

Find the IFR object reference for the Repository. This reference should be used when adding objects to the IFR, and
when extracting information from the IFR. The first time this function is called, it will create the repository and all
the primitive definitions.

General methods

The following functions are the methods of the IFR. The first argument is always an #|FR_objref, i.e. the IFR
(pseudo)object on which to apply this method. These functions are useful when the type of |FR object is hot know, but
they are somewhat slower than the specific functions listed below which only accept a particular type of |FR object
asthefirst argument.

Exports

get def kind(Objref) -> Return

Types:
hjref = #1 FR objref
Return = atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Mdul e, dk_Operation, dk_Typedef, dk_Ali as,
dk_Struct, dk_Union, dk_Enum dk_Primtive, dk_String, dk_Wtring,
dk_Fi xed, dk_Sequence, dk_Array, dk_Repository)

Objref isan IFR object of any kind. Returns the definition kind of the IFR object.

destroy(Objref) -> Return
Types.

Ericsson AB. All Rights Reserved.: orber | 93

orber_ifr

oj r ef #1 FR_obj ect
Return = tuple()

Objref isan IFR object of any kind except |RObject, Contained and Container. Destroys that object and its contents
(if any). Returns whatever mnesia:transaction returns.

get id(Objref) -> Return
Types:
ojref = #1 FR obj ect
Return = string()
Objref isan IFR object of any kind that inherits from Contained. Returns the repository id of that object.

set id(Objref,Id) -> ok

Types:
ojref = #1 FR obj ect
Id = string()

Objref isan IFR object of any kind that inherits from Contained. Sets the repository id of that object.

get name(Objref) -> Return
Types:
ojref = #1 FR obj ect
Return = string()
Objref isan IFR object of any kind that inherits from Contained. Returns the name of that object.

set name(Objref,Name) -> ok
Types:
hj ref = #1 FR _obj ect
Name = string()
Objref isan IFR object of any kind that inherits from Contained. Sets the name of that object.

get version(Objref) -> Return
Types:
ojref = #1 FR obj ect
Return = string()
Objref isan IFR object of any kind that inherits from Contained. Returns the version of that object.

set version(Objref,Version) -> ok
Types:
oj ref = #1 FR _obj ect
Version = string()
Objref isan IFR object of any kind that inherits from Contained. Sets the version of that object.

get defined in(Objref) -> Return
Types:

94 | Ericsson AB. All Rights Reserved.: orber

orber _ifr

oj ref
Ret urn

#1 FR_obj ect
#1 FR_Cont ai ner _obj r ef

Objref isan IFR object of any kind that inherits from Contained. Returnsthe Container object that the object is defined
in.

get absolute name(Objref) -> Return
Types:
Qoj ref = #l FR_obj ect
Return = string()
Objref isan IFR object of any kind that inherits from Contained. Returns the absol ute (scoped) name of that object.

get containing repository(Objref) -> Return

Types:
bjref = #1 FR obj ect
Return = #|l FR_Reposi tory_obj ref

Objref isan IFR object of any kind that inherits from Contained. Returns the Repository that is eventually reached by
recursively following the object's defined _in attribute.

describe(Objref) -> Return
Types.
oj r ef #1 FR_obj ect
Return = tuple() (a contained_description record) | {exception, _}

Objref isan IFR object of any kind that inherits from Contained. Returns a tuple describing the object.

move(Objref,New container,New name,New version) -> Return
Types:
hjref = #1 FR objref
New_cont ai ner = #l FR_Cont ai ner _obj r ef
New _name = string()
New_version = string()
Return = ok | {exception, _}
Objref is an IFR object of any kind that inherits from Contained. New_container is an IFR aobject of any kind that

inheritsfrom Container. Removes Objref from its current Container, and addsit to New_container. The name attribute
is changed to New_name and the version attribute is changed to New_version.

lookup (Objref,Search name) -> Return
Types:

ojref = #1 FR objref

Search_nanme = string()

Return = #l FR_obj ect

Objref is an IFR object of any kind that inherits from Container. Returns an IFR object identified by search_name
(ascoped name).

Ericsson AB. All Rights Reserved.: orber | 95

orber_ifr

contents(0Objref,Limit type,Exclude inherited) -> Return
Types:
Qoj ref = #l FR_obj ref
Limt _type = atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Mdul e, dk_Operation, dk_Typedef, dk_Ali as,
dk_Struct, dk_Union, dk_Enum dk_Primtive, dk_String, dk_Wtring,
dk_Fi xed, dk_Sequence, dk_Array, dk_Repository)
Excl ude_inherited = atom() (true or false)
Return = list() (a list of |FR¥ _objects)

Objref isan IFR object of any kind that inherits from Container. Returns the contents of that IFR object.

lookup name(Objref,Search name,Levels to search, Limit type,
Exclude inherited) -> Return

Types:
Qbjref = #I FR obj ref
Search_nane = string()
Level s _ to_search = integer()
Limt_type = aton() (one of dk_none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Mdul e, dk_Operation, dk_Typedef, dk_Ali as,
dk_Struct, dk_Union, dk_Enum dk_Prinitive, dk_String, dk_Wtring,
dk_Fi xed, dk_Sequence, dk_Array, dk_Repository)
Excl ude_inherited = atom() (true or false)
Return = list() (a list of #lFR objects)

Objref is an IFR object of any kind that inherits from Container. Returns a list of # FR_objects with an id matching
Search_name.

describe contents(Objref, Limit type, Exclude inherited, Max returned objs) -
> Return

Types:
ojref = #1 FR objref
Limt _type = aton() (one of dk _none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Mdul e, dk_Operation, dk _Typedef, dk_Ali as,
dk_Struct, dk _Union, dk Enum dk Prinmitive, dk_String, dk_Wtring,
dk_Fi xed, dk_Sequence, dk_Array, dk_Repository)
Excl ude_inherited = atom() (true or false)
Return = list() (a list of tuples (contained_description records) |
{exception, _}

Objref is an IFR object of any kind that inherits from Container. Returns a list of descriptions of the IFR objects in
this Container's contents.

create module(Objref,Id,Name,Version) -> Return

Types:
Qoj ref = #l FR_obj ref
Id = string()

Name = string()

96 | Ericsson AB. All Rights Reserved.: orber

orber _ifr

Version = string()
Ret urn = #|l FR_Modul eDef _obj r ef

Objref isan IFR object of any kind that inherits from Container. Creates an | FR object of the type ModuleDef.

create constant(0Objref,Id,Name,Version,Type,Value) -> Return
Types:

ojref = #1 FR obj ref

Id = string()

Name = string()

Version = string()

Type = #l FR I DLType_obj ref

Val ue = any()

Ret urn = #|l FR_Const ant Def _obj r ef

Objref isan IFR object of any kind that inherits from Container. Creates an IFR object of the type ConstantDef.

create struct(Objref,Id,Name,Version,Members) -> Return

Types:
Qbjref = #l FR obj ref
Id = string()

Name = string()

Version = string()

Members = list() (list of structnmenber records)
Return = #|l FR_Struct Def _obj r ef

Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type StructDef.

create union(0Objref,Id,Name,Version,Discriminator type,Members) -> Return
Types:

ojref = #1 FR objref

Id = string()

Name = string()

Version = string()

Di scrimnator_type = # FR | DLType_Qbj ref

Members = list() (list of unionnenber records)

Ret urn = #l FR_Uni onDef _obj r ef

Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type UnionDef.

create enum(Objref,Id,Name,Version,Members) -> Return

Types:
ojref = #1 FR objref
Id = string()

Name = string()
Version = string()
Members = list() (list of strings)

Ericsson AB. All Rights Reserved.: orber | 97

orber_ifr

Ret urn = #|l FR_EnunDef _obj r ef
Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type EnumDef.

create alias(Objref,Id,Name,Version,Original type) -> Return
Types:
ojref = #1 FR objref
Id = string()
Name = string()
Version = string()
Oiginal _type = #I FR | DLType_Qbj ref
Return = #I FR_Al i asDef _obj ref
Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type AliasDef.

create interface(Objref,Id,Name,Version,Base interfaces) -> Return
Types:

ojref = #1 FR objref

Id = string()

Nane = string()

Version = string()

Base interfaces = list() (a list of IFR InterfaceDef _objrefs that this
interface inherits from

Return = #l FR_I nt er f aceDef _obj r ef
Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type InterfaceDef.

create exception(0Objref,Id,Name,Version,Members) -> Return

Types:
Qoj ref = #l FR_obj ref
Id = string()

Name = string()

Version = string()

Members = list() (list of structmenber records)
Return = #|l FR_Excepti onDef _obj r ef

