
orber
Copyright © 1997-2018 Ericsson AB. All Rights Reserved.

orber 3.8.4
March 26, 2018

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: orber | 1

1.1 The Orber Application

2 | Ericsson AB. All Rights Reserved.: orber

1 Orber User's Guide

The Orber application is an Erlang implementation of a CORBA Object Request Broker.

1.1 The Orber Application
1.1.1 Content Overview
The Orber documentation is divided into three sections:

• PART ONE - The User's Guide
Description of the Orber Application including IDL-to-Erlang language mapping, services and a small tutorial
demonstrating the development of a simple service.

• PART TWO - Release Notes
A concise history of Orber.

• PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in Orber.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

• ORB kernel and IIOP support

• Interface Repository

• IDL to Erlang mapping

• CosNaming Service

• Resolving initial reference from Java or C++

• Tutorial - creating a simple service

• CORBA Exceptions

• Interceptors

• OrberWeb

• Debugging

ORB Kernel and IIOP Support
The ORB kernel which has IIOP support will allow the creation of persistent server objects in Erlang. These objects
can also be accessed via Erlang and Java environments. For the moment a Java enabled ORB is needed to generate
Java from IDL to use Java server objects (this has been tested using OrbixWeb).

Interface Repository
The IFR is an interface repository used for some type-checking when coding/decoding IIOP. The IFR is capable of
storing all interfaces and declarations of OMG IDL.

IDL to Erlang Mapping
The OMG IDL mapping for Erlang, which is necessary to access the functionality of Orber, is described, The
mapping structure is included as the basic and the constructed OMG IDL types references, invocations and Erlang
characteristics. An example is also provided.

1.2 Introduction to Orber

Ericsson AB. All Rights Reserved.: orber | 3

CosNaming Service
Orber contains a CosNaming compliant service.

Resolving Initial References from Java or C++
A couple of classes are added to Orber to simplify initial reference access from Java or C++.

Resolving initial reference from Java
A class with only one method which returns an Interoperable Object Referenceon the external string format to the
INIT object (see "Interoperable Naming Service" specification).

Resolving initial reference from C++
A class (and header file) with only one method which returns an IOR on the external string format to the INIT object
(see "Interoperable Naming Service" specification).

Orber Stub/Skeleton
An example which describes the API and behavior of Orber stubs and skeletons.

CORBA Exceptions
A listing of all system exceptions supported by Orber and how one should handle them. This chapter also describe
how to generate user defined exceptions.

Interceptors
Descibes how to implement and activate interceptors.

OrberWeb
Offers the possibility to administrate and supervise Orber via a GUI.

Debugging
Describes how to use different tools when debugging and/or developing new applications using Orber. Also includes
a FAQ, which deal with the most common mistakes when using Orber.

1.2 Introduction to Orber
1.2.1 Overview
The Orber application is a CORBA compliant Object Request Brokers (ORB), which provides CORBA functionality
in an Erlang environment. Essentially, the ORB channels communication or transactions between nodes in a
heterogeneous environment.

Common Object Request Broker Architecture is a common communication standard developed by the OMG
(Object Management Group)(Common Object Request Broker Architecture) provides an interface definition language
allowing efficient system integration and also supplies standard specifications for some services.

The Orber application contains the following parts:

• ORB kernel and IIOP support

• Interface Repository

• Interface Definition Language Mapping for Erlang

• CosNaming Service

Benefits
Orber provides CORBA functionality in an Erlang environment that enables:

1.2 Introduction to Orber

4 | Ericsson AB. All Rights Reserved.: orber

• Platform interoperability and transparency

Orber enables communication between OTP applications or Erlang environment applications and other platforms;
for example, Windows NT, Solaris etc, allowing platform transparency. This is especially helpful in situations
where there are many users with different platforms. For example, booking airline tickets would require the airline
database and hundreds of travel agents (who may not have the same platform) to book seats on flights.

• Application level interoperability and transparency

As Orber is a CORBA compliant application, its purpose is to provide interoperability and transparency on the
application level. Orber simplifies the distributed system software by defining the environment as objects, which
in effect, views everything as identical regardless of programming languages.
Previously, time-consuming programming was required to facilitate communication between different languages.
However, with CORBA compliant Orber the Application Programmer is relieved of this task. This makes
communication on an application level relatively transparent to the user.

Purpose and Dependencies
The system architecture and OTP dependencies of Orber are illustrated in figure 1 below:

Figure 2.1: Figure 1: Orber Dependencies and Structure.

Orber is dependent on Mnesia (see the Mnesia documentation) - an Erlang database management application used to
store object information.

Note:

Although Orber does not have a run-time application dependency to IC (an Interface Definition Language - IDL is
the OMG specified interface definition language, used to define the CORBA object interfaces.compiler for Erlang),
it is necessary when building services and applications. See the IC documentation for further details.

1.3 The Orber Application

Ericsson AB. All Rights Reserved.: orber | 5

Figure 2.2: Figure 2: ORB interface between Java and Erlang Environment Nodes.

This simplified illustration in figure 2 demonstrates how Orber can facilitate communication in a heterogeneous
environment. The Erlang Nodes running OTP and the other Node running applications written in Java can communicate
via an Object Request Broker - ORB open software bus architecture specified by the OMG which allows object
components to communicate in a heterogeneous environment.(Object Request Broker). Using Orber means that
CORBA functions can be used to achieve this communication.

For example, if one of the above nodes requests an object, it does not need to know if that object is located on the
same, or different, Erlang or Java nodes. The ORB will channel the information creating platform and application
transparency for the user.

Prerequisites
To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming and CORBA (Common Object Request Broker Architecture).

Recommended reading includes Open Telecom Platform Documentation Set and Concurrent Programming in
Erlang.

1.3 The Orber Application
1.3.1 ORB Kernel and IIOP
This chapter gives a brief overview of the ORB and its relation to objects in a distributed environment and the usage of
Domains in Orber. Also Internet-Inter ORB Protocol (Internet-Inter ORB Protocol) is discussed and how this protocol
facilitates communication between ORBs to allow the accessory of persistent server objects in Erlang.

1.3 The Orber Application

6 | Ericsson AB. All Rights Reserved.: orber

1.3.2 The Object Request Broker (ORB)
An ORB kernel can be best described as the middle-ware, which creates relationships between clients and servers,
but is defined by its interfaces. This allows transparency for the user, as they do not have to be aware of where the
requested object is located. Thus, the programmer can work with any other platform provided that an IDL mapping
and interfaces exist.

The IDL mapping which is described in a later chapter is the translator between other platforms, and languages.
However, it is the ORB, which provides objects with a structure by which they can communicate with other objects.

ORBs intercept and direct messages from one object, pass this message using IIOP to another ORB, which then directs
the message to the indicated object.

An ORB is the base on which interfaces, communication stubs and mapping can be built to enable communication
between objects. Orber uses A domain allows a more efficient communication protocol to be used between objects
not on the same node without the need of an ORBto group objects of different nodes

How the ORB provides communication is shown very simply in figure 1 below:

Figure 3.1: Figure 1: How the Object Request Broker works.

1.3 The Orber Application

Ericsson AB. All Rights Reserved.: orber | 7

The domain in Orber gives an extra aspect to the distributed object environment as each domain has one ORB, but
it is distributed over a number of object in different nodes. The domain binds objects on nodes more closely than
distributed objects in different domains. The advantage of a domain is that a faster communication exists between
nodes and objects of the same domain. An internal communication protocol (other than IIOP) allows a more efficient
communication between these objects.

Note:

Unlike objects, domains can only have one name so that no communication ambiguities exist between domains.

1.3.3 Internet Inter-Object Protocol (IIOP)
IIOP is a communication protocol developed by the OMG to facilitate communication in a distributed object-oriented
environment.

Figure 2 below demonstrates how IIOP works between objects:

Figure 3.2: Figure 2: IIOP communication between domains and objects.

Note:

Within the Orber domains the objects communicate without using the IIOP. However, the user is unaware of the
difference in protocols, as this difference is not visible.

1.4 Interface Repository

8 | Ericsson AB. All Rights Reserved.: orber

1.4 Interface Repository
1.4.1 Interface Repository(IFR)
The IFR is an interface repository built on the Mnesia application. Orber uses the IFR for some type-checking when
coding/decoding IIOP. The IFR is capable of storing all interfaces and declarations of OMG IDL.

The interface repository is mainly used for dynamical interfaces, and as none are currently supported this function is
only really used for retrieving information about interfaces.

Functions relating to the manipulation of the IFR including, initialization of the IFR, as well as, locating, creating and
destroying initial references are detailed further in the Manual Pages.

1.5 Installing Orber
1.5.1 Installation Process
This chapter describes how to install Orber in an Erlang Environment.

Preparation
To begin with, you must decide if you want to run Orber as a:

• Single node (non-distributed) - all communication with other Orber instances and ORB's supplied by other
vendors use the OMG GIOP protocol.

• Multi node (distributed) - all Orber nodes, within the same domain, communicate via the Erlang distribution
protocol. For all other Orber instances, i.e. not part of the same domain, and ORB's supplied by other vendors,
the OMG GIOP protocol is used.

Which approach to use is highly implementation specific, but a few things you should consider:

• All nodes within an Orber domain should have the same security level.

• If the capacity is greater than load (volume of traffic) a single-node Orber might be a good solution.

• In some cases the distributed system architecture requires a single-node is the structure of the ORB or ORBs as
defined during the install process is called the "installation"..

• A multi-node Orber makes it possible to load balance and create a more fault tolerant system. The Objects can
also have a uniform view if you use distributed Mnesia tables.

• Since the GIOP protocol creates a larger overhead than the Erlang distribution protocol, the performance
will be better when communicating with Objects within the same Orber domain compared with inter ORB
communication (GIOP).

You also have to decide if you want Orber to store internal data using disc_copies and/or ram_copies.
Which storage type you should depends if/how you intend to use Mnesia in your application. If you intend to use
disc_copies you must start with creating a Mnesia schema, which contain information about the location of the
Erlang nodes where Orber is planned to be run. For more background information, see the Mnesia documentation.

In some cases it is absolutely necessary to change the default configuration of Orber. For example, if two Orber-ORB's
shall be able to communicate via GIOP, they must have a unique domain domain. Consult the configuration settings
section. If you encounter any problems; see the chapter about Debugging in this User's Guide.

Jump Start Orber
The easiest way to start Orber is to use orber:jump_start(Port), which start a single-node ORB with (most
likely) a unique domain (i.e. "IP-number:Port"). This function may only be used during development and testing.
For any other situation, install and start Orber as described in the following sections. The listen port, i.e. iiop_port
configuration parameter, is set to the supplied Port.

1.5 Installing Orber

Ericsson AB. All Rights Reserved.: orber | 9

Warning:

How Orber is configured when using orber:jump_start(Port) may change at any time without warning.
Hence, this operation must not be used in systems delivered to a customer.

Install Single Node Orber
Since a single node Orber communicate via the OMG GIOP protocol it is not necessary to start the Erlang distribution
(i.e. using -name/-sname).

If we use ram_copies there is no need for creating a disk based schema. Simply use:

erl> mnesia:start().
erl> corba:orb_init([{domain, "MyRAMSingleNodeORB"}]).
erl> orber:install([node()], [{ifr_storage_type, ram_copies}]).
erl> orber:start().

If you installation requires disc_copies you must begin with creating a Mnesia schema. Otherwise, the installation
is similar to a RAM installation:

erl> mnesia:create_schema([node()]).
erl> mnesia:start().
erl> corba:orb_init([{domain, "MyDiskSingleNodeORB"}]).
erl> orber:install([node()], [{ifr_storage_type, disc_copies},
 {nameservice_storage_type, disc_copies}]).
erl> orber:start().

You can still choose to store the IFR data as ram_copies, but then the data must be re-installed (i.e. invoke
orber:install/2) if the node is restarted. Hence, since the IFR data is rather static you should use
disc_copies. For more information see the orber section in the reference manual.

If you do not need to change Orber's configuration you can skip orb_init/1. But, you should at least set the IIOP
timeout parameters.

Install RAM Based Multi Node Orber
Within a domain Orber uses the Erlang distribution protocol. Hence, you must start it first by, for example, using:

hostA> erl -sname nodeA

In this example, we assume that we want to use two nodes; nodeA and nodeB. Since Mnesia must know which other
nodes should a part of the distribution we either need to add the Mnesia configuration parameter extra_db_nodes
or use mnesia:change_config/2. To begin with, Mnesia must be started on all nodes before we can install
Orber:

nodeA@hostA> mnesia:start().
nodeA@hostA> mnesia:change_config(extra_db_nodes,
 [nodeA@hostA, nodeB@hostB]).

After that the above have been repeated on nodeB we must first make sure that both nodes will use the same domain
name, then we can install Orber:

nodeA@hostA> corba:orb_init([{domain, "MyRAMMultiNodeORB"}]).
nodeA@hostA> orber:install([nodeA@hostA, nodeB@hostB],
 [{ifr_storage_type, ram_copies}]).
nodeA@hostA> orber:start().

Note that you can only invoke orber:install/1/2 on one of the nodes. Now we can start Orber on the other node:

1.5 Installing Orber

10 | Ericsson AB. All Rights Reserved.: orber

nodeB@hostB> corba:orb_init([{domain, "MyRAMMultiNodeORB"}]).
nodeB@hostB> orber:start().

Install Disk Based Multi Node Orber
As for RAM based multi-node Orber installations, the Erlang distribution must be started (e.g. erl -sname nodeA). The
major difference is that when it is disk based a Mnesia schema must be created:

nodeA@hostA> mnesia:create_schema([nodeA@hostA, nodeB@hostB]).
nodeA@hostA> mnesia:start().

In this example, we assume that we want to use two nodes; nodeA and nodeB. Since it is not possible to create
a schema on more than one node. Hence, all we have to do is to start Mnesia (i.e. invoke mnesia:start()) on
nodeB.

After Mnesia have been started on all nodes, you must confirm that all nodes have the same domain name, then Orber
is ready to be installed:

nodeA@hostA> corba:orb_init([{domain, "MyDiskMultiNodeORB"}]).
nodeA@hostA> orber:install([nodeA@hostA, nodeB@hostB],
 [{ifr_storage_type, disc_copies}]).
nodeA@hostA> orber:start().

Note that you can only invoke orber:install/1/2 on one of the nodes. Now we can start Orber on the other node:

nodeB@hostB> corba:orb_init([{domain, "MyDiskMultiNodeORB"}]).
nodeB@hostB> orber:start().

1.5.2 Configuration
It is essential that one configure Orber properly, to avoid, for example, malicious attacks and automatically terminate
IIOP connections no longer in use. An easy way to extract information about Orber's configuration parameters is to
invoke the operation orber:info/1/2. Orber offer the following configuration parameters:

Key Range Default

domain string() "ORBER"

iiop_port integer() >= 0 4001

nat_iiop_port
integer() > 0 | {local, integer(),
[{integer(), integer()}]}

The same as iiop_port

iiop_out_ports 0 | {integer(),integer()} 0

iiop_out_ports_attempts integer() > 0 1

iiop_out_ports_random true | false false

iiop_max_fragments integer() > 0 | infinity infinity

iiop_max_in_requests integer() > 0 | infinity infinity

iiop_max_in_connections integer() > 0 infinity

iiop_backlog integer() > 0 5

1.5 Installing Orber

Ericsson AB. All Rights Reserved.: orber | 11

iiop_packet_size integer() > 0 | infinity infinity

ip_address string() | {multiple, [string()]} All interfaces

ip_address_local string() Defined by the underlying system

nat_ip_address
string() | {multiple, [string()]} |
{local, string(), [{string(), string()}]}

The same as ip_address

objectkeys_gc_time integer() > 0 | infinity infinity

giop_version {1,0} | {1,1} | {1,2} {1,1}

iiop_setup_connection_timeout integer() > 0 | infinity infinity

iiop_connection_timeout integer() > 0 | infinity infinity

iiop_in_connection_timeout integer() > 0 | infinity infinity

iiop_out_keepalive true | false false

iiop_in_keepalive true | false false

iiop_timeout integer() > 0 | infinity infinity

interceptors {native, [atom()]} -

local_interceptors {native, [atom()]} -

orbInitRef [string()] | undefined undefined

orbDefaultInitRef string() | undefined undefined

orber_debug_level 0 - 10 0

flags integer() >= 0 0

iiop_acl
[{atom(), string()}] | [{atom(),
string(), [string()]}]

[]

secure no | ssl no

ssl_generation 2 | 3 2

iiop_ssl_port integer() >= 0 4002

iiop_ssl_accept_timeout integer() > 0 | infinity infinity

iiop_ssl_backlog integer() > 0 5

iiop_ssl_ip_address_local string() Defined by the underlying system

1.5 Installing Orber

12 | Ericsson AB. All Rights Reserved.: orber

nat_iiop_ssl_port
integer() > 0 | {local, integer(),
[{integer(), integer()}]}

The same as iiop_ssl_port

ssl_server_options list()
See the SSL application for valid
options.

ssl_client_options list()
See the SSL application for valid
options.

iiop_ssl_out_keepalive true | false false

iiop_ssl_in_keepalive true | false false

Table 5.1: Orber Configuration Parameters

Comments on the table 'Orber Configuration Parameters':

domain
Since Orber domains, they are supposed to communicate via IIOP, MUST have unique names, communication
will fail if two domains have the same name. The domain name MAY NOT contain ^G (i.e. \007).

iiop_port
If set to 0 the OS will pick any vacant port.
Note:On a UNIX system it is preferable to have a IIOP port higher than 1023, since it is not recommended to
run Erlang as a root user.

nat_iiop_port
The value is either an integer or {local, DefaultNATPort, [{Port, NATPort}]}. See also
Firewall Configuration.

iiop_out_ports
When set to 0 any available port will be used. If a range is specified, Orber will only use the local ports
within the interval when trying to connect to another ORB (Orber acts as a client ORB). If all ports are in use
communication will fail. Hence, it is absolutely necessary to set iiop_connection_timeout as well.
Otherwise, connections no longer in use will block further communication. If one use, for example, erl -
orber iiop_out_ports "{5000,5020}", Orber will only use port 5000 to 5020 when connecting. If
communicating via SSL, make sure you use a version that supports the local {port, Port} option. See also
Firewall Configuration.

iiop_out_ports_random
Requires that iiop_out_ports define a port range. If that is the case Orber will select a port randomly from
that sequence.

iiop_out_ports_attempts
Requires that iiop_out_ports define a port range. If so Orber will accept a number of timeouts, defined by
this parameter, when trying to connect to another ORB.

iiop_max_fragments
Limits the number of IIOP fragments allowed per request.

iiop_max_in_requests
Limits the number of concurrent incoming requests per incoming connection.

iiop_max_in_connections
Limits the number of concurrent incoming connections.

iiop_backlog
Defines the maximum length the queue of pending incoming connections may grow to.

iiop_packet_size
Defines the maximum size of incoming requests. If this limit is exceeded, the connection is closed.

1.5 Installing Orber

Ericsson AB. All Rights Reserved.: orber | 13

ip_address
This option is used if orber only should listen on a specific ip interface on a multi-interface host or if exported
IOR:s should contain multiple components. The value is the IPv4 or IPv6 address as a string or {multiple,
IPList}. The latter requires that the object is available via the all IP addresses found in the list.

ip_address_local
This option defines the default local interface Orber will use when connecting to another ORB via IIOP, i.e.,
Orber act as the client side ORB. The value is a IPv4 or IPv6 address as a string. It is possible to override
ip_address_local by defining iiop_acl or passing the Orber generic interface Context. If
this option is not used, the underlying OS will choose which interface to use. For more information, see the
Interface Configuration section.

nat_ip_address
The value is the ip address as a string (IPv4 or IPv6), {multiple, IPList} or {local,
DefaultNATIPAddress, [{IPAddress, NATIPAddress}]}. See also Firewall Configuration.

objectkeys_gc_time
This option should be set if objects are started using the option {persistent, true}. The value is
integer() seconds.

giop_version
Defines the default GIOP protocol version.

iiop_setup_connection_timeout
The value is an integer (seconds) or the atom infinity. This option is only valid for client-side connections. If
this option is set, attempts to connect to other ORB's will timeout after the given time limit. Note, if the time
limit is large the TCP protocol may timeout before the supplied value.

iiop_connection_timeout
The value is an integer (timeout in seconds between 0 and 1000000) or the atom infinity. This option is only
valid for client object connections, i.e., will have no effect on server connections. Setting this option will
cause client connections to be terminated, if and only if, there are no pending requests. If there are a client still
waiting for a reply, Orber will try again after the given seconds have passed. The main purpose for this option
is to reduce the number of open connections; it is, for example, not necessary to keep a connection, only used
once a day, open at all time.

iiop_in_connection_timeout
The same as for iiop_connection_timeout. The only difference is that this option only affects
incoming connections (i.e. Orber act as server-side ORB).

iiop_out_keepalive
Enables periodic transmission on a connected socket, when no other data is being exchanged. If the other
end does not respond, the connection is considered broken and will be terminated. When enabled the
SO_KEEPALIVE socket level option is set.

iiop_in_keepalive
The same as for iiop_out_keepalive. The only difference is that this option only affects incoming
connections.

iiop_timeout
The value is an integer (timeout in seconds between 0 and 1000000) or the atom infinity. This option is
only valid on the client side. Setting this option, cause all intra-ORB requests to timeout and raise a system
exception, e.g. TIMEOUT, if no replies are delivered within the given time limit.

interceptors
If one set this parameter, e.g., erl -orber interceptors "{native, ['myInterceptor']}",
Orber will use the supplied interceptor(s) for all inter-ORB communication. 'myInterceptor' is the
module name of the interceptor. For more information, see the interceptor chapter in the User's Guide and the
Reference Manual.

local_interceptors
If defined, its value will be used when activating local interceptors via Orber Environment Flags. If not
defined, but the flag is set, Orber will use the value of the interceptors parameter.

1.5 Installing Orber

14 | Ericsson AB. All Rights Reserved.: orber

orbInitRef
Setting this option, e.g., erl -orber orbInitRef [\"NameService=corbaloc::host.com/
NameService\"], will alter the location from where corba:resolve_initial_references(Key)
tries to find an object matching the given Key. The keys will also appear when invoking
corba:list_initial_services(). This variable overrides orbDefaultInitRef

orbDefaultInitRef
If a matching Key for orbInitRef is not found, and this variable is set, it determines the location from
where orber:resolve_initial_references(Key) tries to find an object matching the given Key.
Usage: erl -orber orbDefaultInitRef \"corbaloc::host.com\".

orber_debug_level
The range is 0 to 10. Using level 10 is the most verbose configuration. This option will generate reports, using
the error_logger, for abnormal situations. It is not recommended to use this option for delivered systems
since some of the reports is not to be considered as errors. The main purpose is to assist during development.

flags
No flags are activated in the default case. The available configuration settings are described in Orber
Environment Flags.

iiop_acl
This option must be activated by setting Orber Environment Flags parameter. The value of this parameter
shall be a list of [{Direction, Filter}] and/or [{Direction, Filter, [Interfaces]}].
The Direction, tcp_in, ssl_in, tcp_out or ssl_out, determines if the Access Control List (ACL)
applies to incoming or outgoing connections and IIOP or IIOP over SSL. The Filter uses a extended format
of Classless Inter Domain Routing (CIDR). For example, "123.123.123.10" limits the connection
to that particular host, while "123.123.123.10/17" allows connections to or from any host equal to
the 17 most significant bits. Orber also allow the user to specify a certain port or port range, for example,
"123.123.123.10/17#4001" and "123.123.123.10/17#4001/5001" respectively. IPv4 or none
compressed IPv6 strings are accepted.
The list of Interfaces, IPv4 or IPv6 strings, may only contain one address for outgoing connections. For
incoming connections, the Interfaces list may contain several IP strings. If set for outgoing connections,
and access is granted, Orber will use that local interface when connecting to the server-side ORB. For incoming
connections, the client-side ORB is required to use one of the listed interfaces locally. If it fail to do so, access
will be denied. The module orber_acl provides operations for evaluating the access control for filters and
addresses. See also the Interface Configuration and Firewall Configuration chapters.

secure
Determines the security mode Orber will use, which is either no if it is an insecure domain or the type of
security mechanism used. Currently, per default, Orber is compliant with CSIv1 level 0, which means IIOP
via SSL/TLS. The security chapter later in this manual describes how to get security in Orber and how the
options are used.

ssl_generation
Defines which SSL version, i.e. available API, is installed. The default value, 2, refers to SSL-3.1 or later, but
earlier than SSL-4.0. If set to 3 SSL-4.0, or later, must be available. Currently it not possible to use 1, it is only
reserved for future use.

iiop_ssl_port
If set, the value must be an integer greater than zero and not equal to iiop_port.

iiop_ssl_accept_timeout
The value is an integer (timeout in seconds) or the atom infinity and determine how long the SSL handshake
may take. This option should be set to avoid if a client never initiate the handshake.

iiop_ssl_backlog
Defines the maximum length the queue of pending incoming connections may grow to.

iiop_ssl_ip_address_local
This option defines the default local interface Orber will use when connecting to another ORB via IIOP SSL,
i.e., Orber act as the client side ORB. The value is a IPv4 or IPv6 address as a string. It is possible to override
iiop_ssl_ip_address_local by defining iiop_acl or passing the Orber generic interface

1.5 Installing Orber

Ericsson AB. All Rights Reserved.: orber | 15

Context. If this option is not used, the underlying OS will choose which interface to use. For more information,
see the Interface Configuration section.

nat_iiop_ssl_port
If set, the value must be an integer greater than zero or {local, DefaultNATPort, [{Port,
NATPort}]}. See also Firewall Configuration.

ssl_server_options
A list of the SSL options when Orber is the server. In general it's just to remove the 'ssl_server_' prefix from the
old options, i.e. ssl_server_verify will just be verify in this option list. See the SSL application for
the correct list of possible options and their values.

ssl_client_options
A list of the SSL options when Orber is the client. In general it's just to remove the ssl_client_ prefix
from the old options, i.e. ssl_client_depth will just be depth in this option list. See the SSL application
for the correct list of possible options and their values.

iiop_ssl_out_keepalive
Enables periodic transmission on a connected socket, when no other data is being exchanged. If the other
end does not respond, the connection is considered broken and will be terminated. When enabled the
SO_KEEPALIVE socket level option is set. Requires that the installed SSL version support the keepalive
option and that the ssl_generation points to this version.

iiop_ssl_in_keepalive
The same as for iiop_ssl_out_keepalive. The only difference is that this option only affects incoming
connections.

It is possible to invoke operations using the extra timeout parameter:

erl> module_interface:function(ObjRef, Timeout, ..Arguments..).
erl> module_interface:function(ObjRef, [{timeout, Timeout}], ..Arguments..).
erl> module_interface:function(ObjRef, ..Arguments..).

The extra Timeout argument will override the configuration parameter iiop_timeout. It is, however, not possible
to use infinity to override the Timeout parameter. The Timeout option is also valid for objects which resides
within the same A domain containing several Erlang nodes, which are communicating by using the Erlang internal
format. An Orber domain looks as one ORB from the environment..

The iiop_setup_connection_timeout, iiop_timeout, iiop_connection_timeout and
iiop_in_connection_timeout variables should be used. The specified values is implementation
specific, i.e., WAN or LAN, but they should range from iiop_setup_connection_timeout to
iiop_connection_timeout.

To change these settings in the configuration file, the -config flag must be added to the erl command. See the
Reference Manual config(4) for further information. The values can also be sent separately as options to the Erlang
node when it is started, see the Reference Manual erl(1) for further information.

Orber Environment Flags
The Environment Flags allows the user to activate debugging facilities or change Orber's behavior. The latter
may result in that Orber is no longer compliant with the OMG standard, which may be necessary when communicating
with a non-compliant ORB.

