
Kernel
Copyright © 1997-2018 Ericsson AB. All Rights Reserved.

Kernel 5.4.3
March 26, 2018

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: Kernel | 1

2 | Ericsson AB. All Rights Reserved.: Kernel

1 Reference Manual

kernel

Ericsson AB. All Rights Reserved.: Kernel | 3

kernel
Application

The Kernel application has all the code necessary to run the Erlang runtime system: file servers, code servers, and so on.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

• Start, stop, supervision, configuration, and distribution of applications

• Code loading

• Logging

• Error logging

• Global name service

• Supervision of Erlang/OTP

• Communication with sockets

• Operating system interface

Error Logger Event Handlers
Two standard error logger event handlers are defined in the Kernel application. These are described in
error_logger(3).

OS Signal Event Handler
Asynchronous OS signals may be subscribed to via the Kernel applications event manager (see OTP Design Principles
and gen_event(3)) registered as erl_signal_server. A default signal handler is installed which handles the
following signals:

sigusr1

The default handler will halt Erlang and produce a crashdump with slogan "Received SIGUSR1". This is
equivalent to calling erlang:halt("Received SIGUSR1").

sigquit

The default handler will halt Erlang immediately. This is equivalent to calling erlang:halt().

sigterm

The default handler will terminate Erlang normally. This is equivalent to calling init:stop().

Events
Any event handler added to erl_signal_server must handle the following events.

sighup

Hangup detected on controlling terminal or death of controlling process

sigquit

Quit from keyboard

sigabrt

Abort signal from abort

kernel

4 | Ericsson AB. All Rights Reserved.: Kernel

sigalrm

Timer signal from alarm

sigterm

Termination signal

sigusr1

User-defined signal 1

sigusr2

User-defined signal 2

sigchld

Child process stopped or terminated

sigstop

Stop process

sigtstp

Stop typed at terminal

Setting OS signals are described in os:set_signal/2.

Configuration
The following configuration parameters are defined for the Kernel application. For more information about
configuration parameters, see file app(4).

browser_cmd = string() | {M,F,A}

When pressing the Help button in a tool such as Debugger, the help text (an HTML file File) is by default
displayed in a Netscape browser, which is required to be operational. This parameter can be used to change the
command for how to display the help text if another browser than Netscape is preferred, or if another platform
than Unix or Windows is used.

If set to a string Command, the command "Command File" is evaluated using os:cmd/1.

If set to a module-function-args tuple, {M,F,A}, the call apply(M,F,[File|A]) is evaluated.

distributed = [Distrib]

Specifies which applications that are distributed and on which nodes they are allowed to execute. In this parameter:

• Distrib = {App,Nodes} | {App,Time,Nodes}

• App = atom()

• Time = integer()>0

• Nodes = [node() | {node(),...,node()}]

The parameter is described in application:load/2.

dist_auto_connect = Value

Specifies when nodes are automatically connected. If this parameter is not specified, a node is always
automatically connected, for example, when a message is to be sent to that node. Value is one of:

never

Connections are never automatically established, they must be explicitly connected. See net_kernel(3).

kernel

Ericsson AB. All Rights Reserved.: Kernel | 5

once

Connections are established automatically, but only once per node. If a node goes down, it must thereafter
be explicitly connected. See net_kernel(3).

permissions = [Perm]

Specifies the default permission for applications when they are started. In this parameter:

• Perm = {ApplName,Bool}

• ApplName = atom()

• Bool = boolean()

Permissions are described in application:permit/2.

error_logger = Value

Value is one of:

tty

Installs the standard event handler, which prints error reports to stdio. This is the default option.

{file, FileName}

Installs the standard event handler, which prints error reports to file FileName, where FileName is a
string. The file is opened with encoding UTF-8.

false

No standard event handler is installed, but the initial, primitive event handler is kept, printing raw event
messages to tty.

silent

Error logging is turned off.

error_logger_format_depth = Depth

Can be used to limit the size of the formatted output from the error logger event handlers.

Note:

This configuration parameter was introduced in OTP 18.1 and is experimental. Based on user feedback, it can
be changed or improved in future releases, for example, to gain better control over how to limit the size of the
formatted output. We have no plans to remove this new feature entirely, unless it turns out to be useless.

Depth is a positive integer representing the maximum depth to which terms are printed by the error logger
event handlers included in OTP. This configuration parameter is used by the two event handlers defined by the
Kernel application and the two event handlers in the SASL application. (If you have implemented your own error
handlers, this configuration parameter has no effect on them.)

Depth is used as follows: Format strings passed to the event handlers are rewritten. The format controls ~p
and ~w are replaced with ~P and ~W, respectively, and Depth is used as the depth parameter. For details, see
io:format/2 in STDLIB.

Note:

A reasonable starting value for Depth is 30. We recommend to test crashing various processes in your
application, examine the logs from the crashes, and then increase or decrease the value.

kernel

6 | Ericsson AB. All Rights Reserved.: Kernel

global_groups = [GroupTuple]

Defines global groups, see global_group(3). In this parameter:

• GroupTuple = {GroupName, [Node]} | {GroupName, PublishType, [Node]}

• GroupName = atom()

• PublishType = normal | hidden

• Node = node()

inet_default_connect_options = [{Opt, Val}]

Specifies default options for connect sockets, see inet(3).

inet_default_listen_options = [{Opt, Val}]

Specifies default options for listen (and accept) sockets, see inet(3).

{inet_dist_use_interface, ip_address()}

If the host of an Erlang node has many network interfaces, this parameter specifies which one to listen on. For
the type definition of ip_address(), see inet(3).

{inet_dist_listen_min, First} and {inet_dist_listen_max, Last}

Defines the First..Last port range for the listener socket of a distributed Erlang node.

{inet_dist_listen_options, Opts}

Defines a list of extra socket options to be used when opening the listening socket for a distributed Erlang node.
See gen_tcp:listen/2.

{inet_dist_connect_options, Opts}

Defines a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_tcp:connect/4.

inet_parse_error_log = silent

If set, no error_logger messages are generated when erroneous lines are found and skipped in the various
Inet configuration files.

inetrc = Filename

The name (string) of an Inet user configuration file. For details, see section Inet Configuration in the
ERTS User's Guide.

net_setuptime = SetupTime

SetupTime must be a positive integer or floating point number, and is interpreted as the maximum allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is 120. If higher values are specified, 120 is used. Default is 7 seconds if the variable is not specified, or if the
value is incorrect (for example, not a number).

Notice that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

net_ticktime = TickTime

Specifies the net_kernel tick time. TickTime is specified in seconds. Once every TickTime/4 second,
all connected nodes are ticked (if anything else is written to a node). If nothing is received from another node
within the last four tick times, that node is considered to be down. This ensures that nodes that are not responding,
for reasons such as hardware errors, are considered to be down.

The time T, in which a node that is not responding is detected, is calculated as MinT < T < MaxT, where:

kernel

Ericsson AB. All Rights Reserved.: Kernel | 7

MinT = TickTime - TickTime / 4
MaxT = TickTime + TickTime / 4

TickTime defaults to 60 (seconds). Thus, 45 < T < 75 seconds.

Notice that all communicating nodes are to have the same TickTime value specified.

Normally, a terminating node is detected immediately.

shutdown_timeout = integer() | infinity

Specifies the time application_controller waits for an application to terminate during node shutdown.
If the timer expires, application_controller brutally kills application_master of the hanging
application. If this parameter is undefined, it defaults to infinity.

sync_nodes_mandatory = [NodeName]

Specifies which other nodes that must be alive for this node to start properly. If some node in the list does not
start within the specified time, this node does not start either. If this parameter is undefined, it defaults to [].

sync_nodes_optional = [NodeName]

Specifies which other nodes that can be alive for this node to start properly. If some node in this list does not start
within the specified time, this node starts anyway. If this parameter is undefined, it defaults to the empty list.

sync_nodes_timeout = integer() | infinity

Specifies the time (in milliseconds) that this node waits for the mandatory and optional nodes to start. If this
parameter is undefined, no node synchronization is performed. This option ensures that global is synchronized.

start_dist_ac = true | false

Starts the dist_ac server if the parameter is true. This parameter is to be set to true for systems using
distributed applications.

Defaults to false. If this parameter is undefined, the server is started if parameter distributed is set.

start_boot_server = true | false

Starts the boot_server if the parameter is true (see erl_boot_server(3)). This parameter is to be set
to true in an embedded system using this service.

Defaults to false.

boot_server_slaves = [SlaveIP]

If configuration parameter start_boot_server is true, this parameter can be used to initialize
boot_server with a list of slave IP addresses:

SlaveIP = string() | atom | {integer(),integer(),integer(),integer()},

where 0 <= integer() <=255.

Examples of SlaveIP in atom, string, and tuple form:

'150.236.16.70', "150,236,16,70", {150,236,16,70}.

Defaults to [].

start_disk_log = true | false

Starts the disk_log_server if the parameter is true (see disk_log(3)). This parameter is to be set to
true in an embedded system using this service.

Defaults to false.

kernel

8 | Ericsson AB. All Rights Reserved.: Kernel

start_pg2 = true | false

Starts the pg2 server (see pg2(3)) if the parameter is true. This parameter is to be set to true in an embedded
system that uses this service.

Defaults to false.

start_timer = true | false

Starts the timer_server if the parameter is true (see timer(3)). This parameter is to be set to true in
an embedded system using this service.

Defaults to false.

shell_history = enabled | disabled

Specifies whether shell history should be logged to disk between usages of erl.

shell_history_drop = [string()]

Specific log lines that should not be persisted. For example ["q().", "init:stop()."] will allow to
ignore commands that shut the node down. Defaults to [].

shell_history_file_bytes = integer()

how many bytes the shell should remember. By default, the value is set to 512kb, and the minimal value is 50kb.

shell_history_path = string()

Specifies where the shell history files will be stored. defaults to the user's cache directory as returned by
filename:basedir(user_cache, "erlang-history").

shutdown_func = {Mod, Func}

Where:

• Mod = atom()

• Func = atom()

Sets a function that application_controller calls when it starts to terminate. The function is called as
Mod:Func(Reason), where Reason is the terminate reason for application_controller, and it must
return as soon as possible for application_controller to terminate properly.

source_search_rules = [DirRule] | [SuffixRule]

Where:

• DirRule = {ObjDirSuffix,SrcDirSuffix}

• SuffixRule = {ObjSuffix,SrcSuffix,[DirRule]}

• ObjDirSuffix = string()

• SrcDirSuffix = string()

• ObjSuffix = string()

• SrcSuffix = string()

Specifies a list of rules for use by filelib:find_file/2 filelib:find_source/2 If this is set to
some other value than the empty list, it replaces the default rules. Rules can be simple pairs of directory suffixes,
such as {"ebin", "src"}, which are used by filelib:find_file/2, or triples specifying separate
directory suffix rules depending on file name extensions, for example [{".beam", ".erl", [{"ebin",
"src"}]}, which are used by filelib:find_source/2. Both kinds of rules can be mixed in the list.

The interpretation of ObjDirSuffix and SrcDirSuffix is as follows: if the end of the directory name
where an object is located matches ObjDirSuffix, then the name created by replacing ObjDirSuffix with
SrcDirSuffix is expanded by calling filelib:wildcard/1, and the first regular file found among the
matches is the source file.

kernel

Ericsson AB. All Rights Reserved.: Kernel | 9

See Also
app(4), application(3), code(3), disk_log(3), erl_boot_server(3), erl_ddll(3),
error_logger(3), file(3), global(3), global_group(3), heart(3), inet(3),
net_kernel(3), os(3), pg2(3), rpc(3), seq_trace(3), user(3), timer(3)

application

10 | Ericsson AB. All Rights Reserved.: Kernel

application
Erlang module

In OTP, application denotes a component implementing some specific functionality, that can be started and stopped
as a unit, and that can be reused in other systems. This module interacts with application controller, a process started
at every Erlang runtime system. This module contains functions for controlling applications (for example, starting and
stopping applications), and functions to access information about applications (for example, configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resource file named Application.app, where Application is the application name. For details about the
application specification, see app(4).

This module can also be viewed as a behaviour for an application implemented according to the OTP design principles
as a supervision tree. The definition of how to start and stop the tree is to be located in an application callback module,
exporting a predefined set of functions.

For details about applications and behaviours, see OTP Design Principles.

Data Types
start_type() =
 normal |
 {takeover, Node :: node()} |
 {failover, Node :: node()}
restart_type() = permanent | transient | temporary
tuple_of(T)
A tuple where the elements are of type T.

Exports

ensure_all_started(Application) -> {ok, Started} | {error, Reason}
ensure_all_started(Application, Type) ->
 {ok, Started} | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Started = [atom()]
Reason = term()

Equivalent to calling start/1,2 repeatedly on all dependencies that are not yet started for an application.

Returns {ok, AppNames} for a successful start or for an already started application (which is, however, omitted
from the AppNames list).

The function reports {error, {AppName,Reason}} for errors, where Reason is any possible reason returned
by start/1,2 when starting a specific dependency.

If an error occurs, the applications started by the function are stopped to bring the set of running applications back
to its initial state.

application

Ericsson AB. All Rights Reserved.: Kernel | 11

ensure_started(Application) -> ok | {error, Reason}
ensure_started(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Reason = term()

Equivalent to start/1,2 except it returns ok for already started applications.

get_all_env() -> Env
get_all_env(Application) -> Env
Types:

Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Application. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
function returns [].

get_all_key() -> [] | {ok, Keys}
get_all_key(Application) -> undefined | Keys
Types:

Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their values for Application. If the argument is omitted, it defaults
to the application of the calling process.

If the specified application is not loaded, the function returns undefined. If the process executing the call does not
belong to any application, the function returns [].

get_application() -> undefined | {ok, Application}
get_application(PidOrModule) -> undefined | {ok, Application}
Types:

PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returns the name of the application to which the process Pid or the module Module belongs. Providing no argument
is the same as calling get_application(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returns undefined.

get_env(Par) -> undefined | {ok, Val}
get_env(Application, Par) -> undefined | {ok, Val}
Types:

application

12 | Ericsson AB. All Rights Reserved.: Kernel

Application = Par = atom()
Val = term()

Returns the value of configuration parameter Par for Application. If the application argument is omitted, it
defaults to the application of the calling process.

Returns undefined if any of the following applies:

• The specified application is not loaded.

• The configuration parameter does not exist.

• The process executing the call does not belong to any application.

get_env(Application, Par, Def) -> Val
Types:

Application = Par = atom()
Def = Val = term()

Works like get_env/2 but returns value Def when configuration parameter Par does not exist.

get_key(Key) -> undefined | {ok, Val}
get_key(Application, Key) -> undefined | {ok, Val}
Types:

Application = Key = atom()
Val = term()

Returns the value of the application specification key Key for Application. If the application argument is omitted,
it defaults to the application of the calling process.

Returns undefined if any of the following applies:

• The specified application is not loaded.

• The specification key does not exist.

• The process executing the call does not belong to any application.

load(AppDescr) -> ok | {error, Reason}
load(AppDescr, Distributed) -> ok | {error, Reason}
Types:

AppDescr = Application | (AppSpec :: application_spec())
Application = atom()
Distributed =
 {Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple_of(node())]
Time = integer() >= 1
Reason = term()
application_spec() =
 {application,
 Application :: atom(),
 AppSpecKeys :: [application_opt()]}
application_opt() =
 {description, Description :: string()} |

application

Ericsson AB. All Rights Reserved.: Kernel | 13

 {vsn, Vsn :: string()} |
 {id, Id :: string()} |
 {modules, [Module :: module()]} |
 {registered, Names :: [Name :: atom()]} |
 {applications, [Application :: atom()]} |
 {included_applications, [Application :: atom()]} |
 {env, [{Par :: atom(), Val :: term()}]} |
 {start_phases,
 [{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
 {maxT, MaxT :: timeout()} |
 {maxP, MaxP :: integer() >= 1 | infinity} |
 {mod, Start :: {Module :: module(), StartArgs :: term()}}

Loads the application specification for an application into the application controller. It also loads the application
specifications for any included applications. Notice that the function does not load the Erlang object code.

The application can be specified by its name Application. In this case, the application controller searches the code
path for the application resource file Application.app and loads the specification it contains.

The application specification can also be specified directly as a tuple AppSpec, having the format and contents as
described in app(4).

If Distributed == {Application,[Time,]Nodes}, the application becomes distributed. The argument
overrides the value for the application in the Kernel configuration parameter distributed. Application must
be the application name (same as in the first argument). If a node crashes and Time is specified, the application
controller waits for Time milliseconds before attempting to restart the application on another node. If Time is not
specified, it defaults to 0 and the application is restarted immediately.

Nodes is a list of node names where the application can run, in priority from left to right. Node names can be grouped
using tuples to indicate that they have the same priority.

Example:

Nodes = [cp1@cave, {cp2@cave, cp3@cave}]

This means that the application is preferably to be started at cp1@cave. If cp1@cave is down, the application is
to be started at cp2@cave or cp3@cave.

If Distributed == default, the value for the application in the Kernel configuration parameter distributed
is used.

loaded_applications() -> [{Application, Description, Vsn}]
Types:

Application = atom()
Description = Vsn = string()

Returns a list with information about the applications, and included applications, which are loaded using load/1,2.
Application is the application name. Description and Vsn are the values of their description and vsn
application specification keys, respectively.

permit(Application, Permission) -> ok | {error, Reason}
Types:

application

14 | Ericsson AB. All Rights Reserved.: Kernel

Application = atom()
Permission = boolean()
Reason = term()

Changes the permission for Application to run at the current node. The application must be loaded using
load/1,2 for the function to have effect.

If the permission of a loaded, but not started, application is set to false, start returns ok but the application is
not started until the permission is set to true.

If the permission of a running application is set to false, the application is stopped. If the permission later is set
to true, it is restarted.

If the application is distributed, setting the permission to false means that the application will be started at, or moved
to, another node according to how its distribution is configured (see load/2).

The function does not return until the application is started, stopped, or successfully moved to another node. However,
in some cases where permission is set to true, the function returns ok even though the application is not started. This
is true when an application cannot start because of dependencies to other applications that are not yet started. When
they are started, Application is started as well.

By default, all applications are loaded with permission true on all nodes. The permission can be configured using
the Kernel configuration parameter permissions.

set_env(Application, Par, Val) -> ok
set_env(Application, Par, Val, Opts) -> ok
Types:

Application = Par = atom()
Val = term()
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Sets the value of configuration parameter Par for Application.

set_env/4 uses the standard gen_server time-out value (5000 ms). Option timeout can be specified if another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

If set_env/4 is called before the application is loaded, the application environment values specified in file
Application.app override the ones previously set. This is also true for application reloads.

Option persistent can be set to true to guarantee that parameters set with set_env/4 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
is loaded and also on application reload.

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often the value is read by the application. Careless
use of this function can put the application in a weird, inconsistent, and malfunctioning state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types:

application

Ericsson AB. All Rights Reserved.: Kernel | 15

Application = atom()
Type = restart_type()
Reason = term()

Starts Application. If it is not loaded, the application controller first loads it using load/1. It ensures that
any included applications are loaded, but does not start them. That is assumed to be taken care of in the code for
Application.

The application controller checks the value of the application specification key applications, to ensure that all
applications needed to be started before this application are running. Otherwise, {error,{not_started,App}}
is returned, where App is the name of the missing application.

The application controller then creates an application master for the application. The application master is the group
leader of all the processes in the application. The application master starts the application by calling the application
callback function Module:start/2 as defined by the application specification key mod.

Argument Type specifies the type of the application. If omitted, it defaults to temporary.

• If a permanent application terminates, all other applications and the entire Erlang node are also terminated.

• • If a transient application terminates with Reason == normal, this is reported but no other applications
are terminated.

• If a transient application terminates abnormally, all other applications and the entire Erlang node are also
terminated.

• If a temporary application terminates, this is reported but no other applications are terminated.

Notice that an application can always be stopped explicitly by calling stop/1. Regardless of the type of the
application, no other applications are affected.

Notice also that the transient type is of little practical use, because when a supervision tree terminates, the reason is
set to shutdown, not normal.

start_type() -> StartType | undefined | local
Types:

StartType = start_type()
This function is intended to be called by a process belonging to an application, when the application is started, to
determine the start type, which is StartType or local.

For a description of StartType, see Module:start/2.

local is returned if only parts of the application are restarted (by a supervisor), or if the function is called outside
a startup.

If the process executing the call does not belong to any application, the function returns undefined.

stop(Application) -> ok | {error, Reason}
Types:

Application = atom()
Reason = term()

Stops Application. The application master calls Module:prep_stop/1, if such a function is defined, and then
tells the top supervisor of the application to shut down (see supervisor(3)). This means that the entire supervision
tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calls Module:stop/1. Module is the callback module as defined by the application specification key mod.

Last, the application master terminates. Notice that all processes with the application master as group leader, that is,
processes spawned from a process belonging to the application, are also terminated.

application

16 | Ericsson AB. All Rights Reserved.: Kernel

When stopped, the application is still loaded.

To stop a distributed application, stop/1 must be called on all nodes where it can execute (that is, on all nodes where
it has been started). The call to stop/1 on the node where the application currently executes stops its execution. The
application is not moved between nodes, as stop/1 is called on the node where the application currently executes
before stop/1 is called on the other nodes.

takeover(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()
Type = restart_type()
Reason = term()

Takes over the distributed application Application, which executes at another node Node. At the current
node, the application is restarted by calling Module:start({takeover,Node},StartArgs). Module and
StartArgs are retrieved from the loaded application specification. The application at the other node is not stopped
until the startup is completed, that is, when Module:start/2 and any calls to Module:start_phase/3 have
returned.

Thus, two instances of the application run simultaneously during the takeover, so that data can be transferred from the
old to the new instance. If this is not an acceptable behavior, parts of the old instance can be shut down when the new
instance is started. However, the application cannot be stopped entirely, at least the top supervisor must remain alive.

For a description of Type, see start/1,2.

unload(Application) -> ok | {error, Reason}
Types:

Application = atom()
Reason = term()

Unloads the application specification for Application from the application controller. It also unloads the
application specifications for any included applications. Notice that the function does not purge the Erlang object code.

unset_env(Application, Par) -> ok
unset_env(Application, Par, Opts) -> ok
Types:

Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Removes the configuration parameter Par and its value for Application.

unset_env/2 uses the standard gen_server time-out value (5000 ms). Option timeout can be specified if
another time-out value is useful, for example, in situations where the application controller is heavily loaded.

unset_env/3 also allows the persistent option to be passed (see set_env/4).

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often the value is read by the application. Careless
use of this function can put the application in a weird, inconsistent, and malfunctioning state.

application

Ericsson AB. All Rights Reserved.: Kernel | 17

which_applications() -> [{Application, Description, Vsn}]
which_applications(Timeout) -> [{Application, Description, Vsn}]
Types:

Timeout = timeout()
Application = atom()
Description = Vsn = string()

Returns a list with information about the applications that are currently running. Application is the application
name. Description and Vsn are the values of their description and vsn application specification keys,
respectively.

which_applications/0 uses the standard gen_server time-out value (5000 ms). A Timeout argument can
be specified if another time-out value is useful, for example, in situations where the application controller is heavily
loaded.

Callback Module
The following functions are to be exported from an application callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}
Types:

StartType = start_type()

StartArgs = term()

Pid = pid()

State = term()

This function is called whenever an application is started using start/1,2, and is to start the processes of the
application. If the application is structured according to the OTP design principles as a supervision tree, this means
starting the top supervisor of the tree.

StartType defines the type of start:

• normal if it is a normal startup.

• normal also if the application is distributed and started at the current node because of a failover from another
node, and the application specification key start_phases == undefined.

• {takeover,Node} if the application is distributed and started at the current node because of a takeover from
Node, either because takeover/2 has been called or because the current node has higher priority than Node.

• {failover,Node} if the application is distributed and started at the current node because of a failover from
Node, and the application specification key start_phases /= undefined.

StartArgs is the StartArgs argument defined by the application specification key mod.

The function is to return {ok,Pid} or {ok,Pid,State}, where Pid is the pid of the top supervisor and
State is any term. If omitted, State defaults to []. If the application is stopped later, State is passed to
Module:prep_stop/1.

Module:start_phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types:

Phase = atom()

application

18 | Ericsson AB. All Rights Reserved.: Kernel

StartType = start_type()

PhaseArgs = term()

Pid = pid()

State = state()

Starts an application with included applications, when synchronization is needed between processes in the different
applications during startup.

The start phases are defined by the application specification key start_phases == [{Phase,PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

For a description of StartType, see Module:start/2.

Module:prep_stop(State) -> NewState
Types:

State = NewState = term()

This function is called when an application is about to be stopped, before shutting down the processes of the application.

State is the state returned from Module:start/2, or [] if no state was returned. NewState is any term and
is passed to Module:stop/1.

The function is optional. If it is not defined, the processes are terminated and then Module:stop(State) is called.

Module:stop(State)
Types:

State = term()

This function is called whenever an application has stopped. It is intended to be the opposite of Module:start/2
and is to do any necessary cleaning up. The return value is ignored.