Objref isan IFR object of any kind that inherits from Container. Creates an |FR object of the type ExceptionDef.

get type(Objref) -> Return
Types.
Ooj ref = #l FR_obj ref
Return = tuple() (a typecode tuple)

Objref isan I FR aobject of any kind that inheritsfrom IDL Type or an | FR object of the kind ConstantDef, ExceptionDef
or AttributeDef. Returns the typecode of the IFR object.

lookup id(Objref,Search _id) -> Return
Types:

98 | Ericsson AB. All Rights Reserved.: orber

orber _ifr

ojref = #1 FR _Repository_objref
Search_id = string()
Return = #l FR obj r ef

Returns an IFR object matching the Search_id.

get primitive(Objref,Kind) -> Return
Types:
ojref = #1 FR _Repository_objref

Kind = aton() (one of pk_null, pk_void, pk_short, pk_Iong,

pk_ul ong, pk_float, pk_double, pk_bool ean, pk_char,

pk_ushort,
pk_octet,

pk_TypeCode, pk_Principal, pk_string, pk_wstring, pk_fixed, pk_objref)

Return = #I FR PrinitiveDef objref
Returns a PrimitiveDef of the specified kind.

create string(Objref,Bound) -> Return
Types.
ojref = #1 FR _Repository_objref
Bound = integer() (unsigned long /= 0)
Return = #| FR_Stri ngDef _obj ref
Creates an IFR objref of the type StringDef.

create wstring(0Objref,Bound) -> Return
Types.
ojref = #1 FR _Repository_objref
Bound = integer() (unsigned long /= 0)
Return = #l FR_Wstri ngDef _obj ref
Creates an IFR objref of the type WstringDef.

create fixed(Objref,Digits,Scale) -> Return
Types.

oj ref #| FR_Repository_objref

Digits = Scale = integer()

Return = #l FR_Fi xedDef _obj r ef
Creates an |FR objref of the type FixedDef.

create sequence(Objref,Bound,Element type) -> Return
Types.

ojref = #1 FR _Repository_objref

Bound = integer() (unsigned |ong)

El ement _type = #|l FR_| DLType_obj r ef

Return = #l FR_SequenceDef _obj ref
Creates an IFR objref of the type SequenceDef.

Ericsson AB. All Rights Reserved.: orber | 99

orber_ifr

create array(0Objref,Length,Element type) -> Return

Types:
ojref = #l FR_Repository_objref
Bound = integer() (unsigned |ong)

El ement _type = #|l FR_|I DLType_obj r ef
Return = #l FR_ArrayDef objref
Creates an |FR objref of the type ArrayDef.

create idltype(Objref,Typecode) -> Return
Types:
Objref = #l FR _Repository_objref
Typecode = tuple() (a typecode tuple)
Return = #l FR_| DLType_obj r ef

Creates an |FR objref of the type IDLType.

get type def(Objref) -> Return

Types:
Qbjref = #I FR obj ref
Return = #| FR_| DLType_obj r ef

Objref isan IFR object of the kind ConstantDef or AttributeDef. Returnsan | FR object of the type I DL Type describing
the type of the IFR object.

set type def(Objref,TypeDef) -> Return
Types.
Qoj ref = #l FR_obj ref
TypeDef = #l FR_ | DLType_obj ref
Return = ok | {exception, _}
Objref isan IFR object of the kind ConstantDef or AttributeDef. Sets the type_def of the IFR Object.

get value(Objref) -> Return

Types:
Ooj ref = #l FR_Const ant Def _obj r ef
Return = any()

Returns the value attribute of an IFR Object of the type ConstantDef.

set value(Objref,Value) -> Return
Types:
oj ref = #1 FR _Const ant Def _obj r ef
Val ue = any()
Return = ok | {exception, _}

Sets the value attribute of an IFR Object of the type ConstantDef.

100 | Ericsson AB. All Rights Reserved.: orber

orber _ifr

get members(0Objref) -> Return

Types:
Qoj ref = #l FR_obj ref
Return = list()

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For StructDef, UnionDef and
ExceptionDef: Returnsalist of structmember recordsthat arethe constituent parts of the object. For EnumDef: Returns
alist of strings describing the enumerations.

set members(Objref,Members) -> Return

Types:
ojref = #1 FR objref
Members = list()

Return = ok | {exception, _}

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For StructDef, UnionDef and
ExceptionDef: Membersis alist of structmember records. For EnumDef: Membersis alist of strings describing the
enumerations. Sets the members attribute, which are the constituent parts of the exception.

get discriminator type(Objref) -> Return
Types:
bj ref = #1 FR_Uni onDef _obj r ef
Return = tuple() (a typecode tuple)
Returns the discriminator typecode of an IFR object of the type UnionDef.

get discriminator type def(Objref) -> Return

Types:
oj ref = #1 FR _Uni onDef _obj r ef
Return = #l FR_| DLType_obj r ef

Returns an IFR object of the type IDL Type describing the discriminator type of an IFR object of the type UnionDef.

set discriminator type def(0Objref,TypeDef) -> Return
Types:

Qoj ref = #l FR_Uni onDef _obj r ef

Return = #l FR_| DLType_obj r ef

Sets the attribute discriminator_type def, an IFR object of the type IDLType describing the discriminator type of an
IFR object of the type UnionDef.

get original type def(Objref) -> Return
Types:
ojref = #1 FR_Al i asDef _obj ref
Ret urn #1 FR_| DLType_obj r ef
Returns an IFR object of the type IDLType describing the original type.

set original type def(0Objref,TypeDef) -> Return
Types:

Ericsson AB. All Rights Reserved.: orber | 101

orber_ifr

ojref = #1 FR_Al i asDef _obj ref
Typedef = #I FR | DLType_obj ref
Return = ok | {exception, _}
Setsthe original_type def attribute which describes the original type.

get kind(Objref) -> Return

Types:
ojref = #IFR PrinitiveDef _objref
Return = atom()

Returns an atom describing the primitive type (See CORBA 2.0 p 6-21).

get bound(Objref) -> Return

Types:
ojref = #1 FR obj ref
Return = integer (unsigned | ong)

Objref isan IFR object the kind StringDef or SequenceDef. For StringDef: returns the maximum number of characters
in the string. For SequenceDef: Returns the maximum number of elements in the sequence. Zero indicates an
unbounded sequence.

set bound(0Objref,Bound) -> Return

Types:
ojref = #1 FR objref
Bound = integer (unsigned |ong)

Return = ok | {exception, _}

Objref isan IFR object the kind StringDef or SequenceDef. For StringDef: Sets the maximum number of characters
in the string. Bound must not be zero. For SequenceDef: Sets the maximum number of elementsin the sequence. Zero
indicates an unbounded sequence.

get element type(Objref) -> Return
Types:
ojref = #1 FR objref
Return = tuple() (a typecode tuple)
Objref isan IFR object the kind SequenceDef or ArrayDef. Returns the typecode of the elementsin the IFR object.

get element type def(Objref) -> Return

Types:
Qoj ref = #l FR_obj ref
Return = #l FR_| DLType_obj r ef

Objref is an IFR object the kind SequenceDef or ArrayDef. Returns an IFR object of the type IDLType describing
the type of the elementsin Objref.

set element type def(Objref,TypeDef) -> Return

Types:
hjref = #1 FR objref

102 | Ericsson AB. All Rights Reserved.: orber

orber _ifr

TypeDef = #I FR | DLType_obj ref
Return = ok | {exception, _}

Objref isan IFR object the kind SequenceDef or ArrayDef. Sets the element_type def attribute, an IFR object of the
type IDLType describing the type of the elements in Objref.

get length(Objref) -> Return
Types:
ojref = #l FR_ArrayDef _obj ref
Ret urn i nteger() (unsigned |ong)

Returns the number of elementsin the array.

set length(Objref,Length) -> Return

Types:
ojref = #1 FR _ArrayDef _objref
Length = integer() (unsigned | ong)

Sets the number of elementsin the array.

get mode(Objref) -> Return
Types:
Qoj ref = #l FR_obj ref
Return = atom()
Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef: Return is an atom

(ATTR_NORMAL' or 'ATTR_READONLY") specifying the read/write access for this attribute. For OperationDef:
Returnis an atom (‘'OP_NORMAL' or 'OP_ONEWAY") specifying the mode of the operation.

set mode(Objref,Mode) -> Return
Types:
hjref = #1 FR objref
Mode = atom()
Return = ok | {exception, _}
Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef: Sets the read/write access for this

attribute. Mode is an atom (ATTR_NORMAL' or 'ATTR_READONLY"). For OperationDef: Sets the mode of the
operation. Mode isan atom ('OP_NORMAL' or 'OP_ONEWAY").