Hexadecimal Value OMG Compliant Description

0001 no Exclude CodeSet Component

0002 yes Local Typechecking

1.5 Installing Orber

16 | Ericsson AB. All Rights Reserved.: orber

0004 yes Use Host Name in IOR

0008 yes Enable NAT

0020 yes Local Interceptors

0080 yes Light IFR

0100 yes Use IPv6

0200 yes EXIT Tolerance

0400 yes Enable Incoming ACL

0800 yes Enable Outgoing ACL

1000 yes Use Current Interface in IOR

Table 5.2: Orber Environment Flags

Any combination of the flags above may be used and changes the behavior as follows:

• Exclude CodeSet Component - instruct Orber to exclude the CodeSet component in exported IOR:s. When
activated, no negotiating regarding character and wide character conversions between the client and the server
will occur. This flag will, most likely, cause problems if your IDL specification contains the data types wchar
and/or wstring.

• Local Typechecking - If activated, parameters, replies and raised exceptions will be checked to ensure that the
data is correct. If an error occurs, the error_logger is used to generate reports. One MAY NOT use this
option for delivered systems due to the extra overhead. Since this option activates typechecking for all objects
generated on the target node, it is also possible to use the option {local_typecheck, boolean()},
when invoking oe_create/2, oe_create_link/2, corba:create/4 or corba:create_link/4,
to override the configuration parameter.

• Use Host Name in IOR - normally Orber inserts the IP-number in IOR:s when they are exported. In some
cases, this will cause the clients to open two connections instead of one.

• Enable NAT - if this flag is set, it is possible to use the NAT (Network Address Translation) configuration
parameters (nat_iiop_port, nat_iiop_ssl_port and nat_ip_address).

• Local Interceptors - use interceptors for local invocations.

• Light IFR - if the IFR is not explicitly used and this flag is set, Orber will use a minimal IFR to reduce memory
usage and installation time.

• Use IPv6 - when this option is activated, Orber will use IPv6 for inter-ORB communication.

• EXIT Tolerance - servers will survive even though the call-back module caused an EXIT.

• Enable Incoming ACL - activates access control for incoming connections.

• Enable Outgoing ACL - activates access control for outgoing connections.

• Use Current Interface in IOR - when set, Orber will add the interface the request came via to exported local
IOR:s.

Invoking the operation orber:info/1/2 will display the currently set flags in a readable way.

1.5 Installing Orber

Ericsson AB. All Rights Reserved.: orber | 17

1.5.3 Firewall Configuration
Firewalls are used to protect objects from clients in other networks or sub-networks, but also to restrict which hosts
internal objects may connect to (i.e. inbound protection and outbound protection). A firewall can limit
access based on:

• Transport Level - performs access control decisions based on address information in TCP headers.

• Application Level - understands GIOP messages and the specific transport level inter-ORB Protocol supported
e.g. IIOP.

This section describes how to configure a Transport Level firewall. It must have prior knowledge of
the source to destination mappings, and conceptually has a configuration table containing tuples of the form:
({inhost:inport}, {outhost:outport}). If there are no port restrictions it is rather easy to configure the
firewall. Otherwise, we must consider the following alternatives:

• Incoming Requests - Orber only uses the port-numbers specified by the configuration parameters iiop_port
and iiop_ssl_port. Other ORB's may use several ports but it should be possible to change this behavior. Consult
the other ORBs documentation.

• Outgoing Requests - Most ORB's, Orber included, ask the OS to supply a vacant local port when connecting
to the server-side ORB. It is possible to change this behavior when using Orber (i.e. set the configuration
parameter iiop_out_ports).

Warning:

Using the option iiop_out_ports may result in that Orber runs out of valid ports numbers. For example, other
applications may steal some of the ports or the number of concurrent outgoing connections to other ORBs may be
higher than expected. To reduce, but not eliminate, the risk you should use iiop_connection_timeout.

Firewall configuration example:

"Plain" IIOP
To: Orber-IPNo:(iiop_port) From: ORB-IPNo:X
To: ORB-IPNo:Z From: Orber-IPNo:(iiop_out_ports | Any Port)

IIOP via SSL
To: Orber-IPNo:(iiop_port) From: ORB-IPNo:X
To: Orber-IPNo:(iiop_ssl_port) From: ORB-IPNo:Y
To: ORB-IPNo:Z From: Orber-IPNo:(iiop_out_ports | Any Port)

If the communication take place via a TCP Firewall with NAT (Network Address Translation), we must activate this
behavior and define the external address and/or ports.

Figure 5.1: TCP Firewall With NAT

1.5 Installing Orber

18 | Ericsson AB. All Rights Reserved.: orber

Using NAT makes it possible to use different host data for different network domains. This way we can share
Internet Protocol address resources or obscure resources. To enable this feature the Enable NAT flag must be set
and nat_iiop_port, nat_iiop_ssl_port and nat_ip_address configured, which maps to iiop_port,
iiop_ssl_port and ip_address respectively. Hence, the firewall must be configured to translate the external
to the internal representation correctly. If these NAT parameters are assigned a single port number or IP address,
only those will be used when an IOR is exported to another ORB. When ip_address is set to {multiple,
[IPAddress]}, nat_ip_address should be configured in the same way, so that each NAT IP address can
be translated to a valid address by the firewall. If objects are supposed to be accessible via different interfaces
and port, see also Interface Configuration, the options {local, DefaultNATIPAddress, [{IPAddress,
NATIPAddress}]} and/or {local, DefaultNATPort, [{Port, NATPort}]} shall be used. The default
NAT IP address and port, should be translated to the value of ip_address_local and the default listen port by
the firewall. If the IP address and/or port is not found in the list, the default values will be inserted in the IOR. The
firewall must be able to translate these correctly.

If it is necessary to limit the access to an ORB within a secure network, but other applications running on the same
host may not be blocked out, one can use a Application Level firewall or Orber Access Control List (ACL). The latter
makes it possible for the user to define which hosts may communicate, either as server or client, with Orber. This
is achieved by defining the configuration parameter iiop_acl. The Classless Inter Domain Routing (CIDR) Filter
determines which peer interfaces and ports the other ORB may use.

Filter Peer Interface(s) Peer Port(s)

"10.1.1.1" 10.1.1.1 any

"10.1.1.1/8" 10.0.0.0-10.255.255.255 any

"10.1.1.1/8#4001" 10.0.0.0-10.255.255.255 4001

"10.1.1.1/8#4001/5001" 10.0.0.0-10.255.255.255 4001-5001

Table 5.3: Orber ACL Filters

Orber ACL, also allows the user to define which local interface(s) may be used, but will not detect spoofing. The
operation orber_acl:match/2/3 makes it easy to verify whether access would be granted or not. For example, if Orber
would be started with the ACL [{tcp_out, "10.1.1.1/8#4001/5001"}], then orber_acl:match/2
would behave as follows:

erl> orber_acl:match({11,1,1,1}, tcp_out).
false

erl> orber_acl:match({10,1,1,1}, tcp_out).
true

erl> orber_acl:match({11,1,1,1}, tcp_out, true).
{false,[],0}

erl> orber_acl:match({10,1,1,1}, tcp_out, true).
{true,[],{4001,5001}}

Only if the returned boolean is true the extra return values makes a difference. In the example above, {true,
[],{4001,5001}} means that Orber may connect to "10.1.1.1", using any local interface, if the server-
side ORB listens for incoming connect requests on a port within the range 4001-5001. Note, invoking the
orber_acl:match/2/3 operation, will not result in a connect attempt by Orber. The reason for this, is that this

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 19

function may be used on a live node as well as in test environment. Hence, if a local interface is currently not available
or no server-side ORB available via the given host/port(s), will not be detected by Orber.

1.5.4 Interface Configuration
In many cases it is sufficient to simply configure the underlying OS which local interfaces shall be used for all
applications. But, in some cases it is required, due to, for example, the firewall configuration, that different local
interfaces are used for different applications. Some times, it is even necessary to use a specific interface for a single
CORBA object. This section describe how one can alter this in different ways.

The default behavior is that Orber lets the OS configuration decide which interface will be added in IOR:s exported
to another ORB and the local interface used when connecting to another ORB (Orber act as client side ORB).
The latter can be overridden by setting the configuration parameters iiop_ssl_ip_address_local and/or
ip_address_local, which will affect IIOP via SSL and IIOP respectively. These parameters can be overridden
by using the Orber generic interface Context or defining an ACL (Access Control List). The latter always takes
precedence if a local interface is included (e.g. [{tcp_out, "10.0.0.0/8", ["10.0.0.1"]}]). If the
interface is excluded (e.g. [{tcp_out, "10.0.0.0/8"}]), the interface chosen will, in the following order, be
determined by #'IOP_ServiceContext'{}, ip_address_local/iiop_ssl_ip_address_local or
the configuration of the underlying system.

Adding the interface context, for generated stubs/skeletons, is done in the following way:

Ctx = #'IOP_ServiceContext'{context_id = ?ORBER_GENERIC_CTX_ID,
 context_data = {interface, "10.0.0.1"}},
'CosNaming_NamingContext':resolve(NS, [{context, [Ctx]}], Name),

It is also possible to add the context to corba:string_to_object/2,
corba:resolve_initial_references/2, corba:resolve_initial_references_remote/3,
corba:list_initial_services_remote/2, corba_object:not_existent/2,
corba_object:non_existent/2 and corba_object:is_a/3. The operations exported by
corba_object are affected if the supplied IOR is external. The function corba:string_to_object/2
might require the interface context if a corbaloc or a corbaloc string is
passed (See the INS chapter), while corba:resolve_initial_references_remote/3 and
corba:list_initial_services_remote/2 always connect to another ORB and it might be necessary to
add the context. The remaining corba operations are affected if calls are re-directed by setting the orbInitRef
and/or orbDefaultInitRef configuration parameters. For more information, see the Reference Manual for each
module.

Configuring which interface(s) that shall be used when exporting an IOR to another ORB, is determined
by nat_ip_address, setting the flag 16#1000 and ip_address, in that order. Orber listens for
incoming connections either via all interfaces or the interface defined by ip_address. It is also
possible to add and remove extra listen interfaces by using orber:add_listen_interface/2/3 and
orber:remove_listen_interface/1. In this case one should set the 16#1000 flag and, if necessary, set the
configuration parameters {local, DefaultNATIPAddress, [{IPAddress, NATIPAddress}]} and/
or {local, DefaultNATPort, [{Port, NATPort}]}.

1.6 OMG IDL to Erlang Mapping
1.6.1 OMG IDL to Erlang Mapping - Overview
The purpose of OMG IDL, Interface Definition Language, mapping is to act as translator between platforms and
languages. An IDL specification is supposed to describe data types, object types etc.

CORBA is independent of the programming language used to construct clients or implementations. In order to use the
ORB, it is necessary for programmers to know how to access ORB functionality from their programming languages. It

1.6 OMG IDL to Erlang Mapping

20 | Ericsson AB. All Rights Reserved.: orber

translates different IDL constructs to a specific programming language. This chapter describes the mapping of OMG
IDL constructs to the Erlang programming language.

1.6.2 OMG IDL Mapping Elements
A complete language mapping will allow the programmer to have access to all ORB functionality in a way that is
convenient for a specified programming language.

All mapping must define the following elements:

• All OMG IDL basic and constructed types

• References to constants defined in OMG IDL

• References to objects defined in OMG IDL

• Invocations of operations, including passing of parameters and receiving of results

• Exceptions, including what happens when an operation raises an exception and how the exception parameters
are accessed

• Access to attributes

• Signatures for operations defined by the ORB, such as dynamic invocation interface, the object adapters etc.

• Scopes; OMG IDL has several levels of scopes, which are mapped to Erlang's two scopes.

1.6.3 Getting Started
To begin with, we should decide which type of objects (i.e. servers) we need and if two, or more, should export the
same functionality. Let us assume that we want to create a system for DB (database) access for different kind of
users. For example, anyone with a valid password may extract data, but only a few may update the DB. Usually, an
application is defined within a module, and all global datatypes are defined on the top-level. To begin with we create
a module and the interfaces we need:

// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
// A module is simply a container
module DB {

 // An interface maps to a CORBA::Object.
 interface CommonUser {

 };

 // Inherit the Consumer interface
 interface Administrator : CommonUser {

 };

 interface Access {

 };

};
#endif

Since the Administrator should be able to do the same things as the CommonUser, the previous inherits from
the latter. The Access interface will grant access to the DB. Now we are ready to define the functionality and data
types we need. But, this requires that we know a little bit more about the OMG IDL.

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 21

Note:

The OMG defines a set of reserved case insensitive key-words, which may NOT be used as identifiers (e.g. module
name). For more information, see Reserved Compiler Names and Keywords

1.6.4 Basic OMG IDL Types
The OMG IDL mapping is strongly typed and, even if you have a good knowledge of CORBA types, it is essential
to read carefully the following mapping to Erlang types.

The mapping of basic types is straightforward. Note that the OMG IDL double type is mapped to an Erlang float which
does not support the full double value range.

OMG IDL type Erlang type Note

float Erlang float

double Erlang float value range not supported

short Erlang integer -2^15 .. 2^15-1

unsigned short Erlang integer 0 .. 2^16-1

long Erlang integer -2^31 .. 2^31-1

unsigned long Erlang integer 0 .. 2^32-1

long long Erlang integer -2^63 .. 2^63-1

unsigned long long Erlang integer 0 .. 2^64-1

char Erlang integer ISO-8859-1

wchar Erlang integer UTF-16 (ISO-10646-1:1993)

boolean Erlang atom true/false

octet Erlang integer

any Erlang record #any{typecode, value}

long double Not supported

Object Orber object reference Internal Representation

void Erlang atom ok

Table 6.1: OMG IDL basic types

The any value is written as a record with the field typecode which contains the Type Code is a full definition of a
type representation, see also the Type Code table, and the value field itself.

Functions with return type void will return the atom ok.

1.6 OMG IDL to Erlang Mapping

22 | Ericsson AB. All Rights Reserved.: orber

1.6.5 Template OMG IDL Types and Complex Declarators
Constructed types all have native mappings as shown in the table below.

Type IDL code Maps to Erlang code

string
typedef string S;
void op(in S a);

Erlang string
ok = op(Obj, "Hello
World"),

wstring
typedef wstring S;
void op(in S a);

Erlang list of Integers
ok = op(Obj, "Hello
World"),

sequence
typedef sequence <long,
3> S;
void op(in S a);

Erlang list ok = op(Obj, [1, 2, 3]),

array
typedef string S[2];
void op(in S a);

Erlang tuple
ok = op(Obj, {"one",
"two"}),

fixed
typedef fixed<3,2>
myFixed;
void op(in myFixed a);

Erlang tuple
MF = fixed:create(3, 2,
314),
ok = op(Obj, MF),

Table 6.2: OMG IDL Template and Complex Declarators

String/WString Data Types
A string consists of all possible 8-bit quantities except null. Most ORB:s uses, including Orber, the character set
Latin-1 (ISO-8859-1). The wstring type is represented as a list of integers, where each integer represents a wide
character. In this case Orber uses, as most other ORB:s, the UTF-16 (ISO-10646-1:1993) character set.

When defining a a string or wstring they can be of limited length or null terminated:

// Null terminated
typedef string myString;
typedef wstring myWString;
// Maximum length 10
typedef string<10> myString10;
typedef wstring<10> myWString10;

If we want to define a char/string or wchar/wstring constant, we can use octal (\OOO - one, two or three octal digits),
hexadecimal (\xHH - one or two hexadecimal digits) and unicode (\uHHHH - one, two, three or four hexadecimal
digits.) representation as well. For example:

const string SwedensBestSoccerTeam = "\101" "\x49" "\u004B";
const wstring SwedensBestHockeyTeam = L"\101\x49\u004B";
const char aChar = '\u004B';
const wchar aWchar = L'\u004C';

Naturally, we can use "Erlang", L"Rocks", 'A' and L'A' as well.

Sequence Data Type
A sequence can be defined to be of a maximum length or unbounded, and may contain Basic and Template types
and scoped names:

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 23

typedef sequence <short, 1> aShortSequence;
typedef sequence <long> aLongSequence;
typedef sequence <aLongSequence> anEvenLongerSequence;

Array Data Type
Arrays are multidimensional, fixed-size arrays. The indices is language mapping specific, which is why one should
not pass them as arguments to another ORB.

typedef long myMatrix[2][3];

Fixed Data Type
A Fixed Point literal consists of an integer part (decimal digits), decimal point and a fraction part (decimal digits),
followed by a D or d. Either the integer part or the fraction part may be missing; the decimal point may be missing,
but not d/D. The integer part must be a positive integer less than 32. The Fraction part must be a positive integer less
than or equal to the Integer part.

const fixed myFixed1 = 3.14D;
const fixed myFixed2 = .14D;
const fixed myFixed3 = 0.14D;
const fixed myFixed4 = 3.D;
const fixed myFixed5 = 3D;

It is also possible to use unary (+-) and binary (+-*/) operators:

const fixed myFixed6 = 3D + 0.14D;
const fixed myFixed7 = -3.14D;

The Fixed Point examples above are, so called, anonymous definitions. In later CORBA specifications these have
been deprecated as function parameters or return values. Hence, we strongly recommend that you do not use them.
Instead, you should use:

typedef fixed<5,3> myFixed53;
const myFixed53 myFixed53constant = 03.140d;
typedef fixed<3,2> myFixed32;
const myFixed32 myFixed32constant = 3.14d;

myFixed53 foo(in myFixed32 MF); // OK
void bar(in fixed<5,3> MF); // Illegal

For more information, see Fixed in Orber's Reference Manual.

Now we continue to work on our IDL specification. To begin with, we want to limit the size of the logon parameters
(Id and password). Since the UserID and Password parameters, only will be used when invoking operations on
the Access interface, we may choose to define them within the scope that interface. To keep it simple our DB will
contain employee information. Hence, as the DB key we choose an integer (EmployeeNo).

1.6 OMG IDL to Erlang Mapping

24 | Ericsson AB. All Rights Reserved.: orber

// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
module DB {

 typedef unsigned long EmployeeNo;

 interface CommonUser {

 any lookup(in EmployeeNo ENo);

 };

 interface Administrator : CommonUser {

 void delete(in EmployeeNo ENo);

 };

 interface Access {

 typedef string<10> UserID;
 typedef string<10> Password;

 CommonUser logon(in UserID ID, in Password PW);

 };

};
#endif

But what should, for example, the lookup operation return? One option is to use the any data type. But, depending
on what kind of data it encapsulates, this datatype can be rather expensive to use. We might find a solution to our
problems among the Constructed IDL types.

1.6.6 Constructed OMG IDL Types
Constructed types all have native mappings as shown in the table below.

Type IDL code Maps to Erlang code

struct

struct myStruct {
long a;
short b;
};
void op(in myStruct a);

Erlang record
ok = op(Obj,
#'myStruct'{a=300,
b=127}),

union

union myUnion
switch(long) {
case 1: long a;
};
void op(in myUnion a);

Erlang record
ok = op(Obj,
#'myUnion'{label=1,
value=66}),

enum
enum myEnum {one,
two};
void op(in myEnum a);

Erlang atom ok = op(Obj, one),

Table 6.3: OMG IDL constructed types

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 25

Struct Data Type
A struct may have Basic, Template, Scoped Names and Constructed types as members. By using forward
declaration we can define a recursive struct:

struct myStruct; // Forward declaration
typedef sequence<myStruct> myStructSeq;
struct myStruct {
 myStructSeq chain;
};

// Deprecated definition (anonymous) not supported by IC
struct myStruct {
 sequence<myStruct> chain;
};

Enum Data Type
The maximum number of identifiers which may defined in an enumeration is 2³². The order in which the identifiers
are named in the specification of an enumeration defines the relative order of the identifiers.

Union Data Type
A union may consist of:

• Identifier

• Switch - may be an integer, char, boolean, enum or scoped name.

• Body - with or without a default case; may appear at most once.

A case label must match the defined type of the discriminator, and may only contain a default case if the values given
in the non-default labels do not cover the entire range of the union's discriminant type. For example:

// Illegal default; all cases covered by
// non-default cases.
union BooleanUnion switch(boolean) {
 case TRUE: long TrueValue;
 case FALSE: long FalseValue;
 default: long DefaultValue;
};
// OK
union BooleanUnion2 switch(boolean) {
 case TRUE: long TrueValue;
 default: long DefaultValue;
};

It is not necessary to list all possible values of the union discriminator in the body. Hence, the value of a union is the
value of the discriminator and, in given order, one of the following:

• If the discriminator match a label, explicitly listed in a case statement, the value must be of the same type.

• If the union contains a default label, the value must match the type of the default label.

• No value. Orber then inserts the Erlang atom undefined in the value field when receiving a union from an
external ORB.

The above can be summed up to:

1.6 OMG IDL to Erlang Mapping

26 | Ericsson AB. All Rights Reserved.: orber

// If the discriminator equals 1 or 2 the value
// is a long. Otherwise, the atom undefined.
union LongUnion switch(long) {
 case 1:
 case 2: long TrueValue;
};
// If the discriminator equals 1 or 2 the value
// is a long. Otherwise, a boolean.
union LongUnion2 switch(long) {
 case 1:
 case 2: long TrueValue;
 default: boolean DefaultValue;
};

In the same way as structs, unions can be recursive if forward declaration is used (anonymous types is deprecated
and not supported):

// Forward declaration
union myUnion;
typedef sequence<myUnion>myUnionSeq;
union myUnion switch (long) {
 case 1 : myUnionSeq chain;
 default: boolean DefaultValue;
};

Note:

Recursive types (union and struct) require Light IFR. I.e. the IC option {light_ifr, true} is used and that Orber is
configured in such a way that Light IFR is activated. Recursive TypeCode is currently not supported, which is why
these cannot be encapsulated in an any data type.

Warning:

Every field in, for example, a struct must be initiated. Otherwise it will be set to the atom undefined,
which Orber cannot encode when communicating via IIOP. In the example above, invoking the operation with
#'myStruct'{a=300} will fail (equal to #'myStruct'{a=300, b=undefined})

Now we can continue to work on our IDL specification. To begin with, we should determine the return value of the
lookup operation. Since the any type can be rather expensive we can use a struct or a union instead. If we
intend to return the same information about a employee every time we can use a struct. Let us assume that the DB
contains the name, address, employee number and department.

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 27

// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
module DB {

 typedef unsigned long EmployeeNo;

 enum Department {Department1, Department2};

 struct employee {
 EmployeeNo No;
 string Name;
 string Address;
 Department Dpt;
 };

 typedef employee EmployeeData;

 interface CommonUser {

 EmployeeData lookup(in EmployeeNo ENo);

 };

 interface Administrator : CommonUser {

 void delete(in EmployeeNo ENo);

 };

 interface Access {

 typedef string<10> UserID;
 typedef string<10> Password;

 // Since Administrator inherits from CommonUser
 // the returned Object can be of either type.
 CommonUser logon(in UserID ID, in Password PW);

 };

};
#endif

We can also define exceptions (i.e. not system exception) thrown by each interface. Since exceptions are thoroughly
described in the chapter System and User Defined Exceptions, we choose not to. Hence, we are now ready to compile
our IDL-file by invoking:

$ erlc DB.idl

or:

$ erl
Erlang (BEAM) emulator version 5.1.1 [threads:0]

Eshell V5.1.1 (abort with ^G)
1> ic:gen('DB').
ok
2> halt().

1.6 OMG IDL to Erlang Mapping

28 | Ericsson AB. All Rights Reserved.: orber

The next step is to implement our servers. But, to be able to do that, we need to know how we can access data type
definitions. For example, since a struct is mapped to an Erlang record we must include an hrl-file in our callback
module.

1.6.7 Scoped Names and Generated Files
Scoped Names
Within a scope all identifiers must be unique. The following kinds of definitions form scopes in the OMG IDL:

• module

• interface

• operation

• valuetype

• struct

• union

• exception

For example, since enumerants do not form a scope, the following IDL code is not valid:

module MyModule {
 // 'two' is not unique
 enum MyEnum {one, two};
 enum MyOtherEnum {two, three};
};

But, since Erlang only has two levels of scope, module and function, the OMG IDL scope is mapped as follows:

• Function Scope - used for constants, operations and attributes.

• Erlang Module Scope - the Erlang module scope handles the remaining OMG IDL scopes.

An Erlang module, corresponding to an IDL global name, is derived by converting occurrences of "::" to underscore,
and eliminating the leading "::". Hence, accessing MyEnum from another module, one use MyModule::MyEnum

For example, an operation foo defined in interface I, which is defined in module M, would be written in IDL as
M::I::foo and as 'M_I':foo in Erlang - foo is the function name and 'M_I' is the name of the Erlang module.
Applying this knowledge to a stripped version of the DB.idl gives:

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 29

// DB IDL
#ifndef _DB_IDL_
#define _DB_IDL_
// ++ topmost scope ++
// IC generates oe_XX.erl and oe_XX.hrl.
// XX is equal to the name of the IDL-file.
// Tips: create one IDL-file for each top module
// and give the file the same name (DB.idl).
// The oe_XX.erl module is used to register data
// in the IFR.
module DB {

 // ++ Module scope ++
 // To access 'EmployeeNo' from another scope, use:
 // DB::EmployeeNo, DB::Access etc.
 typedef unsigned long EmployeeNo;

 enum Department {Department1, Department2};

 // Definitions of this struct is contained in:
 // DB.hrl
 // Access functions exported by:
 // DB_employee.erl
 struct employee {
 ... CUT ...
 };

 typedef employee EmployeeData;

 ... CUT ...

 // If this interface should inherit an interface
 // in another module (e.g. OtherModule) use:
 // interface Access : OtherModule::OtherInterface
 interface Access {

 // ++ interface scope ++
 // Types within this scope is accessible via:
 // DB::Access::UserID
 // The Stub/Skeleton for this interface is
 // placed in the module:
 // DB_Access.erl
 typedef string<10> UserID;
 typedef string<10> Password;

 // Since Administrator inherits from CommonUser
 // the returned Object can be of either type.
 // This operation is exported from:
 // DB_Access.erl
 CommonUser logon(in UserID ID, in Password PW);

 };

};
#endif

Using underscores in IDL names can lead to ambiguities due to the name mapping described above. It is advisable
to avoid the use of underscores in identifiers. For example, the following definition would generate two structures
named x_y_z.

1.6 OMG IDL to Erlang Mapping

30 | Ericsson AB. All Rights Reserved.: orber

module x {

 struct y_z {
 ...
 };

 interface y {

 struct z {
 ...
 };
 };
};

Generated Files
Several files can be generated for each scope.

• An Erlang source code file (.erl) is generated for top level scope as well as the Erlang header file.

• An Erlang header file (.hrl) will be generated for each scope. The header file will contain record definitions
for all struct, union and exception types in that scope.

• Modules that contain at least one constant definition, will produce Erlang source code files (.erl). That Erlang
file will contain constant functions for that scope. Modules that contain no constant definitions are considered
empty and no code will be produced for them, but only for their included modules/interfaces.

• Interfaces will produce Erlang source code files (.erl), this code will contain all operation stub code and
implementation functions.

• In addition to the scope-related files, an Erlang source file will be generated for each definition of the types
struct, union and exception (these are the types that will be represented in Erlang as records). This file
will contain special access functions for that record.

• The top level scope will produce two files, one header file (.hrl) and one Erlang source file (.erl). These
files are named as the IDL file, prefixed with oe_.

After compiling DB.idl, the following files have been generated:

• oe_DB.hrl and oe_DB.erl for the top scope level.

• DB.hrl for the module DB.

• DB_Access.hrl and DB_Access.erl for the interface DB_Access.

• DB_CommonUser.hrl and DB_CommonUser.erl for the interface DB_CommonUser.

• DB_Administrator.hrl and DB_Administrator.erl for the interface DB_Administrator.

• DB_employee.erl for the structure employee in module DB.