State is the return value of Module:prep_stop/1, if such a function exists. Otherwise State is taken from
the return value of Module:start/2.

Module:config_change(Changed, New, Removed) -> ok
Types:

Changed = [{Par,Val}]

New = [{Par,Val}]

Removed = [Par]

 Par = atom()

 Val = term()

This function is called by an application after a code replacement, if the configuration parameters have changed.

Changed is a list of parameter-value tuples including all configuration parameters with changed values.

New is a list of parameter-value tuples including all added configuration parameters.

Removed is a list of all removed parameters.

See Also
OTP Design Principles, kernel(6), app(4)

auth

Ericsson AB. All Rights Reserved.: Kernel | 19

auth
Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types
cookie() = atom()

Exports

cookie() -> Cookie
Types:

Cookie = cookie()
Use erlang:get_cookie() in ERTS instead.

cookie(TheCookie) -> true
Types:

TheCookie = Cookie | [Cookie]
The cookie can also be specified as a list with a single atom element.

Cookie = cookie()
Use erlang:set_cookie(node(), Cookie) in ERTS instead.

is_auth(Node) -> yes | no
Types:

Node = node()
Returns yes if communication with Node is authorized. Notice that a connection to Node is established in this case.
Returns no if Node does not exist or communication is not authorized (it has another cookie than auth thinks it has).

Use net_adm:ping(Node) instead.

node_cookie([Node, Cookie]) -> yes | no
Types:

Node = node()

Cookie = cookie()

Equivalent to node_cookie(Node, Cookie).

node_cookie(Node, Cookie) -> yes | no
Types:

Node = node()
Cookie = cookie()

Sets the magic cookie of Node to Cookie and verifies the status of the authorization. Equivalent to calling
erlang:set_cookie(Node, Cookie), followed by auth:is_auth(Node).

code

20 | Ericsson AB. All Rights Reserved.: Kernel

code
Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in interactive or embedded mode. Which one is decided by the command-line
flag -mode:

% erl -mode interactive

The modes are as follows:

• In interactive mode, which is default, only some code is loaded during system startup, basically the modules
needed by the runtime system. Other code is dynamically loaded when first referenced. When a call to a function
in a certain module is made, and the module is not loaded, the code server searches for and tries to load the module.

• In embedded mode, modules are not auto loaded. Trying to use a module that has not been loaded results in an
error. This mode is recommended when the boot script loads all modules, as it is typically done in OTP releases.
(Code can still be loaded later by explicitly ordering the code server to do so).

To prevent accidentally reloading of modules affecting the Erlang runtime system, directories kernel, stdlib, and
compiler are considered sticky. This means that the system issues a warning and rejects the request if a user tries
to reload a module residing in any of them. The feature can be disabled by using command-line flag -nostick.

Code Path
In interactive mode, the code server maintains a search path, usually called the code path, consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under library
directory $OTPROOT/lib, where $OTPROOT is the installation directory of Erlang/OTP, code:root_dir().
Directories can be named Name[-Vsn] and the code server, by default, chooses the directory with the highest version
number among those having the same Name. Suffix -Vsn is optional. If an ebin directory exists under Name[-
Vsn], this directory is added to the code path.

Environment variable ERL_LIBS (defined in the operating system) can be used to define more library directories to
be handled in the same way as the standard OTP library directory described above, except that directories without an
ebin directory are ignored.

All application directories found in the additional directories appears before the standard OTP applications, except for
the Kernel and STDLIB applications, which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the same name in OTP, except for modules
in Kernel and STDLIB.

Environment variable ERL_LIBS (if defined) is to contain a colon-separated (for Unix-like systems) or semicolon-
separated (for Windows) list of additional libraries.

Example:

On a Unix-like system, ERL_LIBS can be set to the following

/usr/local/jungerl:/home/some_user/my_erlang_lib

On Windows, use semi-colon as separator.

code

Ericsson AB. All Rights Reserved.: Kernel | 21

Loading of Code From Archive Files

Warning:

The support for loading code from archive files is experimental. The purpose of releasing it before it is ready is
to obtain early feedback. The file format, semantics, interfaces, and so on, can be changed in a future release. The
function lib_dir/2 and flag -code_path_choice are also experimental.

The Erlang archives are ZIP files with extension .ez. Erlang archives can also be enclosed in escript files whose
file extension is arbitrary.

Erlang archive files can contain entire Erlang applications or parts of applications. The structure in an archive file
is the same as the directory structure for an application. If you, for example, create an archive of mnesia-4.4.7,
the archive file must be named mnesia-4.4.7.ez and it must contain a top directory named mnesia-4.4.7. If
the version part of the name is omitted, it must also be omitted in the archive. That is, a mnesia.ez archive must
contain a mnesia top directory.

An archive file for an application can, for example, be created like this:

zip:create("mnesia-4.4.7.ez",
 ["mnesia-4.4.7"],
 [{cwd, code:lib_dir()},
 {compress, all},
 {uncompress,[".beam",".app"]}]).

Any file in the archive can be compressed, but to speed up the access of frequently read files, it can be a good idea
to store beam and app files uncompressed in the archive.

Normally the top directory of an application is located in library directory $OTPROOT/lib or in a directory referred
to by environment variable ERL_LIBS. At startup, when the initial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebin directories in archives to the code path. The code path
then contains paths to directories that look like $OTPROOT/lib/mnesia.ez/mnesia/ebin or $OTPROOT/
lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin.

The code server uses module erl_prim_loader in ERTS (possibly through erl_boot_server) to read
code files from archives. However, the functions in erl_prim_loader can also be used by other applications
to read files from archives. For example, the call erl_prim_loader:list_dir("/otp/root/lib/
mnesia-4.4.7.ez/mnesia-4.4.7/examples/bench)" would list the contents of a directory inside an
archive. See erl_prim_loader(3).

An application archive file and a regular application directory can coexist. This can be useful when it is needed to have
parts of the application as regular files. A typical case is the priv directory, which must reside as a regular directory
to link in drivers dynamically and start port programs. For other applications that do not need this, directory priv can
reside in the archive and the files under the directory priv can be read through erl_prim_loader.

When a directory is added to the code path and when the entire code path is (re)set, the code server decides which
subdirectories in an application that are to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the code path is not updated (possibly to the
same path as before, to trigger the directory resolution update).

For each directory on the second level in the application archive (ebin, priv, src, and so on), the code
server first chooses the regular directory if it exists and second from the archive. Function code:lib_dir/2
returns the path to the subdirectory. For example, code:lib_dir(megaco,ebin) can return /otp/root/
lib/megaco-3.9.1.1.ez/megaco-3.9.1.1/ebin while code:lib_dir(megaco,priv) can return
/otp/root/lib/megaco-3.9.1.1/priv.

code

22 | Ericsson AB. All Rights Reserved.: Kernel

When an escript file contains an archive, there are no restrictions on the name of the escript and no restrictions
on how many applications that can be stored in the embedded archive. Single Beam files can also reside on the top
level in the archive. At startup, the top directory in the embedded archive and all (second level) ebin directories in
the embedded archive are added to the code path. See erts:escript(1).

When the choice of directories in the code path is strict, the directory that ends up in the code path is
exactly the stated one. This means that if, for example, the directory $OTPROOT/lib/mnesia-4.4.7/ebin is
explicitly added to the code path, the code server does not load files from $OTPROOT/lib/mnesia-4.4.7.ez/
mnesia-4.4.7/ebin.

This behavior can be controlled through command-line flag -code_path_choice Choice. If the flag is set to
relaxed, the code server instead chooses a suitable directory depending on the actual file structure. If a regular
application ebin directory exists, it is chosen. Otherwise, the directory ebin in the archive is chosen if it exists. If
neither of them exists, the original directory is chosen.

Command-line flag -code_path_choice Choice also affects how module init interprets the boot script.
The interpretation of the explicit code paths in the boot script can be strict or relaxed. It is particularly
useful to set the flag to relaxed when elaborating with code loading from archives without editing the boot
script. The default is relaxed. See erts:init(3).

Current and Old Code
The code for a module can exist in two variants in a system: current code and old code. When a module is loaded into
the system for the first time, the module code becomes 'current' and the global export table is updated with references
to all functions exported from the module.

If then a new instance of the module is loaded (for example, because of error correction), the code of the previous
instance becomes 'old', and all export entries referring to the previous instance are removed. After that, the new instance
is loaded as for the first time, and becomes 'current'.

Both old and current code for a module are valid, and can even be evaluated concurrently. The difference is that
exported functions in old code are unavailable. Hence, a global call cannot be made to an exported function in old
code, but old code can still be evaluated because of processes lingering in it.

If a third instance of the module is loaded, the code server removes (purges) the old code and any processes lingering
in it are terminated. Then the third instance becomes 'current' and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, see
section Compilation and Code Loading in the Erlang Reference Manual.

Argument Types and Invalid Arguments
Module and application names are atoms, while file and directory names are strings. For backward compatibility
reasons, some functions accept both strings and atoms, but a future release will probably only allow the arguments
that are documented.

Functions in this module generally fail with an exception if they are passed an incorrect type (for example, an integer
or a tuple where an atom is expected). An error tuple is returned if the argument type is correct, but there are some
other errors (for example, a non-existing directory is specified to set_path/1).

Error Reasons for Code-Loading Functions
Functions that load code (such as load_file/1) will return {error,Reason} if the load operation fails. Here
follows a description of the common reasons.

badfile

The object code has an incorrect format or the module name in the object code is not the expected module name.

code

Ericsson AB. All Rights Reserved.: Kernel | 23

nofile

No file with object code was found.

not_purged

The object code could not be loaded because an old version of the code already existed.

on_load_failure

The module has an -on_load function that failed when it was called.

sticky_directory

The object code resides in a sticky directory.

Data Types
load_ret() =
 {error, What :: load_error_rsn()} |
 {module, Module :: module()}
load_error_rsn() =
 badfile |
 nofile |
 not_purged |
 on_load_failure |
 sticky_directory
prepared_code()
An opaque term holding prepared code.

Exports

set_path(Path) -> true | {error, What}
Types:

Path = [Dir :: file:filename()]
What = bad_directory

Sets the code path to the list of directories Path.

Returns:

true

If successful

{error, bad_directory}

If any Dir is not a directory name

get_path() -> Path
Types:

Path = [Dir :: file:filename()]
Returns the code path.

code

24 | Ericsson AB. All Rights Reserved.: Kernel

add_path(Dir) -> add_path_ret()
add_pathz(Dir) -> add_path_ret()
Types:

Dir = file:filename()
add_path_ret() = true | {error, bad_directory}

Adds Dir to the code path. The directory is added as the last directory in the new path. If Dir already exists in the
path, it is not added.

Returns true if successful, or {error, bad_directory} if Dir is not the name of a directory.

add_patha(Dir) -> add_path_ret()
Types:

Dir = file:filename()
add_path_ret() = true | {error, bad_directory}

Adds Dir to the beginning of the code path. If Dir exists, it is removed from the old position in the code path.

Returns true if successful, or {error, bad_directory} if Dir is not the name of a directory.

add_paths(Dirs) -> ok
add_pathsz(Dirs) -> ok
Types:

Dirs = [Dir :: file:filename()]
Adds the directories in Dirs to the end of the code path. If a Dir exists, it is not added.

Always returns ok, regardless of the validity of each individual Dir.

add_pathsa(Dirs) -> ok
Types:

Dirs = [Dir :: file:filename()]
Traverses Dirs and adds each Dir to the beginning of the code path. This means that the order of Dirs is reversed
in the resulting code path. For example, if you add [Dir1,Dir2], the resulting path will be [Dir2,Dir1|
OldCodePath].

If a Dir already exists in the code path, it is removed from the old position.

Always returns ok, regardless of the validity of each individual Dir.

del_path(NameOrDir) -> boolean() | {error, What}
Types:

NameOrDir = Name | Dir
Name = atom()
Dir = file:filename()
What = bad_name

Deletes a directory from the code path. The argument can be an atom Name, in which case the directory with the
name .../Name[-Vsn][/ebin] is deleted from the code path. Also, the complete directory name Dir can be
specified as argument.

Returns:

code

Ericsson AB. All Rights Reserved.: Kernel | 25

true

If successful

false

If the directory is not found

{error, bad_name}

If the argument is invalid

replace_path(Name, Dir) -> true | {error, What}
Types:

Name = atom()
Dir = file:filename()
What = bad_directory | bad_name | {badarg, term()}

Replaces an old occurrence of a directory named .../Name[-Vsn][/ebin] in the code path, with Dir. If Name
does not exist, it adds the new directory Dir last in the code path. The new directory must also be named .../Name[-
Vsn][/ebin]. This function is to be used if a new version of the directory (library) is added to a running system.

Returns:

true

If successful

{error, bad_name}

If Name is not found

{error, bad_directory}

If Dir does not exist

{error, {badarg, [Name, Dir]}}

If Name or Dir is invalid

load_file(Module) -> load_ret()
Types:

Module = module()
load_ret() =
 {error, What :: load_error_rsn()} |
 {module, Module :: module()}

Tries to load the Erlang module Module, using the code path. It looks for the object code file with an extension
corresponding to the Erlang machine used, for example, Module.beam. The loading fails if the module name found
in the object code differs from the name Module. load_binary/3 must be used to load object code with a module
name that is different from the file name.

Returns {module, Module} if successful, or {error, Reason} if loading fails. See Error Reasons for Code-
Loading Functions for a description of the possible error reasons.

load_abs(Filename) -> load_ret()
Types:

Filename = file:filename()
load_ret() =

code

26 | Ericsson AB. All Rights Reserved.: Kernel

 {error, What :: load_error_rsn()} |
 {module, Module :: module()}
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
loaded_ret_atoms() = cover_compiled | preloaded

Same as load_file(Module), but Filename is an absolute or relative filename. The code path is not searched.
It returns a value in the same way as load_file/1. Notice that Filename must not contain the extension (for
example, .beam) because load_abs/1 adds the correct extension.

ensure_loaded(Module) -> {module, Module} | {error, What}
Types:

Module = module()
What = embedded | badfile | nofile | on_load_failure

Tries to load a module in the same way as load_file/1, unless the module is already loaded. However, in embedded
mode it does not load a module that is not already loaded, but returns {error, embedded} instead. See Error
Reasons for Code-Loading Functions for a description of other possible error reasons.

load_binary(Module, Filename, Binary) ->
 {module, Module} | {error, What}
Types:

Module = module()
Filename = loaded_filename()
Binary = binary()
What = badarg | load_error_rsn()
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
loaded_ret_atoms() = cover_compiled | preloaded

This function can be used to load object code on remote Erlang nodes. Argument Binary must contain object code for
Module. Filename is only used by the code server to keep a record of from which file the object code for Module
comes. Thus, Filename is not opened and read by the code server.

Returns {module, Module} if successful, or {error, Reason} if loading fails. See Error Reasons for Code-
Loading Functions for a description of the possible error reasons.

atomic_load(Modules) -> ok | {error, [{Module, What}]}
Types:

Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:filename()
Binary = binary()
What =
 badfile |
 nofile |
 on_load_not_allowed |
 duplicated |
 not_purged |
 sticky_directory |

code

Ericsson AB. All Rights Reserved.: Kernel | 27

 pending_on_load
Tries to load all of the modules in the list Modules atomically. That means that either all modules are loaded at the
same time, or none of the modules are loaded if there is a problem with any of the modules.

Loading can fail for one the following reasons:

badfile

The object code has an incorrect format or the module name in the object code is not the expected module name.

nofile

No file with object code exists.

on_load_not_allowed

A module contains an -on_load function.

duplicated

A module is included more than once in Modules.

not_purged

The object code can not be loaded because an old version of the code already exists.

sticky_directory

The object code resides in a sticky directory.

pending_on_load

A previously loaded module contains an -on_load function that never finished.

If it is important to minimize the time that an application is inactive while changing code, use prepare_loading/1 and
finish_loading/1 instead of atomic_load/1. Here is an example:

{ok,Prepared} = code:prepare_loading(Modules),
%% Put the application into an inactive state or do any
%% other preparation needed before changing the code.
ok = code:finish_loading(Prepared),
%% Resume the application.

prepare_loading(Modules) ->
 {ok, Prepared} | {error, [{Module, What}]}
Types:

Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:filename()
Binary = binary()
Prepared = prepared_code()
What = badfile | nofile | on_load_not_allowed | duplicated

Prepares to load the modules in the list Modules. Finish the loading by calling finish_loading(Prepared).

This function can fail with one of the following error reasons:

badfile

The object code has an incorrect format or the module name in the object code is not the expected module name.

code

28 | Ericsson AB. All Rights Reserved.: Kernel

nofile

No file with object code exists.

on_load_not_allowed

A module contains an -on_load function.

duplicated

A module is included more than once in Modules.

finish_loading(Prepared) -> ok | {error, [{Module, What}]}
Types:

Prepared = prepared_code()
Module = module()
What = not_purged | sticky_directory | pending_on_load

Tries to load code for all modules that have been previously prepared by prepare_loading/1. The loading occurs
atomically, meaning that either all modules are loaded at the same time, or none of the modules are loaded.

This function can fail with one of the following error reasons:

not_purged

The object code can not be loaded because an old version of the code already exists.

sticky_directory

The object code resides in a sticky directory.

pending_on_load

A previously loaded module contains an -on_load function that never finished.

ensure_modules_loaded(Modules :: [Module]) ->
 ok | {error, [{Module, What}]}
Types:

Module = module()
What = badfile | nofile | on_load_failure

Tries to load any modules not already loaded in the list Modules in the same way as load_file/1.

Returns ok if successful, or {error,[{Module,Reason}]} if loading of some modules fails. See Error Reasons
for Code-Loading Functions for a description of other possible error reasons.

delete(Module) -> boolean()
Types:

Module = module()
Removes the current code for Module, that is, the current code for Module is made old. This means that processes
can continue to execute the code in the module, but no external function calls can be made to it.

Returns true if successful, or false if there is old code for Module that must be purged first, or if Module is
not a (loaded) module.

purge(Module) -> boolean()
Types:

code

Ericsson AB. All Rights Reserved.: Kernel | 29

Module = module()
Purges the code for Module, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

Note:

As of ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of erlang:check_process_code/3, which is used in order
to determine this.

Returns true if successful and any process is needed to be killed, otherwise false.

soft_purge(Module) -> boolean()
Types:

Module = module()
Purges the code for Module, that is, removes code marked as old, but only if no processes linger in it.

Note:

As of ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of erlang:check_process_code/3, which is used in order
to determine this.

Returns false if the module cannot be purged because of processes lingering in old code, otherwise true.

is_loaded(Module) -> {file, Loaded} | false
Types:

Module = module()
Loaded = loaded_filename()
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
Filename is an absolute filename.

loaded_ret_atoms() = cover_compiled | preloaded
Checks if Module is loaded. If it is, {file, Loaded} is returned, otherwise false.

Normally, Loaded is the absolute filename Filename from which the code is obtained. If the module is
preloaded (see script(4)), Loaded==preloaded. If the module is Cover-compiled (see cover(3)),
Loaded==cover_compiled.

all_loaded() -> [{Module, Loaded}]
Types:

Module = module()
Loaded = loaded_filename()
loaded_filename() =
 (Filename :: file:filename()) | loaded_ret_atoms()
Filename is an absolute filename.

code

30 | Ericsson AB. All Rights Reserved.: Kernel

loaded_ret_atoms() = cover_compiled | preloaded
Returns a list of tuples {Module, Loaded} for all loaded modules. Loaded is normally the absolute filename,
as described for is_loaded/1.

which(Module) -> Which
Types:

Module = module()
Which = file:filename() | loaded_ret_atoms() | non_existing
loaded_ret_atoms() = cover_compiled | preloaded

If the module is not loaded, this function searches the code path for the first file containing object code for Module
and returns the absolute filename.

If the module is loaded, it returns the name of the file containing the loaded object code.

If the module is preloaded, preloaded is returned.

If the module is Cover-compiled, cover_compiled is returned.

If the module cannot be found, non_existing is returned.

get_object_code(Module) -> {Module, Binary, Filename} | error
Types:

Module = module()
Binary = binary()
Filename = file:filename()

Searches the code path for the object code of module Module. Returns {Module, Binary, Filename} if
successful, otherwise error. Binary is a binary data object, which contains the object code for the module. This
can be useful if code is to be loaded on a remote node in a distributed system. For example, loading module Module
on a node Node is done as follows:

...
{_Module, Binary, Filename} = code:get_object_code(Module),
rpc:call(Node, code, load_binary, [Module, Filename, Binary]),
...

root_dir() -> file:filename()
Returns the root directory of Erlang/OTP, which is the directory where it is installed.

Example:

> code:root_dir().
"/usr/local/otp"

lib_dir() -> file:filename()
Returns the library directory, $OTPROOT/lib, where $OTPROOT is the root directory of Erlang/OTP.

Example:

> code:lib_dir().
"/usr/local/otp/lib"

code

Ericsson AB. All Rights Reserved.: Kernel | 31

lib_dir(Name) -> file:filename() | {error, bad_name}
Types:

Name = atom()
Returns the path for the "library directory", the top directory, for an application Name located under $OTPROOT/lib
or on a directory referred to with environment variable ERL_LIBS.

If a regular directory called Name or Name-Vsn exists in the code path with an ebin subdirectory, the path to this
directory is returned (not the ebin directory).

If the directory refers to a directory in an archive, the archive name is stripped away before the path is returned.
For example, if directory /usr/local/otp/lib/mnesia-4.2.2.ez/mnesia-4.2.2/ebin is in the
path, /usr/local/otp/lib/mnesia-4.2.2/ebin is returned. This means that the library directory for an
application is the same, regardless if the application resides in an archive or not.

Example:

> code:lib_dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns {error, bad_name} if Name is not the name of an application under $OTPROOT/lib or on a directory
referred to through environment variable ERL_LIBS. Fails with an exception if Name has the wrong type.

Warning:

For backward compatibility, Name is also allowed to be a string. That will probably change in a future release.

lib_dir(Name, SubDir) -> file:filename() | {error, bad_name}
Types:

Name = SubDir = atom()

Returns the path to a subdirectory directly under the top directory of an application. Normally the subdirectories reside
under the top directory for the application, but when applications at least partly resides in an archive, the situation is
different. Some of the subdirectories can reside as regular directories while other reside in an archive file. It is not
checked whether this directory exists.

Example:

> code:lib_dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Name or SubDir has the wrong type.

compiler_dir() -> file:filename()
Returns the compiler library directory. Equivalent to code:lib_dir(compiler).

priv_dir(Name) -> file:filename() | {error, bad_name}
Types:

Name = atom()
Returns the path to the priv directory in an application. Equivalent to code:lib_dir(Name, priv).

code

32 | Ericsson AB. All Rights Reserved.: Kernel

Warning:

For backward compatibility, Name is also allowed to be a string. That will probably change in a future release.

objfile_extension() -> nonempty_string()
Returns the object code file extension corresponding to the Erlang machine used, namely .beam.

stick_dir(Dir) -> ok | error
Types:

Dir = file:filename()
Marks Dir as sticky.

Returns ok if successful, otherwise error.

unstick_dir(Dir) -> ok | error
Types:

Dir = file:filename()
Unsticks a directory that is marked as sticky.

Returns ok if successful, otherwise error.

is_sticky(Module) -> boolean()
Types:

Module = module()
Returns true if Module is the name of a module that has been loaded from a sticky directory (in other words: an
attempt to reload the module will fail), or false if Module is not a loaded module or is not sticky.

where_is_file(Filename) -> non_existing | Absname
Types:

Filename = Absname = file:filename()

Searches the code path for Filename, a file of arbitrary type. If found, the full name is returned. non_existing
is returned if the file cannot be found. The function can be useful, for example, to locate application resource files.

clash() -> ok
Searches all directories in the code path for module names with identical names and writes a report to stdout.

module_status(Module :: module()) ->
 not_loaded | loaded | modified | removed
Returns:

not_loaded

If Module is not currently loaded.

loaded

If Module is loaded and the object file exists and contains the same code.

code

Ericsson AB. All Rights Reserved.: Kernel | 33

removed

If Module is loaded but no corresponding object file can be found in the code path.

modified

If Module is loaded but the object file contains code with a different MD5 checksum.

Preloaded modules are always reported as loaded, without inspecting the contents on disk. Cover compiled modules
will always be reported as modified if an object file exists, or as removed otherwise. Modules whose load path is
an empty string (which is the convention for auto-generated code) will only be reported as loaded or not_loaded.

For modules that have native code loaded (see is_module_native/1), the MD5 sum of the native code in the
object file is used for the comparison, if it exists; the Beam code in the file is ignored. Reversely, for modules that do
not currently have native code loaded, any native code in the file will be ignored.

See also modified_modules/0.

modified_modules() -> [module()]
Returns the list of all currently loaded modules for which module_status/1 returns modified. See also
all_loaded/0.

is_module_native(Module) -> true | false | undefined
Types:

Module = module()
Returns:

true

If Module is the name of a loaded module that has native code loaded

false

If Module is loaded but does not have native code

undefined

If Module is not loaded

get_mode() -> embedded | interactive
Returns an atom describing the mode of the code server: interactive or embedded.