get result(Objref) -> Return

Types:
hjref = #1 FR_Operati onDef _obj ref
Return = tuple() (a typecode tuple)

Returns a typecode describing the type of the value returned by the operation.

get result def(Objref) -> Return

Types.
ojref = #1 FR _Operati onDef _obj ref
Return = #l FR_| DLType_obj r ef

Ericsson AB. All Rights Reserved.: orber | 103

orber_ifr

Returns an |FR object of the type IDL Type describing the type of the result.

set result def(Objref,ResultDef) -> Return
Types:

hjref = #1 FR _Operati onDef _obj ref

Resul t Def = #l FR_| DLType_obj r ef

Return = ok | {exception, _}

Setsthe type def attribute, an IFR Object of the type IDL Type describing the result.

get params(Objref) -> Return
Types:
hjref = #1 FR _Operati onDef _obj ref
Ret urn list() (list of parameter description records)

Returns alist of parameter description records, which describes the parameters of the OperationDef.

set params(Objref,Params) -> Return

Types:
ojref = #1 FR _Operati onDef _objref
Params = list() (list of paraneter description records)

Return = ok | {exception, _}
Sets the params attribute, alist of parameter description records.

get contexts(0Objref) -> Return

Types:
ojref = #1 FR _Operati onDef _objref
Return = list() (list of strings)

Returns alist of context identifiers for the operation.

set contexts(Objref,Contexts) -> Return

Types:
ojref = #1 FR _Operati onDef _obj ref
Contexts = list() (list of strings)

Return = ok | {exception, _}
Sets the context attribute for the operation.

get exceptions(Objref) -> Return

Types:
ojref = #1 FR _Operati onDef _obj ref
Return = list() (list of #l FR Excepti onDef objrefs)

Returns alist of exception types that can be raised by this operation.

set exceptions(Objref,Exceptions) -> Return
Types:

104 | Ericsson AB. All Rights Reserved.: orber

orber _ifr

ojref = #1 FR _Operati onDef _objref
Exceptions = list() (list of # FR ExceptionDef_objrefs)
Return = ok | {exception, _}

Sets the exceptions attribute for this operation.

get base interfaces(0Objref) -> Return

Types:
ojref = #IFR InterfaceDef _objref
Return = list() (list of #I FR InterfaceDef_objrefs)

Returns alist of InterfaceDefs from which this InterfaceDef inherits.

set base interfaces(0bjref,BaseInterfaces) -> Return

Types:
Qojref = #l FR_InterfaceDef _objref
Baselnterfaces = list() (list of #I FR InterfaceDef objrefs)
Return = ok | {exception, _}

Sets the Basel nterfaces attribute.

is _a(Objref,Interface id) -> Return

Types:
ojref = #l FR_InterfaceDef _objref
Interface id = #I FR I nterfaceDef objref
Return = atom() (true or false)

Returns true if the InterfaceDef either isidentical to or inherits from Interface id.

describe interface(Objref) -> Return

Types:
ojref = #IFR InterfaceDef _objref
Return = tuple() (a fullinterfacedescription record)

Returns afull inter face description record describing the InterfaceDef.

create attribute(Objref,Id,Name,Version,Type,Mode) -> Return

Types:
ojref = #IFR InterfaceDef _objref
Id = string()

Name = string()

Version = string()

Type = #|l FR_| DLType_obj r ef

Mode = aton() (' ATTR_NORVAL' or ' ATTR_READONLY')
Return = #l FR_Attri but eDef _obj ref

Creates an |FR object of the type AttributeDef contained in this InterfaceDef.

Ericsson AB. All Rights Reserved.: orber | 105

orber_ifr

create operation(0Objref,Id,Name,Version,Result,Mode,Params,
Exceptions,Contexts) -> Return

Types:
Qojref = #I FR_InterfaceDef _objref
Id = string()

Name = string()

Version = string()

Result = #l FR_| DLType_obj r ef

Mode = aton() (' OP_NORMAL' or 'OP_ONEWAY')

Params = list() (list of paraneter description records)
Exceptions = list() (list of # FR ExceptionDef_ objrefs)
Contexts = list() (list of strings)

Return = #l FR_Qper ati onDef _obj r ef
Creates an |FR object of the type OperationDef contained in this InterfaceDef.

106 | Ericsson AB. All Rights Reserved.: orber

orber_tc

orber _tc

Erlang module

This module contains some functions that gives support in creating IDL typecodes that can be used in for example
the any types typecode field. For the simple types it is meaningless to use this APl but the functions exist to get the
interface compl ete.

The type TC used below describes an IDL type and is a tuple according to the to the Erlang language mapping.

Exports
null() -> TC
void() -> TC

short() -> TC

unsigned short() -> TC
long() -> TC

unsigned long() -> TC

long long() -> TC
unsigned long long() -> TC
wchar() -> TC

float() -> TC

double() -> TC

boolean() -> TC

char() -> TC
octet() -> TC
any() -> TC

typecode() -> TC
principal() -> TC
These functions return the IDL typecodes for simple types.

object reference(Id, Name) -> TC
Types:

Id = string()

the repository 1D

Name = string()

the type name of the object

Function returnsthe IDL typecode for object reference.

struct(Id, Name, ElementList) -> TC
Types:

Id = string()

the repository 1D

Name = string()

Ericsson AB. All Rights Reserved.: orber | 107

orber_tc

the type name of the struct

El enent Li st = [{Menber Name, TC}]
alist of the struct elements

Menber Nanme = string()

the element name

Function returns the IDL typecode for struct.

union(Id, Name, DiscrTC, Default, ElementList) -> TC
Types.

Id = string()

the repository 1D

Name = string()

the type name of the union

DiscrTC = TC

the typecode for the unions discriminant

Default = integer()

avalue that indicates which tuple in the element list that is default (value < 0 means no default)

El enent Li st = [{Label, MenberNane, TC}]

alist of the union elements

Label = tern()

the label value should be of the Discr T Ctype

Member Nane = string()

the element name

Function returnsthe IDL typecode for union.

enum(Id, Name, ElementList) -> TC
Types:

Id = string()

the repository 1D

Nane = string()

the type name of the enum

El enent Li st = [Menber Nane]

alist of the enums elements

Member Nane = string()

the element name

Function returns the IDL typecode for enum.

string(Length) -> TC
Types:

Length = integer()

the length of the string (O means unbounded)
Function returns the IDL typecode for string.

108 | Ericsson AB. All Rights Reserved.: orber

orber_tc

wstring(Length) -> TC
Types:

Length = integer()

the length of the wstring (0 means unbounded)
Function returnsthe IDL typecode for wstring.

fixed(Digits, Scale) -> TC
Types:

Digits = Scale = integer()

the digits and scale parameters of a Fixed type
Function returns the IDL typecode for fixed.

sequence(ElemTC, Length) -> TC
Types.

El eniTC = TC

the typecode for the sequence elements

Length = integer()

the length of the sequence (0 means unbounded)
Function returnsthe IDL typecode for sequence.

array(ElemTC, Length) -> TC
Types:
El enifC = TC
the typecode for the array elements
Length = integer()
the length of the array
Function returns the IDL typecode for array.

alias(Id, Name, AliasTC) -> TC
Types.

Id = string()

the repository 1D

Name = string()

the type name of the dlias

AliasTC = TC

the typecode for the type which the alias refer to

Function returnsthe IDL typecode for alias.

exception(Id, Name, ElementList) -> TC
Types:

Id = string()

the repository 1D

Name = string()

Ericsson AB. All Rights Reserved.: orber | 109

orber_tc

the type name of the exception

El enent Li st = [{Menber Name, TC}]
alist of the exception elements

Menber Nanme = string()

the element name

Function returns the IDL typecode for exception.

get tc(Object) -> TC
get tc(Id) -> TC
Types:
Cbj ect = record()
an IDL specified struct, union or exception
Id = string()
the repository 1D
If the get_tc/1 getsarecord that isand IDL specified struct, union or exception as a parameter it returns the typecode.

If the parameter is arepository ID it uses the Interface Repository to get the typecode.

check tc(TC) -> boolean()
Function checks the syntax of an IDL typecode.

110 | Ericsson AB. All Rights Reserved.: orber

orber_acl

orber_acl

Erlang module

This module contains functions intended for analyzing Access Control List (ACL) filters. The filters uses a
extended format of Classess Inter Domain Routing (CIDR). For example, " 123. 123. 123. 10" limits the
connection to that particular host, while "123. 123. 123. 10/ 17" dlows connections to or from any host
equal to the 17 most significant bits. Orber aso allow the user to specify a certain port or port range, for
example, "123. 123. 123. 10/ 17#4001" and " 123. 123. 123. 10/ 17#4001/ 5001" respectively. |Pv4 or
none compressed | Pv6 strings are accepted.