Since the employee struct is defined in the top level scope, the Erlang record definition is found in
DB.hrl. IC also generates stubs/skeletons (e.g. DB_CommonUser.erl) and access functions for some datatypes
(e.g. DB_employee.erl). How the stubs/skeletons are used is thoroughly described in Stubs/Skeletons and
Module_Interface.

1.6.8 Typecode, Identity and Name Access Functions
As mentioned in a previous section, struct, union and exception types yield record definitions and access
code for that record. For struct, union, exception, array and sequence types, a special file is generated
that holds access functions for TypeCode, Identity and Name. These functions are put in the file corresponding
to the scope where they are defined. For example, the module DB_employee.erl, representing the employee
struct, exports the following functions:

• tc/0 - returns the type code for the struct.

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 31

• id/0 - returns the IFR identity of the struct. In this case the returned value is "IDL:DB/employee:1.0",
but if the struct was defined in the scope of CommonUser, the result would be "IDL:DB/CommonUser/
employee:1.0". However, the user usually do not need to know the Id, just which Erlang module contains
the correct Id.

• name/0 - returns the scoped name of the struct. The employee struct name is "DB_employee".

Type codes give a complete description of the type including all its components and structure.are, for example, used
in Any values. Hence, we can encapsulate the employee struct in an any type by:

%% Erlang code
....
AnEmployee = #'DB_employee'{'No' = 1,
 'Name' = "Adam Ivan Kendall",
 'Address' = "Rasunda, Solna",
 'Dpt' = 'Department1'},
EmployeeTC = 'DB_employee':tc(),
EmployeeAny = any:create(EmployeeTC, AnEmployee),
....

For more information, see the Type Code listing.

1.6.9 References to Constants
Constants are generated as Erlang functions, and are accessed by a single function call. The functions are put in the
file corresponding to the scope where they are defined. There is no need for an object to be started to access a constant.

Example:

// m.idl
module m {
 const float pi = 3.14;

 interface i {
 const float pi = 3.1415;
 };
};

Since the two constants are defined in different scopes, the IDL code above is valid, but not necessarily a good
approach. After compiling m.idl, the constant definitions can be extracted by invoking:

$ erlc m.idl
$ erlc m.erl
$ erl
Erlang (BEAM) emulator version 5.1.1 [threads:0]

Eshell V5.1.1 (abort with ^G)
1> m:pi().
3.14
2> m_i:pi().
3.1415
3> halt().

1.6.10 References to Objects Defined in OMG IDL
Objects are accessed by object references. An object reference is an opaque Erlang term created and maintained by
the ORB.

Objects are implemented by providing implementations for all operations and attributes of the Object, see operation
implementation.

1.6 OMG IDL to Erlang Mapping

32 | Ericsson AB. All Rights Reserved.: orber

1.6.11 Exceptions
Exceptions are handled as Erlang catch and throws. Exceptions are translated to messages over an IIOP bridge but
converted back to a throw on the receiving side. Object implementations that invoke operations on other objects must
be aware of the possibility of a non-local return. This includes invocation of ORB and IFR services. See also the
Exceptions section.

Exception parameters are mapped as an Erlang record and accessed as such.

An object implementation that raises an exception will use the corba:raise/1 function, passing the exception
record as parameter.

1.6.12 Access to Attributes
Attributes are accessed through their access functions. An attribute implicitly defines the _get and _set operations.
These operations are handled in the same way as normal operations. The _get operation is defined as a readonly
attribute.

readonly attribute long RAttribute;
attribute long RWAttribute;

The RAttribute requires that you implement, in your call-back module, _get_RAttribute. For the
RWAttribute it is necessary to implement _get_RWAttribute and _set_RWAttribute.

1.6.13 Invocations of Operations
A standard Erlang gen_server behavior is used for object implementation. The gen_server state is then used as
the object internal state. Implementation of the object function is achieved by implementing its methods and attribute
operations. These functions will usually have the internal state as their first parameter, followed by any in and inout
parameters.

Do not confuse the object internal state with its object reference. The object internal state is an Erlang term which
has a format defined by the user.

Note:

It is not always the case that the internal state will be the first parameter, as stubs can use their own object reference
as the first parameter (see the IC documentation).

A function call will invoke an operation. The first parameter of the function should be the object reference and then all
in and inout parameters follow in the same order as specified in the IDL specification. The result will be a return
value unless the function has inout or out parameters specified; in which case, a tuple of the return value, followed
by the parameters will be returned.

Example:

// IDL
module m {
 interface i {
 readonly attribute long RAttribute;
 attribute long RWAttribute;
 long foo(in short a);
 long bar(in char c, inout string s, out long count);
 void baz(out long Id);
 };
};

Is used in Erlang as :

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 33

%% Erlang code
....
Obj = ... %% get object reference
RAttr = m_i:'_get_RAttribute'(Obj),
RWAttr = m_i:'_get_RWAttribute'(Obj),
ok = m_i:'_set_RWAttribute'(Obj, Long),
R1 = m_i:foo(Obj, 55),
{R2, S, Count} = m_i:bar(Obj, $a, "hello"),
....

Note how the inout parameter is passed and returned. There is no way to use a single occurrence of a variable
for this in Erlang. Also note, that ok, Orber's representation of the IDL-type void, must be returned by baz and
'_set_RWAttribute'. These operations can be implemented in the call-back module as:

'_set_RWAttribute'(State, Long) ->
 {reply, ok, State}.

'_get_RWAttribute'(State) ->
 {reply, Long, State}.

'_get_RAttribute'(State) ->
 {reply, Long, State}.

foo(State, AShort) ->
 {reply, ALong, State}.

bar(State, AShort, AString) ->
 {reply, {ALong, "MyString", ALong}, State}.

baz(State) ->
 {reply, {ok, AId}, State}.

The operations may require more arguments (depends on IC options used). For more information, see Stubs/Skeletons
and Module_Interface.

Warning:

A function can also be defined to be oneway, i.e. asynchronous. But, since the behavior of a oneway operation
is not defined in the OMG specifications (i.e. the behavior can differ depending on which other ORB Orber is
communicating with), one should avoid using it.

1.6.14 Implementing the DB Application
Now we are ready to implement the call-back modules. There are three modules we must create:

• DB_Access_impl.erl

• DB_CommonUser_impl.erl

• DB_Administrator_impl.erl

An easy way to accomplish that, is to use the IC backend erl_template, which will generate a complete call-
back module. One should also add the same compile options, for example this or from, used when generating the
stub/skeleton modules:

$> erlc +"{be,erl_template}" DB.idl

We begin with implementing the DB_Access_impl.erl module, which, if we used erl_template, will look
like the following. All we need to do is to add the logic to the logon operation.

1.6 OMG IDL to Erlang Mapping

34 | Ericsson AB. All Rights Reserved.: orber

%%--
%% <LICENSE>
%%
%% Id
%%
%%--
%% Module : DB_Access_impl.erl
%%
%% Source : /home/user/example/DB.idl
%%
%% Description :
%%
%% Creation date: 2005-05-20
%%
%%--
-module('DB_Access_impl').

-export([logon/3]).

%%--
%% Internal Exports
%%--
-export([init/1,
 terminate/2,
 code_change/3,
 handle_info/2]).

%%--
%% Include Files
%%--

%%--
%% Macros
%%--

%%--
%% Records
%%--
-record(state, {}).

%%==
%% API Functions
%%==
%%--
%% Function : logon/3
%% Arguments : State - term()
%% ID = String()
%% PW = String()
%% Returns : ReturnValue = OE_Reply
%% OE_Reply = Object_Ref()
%% Raises :
%% Description:
%%--
logon(State, ID, PW) ->
 %% Check if the ID/PW is valid and what
 %% type of user it is (Common or Administrator).
 OE_Reply
 = case check_user(ID, PW) of
 {ok, administrator} ->
 'DB_Administrator':oe_create();
 {ok, common} ->
 'DB_CommonUser':oe_create();
 error ->

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 35

 %% Here we should throw an exception
 corba:raise(....)
 end,
 {reply, OE_Reply, State}.

%%==
%% Internal Functions
%%==
%%--
%% Function : init/1
%% Arguments : Env = term()
%% Returns : {ok, State} |
%% {ok, State, Timeout} |
%% ignore |
%% {stop, Reason}
%% Raises : -
%% Description: Initiates the server
%%--
init(_Env) ->
 {ok, #state{}}.

%%--
%% Function : terminate/2
%% Arguments : Reason = normal | shutdown | term()
%% State = term()
%% Returns : ok
%% Raises : -
%% Description: Invoked when the object is terminating.
%%--
terminate(_Reason, _State) ->
 ok.

%%--
%% Function : code_change/3
%% Arguments : OldVsn = undefined | term()
%% State = NewState = term()
%% Extra = term()
%% Returns : {ok, NewState}
%% Raises : -
%% Description: Invoked when the object should update its internal state
%% due to code replacement.
%%--
code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%%--
%% Function : handle_info/2
%% Arguments : Info = normal | shutdown | term()
%% State = NewState = term()
%% Returns : {noreply, NewState} |
%% {noreply, NewState, Timeout} |
%% {stop, Reason, NewState}
%% Raises : -
%% Description: Invoked when, for example, the server traps exits.
%%--
handle_info(_Info, State) ->
 {noreply, State}.

Since DB_Administrator inherits from DB_CommonUser, we must implement
delete in the DB_Administrator_impl.erl module, and lookup in

1.6 OMG IDL to Erlang Mapping

36 | Ericsson AB. All Rights Reserved.: orber

DB_Administrator_impl.erlandDB_CommonUser_impl.erl. But wait, is that really necessary?
Actually, it is not. We simple use the IC compile option impl:

$ erlc +'{{impl, "DB::CommonUser"}, "DBUser_impl"}'\
 +'{{impl, "DB::Administrator"}, "DBUser_impl"}' DB.idl
$ erlc *.erl

Instead of creating, and not the least, maintaining two call-back modules, we only have to deal with
DBUser_impl.erl. If we generated the templates, we simply rename DB_Administrator_impl.erl to
DBUser_impl.erl. See also the Exceptions chapter. In the following example, only the implementation of the API
functions are shown:

%%==
%% API Functions
%%==
%%--
%% Function : delete/2
%% Arguments : State - term()
%% ENo = unsigned_Long()
%% Returns : ReturnValue = ok
%% Raises :
%% Description:
%%--
delete(State, ENo) ->
 %% How we access the DB, for example mnesia, is not shown here.
 case delete_employee(No) of
 ok ->
 {reply, ok, State};
 error ->
 %% Here we should throw an exception if
 %% there is no match.
 corba:raise(....)
 end.

%%--
%% Function : lookup/2
%% Arguments : State - term()
%% ENo = unsigned_Long()
%% Returns : ReturnValue = OE_Reply
%% OE_Reply = #'DB_employee'{No,Name,Address,Dpt}
%% No = unsigned_Long()
%% Name = String()
%% Address = String()
%% Dpt = Department
%% Department = 'Department1' | 'Department2'
%% Raises :
%% Description:
%%--
lookup(State, ENo) ->
 %% How we access the DB, for example mnesia, is not shown here.
 case lookup_employee(ENo) of
 %% We assume that we receive a 'DB_employee' struct
 {ok, Employee} ->
 OE_Reply = Employee,
 {reply, OE_Reply, State};
 error ->
 %% Here we should throw an exception if
 %% there is no match.
 corba:raise(....)
 end.

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 37

After you have compiled both call-back modules, and implemented the missing functionality (e.g.
lookup_employee/1), we can test our application:

%% Erlang code
....
%% Create an Access object
Acc = 'DB_Access':oe_create(),

%% Login is Common user and Administrator
Adm = 'DB_Access':logon(A, "admin", "pw"),
Com = 'DB_Access':logon(A, "comm", "pw"),

%% Lookup existing employee
Employee = 'DB_Administrator':lookup(Adm, 1),
Employee = 'DB_CommonUser':lookup(Adm, 1),

%% If we try the same using the DB_CommonUser interface
%% it result in an exit since that operation is not exported.
{'EXIT', _} = (catch 'DB_CommonUser':delete(Adm, 1)),

%% Try to delete the employee via the CommonUser Object
{'EXCEPTION', _} = (catch 'DB_Administrator':delete(Com, 1)),

%% Invoke delete operation on the Administrator object
ok = 'DB_Administrator':delete(Adm, 1),
....

1.6.15 Reserved Compiler Names and Keywords
The use of some names is strongly discouraged due to ambiguities. However, the use of some names is prohibited
when using the Erlang mapping , as they are strictly reserved for IC.

IC reserves all identifiers starting with OE_ and oe_ for internal use.

Note also, that an identifier in IDL can contain alphabetic, digits and underscore characters, but the first character
must be alphabetic.

The OMG defines a set of reserved words, shown below, for use as keywords. These may not be used as, for example,
identifiers. The keywords which are not in bold face was introduced in the OMG CORBA-3.0 specification.

abstract exception inout provides truncatable

any emits interface public typedef

attribute enum local publishes typeid

boolean eventtype long raises typeprefix

case factory module readonly unsigned

char FALSE multiple setraises union

component finder native sequence uses

const fixed Object short ValueBase

consumes float octet string valuetype

context getraises oneway struct void

1.6 OMG IDL to Erlang Mapping

38 | Ericsson AB. All Rights Reserved.: orber

custom home out supports wchar

default import primarykey switch wstring

double in private TRUE

Table 6.4: OMG IDL keywords

The keywords listed above must be written exactly as shown. Any usage of identifiers that collide with a keyword
is illegal. For example, long is a valid keyword; Long and LONG are illegal as keywords and identifiers. But, since
the OMG must be able to expand the IDL grammar, it is possible to use Escaped Identifiers. For example, it is not
unlikely that native have been used in IDL-specifications as identifiers. One option is to change all occurrences
to myNative. Usually, it is necessary to change programming language code that depends upon that IDL as well.
Since Escaped Identifiers just disable type checking (i.e. if it is a reserved word or not) and leaves everything else
unchanged, it is only necessary to update the IDL-specification. To escape an identifier, simply prefix it with _. The
following IDL-code is illegal:

typedef string native;
interface i {
 void foo(in native Arg);
 };
};

With Escaped Identifiers the code will look like:

typedef string _native;
interface i {
 void foo(in _native Arg);
 };
};

1.6.16 Type Code Representation
Type Codes are used in any values. To avoid mistakes, you should use access functions exported by the Data Types
modules (e.g. struct, union etc) or the orber_tc module.

Type Code Example

tk_null

tk_void

tk_short

tk_long

tk_longlong

tk_ushort

tk_ulong

tk_ulonglong

1.6 OMG IDL to Erlang Mapping

Ericsson AB. All Rights Reserved.: orber | 39

tk_float

tk_double

tk_boolean

tk_char

tk_wchar

tk_octet

tk_any

tk_TypeCode

tk_Principal

{tk_objref, IFRId, Name} {tk_objref, "IDL:M1\I1:1.0", "I1"}

{tk_struct, IFRId, Name, [{ElemName, ElemTC}]}
{tk_struct, "IDL:M1\S1:1.0", "S1", [{"a", tk_long},
{"b", tk_char}]}

{tk_union, IFRId, Name, DiscrTC, DefaultNr, [{Label,
ElemName, ElemTC}]}
Note: DefaultNr tells which of tuples in the case list that
is default, or -1 if no default

{tk_union, "IDL:U1:1.0", "U1", tk_long, 1, [{1, "a",
tk_long}, {default, "b", tk_char}]}

{tk_enum, IFRId, Name, [ElemName]} {tk_enum, "IDL:E1:1.0", "E1", ["a1", "a2"]}

{tk_string, Length} {tk_string, 5}

{tk_wstring, Length} {tk_wstring, 7}

{tk_fixed, Digits, Scale} {tk_fixed, 3, 2}

{tk_sequence, ElemTC, Length} {tk_sequence, tk_long, 4}

{tk_array, ElemTC, Length} {tk_array, tk_char, 9}

{tk_alias, IFRId, Name, TC} {tk_alias, "IDL:T1:1.0", "T1", tk_short}

{tk_except, IFRId, Name, [{ElemName, ElemTC}]}
{tk_except, "IDL:Exc1:1.0", "Exc1", [{"a", tk_long},
{"b", {tk_string, 0}}]}

Table 6.5: Type Code tuples

1.7 CosNaming Service

40 | Ericsson AB. All Rights Reserved.: orber

1.7 CosNaming Service
1.7.1 Overview of the CosNaming Service
The CosNaming Service is a service developed to help users and programmers identify objects by human readable
names rather than by a reference. By binding a name to a naming context (another object), a contextual reference is
formed. This is helpful when navigating in the object space. In addition, identifying objects by name allows you to
evolve and/or relocate objects without client code modification.

The CosNaming service has some concepts that are important:

• name binding - a name to object association.

• naming context - is an object that contains a set of name bindings in which each name is unique. Different names
can be bound to the same object.

• to bind a name - is to create a name binding in a given context.

• to resolve a name - is to determine the object associated with the name in a given context.

A name is always resolved in a context, there no absolute names exist. Because a context is like any other object, it
can also be bound to a name in a naming context. This will result in a naming graph (a directed graph with notes and
labeled edges). The graph allows more complex names to refer to an object. Given a context, you can use a sequence
to reference an object. This sequence is henceforth referred to as name and the individual elements in the sequence as
name components. All but the last name component are bound to naming contexts.

The diagram in figure 1 illustrates how the Naming Service provides a contextual relationship between objects,
NamingContexts and NameBindings to create an object locality, as the object itself, has no name.

1.7 CosNaming Service

Ericsson AB. All Rights Reserved.: orber | 41

Figure 7.1: Figure 1: Contextual object relationships using the Naming Service.

The naming contexts provide a directory of contextual reference and naming for objects (an object can appear to have
more than one name).

In figure 1 the object to the right can either be called alpha from one context or gamma from another.

1.7 CosNaming Service

42 | Ericsson AB. All Rights Reserved.: orber

The Naming Service has an initial naming context, which is shown in the diagram as the top-most object in the naming
graph. It has two names beta and epsilon, which are bound to other naming contexts. The initial naming context is
a well known location used to share a common name space between multiple programs. You can traverse the naming
graph until you reach a name, which is bound to an object, which is not a naming context.

We recommend reading chapter 12, CORBA Fundamentals and Programming, for detailed information regarding
the Naming Service.

1.7.2 The Basic Use-cases of the Naming Service
The basic use-cases of the Naming Service are:

• Fetch initial reference to the naming service.

• Creating a naming context.

• Binding and unbinding names to objects.

• Resolving a name to an object.

• Listing the bindings of a naming context.

• Destroying a naming context.

Fetch Initial Reference to the Naming Service
In order to use the naming service you have to fetch an initial reference to it. This is done with:

NS = corba:resolve_initial_references("NameService").

Note:

NS in the other use-cases refers to this initial reference.

Creating a Naming Context
There are two functions for creating a naming context. The first function, which only creates a naming context object is:

NC = 'CosNaming_NamingContext':new_context(NS).

The other function creates a naming context and binds it to a name in an already existing naming context (the initial
context in this example):

NC = 'CosNaming_NamingContext':bind_new_context(NS, lname:new(["new"])).

Binding and Unbinding Names to Objects
The following steps illustrate how to bind/unbind an object reference to/from a name. For the example below, assume
that the NamingContexts in the path are already bound to the name /workgroup/services, and that reference
to the services context are in the variable Sc.

• Use the naming library functions to create a name

Name = lname:new(["object"]).

• Use CosNaming::NamingContext::bind() to bind a name to an object

'CosNaming_NamingContext':bind(Sc, Name, Object).

• Use CosNaming::NamingContext::unbind() to remove the NameBinding from an object

'CosNaming_NamingContext':unbind(Sc, Name).

1.7 CosNaming Service

Ericsson AB. All Rights Reserved.: orber | 43

Note:

Objects can have more than one name, to indicate different paths to the same object.

Resolving a Name to an Object
The following steps show how to retrieve the object reference to the service context above (/workgroup/services).

• Use the naming library functions to create a name path:

Name = lname:new(["workgroup", "services"]).

• Use CosNaming::NamingContext::resolve() to to resolve the name to an object

Sc = 'CosNaming_NamingContext':resolve(NS, Name).

An alternative is to use:

Sc = corba:string_to_object("corbaname:rir:/NameService#workgroup/services/").

The corbaname schema is described further in the Interoperable Naming Service section.

Listing the Bindings in a NamingContext
• Use CosNaming::NamingContext::list() to list all the bindings in a context

The following code retrieves and lists up to 10 bindings from a context.

{BList, BIterator} = 'CosNaming_NamingContext':list(Sc, 10).

lists:foreach(fun({{Id, Kind},BindingType}) -> case BindingType of
 nobject ->
 io:format("id: %s, kind: %s, type: object~n", [Id, Kind]);
 _ ->
 io:format("id: %s, kind: %s, type: ncontext~n", [Id, Kind])
 end end,
 Blist).

Note:

Normally a The binding iterator (Like a book mark) indicates which objects have been read from the list.is helpful
in situations where you have a large number of objects in a list, as the programmer then can traverse it more easily.
In Erlang it is not needed, because lists are easily handled in the language itself.

Warning:

Remember that the BindingIterator (BIterator in the example) is an object and therefore must be removed otherwise
dangling processes will occur. Use CosNaming::BindingIterator::destroy() to remove it.

'CosNaming_NamingContext':destroy(BIterator).

Destroying a Naming Context
The naming contexts are persistent and must be explicitly removed. (they are also removed if all Orber nodes in the
domain are stopped).

• Use CosNaming::NamingContext::destroy() to remove a NamingContext

1.7 CosNaming Service

44 | Ericsson AB. All Rights Reserved.: orber

'CosNaming_NamingContext':destroy(Sc).

1.7.3 Interoperable Naming Service
The OMG specifies URL schemes, which represent a CORBA object and a CORBA object bound in a NamingContext,
for resolving references from other ORB:s. As of today, three schemes are defined:

• IOR

• corbaloc

• corbaname

IOR
A stringified IOR is a valid URL format but difficult for humans to handle through non-electronic means. This URL
format does not depend on a specific Name Service and, thus, is robust and insulates the client from the encapsulated
transport information and object key used to reference the object.

corbaloc
The notation of this scheme is similar to the more well known URL HTTP, and the full corbaloc BNF is:

<corbaloc> = "corbaloc:"<obj_addr_list>["/"<key_string>]
<obj_addr_list> = [<obj_addr>","]*<obj_addr>
<obj_addr> = <prot_addr> | <future_prot_addr>
<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>
<rir_prot_addr> = <rir_prot_token>":"
<rir_prot_token> = rir
<future_prot_addr> = <future_prot_id><future_prot_addr>
<future_prot_id> = <future_prot_token>":"
<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = <iiop_default> | <iiop_prot_token>":"
<iiop_default> = ":"
<iiop_prot_token> = "iiop"
<iiop_addr> = <version><host>[":"<port>]
<host> = <DNS-style Host Name> | <ip_v4_address> | "["<ip_v6_address>"]"
<version> = <major>"."<minor>"@" | empty_string
<port> = number
<major> = number
<minor> = number
<DNS-style Host Name> = string
<ip_v4_address> = string
<ip_v6_address> = string
<key_string> = for example NameService

The corbaloc scheme consists of 3 parts:

• Protocol - as of today iiop or rir is supported. Using rir means that we will resolve the given Key locally,
i.e., the same as using corba:resolve_initial_references("NameService").

• IIOP address - this address can be divided into Version, Host and Port. If the version or port are left out
they will be set to the default values 1.0 and 2809 respectively.

• KeyString - an object key, e.g., "NameService". If no Key is supplied the default value "NameService" will be
used.

A corbaloc can be passed used together with
corba:string_to_object("corbaloc::1.0@erlang.org:4001/NameService") or set as
the configuration variables orbInitilRef or orbDefaultInitilRef and calling
corba:resolve_initial_references("NameService"). For more information see the Orber
installation chapter. corbaloc can also be used together with corbaname to gain an easy access to a Name Service.

1.7 CosNaming Service

Ericsson AB. All Rights Reserved.: orber | 45

Currently, the OMG defines a set of reserved keys and the type of object, listed below, they should be associated
with. The NameService key may not be changed in Orber. If you want to add one of the reserved keys as an initial
service, simply use:

1> Factory = cosNotificationApp:start_global_factory().
2> corba:add_initial_service("NotificationService", Factory).

This object can then be easily resolved by any other ORB, supporting the Interoperable Naming Service, by using:

3> NF = corba:string_to_object("corbaloc::1.0@erlang.org:4001/NotificationService").

String Name Object Type

RootPOA PortableServer::POA

POACurrent PortableServer::Current

InterfaceRepository CORBA::Repository

NameService CosNaming::NamingContext

TradingService CosTrading::Lookup

SecurityCurrent SecurityLevel1::Current/SecurityLevel2::Current

TransactionCurrent CosTransaction::Current

DynAnyFactory DynamicAny::DynAnyFactory

ORBPolicyManager CORBA::PolicyManager

PolicyCurrent CORBA::PolicyCurrent

NotificationService CosNotifyChannelAdmin::EventChannelFactory

TypedNotificationService CosTypedNotifyChannelAdmin::TypedEventChannelFactory

CodecFactory IOP::CodecFactory

PICurrent PortableInterceptors::Current

Table 7.1: Currently reserved key strings

corbaname
The corbaname URL scheme is an extension of the corbaloc scheme, and the full corbaname BNF is:

<corbaname> = "corbaname:"<obj_addr_list>["/"<key_string>]["#"<string_name>]
<obj_addr_list> = as described above.
<key_string> = as described above.

The string_name, concatenated to the corbaloc string, identifies a binding in a naming context. A name
component consists of two parts, i.e., id and kind, which is represented as follows:

1.8 How to use security in Orber

46 | Ericsson AB. All Rights Reserved.: orber

String Name Name Sequence Comment

"id1/./id3.kind3" [{"id1",""},{"",""},{"id3","kind3"}]
The first component has no
kind defined while the second
component's both fields are empty.

"id1//id3.kind3" ERROR
Not allowed, must insert a '.'
between the '//'.

"id1.kind1/." [{"id1","kind1"},{"",""}]
The first component's fields are both
set while the second component's
both fields are empty.

"id1.kind1/id2." ERROR
An Id with a trailing '.' is not
allowed.

"i\\/d1/i\\.d2" [{"i/d1",""},{"i.d2",""}]
Since '.' and '/' are used to separate
the components, these tokens must
be escaped to be correctly converted.

Table 7.2: Stringified Name representation

After creating a stringified Name we can either use:

NameStr = "org.erlang",
NS = corba:resolve_initial_references("NameService"),
Obj = 'CosNaming_NamingContextExt':resolve_str(NS, NameStr),

or concatenate the Name String using:

NameStr = "Swedish/Soccer/Champions",
Address = "corbaname:iiop:1.0@www.aik.se:2000/NameService",
NS = corba:resolve_initial_references("NameService"),
URLStr = 'CosNaming_NamingContextExt':to_url(NS, Address, NameStr),
Obj = corba:string_to_object(URLStr),

Using the first alternative, the configuration variables orbInitilRef and orbDefaultInitilRef, will
determine which other ORB's or the local Name Service Orber will try to resolve the given string from. The second
alternative allows us to override any settings of the configuration variables.

The function to_url/3 will perform any necessary escapes compliant with IETF/RFC 2396. US-ASCII
alphanumeric characters and "," | "/" | ":" | "?" | "@" | "&" | "=" | "+" | "$" | ";" |
"-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")" are not escaped.

1.8 How to use security in Orber
1.8.1 Security in Orber
Introduction
Orber SSL provides authentication, privacy and integrity for your Erlang applications. Based on the Secure Sockets
Layer protocol, the Orber SSL ensures that your Orber clients and servers can communicate securely over any network.
This is done by tunneling IIOP through an SSL connection. To get the node secure you will also need to have a firewall
which only lets through connections to certain ports.