This information is useful when an external entity (for example, an IDE) provides additional code for a running node.
If the code server is in interactive mode, it only has to add the path to the code. If the code server is in embedded
mode, the code must be loaded with load_binary/3.

disk_log

34 | Ericsson AB. All Rights Reserved.: Kernel

disk_log
Erlang module

disk_log is a disk-based term logger that enables efficient logging of items on files.

Two types of logs are supported:

halt logs

Appends items to a single file, which size can be limited by the disk_log module.

wrap logs

Uses a sequence of wrap log files of limited size. As a wrap log file is filled up, further items are logged on to
the next file in the sequence, starting all over with the first file when the last file is filled up.

For efficiency reasons, items are always written to files as binaries.

Two formats of the log files are supported:

internal format

Supports automatic repair of log files that are not properly closed and enables efficient reading of logged items
in chunks using a set of functions defined in this module. This is the only way to read internally formatted logs.
An item logged to an internally formatted log must not occupy more than 4 GB of disk space (the size must fit
in 4 bytes).

external format

Leaves it up to the user to read and interpret the logged data. The disk_log module cannot repair externally
formatted logs.

For each open disk log, one process handles requests made to the disk log. This process is created when open/1 is
called, provided there exists no process handling the disk log. A process that opens a disk log can be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and an owner can close the disk log
either explicitly (by calling close/1 or lclose/1,2) or by terminating.

Owners can subscribe to notifications, messages of the form {disk_log, Node, Log, Info}, which are sent
from the disk log process when certain events occur, see the functions and in particular the open/1 option notify.
A log can have many owners, but a process cannot own a log more than once. However, the same process can open
the log as a user more than once.

For a disk log process to close its file properly and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously. The users are counted and there must not be any users
left when the disk log process terminates.

Items can be logged synchronously by using functions log/2, blog/2, log_terms/2, and blog_terms/2. For
each of these functions, the caller is put on hold until the items are logged (but not necessarily written, use sync/1 to
ensure that). By adding an a to each of the mentioned function names, we get functions that log items asynchronously.
Asynchronous functions do not wait for the disk log process to write the items to the file, but return the control to
the caller more or less immediately.

When using the internal format for logs, use functions log/2, log_terms/2, alog/2, and alog_terms/2.
These functions log one or more Erlang terms. By prefixing each of the functions with a b (for "binary"), we get
the corresponding blog() functions for the external format. These functions log one or more chunks of bytes.
For example, to log the string "hello" in ASCII format, you can use disk_log:blog(Log, "hello"), or
disk_log:blog(Log, list_to_binary("hello")). The two alternatives are equally efficient.

The blog() functions can also be used for internally formatted logs, but in this case they must be called with binaries
constructed with calls to term_to_binary/1. There is no check to ensure this, it is entirely the responsibility of

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 35

the caller. If these functions are called with binaries that do not correspond to Erlang terms, the chunk/2,3 and
automatic repair functions fail. The corresponding terms (not the binaries) are returned when chunk/2,3 is called.

A collection of open disk logs with the same name running on different nodes is said to be a distributed disk log if
requests made to any of the logs are automatically made to the other logs as well. The members of such a collection
are called individual distributed disk logs, or just distributed disk logs if there is no risk of confusion. There is no order
between the members of such a collection. For example, logged terms are not necessarily written to the node where
the request was made before written to the other nodes. However, a few functions do not make requests to all members
of distributed disk logs, namely info/1, chunk/2,3, bchunk/2,3, chunk_step/3, and lclose/1,2.

An open disk log that is not a distributed disk log is said to be a local disk log. A local disk log is only accessible
from the node where the disk log process runs, whereas a distributed disk log is accessible from all nodes in the Erlang
system, except for those nodes where a local disk log with the same name as the distributed disk log exists. All processes
on nodes that have access to a local or distributed disk log can log items or otherwise change, inspect, or close the log.

It is not guaranteed that all log files of a distributed disk log contain the same log items. No attempt is made to
synchronize the contents of the files. However, as long as at least one of the involved nodes is alive at each time,
all items are logged. When logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs are ignored. If all nodes are down, the disk log functions reply with a nonode error.

Note:

In some applications, it can be unacceptable that replies from individual logs are ignored. An alternative in such
situations is to use many local disk logs instead of one distributed disk log, and implement the distribution without
use of the disk_log module.

Errors are reported differently for asynchronous log attempts and other uses of the disk_log module. When used
synchronously, this module replies with an error message, but when called asynchronously, this module does not know
where to send the error message. Instead, owners subscribing to notifications receive an error_status message.

The disk_log module does not report errors to the error_logger module. It is up to the caller to decide whether
to employ the error logger. Function format_error/1 can be used to produce readable messages from error replies.
However, information events are sent to the error logger in two situations, namely when a log is repaired, or when
a file is missing while reading chunks.

Error message no_such_log means that the specified disk log is not open. Nothing is said about whether the disk
log files exist or not.

Note:

If an attempt to reopen or truncate a log fails (see reopen/2,3 and truncate/1,2) the disk log process
terminates immediately. Before the process terminates, links to owners and blocking processes (see block/1,2)
are removed. The effect is that the links work in one direction only. Any process using a disk log must check for
error message no_such_log if some other process truncates or reopens the log simultaneously.

Data Types
log() = term()
dlog_size() =
 infinity |
 integer() >= 1 |

disk_log

36 | Ericsson AB. All Rights Reserved.: Kernel

 {MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
dlog_format() = external | internal
dlog_head_opt() = none | term() | iodata()
dlog_mode() = read_only | read_write
dlog_type() = halt | wrap
continuation()
Chunk continuation returned by chunk/2,3, bchunk/2,3, or chunk_step/3.

invalid_header() = term()
file_error() = term()

Exports

accessible_logs() -> {[LocalLog], [DistributedLog]}
Types:

LocalLog = DistributedLog = log()

Returns the names of the disk logs accessible on the current node. The first list contains local disk logs and the second
list contains distributed disk logs.

alog(Log, Term) -> notify_ret()
balog(Log, Bytes) -> notify_ret()
Types:

Log = log()
Term = term()
Bytes = iodata()
notify_ret() = ok | {error, no_such_log}

Asynchronously append an item to a disk log. alog/2 is used for internally formatted logs and balog/2 for
externally formatted logs. balog/2 can also be used for internally formatted logs if the binary is constructed with
a call to term_to_binary/1.

Owners subscribing to notifications receive message read_only, blocked_log, or format_external if the
item cannot be written on the log, and possibly one of the messages wrap, full, or error_status if an item
is written on the log. Message error_status is sent if something is wrong with the header function or if a file
error occurs.

alog_terms(Log, TermList) -> notify_ret()
balog_terms(Log, ByteList) -> notify_ret()
Types:

Log = log()
TermList = [term()]
ByteList = [iodata()]
notify_ret() = ok | {error, no_such_log}

Asynchronously append a list of items to a disk log. alog_terms/2 is used for internally formatted logs and
balog_terms/2 for externally formatted logs. balog_terms/2 can also be used for internally formatted logs if
the binaries are constructed with calls to term_to_binary/1.

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 37

Owners subscribing to notifications receive message read_only, blocked_log, or format_external if the
items cannot be written on the log, and possibly one or more of the messages wrap, full, and error_status
if items are written on the log. Message error_status is sent if something is wrong with the header function or
if a file error occurs.

block(Log) -> ok | {error, block_error_rsn()}
block(Log, QueueLogRecords) -> ok | {error, block_error_rsn()}
Types:

Log = log()
QueueLogRecords = boolean()
block_error_rsn() = no_such_log | nonode | {blocked_log, log()}

With a call to block/1,2 a process can block a log. If the blocking process is not an owner of the log, a temporary
link is created between the disk log process and the blocking process. The link ensures that the disk log is unblocked
if the blocking process terminates without first closing or unblocking the log.

Any process can probe a blocked log with info/1 or close it with close/1. The blocking process can also
use functions chunk/2,3, bchunk/2,3, chunk_step/3, and unblock/1 without being affected by the
block. Any other attempt than those mentioned so far to update or read a blocked log suspends the calling process
until the log is unblocked or returns error message {blocked_log, Log}, depending on whether the value of
QueueLogRecords is true or false. QueueLogRecords defaults to true, which is used by block/1.

change_header(Log, Header) -> ok | {error, Reason}
Types:

Log = log()
Header =
 {head, dlog_head_opt()} |
 {head_func, MFA :: {atom(), atom(), list()}}
Reason =
 no_such_log |
 nonode |
 {read_only_mode, Log} |
 {blocked_log, Log} |
 {badarg, head}

Changes the value of option head or head_func for an owner of a disk log.

change_notify(Log, Owner, Notify) -> ok | {error, Reason}
Types:

Log = log()
Owner = pid()
Notify = boolean()
Reason =
 no_such_log |
 nonode |
 {blocked_log, Log} |
 {badarg, notify} |
 {not_owner, Owner}

Changes the value of option notify for an owner of a disk log.

disk_log

38 | Ericsson AB. All Rights Reserved.: Kernel

change_size(Log, Size) -> ok | {error, Reason}
Types:

Log = log()
Size = dlog_size()
Reason =
 no_such_log |
 nonode |
 {read_only_mode, Log} |
 {blocked_log, Log} |
 {new_size_too_small, Log, CurrentSize :: integer() >= 1} |
 {badarg, size} |
 {file_error, file:filename(), file_error()}

Changes the size of an open log. For a halt log, the size can always be increased, but it cannot be decreased to something
less than the current file size.

For a wrap log, both the size and the number of files can always be increased, as long as the number of files does
not exceed 65000. If the maximum number of files is decreased, the change is not valid until the current file is full
and the log wraps to the next file. The redundant files are removed the next time the log wraps around, that is, starts
to log to file number 1.

As an example, assume that the old maximum number of files is 10 and that the new maximum number of files is 6.
If the current file number is not greater than the new maximum number of files, files 7-10 are removed when file 6
is full and the log starts to write to file number 1 again. Otherwise, the files greater than the current file are removed
when the current file is full (for example, if the current file is 8, files 9 and 10 are removed). The files between the
new maximum number of files and the current file (that is, files 7 and 8) are removed the next time file 6 is full.

If the size of the files is decreased, the change immediately affects the current log. It does not change the size of log
files already full until the next time they are used.

If the log size is decreased, for example, to save space, function inc_wrap_file/1 can be used to force the log
to wrap.

chunk(Log, Continuation) -> chunk_ret()
chunk(Log, Continuation, N) -> chunk_ret()
bchunk(Log, Continuation) -> bchunk_ret()
bchunk(Log, Continuation, N) -> bchunk_ret()
Types:

Log = log()
Continuation = start | continuation()
N = integer() >= 1 | infinity
chunk_ret() =
 {Continuation2 :: continuation(), Terms :: [term()]} |
 {Continuation2 :: continuation(),
 Terms :: [term()],
 Badbytes :: integer() >= 0} |
 eof |
 {error, Reason :: chunk_error_rsn()}
bchunk_ret() =
 {Continuation2 :: continuation(), Binaries :: [binary()]} |
 {Continuation2 :: continuation(),
 Binaries :: [binary()],

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 39

 Badbytes :: integer() >= 0} |
 eof |
 {error, Reason :: chunk_error_rsn()}
chunk_error_rsn() =
 no_such_log |
 {format_external, log()} |
 {blocked_log, log()} |
 {badarg, continuation} |
 {not_internal_wrap, log()} |
 {corrupt_log_file, FileName :: file:filename()} |
 {file_error, file:filename(), file_error()}

Efficiently reads the terms that are appended to an internally formatted log. It minimizes disk I/O by reading 64
kilobyte chunks from the file. Functions bchunk/2,3 return the binaries read from the file, they do not call
binary_to_term(). Apart from that, they work just like chunk/2,3.

The first time chunk() (or bchunk()) is called, an initial continuation, the atom start, must be provided. If a
disk log process is running on the current node, terms are read from that log. Otherwise, an individual distributed log
on some other node is chosen, if such a log exists.

When chunk/3 is called, N controls the maximum number of terms that are read from the log in each chunk. Defaults
to infinity, which means that all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of the file is reached.

chunk() returns a tuple {Continuation2, Terms}, where Terms is a list of terms found in the log.
Continuation2 is yet another continuation, which must be passed on to any subsequent calls to chunk(). With
a series of calls to chunk(), all terms from a log can be extracted.

chunk() returns a tuple {Continuation2, Terms, Badbytes} if the log is opened in read-only mode
and the read chunk is corrupt. Badbytes is the number of bytes in the file found not to be Erlang terms in the
chunk. Notice that the log is not repaired. When trying to read chunks from a log opened in read-write mode, tuple
{corrupt_log_file, FileName} is returned if the read chunk is corrupt.

chunk() returns eof when the end of the log is reached, or {error, Reason} if an error occurs. If a wrap log
file is missing, a message is output on the error log.

When chunk/2,3 is used with wrap logs, the returned continuation might not be valid in the next call to chunk().
This is because the log can wrap and delete the file into which the continuation points. To prevent this, the log can
be blocked during the search.

chunk_info(Continuation) -> InfoList | {error, Reason}
Types:

Continuation = continuation()
InfoList = [{node, Node :: node()}, ...]
Reason = {no_continuation, Continuation}

Returns the pair {node, Node}, describing the chunk continuation returned by chunk/2,3, bchunk/2,3, or
chunk_step/3.

Terms are read from the disk log running on Node.

chunk_step(Log, Continuation, Step) ->
 {ok, any()} | {error, Reason}
Types:

disk_log

40 | Ericsson AB. All Rights Reserved.: Kernel

Log = log()
Continuation = start | continuation()
Step = integer()
Reason =
 no_such_log |
 end_of_log |
 {format_external, Log} |
 {blocked_log, Log} |
 {badarg, continuation} |
 {file_error, file:filename(), file_error()}

Can be used with chunk/2,3 and bchunk/2,3 to search through an internally formatted wrap log. It takes as
argument a continuation as returned by chunk/2,3, bchunk/2,3, or chunk_step/3, and steps forward (or
backward) Step files in the wrap log. The continuation returned, points to the first log item in the new current file.

If atom start is specified as continuation, a disk log to read terms from is chosen. A local or distributed disk log on
the current node is preferred to an individual distributed log on some other node.

If the wrap log is not full because all files are not yet used, {error, end_of_log} is returned if trying to step
outside the log.

close(Log) -> ok | {error, close_error_rsn()}
Types:

Log = log()
close_error_rsn() =
 no_such_log |
 nonode |
 {file_error, file:filename(), file_error()}

Closes a local or distributed disk log properly. An internally formatted log must be closed before the Erlang system
is stopped. Otherwise, the log is regarded as unclosed and the automatic repair procedure is activated next time the
log is opened.

The disk log process is not terminated as long as there are owners or users of the log. All owners must close the log,
possibly by terminating. Also, any other process, not only the processes that have opened the log anonymously, can
decrement the users counter by closing the log. Attempts to close a log by a process that is not an owner are ignored
if there are no users.

If the log is blocked by the closing process, the log is also unblocked.

format_error(Error) -> io_lib:chars()
Types:

Error = term()
Given the error returned by any function in this module, this function returns a descriptive string of the error in English.
For file errors, function format_error/1 in module file is called.

inc_wrap_file(Log) -> ok | {error, inc_wrap_error_rsn()}
Types:

Log = log()
inc_wrap_error_rsn() =
 no_such_log |
 nonode |

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 41

 {read_only_mode, log()} |
 {blocked_log, log()} |
 {halt_log, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}
invalid_header() = term()

Forces the internally formatted disk log to start logging to the next log file. It can be used, for example, with
change_size/2 to reduce the amount of disk space allocated by the disk log.

Owners subscribing to notifications normally receive a wrap message, but if an error occurs with a reason tag of
invalid_header or file_error, an error_status message is sent.

info(Log) -> InfoList | {error, no_such_log}
Types:

Log = log()
InfoList = [dlog_info()]
dlog_info() =
 {name, Log :: log()} |
 {file, File :: file:filename()} |
 {type, Type :: dlog_type()} |
 {format, Format :: dlog_format()} |
 {size, Size :: dlog_size()} |
 {mode, Mode :: dlog_mode()} |
 {owners, [{pid(), Notify :: boolean()}]} |
 {users, Users :: integer() >= 0} |
 {status,
 Status :: ok | {blocked, QueueLogRecords :: boolean()}} |
 {node, Node :: node()} |
 {distributed, Dist :: local | [node()]} |
 {head,
 Head ::
 none | {head, term()} | (MFA :: {atom(), atom(), list()})} |
 {no_written_items, NoWrittenItems :: integer() >= 0} |
 {full, Full :: boolean} |
 {no_current_bytes, integer() >= 0} |
 {no_current_items, integer() >= 0} |
 {no_items, integer() >= 0} |
 {current_file, integer() >= 1} |
 {no_overflows,
 {SinceLogWasOpened :: integer() >= 0,
 SinceLastInfo :: integer() >= 0}}

Returns a list of {Tag, Value} pairs describing the log. If a disk log process is running on the current node, that
log is used as source of information, otherwise an individual distributed log on some other node is chosen, if such
a log exists.

The following pairs are returned for all logs:

{name, Log}

Log is the log name as specified by the open/1 option name.

disk_log

42 | Ericsson AB. All Rights Reserved.: Kernel

{file, File}

For halt logs File is the filename, and for wrap logs File is the base name.

{type, Type}

Type is the log type as specified by the open/1 option type.

{format, Format}

Format is the log format as specified by the open/1 option format.

{size, Size}

Size is the log size as specified by the open/1 option size, or the size set by change_size/2. The value
set by change_size/2 is reflected immediately.

{mode, Mode}

Mode is the log mode as specified by the open/1 option mode.

{owners, [{pid(), Notify}]}

Notify is the value set by the open/1 option notify or function change_notify/3 for the owners of
the log.

{users, Users}

Users is the number of anonymous users of the log, see the open/1 option linkto.

{status, Status}

Status is ok or {blocked, QueueLogRecords} as set by functions block/1,2 and unblock/1.

{node, Node}

The information returned by the current invocation of function info/1 is gathered from the disk log process
running on Node.

{distributed, Dist}

If the log is local on the current node, Dist has the value local, otherwise all nodes where the log is distributed
are returned as a list.

The following pairs are returned for all logs opened in read_write mode:

{head, Head}

Depending on the value of the open/1 options head and head_func, or set by function
change_header/2, the value of Head is none (default), {head, H} (head option), or {M,F,A}
(head_func option).

{no_written_items, NoWrittenItems}

NoWrittenItems is the number of items written to the log since the disk log process was created.

The following pair is returned for halt logs opened in read_write mode:

{full, Full}

Full is true or false depending on whether the halt log is full or not.

The following pairs are returned for wrap logs opened in read_write mode:

{no_current_bytes, integer() >= 0}

The number of bytes written to the current wrap log file.

{no_current_items, integer() >= 0}

The number of items written to the current wrap log file, header inclusive.

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 43

{no_items, integer() >= 0}

The total number of items in all wrap log files.

{current_file, integer()}

The ordinal for the current wrap log file in the range 1..MaxNoFiles, where MaxNoFiles is specified by
the open/1 option size or set by change_size/2.

{no_overflows, {SinceLogWasOpened, SinceLastInfo}}

SinceLogWasOpened (SinceLastInfo) is the number of times a wrap log file has been filled up and a
new one is opened or inc_wrap_file/1 has been called since the disk log was last opened (info/1 was
last called). The first time info/2 is called after a log was (re)opened or truncated, the two values are equal.

Notice that functions chunk/2,3, bchunk/2,3, and chunk_step/3 do not affect any value returned by
info/1.

lclose(Log) -> ok | {error, lclose_error_rsn()}
lclose(Log, Node) -> ok | {error, lclose_error_rsn()}
Types:

Log = log()
Node = node()
lclose_error_rsn() =
 no_such_log | {file_error, file:filename(), file_error()}

lclose/1 closes a local log or an individual distributed log on the current node.

lclose/2 closes an individual distributed log on the specified node if the node is not the current one.

lclose(Log) is equivalent to lclose(Log, node()). See also close/1.

If no log with the specified name exist on the specified node, no_such_log is returned.

log(Log, Term) -> ok | {error, Reason :: log_error_rsn()}
blog(Log, Bytes) -> ok | {error, Reason :: log_error_rsn()}
Types:

Log = log()
Term = term()
Bytes = iodata()
log_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {format_external, log()} |
 {blocked_log, log()} |
 {full, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

Synchronously appends a term to a disk log. Returns ok or {error, Reason} when the term is written to disk. If
the log is distributed, ok is returned, unless all nodes are down. Terms are written by the ordinary write() function
of the operating system. Hence, it is not guaranteed that the term is written to disk, it can linger in the operating system
kernel for a while. To ensure that the item is written to disk, function sync/1 must be called.

disk_log

44 | Ericsson AB. All Rights Reserved.: Kernel

log/2 is used for internally formatted logs, and blog/2 for externally formatted logs. blog/2 can also be used
for internally formatted logs if the binary is constructed with a call to term_to_binary/1.

Owners subscribing to notifications are notified of an error with an error_status message if the error reason tag
is invalid_header or file_error.

log_terms(Log, TermList) ->
 ok | {error, Resaon :: log_error_rsn()}
blog_terms(Log, BytesList) ->
 ok | {error, Reason :: log_error_rsn()}
Types:

Log = log()
TermList = [term()]
BytesList = [iodata()]
log_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {format_external, log()} |
 {blocked_log, log()} |
 {full, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

Synchronously appends a list of items to the log. It is more efficient to use these functions instead of functions log/2
and blog/2. The specified list is split into as large sublists as possible (limited by the size of wrap log files), and
each sublist is logged as one single item, which reduces the overhead.

log_terms/2 is used for internally formatted logs, and blog_terms/2 for externally formatted logs.
blog_terms/2 can also be used for internally formatted logs if the binaries are constructed with calls to
term_to_binary/1.

Owners subscribing to notifications are notified of an error with an error_status message if the error reason tag
is invalid_header or file_error.

open(ArgL) -> open_ret() | dist_open_ret()
Types:

ArgL = dlog_options()
dlog_options() = [dlog_option()]
dlog_option() =
 {name, Log :: log()} |
 {file, FileName :: file:filename()} |
 {linkto, LinkTo :: none | pid()} |
 {repair, Repair :: true | false | truncate} |
 {type, Type :: dlog_type()} |
 {format, Format :: dlog_format()} |
 {size, Size :: dlog_size()} |
 {distributed, Nodes :: [node()]} |
 {notify, boolean()} |
 {head, Head :: dlog_head_opt()} |
 {head_func, MFA :: {atom(), atom(), list()}} |
 {quiet, boolean()} |

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 45

 {mode, Mode :: dlog_mode()}
open_ret() = ret() | {error, open_error_rsn()}
ret() =
 {ok, Log :: log()} |
 {repaired,
 Log :: log(),
 {recovered, Rec :: integer() >= 0},
 {badbytes, Bad :: integer() >= 0}}
dist_open_ret() =
 {[{node(), ret()}], [{node(), {error, dist_error_rsn()}}]}
dist_error_rsn() = nodedown | open_error_rsn()
open_error_rsn() =
 no_such_log |
 {badarg, term()} |
 {size_mismatch,
 CurrentSize :: dlog_size(),
 NewSize :: dlog_size()} |
 {arg_mismatch,
 OptionName :: dlog_optattr(),
 CurrentValue :: term(),
 Value :: term()} |
 {name_already_open, Log :: log()} |
 {open_read_write, Log :: log()} |
 {open_read_only, Log :: log()} |
 {need_repair, Log :: log()} |
 {not_a_log_file, FileName :: file:filename()} |
 {invalid_index_file, FileName :: file:filename()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()} |
 {node_already_open, Log :: log()}
dlog_optattr() =
 name |
 file |
 linkto |
 repair |
 type |
 format |
 size |
 distributed |
 notify |
 head |
 head_func |
 mode
dlog_size() =
 infinity |
 integer() >= 1 |
 {MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}

Parameter ArgL is a list of the following options:

disk_log

46 | Ericsson AB. All Rights Reserved.: Kernel

{name, Log}

Specifies the log name. This name must be passed on as a parameter in all subsequent logging operations. A
name must always be supplied.

{file, FileName}

Specifies the name of the file to be used for logged terms. If this value is omitted and the log name is an atom or
a string, the filename defaults to lists:concat([Log, ".LOG"]) for halt logs.

For wrap logs, this is the base name of the files. Each file in a wrap log is called <base_name>.N, where N is
an integer. Each wrap log also has two files called <base_name>.idx and <base_name>.siz.

{linkto, LinkTo}

If LinkTo is a pid, it becomes an owner of the log. If LinkTo is none, the log records that it is used
anonymously by some process by incrementing the users counter. By default, the process that calls open/1
owns the log.

{repair, Repair}

If Repair is true, the current log file is repaired, if needed. As the restoration is initiated, a message is
output on the error log. If false is specified, no automatic repair is attempted. Instead, the tuple {error,
{need_repair, Log}} is returned if an attempt is made to open a corrupt log file. If truncate is specified,
the log file becomes truncated, creating an empty log. Defaults to true, which has no effect on logs opened
in read-only mode.