Exports

match(IP, Direction) -> boolean()
match(IP, Direction, GetInfo) -> Reply
Types:

IP =tuple() | [integer()]

Direction = tcp_in | ssl_in | tcp_out | ssl_out

Get I nfo = bool ean()

Reply = boolean() | {boolean(), [Interface], Portl nfo}

Interface = string()

Portinfo = integer() | {integer(), integer()}
If Get | nf 0 isnot supplied or set to false, this operation returns a boolean which tells if the IPv4 or IPv6 address
would passthe ACL filter, defined by thei i op_ac!| configuration parameter, or not. When Get | nf o isset to true,
a tuple which, besides the boolean that tells if access was granted, also include the defined interfaces and port(s).

This operation requires that Orber is running and can be used on alive node to determine if Orber has been properly
configured.

verify(IP, Filter, Family) -> Reply

Types.
IP = string()
Filter = string()
Family = inet | ineté6

Reply = true | {false, From To} | {error, string()}
From = string()
To = string()

This operation returns true if the IPv4 or IPv6 address would pass the supplied ACL. If that is not the case, atuple
containing the accepted range is returned. This operation should only be used for test purposes.

range(Filter, Family) -> Reply

Types:
Filter = string()
Family = inet | ineté6

Reply = {ok, From To} | {error, string()}
From = string()

Ericsson AB. All Rights Reserved.: orber | 111

orber_acl

To = string()

Returns the range of accepted | P addresses based on the supplied filter. This operation should only be used for test
purposes.

112 | Ericsson AB. All Rights Reserved.: orber

CosNaming

CosNaming

Erlang module

The naming service provides the principal mechanism for clients to find objectsin an ORB based world. The naming
service provides an initial naming context that functions as the root context for all names. Given this context clients
can navigate in the name space.

Types that are declared on the CosNaming level are:

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

}i

typedef sequence <NameComponent> Name;
enum BindingType {nobject, ncontext};
struct Binding {
Name binding name;
BindingType binding type;
}i
typedef sequence <Binding> BindinglList;
To get access to the record definitions for the structs use:
-include lib("orber/C0SS/CosNaming.hrl").

Names are not an ORB object but the can be structured in components as seen by the definition above. There are no
reguirements on names so the service can support many different conventions and standards.

There are two different interfaces supported in the service:

* NamingContext
e Bindinglterator

Ericsson AB. All Rights Reserved.: orber | 113

CosNaming_NamingContext

CosNaming_NamingContext

Erlang module

Thisisthe object that defines name scopes, names must be unique within anaming context. Objects may have multiple
names and may exist in multiple naming contexts. Name context may be named in other contexts and cycles are
permitted.

The type NameConponent used below is defined as:
-record('CosNaming NameComponent', {id, kind=""}).

wherei d and ki nd are strings.
Thetype Bi ndi ng used below is defined as:

-record('CosNaming Binding', {binding name, binding type}).

wherebi ndi ng_nane isaNameandbi ndi ng_t ype isanenumwhich hasthevaluesnobj ect andncont ext .
Both these records are defined in the file CosNami ng. hr | and it isincluded with:

-include lib("orber/C0SS/CosNaming/CosNaming.hrl").

There are anumber of exceptionsthat can be returned from functions in this interface.
* NotFound is defined as

-record('CosNaming NamingContext NotFound',
{rest of name, why}).

e CannotProceed is defined as

-record('CosNaming NamingContext CannotProceed',
{rest of name, cxt}).

¢ InvalidNameis defined as

-record('CosNaming NamingContext InvalidName', {}).

¢ NotFound is defined as

-record('CosNaming NamingContext NotFound', {}).

« AlreadyBound is defined as

-record('CosNaming NamingContext AlreadyBound', {}).

e NotEmpty isdefined as
-record('CosNaming NamingContext NotEmpty', {}).
These exceptions are defined in the file CosNam ng_Nami ngCont ext . hr| and it isincluded with:

-include lib("orber/C0SS/CosNaming/CosNaming NamingContext.hrl").

Exports

bind(NamingContext, Name, Object) -> Return
Types:

114 | Ericsson AB. All Rights Reserved.: orber

CosNaming_NamingContext

NanmeCont ext = #obj ref
Name = [NaneConponent]
oj ect = #obj ref
Return = ok

Creates a binding of a name and an object in the naming context. Naming contexts that are bound using bind() do
not participate in name resolution.

rebind (NamingContext, Name, Object) -> Return
Types:

Nam ngCont ext = #obj ref

Name = [NaneConponent]

Cbj ect = #obj ref

Return = ok

Creates ahinding of a name and an object in the naming context even if the name is already bound. Naming contexts
that are bound using rebind() do not participate in name resolution.

bind context(NamingContextl, Name, NamingContex2) -> Return
Types.

Nam ngCont ext 1 = Nami ngCont ext 2 =#obj r ef

Nane = [NanmeConponent]

Return = ok

The bind_context function creates a binding of a name and a naming context in the current context. Naming contexts
that are bound using bind_context() participate in name resol ution.

rebind context(NamingContextl, Name, NamingContex2) -> Return
Types.

Nam ngCont ext 1 = Namni ngCont ext 2 =#obj r ef

Nane = [NameConponent]

Return = ok

Therebind_context function creates abinding of a name and a naming context in the current context even if the name
already is bound. Naming contexts that are bound using rebind_context() participate in name resol ution.

resolve(NamingContext, Name) -> Return
Types.
Nam ngCont ext = #obj ref
Nane = [NanmeConponent]
Return = bj ect
bj ect = #objref
The resolve function is the way to retrieve an object bound to a name in the naming context. The given name must

match exactly the bound name. The type of the object is not returned, clients are responsible for narrowing the object
to the correct type.

unbind(NamingContext, Name) -> Return
Types:

Ericsson AB. All Rights Reserved.: orber | 115

CosNaming_NamingContext

Nam ngCont ext = #obj ref
Name = [NanmeConponent]
Return = ok

The unbind operation removes a name binding from the naming context.

new context(NamingContext) -> Return
Types.

Nam ngCont ext = #obj ref

Return = #obj ref

The new_context operation creates a new naming context.

bind new context(NamingContext, Name) -> Return
Types:

Nam ngCont ext = #obj ref

Name = [NaneConponent]

Return = #obj ref

The new_context operation creates a new naming context and binds it to Name in the current context.

destroy(NamingContext) -> Return
Types:
Nam ngCont ext = #obj ref
Return = ok

The destroy operation disposes the NamingContext object and removesit from the name server. The context must be
empty e.g. not contain any bindings to be removed.

list(NamingContext, HowMany) -> Return
Types:
Nam ngCont ext = #obj ref
Howvany = int ()
Return = {ok, BindingList, Bindinglterator}
Bi ndi ngLi st = [Bi ndi ng]
Bi ndi ngl terator = #objref
The list operation returns a BindingList with a number of bindings up-to HowMany from the context. It also returns

a Bindinlterator which can be used to step through the list. If the total number of existing bindings are less than, or
equal to, the Howiveiny parameter a NIL object referenceis returned.

One must destroy the Bindinglterator, unless it is a NIL object reference, by using 'Bindinglterator':destroy().
Otherwise one can get dangling objects.

116 | Ericsson AB. All Rights Reserved.: orber

CosNaming_NamingContextExt

CosNaming_NamingContextExt

Erlang module

To get access to the record definitions for the structures use:
-include lib("orber/C0SS/CosNaming/CosNaming.hrl").

This module also exports the functions described in:
e CosNaming_NamingContext

Exports

to string(NamingContext, Name) -> Return
Types:
NameCont ext = #obj ref
Name = [NaneConponent]
Return = string() | {' EXCEPTION , Nami ngContext::InvalidName{}}

Stringifies a Namre sequence to a string.

to name(NamingContext, NameString) -> Return
Types:
NameCont ext = #obj ref
NameString = string()
Return = [NaneConponent] | {' EXCEPTION , Nami ngContext::InvalidName{}}

Converts a stringified Nane to a Narmre sequence.

to url(NamingContext, AddressString, NameString) -> Return
Types:
NameCont ext = #obj ref
Address = NameString = string()
Return = URLString | {' EXCEPTION , Nami ngContext::IlnvalidName{}} |
{' EXCEPTI ON', Nam ngCont ext Ext:: I nval i dAddress{}}

This operation takes a cor bal oc string and a stringified Nane sequence as input and returns a fully formed URL
string.

resolve str(NamingContext, NameString) -> Return
Types:

NameCont ext = #obj ref

NameString = string()

Return = #objref | {'EXCEPTION , Nam ngContext::InvalidName{}} |
{' EXCEPTI ON', Nami ngCont ext:: Not Found{why, rest_of nane}} | {' EXCEPTION,
Nam ngCont ext : : Cannot Proceed{cxt, rest_of nane}}

This operation takes a stringified Nanme sequence asinput and returns the associated, if any, object.