1.9 Orber Stubs/Skeletons

Ericsson AB. All Rights Reserved.: orber | 47

Enable Usage of Secure Connections
To enable a secure Orber domain you have to set the configuration variable secure which currently only can have one
of two values; no if no security for IIOP should be used and ssl if secure connections is needed (ssl is currently the
only supported security mechanism).

The default is no security.

Configurations when Orber is Used on the Server Side
There is a variable to conficure Orber's SSL behavior on the server side.

• ssl_server_options - which is a list of options to ssl. See the SSL application for further descriptions on these
options.

There also exist an API function for accessing the value of this variable:

• orber:ssl_server_options/0

Configurations when Orber is Used on the Client Side
When the Orber enabled application is the client side in the secure connection the different configurations can be set
per client process instead and not for the whole domain as for incoming calls.

There is a variable to set default values for the domain but they can be changed per client process.

• ssl_client_options - which is a list of options to ssl. See the SSL application for further descriptions on these
options.

There also exist two API functions for accessing and changing the values of this variable in the client processes.

Access function:

• orber:ssl_client_options/0

Modify function:

• orber:set_ssl_client_options/1

1.9 Orber Stubs/Skeletons
1.9.1 Orber Stubs and Skeletons Description
This example describes the API and behavior of Orber stubs and skeletons.

Server Start
Orber servers can be started in several ways. The chosen start functions determines how the server can be accessed
and its behavior.

Using Module_Interface:oe_create() or oe_create_link():

• No initial data can be passed.

• Cannot be used as a supervisor child start function.

• Only accessible through the object reference returned by the start function. The object reference is no longer
valid if the server dies and is restarted.

Using Module_Interface:oe_create(Env) or oe_create_link(Env):

• Initial data can be passed using Env.

• Cannot be used as a supervisor child start function.

1.9 Orber Stubs/Skeletons

48 | Ericsson AB. All Rights Reserved.: orber

• Only accessible through the object reference returned by the start function. The object reference is no longer
valid if the server dies and is restarted.

Using Module_Interface:oe_create(Env, Options):

• Initial data can be passed using Env.

• Cannot be used as a supervisor child start function.

• Accessible through the object reference returned by the start function. If the option {regname, RegName}
is used the object reference stays valid even if the server has been restarted.

• If the options {persistent, true} and {regname, {global, Name}} is used, the result from an
object invocation will be the exception 'OBJECT_NOT_EXIST' only if the object has terminated with reason
normal or shutdown. If the object is in the process of restarting, the result will be {error, Reason} or
a system exception is raised.

• The option {pseudo, true} makes it possible to start create non-server objects. There are, however, some
limitations, which are further described in the Pseudo objects section.

Using Module_Interface:oe_create_link(Env, Options):

• Initial data can be passed using Env.

• Can be used as a supervisor child start function if the option {sup_child, true} used.

• Accessible through the object reference returned by the start function. If the option {regname, RegName}
is used the object reference stays valid even if the server has been restarted.

• If the options {persistent, true} and {regname, {global, Name}} is used, the result from an
object invocation will be the exception 'OBJECT_NOT_EXIST' only if the object has terminated with reason
normal or shutdown. If the object is in the process of restarting, the result will be {error, Reason} or
a system exception is raised.

• For starting a server as a supervisor child you should use the options [{persistent, true},
{regname, {global, Name}}, {sup_child, true}] and of type transient. This configuration
allows you to delegate restarts to the supervisor and still be able to use the same object reference and be able to
see if the server is permanently terminated. Please note you must use supervisor/stdlib-1.7 or later and that the
it returns {ok, Pid, Object} instead of just Object.

• Using the option {pseudo, true} have the same effect as using oe_create/2.

Warning:

To avoid flooding Orber with old object references start erlang using the flag -orber objectkeys_gc_time Time,
which will remove all object references related to servers being dead for Time seconds. To avoid extra overhead,
i.e., performing garbage collect if no persistent objects are started, the objectkeys_gc_time default value is infinity.
For more information, see the orber and corba documentation.

Warning:

Orber still allow oe_create(Env, {Type,RegName}) and oe_create_link(Env,
{Type,RegName}) to be used, but may not in future releases.

Pseudo Objects
This section describes Orber pseudo objects.

The Orber stub can be used to start a pseudo object, which will create a non-server implementation. A pseudo
object introduce some limitations:

• The functions oe_create_link/2 is equal to oe_create/2, i.e., no link can or will be created.

1.9 Orber Stubs/Skeletons

Ericsson AB. All Rights Reserved.: orber | 49

• The BIF:s self() and process_flag(trap_exit,true) behaves incorrectly.

• The IC option {{impl, "M::I"}, "other_impl"} has no effect. The call-back functions must be
implemented in a file called M_I_impl.erl

• The call-back functions must be implemented as if the IC option {this, "M::I"} was used.

• The gen_server State changes have no effect. The user can provide information via the Env start parameter
and the State returned from init/2 will be the State passed in following invocations.

• The server reply Timeout has no effect.

• The compile option from has no effect.

• The option {pseudo, true} overrides all other start options.

• Only the functions, besides own definitions, init/2 (called via oe_create*/2) and terminate/2 (called via
corba:dispose/1) must be implemented.

By adopting the rules for pseudo objects described above we can use oe_create/2 to create server or pseudo
objects, by excluding or including the option {pseudo, true}, without changing the call-back module.

To create a pseudo object do the following:

fingolfin 127> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> ic:gen(myDefinition, [{this, "MyModule::MyInterface"}]).
Erlang IDL compiler version 20
ok
2> make:all().
Recompile: oe_MyDefinition
Recompile: MyModule_MyInterface
Recompile: MyModule_MyInterface_impl
up_to_date
3> PseudoObj = MyModule_MyInterface:oe_create(Env, [{pseudo, true}]).

The call-back functions must be implemented as MyFunction(OE_THIS, State, Args), and called by
MyModule_MyInterface:MyFunction(PseudoObj, Args).

Call-back Module
This section provides an example of how a call-back module may be implemented.

Note:

Arguments and Replies are determined by the IDL-code and, hence, not further described here.

1.9 Orber Stubs/Skeletons

50 | Ericsson AB. All Rights Reserved.: orber

%%%---
%%% File : Module_Interface_impl.erl
%%% Author :
%%% Purpose :
%%% Created :
%%%---

-module('Module_Interface_impl').

%%--------------- INCLUDES -----------------------------------
-include_lib("orber/include/corba.hrl").
-include_lib(".. ..").

%%--------------- EXPORTS-------------------------------------
%% Arity depends on IC configuration parameters and the IDL
%% specification.
-export([own_function/X]).

%%--------------- gen_server specific ------------------------
-export([init/1, terminate/2, code_change/3, handle_info/2]).

%%--
%% function : server specific
%%--
init(InitialData) ->
 %% 'trap_exit' optional (have no effect if pseudo object).
 process_flag(trap_exit,true),

 %%--- Possible replies ---
 %% Reply and await next request
 {ok, State}.

 %% Reply and if no more requests within Time the special
 %% timeout message should be handled in the
 %% Module_Interface_impl:handle_info/2 call-back function (use the
 %% IC option {{handle_info, "Module::Interface"}, true}).
 {ok, State, Timeout}

 %% Return ignore in order to inform the parent, especially if it is a
 %% supervisor, that the server, as an example, did not start in
 %% accordance with the configuration data.
 ignore
 %% If the initializing procedure fails, the reason
 %% is supplied as StopReason.
 {stop, StopReason}

terminate(Reason, State) ->
 ok.

code_change(OldVsn, State, Extra) ->
 {ok, NewState}.

%% If use IC option {{handle_info, "Module::Interface"}, true}.
%% (have no effect if pseudo object).
handle_info(Info, State) ->
 %%--- Possible replies ---
 %% Await the next invocation.
 {noreply, State}.
 %% Stop with Reason.
 {stop, Reason, State}.

%%--- two-way --
%% If use IC option {this, "Module:Interface"}
%% (Required for pseudo objects)

1.10 CORBA System and User Defined Exceptions

Ericsson AB. All Rights Reserved.: orber | 51

own_function(This, State, .. Arguments ..) ->
%% IC options this and from
own_function(This, From, State, .. Arguments ..) ->
%% IC option from
own_function(From, State, .. Arguments ..) ->
 %% Send explicit reply to client.
 corba:reply(From, Reply),
 %%--- Possible replies ---
 {noreply, State}
 {noreply, State, Timeout}

%% If not use IC option {this, "Module:Interface"}
own_function(State, .. Arguments ..) ->
 %%--- Possible replies ---
 %% Reply and await next request
 {reply, Reply, State}

 %% Reply and if no more requests within Time the special
 %% timeout message should be handled in the
 %% Module_Interface_impl:handle_info/2 call-back function (use the
 %% IC option {{handle_info, "Module::Interface"}, true}).
 {reply, Reply, State, Timeout}

 %% Stop the server and send Reply to invoking object.
 {stop, StopReason, Reply, State}

 %% Stop the server and send no reply to invoking object.
 {stop, StopReason, State}

 %% Raise exception. Any changes to the internal State is lost.
 corba:raise(Exception).

%%--- one-way --
%% If use IC option {this, "Module:Interface"}
%% (Required for pseudo objects)
own_function(This, State, .. Arguments ..) ->

%% If not use IC option {this, "Module:Interface"}
own_function(State, .. Arguments ..) ->
 %%--- Possible results ---
 {noreply, State}

 %% Release and if no more requests within Time the special
 %% timeout message should be handled in the
 %% Module_Interface_impl:handle_info/2 call-back function (use the
 %% IC option {{handle_info, "Module::Interface"}, true}).
 {noreply, State, Timeout}

 %% Stop the server with StopReason.
 {stop, StopReason, State}

%%--------------- END OF MODULE ------------------------------

1.10 CORBA System and User Defined Exceptions
1.10.1 System Exceptions
Orber, or any other ORB, may raise a System Exceptions. These exceptions contain status- and minor-fields
and may not appear in the operations raises exception IDL-definition.

1.10 CORBA System and User Defined Exceptions

52 | Ericsson AB. All Rights Reserved.: orber

Status Field
The status field indicates if the request was completed or not and will be assigned one of the following Erlang atoms:

Status Description

'COMPLETED_YES'

The operation was invoked on the target object but
an error occurred after the object replied. This occur,
for example, if a server replies but Orber is not able to
marshal and send the reply to the client ORB.

'COMPLETED_NO'
Orber failed to invoke the operation on the target object.
This occur, for example, if the object no longer exists.

'COMPLETED_MAYBE'
Orber invoked the operation on the target object but
an error occurred and it is impossible to decide if the
request really reached the object or not.

Table 10.1: System Exceptions Status

Minor Field
The minor field contains an integer (VMCID), which is related to a more specific reason why an invocation failed.
The function orber:exception_info/1 can be used to map the minor code to a string. Note, for VMCID:s not
assigned by the OMG or Orber, the documentation for that particular ORB must be consulted.

Supported System Exceptions
The OMG CORBA specification defines the following exceptions:

• 'BAD_CONTEXT' - if a request does not contain a correct context this exception is raised.

• 'BAD_INV_ORDER' - this exception indicates that operations has been invoked operations in the wrong
order, which would cause, for example, a dead-lock.

• 'BAD_OPERATION' - raised if the target object exists, but that the invoked operation is not supported.

• 'BAD_PARAM' - is thrown if, for example, a parameter is out of range or otherwise considered illegal.

• 'BAD_TYPECODE' - if illegal type code is passed, for example, encapsulated in an any data type the
'BAD_TYPECODE' exception will be raised.

• 'BAD_QOS' - raised whenever an object cannot support the required quality of service.

• 'CODESET_INCOMPATIBLE' - raised if two ORB's cannot communicate due to different representation of,
for example, char and/or wchar.

• 'COMM_FAILURE' - raised if an ORB is unable to setup communication or it is lost while an operation is in
progress.

• 'DATA_CONVERSION' - raised if an ORB cannot convert data received to the native representation. See also
the 'CODESET_INCOMPATIBLE' exception.

• 'FREE_MEM' - the ORB failed to free dynamic memory and failed.

• 'IMP_LIMIT' - an implementation limit was exceeded in the ORB at run time. A object factory may, for
example, limit the number of object clients are allowed to create.

• 'INTERNAL' - an internal failure occurred in an ORB, which is unrecognized. You may consider contacting
the ORB providers support.

• 'INTF_REPOS' - the ORB was not able to reach the interface repository, or some other failure relating to the
interface repository is detected.

1.10 CORBA System and User Defined Exceptions

Ericsson AB. All Rights Reserved.: orber | 53

• 'INITIALIZE' - the ORB initialization failed due to, for example, network or configuration error.

• 'INVALID_TRANSACTION' - is raised if the request carried an invalid transaction context.

• 'INV_FLAG' - an invalid flag was passed to an operation, which caused, for example, a connection to be
closed.

• 'INV_IDENT' - this exception indicates that an IDL identifier is incorrect.

• 'INV_OBJREF' - this exception is raised if an object reference is malformed or a nil reference (see also
corba:create_nil_objref/0).

• 'INV_POLICY' - the invocation cannot be made due to an incompatibility between policy overrides that apply
to the particular invocation.

• 'MARSHAL' - this exception may be raised by the client- or server-side when either ORB is unable to marshal/
unmarshal requests or replies.

• 'NO_IMPLEMENT' - if the operation exists but no implementation exists, this exception is raised.

• 'NO_MEMORY' - the ORB has run out of memory.

• 'NO_PERMISSION' - the caller has insufficient privileges, such as, for example, bad SSL certificate.

• 'NO_RESOURCES' - a general platform resource limit exceeded.

• 'NO_RESPONSE' - no response available of a deferred synchronous request.

• 'OBJ_ADAPTER' - indicates administrative mismatch; the object adapter is not able to associate an object
with the implementation repository.

• 'OBJECT_NOT_EXIST' - the object have been disposed or terminated; clients should remove all copies of
the object reference and initiate desired recovery process.

• 'PERSIST_STORE' - the ORB was not able to establish a connection to its persistent storage or data contained
in the the storage is corrupted.

• 'REBIND' - a request resulted in, for example, a 'LOCATION_FORWARD' message; if the policies are
incompatible this exception is raised.

• 'TIMEOUT' - raised if a request fail to complete within the given time-limit.

• 'TRANSACTION_MODE' - a transaction policy mismatch detected.

• 'TRANSACTION_REQUIRED' - a transaction is required for the invoked operation but the request contained
no transaction context.

• 'TRANSACTION_ROLLEDBACK' - the transaction associated with the request has already been rolled back
or will be.

• 'TRANSACTION_UNAVAILABLE' - no transaction context can be supplied since the ORB is unable to
contact the Transaction Service.

• 'TRANSIENT' - the ORB could not determine the current status of an object since it could not be reached. The
error may be temporary.

• 'UNKNOWN' - is thrown if an implementation throws a non-CORBA, or unrecognized, exception.

1.10.2 User Defined Exceptions
User exceptions is defined in IDL-files and is listed in operations raises exception listing. For example, if we have
the following IDL code:

1.10 CORBA System and User Defined Exceptions

54 | Ericsson AB. All Rights Reserved.: orber

module MyModule {

 exception MyException {};
 exception MyExceptionMsg { string ExtraInfo; };

 interface MyInterface {

 void foo()
 raises(MyException);

 void bar()
 raises(MyException, MyExceptionMsg);

 void baz();
 };
};

1.10.3 Throwing Exceptions
To be able to raise MyException or MyExceptionMsg exceptions, the generated MyModule.hrl must be
included, and typical usage is:

-module('MyModule_MyInterface_impl').
-include("MyModule.hrl").

bar(State) ->
 case TestingSomething of
 ok ->
 {reply, ok, State};
 {error, Reason} when list(Reason) ->
 corba:raise(#'MyModule_MyExceptionMsg'{'ExtraInfo' = Reason});
 error ->
 corba:raise(#'MyModule_MyException'{})
 end.

1.10.4 Catching Exceptions
Depending on which operation we invoke we must be able to handle:

• foo - MyException or a system exception.

• bar - MyException, MyExceptionMsg or a system exception.

• baz - a system exception.

Catching and matching exceptions can bee done in different ways:

 case catch 'MyModule_MyInterface':bar(MIReference) of
 ok ->
 %% The operation raised no exception.
 ok;
 {'EXCEPTION', #'MyModule_MyExceptionMsg'{'ExtraInfo' = Reason}} ->
 %% If we want to log the Reason we must extract 'ExtraInfo'.
 error_logger:error_msg("Operation 'bar' raised: ~p~n", [Reason]),
 ... do something ...;
 {'EXCEPTION', E} when record(E, 'OBJECT_NOT_EXIST') ->
 ... do something ...;
 {'EXCEPTION', E} ->
 ... do something ...
 end.

1.11 Orber Interceptors

Ericsson AB. All Rights Reserved.: orber | 55

1.11 Orber Interceptors
1.11.1 Using Interceptors
For Inter-ORB communication, e.g., via IIOP, it is possible to intercept requests and replies. To be able to use
Interceptors Orber the configuration parameter interceptors must be defined.

Configure Orber to Use Interceptors
The configuration parameter interceptors must be defined, e.g., as command line option:

erl -orber interceptors "{native, ['myInterceptor']}"

It is possible to use more than one interceptor; simply add them to the list and they will be invoked in the same order
as they appear in the list.

One can also active and deactivate an interceptor during run-time, but this will only affect currently
existing connections. For more information, consult Orber's Reference Manual regarding the operations
orber:activate_audit_trail/0/1 and orber:activate_audit_trail/0/1.

Creating Interceptors
Each supplied interceptor must export the following functions:

• new_out_connection/3/5 - one of these operations is called when a client application calls an object residing
on remote ORB. If an interceptor exports both versions, arity 3 and 5, which operation that will be invoked is
Orber internal.

• new_in_connection/3/5 - one of these operations is invoked when a client side ORB tries to set up a connection
to the target ORB. If an interceptor exports both versions, arity 3 and 5, which operation that will be invoked is
Orber internal.

• out_request/6 - supplies all request data on the client side ORB.

• out_request_encoded/6 - similar to out_request but the request body is encode.

• in_request_encoded/6 - after a new request arrives at the target ORB the request data is passed to the
interceptor in encoded format.

• in_request/6 - prior to invoking the operation on the target object, the interceptor in_request is called.

• out_reply/6 - after the target object replied the out_reply operation is called with the result of the object
invocation.

• out_reply_encoded/6 - before sending a reply back to the client side ORB this operation is called with the
result in encoded format.

• in_reply_encoded/6 - after the client side ORB receives a reply this function is called with the reply in encoded
format.

• in_reply/6 - before delivering the reply to the client this operation is invoked.

• closed_in_connection/1 - when a connection is terminated on the client side this function is called.

• closed_out_connection/1 - if an outgoing connection is terminated this operation will be invoked.

The operations new_out_connection, new_in_connection, closed_in_connection and
closed_out_connection operations are only invoked once per connection. The remaining operations are called,
as shown below, for every Request/Reply to/from remote CORBA Objects.

1.11 Orber Interceptors

56 | Ericsson AB. All Rights Reserved.: orber

Figure 11.1: The Invocation Order of Interceptor Functions.

1.11.2 Interceptor Example
Assume we want to create a simple access service which purpose is to:

• Only allow incoming request from ORB's residing on a certain set of nodes.

• Restrict the objects any client may invoke operations on.

• Only allow outgoing requests to call a limited set of external ORB's.

• Add a checksum to each binary request/reply body.

To restricts the access we use a protected and named ets-table holding all information. How the ets-table is
initiated and maintained is implementation specific, but it contain {Node, ObjectTable, ChecksumModule}
where Node is used as ets-key, ObjectTable is a reference to another ets-table in which we store which objects
the clients are allowed to invoke operations on and ChecksumModule determines which module we should use to
handle the checksums.

1.11 Orber Interceptors

Ericsson AB. All Rights Reserved.: orber | 57

new_in_connection(Arg, Host, Port) ->
 %% Since we only use one interceptor we do not care about the
 %% input Arg since it is set do undefined by Orber.
 case ets:lookup(in_access_table, Host) of
 [] ->
 %% We may want to log the Host/Port to see if someone tried
 %% to hack in to our system.
 exit("Access not granted");
 [{Host, ObjTable, ChecksumModule}] ->
 {ObjTable, ChecksumModule}
 end.

The returned tuple, i.e., {ObjTable, ChecksumModule}, will be passed as the first argument whenever invoking one
of the interceptor functions. Unless the connection attempt did not fail we are now ready for receiving requests from
the client side ORB.

When a new request comes in the first interceptor function to be invoked is in_request_encoded. We will remove
the checksum from the coded request body in the following way:

in_request_encoded({ObjTable, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
 NewBin = ChecksumModule:remove_checksum(Bin),
 {NewBin, Extra}.

If the checksum check fails the ChecksumModule should invoke exit/1. But if the check succeeded we are now
ready to check if the client-ORB objects are allowed to invoke operations on the target object. Please note, it is possible
to run both checks in in_request_encoded. Please note, the checksum calculation must be relatively fast to
ensure a good throughput.

If we want to we can restrict any clients to only use a subset of operations exported by a server:

in_request({ObjTable, ChecksumModule}, ObjKey, Ctx, Op, Params, Extra) ->
 case ets:lookup(ObjTable, {ObjKey, Op}) of
 [] ->
 exit("Client tried to invoke illegal operation");
 [SomeData] ->
 {Params, Extra}
 end.

At this point Orber are now ready to invoke the operation on the target object. Since we do not care about what the
reply is the out_reply function do nothing, i.e.:

out_reply(_, _, _, _, Reply, Extra) ->
 {Reply, Extra}.

If the client side ORB expects a checksum to be added to the reply we add it by using:

out_reply_encoded({ObjTable, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
 NewBin = ChecksumModule:add_checksum(Bin),
 {NewBin, Extra}.

Warning:

If we manipulate the binary as above the behavior must be Bin ==
remove_checksum(add_checksum(Bin)).

For outgoing requests the principle is the same. Hence, it is not further described here. The complete interceptor
module would look like:

1.11 Orber Interceptors

58 | Ericsson AB. All Rights Reserved.: orber

-module(myInterceptor).

%% Interceptor functions.
-export([new_out_connection/3,
 new_in_connection/3,
 closed_in_connection/1,
 closed_out_connection/1,
 in_request_encoded/6,
 in_reply_encoded/6,
 out_reply_encoded/6,
 out_request_encoded/6,
 in_request/6,
 in_reply/6,
 out_reply/6,
 out_request/6]).

new_in_connection(Arg, Host, Port) ->
 %% Since we only use one interceptor we do not care about the
 %% input Arg since it is set do undefined by Orber.
 case ets:lookup(in_access_table, Host) of
 [] ->
 %% We may want to log the Host/Port to see if someone tried
 %% to hack in to our system.
 exit("Access not granted");
 [{Host, ObjTable, ChecksumModule}] ->
 {ObjTable, ChecksumModule}
 end.

new_out_connection(Arg, Host, Port) ->
 case ets:lookup(out_access_table, Host) of
 [] ->
 exit("Access not granted");
 [{Host, ObjTable, ChecksumModule}] ->
 {ObjTable, ChecksumModule}
 end.

in_request_encoded({_, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
 NewBin = ChecksumModule:remove_checksum(Bin),
 {NewBin, Extra}.

in_request({ObjTable, _}, ObjKey, Ctx, Op, Params, Extra) ->
 case ets:lookup(ObjTable, {ObjKey, Op}) of
 [] ->
 exit("Client tried to invoke illegal operation");
 [SomeData] ->
 {Params, Extra}
 end.

out_reply(_, _, _, _, Reply, Extra) ->
 {Reply, Extra}.

out_reply_encoded({_, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
 NewBin = ChecksumModule:add_checksum(Bin),
 {NewBin, Extra}.

out_request({ObjTable, _}, ObjKey, Ctx, Op, Params, Extra) ->
 case ets:lookup(ObjTable, {ObjKey, Op}) of
 [] ->
 exit("Client tried to invoke illegal operation");
 [SomeData] ->
 {Params, Extra}
 end.

out_request_encoded({_, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
 NewBin = ChecksumModule:add_checksum(Bin),

1.12 OrberWeb

Ericsson AB. All Rights Reserved.: orber | 59

 {NewBin, Extra}.

in_reply_encoded({_, ChecksumModule}, ObjKey, Ctx, Op, Bin, Extra) ->
 NewBin = ChecksumModule:remove_checksum(Bin),
 {NewBin, Extra}.

in_reply(_, _, _, _, Reply, Extra) ->
 {Reply, Extra}.

closed_in_connection(Arg) ->
 %% Nothing to clean up.
 Arg.

closed_out_connection(Arg) ->
 %% Nothing to clean up.
 Arg.

Note:

One can also use interceptors for debugging purposes, e.g., print which objects and operations are invoked
with which arguments and the outcome of the operation. In conjunction with the configuration parameter
orber_debug_level it is rather easy to find out what went wrong or just to log the traffic.

1.12 OrberWeb
1.12.1 Using OrberWeb
OrberWeb is intended to make things easier when developing and testing applications using Orber. The user is able
to interact with Orber via a GUI by using a web browser.

OrberWeb requires that the application WebTool is available and started on at least one node; if so OrberWeb can
usually be used to to access Orber nodes supporting the Interoperable Naming Service. How to start OrberWeb is
described in Starting OrberWeb

The OrberWeb GUI consists of a Menu Frame and a Data Frames.

The Menu Frame
The menu frame consists of:

• Node List - which node to access.

• Configuration - see how Orber on the current node is configured.

• Name Service - browse the NameService and add/remove a Context/Object.

• IFR Types - see which types are registered in IFR.

• Create Object - create a new object and, possibly, store it in the NameService.

1.12 OrberWeb

60 | Ericsson AB. All Rights Reserved.: orber

Figure 12.1: The Menu Frame.

Which nodes we can access is determined by what is returned when invoking [node()|nodes()]. If you cannot
see a desired node in the list, you have to call net_adm:ping(Node). But this requires that the node is started with
the distribution switched on (e.g. erl -sname myNode); this also goes for the node OrberWeb is running on.

The Configuration Data Frame
When accessing the Configuration page OrberWeb presents a table containing the configuration settings for the target
node.

1.12 OrberWeb

Ericsson AB. All Rights Reserved.: orber | 61

Figure 12.2: Configuration Settings.

It is also possible to change those configuration parameters which can be changed when Orber is already started. The
Key-Value pairs is given as a list of tuples, e.g., [{orber_debug_level, 5}, {iiop_timeout, 60}, {giop_version, {1,2}}].
If one tries to update a parameter which may not be changed an error message will be displayed.

The IFR Data Frame
All types registered in the IFR (Interface Repository) which have an associated IFR-id can be viewed via the IFR Data
Frame. This gives the user an easy way to confirm that all necessary IDL-specifications have been properly registered.
All available types are listed when choosing IFR Types in the menu frame:

1.12 OrberWeb

62 | Ericsson AB. All Rights Reserved.: orber

Figure 12.3: Select Type.

After selecting a type all definitions of that particular type will be displayed. If no such bindings exists the table will
be empty.

Since Orber adds definitions to the IFR when it is installed (e.g. CosNaming), not only types defined by the user will
show up in the table. In the figure below you find the the NameService exceptions listed.

1.12 OrberWeb

Ericsson AB. All Rights Reserved.: orber | 63

Figure 12.4: List Registered Exceptions.

The NameService Data Frame
The NameService main purpose is to make possible to bind object references, which can client applications can resolve
and invoke operations on. Initially, the NameService is empty. The most common scenario, is that user applications
create Contexts and add objects in the NameService. OrberWeb allows the user to do the very same thing.

When referencing an object or context you must use stringified NameComponents. For more information see the
Interoperable Naming Service. In the following example we will use the string org/erlang/TheObjectName, where
org and erlang will be contexts and TheObjectName the name the object will be bound to.