{type, Type}

The log type. Defaults to halt.

{format, Format}

Disk log format. Defaults to internal.

{size, Size}

Log size.

When a halt log has reached its maximum size, all attempts to log more items are rejected. Defaults to infinity,
which for halt implies that there is no maximum size.

For wrap logs, parameter Size can be a pair {MaxNoBytes, MaxNoFiles} or infinity. In the latter
case, if the files of an existing wrap log with the same name can be found, the size is read from the existing wrap
log, otherwise an error is returned.

Wrap logs write at most MaxNoBytes bytes on each file and use MaxNoFiles files before starting all over
with the first wrap log file. Regardless of MaxNoBytes, at least the header (if there is one) and one item are
written on each wrap log file before wrapping to the next file.

When opening an existing wrap log, it is not necessary to supply a value for option Size, but any supplied
value must equal the current log size, otherwise the tuple {error, {size_mismatch, CurrentSize,
NewSize}} is returned.

{distributed, Nodes}

This option can be used for adding members to a distributed disk log. Defaults to [], which means that the log
is local on the current node.

{notify, boolean()}

If true, the log owners are notified when certain log events occur. Defaults to false. The owners are sent one
of the following messages when an event occurs:

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 47

{disk_log, Node, Log, {wrap, NoLostItems}}

Sent when a wrap log has filled up one of its files and a new file is opened. NoLostItems is the number
of previously logged items that were lost when truncating existing files.

{disk_log, Node, Log, {truncated, NoLostItems}}

Sent when a log is truncated or reopened. For halt logs NoLostItems is the number of items written on
the log since the disk log process was created. For wrap logs NoLostItems is the number of items on
all wrap log files.

{disk_log, Node, Log, {read_only, Items}}

Sent when an asynchronous log attempt is made to a log file opened in read-only mode. Items is the items
from the log attempt.

{disk_log, Node, Log, {blocked_log, Items}}

Sent when an asynchronous log attempt is made to a blocked log that does not queue log attempts. Items
is the items from the log attempt.

{disk_log, Node, Log, {format_external, Items}}

Sent when function alog/2 or alog_terms/2 is used for internally formatted logs. Items is the items
from the log attempt.

{disk_log, Node, Log, full}

Sent when an attempt to log items to a wrap log would write more bytes than the limit set by option size.

{disk_log, Node, Log, {error_status, Status}}

Sent when the error status changes. The error status is defined by the outcome of the last attempt to log
items to the log, or to truncate the log, or the last use of function sync/1, inc_wrap_file/1, or
change_size/2. Status is either ok or {error, Error}, the former is the initial value.

{head, Head}

Specifies a header to be written first on the log file. If the log is a wrap log, the item Head is written first in each
new file. Head is to be a term if the format is internal, otherwise a sequence of bytes. Defaults to none,
which means that no header is written first on the file.

{head_func, {M,F,A}}

Specifies a function to be called each time a new log file is opened. The call M:F(A) is assumed to return {ok,
Head}. The item Head is written first in each file. Head is to be a term if the format is internal, otherwise
a sequence of bytes.

{mode, Mode}

Specifies if the log is to be opened in read-only or read-write mode. Defaults to read_write.

{quiet, Boolean}

Specifies if messages will be sent to error_logger on recoverable errors with the log files. Defaults to false.

open/1 returns {ok, Log} if the log file is successfully opened. If the file is successfully repaired, the tuple
{repaired, Log, {recovered, Rec}, {badbytes, Bad}} is returned, where Rec is the number
of whole Erlang terms found in the file and Bad is the number of bytes in the file that are non-Erlang terms. If the
parameter distributed is specified, open/1 returns a list of successful replies and a list of erroneous replies.
Each reply is tagged with the node name.

When a disk log is opened in read-write mode, any existing log file is checked for. If there is none, a new empty log is
created, otherwise the existing file is opened at the position after the last logged item, and the logging of items starts

disk_log

48 | Ericsson AB. All Rights Reserved.: Kernel

from there. If the format is internal and the existing file is not recognized as an internally formatted log, a tuple
{error, {not_a_log_file, FileName}} is returned.

open/1 cannot be used for changing the values of options of an open log. When there are prior owners or users of
a log, all option values except name, linkto, and notify are only checked against the values supplied before as
option values to function open/1, change_header/2, change_notify/3, or change_size/2. Thus, none
of the options except name is mandatory. If some specified value differs from the current value, a tuple {error,
{arg_mismatch, OptionName, CurrentValue, Value}} is returned.

Note:

If an owner attempts to open a log as owner once again, it is acknowledged with the return value {ok, Log},
but the state of the disk log is not affected.

If a log with a specified name is local on some node, and one tries to open the log distributed on the same node, the
tuple {error, {node_already_open, Log}} is returned. The same tuple is returned if the log is distributed
on some node, and one tries to open the log locally on the same node. Opening individual distributed disk logs for the
first time adds those logs to a (possibly empty) distributed disk log. The supplied option values are used on all nodes
mentioned by option distributed. Individual distributed logs know nothing about each other's option values, so
each node can be given unique option values by creating a distributed log with many calls to open/1.

A log file can be opened more than once by giving different values to option name or by using the same file when
distributing a log on different nodes. It is up to the user of module disk_log to ensure that not more than one disk
log process has write access to any file, otherwise the file can be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed,Reason},[{disk_log,open,1}]}. The function returns {error, Reason} for all other
errors.

pid2name(Pid) -> {ok, Log} | undefined
Types:

Pid = pid()
Log = log()

Returns the log name given the pid of a disk log process on the current node, or undefined if the specified pid is
not a disk log process.

This function is meant to be used for debugging only.

reopen(Log, File) -> ok | {error, reopen_error_rsn()}
reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
Types:

Log = log()
File = file:filename()
Head = term()
BHead = iodata()
reopen_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |

disk_log

Ericsson AB. All Rights Reserved.: Kernel | 49

 {same_file_name, log()} |
 {invalid_index_file, file:filename()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

Renames the log file to File and then recreates a new log file. If a wrap log exists, File is used as the base name of
the renamed files. By default the header given to open/1 is written first in the newly opened log file, but if argument
Head or BHead is specified, this item is used instead. The header argument is used only once. Next time a wrap log
file is opened, the header given to open/1 is used.

reopen/2,3 are used for internally formatted logs, and breopen/3 for externally formatted logs.

Owners subscribing to notifications receive a truncate message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{failed,Error},
[{disk_log,Fun,Arity}]}. Other processes having requests queued receive the message {disk_log,
Node, {error, disk_log_stopped}}.

sync(Log) -> ok | {error, sync_error_rsn()}
Types:

Log = log()
sync_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {file_error, file:filename(), file_error()}

Ensures that the contents of the log are written to the disk. This is usually a rather expensive operation.

truncate(Log) -> ok | {error, trunc_error_rsn()}
truncate(Log, Head) -> ok | {error, trunc_error_rsn()}
btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()}
Types:

Log = log()
Head = term()
BHead = iodata()
trunc_error_rsn() =
 no_such_log |
 nonode |
 {read_only_mode, log()} |
 {blocked_log, log()} |
 {invalid_header, invalid_header()} |
 {file_error, file:filename(), file_error()}

Removes all items from a disk log. If argument Head or BHead is specified, this item is written first in the newly
truncated log, otherwise the header given to open/1 is used. The header argument is used only once. Next time a
wrap log file is opened, the header given to open/1 is used.

truncate/1,2 are used for internally formatted logs, and btruncate/2 for externally formatted logs.

Owners subscribing to notifications receive a truncate message.

disk_log

50 | Ericsson AB. All Rights Reserved.: Kernel

If the attempt to truncate the log fails, the disk log process terminates with the EXIT message {{failed,Reason},
[{disk_log,Fun,Arity}]}. Other processes having requests queued receive the message {disk_log,
Node, {error, disk_log_stopped}}.

unblock(Log) -> ok | {error, unblock_error_rsn()}
Types:

Log = log()
unblock_error_rsn() =
 no_such_log |
 nonode |
 {not_blocked, log()} |
 {not_blocked_by_pid, log()}

Unblocks a log. A log can only be unblocked by the blocking process.

See Also
file(3), pg2(3), wrap_log_reader(3)

erl_boot_server

Ericsson AB. All Rights Reserved.: Kernel | 51

erl_boot_server
Erlang module

This server is used to assist diskless Erlang nodes that fetch all Erlang code from another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime system is started with command-
line flag -loader inet. All hosts specified with command-line flag -hosts Host must have one instance of
this server running.

This server can be started with the Kernel configuration parameter start_boot_server.

The erl_boot_server can read regular files and files in archives. See code(3) and erl_prim_loader(3)
in ERTS.

Warning:

The support for loading code from archive files is experimental. It is released before it is ready to obtain early
feedback. The file format, semantics, interfaces, and so on, can be changed in a future release.

Exports

add_slave(Slave) -> ok | {error, Reason}
Types:

Slave = Host
Host = inet:ip_address() | inet:hostname()
Reason = {badarg, Slave}

Adds a Slave node to the list of allowed slave hosts.

delete_slave(Slave) -> ok | {error, Reason}
Types:

Slave = Host
Host = inet:ip_address() | inet:hostname()
Reason = {badarg, Slave}

Deletes a Slave node from the list of allowed slave hosts.

start(Slaves) -> {ok, Pid} | {error, Reason}
Types:

Slaves = [Host]
Host = inet:ip_address() | inet:hostname()
Pid = pid()
Reason = {badarg, Slaves}

Starts the boot server. Slaves is a list of IP addresses for hosts, which are allowed to use this server as a boot server.

start_link(Slaves) -> {ok, Pid} | {error, Reason}
Types:

erl_boot_server

52 | Ericsson AB. All Rights Reserved.: Kernel

Slaves = [Host]
Host = inet:ip_address() | inet:hostname()
Pid = pid()
Reason = {badarg, Slaves}

Starts the boot server and links to the caller. This function is used to start the server if it is included in a supervision tree.

which_slaves() -> Slaves
Types:

Slaves = [Slave]
Slave =
 {Netmask :: inet:ip_address(), Address :: inet:ip_address()}

Returns the current list of allowed slave hosts.

SEE ALSO
erts:init(3), erts:erl_prim_loader(3)

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 53

erl_ddll
Erlang module

This module provides an interface for loading and unloading Erlang linked-in drivers in runtime.

Note:

This is a large reference document. For casual use of this module, and for most real world applications, the
descriptions of functions load/2 and unload/1 are enough to getting started.

The driver is to be provided as a dynamically linked library in an object code format specific for the platform in use,
that is, .so files on most Unix systems and .ddl files on Windows. An Erlang linked-in driver must provide specific
interfaces to the emulator, so this module is not designed for loading arbitrary dynamic libraries. For more information
about Erlang drivers, see erts:erl_driver .

When describing a set of functions (that is, a module, a part of a module, or an application), executing in a process
and wanting to use a ddll-driver, we use the term user. A process can have many users (different modules needing the
same driver) and many processes running the same code, making up many users of a driver.

In the basic scenario, each user loads the driver before starting to use it and unloads the driver when done. The reference
counting keeps track of processes and the number of loads by each process. This way the driver is only unloaded
when no one wants it (it has no user). The driver also keeps track of ports that are opened to it. This enables delay of
unloading until all ports are closed, or killing of all ports that use the driver when it is unloaded.

The interface supports two basic scenarios of loading and unloading. Each scenario can also have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are as follows:

Load and Unload on a "When Needed Basis"

This (most common) scenario simply supports that each user of the driver loads it when needed and unloads it
when no longer needed. The driver is always reference counted and as long as a process keeping the driver loaded
is still alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not concerned with if the driver is already loaded from the file system or if the object code must be loaded from
file system.

The following two pairs of functions support this scenario:

load/2 and unload/1

When using the load/unload interfaces, the driver is not unloaded until the last port using the driver is
closed. Function unload/1 can return immediately, as the users have no interrest in when the unloading
occurs. The driver is unloaded when no one needs it any longer.

If a process having the driver loaded dies, it has the same effect as if unloading is done.

When loading, function load/2 returns ok when any instance of the driver is present. Thus, if a driver is
waiting to get unloaded (because of open ports), it simply changes state to no longer need unloading.

load_driver/2 and unload_driver/1

These interfaces are intended to be used when it is considered an error that ports are open to a driver that no
user has loaded. The ports that are still open when the last user calls unload_driver/1 or when the last
process having the driver loaded dies, are killed with reason driver_unloaded.

The function names load_driver and unload_driver are kept for backward compatibility.

erl_ddll

54 | Ericsson AB. All Rights Reserved.: Kernel

Loading and Reloading for Code Replacement

This scenario can occur if the driver code needs replacement during operation of the Erlang emulator.
Implementing driver code replacement is a little more tedious than Beam code replacement, as one driver cannot
be loaded as both "old" and "new" code. All users of a driver must have it closed (no open ports) before the old
code can be unloaded and the new code can be loaded.

The unloading/loading is done as one atomic operation, blocking all processes in the system from using the driver
in question while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process starts, the driver is loaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when a reload is already in progress is always an error. Using the high-level functions, it is
also an error to demand reloading when more than one user has the driver loaded.

To simplify driver replacement, avoid designing your system so that more than one user has the driver loaded.

The two functions for reloading drivers are to be used together with corresponding load functions to support the
two different behaviors concerning open ports:

load/2 and reload/2

This pair of functions is used when reloading is to be done after the last open port to the driver is closed.

As reload/2 waits for the reloading to occur, a misbehaving process keeping open ports to the driver
(or keeping the driver loaded) can cause infinite waiting for reload. Time-outs must be provided outside of
the process demanding the reload or by using the low-level interface try_load/3 in combination with
driver monitors.

load_driver/2 and reload_driver/2

This pair of functions are used when open ports to the driver are to be killed with reason
driver_unloaded to allow for new driver code to get loaded.

However, if another process has the driver loaded, calling reload_driver returns error code
pending_process. As stated earlier, the recommended design is to not allow other users than the "driver
reloader" to demand loading of the driver in question.

Data Types
driver() = iolist() | atom()
path() = string() | atom()

Exports

demonitor(MonitorRef) -> ok
Types:

MonitorRef = reference()
Removes a driver monitor in much the same way as erlang:demonitor/1 in ERTS does with process monitors.
For details about how to create driver monitors, see monitor/2, try_load/3, and try_unload/2.

The function throws a badarg exception if the parameter is not a reference().

format_error(ErrorDesc) -> string()
Types:

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 55

ErrorDesc = term()
Takes an ErrorDesc returned by load, unload, or reload functions and returns a string that describes the error or
warning.

Note:

Because of peculiarities in the dynamic loading interfaces on different platforms, the returned string is only
guaranteed to describe the correct error if format_error/1 is called in the same instance of the Erlang virtual
machine as the error appeared in (meaning the same operating system process).

info() -> AllInfoList
Types:

AllInfoList = [DriverInfo]
DriverInfo = {DriverName, InfoList}
DriverName = string()
InfoList = [InfoItem]
InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples {DriverName, InfoList}, where InfoList is the result of calling info/1 for that
DriverName. Only dynamically linked-in drivers are included in the list.

info(Name) -> InfoList
Types:

Name = driver()
InfoList = [InfoItem, ...]
InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples {Tag, Value}, where Tag is the information item and Value is the result of calling
info/2 with this driver name and this tag. The result is a tuple list containing all information available about a driver.

The following tags appears in the list:

• processes

• driver_options

• port_count

• linked_in_driver

• permanent

• awaiting_load

• awaiting_unload

For a detailed description of each value, see info/2.

The function throws a badarg exception if the driver is not present in the system.

info(Name, Tag) -> Value
Types:

Name = driver()
Tag =
 processes |
 driver_options |

erl_ddll

56 | Ericsson AB. All Rights Reserved.: Kernel

 port_count |
 linked_in_driver |
 permanent |
 awaiting_load |
 awaiting_unload
Value = term()

Returns specific information about one aspect of a driver. Parameter Tag specifies which aspect to get information
about. The return Value differs between different tags:

processes

Returns all processes containing users of the specific drivers as a list of tuples {pid(),integer() >= 0},
where integer() denotes the number of users in process pid().

driver_options

Returns a list of the driver options provided when loading, and any options set by the driver during initialization.
The only valid option is kill_ports.

port_count

Returns the number of ports (an integer() >= 0) using the driver.

linked_in_driver

Returns a boolean(), which is true if the driver is a statically linked-in one, otherwise false.

permanent

Returns a boolean(), which is true if the driver has made itself permanent (and is not a statically linked-
in driver), otherwise false.

awaiting_load

Returns a list of all processes having monitors for loading active. Each process is returned as
{pid(),integer() >= 0}, where integer() is the number of monitors held by process pid().

awaiting_unload

Returns a list of all processes having monitors for unloading active. Each process is returned as
{pid(),integer() >= 0}, where integer() is the number of monitors held by process pid().

If option linked_in_driver or permanent returns true, all other options return linked_in_driver or
permanent, respectively.

The function throws a badarg exception if the driver is not present in the system or if the tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = term()

Loads and links the dynamic driver Name. Path is a file path to the directory containing the driver. Name must be a
sharable object/dynamic library. Two drivers with different Path parameters cannot be loaded under the same name.
Name is a string or atom containing at least one character.

The Name specified is to correspond to the filename of the dynamically loadable object file residing in the directory
specified as Path, but without the extension (that is, .so). The driver name provided in the driver initialization
routine must correspond with the filename, in much the same way as Erlang module names correspond to the names
of the .beam files.

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 57

If the driver was previously unloaded, but is still present because of open ports to it, a call to load/2 stops the
unloading and keeps the driver (as long as Path is the same), and ok is returned. If you really want the object code to
be reloaded, use reload/2 or the low-level interface try_load/3 instead. See also the description of different
scenarios for loading/unloading in the introduction.

If more than one process tries to load an already loaded driver with the same Path, or if the same process tries to load
it many times, the function returns ok. The emulator keeps track of the load/2 calls, so that a corresponding number
of unload/2 calls must be done from the same process before the driver gets unloaded. It is therefore safe for an
application to load a driver that is shared between processes or applications when needed. It can safely be unloaded
without causing trouble for other parts of the system.

It is not allowed to load multiple drivers with the same name but with different Path parameters.

Note:

Path is interpreted literally, so that all loaders of the same driver must specify the same literal Path string,
although different paths can point out the same directory in the file system (because of use of relative paths and
links).

On success, the function returns ok. On failure, the return value is {error,ErrorDesc}, where ErrorDesc is
an opaque term to be translated into human readable form by function format_error/1.

For more control over the error handling, use the try_load/3 interface instead.

The function throws a badarg exception if the parameters are not specified as described here.

load_driver(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = term()

Works essentially as load/2, but loads the driver with other options. All ports using the driver are killed with reason
driver_unloaded when the driver is to be unloaded.

The number of loads and unloads by different users influences the loading and unloading of a driver file. The port
killing therefore only occurs when the last user unloads the driver, or when the last process having loaded the driver
exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Using try_load/3 with
{driver_options,[kill_ports]} in the option list gives the same effect regarding the port killing.

The function throws a badarg exception if the parameters are not specified as described here.

loaded_drivers() -> {ok, Drivers}
Types:

Drivers = [Driver]
Driver = string()

Returns a list of all the available drivers, both (statically) linked-in and dynamically loaded ones.

The driver names are returned as a list of strings rather than a list of atoms for historical reasons.

For more information about drivers, see info.

erl_ddll

58 | Ericsson AB. All Rights Reserved.: Kernel

monitor(Tag, Item) -> MonitorRef
Types:

Tag = driver
Item = {Name, When}
Name = driver()
When = loaded | unloaded | unloaded_only
MonitorRef = reference()

Creates a driver monitor and works in many ways as erlang:monitor/2 in ERTS, does for processes. When
a driver changes state, the monitor results in a monitor message that is sent to the calling process. MonitorRef
returned by this function is included in the message sent.

As with process monitors, each driver monitor set only generates one single message. The monitor is "destroyed" after
the message is sent, so it is then not needed to call demonitor/1.

MonitorRef can also be used in subsequent calls to demonitor/1 to remove a monitor.

The function accepts the following parameters:

Tag

The monitor tag is always driver, as this function can only be used to create driver monitors. In the future,
driver monitors will be integrated with process monitors, why this parameter has to be specified for consistence.

Item

Parameter Item specifies which driver to monitor (the driver name) and which state change to monitor. The
parameter is a tuple of arity two whose first element is the driver name and second element is one of the following:

loaded

Notifies when the driver is reloaded (or loaded if loading is underway). It only makes sense to monitor drivers
that are in the process of being loaded or reloaded. A future driver name for loading cannot be monitored.
That only results in a DOWN message sent immediately. Monitoring for loading is therefore most useful when
triggered by function try_load/3, where the monitor is created because the driver is in such a pending
state.

Setting a driver monitor for loading eventually leads to one of the following messages being sent:

{'UP', reference(), driver, Name, loaded}

This message is sent either immediately if the driver is already loaded and no reloading is pending, or
when reloading is executed if reloading is pending.

The user is expected to know if reloading is demanded before creating a monitor for loading.

{'UP', reference(), driver, Name, permanent}

This message is sent if reloading was expected, but the (old) driver made itself permanent before
reloading. It is also sent if the driver was permanent or statically linked-in when trying to create the
monitor.

{'DOWN', reference(), driver, Name, load_cancelled}

This message arrives if reloading was underway, but the requesting user cancelled it by dying or calling
try_unload/2 (or unload/1/unload_driver/1) again before it was reloaded.

{'DOWN', reference(), driver, Name, {load_failure, Failure}}

This message arrives if reloading was underway but the loading for some reason failed. The Failure
term is one of the errors that can be returned from try_load/3. The error term can be passed to

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 59

format_error/1 for translation into human readable form. Notice that the translation must be done
in the same running Erlang virtual machine as the error was detected in.

unloaded

Monitors when a driver gets unloaded. If one monitors a driver that is not present in the system, one
immediately gets notified that the driver got unloaded. There is no guarantee that the driver was ever loaded.

A driver monitor for unload eventually results in one of the following messages being sent:

{'DOWN', reference(), driver, Name, unloaded}

The monitored driver instance is now unloaded. As the unload can be a result of a reload/2 request,
the driver can once again have been loaded when this message arrives.

{'UP', reference(), driver, Name, unload_cancelled}

This message is sent if unloading was expected, but while the driver was waiting for all ports to get
closed, a new user of the driver appeared, and the unloading was cancelled.

This message appears if {ok, pending_driver} was returned from try_unload/2 for the last
user of the driver, and then {ok, already_loaded} is returned from a call to try_load/3.

If one really wants to monitor when the driver gets unloaded, this message distorts the picture, because
no unloading was done. Option unloaded_only creates a monitor similar to an unloaded monitor,
but never results in this message.

{'UP', reference(), driver, Name, permanent}

This message is sent if unloading was expected, but the driver made itself permanent before unloading.
It is also sent if trying to monitor a permanent or statically linked-in driver.

unloaded_only

A monitor created as unloaded_only behaves exactly as one created as unloaded except that the
{'UP', reference(), driver, Name, unload_cancelled} message is never sent, but the
monitor instead persists until the driver really gets unloaded.

The function throws a badarg exception if the parameters are not specified as described here.

reload(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = pending_process | OpaqueError
OpaqueError = term()

Reloads the driver named Name from a possibly different Path than previously used. This function is used in the
code change scenario described in the introduction.

If there are other users of this driver, the function returns {error, pending_process}, but if there are no other
users, the function call hangs until all open ports are closed.

Note:

Avoid mixing multiple users with driver reload requests.

To avoid hanging on open ports, use function try_load/3 instead.

The Name and Path parameters have exactly the same meaning as when calling the plain function load/2.

erl_ddll

60 | Ericsson AB. All Rights Reserved.: Kernel

On success, the function returns ok. On failure, the function returns an opaque error, except the pending_process
error described earlier. The opaque errors are to be translated into human readable form by function
format_error/1.

For more control over the error handling, use the try_load/3 interface instead.

The function throws a badarg exception if the parameters are not specified as described here.

reload_driver(Path, Name) -> ok | {error, ErrorDesc}
Types:

Path = path()
Name = driver()
ErrorDesc = pending_process | OpaqueError
OpaqueError = term()

Works exactly as reload/2, but for drivers loaded with the load_driver/2 interface.

As this interface implies that ports are killed when the last user disappears, the function does not hang waiting for
ports to get closed.

For more details, see scenarios in this module description and the function description for reload/2.