Ericsson AB. All Rights Reserved.: orber | 117

CosNaming_Bindinglterator

CosNaming_Bindinglterator

Erlang module

Thisinterface allows aclient to iterate over the Bindinglist it has been initiated with.
The type NameConponent used below is defined as:

-record('CosNaming NameComponent', {id, kind=""}).

i d andki nd are strings.
Thetype Bi ndi ng used below is defined as:

-record('CosNaming Binding', {binding name, binding type}).

bi ndi ng_nane isaNanme = [NanmeConponent] and bi ndi ng_t ype is an enum which has the values
nobj ect and ncont ext .

Both these records are defined in the file CosNami ng. hr | and it isincluded with:

-include lib("orber/C0SS/CosNaming/CosNaming.hrl").
Exports

next one(BindinIterator) -> Return
Types.
Bi ndi ngl terator = #objref
Return = {bool (), Binding}

This operation returns the next binding and a boolean. The latter is set to true if the binding is valid otherwise false.
If the boolean is false there are no more bindings to retrieve.

next n(BindinIterator, HowMany) -> Return
Types:

Bi ndi nglterator = #objref

Howvany = int ()

Bi ndi ngLi st = [Bi ndi ng]

Return = {bool (), BindingList}

This operation returns a binding list with at most HowMany bindings. If there are no more bindings it returns false
otherwise true.

destroy(BindingIterator) -> Return
Types.
Bi ndi ngl terator = #objref
Return = ok

This operation destroys the binding iterator.

118 | Ericsson AB. All Rights Reserved.: orber

Iname

Iname

Erlang module

Thisinterfaceisapart of the nameslibrary whichisused to hide the representation of names. In Orbers Erlang mapping
the pseudo-object names and the real IDL names have the same representation but it is desirable that the clients uses
the names library so they will not be dependent of the representation. The Iname interface supports handling of names
e.g. adding and removing name components.

Notethat thelnameinterfacein orber doesnot contain adestroy function becausethe Namesare represented as standard
Erlang lists and therefor will be removed by the garbage collector when not in use.

The type NameConponent used below is defined as:
-record('CosNaming NameComponent', {id, kind=""}).

i d andKki nd are strings.
Therecord is defined in the file CosNami ng. hr| and it isincluded with:

-include lib("orber/C0SS/CosNaming/CosNaming.hrl").
Exports
create() -> Return
Types:

Ret urn = [NanmeConponent]
This function returns a new name.

insert _component(Name, N, NameComponent) -> Return

Types.
Name = [NaneConponent]
N=int()

Return = Nane

This function returns a name where the new name component has been inserted as component Nin Name.

get component(Name, N) -> Return

Types.
Name = [NaneConponent]
N=int()

Ret urn = NanmeConponent
This function returns the N: t h name component in Name.

delete component(Name, N) -> Return

Types.
Name = [NaneConponent]
N =int()

Return = Nane

Ericsson AB. All Rights Reserved.: orber | 119

Iname

This function deletes the N: t h name component from Name and returns the new name.

num_component (Name) -> Return
Types:
Name = [NaneConponent]
Return = int()

This function returns a the number of name components in Name.

equal(Namel, Name2) -> Return
Types.
Namel = Nanme2 = [NaneConponent]
Return = bool ()

This function returns true if the two names are equal and false otherwise.

less than(Namel, Name2) -> Return
Types:
Namel = Name2 = [NaneConponent]
Ret urn = bool ()

This function returns true if Namel are lesser than Name2 and fal se otherwise.

to idl form(Name) -> Return
Types:
Name = [NaneConponent]
Return = Nane

This function just checks if Name is a correct IDL name before returning it because the name representation is the
same for pseudo and IDL names in orber.

from idl form(Name) -> Return
Types:
Name = [NaneConponent]
Return = Nane

This function just returns the Name because the name representation is the same for pseudo and IDL names in orber.

120 | Ericsson AB. All Rights Reserved.: orber

Iname_component

Iname_component

Erlang module

Thisinterfaceisapart of the namelibrary, which isused to hide the representation of names. In Orbers Erlang mapping
the pseudo-object names and thereal IDL names have the same representation but it is desirabl e that the clientsusesthe
names library so they will not be dependent of the representation. The Iname_component interface supports handling
of name components e.g. set and get of the struct members.

Note that the Iname_component interface in orber does not contain a destroy function because the NameComponents
are represented as Erlang records and therefor will be removed by the garbage collector when not in use.

The type NameConponent used below is defined as:
-record('CosNaming NameComponent', {id, kind=""}).

i d andKki nd are strings.
Therecord is defined in the file CosNami ng. hr| and it isincluded with:

-include lib("orber/C0SS/CosNaming/CosNaming.hrl").
Exports

create() -> Return
Types:
Ret urn = NanmeConponent
This function returns a new name component.

get id(NameComponent) -> Return
Types.
Return = string()
This function returns the id string of a name component.

set _id(NameComponent, Id) -> Return
Types.

Id = string()

Ret urn = NaneConponent

This function setsthe id string of a name component and returns the component.

get kind(NameComponent) -> Return
Types:

Return = string()
This function returns the id string of a name component.

set _kind(NameComponent, Kind) -> Return

Types:
Kind = string()

Ericsson AB. All Rights Reserved.: orber | 121

Iname_component

Ret urn = NanmeConponent

This function sets the kind string of a name component and returns the component.

122 | Ericsson AB. All Rights Reserved.: orber

Module_Interface

Module_Interface

Erlang module

This module contains the stub/skel eton functions generated by 1C.
Starting a Orber server can be done in three ways:

e Normal - when the server dies Orber forgets all knowledge of the server.

e Supervisor child - adding the configuration parameter { sup_chi | d, true} theoe create |ink/2
function returns{ ok, Pi d, Obj Ref} which can be handled by the application supervisor/stdlib-1.7 or
later.

» Persistent object reference - adding the configuration parameters{ per si st ent, true} and{regnane,
{gl obal, ternm()}} Orberwill remember the object reference until the server terminates with reason
normal or shutdown. Hence, if the server is started as atransient supervisor child we do not receive a
'OBJECT_NOT_EXIST" exception when it has crashed and is being restarted.

The Orber stub can be used to start apseudo obj ect, which will create a non-server implementation. A pseudo
object introduce some limitations:

» Thefunctionsoe_create_link/2isequal tooe_creat e/ 2,i.e, nolink can or will be created.

e TheBlF:s self() andprocess_flag(trap_exit,true) behavesincorrectly.

e Thel Coption{{inmpl, "M:I"}, "other_inpl"} hasno effect. The cal-back functions must be
implemented in afilecalledM_| _i npl . er|

e Thel Coption f r omhas no effect.
» The call-back functions must be implemented asif thel Coption{t hi s, "M : 1"} wasused.

e Server St at e changes have no effect. The user can provide information viathe Env start parameter and the
State returned fromi ni t / 2 will be the State passed in following invocations.

* If acall-back function replies with the Ti meout parameter set it have no effect.

* Operations defined as oneway are blocking until the operation replies.

e« Theoption{pseudo, true} overridesal other start options.

e Only the functions, besides own definitions, i ni t / 2 (called viaoe _create*/2) andt er m nat e/ 2 (caled via
corba:dispose/1) must be implemented.

By adopting therulesfor pseudo objectsdescribed abovewecanuseoe_cr eat e/ 2 tocreateser ver or pseudo
objects, by excluding or including the option { pseudo, t rue}, without changing the call-back module.

If you start aobject without { r egnane, RegNane} it can only be accessed through the returned object key. Started
witha{regname, RegNane} thenameisregistered locally or globally.

To avoid flooding Orber with old object references start erlang using the flag -orber objectkeys gc time Time,
which will remove all object references related to servers being dead for Time seconds. To avoid extra overhead,
i.e., performing garbage collect if no persistent objects are started, the objectkeys gc_time default valueisinfinity.
For more information, see the orber and corba documentation.

Exports

Module Interface:typeID() -> Typeld
Types:

Ericsson AB. All Rights Reserved.: orber | 123

Module_Interface

Typeld = string(), e.g., "IDL:Mdulel/lnterface:1.0"
Returnsthe Type ID related to this stub/skeleton

Module Interface:oe create() -> ObjRef
Types:

bj Ref = #obj ect reference
Start a Orber server.