Since the NameService is empty in the beginning, the only thing we can do is creating a new context. Simply write
org in the input field and press New Context. If OrberWeb was able to create the context or not, is shown in the
completion message. If successful, just press the Go Back button. Now, a link named org should be listed in the table.
In the right column the context type is displayed. Contexts are associated with ncontext and objects with nobject.

Figure 12.5: Add a New Context.

1.12 OrberWeb

64 | Ericsson AB. All Rights Reserved.: orber

To create the next level context (i.e. erlang), simply follow the link and repeat the procedure. If done correctly, a table
containing the same data as the following figure should be the result if you follow the erlang link. Note, that the path
is displayed in the yellow field.

If a context does not contain any sub-contexts or object bindings, it is possible to delete the context. If these
requirements are met, a Delete Context button will appear. A completion status message will be displayed after
deleting the context.

Figure 12.6: Delete Context.

Now it is possible to bind an object using the complete name string. To find out how this is done using OrberWeb see
Object Creation. For now, we will just assume that an object have been created and bound as TheObjectName.

Figure 12.7: Object Stored in the NameService.

1.12 OrberWeb

Ericsson AB. All Rights Reserved.: orber | 65

If you follow the TheObjectName link, data about the bound object will be presented. Note, depending on which
type of object it is, the information given differs. It would, for example, not be possible to display a Pid for all types
of objects since it might reside on a Java-ORB. In the figure below a CosNotification FilterFactory have been bound
under the name org/erlang/TheObjectName.

Figure 12.8: Object Data.

OrberWeb also makes it possible to remove a binding and dispose the associated object. Pressing Unbind the binding
will be removed but the object will still exist. But, if the Unbind and Dispose button is pressed, the binding will be
removed and the object terminated.

The Object Creation Data Frame
This part makes it possible to create a new object and, if wanted, store it the NameService.

1.12 OrberWeb

66 | Ericsson AB. All Rights Reserved.: orber

Figure 12.9: Create a New Object.

• Module - simply type the name of the module of the object type you want to create. If the module begins with a
capital letter, we normally must write 'Module_Interface'. But, when using OrberWeb, you shall NOT.
Since we cannot create linked objects this is not an option.

• Arguments - the supplied arguments must be written as a single Erlang term. That is, as a list or tuple
containing other Erlang terms. The arguments will be passed to the init function of the object. It is, however,
not possible to use Erlang records. If OrberWeb is not able to parse the arguments, an error message will be
displayed. If left empty, an empty list will be passed.

• Options - the options can be the ones listed under Module_Interface in Orber's Reference manual. Hence,
they are not further described here. But, as an example, in the figure above we started the object as globally
registered. If no options supplied the object will be started as default.

• Name String - if left empty the object will not be registered in the NameService. Hence, it is important that
you can access the object in another way, otherwise a zombie process is created. In the previous section we used
the name string org/erlang/TheObjectName. If we choose the same name here, the listed contexts (i.e. org and
erlang) must be created before we can create and bind the object to TheObjectName. If this requirement is not
met, OrberWeb cannot bind the object. Hence, the object will be terminated and an error message displayed.

• Operation to use - which option choosed will determine the behavior of OrberWeb. If you choose bind and a
binding already exists an error message will be displayed and the newly started object terminated. But if you
choose rebind any existing binding will over-written.

1.12.2 Starting OrberWeb
You may choose to start OrberWeb on node, on which Orber is running or not. But the Erlang distribution must be
started (e.g. by using -sname aNodeName). Now, all you have to do is to invoke:

erl> webtool:start().
WebTool is available at http://localhost:8888/
Or http://127.0.0.1:8888/

Type one of the URL:s in your web-browser. If you want to access the WebTool application from different machine,
just replace localhost with its name. For more information, see the WebTool documentation.

1.13 Debugging

Ericsson AB. All Rights Reserved.: orber | 67

1.13 Debugging
1.13.1 Tools and FAQ
Persons who use Orber for the first time may find it hard to tell what goes wrong when trying to setup communication
between an Orber-ORB and ORB:s supplied by another vendor or another Orber-ORB. The purpose of this chapter is
to inform about the most common mistakes and what tools one can use to overcome these problems.

Tools
To begin with, Orber can be configured to run in debug mode. There are four ways to set this parameter:

• erl -orber orber_debug_level 10 - can be added to a start-script.

• corba:orb_init([{orber_debug_level, 10}]) - this operation must be invoked before starting Orber.

• orber:configure(orber_debug_level, 10) - this operation can be invoked at any time.

• OrberWeb - via the Configuration menu one can easily change the configuration. For more information,
see the OrberWeb chapter in this User's Guide.

When Orber runs i debug mode, printouts will be generated if anything abnormal occurs (not necessarily an error).
An error message typically looks like:

=ERROR REPORT==== 29-Nov-2001::14:09:55 ===
=================== Orber =================
[410] corba:common_create(orber_test_server, [{pseudo,truce}]);
not a boolean(truce).
===

In the example above, we tried to create an object with an incorrect option (i.e. should have been {pseudo,true}).

If you are not able to solve the problem, you should include all generated reports when contacting support or using
the erlang-questions mailing list.

It is easy to forget to, for example, set all fields in a struct, which one may not discover when developing an application
using Orber. When using a typed language, such faults would cause a compile time error. To avoid these mistakes,
Orber allows the user to activate automatic typechecking of all local invocations of CORBA Objects. For this feature
to be really useful, the user must create test suites which cover as much as possible. For example, invoking an operation
with invalid or incorrect arguments should also be tested. This option can be activated for one object or all object via:

• 'MyModuyle_MyInterface':oe_create(Env, [{local_typecheck, true}]) - This approach will only
activate, or deactivate, typechecking for the returned instance. Naturally, this option can also be passed to
oe_create_link/2, corba:create/4 and corba:create_link/4.

• erl -orber flags 2 - can be added to a start-script. All object invocations will be typechecked, unless overridden
by the previous option.

• corba:orb_init([{flags, 16#0002}]) - this operation must be invoked before starting Orber. Behaves as the
previous option.

If incorrect data is passed or returned, Orber uses the error_logger to generate logs, which can look like:

=ERROR REPORT==== 10-Jul-2002::12:36:09 ===
========= Orber Typecheck Request =========
Invoked......: MyModule_MyInterface:foo/1
Typecode.....: [{tk_enum,"IDL:MyModule/enumerant:1.0",
 "enumerant",
 ["one","two"]}]
Arguments....: [three]
Result.......: {'EXCEPTION',{'MARSHAL',[],102,'COMPLETED_NO'}}
===

1.13 Debugging

68 | Ericsson AB. All Rights Reserved.: orber

Note, that the arity is equivalent to the IDL-file. In the example above, an undefined enumerant was used. In most cases,
it is useful to set the configuration parameter orber_debug_level 10 as well. Due to the extra overhead, this
option MAY ONLY be used during testing and development. For more information, see also configuration settings.

It is also possible to trace all communication between an Orber-ORB and, for example, a Java-ORB, communicating
via IIOP. All you need to do is to activate an interceptor. Normally, the users must implement the interceptor
themselves, but for your convenience Orber includes three pre-compiled interceptors called orber_iiop_tracer,
orber_iiop_tracer_silent and orber_iiop_tracer_stealth.

Warning:

Logging all traffic is expensive. Hence, only use the supplied interceptors during test and development.

The orber_iiop_tracer and orber_iiop_tracer_silent interceptors uses the error_logger
module to generate the logs. If the traffic is intense you probably want to write the reports to a log-file. This is done
by, for example, invoking:

erl> error_logger:tty(false).
erl> error_logger:logfile({open, "/tmp/IIOPTrace"}).

The IIOPTrace file will contain, if you use the orber_iiop_tracer interceptor, reports which looks like:

=INFO REPORT==== 13-Jul-2005::18:22:39 ===
=============== new_out_connection =======
Node : myNode@myHost
From : 192.0.0.10:47987
To : 192.0.0.20:4001
==

=INFO REPORT==== 29-Nov-2001::15:26:28 ===
=============== out_request ==============
Connection: {"192.0.0.20",4001,"192.0.0.10",47987}
Operation : resolve
Parameters: [[{'CosNaming_NameComponent',
 "AIK","SwedishIcehockeyChampions"}]]
Context : [{'IOP_ServiceContext',1,
 {'CONV_FRAME_CodeSetContext',65537,65801}}]
==

The orber_iiop_tracer_silent will not log GIOP encoded data. To activate one the interceptors, you have
two options:

• erl -orber interceptors "{native,[orber_iiop_tracer]}" - can be added to a start-script.

• corba:orb_init([{interceptors, {native, [orber_iiop_tracer_silent]}}]) - this operation must be invoked
before starting Orber.

It is also possible to active and deactivate an interceptor during run-time, but this will only affect currently
existing connections. For more information, consult Orber's Reference Manual regarding the operations
orber:activate_audit_trail/0/1 and orber:activate_audit_trail/0/1.

FAQ
Q: When my client, typically written in C++ or Java, invoke narrow on an Orber object reference it fails?

A: You must register your application in the IFR by invoking oe_register(). If the object was created by a COS-
application, you must run install (e.g. cosEventApp:install()).

A: Confirm, by consulting the IDL specifications, that the received object reference really inherit from the interface
you are trying to narrow it to.

1.13 Debugging

Ericsson AB. All Rights Reserved.: orber | 69

Q: I am trying to register my application in the IFR but it fails. Why?

A: If one, or more, interface in your IDL-specification inherits from other interface(s), you must register them before
registering your application. Note, this also apply when you inherit interfaces supported by a COS-application. Hence,
they must be installed prior to registration of your application.

Q: I have a Orber client and server residing on two different Orber instances but I only get the
'OBJECT_NOT_EXIST' exception, even though I am sure that the object is still alive?

A: If the two Orber-ORB's are not intended to be a part of multi-node ORB, make sure that the two Orber-ORB's have
different domain names set (see configuration settings). The easiest way to confirm this is to invoke orber:info()
on each node.

Q: When I'm trying to install and/or start Orber it fails?

A: Make sure that no other Orber-ORB is already running on the same node. If so, change the iiop_port
configuration parameter (see configuration settings).

Q: My Orber server is invoked via IIOP but Orber cannot marshal the reply?

A: Consult your IDL file to confirm that your replies are of the correct type. If it is correct and the return type is,
for example, a struct, make sure you have set every field in the struct. If you do not do that it will be set to the atom
'undefined', which most certainly is not correct.

A: Check that you handle inout and out parameters correctly (see the IDL specification). For example, a function
which have one out-parameter and should return void, then your call-back module should return {reply, {ok,
OutParam}, State}. Note, even though the return value is void (IDL) you must reply with ok.

Q: I cannot run Orber as a multi-node ORB?

A: Make sure that the Erlang distribution have been started for each node and the cookies are correct. For more
information, consult the System Documentation

1.13 Debugging

70 | Ericsson AB. All Rights Reserved.: orber

2 Reference Manual

The Orber application is an Erlang implementation of a CORBA Object Request Broker.

any

Ericsson AB. All Rights Reserved.: orber | 71

any
Erlang module

This module contains functions that gives an interface to the CORBA any type.

Note that the any interface in orber does not contain a destroy function because the any type is represented as an
Erlang record and therefor will be removed by the garbage collector when not in use.

The type TC used below describes an IDL type and is a tuple according to the to the Erlang language mapping.

The type Any used below is defined as:

-record(any, {typecode, value}).

where typecode is a TC tuple and value is an Erlang term of the type defined by the typecode field.

Exports

create() -> Result
create(Typecode, Value) -> Result
Types:

Typecode = TC

Value = term()

Result = Any

The create/0 function creates an empty any record and the create/2 function creates an initialized record.

set_typecode(A, Typecode) -> Result
Types:

A = Any

Typecode = TC

Result = Any

This function sets the typecode of A and returns a new any record.

get_typecode(A) -> Result
Types:

A = Any

Result = TC

This function returns the typecode of A.

set_value(A, Value) -> Result
Types:

A = Any

Value = term()

Result = Any

This function sets the value of A and returns a new any record.

any

72 | Ericsson AB. All Rights Reserved.: orber

get_value(A) -> Result
Types:

A = Any

Result = term()

This function returns the value of A.

fixed

Ericsson AB. All Rights Reserved.: orber | 73

fixed
Erlang module

This module contains functions that gives an interface to the CORBA fixed type.

The type Fixed used below is defined as:

-record(fixed, {digits, scale, value}).

where digits is the total amount of digits it consists of and scale is the number of fractional digits. The value
field contains the actual Fixed value represented as an integer. The limitations of each field are:

• Digits - integer(), -1 > Digits < 32

• Scale - integer(), -1 > Scale =< Digits

• Value - integer(), range (31 digits): ±9999999999999999999999999999999

Since the Value part is represented by an integer, it is vital that the Digits and Scale values are correct. This also means
that trailing zeros cannot be left out in some cases:

• fixed<5,3> eq. 03.140d eq. 3140

• fixed<3,2> eq. 3.14d eq. 314

Leading zeros can be left out.

For your convenience, this module exports functions which handle unary (-) and binary (+-*/) operations legal for
the Fixed type. Since a unary + have no effect, this module do not export such a function. Any of the binary operations
may cause an overflow (i.e. more than 31 significant digits; leading and trailing zeros are not considered significant). If
this is the case, the Digit and Scale values are adjusted and the Value truncated (no rounding performed). This behavior
is compliant with the OMG CORBA specification. Each binary operation have the following upper bounds:

• Fixed1 + Fixed2 - fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

• Fixed1 - Fixed2 - fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

• Fixed1 * Fixed2 - fixed<d1+d2, s1+s2>

• Fixed1 / Fixed2 - fixed<(d1-s1+s2) + Sinf ,Sinf >

A quotient may have an arbitrary number of decimal places, which is denoted by a scale of Sinf.

Exports

create(Digits, Scale, Value) -> Result
Types:

Result = Fixed Type | {'EXCEPTION', #'BAD_PARAM'{}}

This function creates a new instance of a Fixed Type. If the limitations is not fulfilled (e.g. overflow) an exception
is raised.

get_typecode(Fixed) -> Result
Types:

Result = TypeCode | {'EXCEPTION', #'BAD_PARAM'{}}

Returns the TypeCode which represents the supplied Fixed type. If the parameter is not of the correct type, an exception
is raised.

fixed

74 | Ericsson AB. All Rights Reserved.: orber

add(Fixed1, Fixed2) -> Result
Types:

Result = Fixed1 + Fixed2 | {'EXCEPTION', #'BAD_PARAM'{}}

Performs a Fixed type addition. If the parameters are not of the correct type, an exception is raised.

subtract(Fixed1, Fixed2) -> Result
Types:

Result = Fixed1 - Fixed2 | {'EXCEPTION', #'BAD_PARAM'{}}

Performs a Fixed type subtraction. If the parameters are not of the correct type, an exception is raised.

multiply(Fixed1, Fixed2) -> Result
Types:

Result = Fixed1 * Fixed2 | {'EXCEPTION', #'BAD_PARAM'{}}

Performs a Fixed type multiplication. If the parameters are not of the correct type, an exception is raised.

divide(Fixed1, Fixed2) -> Result
Types:

Result = Fixed1 / Fixed2 | {'EXCEPTION', #'BAD_PARAM'{}}

Performs a Fixed type division. If the parameters are not of the correct type, an exception is raised.

unary_minus(Fixed) -> Result
Types:

Result = -Fixed | {'EXCEPTION', #'BAD_PARAM'{}}

Negates the supplied Fixed type. If the parameter is not of the correct type, an exception is raised.

corba

Ericsson AB. All Rights Reserved.: orber | 75

corba
Erlang module

This module contains functions that are specified on the CORBA module level. It also contains some functions for
creating and disposing objects.

Exports

create(Module, TypeID) -> Object
create(Module, TypeID, Env) -> Object
create(Module, TypeID, Env, Optons1) -> Object
create_link(Module, TypeID) -> Object
create_link(Module, TypeID, Env) -> Object
create_link(Module, TypeID, Env, Options2) -> Reply
Types:

Module = atom()

TypeID = string()

Env = term()

Options1 = [{persistent, Bool} | {regname, RegName} | {local_typecheck,
Bool}]

Options2 = [{sup_child, Bool} | {persistent, Bool} | {regname, RegName} |
{pseudo, Bool} | {local_typecheck, Bool}]

RegName = {local, atom()} | {global, term()}

Reply = #objref | {ok, Pid, #objref}

Bool = true | false

Object = #objref

These functions start a new server object. If you start it without RegName it can only be accessed through the returned
object key. Started with a RegName the name is registered locally or globally.

TypeID is the repository ID of the server object type and could for example look like "IDL:StackModule/Stack:1.0".

Module is the name of the interface API module.

Env is the arguments passed which will be passed to the implementations init call-back function.

A server started with create/2, create/3 or create/4 does not care about the parent, which means that the parent is not
handled explicitly in the generic process part.

A server started with create_link2, create_link/3 or create_link/4 is initially linked to the caller, the parent, and it will
terminate whenever the parent process terminates, and with the same reason as the parent. If the server traps exits, the
terminate/2 call-back function is called in order to clean up before the termination. These functions should be used
if the server is a worker in a supervision tree.

If you use the option {sup_child, true} create_link/4 will return {ok, Pid, #objref}, otherwise
#objref, and make it possible to start a server as a supervisor child (stdlib-1.7 or later).

If you use the option {persistent, true} you also must use the option {regname, {global, Name}}.
This combination makes it possible to tell the difference between a server permanently terminated or in the process
of restarting.

corba

76 | Ericsson AB. All Rights Reserved.: orber

The option {pseudo, true}, allow us to create an object which is not a server. Using {pseudo, true}
overrides all other start options. For more information see section Module_Interface.

If a server is started using the option {persistent, true} the object key will not be removed unless it terminates
with reason normal or shutdown. Hence, if persistent servers is used as supervisor children they should be transient
and the objectkeys_gc_time should be modified (default equals infinity).

The option {local_typecheck, boolean()}, which overrides the Local Typechecking environment flag, turns
on or off typechecking. If activated, parameters, replies and raised exceptions will be checked to ensure that the data
is correct, when invoking operations on CORBA Objects within the same Orber domain. Due to the extra overhead,
this option MAY ONLY be used during testing and development.

Example:

 corba:create('StackModule_Stack', "IDL:StackModule/Stack:1.0", {10, test})

dispose(Object) -> ok
Types:

Object = #objref

This function is used for terminating the execution of a server object. Invoking this operation on a NIL object reference,
e.g., the return value of corba:create_nil_objref/0, always return ok. For valid object references, invoking
this operation more than once, will result in a system exception.

create_nil_objref() -> Object
Types:

Object = #objref representing NIL.

Creates an object reference that represents the NIL value. Attempts to invoke operations using the returned object
reference will return a system exception.

create_subobject_key(Object, Key) -> Result
Types:

Object = #objref

Key = term()

Result = #objref

This function is used to create a subobject in a server object. It can for example be useful when one wants unique
access to separate rows in a mnesia or an ETS table. The Result is an object reference that will be seen as a unique
reference to the outside world but will access the same server object where one can use the get_subobject_key/1
function to get the private key value.

Key is stored in the object reference Object. If it is a binary it will be stored as is and otherwise it is converted to
a binary before storage.

get_subobject_key(Object) -> Result
Types:

Object = #objref

Result = #binary

This function is used to fetch a subobject key from the object reference Object. The result is a always a binary, if it was
an Erlang term that was stored with create_subobject_key/2 one can to do binary_to_term/1 to get the real value.

corba

Ericsson AB. All Rights Reserved.: orber | 77

get_pid(Object) -> Result
Types:

Object = #objref

Result = #pid | {error, Reason} | {'EXCEPTION',E}

This function is to get the process id from an object, which is a must when CORBA objects is started/handled in a
supervisor tree. The function will throw exceptions if the key is not found or some other error occurs.

raise(Exception)
Types:

Exception = record()

This function is used for raising corba exceptions as an Erlang user generated exit signal. It will throw the tuple
{'EXCEPTION', Exception}.

reply(To, Reply) -> true
Types:

To = client reference

Reply = IDL type

This function can be used by a CORBA object to explicitly send a reply to a client that invoked a two-way operation.
If this operation is used, it is not possible to return a reply in the call-back module.
To must be the From argument provided to the callback function, which requires that the IC option from was used
when compiling the IDL-file.

resolve_initial_references(ObjectId) -> Object
resolve_initial_references(ObjectId, Contexts) -> Object
Types:

ObjectId = string()

Contexts = [Context]

Context = #'IOP_ServiceContext'{context_id = CtxId, context_data =
CtxData}

CtxId = ?ORBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl_client_options

Value = allowed value associated with the given key

Object = #objref

This function returns the object reference associated with the given object id. Initially, only "NameService" is
available. To add or remove services use add_initial_service/2 or remove_initial_service/1.

The configuration context is used to override the global SSL client side configuration.

add_initial_service(ObjectId, Object) -> boolean()
Types:

ObjectId = string()

corba

78 | Ericsson AB. All Rights Reserved.: orber

Object = #objref

This operation allows us to add initial services, which can be accessed by using
resolve_initial_references/1 or the corbaloc schema. If using an Id defined by the OMG, the given
object must be of the correct type; for more information see the Interoperable Naming Service. Returns false if the
given id already exists.

remove_initial_service(ObjectId) -> boolean()
Types:

ObjectId = string()

If we don not want a certain service to be accessible, invoking this function will remove the association. Returns true
if able to terminate the binding. If no such binding existed false is returned.

list_initial_services() -> [ObjectId]
Types:

ObjectId = string()

This function returns a list of allowed object id's.

resolve_initial_references_remote(ObjectId, Address) -> Object
resolve_initial_references_remote(ObjectId, Address, Contexts) -> Object
Types:

ObjectId = string()

Address = [RemoteModifier]

RemoteModifier = string()

Contexts = [Context]

Context = #'IOP_ServiceContext'{context_id = CtxId, context_data =
CtxData}

CtxId = ?ORBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl_client_options

Value = allowed value associated with the given key

Object = #objref

This function returns the object reference for the object id asked for. The remote modifier string has the following
format: "iiop://"<host>":"<port> where <host> = <DNS hostname> | <IPv4 address> |
"["<IPv6 address>"]".

The configuration context is used to override the global SSL client side configuration.

Warning:

This operation is not supported by most ORB's. Hence, use corba:string_to_object/1 instead.

corba

Ericsson AB. All Rights Reserved.: orber | 79

list_initial_services_remote(Address) -> [ObjectId]
list_initial_services_remote(Address, Contexts) -> [ObjectId]
Types:

Address = [RemoteModifier]

RemoteModifier = string()

Contexts = [Context]

Context = #'IOP_ServiceContext'{context_id = CtxId, context_data =
CtxData}

CtxId = ?ORBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl_client_options

Value = allowed value associated with the given key

ObjectId = string()

This function returns a list of allowed object id's. The remote modifier string has the following format:
"iiop://"<host>":"<port> where <host> = <DNS hostname> | <IPv4 address> | "["<IPv6
address>"]".

The configuration context is used to override the global SSL client side configuration.

Warning:

This operation is not supported by most ORB's. Hence, avoid using it.

object_to_string(Object) -> IOR_string
Types:

Object = #objref

IOR_string = string()

This function returns the object reference as the external string representation of an IOR.

string_to_object(IOR_string) -> Object
string_to_object(IOR_string, Contexts) -> Object
Types:

IOR_string = string()

Contexts = [Context]

Context = #'IOP_ServiceContext'{context_id = CtxId, context_data =
CtxData}

CtxId = ?ORBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl_client_options

corba

80 | Ericsson AB. All Rights Reserved.: orber

Value = allowed value associated with the given key

Object = #objref

This function takes a corbaname, corbaloc or an IOR on the external string representation and returns the object
reference.

To lookup the NameService reference, simply use:

corbaloc:iiop:1.2@123.0.0.12:4001/NameService

We can also resolve an object from the NameService by using:

corbaname:iiop:1.2@123.0.0.12:4001/NameService#org/Erlang/MyObj

To lookup the NameService reference with an IPv6 address, simply use:

corbaloc:iiop:1.2@[FEC1:0:3:0:0312:44AF:FAB1:3D01]:4001/NameService

For more information about corbaname and corbaloc, see the User's Guide (Interoperable Naming Service).

The configuration context is used to override the global SSL client side configuration.

How to handle the interface context is further described in the User's Guide.

print_object(Data [, Type]) -> ok | {'EXCEPTION', E} | {'EXIT', R} | string()
Types:

Data = IOR_string | #objref (local or external) | corbaloc/corbaname
string

Type = IoDevice | error_report | {error_report, Reason} | info_msg |
{info_msg, Comment} | string

IoDevice = see the io-module

Reason = Comment = string()

The object represented by the supplied data is dissected and presented in a more readable form. The Type parameter is
optional; if not supplied standard output is used. For error_report and info_msg the error_logger module
is used, with or without Reason or Comment. If the atom string is supplied this function will return a flat list. The
IoDevice is passed to the operation io:format/2.

If the supplied object is a local reference, the output is equivalent to an object exported from the node this function
is invoked on.

add_alternate_iiop_address(Object, Host, Port) -> NewObject | {'EXCEPTION',
E}
Types:

Object = NewObject = local #objref

Host = string()

Port = integer()

This operation creates a new instance of the supplied object containing an ALTERNATE_IIOP_ADDRESS
component. Only the new instance contains the new component. When this object is passed to another ORB, which
supports the ALTERNATE_IIOP_ADDRESS, requests will be routed to the alternate address if it is not possible to
communicate with the main address.

The ALTERNATE_IIOP_ADDRESS component requires that IIOP-1.2 is used. Hence, make sure both Orber and the
other ORB is correctly configured.

corba

Ericsson AB. All Rights Reserved.: orber | 81

Note:

Make sure that the given Object is accessible via the alternate Host/port. For example, if the object is correctly
started as local or pseudo, the object should be available on all nodes within a multi-node Orber installation.
Since only one instance exists for other object types, it will not be possible to access it if the node it was started
on terminates.

orb_init(KeyValueList) -> ok | {'EXIT', Reason}
Types:

KeyValueList = [{Key, Value}]

Key = any key listed in the configuration chapter

Value = allowed value associated with the given key

This function allows the user to configure Orber in, for example, an Erlang shell. Orber may NOT be started prior to
invoking this operation. For more information, see configuration settings in the User's Guide.

corba_object

82 | Ericsson AB. All Rights Reserved.: orber

corba_object
Erlang module

This module contains the CORBA Object interface functions that can be called for all objects.

Exports

get_interface(Object) -> InterfaceDef
Types:

Object = #objref

InterfaceDef = term()

This function returns the full interface description for an object.

is_nil(Object) -> boolean()
Types:

Object = #objref

This function checks if the object reference has a nil object value, which denotes no object. It is the reference that is
tested and no object implementation is involved in the test.

is_a(Object, Logical_type_id) -> Return
is_a(Object, Logical_type_id, Contexts) -> Return
Types:

Object = #objref

Logical_type_id = string()

Contexts = [Context]

Context = #'IOP_ServiceContext'{context_id = CtxId, context_data =
CtxData}

CtxId = ?ORBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl_client_options

Value = allowed value associated with the given key

Return = boolean() | {'EXCEPTION', E}

The Logical_type_id is a string that is a share type identifier (repository id). The function returns true if the object is
an instance of that type or an ancestor of the "most derived" type of that object.

The configuration context is used to override the global SSL client side configuration.

Note: Other ORB suppliers may not support this function completely according to the OMG specification. Thus, a
is_a call may raise an exception or respond unpredictable if the Object is located on a remote node.

is_remote(Object) -> boolean()
Types:

corba_object

Ericsson AB. All Rights Reserved.: orber | 83

Object = #objref

This function returns true if an object reference is remote otherwise false.

non_existent(Object) -> Return
non_existent(Object, Contexts) -> Return
Types:

Object = #objref

Contexts = [Context]

Context = #'IOP_ServiceContext'{context_id = CtxId, context_data =
CtxData}

CtxId = ?ORBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl_client_options

Value = allowed value associated with the given key

Return = boolean() | {'EXCEPTION', E}

This function can be used to test if the object has been destroyed. It does this without invoking any application level
code. The ORB returns true if it knows that the object is destroyed otherwise false.