The function throws a badarg exception if the parameters are not specified as described here.

try_load(Path, Name, OptionList) ->
 {ok, Status} |
 {ok, PendingStatus, Ref} |
 {error, ErrorDesc}
Types:

Path = path()
Name = driver()
OptionList = [Option]
Option =
 {driver_options, DriverOptionList} |
 {monitor, MonitorOption} |
 {reload, ReloadOption}
DriverOptionList = [DriverOption]
DriverOption = kill_ports
MonitorOption = ReloadOption = pending_driver | pending
Status = loaded | already_loaded | PendingStatus
PendingStatus = pending_driver | pending_process
Ref = reference()
ErrorDesc = ErrorAtom | OpaqueError
ErrorAtom =
 linked_in_driver |
 inconsistent |
 permanent |
 not_loaded_by_this_process |
 not_loaded |
 pending_reload |

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 61

 pending_process
OpaqueError = term()

Provides more control than the load/2/reload/2 and load_driver/2/reload_driver/2 interfaces. It
never waits for completion of other operations related to the driver, but immediately returns the status of the driver
as one of the following:

{ok, loaded}

The driver was loaded and is immediately usable.

{ok, already_loaded}

The driver was already loaded by another process or is in use by a living port, or both. The load by you is registered
and a corresponding try_unload is expected sometime in the future.

{ok, pending_driver}or {ok, pending_driver, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded (open ports use it). Still, unload is expected when you are done with the driver. This return
value mostly occurs when options {reload,pending_driver} or {reload,pending} are used, but
can occur when another user is unloading a driver in parallel and driver option kill_ports is set. In other
words, this return value always needs to be handled.

{ok, pending_process}or {ok, pending_process, reference()}

The load request is registered, but the loading is delayed because an earlier instance of the driver is still waiting
to get unloaded by another user (not only by a port, in which case {ok,pending_driver} would have been
returned). Still, unload is expected when you are done with the driver. This return value only occurs when option
{reload,pending} is used.

When the function returns {ok, pending_driver} or {ok, pending_process}, one can get information
about when the driver is actually loaded by using option {monitor, MonitorOption}.

When monitoring is requested, and a corresponding {ok, pending_driver} or {ok, pending_process}
would be returned, the function instead returns a tuple {ok, PendingStatus, reference()} and the process
then gets a monitor message later, when the driver gets loaded. The monitor message to expect is described in the
function description of monitor/2.

Note:

In case of loading, monitoring can not only get triggered by using option {reload, ReloadOption}, but
also in special cases where the load error is transient. Thus, {monitor, pending_driver} is to be used
under basically all real world circumstances.

The function accepts the following parameters:

Path

The file system path to the directory where the driver object file is located. The filename of the object file (minus
extension) must correspond to the driver name (used in parameter Name) and the driver must identify itself with
the same name. Path can be provided as an iolist(), meaning it can be a list of other iolist()s, characters (8-
bit integers), or binaries, all to be flattened into a sequence of characters.

The (possibly flattened) Path parameter must be consistent throughout the system. A driver is to, by all users,
be loaded using the same literal Path. The exception is when reloading is requested, in which case Path can
be specified differently. Notice that all users trying to load the driver later need to use the new Path if Path
is changed using a reload option. This is yet another reason to have only one loader of a driver one wants
to upgrade in a running system.

erl_ddll

62 | Ericsson AB. All Rights Reserved.: Kernel

Name

This parameter is the name of the driver to be used in subsequent calls to function erlang:open_port in
ERTS. The name can be specified as an iolist() or an atom(). The name specified when loading is used
to find the object file (with the help of Path and the system-implied extension suffix, that is, .so). The name
by which the driver identifies itself must also be consistent with this Name parameter, much as the module name
of a Beam file much corresponds to its filename.

OptionList

Some options can be specified to control the loading operation. The options are specified as a list of two-tuples.
The tuples have the following values and meanings:

{driver_options, DriverOptionList}

This is to provide options that changes its general behavior and "sticks" to the driver throughout its lifespan.

The driver options for a specified driver name need always to be consistent, even when the driver is
reloaded, meaning that they are as much a part of the driver as the name.

The only allowed driver option is kill_ports, which means that all ports opened to the driver are killed
with exit reason driver_unloaded when no process any longer has the driver loaded. This situation
arises either when the last user calls try_unload/2, or when the last process having loaded the driver
exits.

{monitor, MonitorOption}

A MonitorOption tells try_load/3 to trigger a driver monitor under certain conditions. When the
monitor is triggered, the function returns a three-tuple {ok, PendingStatus, reference()},
where reference() is the monitor reference for the driver monitor.

Only one MonitorOption can be specified. It is one of the following:

• The atom pending, which means that a monitor is to be created whenever a load operation is delayed,

• The atom pending_driver, in which a monitor is created whenever the operation is delayed because
of open ports to an otherwise unused driver.

Option pending_driver is of little use, but is present for completeness, as it is well defined which reload
options that can give rise to which delays. However, it can be a good idea to use the same MonitorOption
as the ReloadOption, if present.

If reloading is not requested, it can still be useful to specify option monitor, as forced unloads (driver
option kill_ports or option kill_ports to try_unload/2) trigger a transient state where driver
loading cannot be performed until all closing ports are closed. Thus, as try_unload can, in almost all
situations, return {ok, pending_driver}, always specify at least {monitor, pending_driver}
in production code (see the monitor discussion earlier).

{reload, ReloadOption}

This option is used to reload a driver from disk, most often in a code upgrade scenario. Having a reload
option also implies that parameter Path does not need to be consistent with earlier loads of the driver.

To reload a driver, the process must have loaded the driver before, that is, there must be an active user of
the driver in the process.

The reload option can be either of the following:

pending

With the atom pending, reloading is requested for any driver and is effectuated when all ports opened
to the driver are closed. The driver replacement in this case takes place regardless if there are still
pending users having the driver loaded.

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 63

The option also triggers port-killing (if driver option kill_ports is used) although there are pending
users, making it usable for forced driver replacement, but laying much responsibility on the driver users.
The pending option is seldom used as one does not want other users to have loaded the driver when
code change is underway.

pending_driver

This option is more useful. Here, reloading is queued if the driver is not loaded by any other users,
but the driver has opened ports, in which case {ok, pending_driver} is returned (a monitor
option is recommended).

If the driver is unloaded (not present in the system), error code not_loaded is returned. Option reload
is intended for when the user has already loaded the driver in advance.

The function can return numerous errors, some can only be returned given a certain combination of options.

Some errors are opaque and can only be interpreted by passing them to function format_error/1, but some can
be interpreted directly:

{error,linked_in_driver}

The driver with the specified name is an Erlang statically linked-in driver, which cannot be manipulated with
this API.

{error,inconsistent}

The driver is already loaded with other DriverOptionList or a different literal Path argument.

This can occur even if a reload option is specified, if DriverOptionList differs from the current.

{error, permanent}

The driver has requested itself to be permanent, making it behave like an Erlang linked-in driver and can no
longer be manipulated with this API.

{error, pending_process}

The driver is loaded by other users when option {reload, pending_driver} was specified.

{error, pending_reload}

Driver reload is already requested by another user when option {reload, ReloadOption} was specified.

{error, not_loaded_by_this_process}

Appears when option reload is specified. The driver Name is present in the system, but there is no user of
it in this process.

{error, not_loaded}

Appears when option reload is specified. The driver Name is not in the system. Only drivers loaded by this
process can be reloaded.

All other error codes are to be translated by function format_error/1. Notice that calls to format_error are
to be performed from the same running instance of the Erlang virtual machine as the error is detected in, because of
system-dependent behavior concerning error values.

If the arguments or options are malformed, the function throws a badarg exception.

try_unload(Name, OptionList) ->
 {ok, Status} |
 {ok, PendingStatus, Ref} |
 {error, ErrorAtom}
Types:

erl_ddll

64 | Ericsson AB. All Rights Reserved.: Kernel

Name = driver()
OptionList = [Option]
Option = {monitor, MonitorOption} | kill_ports
MonitorOption = pending_driver | pending
Status = unloaded | PendingStatus
PendingStatus = pending_driver | pending_process
Ref = reference()
ErrorAtom =
 linked_in_driver |
 not_loaded |
 not_loaded_by_this_process |
 permanent

This is the low-level function to unload (or decrement reference counts of) a driver. It can be used to force port killing,
in much the same way as the driver option kill_ports implicitly does. Also, it can trigger a monitor either because
other users still have the driver loaded or because open ports use the driver.

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular
process (that is, this user) no longer needs the driver. That can, if there are no other users, trigger unloading of the
driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver
executable code is reclaimed.

If the driver has option kill_ports set, or if kill_ports is specified as an option to this function, all pending
ports using this driver are killed when unloading is done by the last user. If no port-killing is involved and there are
open ports, the unloading is delayed until no more open ports use the driver. If, in this case, another user (or even this
user) loads the driver again before the driver is unloaded, the unloading never takes place.

To allow the user to request unloading to wait for actual unloading, monitor triggers can be specified in much
the same way as when loading. However, as users of this function seldom are interested in more than decrementing
the reference counts, monitoring is seldom needed.

Note:

If option kill_ports is used, monitor trigging is crucial, as the ports are not guaranteed to be killed until the
driver is unloaded. Thus, a monitor must be triggered for at least the pending_driver case.

The possible monitor messages to expect are the same as when using option unloaded to function monitor/2.

The function returns one of the following statuses upon success:

{ok, unloaded}

The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if
the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and no more users require it to be loaded.

{ok, pending_driver}or {ok, pending_driver, reference()}

Indicates that this call removed the last user from the driver, but there are still open ports using it. When all ports
are closed and no new users have arrived, the driver is reloaded and the name and memory reclaimed.

This return value is valid even if option kill_ports was used, as killing ports can be a process that does not
complete immediately. However, the condition is in that case transient. Monitors are always useful to detect when
the driver is really unloaded.

erl_ddll

Ericsson AB. All Rights Reserved.: Kernel | 65

{ok, pending_process}or {ok, pending_process, reference()}

The unload request is registered, but other users still hold the driver. Notice that the term pending_process
can refer to the running process; there can be more than one user in the same process.

This is a normal, healthy, return value if the call was just placed to inform the emulator that you have no further use
of the driver. It is the most common return value in the most common scenario described in the introduction.

The function accepts the following parameters:

Name

Name is the name of the driver to be unloaded. The name can be specified as an iolist() or as an atom().

OptionList

Argument OptionList can be used to specify certain behavior regarding ports and triggering monitors under
certain conditions:

kill_ports

Forces killing of all ports opened using this driver, with exit reason driver_unloaded, if you are the
last user of the driver.

If other users have the driver loaded, this option has no effect.

To get the consistent behavior of killing ports when the last user unloads, use driver option kill_ports
when loading the driver instead.

{monitor, MonitorOption}

Creates a driver monitor if the condition specified in MonitorOption is true. The valid options are:

pending_driver

Creates a driver monitor if the return value is to be {ok, pending_driver}.

pending

Creates a monitor if the return value is {ok, pending_driver} or {ok, pending_process}.

The pending_driver MonitorOption is by far the most useful. It must be used to ensure that the
driver really is unloaded and the ports closed whenever option kill_ports is used, or the driver can have
been loaded with driver option kill_ports.

Using the monitor triggers in the call to try_unload ensures that the monitor is added before the unloading
is executed, meaning that the monitor is always properly triggered, which is not the case if monitor/2
is called separately.

The function can return the following error conditions, all well specified (no opaque values):

{error, linked_in_driver}

You were trying to unload an Erlang statically linked-in driver, which cannot be manipulated with this interface
(and cannot be unloaded at all).

{error, not_loaded}

The driver Name is not present in the system.

{error, not_loaded_by_this_process}

The driver Name is present in the system, but there is no user of it in this process.

As a special case, drivers can be unloaded from processes that have done no corresponding call to try_load/3
if, and only if, there are no users of the driver at all, which can occur if the process containing the last user dies.

erl_ddll

66 | Ericsson AB. All Rights Reserved.: Kernel

{error, permanent}

The driver has made itself permanent, in which case it can no longer be manipulated by this interface (much like
a statically linked-in driver).

The function throws a badarg exception if the parameters are not specified as described here.

unload(Name) -> ok | {error, ErrorDesc}
Types:

Name = driver()
ErrorDesc = term()

Unloads, or at least dereferences the driver named Name. If the caller is the last user of the driver, and no more open
ports use the driver, the driver gets unloaded. Otherwise, unloading is delayed until all ports are closed and no users
remain.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user of the driver. For use scenarios, see the description in the beginning of this module.

The ErrorDesc returned is an opaque value to be passed further on to function format_error/1. For more
control over the operation, use the try_unload/2 interface.

The function throws a badarg exception if the parameters are not specified as described here.

unload_driver(Name) -> ok | {error, ErrorDesc}
Types:

Name = driver()
ErrorDesc = term()

Unloads, or at least dereferences the driver named Name. If the caller is the last user of the driver, all remaining open
ports using the driver are killed with reason driver_unloaded and the driver eventually gets unloaded.

If there are other users of the driver, the reference counts of the driver is merely decreased, so that the caller is no
longer considered a user. For use scenarios, see the description in the beginning of this module.

The ErrorDesc returned is an opaque value to be passed further on to function format_error/1. For more
control over the operation, use the try_unload/2 interface.

The function throws a badarg exception if the parameters are not specified as described here.

See Also
erts:erl_driver(4), erts:driver_entry(4)

erl_prim_loader

Ericsson AB. All Rights Reserved.: Kernel | 67

erl_prim_loader
Erlang module

The module erl_prim_loader is moved to the runtime system application. Please see erl_prim_loader(3) in the ERTS
reference manual instead.

erlang

68 | Ericsson AB. All Rights Reserved.: Kernel

erlang
Erlang module

The module erlang is moved to the runtime system application. Please see erlang(3) in the ERTS reference manual
instead.

error_handler

Ericsson AB. All Rights Reserved.: Kernel | 69

error_handler
Erlang module

This module defines what happens when certain types of errors occur.

Exports

raise_undef_exception(Module, Function, Args) -> no_return()
Types:

Module = Function = atom()
Args = list()
A (possibly empty) list of arguments Arg1,..,ArgN

Raises an undef exception with a stacktrace, indicating that Module:Function/N is undefined.

undefined_function(Module, Function, Args) -> any()
Types:

Module = Function = atom()
Args = list()
A (possibly empty) list of arguments Arg1,..,ArgN

This function is called by the runtime system if a call is made to Module:Function(Arg1,.., ArgN) and
Module:Function/N is undefined. Notice that this function is evaluated inside the process making the original call.

This function first attempts to autoload Module. If that is not possible, an undef exception is raised.

If it is possible to load Module and function Function/N is exported, it is called.

Otherwise, if function '$handle_undefined_function'/2 is exported, it is called as
'$handle_undefined_function'(Function, Args).

Warning:

Defining '$handle_undefined_function'/2 in ordinary application code is highly discouraged. It is very
easy to make subtle errors that can take a long time to debug. Furthermore, none of the tools for static code analysis
(such as Dialyzer and Xref) supports the use of '$handle_undefined_function'/2 and no such support
will be added. Only use this function after having carefully considered other, less dangerous, solutions. One example
of potential legitimate use is creating stubs for other sub-systems during testing and debugging.

Otherwise an undef exception is raised.

undefined_lambda(Module, Fun, Args) -> term()
Types:

Module = atom()
Fun = function()
Args = list()
A (possibly empty) list of arguments Arg1,..,ArgN

This function is evaluated if a call is made to Fun(Arg1,.., ArgN) when the module defining the fun is not
loaded. The function is evaluated inside the process making the original call.

error_handler

70 | Ericsson AB. All Rights Reserved.: Kernel

If Module is interpreted, the interpreter is invoked and the return value of the interpreted Fun(Arg1,.., ArgN)
call is returned.

Otherwise, it returns, if possible, the value of apply(Fun, Args) after an attempt is made to autoload Module.
If this is not possible, the call fails with exit reason undef.

Notes
The code in error_handler is complex. Do not change it without fully understanding the interaction between the
error handler, the init process of the code server, and the I/O mechanism of the code.

Code changes that seem small can cause a deadlock, as unforeseen consequences can occur. The use of input is
dangerous in this type of code.

error_logger

Ericsson AB. All Rights Reserved.: Kernel | 71

error_logger
Erlang module

The Erlang error logger is an event manager (see OTP Design Principles and gen_event(3)), registered as
error_logger. Errors, warnings, and info events are sent to the error logger from the Erlang runtime system and
the different Erlang/OTP applications. The events are, by default, logged to the terminal. Notice that an event from a
process P is logged at the node of the group leader of P. This means that log output is directed to the node from which
a process was created, which not necessarily is the same node as where it is executing.

Initially, error_logger has only a primitive event handler, which buffers and prints the raw event messages. During
system startup, the Kernel application replaces this with a standard event handler, by default one that writes nicely
formatted output to the terminal. Kernel can also be configured so that events are logged to a file instead, or not logged
at all, see kernel(6).

Also the SASL application, if started, adds its own event handler, which by default writes supervisor, crash, and
progress reports to the terminal. See sasl(6).

It is recommended that user-defined applications report errors through the error logger to get uniform reports. User-
defined event handlers can be added to handle application-specific events, see add_report_handler/1,2. Also,
a useful event handler is provided in STDLIB for multi-file logging of events, see log_mf_h(3).

Warning events were introduced in Erlang/OTP R9C and are enabled by default as from Erlang/OTP 18.0. To retain
backwards compatibility with existing user-defined event handlers, the warning events can be tagged as errors or
info using command-line flag +W <e | i | w>, thus showing up as ERROR REPORT or INFO REPORT
in the logs.

Data Types
report() =
 [{Tag :: term(), Data :: term()} | term()] | string() | term()

Exports

add_report_handler(Handler) -> any()
add_report_handler(Handler, Args) -> Result
Types:

Handler = module()
Args = gen_event:handler_args()
Result = gen_event:add_handler_ret()

Adds a new event handler to the error logger. The event handler must be implemented as a gen_event callback
module, see gen_event(3).

Handler is typically the name of the callback module and Args is an optional term (defaults to []) passed to the
initialization callback function Handler:init/1. The function returns ok if successful.

The event handler must be able to handle the events in this module, see section Events.

delete_report_handler(Handler) -> Result
Types:

error_logger

72 | Ericsson AB. All Rights Reserved.: Kernel

Handler = module()
Result = gen_event:del_handler_ret()

Deletes an event handler from the error logger by calling gen_event:delete_handler(error_logger,
Handler, []), see gen_event(3).

error_msg(Format) -> ok
error_msg(Format, Data) -> ok
format(Format, Data) -> ok
Types:

Format = string()
Data = list()

Sends a standard error event to the error logger. The Format and Data arguments are the same as the arguments of
io:format/2 in STDLIB. The event is handled by the standard event handler.

Example:

1> error_logger:error_msg("An error occurred in ~p~n", [a_module]).

=ERROR REPORT==== 11-Aug-2005::14:03:19 ===
An error occurred in a_module
ok

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, use error_report/1 instead.

Warning:

If the Unicode translation modifier (t) is used in the format string, all error handlers must ensure that the formatted
output is correctly encoded for the I/O device.

error_report(Report) -> ok
Types:

Report = report()
Sends a standard error report event to the error logger. The event is handled by the standard event handler.

Example:

error_logger

Ericsson AB. All Rights Reserved.: Kernel | 73

2> error_logger:error_report([{tag1,data1},a_term,{tag2,data}]).

=ERROR REPORT==== 11-Aug-2005::13:45:41 ===
 tag1: data1
 a_term
 tag2: data
ok
3> error_logger:error_report("Serious error in my module").

=ERROR REPORT==== 11-Aug-2005::13:45:49 ===
Serious error in my module
ok

error_report(Type, Report) -> ok
Types:

Type = term()
Report = report()

Sends a user-defined error report event to the error logger. An event handler to handle the event is supposed to have
been added. The event is ignored by the standard event handler.

It is recommended that Report follows the same structure as for error_report/1.

get_format_depth() -> unlimited | integer() >= 1
Returns max(10, Depth), where Depth is the value of error_logger_format_depth in the Kernel application, if
Depth is an integer. Otherwise, unlimited is returned.

info_msg(Format) -> ok
info_msg(Format, Data) -> ok
Types:

Format = string()
Data = list()

Sends a standard information event to the error logger. The Format and Data arguments are the same as the
arguments of io:format/2 in STDLIB. The event is handled by the standard event handler.

Example:

1> error_logger:info_msg("Something happened in ~p~n", [a_module]).

=INFO REPORT==== 11-Aug-2005::14:06:15 ===
Something happened in a_module
ok

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, use info_report/1 instead.

error_logger

74 | Ericsson AB. All Rights Reserved.: Kernel

Warning:

If the Unicode translation modifier (t) is used in the format string, all error handlers must ensure that the formatted
output is correctly encoded for the I/O device.

info_report(Report) -> ok
Types:

Report = report()
Sends a standard information report event to the error logger. The event is handled by the standard event handler.

Example:

2> error_logger:info_report([{tag1,data1},a_term,{tag2,data}]).

=INFO REPORT==== 11-Aug-2005::13:55:09 ===
 tag1: data1
 a_term
 tag2: data
ok
3> error_logger:info_report("Something strange happened").

=INFO REPORT==== 11-Aug-2005::13:55:36 ===
Something strange happened
ok

info_report(Type, Report) -> ok
Types:

Type = any()
Report = report()

Sends a user-defined information report event to the error logger. An event handler to handle the event is supposed to
have been added. The event is ignored by the standard event handler.

It is recommended that Report follows the same structure as for info_report/1.

logfile(Request :: {open, Filename}) -> ok | {error, OpenReason}
logfile(Request :: close) -> ok | {error, CloseReason}
logfile(Request :: filename) -> Filename | {error, FilenameReason}
Types:

Filename = file:name()
OpenReason = allready_have_logfile | open_error()
CloseReason = module_not_found
FilenameReason = no_log_file
open_error() = file:posix() | badarg | system_limit

Enables or disables printout of standard events to a file.

This is done by adding or deleting the standard event handler for output to file. Thus, calling this function overrides
the value of the Kernel error_logger configuration parameter.

Enabling file logging can be used together with calling tty(false), to have a silent system where all standard
events are logged to a file only. Only one log file can be active at a time.

error_logger

Ericsson AB. All Rights Reserved.: Kernel | 75

Request is one of the following:

{open, Filename}

Opens log file Filename. Returns ok if successful, or {error, allready_have_logfile} if logging to
file is already enabled, or an error tuple if another error occurred (for example, if Filename cannot be opened).
The file is opened with encoding UTF-8.

close

Closes the current log file. Returns ok, or {error, module_not_found}.

filename

Returns the name of the log file Filename, or {error, no_log_file} if logging to file is not enabled.

tty(Flag) -> ok
Types:

Flag = boolean()
Enables (Flag == true) or disables (Flag == false) printout of standard events to the terminal.

This is done by adding or deleting the standard event handler for output to the terminal. Thus, calling this function
overrides the value of the Kernel error_logger configuration parameter.

warning_map() -> Tag
Types:

Tag = error | warning | info
Returns the current mapping for warning events. Events sent using warning_msg/1,2 or
warning_report/1,2 are tagged as errors, warnings (default), or info, depending on the value of command-line
flag +W.

Example:

os$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
warning
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok
3>
User switch command
 --> q
os$ erl +W e
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
error
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok

error_logger

76 | Ericsson AB. All Rights Reserved.: Kernel

warning_msg(Format) -> ok
warning_msg(Format, Data) -> ok
Types:

Format = string()
Data = list()

Sends a standard warning event to the error logger. The Format and Data arguments are the same as the arguments
of io:format/2 in STDLIB. The event is handled by the standard event handler. It is tagged as an error, warning,
or info, see warning_map/0.

Warning:

If called with bad arguments, this function can crash the standard event handler, meaning no further events are
logged. When in doubt, use warning_report/1 instead.

Warning:

If the Unicode translation modifier (t) is used in the format string, all error handlers must ensure that the formatted
output is correctly encoded for the I/O device.

warning_report(Report) -> ok
Types:

Report = report()
Sends a standard warning report event to the error logger. The event is handled by the standard event handler. It is
tagged as an error, warning, or info, see warning_map/0.

warning_report(Type, Report) -> ok
Types:

Type = any()
Report = report()

Sends a user-defined warning report event to the error logger. An event handler to handle the event is supposed to have
been added. The event is ignored by the standard event handler. It is tagged as an error, warning, or info, depending
on the value of warning_map/0.

Events
All event handlers added to the error logger must handle the following events. Gleader is the group leader pid of
the process that sent the event, and Pid is the process that sent the event.

{error, Gleader, {Pid, Format, Data}}

Generated when error_msg/1,2 or format is called.

{error_report, Gleader, {Pid, std_error, Report}}

Generated when error_report/1 is called.

{error_report, Gleader, {Pid, Type, Report}}

Generated when error_report/2 is called.

error_logger

Ericsson AB. All Rights Reserved.: Kernel | 77

{warning_msg, Gleader, {Pid, Format, Data}}

Generated when warning_msg/1,2 is called if warnings are set to be tagged as warnings.

{warning_report, Gleader, {Pid, std_warning, Report}}

Generated when warning_report/1 is called if warnings are set to be tagged as warnings.

{warning_report, Gleader, {Pid, Type, Report}}

Generated when warning_report/2 is called if warnings are set to be tagged as warnings.

{info_msg, Gleader, {Pid, Format, Data}}

Generated when info_msg/1,2 is called.