Module Interface:oe create link() -> ObjRef
Types:

Ohj Ref = #obj ect reference
Start alinked Orber server.

Module Interface:oe create(Env) -> ObjRef
Types:

Env = term)

hj Ref = #obj ect reference

Start a Orber server passing Envtoi nit/ 1.

Module Interface:oe create link(Env) -> ObjRef
Types:

Env = term)

hj Ref = #obj ect reference

Start alinked Orber server passing Env toi ni t/ 1.

Module Interface:oe create(Env, Options) -> ObjRef
Types:

Env = term()

hj Ref = #obj ect reference

Options = [{sup_child, false} | {persistent, Bool} | {regnane, RegNane}
| {pseudo, Bool} | {local typecheck, Bool} | {survive_exit, Bool} |
{create_options, [CreateOpts]}]

Bool = true | false
RegNane = {global, term)} | {local, atom()}
CreateOpts = {debug, [Dbg]} | {tineout, Tine}
Dbg = trace | log | statistics | {log_to_file, FileNane}
Start a Orber server passing Envtoi ni t/ 1.
If theoption { pseudo, true} isused, al other options are overridden. As default, thisoption is set to false.

This function cannot be used for starting a server as supervisor child. If started as per si st ent, the options
[{persistent, true}, {regname, {global, tern()}}] mustbeusedand Orber will only forget the
object reference if it terminates with reason normal or shutdown.

Theoption{ | ocal _t ypecheck, bool ean() },whichoverridesthe Local Typechecking environment flag, turns
on or off typechecking. If activated, parameters, replies and raised exceptions will be checked to ensure that the data

124 | Ericsson AB. All Rights Reserved.: orber

Module_Interface

is correct, when invoking operations on CORBA Objects within the same Orber domain. Due to the extra overhead,
thisoption MAY ONLY be used during testing and development.

{survive_exit, bool ean()} overridesthe EXIT Tolerance environment flag. If activated, the server will not
terminate, even though the call-back module returns EXIT.

Ti me specifies how long time, in milliseconds, the server is alowed to spend initializing. For more information about
the Dbg options, seethe sys module.

Module Interface:oe create link(Env, Options) -> Return
Types:
Env = term)
Return = hj Ref | {ok, Pid, ObjRef}
hj Ref = #obj ect reference
Options = [{sup_child, Bool} | {persistent, Bool} | {regnane, RegNane}
| {pseudo, Bool} | {local _typecheck, Bool} | {survive_exit, Bool} |
{create_options, [CreateQpts]}]
Bool = true | false
RegNane = {global, term()} | {local, aton()}
CreateOpts = {debug, [Dbg]} | {tineout, Tine}
Dbg = trace | log | statistics | {log to file, FileNane}

Start alinked Orber server passing Envtoi nit/ 1.

If the option { pseudo, true} isused, al other options are overridden and no link will be created. As default,
this option is set to false.

This function can be used for starting a server as persistent or supervisor child. At the moment [{ per si st ent ,
true}, {regname, {global, term()}}] mustbeusedto start a server as persistent, i.e, if a server died
and isin the process of being restarted a call to the server will not raise’ OBJECT_NOT_EXI ST' exception. Orber
will only forget the object referenceif it terminates with reason nor mal or shutdown, hence, the server must be started
astransient (for more information see the supervisor documentation).

Theoptions{| ocal _t ypecheck, bool ean()} and{survive_exit, bool ean()} behavesinthesame
way asfor oe_create/ 2.

Ti e specifies how long time, in milliseconds, the server is alowed to spend initializing. For more information about
the Dbg options, seethe sys module.

Module Interface:own functions(ObjRef, Argl, ..., ArgN) -> Reply
Module Interface:own functions(ObjRef, Options, Argl, ..., ArgN) -> Reply
Types:

Obj Ref = #obj ect reference
Options = [Option] | Tinmeout
Option = {tineout, Tineout} | {context, [Context]}

Timeout = infinity | integer(mlliseconds)
Context = #'10P_ServiceContext'{context id = Cxld, context data =
Ct xDat a}

Ctxld = ?0RBER_GENERI C_CTX_I D

Ctxbata = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Ericsson AB. All Rights Reserved.: orber | 125

Module_Interface

Interface = string()

Options = [{Key, Value}]

Key = ssl _client_verify | ssl_client_depth | ssl_client_certfile |
ssl _client _cacertfile | ssl_client_password | ssl_client_keyfile |
ssl _client _ciphers | ssl_client_cachetinmeout

Val ue = all owed val ue associated with the given key

ArgX = specified in the |DL-code.

Reply = specified in the |DL-code.
The default value for the Ti meout optionisi nfi ni ty. IPv4 or IPv6 addresses are accepted as local Interface.
The configuration context is used to override the global SSL client side configuration.

Togainaccessto#' | OP_Ser vi ceCont ext ' {} record and the ?ORBER_GENERI C_CTX_| D macro, you must
add-include_l|ib("orber/include/corba. hrl"). toyour module.

CALLBACK FUNCTIONS

The following functions should be exported from a CORBA callback module. Note, a complete template of the call-
back module can be generated automatically by compiling the IDL-file with the IC option { be, er| _t enpl at e}.
One should also add the same compile options, for examplet hi s or f r om used when generating the stub/skeleton
modules.

Exports

Module Interface impl:init(Env) -> CallReply
Types:
Env = term)

Call Reply = {ok, State} | {ok, State, Tineout} | ignore | {stop,
St opReason}

State = term()
Timeout =int() >= 0] infinity
St opReason = term()
Whenever anew server is started, init/1 isthefirst function called in the specified call-back module.

Module Interface impl:terminate(Reason, State) -> ok
Types:

Reason = term()

State = term)

This call-back function is called whenever the server is about to terminate.

Module Interface impl:code change(0ldVsn, State, Extra) -> CallReply
Types.

A dVsn = undefined | term)

State = term()

Extra = tern()

Cal | Reply = {0k, NewsStat e}

NewState = term()

126 | Ericsson AB. All Rights Reserved.: orber

Module_Interface

Update the internal St at e.

Module Interface impl:handle info(Info, State) -> CallReply
Types:

Info = term)

State = term))

Call Reply = {noreply, State} | {noreply, State, Tineout} | {stop
St opReason, St at e}

Timeout = int() > 0| infinity
St opReason = nornal | shutdown | tern()

If the configuration parameter {{handle info, "Module:Interface"}, true} is passed to IC and
process flag(trap_exit,true) is set in theinit() call-back this function must be exported.

To be able to handle the Ti neout optionin Cal | Repl y in the call-back module the configuration parameter
{{handle_info, " Module::Interface"}, true} must be passed to IC.

Module Interface impl:own functions(State, Argl, ..., ArgN) -> CallReply

Module Interface impl:own functions(This, State, Argl, ..., ArgN) ->
CallReply

Module Interface impl:own functions(This, From, State, Argl, ..., ArgN) ->
ExtCallReply

Module Interface impl:own functions(From, State, Argl, ..., ArgN) ->
ExtCallReply

Types.
This = the servers #object reference
State = term))
ArgX = specified in the |DL-code
Cal | Reply = {reply, Reply, State} | {reply, Reply, State, Tinmeout}

| {stop, StopReason, Reply, State} | {stop, StopReason, State}
corba: rai se(Excepti on)

ExtCal | Reply = Call Reply | corba:reply(From Reply), {noreply, State}
corba:reply(From Reply), {noreply, State, Tineout}

Reply = specified in the |DL-code.
Timeout = int() > 0| infinity
St opReason = nornmal | shutdown | tern()
All two-way functions must return one of the listed replies or raise any of the exceptions listed in the IDL code (i.e.

raises(...)). If the |C compile optionsthis and/or from are used, the implementation must accept the Thisand/or From
parameters.

Module Interface impl:own functions(State, Argl, ..., ArgN) -> CastReply
Module Interface impl:own functions(This, State, Argl, ..., ArgN) ->
CastReply

Types:

Ericsson AB. All Rights Reserved.: orber | 127

Module_Interface

This = the servers #object reference
State = term))

CastReply = {noreply, State} | {noreply, State, Tineout} | {stop,
St opReason, St at e}

ArgX = specified in the |DL-code.

Reply = specified in the |DL-code.
Tinmeout = int() > 0| infinity

St opReason = normal | shutdown | tern()

All one-way functions must return one of the listed replies. If the IC compile option thisis used, the implementation
must accept the This parameter.