The configuration context is used to override the global SSL client side configuration.

Note: The OMG have specified two different operators, _not_existent (CORBA version 2.0 and 2.2) and
_non_existent (CORBA version 2.3), to be used for this function. It is not mandatory to support both versions.
Thus, a non_existent call may raise an exception or respond unpredictable if the Object is located on a remote node.
Depending on which version, ORB:s you intend to communicate with supports, you can either use this function or
not_existent/1.

not_existent(Object) -> Return
not_existent(Object, Contexts) -> Return
Types:

Object = #objref

Contexts = [Context]

Context = #'IOP_ServiceContext'{context_id = CtxId, context_data =
CtxData}

CtxId = ?ORBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Interface = string()

Options = [{Key, Value}]

Key = ssl_client_options

Value = allowed value associated with the given key

Return = boolean() | {'EXCEPTION', E}

This function is implemented due to Interoperable purposes. Behaves as non_existent except the operator
_not_existent is used when communicating with other ORB:s.

corba_object

84 | Ericsson AB. All Rights Reserved.: orber

The configuration context is used to override the global SSL client side configuration.

is_equivalent(Object, OtherObject) -> boolean()
Types:

Object = #objref

OtherObject = #objref

This function is used to determine if two object references are equivalent so far the ORB easily can determine. It
returns true if the target object reference is equal to the other object reference and false otherwise.

hash(Object, Maximum) -> int()
Types:

Object = #objref

Maximum = int()

This function returns a hash value based on the object reference that not will change during the lifetime of the object.
The Maximum parameter denotes the upper bound of the value.

orber

Ericsson AB. All Rights Reserved.: orber | 85

orber
Erlang module

This module contains the functions for starting and stopping the application. It also has some utility functions to get
some of the configuration information from running application.

Exports

start() -> ok
start(Type) -> ok
Types:

Type = temporary | permanent

Starts the Orber application (it also starts mnesia if it is not running). Which Type parameter is supplied determines
the behavior. If not supplied Orber is started as temporary. See the Reference Manual application(3) for further
information.

jump_start(Attributes) -> ok | {'EXIT', Reason}
Types:

Attributes = Port | Options

Port = integer()

Options = [{Key, Value}]

Key = any key listed in the configuration chapter

Value = allowed value associated with the given key

Installs and starts the Orber and the Mnesia applications with the configuration parameters domain and iiop_port
set to "IP-number:Port" and the supplied Port respectively. Theses settings are in most cases sufficient to ensure
that no clash with any other Orber instance occur. If this operation fails, check if the listen port (iiop_port) is already
in use. This function MAY ONLY be used during development and tests; how Orber is configured when using this
operation may change at any time without warning.

stop() -> ok
Stops the Orber application.

info() -> ok
info(IoType) -> ok | {'EXIT', Reason} | string()
Types:

IoType = info_msg | string | io | {io, IoDevice}

Generates an Info Report, which contain Orber's configuration settings. If no IoType is supplied, info_msg is used
(see the error_logger documentation). When the atom string is supplied this function will return a flat list. For io and
{io, IoDevice}, io:format/1 and io:format/3 is used respectively.

exception_info(Exception) -> {ok, string()} | {error, Reason}
Returns a printable string, which describes the supplied exception in greater detail. Note, this function is mainly
intended for system exceptions.

orber

86 | Ericsson AB. All Rights Reserved.: orber

is_system_exception(Exception) -> true | false
Returns true if the supplied exception is a system defined exception, otherwise false.

get_tables() -> [Tables]
Returns a list of the Orber specific Mnesia tables. This list is required to restore Mnesia if it has been partitioned.

get_ORBInitRef() -> string() | undefined
This function returns undefined if we will resolve references locally, otherwise a string describing which host
we will contact if the Key given to corba:resolve_initial_references/1 matches the Key set in this
configuration variable. For more information see the user's guide.

get_ORBDefaultInitRef() -> string() | undefined
This function returns undefined if we will resolve references locally, otherwise a string describing which host, or
hosts, from which we will try to resolve the Key given to corba:resolve_initial_references/1. For more
information see the user's guide.

domain() -> string()
This function returns the domain name of the current Orber domain as a string.

iiop_port() -> int()
This function returns the port-number, which is used by the IIOP protocol. It can be configured by setting the
application variable iiop_port, if it is not set it will have the default number 4001.

iiop_out_ports() -> 0 | {Min, Max}
The return value of this operation is what the configuration parameter iiop_out_ports has been set to.

iiop_out_ports_random() -> true | false
Return the value of the configuration parameter iiop_out_ports_random.

iiop_out_ports_attempts() -> int()
Return the value of the configuration parameter iiop_out_ports_attempts.

iiop_ssl_port() -> int()
This function returns the port-number, which is used by the secure IIOP protocol. It can be configured by setting the
application variable iiop_ssl_port, if it is not set it will have the default number 4002 if Orber is to configured to run
in secure mode. Otherwise it returns -1.

iiop_timeout() -> int() (milliseconds)
This function returns the timeout value after which outgoing IIOP requests terminate. It can be configured by setting
the application variable iiop_timeout TimeVal (seconds), if it is not set it will have the default value infinity. If a
request times out a system exception, e.g. TIMEOUT, is raised.

Note: the iiop_timeout configuration parameter (TimeVal) may only range between 0 and 1000000 seconds. Otherwise,
the default value is used.

orber

Ericsson AB. All Rights Reserved.: orber | 87

Note: Earlier IC versions required that the compile option {timeout,"module::interface"}, was used,
which allow the user to add an extra timeout parameter, e.g., module_interface:function(ObjRef,
Timeout, ... Arguments ...) or module_interface:function(ObjRef, [{timeout,
Timeout}], ... Arguments ...), instead of module_interface:function(ObjRef, ...
Arguments ...). This is no longer the case and if the extra Timeout is used, argument will override the
configuration parameter iiop_timeout. It is, however, not possible to use infinity to override the Timeout
parameter. The Timeout option is also valid for objects which resides within the same Orber domain.

iiop_connection_timeout() -> int() (milliseconds)
This function returns the timeout value after which outgoing IIOP connections terminate. It can be configured by
setting the application variable iiop_connection_timeout TimeVal (seconds), if it is not set it will have the default
value infinity. The connection will not be terminated if there are pending requests.

Note: the iiop_connection_timeout configuration parameter (TimeVal) may only range between 0 and 1000000
seconds. Otherwise, the default value is used.

iiop_connections() -> Result
iiop_connections(Direction) -> Result
Types:

Direction = in | out | inout

Result = [{Host, Port}] | [{Host, Port, Interface}] | {'EXIT',Reason}

Host = string()

Port = integer()

Interface = string()

Reason = term()

The list returned by this operation contain tuples of remote hosts/ports Orber is currently connected to. If no Direction
is not supplied, both incoming and outgoing connections are included.

If a specific local interface has been defined for the connection, this will be added to the returned tuple.

iiop_connections_pending() -> Result
Types:

Result = [{Host, Port}] | [{Host, Port, Interface}] | {'EXIT',Reason}

Host = string()

Port = integer()

Interface = string()

Reason = term()

In some cases a connection attempt (i.e. trying to communicate with another ORB) may block due to a number of
reasons. This operation allows the user to check if this is the case. The returned list contain tuples of remote hosts/
ports. Normally, the list is empty.

If a specific local interface has been defined for the connection, this will be added to the returned tuple.

iiop_in_connection_timeout() -> int() (milliseconds)
This function returns the timeout value after which incoming IIOP connections terminate. It can be configured by
setting the application variable iiop_in_connection_timeout TimeVal (seconds), if it is not set it will have the default
value infinity. The connection will not be terminated if there are pending requests.

orber

88 | Ericsson AB. All Rights Reserved.: orber

Note: the iiop_in_connection_timeout configuration parameter (TimeVal) may only range between 0 and 1000000
seconds. Otherwise, the default value is used.

iiop_acl() -> Result
Types:

Result = [{Direction, Filter}] | [{Direction, Filter, [Interface]}]

Direction = tcp_in | ssl_in | tcp_out | ssl_out

Filter = string()

Interface = string()

Returns the ACL configuration. The Filter uses a extended format of Classless Inter Domain Routing (CIDR).
For example, "123.123.123.10" limits the connection to that particular host, while "123.123.123.10/17"
allows connections to or from any host equal to the 17 most significant bits. Orber also allow the user to specify a certain
port or port range, for example, "123.123.123.10/17#4001" and "123.123.123.10/17#4001/5001"
respectively. IPv4 or none compressed IPv6 strings are accepted.
The list of Interfaces, IPv4 or IPv6 strings, are currently only used for outgoing connections and may only contain
one address. If set and access is granted, Orber will use that local interface when connecting to the other ORB. The
module orber_acl provides operations for evaluating the access control for filters and addresses.

activate_audit_trail() -> Result
activate_audit_trail(Verbosity) -> Result
Types:

Verbosity = stealth | normal | verbose

Result = ok | {error, Reason}

Reason = string()

Activates audit/trail for all existing incoming and outgoing IIOP connections. The Verbosity parameter, stealth,
normal or verbose, determines which of the built in interceptors is used (orber_iiop_tracer_stealth,
orber_iiop_tracer_silent or orber_iiop_tracer respectively). If no verbosity level is supplied, then
the normal will be used.

In case Orber is configured to use other interceptors, the audit/trail interceptors will simply be added to that list.

deactivate_audit_trail() -> Result
Types:

Result = ok | {error, Reason}

Reason = string()

Deactivates audit/trail for all existing incoming and outgoing IIOP connections. In case Orber is configured to use
other interceptors, those will still be used.

add_listen_interface(IP, Type) -> Result
add_listen_interface(IP, Type, Port) -> Result
add_listen_interface(IP, Type, ConfigurationParameters) -> Result
Types:

IP = string

Type = normal | ssl

Port = integer() > 0

ConfigurationParameters = [{Key, Value}]

orber

Ericsson AB. All Rights Reserved.: orber | 89

Key = flags | ip_family | iiop_in_connection_timeout | iiop_max_fragments
| iiop_max_in_requests | interceptors | iiop_port | iiop_ssl_port |
ssl_server_options

Value = as described in the User's Guide or below

Result = {ok, Ref} | {error, Reason} | {'EXCEPTION', #'BAD_PARAM'{}}

Ref = #Ref

Reason = string()

Create a new process that handle requests for creating a new incoming IIOP connection via the given interface and port.
If the latter is excluded, Orber will use the value of the iiop_port or iiop_ssl_port configuration parameters.
The Type parameter determines if it is supposed to be IIOP or IIOP via SSL. If successful, the returned #Ref shall
be passed to orber:remove_listen_interface/1 when the connection shall be terminated.

It is also possible to supply configuration parameters that override the global configuration. The
iiop_in_connection_timeout, iiop_max_fragments, iiop_max_in_requests and interceptors parameters simply
overrides the global counterparts (See the Configuration chapter in the User's Guide). But for the following parameters
there are a few restrictions:

• flags - currently it is only possible to override the global setting for the Use Current Interface in
IOR and Exclude CodeSet Component flags.

• ip_family - can be set to inet or inet6 and is used to get a listen interface that uses another IP version than
the default set with flags at startup.

• iiop_port - requires that Use Current Interface in IOR is activated and the supplied Type is
normal. If so, exported IOR:s will contain the IIOP port defined by this configuration parameter. Otherwise,
the global setting will be used.

• iiop_ssl_port - almost equivalent to iiop_port. The difference is that Type shall be ssl and that exported
IOR:s will contain the IIOP via SSL port defined by this configuration parameter.

If it is not possible to add a listener based on the supplied interface and port, the error message is one of the ones
described in inet and/or ssl documentation.

remove_listen_interface(Ref) -> ok
Types:

Ref = #Ref

Terminates the listen process, associated with the supplied #Ref, for incoming a connection. The Ref parameter is
the return value from the orber:add_listen_interface/2/3 operation. When terminating the connection,
all associated requests will not deliver a reply to the clients.

close_connection(Connection) -> Result
close_connection(Connection, Interface) -> Result
Types:

Connection = Object | [{Host, Port}]

Object = #objref (external)

Host = string()

Port = string()

Interface = string()

Result = ok | {'EXCEPTION', #'BAD_PARAM'{}}

Will try to close all outgoing connections to the host/port combinations found in the supplied object reference or
the given list of hosts/ports. If a #'IOP_ServiceContext'{} containing a local interface has been used when

orber

90 | Ericsson AB. All Rights Reserved.: orber

communicating with the remote object (see also Module_Interface), that interface shall be passed as the second
argument. Otherwise, connections via the default local interface, will be terminated.

Note:

Since several clients maybe communicates via the same connection, they will be affected when invoking this
operation. Other clients may re-create the connection by invoking an operation on the target object.

secure() -> no | ssl
This function returns the security mode Orber is running in, which is either no if it is an insecure domain or the type
of security mechanism used. For the moment the only security mechanism is ssl. This is configured by setting the
application variable secure.

ssl_server_options() -> list()
This function returns the list of SSL options set for the Orber domain as server. This is configured by setting the
application variable ssl_server_options.

ssl_client_options() -> list()
This function returns the list of SSL options used in outgoing calls in the current process. The default value is configured
by setting the application variable ssl_client_options.

set_ssl_client_options(Options) -> ok
Types:

Options = list()

This function takes a list of SSL options as parameter and sets it for the current process.

objectkeys_gc_time() -> int() (seconds)
This function returns the timeout value after which after which terminated object keys, related to servers started with
the configuration parameter {persistent, true}, will be removed. It can be configured by setting the application
variable objectkeys_gc_time TimeVal (seconds), if it is not set it will have the default value infinity.

Objects terminating with reason normal or shutdown are removed automatically.

Note: the objectkeys_gc_time configuration parameter (TimeVal) may only range between 0 and 1000000 seconds.
Otherwise, the default value is used.

orber_nodes() -> RetVal
Types:

RetVal = [node()]

This function returns the list of node names that this orber domain consists of.

install(NodeList) -> ok
install(NodeList, Options) -> ok
Types:

NodeList = [node()]

Options = [Option]

orber

Ericsson AB. All Rights Reserved.: orber | 91

Option = {install_timeout, Timeout} | {ifr_storage_type, TableType} |
{nameservice_storage_type, TableType} | {initialreferences_storage_type,
TableType} | {load_order, Priority}

Timeout = infinity | integer()

TableType = disc_copies | ram_copies

Priority = integer()

This function installs all the necessary mnesia tables and load default data in some of them. If one or more Orber
tables already exists the installation fails. The function uninstall may be used, if it is safe, i.e., no other application
is running Orber.

Preconditions:

• a mnesia schema must exist before the installation

• mnesia is running on the other nodes if the new installation shall be a multi node domain

Mnesia will be started by the function if it is not already running on the installation node and if it was started it will
be stopped afterwards.

The options that can be sent to the installation program is:

• {install_timeout, Timeout} - this timeout is how long we will wait for the tables to be created. The
Timeout value can be infinity or an integer number in milliseconds. Default is infinity.

• {ifr_storage_type, TableType} - this option sets the type of tables used for the interface repository.
The TableType can be disc_copies or ram_copies. Default is disc_copies.

• {initialreferences_storage_type, TableType} - this option sets the type of table used for
storing initial references. The TableType can be disc_copies or ram_copies. Default is ram_copies.

• {nameservice_storage_type, TableType} - the default behavior of Orber is to install the
NameService as ram_copies. This option makes it possible to change this to disc_copies. But the user should be
aware of that if a node is restarted, all local object references stored in the NameService is not valid. Hence, you
cannot switch to disc_copies and expect exactly the same behavior as before.

• {load_order, Priority} - per default the priority is set to 0. Using this option it will change the
priority of in which order Mnesia will load Orber internal tables. For more information, consult the Mnesia
documentation.

uninstall() -> ok
This function stops the Orber application, terminates all server objects and removes all Orber related mnesia tables.

Note: Since other applications may be running on the same node using mnesia uninstall will not stop the mnesia
application.

add_node(Node, Options) -> RetVal
Types:

Node = node()

Options = IFRStorageType | [KeyValue]

IFRStorageType = StorageType

StorageType = disc_copies | ram_copies

KeyValue = {ifr_storage_type, StorageType} |
{initialreferences_storage_type, StorageType} | {nameservice_storage_type,
StorageType} | {type, Type}

Type = temporary | permanent

RetVal = ok | exit()

orber

92 | Ericsson AB. All Rights Reserved.: orber

This function add given node to a existing Orber node group and starts Orber on the new node. orber:add_node
is called from a member in the Orber node group.

Preconditions for new node:

• Erlang started on the new node using the option -mnesia extra_db_nodes, e.g., erl -sname
new_node_name -mnesia extra_db_nodes ConnectToNodes_List

• The new node's domain name is the same for the nodes we want to connect to.

• Mnesia is running on the new node (no new schema created).

• If the new node will use disc_copies the schema type must be changed using:
mnesia:change_table_copy_type(schema, node(), disc_copies).

Orber will be started by the function on the new node.

Fails if:

• Orber already installed on given node.

• Mnesia not started as described above on the new node.

• Impossible to copy data in Mnesia tables to the new node.

• Not able to start Orber on the new node, due to, for example, the iiop_port is already in use.

The function do not remove already copied tables after a failure. Use orber:remove_node to remove these tables.

remove_node(Node) -> RetVal
Types:

Node = node()

RetVal = ok | exit()

This function removes given node from a Orber node group. The Mnesia application is not stopped.

configure(Key, Value) -> ok | {'EXIT', Reason}
Types:

Key = orbDefaultInitRef | orbInitRef | giop_version | iiop_timeout
| iiop_connection_timeout | iiop_setup_connection_timeout |
iiop_in_connection_timeout | objectkeys_gc_time | orber_debug_level

Value = allowed value associated with the given key

This function allows the user to configure Orber in, for example, an Erlang shell. It is possible to invoke configure
at any time the keys specified above.

Any other key must be set before installing and starting Orber.

Trying to change the configuration in any other way is NOT allowed since it may affect the behavior of Orber.

For more information regarding allowed values, see configuration settings in the User's Guide.

Note:

Configuring the IIOP timeout values will not affect already existing connections. If you want a guaranteed uniform
behavior, you must set these parameters from the start.

orber_ifr

Ericsson AB. All Rights Reserved.: orber | 93

orber_ifr
Erlang module

This module contains functions for managing the Interface Repository (IFR). This documentation should be used in
conjunction with the documentation in chapter 6 of 2.3. Whenever the term IFR object is used in this manual page, it
refers to a pseudo object used only for interaction with the IFR rather than a CORBA object.

Initialization of the IFR
The following functions are used to initialize the Interface Repository and to obtain the initial reference to the
repository.

Exports

init(Nodes,Timeout) -> ok
Types:

Nodes = list()

Timeout = integer() | infinity

This function should be called to initialize the IFR. It creates the necessary mnesia-tables. A mnesia schema should
exist, and mnesia must be running.

find_repository() -> #IFR_Repository_objref
Find the IFR object reference for the Repository. This reference should be used when adding objects to the IFR, and
when extracting information from the IFR. The first time this function is called, it will create the repository and all
the primitive definitions.

General methods
The following functions are the methods of the IFR. The first argument is always an #IFR_objref, i.e. the IFR
(pseudo)object on which to apply this method. These functions are useful when the type of IFR object is not know, but
they are somewhat slower than the specific functions listed below which only accept a particular type of IFR object
as the first argument.

Exports

get_def_kind(Objref) -> Return
Types:

Objref = #IFR_objref

Return = atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Module, dk_Operation, dk_Typedef, dk_Alias,
dk_Struct, dk_Union, dk_Enum, dk_Primitive, dk_String, dk_Wstring,
dk_Fixed, dk_Sequence, dk_Array, dk_Repository)

Objref is an IFR object of any kind. Returns the definition kind of the IFR object.

destroy(Objref) -> Return
Types:

orber_ifr

94 | Ericsson AB. All Rights Reserved.: orber

Objref = #IFR_object

Return = tuple()

Objref is an IFR object of any kind except IRObject, Contained and Container. Destroys that object and its contents
(if any). Returns whatever mnesia:transaction returns.

get_id(Objref) -> Return
Types:

Objref = #IFR_object

Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the repository id of that object.

set_id(Objref,Id) -> ok
Types:

Objref = #IFR_object

Id = string()

Objref is an IFR object of any kind that inherits from Contained. Sets the repository id of that object.

get_name(Objref) -> Return
Types:

Objref = #IFR_object

Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the name of that object.

set_name(Objref,Name) -> ok
Types:

Objref = #IFR_object

Name = string()

Objref is an IFR object of any kind that inherits from Contained. Sets the name of that object.

get_version(Objref) -> Return
Types:

Objref = #IFR_object

Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the version of that object.

set_version(Objref,Version) -> ok
Types:

Objref = #IFR_object

Version = string()

Objref is an IFR object of any kind that inherits from Contained. Sets the version of that object.

get_defined_in(Objref) -> Return
Types:

orber_ifr

Ericsson AB. All Rights Reserved.: orber | 95

Objref = #IFR_object

Return = #IFR_Container_objref

Objref is an IFR object of any kind that inherits from Contained. Returns the Container object that the object is defined
in.

get_absolute_name(Objref) -> Return
Types:

Objref = #IFR_object

Return = string()

Objref is an IFR object of any kind that inherits from Contained. Returns the absolute (scoped) name of that object.

get_containing_repository(Objref) -> Return
Types:

Objref = #IFR_object

Return = #IFR_Repository_objref

Objref is an IFR object of any kind that inherits from Contained. Returns the Repository that is eventually reached by
recursively following the object's defined_in attribute.

describe(Objref) -> Return
Types:

Objref = #IFR_object

Return = tuple() (a contained_description record) | {exception, _}

Objref is an IFR object of any kind that inherits from Contained. Returns a tuple describing the object.

move(Objref,New_container,New_name,New_version) -> Return
Types:

Objref = #IFR_objref

New_container = #IFR_Container_objref

New_name = string()

New_version = string()

Return = ok | {exception, _}

Objref is an IFR object of any kind that inherits from Contained. New_container is an IFR object of any kind that
inherits from Container. Removes Objref from its current Container, and adds it to New_container. The name attribute
is changed to New_name and the version attribute is changed to New_version.

lookup(Objref,Search_name) -> Return
Types:

Objref = #IFR_objref

Search_name = string()

Return = #IFR_object

Objref is an IFR object of any kind that inherits from Container. Returns an IFR object identified by search_name
(a scoped name).

orber_ifr

96 | Ericsson AB. All Rights Reserved.: orber

contents(Objref,Limit_type,Exclude_inherited) -> Return
Types:

Objref = #IFR_objref

Limit_type = atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Module, dk_Operation, dk_Typedef, dk_Alias,
dk_Struct, dk_Union, dk_Enum, dk_Primitive, dk_String, dk_Wstring,
dk_Fixed, dk_Sequence, dk_Array, dk_Repository)

Exclude_inherited = atom() (true or false)

Return = list() (a list of IFR#_objects)

Objref is an IFR object of any kind that inherits from Container. Returns the contents of that IFR object.

lookup_name(Objref,Search_name,Levels_to_search, Limit_type,
Exclude_inherited) -> Return
Types:

Objref = #IFR_objref

Search_name = string()

Levels_to_search = integer()

Limit_type = atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Module, dk_Operation, dk_Typedef, dk_Alias,
dk_Struct, dk_Union, dk_Enum, dk_Primitive, dk_String, dk_Wstring,
dk_Fixed, dk_Sequence, dk_Array, dk_Repository)

Exclude_inherited = atom() (true or false)

Return = list() (a list of #IFR_objects)

Objref is an IFR object of any kind that inherits from Container. Returns a list of #IFR_objects with an id matching
Search_name.

describe_contents(Objref, Limit_type, Exclude_inherited, Max_returned_objs) -
> Return
Types:

Objref = #IFR_objref

Limit_type = atom() (one of dk_none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Module, dk_Operation, dk_Typedef, dk_Alias,
dk_Struct, dk_Union, dk_Enum, dk_Primitive, dk_String, dk_Wstring,
dk_Fixed, dk_Sequence, dk_Array, dk_Repository)

Exclude_inherited = atom() (true or false)

Return = list() (a list of tuples (contained_description records) |
{exception, _}

Objref is an IFR object of any kind that inherits from Container. Returns a list of descriptions of the IFR objects in
this Container's contents.

create_module(Objref,Id,Name,Version) -> Return
Types:

Objref = #IFR_objref

Id = string()

Name = string()

orber_ifr

Ericsson AB. All Rights Reserved.: orber | 97

Version = string()

Return = #IFR_ModuleDef_objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object of the type ModuleDef.

create_constant(Objref,Id,Name,Version,Type,Value) -> Return
Types:

Objref = #IFR_objref

Id = string()

Name = string()

Version = string()

Type = #IFR_IDLType_objref

Value = any()

Return = #IFR_ConstantDef_objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object of the type ConstantDef.

create_struct(Objref,Id,Name,Version,Members) -> Return
Types:

Objref = #IFR_objref

Id = string()

Name = string()

Version = string()

Members = list() (list of structmember records)

Return = #IFR_StructDef_objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object of the type StructDef.

create_union(Objref,Id,Name,Version,Discriminator_type,Members) -> Return
Types:

Objref = #IFR_objref

Id = string()

Name = string()

Version = string()

Discriminator_type = #IFR_IDLType_Objref

Members = list() (list of unionmember records)

Return = #IFR_UnionDef_objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object of the type UnionDef.

create_enum(Objref,Id,Name,Version,Members) -> Return
Types:

Objref = #IFR_objref

Id = string()

Name = string()

Version = string()

Members = list() (list of strings)

orber_ifr

98 | Ericsson AB. All Rights Reserved.: orber

Return = #IFR_EnumDef_objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object of the type EnumDef.

create_alias(Objref,Id,Name,Version,Original_type) -> Return
Types:

Objref = #IFR_objref

Id = string()

Name = string()

Version = string()

Original_type = #IFR_IDLType_Objref

Return = #IFR_AliasDef_objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object of the type AliasDef.

create_interface(Objref,Id,Name,Version,Base_interfaces) -> Return
Types:

Objref = #IFR_objref

Id = string()

Name = string()

Version = string()

Base_interfaces = list() (a list of IFR_InterfaceDef_objrefs that this
interface inherits from

Return = #IFR_InterfaceDef_objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object of the type InterfaceDef.

create_exception(Objref,Id,Name,Version,Members) -> Return
Types:

Objref = #IFR_objref

Id = string()

Name = string()

Version = string()

Members = list() (list of structmember records)

Return = #IFR_ExceptionDef_objref

Objref is an IFR object of any kind that inherits from Container. Creates an IFR object of the type ExceptionDef.

get_type(Objref) -> Return
Types:

Objref = #IFR_objref

Return = tuple() (a typecode tuple)

Objref is an IFR object of any kind that inherits from IDLType or an IFR object of the kind ConstantDef, ExceptionDef
or AttributeDef. Returns the typecode of the IFR object.

lookup_id(Objref,Search_id) -> Return
Types:

orber_ifr

Ericsson AB. All Rights Reserved.: orber | 99

Objref = #IFR_Repository_objref

Search_id = string()

Return = #IFR_objref

Returns an IFR object matching the Search_id.

get_primitive(Objref,Kind) -> Return
Types:

Objref = #IFR_Repository_objref

Kind = atom() (one of pk_null, pk_void, pk_short, pk_long, pk_ushort,
pk_ulong, pk_float, pk_double, pk_boolean, pk_char, pk_octet, pk_any,
pk_TypeCode, pk_Principal, pk_string, pk_wstring, pk_fixed, pk_objref)