{info_report, Gleader, {Pid, std_info, Report}}

Generated when info_report/1 is called.

{info_report, Gleader, {Pid, Type, Report}}

Generated when info_report/2 is called.

Notice that some system-internal events can also be received. Therefore a catch-all clause last in the definition
of the event handler callback function Module:handle_event/2 is necessary. This also applies for
Module:handle_info/2, as the event handler must also take care of some system-internal messages.

See Also
gen_event(3), log_mf_h(3) kernel(6) sasl(6)

file

78 | Ericsson AB. All Rights Reserved.: Kernel

file
Erlang module

This module provides an interface to the file system.

Warning:

File operations are only guaranteed to appear atomic when going through the same file server. A NIF or other OS
process may observe intermediate steps on certain operations on some operating systems, eg. renaming an existing
file on Windows, or write_file_info/2 on any OS at the time of writing.

Regarding filename encoding, the Erlang VM can operate in two modes. The current mode can be queried using
function native_name_encoding/0. It returns latin1 or utf8.

In latin1 mode, the Erlang VM does not change the encoding of filenames. In utf8 mode, filenames can contain
Unicode characters greater than 255 and the VM converts filenames back and forth to the native filename encoding
(usually UTF-8, but UTF-16 on Windows).

The default mode depends on the operating system. Windows and MacOS X enforce consistent filename encoding
and therefore the VM uses utf8 mode.

On operating systems with transparent naming (for example, all Unix systems except MacOS X), default is utf8 if
the terminal supports UTF-8, otherwise latin1. The default can be overridden using +fnl (to force latin1 mode)
or +fnu (to force utf8 mode) when starting erl.

On operating systems with transparent naming, files can be inconsistently named, for example, some files are encoded
in UTF-8 while others are encoded in ISO Latin-1. The concept of raw filenames is introduced to handle file systems
with inconsistent naming when running in utf8 mode.

A raw filename is a filename specified as a binary. The Erlang VM does not translate a filename specified as a binary
on systems with transparent naming.

When running in utf8 mode, functions list_dir/1 and read_link/1 never return raw filenames. To return
all filenames including raw filenames, use functions list_dir_all/1 and read_link_all/1.

See also section Notes About Raw Filenames in the STDLIB User's Guide.

Note:

File operations used to accept filenames containing null characters (integer value zero). This caused the name to be
truncated and in some cases arguments to primitive operations to be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file operations fail.

Data Types
deep_list() = [char() | atom() | deep_list()]
fd()
A file descriptor representing a file opened in raw mode.

filename() = string()
See also the documentation of the name_all() type.

filename_all() = string() | binary()
See also the documentation of the name_all() type.

file

Ericsson AB. All Rights Reserved.: Kernel | 79

io_device() = pid() | fd()
As returned by open/2; pid() is a process handling I/O-protocols.

name() = string() | atom() | deep_list()
If VM is in Unicode filename mode, string() and char() are allowed to be > 255. See also the documentation
of the name_all() type.

name_all() =
 string() | atom() | deep_list() | (RawFilename :: binary())
If VM is in Unicode filename mode, characters are allowed to be > 255. RawFilename is a filename not subject to
Unicode translation, meaning that it can contain characters not conforming to the Unicode encoding expected from
the file system (that is, non-UTF-8 characters although the VM is started in Unicode filename mode). Null characters
(integer value zero) are not allowed in filenames (not even at the end).

posix() =
 eacces |
 eagain |
 ebadf |
 ebusy |
 edquot |
 eexist |
 efault |
 efbig |
 eintr |
 einval |
 eio |
 eisdir |
 eloop |
 emfile |
 emlink |
 enametoolong |
 enfile |
 enodev |
 enoent |
 enomem |
 enospc |
 enotblk |
 enotdir |
 enotsup |
 enxio |
 eperm |
 epipe |
 erofs |
 espipe |
 esrch |
 estale |
 exdev
An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.

date_time() = calendar:datetime()
Must denote a valid date and time.

file_info() =

file

80 | Ericsson AB. All Rights Reserved.: Kernel

 #file_info{size = integer() >= 0 | undefined,
 type =
 device |
 directory |
 other |
 regular |
 symlink |
 undefined,
 access =
 read | write | read_write | none | undefined,
 atime =
 file:date_time() |
 integer() >= 0 |
 undefined,
 mtime =
 file:date_time() |
 integer() >= 0 |
 undefined,
 ctime =
 file:date_time() |
 integer() >= 0 |
 undefined,
 mode = integer() >= 0 | undefined,
 links = integer() >= 0 | undefined,
 major_device = integer() >= 0 | undefined,
 minor_device = integer() >= 0 | undefined,
 inode = integer() >= 0 | undefined,
 uid = integer() >= 0 | undefined,
 gid = integer() >= 0 | undefined}
location() =
 integer() |
 {bof, Offset :: integer()} |
 {cur, Offset :: integer()} |
 {eof, Offset :: integer()} |
 bof |
 cur |
 eof
mode() =
 read |
 write |
 append |
 exclusive |
 raw |
 binary |
 {delayed_write,
 Size :: integer() >= 0,
 Delay :: integer() >= 0} |
 delayed_write |
 {read_ahead, Size :: integer() >= 1} |
 read_ahead |
 compressed |
 {encoding, unicode:encoding()} |

file

Ericsson AB. All Rights Reserved.: Kernel | 81

 sync
file_info_option() =
 {time, local} | {time, universal} | {time, posix} | raw

Exports

advise(IoDevice, Offset, Length, Advise) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Offset = Length = integer()
Advise = posix_file_advise()
Reason = posix() | badarg
posix_file_advise() =
 normal |
 sequential |
 random |
 no_reuse |
 will_need |
 dont_need

advise/4 can be used to announce an intention to access file data in a specific pattern in the future, thus allowing
the operating system to perform appropriate optimizations.

On some platforms, this function might have no effect.

allocate(File, Offset, Length) -> ok | {error, posix()}
Types:

File = io_device()
Offset = Length = integer() >= 0

allocate/3 can be used to preallocate space for a file.

This function only succeeds in platforms that provide this feature. When it succeeds, space is preallocated for the file
but the file size might not be updated. This behaviour depends on the preallocation implementation. To guarantee that
the file size is updated, truncate the file to the new size.

change_group(Filename, Gid) -> ok | {error, Reason}
Types:

Filename = name_all()
Gid = integer()
Reason = posix() | badarg

Changes group of a file. See write_file_info/2.

change_mode(Filename, Mode) -> ok | {error, Reason}
Types:

file

82 | Ericsson AB. All Rights Reserved.: Kernel

Filename = name_all()
Mode = integer()
Reason = posix() | badarg

Changes permissions of a file. See write_file_info/2.

change_owner(Filename, Uid) -> ok | {error, Reason}
Types:

Filename = name_all()
Uid = integer()
Reason = posix() | badarg

Changes owner of a file. See write_file_info/2.

change_owner(Filename, Uid, Gid) -> ok | {error, Reason}
Types:

Filename = name_all()
Uid = Gid = integer()
Reason = posix() | badarg

Changes owner and group of a file. See write_file_info/2.

change_time(Filename, Mtime) -> ok | {error, Reason}
Types:

Filename = name_all()
Mtime = date_time()
Reason = posix() | badarg

Changes the modification and access times of a file. See write_file_info/2.

change_time(Filename, Atime, Mtime) -> ok | {error, Reason}
Types:

Filename = name_all()
Atime = Mtime = date_time()
Reason = posix() | badarg

Changes the modification and last access times of a file. See write_file_info/2.

close(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Closes the file referenced by IoDevice. It mostly returns ok, except for some severe errors such as out of memory.

Notice that if option delayed_write was used when opening the file, close/1 can return an old write error and
not even try to close the file. See open/2.

consult(Filename) -> {ok, Terms} | {error, Reason}
Types:

file

Ericsson AB. All Rights Reserved.: Kernel | 83

Filename = name_all()
Terms = [term()]
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads Erlang terms, separated by '.', from Filename. Returns one of the following:

{ok, Terms}

The file was successfully read.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang terms in the file. To convert the three-element tuple to an English
description of the error, use format_error/1.

Example:

f.txt: {person, "kalle", 25}.
 {person, "pelle", 30}.

1> file:consult("f.txt").
{ok,[{person,"kalle",25},{person,"pelle",30}]}

The encoding of Filename can be set by a comment, as described in epp(3).

copy(Source, Destination) -> {ok, BytesCopied} | {error, Reason}
copy(Source, Destination, ByteCount) ->
 {ok, BytesCopied} | {error, Reason}
Types:

Source = Destination = io_device() | Filename | {Filename, Modes}
Filename = name_all()
Modes = [mode()]
ByteCount = integer() >= 0 | infinity
BytesCopied = integer() >= 0
Reason = posix() | badarg | terminated

Copies ByteCount bytes from Source to Destination. Source and Destination refer to either filenames
or IO devices from, for example, open/2. ByteCount defaults to infinity, denoting an infinite number of bytes.

Argument Modes is a list of possible modes, see open/2, and defaults to [].

If both Source and Destination refer to filenames, the files are opened with [read, binary] and [write,
binary] prepended to their mode lists, respectively, to optimize the copy.

If Source refers to a filename, it is opened with read mode prepended to the mode list before the copy, and closed
when done.

If Destination refers to a filename, it is opened with write mode prepended to the mode list before the copy,
and closed when done.

file

84 | Ericsson AB. All Rights Reserved.: Kernel

Returns {ok, BytesCopied}, where BytesCopied is the number of bytes that was copied, which can be less
than ByteCount if end of file was encountered on the source. If the operation fails, {error, Reason} is returned.

Typical error reasons: as for open/2 if a file had to be opened, and as for read/2 and write/2.

datasync(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Ensures that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. In many
ways it resembles fsync but it does not update some of the metadata of the file, such as the access time. On some
platforms this function has no effect.

Applications that access databases or log files often write a tiny data fragment (for example, one line in a log file) and
then call fsync() immediately to ensure that the written data is physically stored on the hard disk. Unfortunately,
fsync() always initiates two write operations: one for the newly written data and another one to update the
modification time stored in the inode. If the modification time is not a part of the transaction concept, fdatasync()
can be used to avoid unnecessary inode disk write operations.

Available only in some POSIX systems, this call results in a call to fsync(), or has no effect in systems not providing
the fdatasync() syscall.

del_dir(Dir) -> ok | {error, Reason}
Types:

Dir = name_all()
Reason = posix() | badarg

Tries to delete directory Dir. The directory must be empty before it can be deleted. Returns ok if successful.

Typical error reasons:

eacces

Missing search or write permissions for the parent directories of Dir.

eexist

The directory is not empty.

enoent

The directory does not exist.

enotdir

A component of Dir is not a directory. On some platforms, enoent is returned instead.

einval

Attempt to delete the current directory. On some platforms, eacces is returned instead.

delete(Filename) -> ok | {error, Reason}
Types:

Filename = name_all()
Reason = posix() | badarg

Tries to delete file Filename. Returns ok if successful.

Typical error reasons:

file

Ericsson AB. All Rights Reserved.: Kernel | 85

enoent

The file does not exist.

eacces

Missing permission for the file or one of its parents.

eperm

The file is a directory and the user is not superuser.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

einval

Filename has an improper type, such as tuple.

Warning:

In a future release, a bad type for argument Filename will probably generate an exception.

eval(Filename) -> ok | {error, Reason}
Types:

Filename = name_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions is also an expression) from
Filename. The result of the evaluation is not returned; any expression sequence in the file must be there for its side
effect. Returns one of the following:

ok

The file was read and evaluated.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. To convert the three-element tuple to an
English description of the error, use format_error/1.

The encoding of Filename can be set by a comment, as described in epp(3).

eval(Filename, Bindings) -> ok | {error, Reason}
Types:

Filename = name_all()
Bindings = erl_eval:binding_struct()
Reason =
 posix() |

file

86 | Ericsson AB. All Rights Reserved.: Kernel

 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

The same as eval/1, but the variable bindings Bindings are used in the evaluation. For information about the
variable bindings, see erl_eval(3).

format_error(Reason) -> Chars
Types:

Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}
Chars = string()

Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get_cwd() -> {ok, Dir} | {error, Reason}
Types:

Dir = filename()
Reason = posix()

Returns {ok, Dir}, where Dir is the current working directory of the file server.

Note:

In rare circumstances, this function can fail on Unix. It can occur if read permission does not exist for the parent
directories of the current directory.

A typical error reason:

eacces

Missing read permission for one of the parents of the current directory.

get_cwd(Drive) -> {ok, Dir} | {error, Reason}
Types:

Drive = string()
Dir = filename()
Reason = posix() | badarg

Returns {ok, Dir} or {error, Reason}, where Dir is the current working directory of the specified drive.

Drive is to be of the form "Letter:", for example, "c:".

Returns {error, enotsup} on platforms that have no concept of current drive (Unix, for example).

Typical error reasons:

enotsup

The operating system has no concept of drives.

file

Ericsson AB. All Rights Reserved.: Kernel | 87

eacces

The drive does not exist.

einval

The format of Drive is invalid.

list_dir(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name_all()
Filenames = [filename()]
Reason =
 posix() |
 badarg |
 {no_translation, Filename :: unicode:latin1_binary()}

Lists all files in a directory, except files with raw filenames. Returns {ok, Filenames} if successful, otherwise
{error, Reason}. Filenames is a list of the names of all the files in the directory. The names are not sorted.

Typical error reasons:

eacces

Missing search or write permissions for Dir or one of its parent directories.

enoent

The directory does not exist.

{no_translation, Filename}

Filename is a binary() with characters coded in ISO Latin-1 and the VM was started with parameter +fnue.

list_dir_all(Dir) -> {ok, Filenames} | {error, Reason}
Types:

Dir = name_all()
Filenames = [filename_all()]
Reason = posix() | badarg

Lists all the files in a directory, including files with raw filenames. Returns {ok, Filenames} if successful,
otherwise {error, Reason}. Filenames is a list of the names of all the files in the directory. The names are
not sorted.

Typical error reasons:

eacces

Missing search or write permissions for Dir or one of its parent directories.

enoent

The directory does not exist.

make_dir(Dir) -> ok | {error, Reason}
Types:

file

88 | Ericsson AB. All Rights Reserved.: Kernel

Dir = name_all()
Reason = posix() | badarg

Tries to create directory Dir. Missing parent directories are not created. Returns ok if successful.

Typical error reasons:

eacces

Missing search or write permissions for the parent directories of Dir.

eexist

A file or directory named Dir exists already.

enoent

A component of Dir does not exist.

enospc

No space is left on the device.

enotdir

A component of Dir is not a directory. On some platforms, enoent is returned instead.

make_link(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = name_all()
Reason = posix() | badarg

Makes a hard link from Existing to New on platforms supporting links (Unix and Windows). This function
returns ok if the link was successfully created, otherwise {error, Reason}. On platforms not supporting links,
{error,enotsup} is returned.

Typical error reasons:

eacces

Missing read or write permissions for the parent directories of Existing or New.

eexist

New already exists.

enotsup

Hard links are not supported on this platform.

make_symlink(Existing, New) -> ok | {error, Reason}
Types:

Existing = New = name_all()
Reason = posix() | badarg

Creates a symbolic link New to the file or directory Existing on platforms supporting symbolic links (most Unix
systems and Windows, beginning with Vista). Existing does not need to exist. Returns ok if the link is successfully
created, otherwise {error, Reason}. On platforms not supporting symbolic links, {error, enotsup} is
returned.

Typical error reasons:

file

Ericsson AB. All Rights Reserved.: Kernel | 89

eacces

Missing read or write permissions for the parent directories of Existing or New.

eexist

New already exists.

enotsup

Symbolic links are not supported on this platform.

eperm

User does not have privileges to create symbolic links (SeCreateSymbolicLinkPrivilege on Windows).

native_name_encoding() -> latin1 | utf8
Returns the filename encoding mode. If it is latin1, the system translates no filenames. If it is utf8, filenames are
converted back and forth to the native filename encoding (usually UTF-8, but UTF-16 on Windows).

open(File, Modes) -> {ok, IoDevice} | {error, Reason}
Types:

File = Filename | iodata()
Filename = name_all()
Modes = [mode() | ram]
IoDevice = io_device()
Reason = posix() | badarg | system_limit

Opens file File in the mode determined by Modes, which can contain one or more of the following options:

read

The file, which must exist, is opened for reading.

write

The file is opened for writing. It is created if it does not exist. If the file exists and write is not combined with
read, the file is truncated.

append

The file is opened for writing. It is created if it does not exist. Every write operation to a file opened with append
takes place at the end of the file.

exclusive

The file is opened for writing. It is created if it does not exist. If the file exists, {error, eexist} is returned.

Warning:

This option does not guarantee exclusiveness on file systems not supporting O_EXCL properly, such as NFS.
Do not depend on this option unless you know that the file system supports it (in general, local file systems
are safe).

raw

Allows faster access to a file, as no Erlang process is needed to handle the file. However, a file opened in this
way has the following limitations:

file

90 | Ericsson AB. All Rights Reserved.: Kernel

• The functions in the io module cannot be used, as they can only talk to an Erlang process. Instead, use
functions read/2, read_line/1, and write/2.

• Especially if read_line/1 is to be used on a raw file, it is recommended to combine this option with
option {read_ahead, Size} as line-oriented I/O is inefficient without buffering.

• Only the Erlang process that opened the file can use it.

• A remote Erlang file server cannot be used. The computer on which the Erlang node is running must have
access to the file system (directly or through NFS).

binary

Read operations on the file return binaries rather than lists.

{delayed_write, Size, Delay}

Data in subsequent write/2 calls is buffered until at least Size bytes are buffered, or until the oldest buffered
data is Delay milliseconds old. Then all buffered data is written in one operating system call. The buffered data
is also flushed before some other file operation than write/2 is executed.

The purpose of this option is to increase performance by reducing the number of operating system calls. Thus,
the write/2 calls must be for sizes significantly less than Size, and not interspersed by too many other file
operations.

When this option is used, the result of write/2 calls can prematurely be reported as successful, and if a write
error occurs, the error is reported as the result of the next file operation, which is not executed.

For example, when delayed_write is used, after a number of write/2 calls, close/1 can return
{error, enospc}, as there is not enough space on the disc for previously written data. close/1 must
probably be called again, as the file is still open.

delayed_write

The same as {delayed_write, Size, Delay} with reasonable default values for Size and Delay
(roughly some 64 KB, 2 seconds).

{read_ahead, Size}

Activates read data buffering. If read/2 calls are for significantly less than Size bytes, read operations to
the operating system are still performed for blocks of Size bytes. The extra data is buffered and returned in
subsequent read/2 calls, giving a performance gain as the number of operating system calls is reduced.

The read_ahead buffer is also highly used by function read_line/1 in raw mode, therefore this option is
recommended (for performance reasons) when accessing raw files using that function.

If read/2 calls are for sizes not significantly less than, or even greater than Size bytes, no performance gain
can be expected.

read_ahead

The same as {read_ahead, Size} with a reasonable default value for Size (roughly some 64 KB).

compressed

Makes it possible to read or write gzip compressed files. Option compressed must be combined with read
or write, but not both. Notice that the file size obtained with read_file_info/1 does probably not match
the number of bytes that can be read from a compressed file.

{encoding, Encoding}

Makes the file perform automatic translation of characters to and from a specific (Unicode) encoding. Notice
that the data supplied to write/2 or returned by read/2 still is byte-oriented; this option denotes only how
data is stored in the disk file.

file

Ericsson AB. All Rights Reserved.: Kernel | 91

Depending on the encoding, different methods of reading and writing data is preferred. The default encoding of
latin1 implies using this module (file) for reading and writing data as the interfaces provided here work with
byte-oriented data. Using other (Unicode) encodings makes the io(3) functions get_chars, get_line, and
put_chars more suitable, as they can work with the full Unicode range.

If data is sent to an io_device() in a format that cannot be converted to the specified encoding, or if data
is read by a function that returns data in a format that cannot cope with the character range of the data, an error
occurs and the file is closed.

Allowed values for Encoding:

latin1

The default encoding. Bytes supplied to the file, that is, write/2 are written "as is" on the file. Likewise,
bytes read from the file, that is, read/2 are returned "as is". If module io(3) is used for writing, the file
can only cope with Unicode characters up to code point 255 (the ISO Latin-1 range).

unicode or utf8

Characters are translated to and from UTF-8 encoding before they are written to or read from the file. A
file opened in this way can be readable using function read/2, as long as no data stored on the file lies
beyond the ISO Latin-1 range (0..255), but failure occurs if the data contains Unicode code points beyond
that range. The file is best read with the functions in the Unicode aware module io(3).

Bytes written to the file by any means are translated to UTF-8 encoding before being stored on the disk file.

utf16 or {utf16,big}

Works like unicode, but translation is done to and from big endian UTF-16 instead of UTF-8.

{utf16,little}

Works like unicode, but translation is done to and from little endian UTF-16 instead of UTF-8.

utf32 or {utf32,big}

Works like unicode, but translation is done to and from big endian UTF-32 instead of UTF-8.

{utf32,little}

Works like unicode, but translation is done to and from little endian UTF-32 instead of UTF-8.

The Encoding can be changed for a file "on the fly" by using function io:setopts/2. So a file can be analyzed
in latin1 encoding for, for example, a BOM, positioned beyond the BOM and then be set for the right encoding
before further reading. For functions identifying BOMs, see module unicode(3).

This option is not allowed on raw files.

ram

File must be iodata(). Returns an fd(), which lets module file operate on the data in-memory as if it
is a file.

sync

On platforms supporting it, enables the POSIX O_SYNC synchronous I/O flag or its platform-dependent
equivalent (for example, FILE_FLAG_WRITE_THROUGH on Windows) so that writes to the file block until the
data is physically written to disk. However, be aware that the exact semantics of this flag differ from platform to
platform. For example, none of Linux or Windows guarantees that all file metadata are also written before the call
returns. For precise semantics, check the details of your platform documentation. On platforms with no support
for POSIX O_SYNC or equivalent, use of the sync flag causes open to return {error, enotsup}.

Returns:

file

92 | Ericsson AB. All Rights Reserved.: Kernel

{ok, IoDevice}

The file is opened in the requested mode. IoDevice is a reference to the file.

{error, Reason}

The file cannot be opened.

IoDevice is really the pid of the process that handles the file. This process is linked to the process that originally
opened the file. If any process to which the IoDevice is linked terminates, the file is closed and the process itself is
terminated. An IoDevice returned from this call can be used as an argument to the I/O functions (see io(3)).

Note:

In previous versions of file, modes were specified as one of the atoms read, write, or read_write instead
of a list. This is still allowed for reasons of backwards compatibility, but is not to be used for new code. Also note
that read_write is not allowed in a mode list.

Typical error reasons:

enoent

The file does not exist.

eacces

Missing permission for reading the file or searching one of the parent directories.

eisdir

The named file is a directory.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

enospc

There is no space left on the device (if write access was specified).

path_consult(Path, Filename) ->
 {ok, Terms, FullName} | {error, Reason}
Types:

Path = [Dir]
Dir = Filename = name_all()
Terms = [term()]
FullName = filename_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute
filename, Path is ignored. Then reads Erlang terms, separated by '.', from the file.

Returns one of the following:

file

Ericsson AB. All Rights Reserved.: Kernel | 93

{ok, Terms, FullName}

The file is successfully read. FullName is the full name of the file.

{error, enoent}

The file cannot be found in any of the directories in Path.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang terms in the file. Use format_error/1 to convert the three-
element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in epp(3).

path_eval(Path, Filename) -> {ok, FullName} | {error, Reason}
Types:

Path = [Dir :: name_all()]
Filename = name_all()
FullName = filename_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute
filename, Path is ignored. Then reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of
expressions is also an expression), from the file. The result of evaluation is not returned; any expression sequence in
the file must be there for its side effect.

Returns one of the following:

{ok, FullName}

The file is read and evaluated. FullName is the full name of the file.

{error, enoent}

The file cannot be found in any of the directories in Path.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in epp(3).

path_open(Path, Filename, Modes) ->
 {ok, IoDevice, FullName} | {error, Reason}
Types:

file

94 | Ericsson AB. All Rights Reserved.: Kernel

Path = [Dir :: name_all()]
Filename = name_all()
Modes = [mode()]
IoDevice = io_device()
FullName = filename_all()
Reason = posix() | badarg | system_limit

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute
filename, Path is ignored. Then opens the file in the mode determined by Modes.

Returns one of the following:

{ok, IoDevice, FullName}

The file is opened in the requested mode. IoDevice is a reference to the file and FullName is the full name
of the file.

{error, enoent}

The file cannot be found in any of the directories in Path.

{error, atom()}

The file cannot be opened.

path_script(Path, Filename) ->
 {ok, Value, FullName} | {error, Reason}
Types:

Path = [Dir :: name_all()]
Filename = name_all()
Value = term()
FullName = filename_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute
filename, Path is ignored. Then reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of
expressions is also an expression), from the file.

Returns one of the following:

{ok, Value, FullName}

The file is read and evaluated. FullName is the full name of the file and Value the value of the last expression.