128 | Ericsson AB. All Rights Reserved.: orber

interceptors

interceptors

Erlang module

This module contains the mandatory functions for user supplied native interceptors and their intended behavior. See
also the User's Guide.

War ning:

Using | nt er cept or s may reduce the through-put significantly if the supplied interceptors invoke expensive
operations. Hence, one should always supply interceptors which cause as little overhead as possible.

War ning:

It is possible to ater the Data, Bin and Args parameter for the in_reply and out reply,
in_reply _encoded,in_request_encoded, out _reply encoded and out _request_encoded,
i n_request andout request respectively. But, if it isdone incorrectly, the consequences can be serious.

Note:

The Ext r a parameter is set to 'undefined' by Orber when calling the first interceptor and may be set to any Erlang
term. If an interceptor change this parameter it will be passed on to the next interceptor in the list uninterpreted.

Note:

The Ref parameter is set to ‘'undefined by Orber when caling new_in_connection or
new_out _connect i on using thefirst interceptor. The user supplied interceptor may set NewRef to any Erlang
term. If an interceptor change this parameter it will be passed on to the next interceptor in the list uninterpreted.

Exports

new in connection(Ref, PeerHost, PeerPort) -> NewRef
new in connection(Ref, PeerHost, PeerPort, SocketHost, SocketPort) -> NewRef

Types:
Ref = tern() | undefined
Peer Host = Socket Host = string(), e.g., "nmyHost@ryServer" or "192.0.0.10"

Peer Port = Socket Port i nteger()
NewRef = term() | {"EXIT', Reason}

When a new connection is requested by a client side ORB this operation is invoked. If more than one interceptor
is supplied, eg., {native, ['nylnterceptorl', 'nylnterceptor2']}, the retun value from
'mylnterceptorl’ is passed to 'mylnterceptor2' as Ref . Initially, Orber uses the atom 'undefined' as Ref parameter
when calling the first interceptor. The return value from the last interceptor, in the example above 'mylnterceptor?’,
is passed to all other functions exported by the interceptors. Hence, the Ref parameter can, for example, be used asa
unique identifier to mnesiaor ets where information/restrictions for this connection is stored.

The PeerHost and PeerPort variables supplied data of the client ORB which requested a new connection. SocketHost
and SocketPort are the local interface and port the client connected to.

Ericsson AB. All Rights Reserved.: orber | 129

interceptors

If, for some reason, we do not allow the client ORB to connect simply invoke exi t (Reason) .

new out connection(Ref, PeerHost, PeerPort) -> NewRef
new out connection(Ref, PeerHost, PeerPort, SocketHost, SocketPort) -> NewRef
Types.
Ref = tern() | undefined
Peer Host = Socket Host = string(), e.g., "nyHost@wyServer" or "192.0.0.10"
Peer Port = Socket Port = integer()
NewRef = term() | {"EXIT', Reason}
When a new connection is set up this function is invoked. Behaves just like new_i n_connect i on; the only

difference is that the PeerHost and PeerPort variables identifies the target ORB's bootstrap data and SocketHost and
SocketPort are the local interface and port the client ORB connected via.

closed in connection(Ref) -> NewRef
Types:

Ref = term)

NewRef = term()

When an existing connection is terminated this operation is invoked. The main purpose of this function is to make it
possible for auser to clean up all data associated with the associated connection.

The input parameter Ref isthereturn valuefromnew_i n_connecti on/ 3.

closed out connection(Ref) -> NewRef
Types:

Ref = term()

NewRef = term()

When an existing connection is terminated this operation is invoked. The main purpose of this function isto make it
possible for a user to clean up all data associated with the associated connection.

Theinput parameter Ref isthe return value fromnew_out _connecti on/ 3.

in reply(Ref, 0Obj, Ctx, Op, Data, Extra) -> Reply

Types.
Ref = term)
hj = #objref
Cx = [#10P_ServiceContext'{}]
Op = atom()
Data = [Result, QutParaneterl, ..., QutPramaterN|

Reply = {NewData, NewExtra}

When replies are delivered from the server side ORB to the client side ORB this operation is invoked. The Dat a
parameter isalistinwhichthefirst element isthereturn value valuefromthetarget object and therest isaall parameters
defined asout ori nout intheIDL-specification.

in _reply encoded(Ref, 0Obj, Ctx, Op, Bin, Extra) -> Reply

Types:
Ref = term()

130 | Ericsson AB. All Rights Reserved.: orber

interceptors

bj = #objref

Cx = [# 10P_ServiceContext'{}]

O = aton()

Bi n = #binary

Reply = {NewBi n, NewExtr a}
When replies are delivered from the server side ORB to the client side ORB this operation is invoked. The Bi n
parameter isthe reply body still uncoded.

in request(Ref, 0bj, Ctx, Op, Args, Extra) -> Reply

Types.
Ref = term)
Cbj = #objref
Cx = [# 1 0P_ServiceContext'{}]
O = aton()

Args = [Argunment] - defined in the IDL-specification
Reply = {NewArgs, NewExtr a}
When anew request arrives at the server side ORB this operation is invoked.

in request encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply

Types:
Ref = term)
bj = #objref
Cx = [# 1 0P_ServiceContext'{}]
G = atom()

Bi n = #binary
Reply = {NewBi n, NewExtra}
When anew request arrives at the server side ORB this operation isinvoked before decoding the request body.

out reply(Ref, Obj, Ctx, Op, Data, Extra) -> Reply

Types:
Ref = term)
hj = #objref
Cx = [# 1 OP_ServiceContext'{}]
O = atom()
Data = [Result, QutParaneterl, ..., QutPranaterN

Reply = {NewDat a, NewExtra}

After the target object have been invoked this operation is invoked with the result. The Dat a parameter isalistin
which the first element is the return value value from the target object and the rest is a all parameters defined as out
ori nout inthe |DL-specification.

out reply encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply

Types:
Ref = term()

Ericsson AB. All Rights Reserved.: orber | 131

interceptors

bj = #objref
Cx = [# 10P_ServiceContext'{}]
O = aton()

Bi n = #binary
Reply = {NewBi n, NewExtr a}
Thisoperation issimilar to out _r epl y; the only difference isthat the reply body have been encoded.

out request(Ref, Obj, Ctx, Op, Args, Extra) -> Reply

Types.
Ref = term)
Cbj = #objref
Cx = [# 1 0P_ServiceContext'{}]
O = aton()

Args = [Argunent] - defined in the |IDL-specification
Reply = {NewArgs, NewExtr a}
Before arequest is sent to the server side ORB, out _r equest isinvoked.

out request encoded(Ref, 0Obj, Ctx, Op, Bin, Extra) -> Reply

Types:
Ref = term)
bj = #objref
Cx = [#10P_ServiceContext'{}]
O = atom()

Bi n = #binary
Reply = {NewBi n, NewExtra}
Thisoperation issimilar to out _r equest ; the only differenceis that the request body have been encoded.

132 | Ericsson AB. All Rights Reserved.: orber

orber_diagnostics

orber_diagnostics

Erlang module

This module contains functions which makes it possible to run simple tests.

Functions exported by this module may only be used during test and development phase. |

Exports

nameservice() -> Result
nameservice(Flags) -> Result
Types:
Fl ags = integer()
Result = ok | {' EXCEPTION , E}
Displays all objects stored in the NameService. Existent checks are, per default, also performed on all local objects.

This can also be activated for external objects by setting the flag 16#01. The displayed information is the stringified
Name described in CosNaming_NamingContextExt, non existent status (true | false | external | undefined) and the IFR-

Id:

host/
host/resources/
host/resources/My0Obj/ [false] IDL:MyMod/MyIntf:1.0

missing modules() -> Count
Types:
Count = integer()
This operation list missing modules generated by 1C and required by Orber. Requires that all API:s are registered in
the IFR.