Return = #IFR_PrimitiveDef_objref

Returns a PrimitiveDef of the specified kind.

create_string(Objref,Bound) -> Return
Types:

Objref = #IFR_Repository_objref

Bound = integer() (unsigned long /= 0)

Return = #IFR_StringDef_objref

Creates an IFR objref of the type StringDef.

create_wstring(Objref,Bound) -> Return
Types:

Objref = #IFR_Repository_objref

Bound = integer() (unsigned long /= 0)

Return = #IFR_WstringDef_objref

Creates an IFR objref of the type WstringDef.

create_fixed(Objref,Digits,Scale) -> Return
Types:

Objref = #IFR_Repository_objref

Digits = Scale = integer()

Return = #IFR_FixedDef_objref

Creates an IFR objref of the type FixedDef.

create_sequence(Objref,Bound,Element_type) -> Return
Types:

Objref = #IFR_Repository_objref

Bound = integer() (unsigned long)

Element_type = #IFR_IDLType_objref

Return = #IFR_SequenceDef_objref

Creates an IFR objref of the type SequenceDef.

orber_ifr

100 | Ericsson AB. All Rights Reserved.: orber

create_array(Objref,Length,Element_type) -> Return
Types:

Objref = #IFR_Repository_objref

Bound = integer() (unsigned long)

Element_type = #IFR_IDLType_objref

Return = #IFR_ArrayDef_objref

Creates an IFR objref of the type ArrayDef.

create_idltype(Objref,Typecode) -> Return
Types:

Objref = #IFR_Repository_objref

Typecode = tuple() (a typecode tuple)

Return = #IFR_IDLType_objref

Creates an IFR objref of the type IDLType.

get_type_def(Objref) -> Return
Types:

Objref = #IFR_objref

Return = #IFR_IDLType_objref

Objref is an IFR object of the kind ConstantDef or AttributeDef. Returns an IFR object of the type IDLType describing
the type of the IFR object.

set_type_def(Objref,TypeDef) -> Return
Types:

Objref = #IFR_objref

TypeDef = #IFR_IDLType_objref

Return = ok | {exception, _}

Objref is an IFR object of the kind ConstantDef or AttributeDef. Sets the type_def of the IFR Object.

get_value(Objref) -> Return
Types:

Objref = #IFR_ConstantDef_objref

Return = any()

Returns the value attribute of an IFR Object of the type ConstantDef.

set_value(Objref,Value) -> Return
Types:

Objref = #IFR_ConstantDef_objref

Value = any()

Return = ok | {exception, _}

Sets the value attribute of an IFR Object of the type ConstantDef.

orber_ifr

Ericsson AB. All Rights Reserved.: orber | 101

get_members(Objref) -> Return
Types:

Objref = #IFR_objref

Return = list()

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For StructDef, UnionDef and
ExceptionDef: Returns a list of structmember records that are the constituent parts of the object. For EnumDef: Returns
a list of strings describing the enumerations.

set_members(Objref,Members) -> Return
Types:

Objref = #IFR_objref

Members = list()

Return = ok | {exception, _}

Objref is an IFR object the kind StructDef, UnionDef, EnumDef or ExceptionDef. For StructDef, UnionDef and
ExceptionDef: Members is a list of structmember records. For EnumDef: Members is a list of strings describing the
enumerations. Sets the members attribute, which are the constituent parts of the exception.

get_discriminator_type(Objref) -> Return
Types:

Objref = #IFR_UnionDef_objref

Return = tuple() (a typecode tuple)

Returns the discriminator typecode of an IFR object of the type UnionDef.

get_discriminator_type_def(Objref) -> Return
Types:

Objref = #IFR_UnionDef_objref

Return = #IFR_IDLType_objref

Returns an IFR object of the type IDLType describing the discriminator type of an IFR object of the type UnionDef.

set_discriminator_type_def(Objref,TypeDef) -> Return
Types:

Objref = #IFR_UnionDef_objref

Return = #IFR_IDLType_objref

Sets the attribute discriminator_type_def, an IFR object of the type IDLType describing the discriminator type of an
IFR object of the type UnionDef.

get_original_type_def(Objref) -> Return
Types:

Objref = #IFR_AliasDef_objref

Return = #IFR_IDLType_objref

Returns an IFR object of the type IDLType describing the original type.

set_original_type_def(Objref,TypeDef) -> Return
Types:

orber_ifr

102 | Ericsson AB. All Rights Reserved.: orber

Objref = #IFR_AliasDef_objref

Typedef = #IFR_IDLType_objref

Return = ok | {exception, _}

Sets the original_type_def attribute which describes the original type.

get_kind(Objref) -> Return
Types:

Objref = #IFR_PrimitiveDef_objref

Return = atom()

Returns an atom describing the primitive type (See CORBA 2.0 p 6-21).

get_bound(Objref) -> Return
Types:

Objref = #IFR_objref

Return = integer (unsigned long)

Objref is an IFR object the kind StringDef or SequenceDef. For StringDef: returns the maximum number of characters
in the string. For SequenceDef: Returns the maximum number of elements in the sequence. Zero indicates an
unbounded sequence.

set_bound(Objref,Bound) -> Return
Types:

Objref = #IFR_objref

Bound = integer (unsigned long)

Return = ok | {exception, _}

Objref is an IFR object the kind StringDef or SequenceDef. For StringDef: Sets the maximum number of characters
in the string. Bound must not be zero. For SequenceDef: Sets the maximum number of elements in the sequence. Zero
indicates an unbounded sequence.

get_element_type(Objref) -> Return
Types:

Objref = #IFR_objref

Return = tuple() (a typecode tuple)

Objref is an IFR object the kind SequenceDef or ArrayDef. Returns the typecode of the elements in the IFR object.

get_element_type_def(Objref) -> Return
Types:

Objref = #IFR_objref

Return = #IFR_IDLType_objref

Objref is an IFR object the kind SequenceDef or ArrayDef. Returns an IFR object of the type IDLType describing
the type of the elements in Objref.

set_element_type_def(Objref,TypeDef) -> Return
Types:

Objref = #IFR_objref

orber_ifr

Ericsson AB. All Rights Reserved.: orber | 103

TypeDef = #IFR_IDLType_objref

Return = ok | {exception, _}

Objref is an IFR object the kind SequenceDef or ArrayDef. Sets the element_type_def attribute, an IFR object of the
type IDLType describing the type of the elements in Objref.

get_length(Objref) -> Return
Types:

Objref = #IFR_ArrayDef_objref

Return = integer() (unsigned long)

Returns the number of elements in the array.

set_length(Objref,Length) -> Return
Types:

Objref = #IFR_ArrayDef_objref

Length = integer() (unsigned long)

Sets the number of elements in the array.

get_mode(Objref) -> Return
Types:

Objref = #IFR_objref

Return = atom()

Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef: Return is an atom
('ATTR_NORMAL' or 'ATTR_READONLY') specifying the read/write access for this attribute. For OperationDef:
Return is an atom ('OP_NORMAL' or 'OP_ONEWAY') specifying the mode of the operation.

set_mode(Objref,Mode) -> Return
Types:

Objref = #IFR_objref

Mode = atom()

Return = ok | {exception, _}

Objref is an IFR object the kind AttributeDef or OperationDef. For AttributeDef: Sets the read/write access for this
attribute. Mode is an atom ('ATTR_NORMAL' or 'ATTR_READONLY'). For OperationDef: Sets the mode of the
operation. Mode is an atom ('OP_NORMAL' or 'OP_ONEWAY').

get_result(Objref) -> Return
Types:

Objref = #IFR_OperationDef_objref

Return = tuple() (a typecode tuple)

Returns a typecode describing the type of the value returned by the operation.

get_result_def(Objref) -> Return
Types:

Objref = #IFR_OperationDef_objref

Return = #IFR_IDLType_objref

orber_ifr

104 | Ericsson AB. All Rights Reserved.: orber

Returns an IFR object of the type IDLType describing the type of the result.

set_result_def(Objref,ResultDef) -> Return
Types:

Objref = #IFR_OperationDef_objref

ResultDef = #IFR_IDLType_objref

Return = ok | {exception, _}

Sets the type_def attribute, an IFR Object of the type IDLType describing the result.

get_params(Objref) -> Return
Types:

Objref = #IFR_OperationDef_objref

Return = list() (list of parameter description records)

Returns a list of parameter description records, which describes the parameters of the OperationDef.

set_params(Objref,Params) -> Return
Types:

Objref = #IFR_OperationDef_objref

Params = list() (list of parameter description records)

Return = ok | {exception, _}

Sets the params attribute, a list of parameter description records.

get_contexts(Objref) -> Return
Types:

Objref = #IFR_OperationDef_objref

Return = list() (list of strings)

Returns a list of context identifiers for the operation.

set_contexts(Objref,Contexts) -> Return
Types:

Objref = #IFR_OperationDef_objref

Contexts = list() (list of strings)

Return = ok | {exception, _}

Sets the context attribute for the operation.

get_exceptions(Objref) -> Return
Types:

Objref = #IFR_OperationDef_objref

Return = list() (list of #IFR_ExceptionDef_objrefs)

Returns a list of exception types that can be raised by this operation.

set_exceptions(Objref,Exceptions) -> Return
Types:

orber_ifr

Ericsson AB. All Rights Reserved.: orber | 105

Objref = #IFR_OperationDef_objref

Exceptions = list() (list of #IFR_ExceptionDef_objrefs)

Return = ok | {exception, _}

Sets the exceptions attribute for this operation.

get_base_interfaces(Objref) -> Return
Types:

Objref = #IFR_InterfaceDef_objref

Return = list() (list of #IFR_InterfaceDef_objrefs)

Returns a list of InterfaceDefs from which this InterfaceDef inherits.

set_base_interfaces(Objref,BaseInterfaces) -> Return
Types:

Objref = #IFR_InterfaceDef_objref

BaseInterfaces = list() (list of #IFR_InterfaceDef_objrefs)

Return = ok | {exception, _}

Sets the BaseInterfaces attribute.

is_a(Objref,Interface_id) -> Return
Types:

Objref = #IFR_InterfaceDef_objref

Interface_id = #IFR_InterfaceDef_objref

Return = atom() (true or false)

Returns true if the InterfaceDef either is identical to or inherits from Interface_id.

describe_interface(Objref) -> Return
Types:

Objref = #IFR_InterfaceDef_objref

Return = tuple() (a fullinterfacedescription record)

Returns a full inter face description record describing the InterfaceDef.

create_attribute(Objref,Id,Name,Version,Type,Mode) -> Return
Types:

Objref = #IFR_InterfaceDef_objref

Id = string()

Name = string()

Version = string()

Type = #IFR_IDLType_objref

Mode = atom() ('ATTR_NORMAL' or 'ATTR_READONLY')

Return = #IFR_AttributeDef_objref

Creates an IFR object of the type AttributeDef contained in this InterfaceDef.

orber_ifr

106 | Ericsson AB. All Rights Reserved.: orber

create_operation(Objref,Id,Name,Version,Result,Mode,Params,
Exceptions,Contexts) -> Return
Types:

Objref = #IFR_InterfaceDef_objref

Id = string()

Name = string()

Version = string()

Result = #IFR_IDLType_objref

Mode = atom() ('OP_NORMAL' or 'OP_ONEWAY')

Params = list() (list of parameter description records)

Exceptions = list() (list of #IFR_ExceptionDef_objrefs)

Contexts = list() (list of strings)

Return = #IFR_OperationDef_objref

Creates an IFR object of the type OperationDef contained in this InterfaceDef.

orber_tc

Ericsson AB. All Rights Reserved.: orber | 107

orber_tc
Erlang module

This module contains some functions that gives support in creating IDL typecodes that can be used in for example
the any types typecode field. For the simple types it is meaningless to use this API but the functions exist to get the
interface complete.

The type TC used below describes an IDL type and is a tuple according to the to the Erlang language mapping.

Exports

null() -> TC
void() -> TC
short() -> TC
unsigned_short() -> TC
long() -> TC
unsigned_long() -> TC
long_long() -> TC
unsigned_long_long() -> TC
wchar() -> TC
float() -> TC
double() -> TC
boolean() -> TC
char() -> TC
octet() -> TC
any() -> TC
typecode() -> TC
principal() -> TC
These functions return the IDL typecodes for simple types.

object_reference(Id, Name) -> TC
Types:

Id = string()

the repository ID

Name = string()

the type name of the object

Function returns the IDL typecode for object_reference.

struct(Id, Name, ElementList) -> TC
Types:

Id = string()

the repository ID

Name = string()

orber_tc

108 | Ericsson AB. All Rights Reserved.: orber

the type name of the struct

ElementList = [{MemberName, TC}]

a list of the struct elements

MemberName = string()

the element name

Function returns the IDL typecode for struct.

union(Id, Name, DiscrTC, Default, ElementList) -> TC
Types:

Id = string()

the repository ID

Name = string()

the type name of the union

DiscrTC = TC

the typecode for the unions discriminant

Default = integer()

a value that indicates which tuple in the element list that is default (value < 0 means no default)

ElementList = [{Label, MemberName, TC}]

a list of the union elements

Label = term()

the label value should be of the DiscrTCtype

MemberName = string()

the element name

Function returns the IDL typecode for union.

enum(Id, Name, ElementList) -> TC
Types:

Id = string()

the repository ID

Name = string()

the type name of the enum

ElementList = [MemberName]

a list of the enums elements

MemberName = string()

the element name

Function returns the IDL typecode for enum.

string(Length) -> TC
Types:

Length = integer()

the length of the string (0 means unbounded)

Function returns the IDL typecode for string.

orber_tc

Ericsson AB. All Rights Reserved.: orber | 109

wstring(Length) -> TC
Types:

Length = integer()

the length of the wstring (0 means unbounded)

Function returns the IDL typecode for wstring.

fixed(Digits, Scale) -> TC
Types:

Digits = Scale = integer()

the digits and scale parameters of a Fixed type

Function returns the IDL typecode for fixed.

sequence(ElemTC, Length) -> TC
Types:

ElemTC = TC

the typecode for the sequence elements

Length = integer()

the length of the sequence (0 means unbounded)

Function returns the IDL typecode for sequence.

array(ElemTC, Length) -> TC
Types:

ElemTC = TC

the typecode for the array elements

Length = integer()

the length of the array

Function returns the IDL typecode for array.

alias(Id, Name, AliasTC) -> TC
Types:

Id = string()

the repository ID

Name = string()

the type name of the alias

AliasTC = TC

the typecode for the type which the alias refer to

Function returns the IDL typecode for alias.

exception(Id, Name, ElementList) -> TC
Types:

Id = string()

the repository ID

Name = string()

orber_tc

110 | Ericsson AB. All Rights Reserved.: orber

the type name of the exception

ElementList = [{MemberName, TC}]

a list of the exception elements

MemberName = string()

the element name

Function returns the IDL typecode for exception.

get_tc(Object) -> TC
get_tc(Id) -> TC
Types:

Object = record()

an IDL specified struct, union or exception

Id = string()

the repository ID

If the get_tc/1 gets a record that is and IDL specified struct, union or exception as a parameter it returns the typecode.

If the parameter is a repository ID it uses the Interface Repository to get the typecode.

check_tc(TC) -> boolean()
Function checks the syntax of an IDL typecode.

orber_acl

Ericsson AB. All Rights Reserved.: orber | 111

orber_acl
Erlang module

This module contains functions intended for analyzing Access Control List (ACL) filters. The filters uses a
extended format of Classless Inter Domain Routing (CIDR). For example, "123.123.123.10" limits the
connection to that particular host, while "123.123.123.10/17" allows connections to or from any host
equal to the 17 most significant bits. Orber also allow the user to specify a certain port or port range, for
example, "123.123.123.10/17#4001" and "123.123.123.10/17#4001/5001" respectively. IPv4 or
none compressed IPv6 strings are accepted.

Exports

match(IP, Direction) -> boolean()
match(IP, Direction, GetInfo) -> Reply
Types:

IP = tuple() | [integer()]

Direction = tcp_in | ssl_in | tcp_out | ssl_out

GetInfo = boolean()

Reply = boolean() | {boolean(), [Interface], PortInfo}

Interface = string()

PortInfo = integer() | {integer(), integer()}

If GetInfo is not supplied or set to false, this operation returns a boolean which tells if the IPv4 or IPv6 address
would pass the ACL filter, defined by the iiop_acl configuration parameter, or not. When GetInfo is set to true,
a tuple which, besides the boolean that tells if access was granted, also include the defined interfaces and port(s).
This operation requires that Orber is running and can be used on a live node to determine if Orber has been properly
configured.

verify(IP, Filter, Family) -> Reply
Types:

IP = string()

Filter = string()

Family = inet | inet6

Reply = true | {false, From, To} | {error, string()}

From = string()

To = string()

This operation returns true if the IPv4 or IPv6 address would pass the supplied ACL. If that is not the case, a tuple
containing the accepted range is returned. This operation should only be used for test purposes.

range(Filter, Family) -> Reply
Types:

Filter = string()

Family = inet | inet6

Reply = {ok, From, To} | {error, string()}

From = string()

orber_acl

112 | Ericsson AB. All Rights Reserved.: orber

To = string()

Returns the range of accepted IP addresses based on the supplied filter. This operation should only be used for test
purposes.

CosNaming

Ericsson AB. All Rights Reserved.: orber | 113

CosNaming
Erlang module

The naming service provides the principal mechanism for clients to find objects in an ORB based world. The naming
service provides an initial naming context that functions as the root context for all names. Given this context clients
can navigate in the name space.

Types that are declared on the CosNaming level are:

typedef string Istring;
struct NameComponent {
 Istring id;
 Istring kind;
};

typedef sequence <NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
 Name binding_name;
 BindingType binding_type;
};

typedef sequence <Binding> BindingList;

To get access to the record definitions for the structs use:

-include_lib("orber/COSS/CosNaming.hrl").

Names are not an ORB object but the can be structured in components as seen by the definition above. There are no
requirements on names so the service can support many different conventions and standards.

There are two different interfaces supported in the service:

• NamingContext

• BindingIterator

CosNaming_NamingContext

114 | Ericsson AB. All Rights Reserved.: orber

CosNaming_NamingContext
Erlang module

This is the object that defines name scopes, names must be unique within a naming context. Objects may have multiple
names and may exist in multiple naming contexts. Name context may be named in other contexts and cycles are
permitted.

The type NameComponent used below is defined as:

-record('CosNaming_NameComponent', {id, kind=""}).

where id and kind are strings.

The type Binding used below is defined as:

-record('CosNaming_Binding', {binding_name, binding_type}).

where binding_name is a Name and binding_type is an enum which has the values nobject and ncontext.

Both these records are defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

There are a number of exceptions that can be returned from functions in this interface.

• NotFound is defined as

-record('CosNaming_NamingContext_NotFound',
 {rest_of_name, why}).

• CannotProceed is defined as

-record('CosNaming_NamingContext_CannotProceed',
 {rest_of_name, cxt}).

• InvalidName is defined as

-record('CosNaming_NamingContext_InvalidName', {}).

• NotFound is defined as

-record('CosNaming_NamingContext_NotFound', {}).

• AlreadyBound is defined as

-record('CosNaming_NamingContext_AlreadyBound', {}).

• NotEmpty is defined as

-record('CosNaming_NamingContext_NotEmpty', {}).

These exceptions are defined in the file CosNaming_NamingContext.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming_NamingContext.hrl").

Exports

bind(NamingContext, Name, Object) -> Return
Types:

CosNaming_NamingContext

Ericsson AB. All Rights Reserved.: orber | 115

NameContext = #objref

Name = [NameComponent]

Object = #objref

Return = ok

Creates a binding of a name and an object in the naming context. Naming contexts that are bound using bind() do
not participate in name resolution.

rebind(NamingContext, Name, Object) -> Return
Types:

NamingContext = #objref

Name = [NameComponent]

Object = #objref

Return = ok

Creates a binding of a name and an object in the naming context even if the name is already bound. Naming contexts
that are bound using rebind() do not participate in name resolution.

bind_context(NamingContext1, Name, NamingContex2) -> Return
Types:

NamingContext1 = NamingContext2 =#objref

Name = [NameComponent]

Return = ok

The bind_context function creates a binding of a name and a naming context in the current context. Naming contexts
that are bound using bind_context() participate in name resolution.

rebind_context(NamingContext1, Name, NamingContex2) -> Return
Types:

NamingContext1 = NamingContext2 =#objref

Name = [NameComponent]

Return = ok

The rebind_context function creates a binding of a name and a naming context in the current context even if the name
already is bound. Naming contexts that are bound using rebind_context() participate in name resolution.

resolve(NamingContext, Name) -> Return
Types:

NamingContext = #objref

Name = [NameComponent]

Return = Object

Object = #objref

The resolve function is the way to retrieve an object bound to a name in the naming context. The given name must
match exactly the bound name. The type of the object is not returned, clients are responsible for narrowing the object
to the correct type.

unbind(NamingContext, Name) -> Return
Types:

CosNaming_NamingContext

116 | Ericsson AB. All Rights Reserved.: orber

NamingContext = #objref

Name = [NameComponent]

Return = ok

The unbind operation removes a name binding from the naming context.

new_context(NamingContext) -> Return
Types:

NamingContext = #objref

Return = #objref

The new_context operation creates a new naming context.

bind_new_context(NamingContext, Name) -> Return
Types:

NamingContext = #objref

Name = [NameComponent]

Return = #objref

The new_context operation creates a new naming context and binds it to Name in the current context.

destroy(NamingContext) -> Return
Types:

NamingContext = #objref

Return = ok

The destroy operation disposes the NamingContext object and removes it from the name server. The context must be
empty e.g. not contain any bindings to be removed.

list(NamingContext, HowMany) -> Return
Types:

NamingContext = #objref

HowMany = int()

Return = {ok, BindingList, BindingIterator}

BindingList = [Binding]

BindingIterator = #objref

The list operation returns a BindingList with a number of bindings up-to HowMany from the context. It also returns
a BindinIterator which can be used to step through the list. If the total number of existing bindings are less than, or
equal to, the HowMany parameter a NIL object reference is returned.

Note:

One must destroy the BindingIterator, unless it is a NIL object reference, by using 'BindingIterator':destroy().
Otherwise one can get dangling objects.

CosNaming_NamingContextExt

Ericsson AB. All Rights Reserved.: orber | 117

CosNaming_NamingContextExt
Erlang module

To get access to the record definitions for the structures use:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

This module also exports the functions described in:

• CosNaming_NamingContext

Exports

to_string(NamingContext, Name) -> Return
Types:

NameContext = #objref

Name = [NameComponent]

Return = string() | {'EXCEPTION', NamingContext::InvalidName{}}

Stringifies a Name sequence to a string.

to_name(NamingContext, NameString) -> Return
Types:

NameContext = #objref

NameString = string()

Return = [NameComponent] | {'EXCEPTION', NamingContext::InvalidName{}}

Converts a stringified Name to a Name sequence.

to_url(NamingContext, AddressString, NameString) -> Return
Types:

NameContext = #objref

Address = NameString = string()

Return = URLString | {'EXCEPTION', NamingContext::InvalidName{}} |
{'EXCEPTION', NamingContextExt::InvalidAddress{}}

This operation takes a corbaloc string and a stringified Name sequence as input and returns a fully formed URL
string.

resolve_str(NamingContext, NameString) -> Return
Types:

NameContext = #objref

NameString = string()

Return = #objref | {'EXCEPTION', NamingContext::InvalidName{}} |
{'EXCEPTION', NamingContext::NotFound{why, rest_of_name}} | {'EXCEPTION',
NamingContext::CannotProceed{cxt, rest_of_name}}

This operation takes a stringified Name sequence as input and returns the associated, if any, object.

CosNaming_BindingIterator

118 | Ericsson AB. All Rights Reserved.: orber

CosNaming_BindingIterator
Erlang module

This interface allows a client to iterate over the Bindinglist it has been initiated with.

The type NameComponent used below is defined as:

 -record('CosNaming_NameComponent', {id, kind=""}).

id and kind are strings.

The type Binding used below is defined as:

 -record('CosNaming_Binding', {binding_name, binding_type}).

binding_name is a Name = [NameComponent] and binding_type is an enum which has the values
nobject and ncontext.

Both these records are defined in the file CosNaming.hrl and it is included with:

 -include_lib("orber/COSS/CosNaming/CosNaming.hrl").

Exports

next_one(BindinIterator) -> Return
Types:

BindingIterator = #objref

Return = {bool(), Binding}

This operation returns the next binding and a boolean. The latter is set to true if the binding is valid otherwise false.
If the boolean is false there are no more bindings to retrieve.

next_n(BindinIterator, HowMany) -> Return
Types:

BindingIterator = #objref

HowMany = int()

BindingList = [Binding]

Return = {bool(), BindingList}

This operation returns a binding list with at most HowMany bindings. If there are no more bindings it returns false
otherwise true.

destroy(BindingIterator) -> Return
Types:

BindingIterator = #objref

Return = ok

This operation destroys the binding iterator.

lname

Ericsson AB. All Rights Reserved.: orber | 119

lname
Erlang module

This interface is a part of the names library which is used to hide the representation of names. In Orbers Erlang mapping
the pseudo-object names and the real IDL names have the same representation but it is desirable that the clients uses
the names library so they will not be dependent of the representation. The lname interface supports handling of names
e.g. adding and removing name components.

Note that the lname interface in orber does not contain a destroy function because the Names are represented as standard
Erlang lists and therefor will be removed by the garbage collector when not in use.

The type NameComponent used below is defined as:

-record('CosNaming_NameComponent', {id, kind=""}).

id and kind are strings.

The record is defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

Exports

create() -> Return
Types:

Return = [NameComponent]

This function returns a new name.

insert_component(Name, N, NameComponent) -> Return
Types:

Name = [NameComponent]

N = int()

Return = Name

This function returns a name where the new name component has been inserted as component N in Name.

get_component(Name, N) -> Return
Types:

Name = [NameComponent]

N = int()

Return = NameComponent

This function returns the N:th name component in Name.

delete_component(Name, N) -> Return
Types:

Name = [NameComponent]

N = int()

Return = Name

lname

120 | Ericsson AB. All Rights Reserved.: orber

This function deletes the N:th name component from Name and returns the new name.

num_component(Name) -> Return
Types:

Name = [NameComponent]

Return = int()

This function returns a the number of name components in Name.

equal(Name1, Name2) -> Return
Types:

Name1 = Name2 = [NameComponent]

Return = bool()

This function returns true if the two names are equal and false otherwise.

less_than(Name1, Name2) -> Return
Types:

Name1 = Name2 = [NameComponent]

Return = bool()

This function returns true if Name1 are lesser than Name2 and false otherwise.

to_idl_form(Name) -> Return
Types:

Name = [NameComponent]

Return = Name

This function just checks if Name is a correct IDL name before returning it because the name representation is the
same for pseudo and IDL names in orber.

from_idl_form(Name) -> Return
Types:

Name = [NameComponent]

Return = Name

This function just returns the Name because the name representation is the same for pseudo and IDL names in orber.

lname_component

Ericsson AB. All Rights Reserved.: orber | 121

lname_component
Erlang module

This interface is a part of the name library, which is used to hide the representation of names. In Orbers Erlang mapping
the pseudo-object names and the real IDL names have the same representation but it is desirable that the clients uses the
names library so they will not be dependent of the representation. The lname_component interface supports handling
of name components e.g. set and get of the struct members.

Note that the lname_component interface in orber does not contain a destroy function because the NameComponents
are represented as Erlang records and therefor will be removed by the garbage collector when not in use.

The type NameComponent used below is defined as:

-record('CosNaming_NameComponent', {id, kind=""}).

id and kind are strings.

The record is defined in the file CosNaming.hrl and it is included with:

-include_lib("orber/COSS/CosNaming/CosNaming.hrl").