{error, enoent}

The file cannot be found in any of the directories in Path.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

file

Ericsson AB. All Rights Reserved.: Kernel | 95

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in epp(3).

path_script(Path, Filename, Bindings) ->
 {ok, Value, FullName} | {error, Reason}
Types:

Path = [Dir :: name_all()]
Filename = name_all()
Bindings = erl_eval:binding_struct()
Value = term()
FullName = filename_all()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

The same as path_script/2 but the variable bindings Bindings are used in the evaluation. See erl_eval(3)
about variable bindings.

pid2name(Pid) -> {ok, Filename} | undefined
Types:

Filename = filename_all()
Pid = pid()

If Pid is an I/O device, that is, a pid returned from open/2, this function returns the filename, or rather:

{ok, Filename}

If the file server of this node is not a slave, the file was opened by the file server of this node (this implies that
Pid must be a local pid) and the file is not closed. Filename is the filename in flat string format.

undefined

In all other cases.

Warning:

This function is intended for debugging only.

position(IoDevice, Location) ->
 {ok, NewPosition} | {error, Reason}
Types:

file

96 | Ericsson AB. All Rights Reserved.: Kernel

IoDevice = io_device()
Location = location()
NewPosition = integer()
Reason = posix() | badarg | terminated

Sets the position of the file referenced by IoDevice to Location. Returns {ok, NewPosition} (as absolute
offset) if successful, otherwise {error, Reason}. Location is one of the following:

Offset

The same as {bof, Offset}.

{bof, Offset}

Absolute offset.

{cur, Offset}

Offset from the current position.

{eof, Offset}

Offset from the end of file.

bof | cur | eof

The same as above with Offset 0.

Notice that offsets are counted in bytes, not in characters. If the file is opened using some other encoding than
latin1, one byte does not correspond to one character. Positioning in such a file can only be done to known character
boundaries. That is, to a position earlier retrieved by getting a current position, to the beginning/end of the file or to
some other position known to be on a correct character boundary by some other means (typically beyond a byte order
mark in the file, which has a known byte-size).

A typical error reason is:

einval

Either Location is illegal, or it is evaluated to a negative offset in the file. Notice that if the resulting position
is a negative value, the result is an error, and after the call the file position is undefined.

pread(IoDevice, LocNums) -> {ok, DataL} | eof | {error, Reason}
Types:

IoDevice = io_device()
LocNums =
 [{Location :: location(), Number :: integer() >= 0}]
DataL = [Data]
Data = string() | binary() | eof
Reason = posix() | badarg | terminated

Performs a sequence of pread/3 in one operation, which is more efficient than calling them one at a time. Returns
{ok, [Data, ...]} or {error, Reason}, where each Data, the result of the corresponding pread, is
either a list or a binary depending on the mode of the file, or eof if the requested position is beyond end of file.

As the position is specified as a byte-offset, take special caution when working with files where encoding is set to
something else than latin1, as not every byte position is a valid character boundary on such a file.

pread(IoDevice, Location, Number) ->

file

Ericsson AB. All Rights Reserved.: Kernel | 97

 {ok, Data} | eof | {error, Reason}
Types:

IoDevice = io_device()
Location = location()
Number = integer() >= 0
Data = string() | binary()
Reason = posix() | badarg | terminated

Combines position/2 and read/2 in one operation, which is more efficient than calling them one at a time. If
IoDevice is opened in raw mode, some restrictions apply:

• Location is only allowed to be an integer.

• The current position of the file is undefined after the operation.

As the position is specified as a byte-offset, take special caution when working with files where encoding is set to
something else than latin1, as not every byte position is a valid character boundary on such a file.

pwrite(IoDevice, LocBytes) -> ok | {error, {N, Reason}}
Types:

IoDevice = io_device()
LocBytes = [{Location :: location(), Bytes :: iodata()}]
N = integer() >= 0
Reason = posix() | badarg | terminated

Performs a sequence of pwrite/3 in one operation, which is more efficient than calling them one at a time. Returns
ok or {error, {N, Reason}}, where N is the number of successful writes done before the failure.

When positioning in a file with other encoding than latin1, caution must be taken to set the position on a correct
character boundary. For details, see position/2.

pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Location = location()
Bytes = iodata()
Reason = posix() | badarg | terminated

Combines position/2 and write/2 in one operation, which is more efficient than calling them one at a time. If
IoDevice has been opened in raw mode, some restrictions apply:

• Location is only allowed to be an integer.

• The current position of the file is undefined after the operation.

When positioning in a file with other encoding than latin1, caution must be taken to set the position on a correct
character boundary. For details, see position/2.

read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}
Types:

file

98 | Ericsson AB. All Rights Reserved.: Kernel

IoDevice = io_device() | atom()
Number = integer() >= 0
Data = string() | binary()
Reason =
 posix() |
 badarg |
 terminated |
 {no_translation, unicode, latin1}

Reads Number bytes/characters from the file referenced by IoDevice. The functions read/2, pread/3, and
read_line/1 are the only ways to read from a file opened in raw mode (although they work for normally opened
files, too).

For files where encoding is set to something else than latin1, one character can be represented by more than
one byte on the file. The parameter Number always denotes the number of characters read from the file, while the
position in the file can be moved much more than this number when reading a Unicode file.

Also, if encoding is set to something else than latin1, the read/3 call fails if the data contains characters larger
than 255, which is why module io(3) is to be preferred when reading such a file.

The function returns:

{ok, Data}

If the file was opened in binary mode, the read bytes are returned in a binary, otherwise in a list. The list or binary
is shorter than the number of bytes requested if end of file was reached.

eof

Returned if Number>0 and end of file was reached before anything at all could be read.

{error, Reason}

An error occurred.

Typical error reasons:

ebadf

The file is not opened for reading.

{no_translation, unicode, latin1}

The file is opened with another encoding than latin1 and the data in the file cannot be translated to the byte-
oriented data that this function returns.

read_file(Filename) -> {ok, Binary} | {error, Reason}
Types:

Filename = name_all()
Binary = binary()
Reason = posix() | badarg | terminated | system_limit

Returns {ok, Binary}, where Binary is a binary data object that contains the contents of Filename, or
{error, Reason} if an error occurs.

Typical error reasons:

enoent

The file does not exist.

file

Ericsson AB. All Rights Reserved.: Kernel | 99

eacces

Missing permission for reading the file, or for searching one of the parent directories.

eisdir

The named file is a directory.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

enomem

There is not enough memory for the contents of the file.

read_file_info(Filename) -> {ok, FileInfo} | {error, Reason}
read_file_info(Filename, Opts) -> {ok, FileInfo} | {error, Reason}
Types:

Filename = name_all()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg

Retrieves information about a file. Returns {ok, FileInfo} if successful, otherwise {error, Reason}.
FileInfo is a record file_info, defined in the Kernel include file file.hrl. Include the following directive
in the module from which the function is called:

 -include_lib("kernel/include/file.hrl").

The time type returned in atime, mtime, and ctime is dependent on the time type set in Opts :: {time,
Type} as follows:

local

Returns local time.

universal

Returns universal time.

posix

Returns seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.

Default is {time, local}.

If the option raw is set, the file server is not called and only information about local files is returned. Note that this
will break this module's atomicity guarantees as it can race with a concurrent call to write_file_info/1,2

Note:

As file times are stored in POSIX time on most OS, it is faster to query file information with option posix.

The record file_info contains the following fields:

size = integer() >= 0

Size of file in bytes.

type = device | directory | other | regular | symlink

The type of the file.

file

100 | Ericsson AB. All Rights Reserved.: Kernel

access = read | write | read_write | none

The current system access to the file.

atime = date_time() | integer() >= 0

The last time the file was read.

mtime = date_time() | integer() >= 0

The last time the file was written.

ctime = date_time() | integer() >=0

The interpretation of this time field depends on the operating system. On Unix, it is the last time the file or the
inode was changed. In Windows, it is the create time.

mode = integer() >= 0

The file permissions as the sum of the following bit values:

8#00400

read permission: owner

8#00200

write permission: owner

8#00100

execute permission: owner

8#00040

read permission: group

8#00020

write permission: group

8#00010

execute permission: group

8#00004

read permission: other

8#00002

write permission: other

8#00001

execute permission: other

16#800

set user id on execution

16#400

set group id on execution

On Unix platforms, other bits than those listed above may be set.

links = integer() >= 0

Number of links to the file (this is always 1 for file systems that have no concept of links).

file

Ericsson AB. All Rights Reserved.: Kernel | 101

major_device = integer() >= 0

Identifies the file system where the file is located. In Windows, the number indicates a drive as follows: 0 means
A:, 1 means B:, and so on.

minor_device = integer() >= 0

Only valid for character devices on Unix. In all other cases, this field is zero.

inode = integer() >= 0

Gives the inode number. On non-Unix file systems, this field is zero.

uid = integer() >= 0

Indicates the owner of the file. On non-Unix file systems, this field is zero.

gid = integer() >= 0

Gives the group that the owner of the file belongs to. On non-Unix file systems, this field is zero.

Typical error reasons:

eacces

Missing search permission for one of the parent directories of the file.

enoent

The file does not exist.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

read_line(IoDevice) -> {ok, Data} | eof | {error, Reason}
Types:

IoDevice = io_device() | atom()
Data = string() | binary()
Reason =
 posix() |
 badarg |
 terminated |
 {no_translation, unicode, latin1}

Reads a line of bytes/characters from the file referenced by IoDevice. Lines are defined to be delimited by the
linefeed (LF, \n) character, but any carriage return (CR, \r) followed by a newline is also treated as a single
LF character (the carriage return is silently ignored). The line is returned including the LF, but excluding any CR
immediately followed by an LF. This behaviour is consistent with the behaviour of io:get_line/2. If end of file
is reached without any LF ending the last line, a line with no trailing LF is returned.

The function can be used on files opened in raw mode. However, it is inefficient to use it on raw files if the file is
not opened with option {read_ahead, Size} specified. Thus, combining raw and {read_ahead, Size}
is highly recommended when opening a text file for raw line-oriented reading.

If encoding is set to something else than latin1, the read_line/1 call fails if the data contains characters
larger than 255, why module io(3) is to be preferred when reading such a file.

The function returns:

{ok, Data}

One line from the file is returned, including the trailing LF, but with CRLF sequences replaced by a single LF
(see above).

file

102 | Ericsson AB. All Rights Reserved.: Kernel

If the file is opened in binary mode, the read bytes are returned in a binary, otherwise in a list.

eof

Returned if end of file was reached before anything at all could be read.

{error, Reason}

An error occurred.

Typical error reasons:

ebadf

The file is not opened for reading.

{no_translation, unicode, latin1}

The file is opened with another encoding than latin1 and the data on the file cannot be translated to the
byte-oriented data that this function returns.

read_link(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = name_all()
Filename = filename()
Reason = posix() | badarg

Returns {ok, Filename} if Name refers to a symbolic link that is not a raw filename, or {error, Reason}
otherwise. On platforms that do not support symbolic links, the return value is {error,enotsup}.

Typical error reasons:

einval

Name does not refer to a symbolic link or the name of the file that it refers to does not conform to the expected
encoding.

enoent

The file does not exist.

enotsup

Symbolic links are not supported on this platform.

read_link_all(Name) -> {ok, Filename} | {error, Reason}
Types:

Name = name_all()
Filename = filename_all()
Reason = posix() | badarg

Returns {ok, Filename} if Name refers to a symbolic link or {error, Reason} otherwise. On platforms that
do not support symbolic links, the return value is {error,enotsup}.

Notice that Filename can be either a list or a binary.

Typical error reasons:

einval

Name does not refer to a symbolic link.

file

Ericsson AB. All Rights Reserved.: Kernel | 103

enoent

The file does not exist.

enotsup

Symbolic links are not supported on this platform.

read_link_info(Name) -> {ok, FileInfo} | {error, Reason}
read_link_info(Name, Opts) -> {ok, FileInfo} | {error, Reason}
Types:

Name = name_all()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg

Works like read_file_info/1,2 except that if Name is a symbolic link, information about the link is returned
in the file_info record and the type field of the record is set to symlink.

If the option raw is set, the file server is not called and only information about local files is returned. Note that this
will break this module's atomicity guarantees as it can race with a concurrent call to write_file_info/1,2

If Name is not a symbolic link, this function returns the same result as read_file_info/1. On platforms that do
not support symbolic links, this function is always equivalent to read_file_info/1.

rename(Source, Destination) -> ok | {error, Reason}
Types:

Source = Destination = name_all()
Reason = posix() | badarg

Tries to rename the file Source to Destination. It can be used to move files (and directories) between directories,
but it is not sufficient to specify the destination only. The destination filename must also be specified. For example,
if bar is a normal file and foo and baz are directories, rename("foo/bar", "baz") returns an error, but
rename("foo/bar", "baz/bar") succeeds. Returns ok if it is successful.

Note:

Renaming of open files is not allowed on most platforms (see eacces below).

Typical error reasons:

eacces

Missing read or write permissions for the parent directories of Source or Destination. On some platforms,
this error is given if either Source or Destination is open.

eexist

Destination is not an empty directory. On some platforms, also given when Source and Destination
are not of the same type.

einval

Source is a root directory, or Destination is a subdirectory of Source.

eisdir

Destination is a directory, but Source is not.

file

104 | Ericsson AB. All Rights Reserved.: Kernel

enoent

Source does not exist.

enotdir

Source is a directory, but Destination is not.

exdev

Source and Destination are on different file systems.

script(Filename) -> {ok, Value} | {error, Reason}
Types:

Filename = name_all()
Value = term()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions is also an expression), from
the file.

Returns one of the following:

{ok, Value}

The file is read and evaluated. Value is the value of the last expression.

{error, atom()}

An error occurred when opening the file or reading it. For a list of typical error codes, see open/2.

{error, {Line, Mod, Term}}

An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the
three-element tuple to an English description of the error.

The encoding of Filename can be set by a comment as described in epp(3).

script(Filename, Bindings) -> {ok, Value} | {error, Reason}
Types:

Filename = name_all()
Bindings = erl_eval:binding_struct()
Value = term()
Reason =
 posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

The same as script/1 but the variable bindings Bindings are used in the evaluation. See erl_eval(3) about
variable bindings.

file

Ericsson AB. All Rights Reserved.: Kernel | 105

sendfile(Filename, Socket) ->
 {ok, integer() >= 0} |
 {error, inet:posix() | closed | badarg | not_owner}
Types:

Filename = name_all()
Socket = inet:socket()

Sends the file Filename to Socket. Returns {ok, BytesSent} if successful, otherwise {error, Reason}.

sendfile(RawFile, Socket, Offset, Bytes, Opts) ->
 {ok, integer() >= 0} |
 {error, inet:posix() | closed | badarg | not_owner}
Types:

RawFile = fd()
Socket = inet:socket()
Offset = Bytes = integer() >= 0
Opts = [sendfile_option()]
sendfile_option() =
 {chunk_size, integer() >= 0} | {use_threads, boolean()}

Sends Bytes from the file referenced by RawFile beginning at Offset to Socket. Returns {ok, BytesSent}
if successful, otherwise {error, Reason}. If Bytes is set to 0 all data after the specified Offset is sent.

The file used must be opened using the raw flag, and the process calling sendfile must be the controlling process
of the socket. See gen_tcp:controlling_process/2.

If the OS used does not support non-blocking sendfile, an Erlang fallback using read/2 and gen_tcp:send/2
is used.

The option list can contain the following options:

chunk_size

The chunk size used by the Erlang fallback to send data. If using the fallback, set this to a value that comfortably
fits in the systems memory. Default is 20 MB.

set_cwd(Dir) -> ok | {error, Reason}
Types:

Dir = name() | EncodedBinary
EncodedBinary = binary()
Reason = posix() | badarg | no_translation

Sets the current working directory of the file server to Dir. Returns ok if successful.

The functions in the module file usually treat binaries as raw filenames, that is, they are passed "as is" even when the
encoding of the binary does not agree with native_name_encoding(). However, this function expects binaries
to be encoded according to the value returned by native_name_encoding().

Typical error reasons are:

enoent

The directory does not exist.

enotdir

A component of Dir is not a directory. On some platforms, enoent is returned.

file

106 | Ericsson AB. All Rights Reserved.: Kernel

eacces

Missing permission for the directory or one of its parents.

badarg

Dir has an improper type, such as tuple.

no_translation

Dir is a binary() with characters coded in ISO-latin-1 and the VM is operating with unicode filename
encoding.

Warning:

In a future release, a bad type for argument Dir will probably generate an exception.

sync(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Ensures that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. On some
platforms, this function might have no effect.

A typical error reason is:

enospc

Not enough space left to write the file.

truncate(IoDevice) -> ok | {error, Reason}
Types:

IoDevice = io_device()
Reason = posix() | badarg | terminated

Truncates the file referenced by IoDevice at the current position. Returns ok if successful, otherwise {error,
Reason}.

write(IoDevice, Bytes) -> ok | {error, Reason}
Types:

IoDevice = io_device() | atom()
Bytes = iodata()
Reason = posix() | badarg | terminated

Writes Bytes to the file referenced by IoDevice. This function is the only way to write to a file opened in raw
mode (although it works for normally opened files too). Returns ok if successful, and {error, Reason} otherwise.

If the file is opened with encoding set to something else than latin1, each byte written can result in many bytes
being written to the file, as the byte range 0..255 can represent anything between one and four bytes depending on
value and UTF encoding type.

Typical error reasons:

ebadf

The file is not opened for writing.

file

Ericsson AB. All Rights Reserved.: Kernel | 107

enospc

No space is left on the device.

write_file(Filename, Bytes) -> ok | {error, Reason}
Types:

Filename = name_all()
Bytes = iodata()
Reason = posix() | badarg | terminated | system_limit

Writes the contents of the iodata term Bytes to file Filename. The file is created if it does not exist. If it exists,
the previous contents are overwritten. Returns ok if successful, otherwise {error, Reason}.

Typical error reasons:

enoent

A component of the filename does not exist.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

enospc

No space is left on the device.

eacces

Missing permission for writing the file or searching one of the parent directories.

eisdir

The named file is a directory.

write_file(Filename, Bytes, Modes) -> ok | {error, Reason}
Types:

Filename = name_all()
Bytes = iodata()
Modes = [mode()]
Reason = posix() | badarg | terminated | system_limit

Same as write_file/2, but takes a third argument Modes, a list of possible modes, see open/2. The mode flags
binary and write are implicit, so they are not to be used.

write_file_info(Filename, FileInfo) -> ok | {error, Reason}
write_file_info(Filename, FileInfo, Opts) -> ok | {error, Reason}
Types:

Filename = name_all()
Opts = [file_info_option()]
FileInfo = file_info()
Reason = posix() | badarg

Changes file information. Returns ok if successful, otherwise {error, Reason}. FileInfo is a record
file_info, defined in the Kernel include file file.hrl. Include the following directive in the module from which
the function is called:

file

108 | Ericsson AB. All Rights Reserved.: Kernel

 -include_lib("kernel/include/file.hrl").

The time type set in atime, mtime, and ctime depends on the time type set in Opts :: {time, Type} as
follows:

local

Interprets the time set as local.

universal

Interprets it as universal time.

posix

Must be seconds since or before Unix time epoch, which is 1970-01-01 00:00 UTC.

Default is {time, local}.

If the option raw is set, the file server is not called and only information about local files is returned.

The following fields are used from the record, if they are specified:

atime = date_time() | integer() >= 0

The last time the file was read.

mtime = date_time() | integer() >= 0

The last time the file was written.

ctime = date_time() | integer() >= 0

On Unix, any value specified for this field is ignored (the "ctime" for the file is set to the current time). On
Windows, this field is the new creation time to set for the file.

mode = integer() >= 0

The file permissions as the sum of the following bit values:

8#00400

Read permission: owner

8#00200

Write permission: owner

8#00100

Execute permission: owner

8#00040

Read permission: group

8#00020

Write permission: group

8#00010

Execute permission: group

8#00004

Read permission: other

8#00002

Write permission: other

file

Ericsson AB. All Rights Reserved.: Kernel | 109

8#00001

Execute permission: other

16#800

Set user id on execution

16#400

Set group id on execution

On Unix platforms, other bits than those listed above may be set.

uid = integer() >= 0

Indicates the file owner. Ignored for non-Unix file systems.

gid = integer() >= 0

Gives the group that the file owner belongs to. Ignored for non-Unix file systems.

Typical error reasons:

eacces

Missing search permission for one of the parent directories of the file.

enoent

The file does not exist.

enotdir

A component of the filename is not a directory. On some platforms, enoent is returned instead.

POSIX Error Codes
• eacces - Permission denied

• eagain - Resource temporarily unavailable

• ebadf - Bad file number

• ebusy - File busy

• edquot - Disk quota exceeded

• eexist - File already exists

• efault - Bad address in system call argument

• efbig - File too large

• eintr - Interrupted system call

• einval - Invalid argument

• eio - I/O error

• eisdir - Illegal operation on a directory

• eloop - Too many levels of symbolic links

• emfile - Too many open files

• emlink - Too many links

• enametoolong - Filename too long

• enfile - File table overflow

• enodev - No such device

• enoent - No such file or directory

• enomem - Not enough memory

file

110 | Ericsson AB. All Rights Reserved.: Kernel

• enospc - No space left on device

• enotblk - Block device required

• enotdir - Not a directory

• enotsup - Operation not supported

• enxio - No such device or address

• eperm - Not owner

• epipe - Broken pipe

• erofs - Read-only file system

• espipe - Invalid seek

• esrch - No such process

• estale - Stale remote file handle

• exdev - Cross-domain link

Performance
For increased performance, raw files are recommended.

A normal file is really a process so it can be used as an I/O device (see io). Therefore, when data is written to a normal
file, the sending of the data to the file process, copies all data that are not binaries. Opening the file in binary mode
and writing binaries is therefore recommended. If the file is opened on another node, or if the file server runs as slave
to the file server of another node, also binaries are copied.

Note:

Raw files use the file system of the host machine of the node. For normal files (non-raw), the file server is used to
find the files, and if the node is running its file server as slave to the file server of another node, and the other node
runs on some other host machine, they can have different file systems. However, this is seldom a problem.

open/2 can be given the options delayed_write and read_ahead to turn on caching, which will reduce the
number of operating system calls and greatly improve performance for small reads and writes. However, the overhead
won't disappear completely and it's best to keep the number of file operations to a minimum. As a contrived example,
the following function writes 4MB in 2.5 seconds when tested:

create_file_slow(Name) ->
 {ok, Fd} = file:open(Name, [raw, write, delayed_write, binary]),
 create_file_slow_1(Fd, 4 bsl 20),
 file:close(Fd).

create_file_slow_1(_Fd, 0) ->
 ok;
create_file_slow_1(Fd, M) ->
 ok = file:write(Fd, <<0>>),
 create_file_slow_1(Fd, M - 1).

The following functionally equivalent code writes 128 bytes per call to write/2 and so does the same work in 0.08
seconds, which is roughly 30 times faster:

file

Ericsson AB. All Rights Reserved.: Kernel | 111

create_file(Name) ->
 {ok, Fd} = file:open(Name, [raw, write, delayed_write, binary]),
 create_file_1(Fd, 4 bsl 20),
 file:close(Fd),
 ok.

create_file_1(_Fd, 0) ->
 ok;
create_file_1(Fd, M) when M >= 128 ->
 ok = file:write(Fd, <<0:(128)/unit:8>>),
 create_file_1(Fd, M - 128);
create_file_1(Fd, M) ->
 ok = file:write(Fd, <<0:(M)/unit:8>>),
 create_file_1(Fd, M - 1).

When writing data it's generally more efficient to write a list of binaries rather than a list of integers. It is not needed to
flatten a deep list before writing. On Unix hosts, scatter output, which writes a set of buffers in one operation, is used
when possible. In this way write(FD, [Bin1, Bin2 | Bin3]) writes the contents of the binaries without
copying the data at all, except for perhaps deep down in the operating system kernel.

Warning:

If an error occurs when accessing an open file with module io, the process handling the file exits. The dead file
process can hang if a process tries to access it later. This will be fixed in a future release.

See Also
filename(3)

gen_sctp

112 | Ericsson AB. All Rights Reserved.: Kernel

gen_sctp
Erlang module

This module provides functions for communicating with sockets using the SCTP protocol. The implementation
assumes that the OS kernel supports SCTP (RFC 2960) through the user-level Sockets API Extensions.

During development, this implementation was tested on:

• Linux Fedora Core 5.0 (kernel 2.6.15-2054 or later is needed)

• Solaris 10, 11

During OTP adaptation it was tested on:

• SUSE Linux Enterprise Server 10 (x86_64) kernel 2.6.16.27-0.6-smp, with lksctp-tools-1.0.6

• Briefly on Solaris 10

• SUSE Linux Enterprise Server 10 Service Pack 1 (x86_64) kernel 2.6.16.54-0.2.3-smp with lksctp-tools-1.0.7

• FreeBSD 8.2

This module was written for one-to-many style sockets (type seqpacket). With the addition of peeloff/2, one-
to-one style sockets (type stream) were introduced.