Ericsson AB. All Rights Reserved.: orber | 133

	orber
	Orber User's Guide
	The Orber Application
	Content Overview
	Brief Description of the User's Guide
	ORB Kernel and IIOP Support
	Interface Repository
	IDL to Erlang Mapping
	CosNaming Service
	Resolving Initial References from Java or C++
	Orber Stub/Skeleton
	CORBA Exceptions
	Interceptors
	OrberWeb
	Debugging

	Introduction to Orber
	Overview
	Benefits
	Purpose and Dependencies
	Prerequisites

	The Orber Application
	ORB Kernel and IIOP
	The Object Request Broker (ORB)
	Internet Inter-Object Protocol (IIOP)

	Interface Repository
	Interface Repository(IFR)

	Installing Orber
	Installation Process
	Preparation
	Jump Start Orber
	Install Single Node Orber
	Install RAM Based Multi Node Orber
	Install Disk Based Multi Node Orber

	Configuration
	Orber Environment Flags

	Firewall Configuration
	Interface Configuration

	OMG IDL to Erlang Mapping
	OMG IDL to Erlang Mapping - Overview
	OMG IDL Mapping Elements
	Getting Started
	Basic OMG IDL Types
	Template OMG IDL Types and Complex Declarators
	String/WString Data Types
	Sequence Data Type
	Array Data Type
	Fixed Data Type

	Constructed OMG IDL Types
	Struct Data Type
	Enum Data Type
	Union Data Type

	Scoped Names and Generated Files
	Scoped Names
	Generated Files

	Typecode, Identity and Name Access Functions
	References to Constants
	References to Objects Defined in OMG IDL
	Exceptions
	Access to Attributes
	Invocations of Operations
	Implementing the DB Application
	Reserved Compiler Names and Keywords
	Type Code Representation

	CosNaming Service
	Overview of the CosNaming Service
	The Basic Use-cases of the Naming Service
	Fetch Initial Reference to the Naming Service
	Creating a Naming Context
	Binding and Unbinding Names to Objects
	Resolving a Name to an Object
	Listing the Bindings in a NamingContext
	Destroying a Naming Context

	Interoperable Naming Service
	IOR
	corbaloc
	corbaname

	How to use security in Orber
	Security in Orber
	Introduction
	Enable Usage of Secure Connections
	Configurations when Orber is Used on the Server Side
	Configurations when Orber is Used on the Client Side

	Orber Stubs/Skeletons
	Orber Stubs and Skeletons Description
	Server Start
	Pseudo Objects
	Call-back Module

	CORBA System and User Defined Exceptions
	System Exceptions
	Status Field
	Minor Field
	Supported System Exceptions

	User Defined Exceptions
	Throwing Exceptions
	Catching Exceptions

	Orber Interceptors
	Using Interceptors
	Configure Orber to Use Interceptors
	Creating Interceptors

	Interceptor Example

	OrberWeb
	Using OrberWeb
	The Menu Frame
	The Configuration Data Frame
	The IFR Data Frame
	The NameService Data Frame
	The Object Creation Data Frame

	Starting OrberWeb

	Debugging
	Tools and FAQ
	Tools
	FAQ

	Reference Manual
	any
	create/0
	create/2
	set_typecode/2
	get_typecode/1
	set_value/2
	get_value/1

	fixed
	create/3
	get_typecode/1
	add/2
	subtract/2
	multiply/2
	divide/2
	unary_minus/1

	corba
	create/2
	create/3
	create/4
	create_link/2
	create_link/3
	create_link/4
	dispose/1
	create_nil_objref/0
	create_subobject_key/2
	get_subobject_key/1
	get_pid/1
	raise/1
	reply/2
	resolve_initial_references/1
	resolve_initial_references/2
	add_initial_service/2
	remove_initial_service/1
	list_initial_services/0
	resolve_initial_references_remote/2
	resolve_initial_references_remote/3
	list_initial_services_remote/1
	list_initial_services_remote/2
	object_to_string/1
	string_to_object/1
	string_to_object/2
	print_object/1
	add_alternate_iiop_address/3
	orb_init/1

	corba_object
	get_interface/1
	is_nil/1
	is_a/2
	is_a/3
	is_remote/1
	non_existent/1
	non_existent/2
	not_existent/1
	not_existent/2
	is_equivalent/2
	hash/2

	orber
	start/0
	start/1
	jump_start/1
	stop/0
	info/0
	info/1
	exception_info/1
	is_system_exception/1
	get_tables/0
	get_ORBInitRef/0
	get_ORBDefaultInitRef/0
	domain/0
	iiop_port/0
	iiop_out_ports/0
	iiop_out_ports_random/0
	iiop_out_ports_attempts/0
	iiop_ssl_port/0
	iiop_timeout/0
	iiop_connection_timeout/0
	iiop_connections/0
	iiop_connections/1
	iiop_connections_pending/0
	iiop_in_connection_timeout/0
	iiop_acl/0
	activate_audit_trail/0
	activate_audit_trail/1
	deactivate_audit_trail/0
	add_listen_interface/2
	add_listen_interface/3
	add_listen_interface/3
	remove_listen_interface/1
	close_connection/1
	close_connection/2
	secure/0
	ssl_server_options/0
	ssl_client_options/0
	set_ssl_client_options/1
	objectkeys_gc_time/0
	orber_nodes/0
	install/1
	install/2
	uninstall/0
	add_node/2
	remove_node/1
	configure/2

	orber_ifr
	init/2
	find_repository/0
	get_def_kind/1
	destroy/1
	get_id/1
	set_id/2
	get_name/1
	set_name/2
	get_version/1
	set_version/2
	get_defined_in/1
	get_absolute_name/1
	get_containing_repository/1
	describe/1
	move/4
	lookup/2
	contents/3
	lookup_name/5
	describe_contents/4
	create_module/4
	create_constant/6
	create_struct/5
	create_union/6
	create_enum/5
	create_alias/5
	create_interface/5
	create_exception/5
	get_type/1
	lookup_id/2
	get_primitive/2
	create_string/2
	create_wstring/2
	create_fixed/3
	create_sequence/3
	create_array/3
	create_idltype/2
	get_type_def/1
	set_type_def/2
	get_value/1
	set_value/2
	get_members/1
	set_members/2
	get_discriminator_type/1
	get_discriminator_type_def/1
	set_discriminator_type_def/2
	get_original_type_def/1
	set_original_type_def/2
	get_kind/1
	get_bound/1
	set_bound/2
	get_element_type/1
	get_element_type_def/1
	set_element_type_def/2
	get_length/1
	set_length/2
	get_mode/1
	set_mode/2
	get_result/1
	get_result_def/1
	set_result_def/2
	get_params/1
	set_params/2
	get_contexts/1
	set_contexts/2
	get_exceptions/1
	set_exceptions/2
	get_base_interfaces/1
	set_base_interfaces/2
	is_a/2
	describe_interface/1
	create_attribute/6
	create_operation/9

	orber_tc
	null/0
	void/0
	short/0
	unsigned_short/0
	long/0
	unsigned_long/0
	long_long/0
	unsigned_long_long/0
	wchar/0
	float/0
	double/0
	boolean/0
	char/0
	octet/0
	any/0
	typecode/0
	principal/0
	object_reference/2
	struct/3
	union/5
	enum/3
	string/1
	wstring/1
	fixed/2
	sequence/2
	array/2
	alias/3
	exception/3
	get_tc/1
	get_tc/1
	check_tc/1

	orber_acl
	match/2
	match/3
	verify/3
	range/2

	CosNaming
	CosNaming_NamingContext
	bind/3
	rebind/3
	bind_context/3
	rebind_context/3
	resolve/2
	unbind/2
	new_context/1
	bind_new_context/2
	destroy/1
	list/2

	CosNaming_NamingContextExt
	to_string/2
	to_name/2
	to_url/3
	resolve_str/2

	CosNaming_BindingIterator
	next_one/1
	next_n/2
	destroy/1

	lname
	create/0
	insert_component/3
	get_component/2
	delete_component/2
	num_component/1
	equal/2
	less_than/2
	to_idl_form/1
	from_idl_form/1

	lname_component
	create/0
	get_id/1
	set_id/2
	get_kind/1
	set_kind/2

	Module_Interface
	Module_Interface:typeID/0
	Module_Interface:oe_create/0
	Module_Interface:oe_create_link/0
	Module_Interface:oe_create/1
	Module_Interface:oe_create_link/1
	Module_Interface:oe_create/2
	Module_Interface:oe_create_link/2
	Module_Interface:own_functions/4
	Module_Interface:own_functions/5
	Module_Interface_impl:init/1
	Module_Interface_impl:terminate/2
	Module_Interface_impl:code_change/3
	Module_Interface_impl:handle_info/2
	Module_Interface_impl:own_functions/4
	Module_Interface_impl:own_functions/5
	Module_Interface_impl:own_functions/6
	Module_Interface_impl:own_functions/5
	Module_Interface_impl:own_functions/4
	Module_Interface_impl:own_functions/5

	interceptors
	new_in_connection/3
	new_in_connection/5
	new_out_connection/3
	new_out_connection/5
	closed_in_connection/1
	closed_out_connection/1
	in_reply/6
	in_reply_encoded/6
	in_request/6
	in_request_encoded/6
	out_reply/6
	out_reply_encoded/6
	out_request/6
	out_request_encoded/6

	orber_diagnostics
	nameservice/0
	nameservice/1
	missing_modules/0