Exports

create() -> Return
Types:

Return = NameComponent

This function returns a new name component.

get_id(NameComponent) -> Return
Types:

Return = string()

This function returns the id string of a name component.

set_id(NameComponent, Id) -> Return
Types:

Id = string()

Return = NameComponent

This function sets the id string of a name component and returns the component.

get_kind(NameComponent) -> Return
Types:

Return = string()

This function returns the id string of a name component.

set_kind(NameComponent, Kind) -> Return
Types:

Kind = string()

lname_component

122 | Ericsson AB. All Rights Reserved.: orber

Return = NameComponent

This function sets the kind string of a name component and returns the component.

Module_Interface

Ericsson AB. All Rights Reserved.: orber | 123

Module_Interface
Erlang module

This module contains the stub/skeleton functions generated by IC.

Starting a Orber server can be done in three ways:

• Normal - when the server dies Orber forgets all knowledge of the server.

• Supervisor child - adding the configuration parameter {sup_child, true} the oe_create_link/2
function returns {ok, Pid, ObjRef} which can be handled by the application supervisor/stdlib-1.7 or
later.

• Persistent object reference - adding the configuration parameters {persistent, true} and {regname,
{global, term()}} Orber will remember the object reference until the server terminates with reason
normal or shutdown. Hence, if the server is started as a transient supervisor child we do not receive a
'OBJECT_NOT_EXIST' exception when it has crashed and is being restarted.

The Orber stub can be used to start a pseudo object, which will create a non-server implementation. A pseudo
object introduce some limitations:

• The functions oe_create_link/2 is equal to oe_create/2, i.e., no link can or will be created.

• The BIF:s self() and process_flag(trap_exit,true) behaves incorrectly.

• The IC option {{impl, "M::I"}, "other_impl"} has no effect. The call-back functions must be
implemented in a file called M_I_impl.erl

• The IC option from has no effect.

• The call-back functions must be implemented as if the IC option {this, "M::I"} was used.

• Server State changes have no effect. The user can provide information via the Env start parameter and the
State returned from init/2 will be the State passed in following invocations.

• If a call-back function replies with the Timeout parameter set it have no effect.

• Operations defined as oneway are blocking until the operation replies.

• The option {pseudo, true} overrides all other start options.

• Only the functions, besides own definitions, init/2 (called via oe_create*/2) and terminate/2 (called via
corba:dispose/1) must be implemented.

By adopting the rules for pseudo objects described above we can use oe_create/2 to create server or pseudo
objects, by excluding or including the option {pseudo, true}, without changing the call-back module.

If you start a object without {regname, RegName} it can only be accessed through the returned object key. Started
with a {regname, RegName} the name is registered locally or globally.

Warning:

To avoid flooding Orber with old object references start erlang using the flag -orber objectkeys_gc_time Time,
which will remove all object references related to servers being dead for Time seconds. To avoid extra overhead,
i.e., performing garbage collect if no persistent objects are started, the objectkeys_gc_time default value is infinity.
For more information, see the orber and corba documentation.

Exports

Module_Interface:typeID() -> TypeId
Types:

Module_Interface

124 | Ericsson AB. All Rights Reserved.: orber

TypeId = string(), e.g., "IDL:Module/Interface:1.0"

Returns the Type ID related to this stub/skeleton

Module_Interface:oe_create() -> ObjRef
Types:

ObjRef = #object reference

Start a Orber server.

Module_Interface:oe_create_link() -> ObjRef
Types:

ObjRef = #object reference

Start a linked Orber server.

Module_Interface:oe_create(Env) -> ObjRef
Types:

Env = term()

ObjRef = #object reference

Start a Orber server passing Env to init/1.

Module_Interface:oe_create_link(Env) -> ObjRef
Types:

Env = term()

ObjRef = #object reference

Start a linked Orber server passing Env to init/1.

Module_Interface:oe_create(Env, Options) -> ObjRef
Types:

Env = term()

ObjRef = #object reference

Options = [{sup_child, false} | {persistent, Bool} | {regname, RegName}
| {pseudo, Bool} | {local_typecheck, Bool} | {survive_exit, Bool} |
{create_options, [CreateOpts]}]

Bool = true | false

RegName = {global, term()} | {local, atom()}

CreateOpts = {debug, [Dbg]} | {timeout, Time}

Dbg = trace | log | statistics | {log_to_file, FileName}

Start a Orber server passing Env to init/1.

If the option {pseudo, true} is used, all other options are overridden. As default, this option is set to false.

This function cannot be used for starting a server as supervisor child. If started as persistent, the options
[{persistent, true}, {regname, {global, term()}}] must be used and Orber will only forget the
object reference if it terminates with reason normal or shutdown.

The option {local_typecheck, boolean()}, which overrides the Local Typechecking environment flag, turns
on or off typechecking. If activated, parameters, replies and raised exceptions will be checked to ensure that the data

Module_Interface

Ericsson AB. All Rights Reserved.: orber | 125

is correct, when invoking operations on CORBA Objects within the same Orber domain. Due to the extra overhead,
this option MAY ONLY be used during testing and development.

{survive_exit, boolean()} overrides the EXIT Tolerance environment flag. If activated, the server will not
terminate, even though the call-back module returns EXIT.

Time specifies how long time, in milliseconds, the server is allowed to spend initializing. For more information about
the Dbg options, see the sys module.

Module_Interface:oe_create_link(Env, Options) -> Return
Types:

Env = term()

Return = ObjRef | {ok, Pid, ObjRef}

ObjRef = #object reference

Options = [{sup_child, Bool} | {persistent, Bool} | {regname, RegName}
| {pseudo, Bool} | {local_typecheck, Bool} | {survive_exit, Bool} |
{create_options, [CreateOpts]}]

Bool = true | false

RegName = {global, term()} | {local, atom()}

CreateOpts = {debug, [Dbg]} | {timeout, Time}

Dbg = trace | log | statistics | {log_to_file, FileName}

Start a linked Orber server passing Env to init/1.

If the option {pseudo, true} is used, all other options are overridden and no link will be created. As default,
this option is set to false.

This function can be used for starting a server as persistent or supervisor child. At the moment [{persistent,
true}, {regname, {global, term()}}] must be used to start a server as persistent, i.e., if a server died
and is in the process of being restarted a call to the server will not raise 'OBJECT_NOT_EXIST' exception. Orber
will only forget the object reference if it terminates with reason normal or shutdown, hence, the server must be started
as transient (for more information see the supervisor documentation).

The options {local_typecheck, boolean()} and {survive_exit, boolean()} behaves in the same
way as for oe_create/2.

Time specifies how long time, in milliseconds, the server is allowed to spend initializing. For more information about
the Dbg options, see the sys module.

Module_Interface:own_functions(ObjRef, Arg1, ..., ArgN) -> Reply
Module_Interface:own_functions(ObjRef, Options, Arg1, ..., ArgN) -> Reply
Types:

ObjRef = #object reference

Options = [Option] | Timeout

Option = {timeout, Timeout} | {context, [Context]}

Timeout = infinity | integer(milliseconds)

Context = #'IOP_ServiceContext'{context_id = CtxId, context_data =
CtxData}

CtxId = ?ORBER_GENERIC_CTX_ID

CtxData = {interface, Interface} | {userspecific, term()} |
{configuration, Options}

Module_Interface

126 | Ericsson AB. All Rights Reserved.: orber

Interface = string()

Options = [{Key, Value}]

Key = ssl_client_verify | ssl_client_depth | ssl_client_certfile |
ssl_client_cacertfile | ssl_client_password | ssl_client_keyfile |
ssl_client_ciphers | ssl_client_cachetimeout

Value = allowed value associated with the given key

ArgX = specified in the IDL-code.

Reply = specified in the IDL-code.

The default value for the Timeout option is infinity. IPv4 or IPv6 addresses are accepted as local Interface.

The configuration context is used to override the global SSL client side configuration.

To gain access to #'IOP_ServiceContext'{} record and the ?ORBER_GENERIC_CTX_ID macro, you must
add -include_lib("orber/include/corba.hrl"). to your module.

CALLBACK FUNCTIONS
The following functions should be exported from a CORBA callback module. Note, a complete template of the call-
back module can be generated automatically by compiling the IDL-file with the IC option {be,erl_template}.
One should also add the same compile options, for example this or from, used when generating the stub/skeleton
modules.

Exports

Module_Interface_impl:init(Env) -> CallReply
Types:

Env = term()

CallReply = {ok, State} | {ok, State, Timeout} | ignore | {stop,
StopReason}

State = term()

Timeout = int() >= 0 | infinity

StopReason = term()

Whenever a new server is started, init/1 is the first function called in the specified call-back module.

Module_Interface_impl:terminate(Reason, State) -> ok
Types:

Reason = term()

State = term()

This call-back function is called whenever the server is about to terminate.

Module_Interface_impl:code_change(OldVsn, State, Extra) -> CallReply
Types:

OldVsn = undefined | term()

State = term()

Extra = term()

CallReply = {ok, NewState}

NewState = term()

Module_Interface

Ericsson AB. All Rights Reserved.: orber | 127

Update the internal State.

Module_Interface_impl:handle_info(Info, State) -> CallReply
Types:

Info = term()

State = term()

CallReply = {noreply, State} | {noreply, State, Timeout} | {stop,
StopReason, State}

Timeout = int() >= 0 | infinity

StopReason = normal | shutdown | term()

If the configuration parameter {{handle_info, "Module::Interface"}, true} is passed to IC and
process_flag(trap_exit,true) is set in the init() call-back this function must be exported.

Note:

To be able to handle the Timeout option in CallReply in the call-back module the configuration parameter
{{handle_info, "Module::Interface"}, true} must be passed to IC.

Module_Interface_impl:own_functions(State, Arg1, ..., ArgN) -> CallReply
Module_Interface_impl:own_functions(This, State, Arg1, ..., ArgN) ->
CallReply
Module_Interface_impl:own_functions(This, From, State, Arg1, ..., ArgN) ->
ExtCallReply
Module_Interface_impl:own_functions(From, State, Arg1, ..., ArgN) ->
ExtCallReply
Types:

This = the servers #object reference

State = term()

ArgX = specified in the IDL-code.

CallReply = {reply, Reply, State} | {reply, Reply, State, Timeout}
| {stop, StopReason, Reply, State} | {stop, StopReason, State} |
corba:raise(Exception)

ExtCallReply = CallReply | corba:reply(From, Reply), {noreply, State} |
corba:reply(From, Reply), {noreply, State, Timeout}

Reply = specified in the IDL-code.

Timeout = int() >= 0 | infinity

StopReason = normal | shutdown | term()

All two-way functions must return one of the listed replies or raise any of the exceptions listed in the IDL code (i.e.
raises(...)). If the IC compile options this and/or from are used, the implementation must accept the This and/or From
parameters.

Module_Interface_impl:own_functions(State, Arg1, ..., ArgN) -> CastReply
Module_Interface_impl:own_functions(This, State, Arg1, ..., ArgN) ->
CastReply
Types:

Module_Interface

128 | Ericsson AB. All Rights Reserved.: orber

This = the servers #object reference

State = term()

CastReply = {noreply, State} | {noreply, State, Timeout} | {stop,
StopReason, State}

ArgX = specified in the IDL-code.

Reply = specified in the IDL-code.

Timeout = int() >= 0 | infinity

StopReason = normal | shutdown | term()

All one-way functions must return one of the listed replies. If the IC compile option this is used, the implementation
must accept the This parameter.

interceptors

Ericsson AB. All Rights Reserved.: orber | 129

interceptors
Erlang module

This module contains the mandatory functions for user supplied native interceptors and their intended behavior. See
also the User's Guide.

Warning:

Using Interceptors may reduce the through-put significantly if the supplied interceptors invoke expensive
operations. Hence, one should always supply interceptors which cause as little overhead as possible.

Warning:

It is possible to alter the Data, Bin and Args parameter for the in_reply and out_reply,
in_reply_encoded, in_request_encoded, out_reply_encoded and out_request_encoded,
in_request and out_request respectively. But, if it is done incorrectly, the consequences can be serious.

Note:

The Extra parameter is set to 'undefined' by Orber when calling the first interceptor and may be set to any Erlang
term. If an interceptor change this parameter it will be passed on to the next interceptor in the list uninterpreted.

Note:

The Ref parameter is set to 'undefined' by Orber when calling new_in_connection or
new_out_connection using the first interceptor. The user supplied interceptor may set NewRef to any Erlang
term. If an interceptor change this parameter it will be passed on to the next interceptor in the list uninterpreted.

Exports

new_in_connection(Ref, PeerHost, PeerPort) -> NewRef
new_in_connection(Ref, PeerHost, PeerPort, SocketHost, SocketPort) -> NewRef
Types:

Ref = term() | undefined

PeerHost = SocketHost = string(), e.g., "myHost@myServer" or "192.0.0.10"

PeerPort = SocketPort = integer()

NewRef = term() | {'EXIT', Reason}

When a new connection is requested by a client side ORB this operation is invoked. If more than one interceptor
is supplied, e.g., {native, ['myInterceptor1', 'myInterceptor2']}, the return value from
'myInterceptor1' is passed to 'myInterceptor2' as Ref. Initially, Orber uses the atom 'undefined' as Ref parameter
when calling the first interceptor. The return value from the last interceptor, in the example above 'myInterceptor2',
is passed to all other functions exported by the interceptors. Hence, the Ref parameter can, for example, be used as a
unique identifier to mnesia or ets where information/restrictions for this connection is stored.

The PeerHost and PeerPort variables supplied data of the client ORB which requested a new connection. SocketHost
and SocketPort are the local interface and port the client connected to.

interceptors

130 | Ericsson AB. All Rights Reserved.: orber

If, for some reason, we do not allow the client ORB to connect simply invoke exit(Reason).

new_out_connection(Ref, PeerHost, PeerPort) -> NewRef
new_out_connection(Ref, PeerHost, PeerPort, SocketHost, SocketPort) -> NewRef
Types:

Ref = term() | undefined

PeerHost = SocketHost = string(), e.g., "myHost@myServer" or "192.0.0.10"

PeerPort = SocketPort = integer()

NewRef = term() | {'EXIT', Reason}

When a new connection is set up this function is invoked. Behaves just like new_in_connection; the only
difference is that the PeerHost and PeerPort variables identifies the target ORB's bootstrap data and SocketHost and
SocketPort are the local interface and port the client ORB connected via.

closed_in_connection(Ref) -> NewRef
Types:

Ref = term()

NewRef = term()

When an existing connection is terminated this operation is invoked. The main purpose of this function is to make it
possible for a user to clean up all data associated with the associated connection.

The input parameter Ref is the return value from new_in_connection/3.

closed_out_connection(Ref) -> NewRef
Types:

Ref = term()

NewRef = term()

When an existing connection is terminated this operation is invoked. The main purpose of this function is to make it
possible for a user to clean up all data associated with the associated connection.

The input parameter Ref is the return value from new_out_connection/3.

in_reply(Ref, Obj, Ctx, Op, Data, Extra) -> Reply
Types:

Ref = term()

Obj = #objref

Ctx = [#'IOP_ServiceContext'{}]

Op = atom()

Data = [Result, OutParameter1, ..., OutPramaterN]

Reply = {NewData, NewExtra}

When replies are delivered from the server side ORB to the client side ORB this operation is invoked. The Data
parameter is a list in which the first element is the return value value from the target object and the rest is a all parameters
defined as out or inout in the IDL-specification.

in_reply_encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply
Types:

Ref = term()

interceptors

Ericsson AB. All Rights Reserved.: orber | 131

Obj = #objref

Ctx = [#'IOP_ServiceContext'{}]

Op = atom()

Bin = #binary

Reply = {NewBin, NewExtra}

When replies are delivered from the server side ORB to the client side ORB this operation is invoked. The Bin
parameter is the reply body still uncoded.

in_request(Ref, Obj, Ctx, Op, Args, Extra) -> Reply
Types:

Ref = term()

Obj = #objref

Ctx = [#'IOP_ServiceContext'{}]

Op = atom()

Args = [Argument] - defined in the IDL-specification

Reply = {NewArgs, NewExtra}

When a new request arrives at the server side ORB this operation is invoked.

in_request_encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply
Types:

Ref = term()

Obj = #objref

Ctx = [#'IOP_ServiceContext'{}]

Op = atom()

Bin = #binary

Reply = {NewBin, NewExtra}

When a new request arrives at the server side ORB this operation is invoked before decoding the request body.

out_reply(Ref, Obj, Ctx, Op, Data, Extra) -> Reply
Types:

Ref = term()

Obj = #objref

Ctx = [#'IOP_ServiceContext'{}]

Op = atom()

Data = [Result, OutParameter1, ..., OutPramaterN]

Reply = {NewData, NewExtra}

After the target object have been invoked this operation is invoked with the result. The Data parameter is a list in
which the first element is the return value value from the target object and the rest is a all parameters defined as out
or inout in the IDL-specification.

out_reply_encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply
Types:

Ref = term()

interceptors

132 | Ericsson AB. All Rights Reserved.: orber

Obj = #objref

Ctx = [#'IOP_ServiceContext'{}]

Op = atom()

Bin = #binary

Reply = {NewBin, NewExtra}

This operation is similar to out_reply; the only difference is that the reply body have been encoded.

out_request(Ref, Obj, Ctx, Op, Args, Extra) -> Reply
Types:

Ref = term()

Obj = #objref

Ctx = [#'IOP_ServiceContext'{}]

Op = atom()

Args = [Argument] - defined in the IDL-specification

Reply = {NewArgs, NewExtra}

Before a request is sent to the server side ORB, out_request is invoked.

out_request_encoded(Ref, Obj, Ctx, Op, Bin, Extra) -> Reply
Types:

Ref = term()

Obj = #objref

Ctx = [#'IOP_ServiceContext'{}]

Op = atom()

Bin = #binary

Reply = {NewBin, NewExtra}

This operation is similar to out_request; the only difference is that the request body have been encoded.

orber_diagnostics

Ericsson AB. All Rights Reserved.: orber | 133

orber_diagnostics
Erlang module

This module contains functions which makes it possible to run simple tests.

Warning:

Functions exported by this module may only be used during test and development phase.

Exports

nameservice() -> Result
nameservice(Flags) -> Result
Types:

Flags = integer()

Result = ok | {'EXCEPTION', E}

Displays all objects stored in the NameService. Existent checks are, per default, also performed on all local objects.
This can also be activated for external objects by setting the flag 16#01. The displayed information is the stringified
Name described in CosNaming_NamingContextExt, non existent status (true | false | external | undefined) and the IFR-
Id:

host/
host/resources/
host/resources/MyObj/ [false] IDL:MyMod/MyIntf:1.0

missing_modules() -> Count
Types:

Count = integer()

This operation list missing modules generated by IC and required by Orber. Requires that all API:s are registered in
the IFR.

	orber
	Orber User's Guide
	The Orber Application
	Content Overview
	Brief Description of the User's Guide
	ORB Kernel and IIOP Support
	Interface Repository
	IDL to Erlang Mapping
	CosNaming Service
	Resolving Initial References from Java or C++
	Orber Stub/Skeleton
	CORBA Exceptions
	Interceptors
	OrberWeb
	Debugging

	Introduction to Orber
	Overview
	Benefits
	Purpose and Dependencies
	Prerequisites

	The Orber Application
	ORB Kernel and IIOP
	The Object Request Broker (ORB)
	Internet Inter-Object Protocol (IIOP)

	Interface Repository
	Interface Repository(IFR)

	Installing Orber
	Installation Process
	Preparation
	Jump Start Orber
	Install Single Node Orber
	Install RAM Based Multi Node Orber
	Install Disk Based Multi Node Orber

	Configuration
	Orber Environment Flags

	Firewall Configuration
	Interface Configuration

	OMG IDL to Erlang Mapping
	OMG IDL to Erlang Mapping - Overview
	OMG IDL Mapping Elements
	Getting Started
	Basic OMG IDL Types
	Template OMG IDL Types and Complex Declarators
	String/WString Data Types
	Sequence Data Type
	Array Data Type
	Fixed Data Type

	Constructed OMG IDL Types
	Struct Data Type
	Enum Data Type
	Union Data Type

	Scoped Names and Generated Files
	Scoped Names
	Generated Files

	Typecode, Identity and Name Access Functions
	References to Constants
	References to Objects Defined in OMG IDL
	Exceptions
	Access to Attributes
	Invocations of Operations
	Implementing the DB Application
	Reserved Compiler Names and Keywords
	Type Code Representation

	CosNaming Service
	Overview of the CosNaming Service
	The Basic Use-cases of the Naming Service
	Fetch Initial Reference to the Naming Service
	Creating a Naming Context
	Binding and Unbinding Names to Objects
	Resolving a Name to an Object
	Listing the Bindings in a NamingContext
	Destroying a Naming Context

	Interoperable Naming Service
	IOR
	corbaloc
	corbaname

	How to use security in Orber
	Security in Orber
	Introduction
	Enable Usage of Secure Connections
	Configurations when Orber is Used on the Server Side
	Configurations when Orber is Used on the Client Side

	Orber Stubs/Skeletons
	Orber Stubs and Skeletons Description
	Server Start
	Pseudo Objects
	Call-back Module

	CORBA System and User Defined Exceptions
	System Exceptions
	Status Field
	Minor Field
	Supported System Exceptions

	User Defined Exceptions
	Throwing Exceptions
	Catching Exceptions

	Orber Interceptors
	Using Interceptors
	Configure Orber to Use Interceptors
	Creating Interceptors

	Interceptor Example

	OrberWeb
	Using OrberWeb
	The Menu Frame
	The Configuration Data Frame
	The IFR Data Frame
	The NameService Data Frame
	The Object Creation Data Frame

	Starting OrberWeb

	Debugging
	Tools and FAQ
	Tools
	FAQ

	Reference Manual
	any
	create/0
	create/2
	set_typecode/2
	get_typecode/1
	set_value/2
	get_value/1

	fixed
	create/3
	get_typecode/1
	add/2
	subtract/2
	multiply/2
	divide/2
	unary_minus/1

	corba
	create/2
	create/3
	create/4
	create_link/2
	create_link/3
	create_link/4
	dispose/1
	create_nil_objref/0
	create_subobject_key/2
	get_subobject_key/1
	get_pid/1
	raise/1
	reply/2
	resolve_initial_references/1
	resolve_initial_references/2
	add_initial_service/2
	remove_initial_service/1
	list_initial_services/0
	resolve_initial_references_remote/2
	resolve_initial_references_remote/3
	list_initial_services_remote/1
	list_initial_services_remote/2
	object_to_string/1
	string_to_object/1
	string_to_object/2
	print_object/1
	add_alternate_iiop_address/3
	orb_init/1

	corba_object
	get_interface/1
	is_nil/1
	is_a/2
	is_a/3
	is_remote/1
	non_existent/1
	non_existent/2
	not_existent/1
	not_existent/2
	is_equivalent/2
	hash/2

	orber
	start/0
	start/1
	jump_start/1
	stop/0
	info/0
	info/1
	exception_info/1
	is_system_exception/1
	get_tables/0
	get_ORBInitRef/0
	get_ORBDefaultInitRef/0
	domain/0
	iiop_port/0
	iiop_out_ports/0
	iiop_out_ports_random/0
	iiop_out_ports_attempts/0
	iiop_ssl_port/0
	iiop_timeout/0
	iiop_connection_timeout/0
	iiop_connections/0
	iiop_connections/1
	iiop_connections_pending/0
	iiop_in_connection_timeout/0
	iiop_acl/0
	activate_audit_trail/0
	activate_audit_trail/1
	deactivate_audit_trail/0
	add_listen_interface/2
	add_listen_interface/3
	add_listen_interface/3
	remove_listen_interface/1
	close_connection/1
	close_connection/2
	secure/0
	ssl_server_options/0
	ssl_client_options/0
	set_ssl_client_options/1
	objectkeys_gc_time/0
	orber_nodes/0
	install/1
	install/2
	uninstall/0
	add_node/2
	remove_node/1
	configure/2

	orber_ifr
	init/2
	find_repository/0
	get_def_kind/1
	destroy/1
	get_id/1
	set_id/2
	get_name/1
	set_name/2
	get_version/1
	set_version/2
	get_defined_in/1
	get_absolute_name/1
	get_containing_repository/1
	describe/1
	move/4
	lookup/2
	contents/3
	lookup_name/5
	describe_contents/4
	create_module/4
	create_constant/6
	create_struct/5
	create_union/6
	create_enum/5
	create_alias/5
	create_interface/5
	create_exception/5
	get_type/1
	lookup_id/2
	get_primitive/2
	create_string/2
	create_wstring/2
	create_fixed/3
	create_sequence/3
	create_array/3
	create_idltype/2
	get_type_def/1
	set_type_def/2
	get_value/1
	set_value/2
	get_members/1
	set_members/2
	get_discriminator_type/1
	get_discriminator_type_def/1
	set_discriminator_type_def/2
	get_original_type_def/1
	set_original_type_def/2
	get_kind/1
	get_bound/1
	set_bound/2
	get_element_type/1
	get_element_type_def/1
	set_element_type_def/2
	get_length/1
	set_length/2
	get_mode/1
	set_mode/2
	get_result/1
	get_result_def/1
	set_result_def/2
	get_params/1
	set_params/2
	get_contexts/1
	set_contexts/2
	get_exceptions/1
	set_exceptions/2
	get_base_interfaces/1
	set_base_interfaces/2
	is_a/2
	describe_interface/1
	create_attribute/6
	create_operation/9

	orber_tc
	null/0
	void/0
	short/0
	unsigned_short/0
	long/0
	unsigned_long/0
	long_long/0
	unsigned_long_long/0
	wchar/0
	float/0
	double/0
	boolean/0
	char/0
	octet/0
	any/0
	typecode/0
	principal/0
	object_reference/2
	struct/3
	union/5
	enum/3
	string/1
	wstring/1
	fixed/2
	sequence/2
	array/2
	alias/3
	exception/3
	get_tc/1
	get_tc/1
	check_tc/1

	orber_acl
	match/2
	match/3
	verify/3
	range/2

	CosNaming
	CosNaming_NamingContext
	bind/3
	rebind/3
	bind_context/3
	rebind_context/3
	resolve/2
	unbind/2
	new_context/1
	bind_new_context/2
	destroy/1
	list/2

	CosNaming_NamingContextExt
	to_string/2
	to_name/2
	to_url/3
	resolve_str/2

	CosNaming_BindingIterator
	next_one/1
	next_n/2
	destroy/1

	lname
	create/0
	insert_component/3
	get_component/2
	delete_component/2
	num_component/1
	equal/2
	less_than/2
	to_idl_form/1
	from_idl_form/1

	lname_component
	create/0
	get_id/1
	set_id/2
	get_kind/1
	set_kind/2

	Module_Interface
	Module_Interface:typeID/0
	Module_Interface:oe_create/0
	Module_Interface:oe_create_link/0
	Module_Interface:oe_create/1
	Module_Interface:oe_create_link/1
	Module_Interface:oe_create/2
	Module_Interface:oe_create_link/2
	Module_Interface:own_functions/4
	Module_Interface:own_functions/5
	Module_Interface_impl:init/1
	Module_Interface_impl:terminate/2
	Module_Interface_impl:code_change/3
	Module_Interface_impl:handle_info/2
	Module_Interface_impl:own_functions/4
	Module_Interface_impl:own_functions/5
	Module_Interface_impl:own_functions/6
	Module_Interface_impl:own_functions/5
	Module_Interface_impl:own_functions/4
	Module_Interface_impl:own_functions/5

	interceptors
	new_in_connection/3
	new_in_connection/5
	new_out_connection/3
	new_out_connection/5
	closed_in_connection/1
	closed_out_connection/1
	in_reply/6
	in_reply_encoded/6
	in_request/6
	in_request_encoded/6
	out_reply/6
	out_reply_encoded/6
	out_request/6
	out_request_encoded/6

	orber_diagnostics
	nameservice/0
	nameservice/1
	missing_modules/0