Record definitions for this module can be found using:

-include_lib("kernel/include/inet_sctp.hrl").

These record definitions use the "new" spelling 'adaptation', not the deprecated 'adaption', regardless of which spelling
the underlying C API uses.

Data Types
assoc_id()
An opaque term returned in, for example, #sctp_paddr_change{}, which identifies an association for an SCTP
socket. The term is opaque except for the special value 0, which has a meaning such as "the whole endpoint" or "all
future associations".

option() =
 {active, true | false | once | -32768..32767} |
 {buffer, integer() >= 0} |
 {dontroute, boolean()} |
 {high_msgq_watermark, integer() >= 1} |
 {linger, {boolean(), integer() >= 0}} |
 {low_msgq_watermark, integer() >= 1} |
 {mode, list | binary} |
 list |
 binary |
 {priority, integer() >= 0} |
 {recbuf, integer() >= 0} |
 {reuseaddr, boolean()} |
 {ipv6_v6only, boolean()} |
 {sctp_adaptation_layer, #sctp_setadaptation{}} |
 {sctp_associnfo, #sctp_assocparams{}} |
 {sctp_autoclose, integer() >= 0} |
 {sctp_default_send_param, #sctp_sndrcvinfo{}} |

href
href

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 113

 {sctp_delayed_ack_time, #sctp_assoc_value{}} |
 {sctp_disable_fragments, boolean()} |
 {sctp_events, #sctp_event_subscribe{}} |
 {sctp_get_peer_addr_info, #sctp_paddrinfo{}} |
 {sctp_i_want_mapped_v4_addr, boolean()} |
 {sctp_initmsg, #sctp_initmsg{}} |
 {sctp_maxseg, integer() >= 0} |
 {sctp_nodelay, boolean()} |
 {sctp_peer_addr_params, #sctp_paddrparams{}} |
 {sctp_primary_addr, #sctp_prim{}} |
 {sctp_rtoinfo, #sctp_rtoinfo{}} |
 {sctp_set_peer_primary_addr, #sctp_setpeerprim{}} |
 {sctp_status, #sctp_status{}} |
 {sndbuf, integer() >= 0} |
 {tos, integer() >= 0}
One of the SCTP Socket Options.

option_name() =
 active |
 buffer |
 dontroute |
 high_msgq_watermark |
 linger |
 low_msgq_watermark |
 mode |
 priority |
 recbuf |
 reuseaddr |
 ipv6_v6only |
 sctp_adaptation_layer |
 sctp_associnfo |
 sctp_autoclose |
 sctp_default_send_param |
 sctp_delayed_ack_time |
 sctp_disable_fragments |
 sctp_events |
 sctp_get_peer_addr_info |
 sctp_i_want_mapped_v4_addr |
 sctp_initmsg |
 sctp_maxseg |
 sctp_nodelay |
 sctp_peer_addr_params |
 sctp_primary_addr |
 sctp_rtoinfo |
 sctp_set_peer_primary_addr |
 sctp_status |
 sndbuf |
 tos
sctp_socket()
Socket identifier returned from open/*.

gen_sctp

114 | Ericsson AB. All Rights Reserved.: Kernel

Exports

abort(Socket, Assoc) -> ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{}

Abnormally terminates the association specified by Assoc, without flushing of unsent data. The socket itself remains
open. Other associations opened on this socket are still valid, and the socket can be used in new associations.

close(Socket) -> ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Closes the socket and all associations on it. The unsent data is flushed as in eof/2. The close/1 call is blocking or
otherwise depending of the value of the linger socket option. If close does not linger or linger time-out expires,
the call returns and the data is flushed in the background.

connect(Socket, Addr, Port, Opts) ->
 {ok, Assoc} | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [Opt :: option()]
Assoc = #sctp_assoc_change{}

Same as connect(Socket, Addr, Port, Opts, infinity).

connect(Socket, Addr, Port, Opts, Timeout) ->
 {ok, Assoc} | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [Opt :: option()]
Timeout = timeout()
Assoc = #sctp_assoc_change{}

Establishes a new association for socket Socket, with the peer (SCTP server socket) specified by Addr and Port.
Timeout, is expressed in milliseconds. A socket can be associated with multiple peers.

Warning:

Using a value of Timeout less than the maximum time taken by the OS to establish an association (around 4.5
minutes if the default values from RFC 4960 are used), can result in inconsistent or incorrect return values. This is
especially relevant for associations sharing the same Socket (that is, source address and port), as the controlling
process blocks until connect/* returns. connect_init/* provides an alternative without this limitation.

href

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 115

The result of connect/* is an #sctp_assoc_change{} event that contains, in particular, the new Association
ID:

#sctp_assoc_change{
 state = atom(),
 error = atom(),
 outbound_streams = integer(),
 inbound_streams = integer(),
 assoc_id = assoc_id()
}

The number of outbound and inbound streams can be set by giving an sctp_initmsg option to connect as in:

connect(Socket, Ip, Port>,
 [{sctp_initmsg,#sctp_initmsg{num_ostreams=OutStreams,
 max_instreams=MaxInStreams}}])

All options Opt are set on the socket before the association is attempted. If an option record has undefined field values,
the options record is first read from the socket for those values. In effect, Opt option records only define field values
to change before connecting.

The returned outbound_streams and inbound_streams are the stream numbers on the socket. These can be
different from the requested values (OutStreams and MaxInStreams, respectively) if the peer requires lower
values.

state can have the following values:

comm_up

Association is successfully established. This indicates a successful completion of connect.

cant_assoc

The association cannot be established (connect/* failure).

Other states do not normally occur in the output from connect/*. Rather, they can occur in
#sctp_assoc_change{} events received instead of data in recv/* calls. All of them indicate losing the
association because of various error conditions, and are listed here for the sake of completeness:

comm_lost
restart
shutdown_comp

Field error can provide more detailed diagnostics.

connect_init(Socket, Addr, Port, Opts) ->
 ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [option()]

Same as connect_init(Socket, Addr, Port, Opts, infinity).

connect_init(Socket, Addr, Port, Opts, Timeout) ->

gen_sctp

116 | Ericsson AB. All Rights Reserved.: Kernel

 ok | {error, inet:posix()}
Types:

Socket = sctp_socket()
Addr = inet:ip_address() | inet:hostname()
Port = inet:port_number()
Opts = [option()]
Timeout = timeout()

Initiates a new association for socket Socket, with the peer (SCTP server socket) specified by Addr and Port.

The fundamental difference between this API and connect/* is that the return value is that of the underlying OS
connect(2) system call. If ok is returned, the result of the association establishment is received by the calling
process as an #sctp_assoc_change{} event. The calling process must be prepared to receive this, or poll for it
using recv/*, depending on the value of the active option.

The parameters are as described in connect/*, except the Timeout value.

The timer associated with Timeout only supervises IP resolution of Addr.

controlling_process(Socket, Pid) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Pid = pid()
Reason = closed | not_owner | badarg | inet:posix()

Assigns a new controlling process Pid to Socket. Same implementation as
gen_udp:controlling_process/2.

eof(Socket, Assoc) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{}
Reason = term()

Gracefully terminates the association specified by Assoc, with flushing of all unsent data. The socket itself remains
open. Other associations opened on this socket are still valid. The socket can be used in new associations.

error_string(ErrorNumber) -> ok | string() | unknown_error
Types:

ErrorNumber = integer()
Translates an SCTP error number from, for example, #sctp_remote_error{} or #sctp_send_failed{}
into an explanatory string, or one of the atoms ok for no error or undefined for an unrecognized error.

listen(Socket, IsServer) -> ok | {error, Reason}
listen(Socket, Backlog) -> ok | {error, Reason}
Types:

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 117

Socket = sctp_socket()
Backlog = integer()
Reason = term()

Sets up a socket to listen on the IP address and port number it is bound to.

For type seqpacket, sockets (the default) IsServer must be true or false. In contrast to TCP, there is no
listening queue length in SCTP. If IsServer is true, the socket accepts new associations, that is, it becomes an
SCTP server socket.

For type stream, sockets Backlog define the backlog queue length just like in TCP.

open() -> {ok, Socket} | {error, inet:posix()}
open(Port) -> {ok, Socket} | {error, inet:posix()}
open(Opts) -> {ok, Socket} | {error, inet:posix()}
open(Port, Opts) -> {ok, Socket} | {error, inet:posix()}
Types:

Opts = [Opt]
Opt =
 {ip, IP} |
 {ifaddr, IP} |
 inet:address_family() |
 {port, Port} |
 {type, SockType} |
 option()
IP = inet:ip_address() | any | loopback
Port = inet:port_number()
SockType = seqpacket | stream
Socket = sctp_socket()

Creates an SCTP socket and binds it to the local addresses specified by all {ip,IP} (or synonymously
{ifaddr,IP}) options (this feature is called SCTP multi-homing). The default IP and Port are any and 0,
meaning bind to all local addresses on any free port.

Other options:

inet6

Sets up the socket for IPv6.

inet

Sets up the socket for IPv4. This is the default.

A default set of socket options is used. In particular, the socket is opened in binary and passive mode, with SockType
seqpacket, and with reasonably large kernel and driver buffers.

peeloff(Socket, Assoc) -> {ok, NewSocket} | {error, Reason}
Types:

gen_sctp

118 | Ericsson AB. All Rights Reserved.: Kernel

Socket = sctp_socket()
Assoc = #sctp_assoc_change{} | assoc_id()
NewSocket = sctp_socket()
Reason = term()

Branches off an existing association Assoc in a socket Socket of type seqpacket (one-to-many style) into a new
socket NewSocket of type stream (one-to-one style).

The existing association argument Assoc can be either a #sctp_assoc_change{} record as returned from, for
example, recv/*, connect/*, or from a listening socket in active mode. It can also be just the field assoc_id
integer from such a record.

recv(Socket) ->
 {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}
recv(Socket, Timeout) ->
 {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}
Types:

Socket = sctp_socket()
Timeout = timeout()
FromIP = inet:ip_address()
FromPort = inet:port_number()
AncData = [#sctp_sndrcvinfo{}]
Data =
 binary() |
 string() |
 #sctp_sndrcvinfo{} |
 #sctp_assoc_change{} |
 #sctp_paddr_change{} |
 #sctp_adaptation_event{}
Reason =
 inet:posix() |
 #sctp_send_failed{} |
 #sctp_paddr_change{} |
 #sctp_pdapi_event{} |
 #sctp_remote_error{} |
 #sctp_shutdown_event{}

Receives the Data message from any association of the socket. If the receive times out, {error,timeout} is
returned. The default time-out is infinity. FromIP and FromPort indicate the address of the sender.

AncData is a list of ancillary data items that can be received along with the main Data. This list can be empty,
or contain a single #sctp_sndrcvinfo{} record if receiving of such ancillary data is enabled (see option
sctp_events). It is enabled by default, as such ancillary data provides an easy way of determining the association
and stream over which the message is received. (An alternative way is to get the association ID from FromIP and
FromPort using socket option sctp_get_peer_addr_info, but this does still not produce the stream number).

The Data received can be a binary() or a list() of bytes (integers in the range 0 through 255) depending on
the socket mode, or an SCTP event.

Possible SCTP events:

• #sctp_sndrcvinfo{}

• #sctp_assoc_change{}

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 119

•
#sctp_paddr_change{
 addr = {ip_address(),port()},
 state = atom(),
 error = integer(),
 assoc_id = assoc_id()
}

Indicates change of the status of the IP address of the peer specified by addr within association assoc_id.
Possible values of state (mostly self-explanatory) include:

addr_unreachable
addr_available
addr_removed
addr_added
addr_made_prim
addr_confirmed

In case of an error (for example, addr_unreachable), field error provides more diagnostics. In such
cases, event #sctp_paddr_change{} is automatically converted into an error term returned by recv. The
error field value can be converted into a string using error_string/1.

•
#sctp_send_failed{
 flags = true | false,
 error = integer(),
 info = #sctp_sndrcvinfo{},
 assoc_id = assoc_id()
 data = binary()
}

The sender can receive this event if a send operation fails.

flags

A Boolean specifying if the data has been transmitted over the wire.

error

Provides extended diagnostics, use error_string/1.

info

The original #sctp_sndrcvinfo{} record used in the failed send/*.

data

The whole original data chunk attempted to be sent.

In the current implementation of the Erlang/SCTP binding, this event is internally converted into an error term
returned by recv/*.

•
#sctp_adaptation_event{
 adaptation_ind = integer(),
 assoc_id = assoc_id()
}

Delivered when a peer sends an adaptation layer indication parameter (configured through option
sctp_adaptation_layer). Notice that with the current implementation of the Erlang/SCTP binding, this
event is disabled by default.

gen_sctp

120 | Ericsson AB. All Rights Reserved.: Kernel

•
#sctp_pdapi_event{
 indication = sctp_partial_delivery_aborted,
 assoc_id = assoc_id()
}

A partial delivery failure. In the current implementation of the Erlang/SCTP binding, this event is internally
converted into an error term returned by recv/*.

send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
SndRcvInfo = #sctp_sndrcvinfo{}
Data = binary() | iolist()
Reason = term()

Sends the Data message with all sending parameters from a #sctp_sndrcvinfo{} record. This way, the user
can specify the PPID (passed to the remote end) and context (passed to the local SCTP layer), which can be used, for
example, for error identification. However, such a fine level of user control is rarely required. The function send/4
is sufficient for most applications.

send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}
Types:

Socket = sctp_socket()
Assoc = #sctp_assoc_change{} | assoc_id()
Stream = integer()
Data = binary() | iolist()
Reason = term()

Sends a Data message over an existing association and specified stream.

SCTP Socket Options
The set of admissible SCTP socket options is by construction orthogonal to the sets of TCP, UDP, and generic inet
options. Only options listed here are allowed for SCTP sockets. Options can be set on the socket using open/1,2 or
inet:setopts/2, retrieved using inet:getopts/2. Options can be changed when calling connect/4,5.

{mode, list|binary} or just list or binary

Determines the type of data returned from recv/1,2.

{active, true|false|once|N}

• If false (passive mode, the default), the caller must do an explicit recv call to retrieve the available data
from the socket.

• If true (full active mode), the pending data or events are sent to the owning process.

Notice that this can cause the message queue to overflow, as there is no way to throttle the sender in this
case (no flow control).

• If once, only one message is automatically placed in the message queue, and after that the mode is
automatically reset to passive. This provides flow control and the possibility for the receiver to listen for its
incoming SCTP data interleaved with other inter-process messages.

• If active is specified as an integer N in the range -32768 to 32767 (inclusive), that number is added to
the socket's counting of data messages to be delivered to the controlling process. If the result of the addition

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 121

is negative, the count is set to 0. Once the count reaches 0, either through the delivery of messages or by
being explicitly set with inet:setopts/2, the socket mode is automatically reset to passive ({active,
false}). When a socket in this active mode transitions to passive mode, the message {sctp_passive,
Socket} is sent to the controlling process to notify it that if it wants to receive more data messages from
the socket, it must call inet:setopts/2 to set the socket back into an active mode.

{tos, integer()}

Sets the Type-Of-Service field on the IP datagrams that are sent, to the specified value. This effectively determines
a prioritization policy for the outbound packets. The acceptable values are system-dependent.

{priority, integer()}

A protocol-independent equivalent of tos above. Setting priority implies setting tos as well.

{dontroute, true|false}

Defaults to false. If true, the kernel does not send packets through any gateway, only sends them to directly
connected hosts.

{reuseaddr, true|false}

Defaults to false. If true, the local binding address {IP,Port} of the socket can be reused immediately. No
waiting in state CLOSE_WAIT is performed (can be required for high-throughput servers).

{sndbuf, integer()}

The size, in bytes, of the OS kernel send buffer for this socket. Sending errors would occur for datagrams larger
than val(sndbuf). Setting this option also adjusts the size of the driver buffer (see buffer above).

{recbuf, integer()}

The size, in bytes, of the OS kernel receive buffer for this socket. Sending errors would occur for datagrams larger
than val(recbuf). Setting this option also adjusts the size of the driver buffer (see buffer above).

{sctp_module, module()}

Overrides which callback module is used. Defaults to inet_sctp for IPv4 and inet6_sctp for IPv6.

{sctp_rtoinfo, #sctp_rtoinfo{}}

#sctp_rtoinfo{
 assoc_id = assoc_id(),
 initial = integer(),
 max = integer(),
 min = integer()
}

Determines retransmission time-out parameters, in milliseconds, for the association(s) specified by assoc_id.

assoc_id = 0 (default) indicates the whole endpoint. See RFC 2960 and Sockets API Extensions for SCTP
for the exact semantics of the field values.

{sctp_associnfo, #sctp_assocparams{}}

#sctp_assocparams{
 assoc_id = assoc_id(),
 asocmaxrxt = integer(),
 number_peer_destinations = integer(),
 peer_rwnd = integer(),
 local_rwnd = integer(),
 cookie_life = integer()
}

href
href

gen_sctp

122 | Ericsson AB. All Rights Reserved.: Kernel

Determines association parameters for the association(s) specified by assoc_id.

assoc_id = 0 (default) indicates the whole endpoint. See Sockets API Extensions for SCTP for the
discussion of their semantics. Rarely used.

{sctp_initmsg, #sctp_initmsg{}}

#sctp_initmsg{
 num_ostreams = integer(),
 max_instreams = integer(),
 max_attempts = integer(),
 max_init_timeo = integer()
}

Determines the default parameters that this socket tries to negotiate with its peer while establishing an association
with it. Is to be set after open/* but before the first connect/*. #sctp_initmsg{} can also be used as
ancillary data with the first call of send/* to a new peer (when a new association is created).

num_ostreams
Number of outbound streams

max_instreams
Maximum number of inbound streams

max_attempts
Maximum retransmissions while establishing an association

max_init_timeo
Time-out, in milliseconds, for establishing an association

{sctp_autoclose, integer() >= 0}

Determines the time, in seconds, after which an idle association is automatically closed. 0 means that the
association is never automatically closed.

{sctp_nodelay, true|false}

Turns on|off the Nagle algorithm for merging small packets into larger ones. This improves throughput at the
expense of latency.

{sctp_disable_fragments, true|false}

If true, induces an error on an attempt to send a message larger than the current PMTU size (which would
require fragmentation/reassembling). Notice that message fragmentation does not affect the logical atomicity of
its delivery; this option is provided for performance reasons only.

{sctp_i_want_mapped_v4_addr, true|false}

Turns on|off automatic mapping of IPv4 addresses into IPv6 ones (if the socket address family is AF_INET6).

{sctp_maxseg, integer()}

Determines the maximum chunk size if message fragmentation is used. If 0, the chunk size is limited by the
Path MTU only.

{sctp_primary_addr, #sctp_prim{}}

#sctp_prim{
 assoc_id = assoc_id(),
 addr = {IP, Port}
}
 IP = ip_address()
 Port = port_number()

href

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 123

For the association specified by assoc_id, {IP,Port} must be one of the peer addresses. This option
determines that the specified address is treated by the local SCTP stack as the primary address of the peer.

{sctp_set_peer_primary_addr, #sctp_setpeerprim{}}

#sctp_setpeerprim{
 assoc_id = assoc_id(),
 addr = {IP, Port}
}
 IP = ip_address()
 Port = port_number()

When set, informs the peer to use {IP, Port} as the primary address of the local endpoint for the association
specified by assoc_id.

{sctp_adaptation_layer, #sctp_setadaptation{}}

#sctp_setadaptation{
 adaptation_ind = integer()
}

When set, requests that the local endpoint uses the value specified by adaptation_ind as the Adaptation
Indication parameter for establishing new associations. For details, see RFC 2960 and Sockets API Extenstions
for SCTP.

{sctp_peer_addr_params, #sctp_paddrparams{}}

#sctp_paddrparams{
 assoc_id = assoc_id(),
 address = {IP, Port},
 hbinterval = integer(),
 pathmaxrxt = integer(),
 pathmtu = integer(),
 sackdelay = integer(),
 flags = list()
}
IP = ip_address()
Port = port_number()

Determines various per-address parameters for the association specified by assoc_id and the peer address
address (the SCTP protocol supports multi-homing, so more than one address can correspond to a specified
association).

hbinterval

Heartbeat interval, in milliseconds

pathmaxrxt

Maximum number of retransmissions before this address is considered unreachable (and an alternative
address is selected)

pathmtu

Fixed Path MTU, if automatic discovery is disabled (see flags below)

sackdelay

Delay, in milliseconds, for SAC messages (if the delay is enabled, see flags below)

flags

The following flags are available:

href
href
href

gen_sctp

124 | Ericsson AB. All Rights Reserved.: Kernel

hb_enable
Enables heartbeat

hb_disable
Disables heartbeat

hb_demand
Initiates heartbeat immediately

pmtud_enable
Enables automatic Path MTU discovery

pmtud_disable
Disables automatic Path MTU discovery

sackdelay_enable
Enables SAC delay

sackdelay_disable
Disables SAC delay

{sctp_default_send_param, #sctp_sndrcvinfo{}}

#sctp_sndrcvinfo{
 stream = integer(),
 ssn = integer(),
 flags = list(),
 ppid = integer(),
 context = integer(),
 timetolive = integer(),
 tsn = integer(),
 cumtsn = integer(),
 assoc_id = assoc_id()
}

#sctp_sndrcvinfo{} is used both in this socket option, and as ancillary data while sending or receiving
SCTP messages. When set as an option, it provides default values for subsequent send calls on the association
specified by assoc_id.

assoc_id = 0 (default) indicates the whole endpoint.

The following fields typically must be specified by the sender:

sinfo_stream

Stream number (0-base) within the association to send the messages through;

sinfo_flags

The following flags are recognised:

unordered
The message is to be sent unordered

addr_over
The address specified in send overwrites the primary peer address

abort
Aborts the current association without flushing any unsent data

eof
Gracefully shuts down the current association, with flushing of unsent data

Other fields are rarely used. For complete information, see RFC 2960 and Sockets API Extensions for
SCTP.

href
href
href

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 125

{sctp_events, #sctp_event_subscribe{}}

#sctp_event_subscribe{
 data_io_event = true | false,
 association_event = true | false,
 address_event = true | false,
 send_failure_event = true | false,
 peer_error_event = true | false,
 shutdown_event = true | false,
 partial_delivery_event = true | false,
 adaptation_layer_event = true | false
}

This option determines which SCTP Events are to be received (through recv/*) along with the data.
The only exception is data_io_event, which enables or disables receiving of #sctp_sndrcvinfo{}
ancillary data, not events. By default, all flags except adaptation_layer_event are enabled, although
sctp_data_io_event and association_event are used by the driver itself and not exported to the
user level.

{sctp_delayed_ack_time, #sctp_assoc_value{}}

#sctp_assoc_value{
 assoc_id = assoc_id(),
 assoc_value = integer()
}

Rarely used. Determines the ACK time (specified by assoc_value, in milliseconds) for the specified
association or the whole endpoint if assoc_value = 0 (default).

{sctp_status, #sctp_status{}}

#sctp_status{
 assoc_id = assoc_id(),
 state = atom(),
 rwnd = integer(),
 unackdata = integer(),
 penddata = integer(),
 instrms = integer(),
 outstrms = integer(),
 fragmentation_point = integer(),
 primary = #sctp_paddrinfo{}
}

This option is read-only. It determines the status of the SCTP association specified by assoc_id. The following
are the possible values of state (the state designations are mostly self-explanatory):

sctp_state_empty
Default. Means that no other state is active.

sctp_state_closed
sctp_state_cookie_wait
sctp_state_cookie_echoed
sctp_state_established
sctp_state_shutdown_pending
sctp_state_shutdown_sent
sctp_state_shutdown_received
sctp_state_shutdown_ack_sent

Semantics of the other fields:

gen_sctp

126 | Ericsson AB. All Rights Reserved.: Kernel

sstat_rwnd
Current receiver window size of the association

sstat_unackdata
Number of unacked data chunks

sstat_penddata
Number of data chunks pending receipt

sstat_instrms
Number of inbound streams

sstat_outstrms
Number of outbound streams

sstat_fragmentation_point
Message size at which SCTP fragmentation occurs

sstat_primary
Information on the current primary peer address (see below for the format of #sctp_paddrinfo{})

{sctp_get_peer_addr_info, #sctp_paddrinfo{}}

#sctp_paddrinfo{
 assoc_id = assoc_id(),
 address = {IP, Port},
 state = inactive | active | unconfirmed,
 cwnd = integer(),
 srtt = integer(),
 rto = integer(),
 mtu = integer()
}
IP = ip_address()
Port = port_number()

This option is read-only. It determines the parameters specific to the peer address specified by address within
the association specified by assoc_id. Field address fmust be set by the caller; all other fields are filled in on
return. If assoc_id = 0 (default), the address is automatically translated into the corresponding association
ID. This option is rarely used. For the semantics of all fields, see RFC 2960 and Sockets API Extensions for
SCTP.

SCTP Examples
Example of an Erlang SCTP server that receives SCTP messages and prints them on the standard output:

href
href
href

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 127

-module(sctp_server).

-export([server/0,server/1,server/2]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

server() ->
 server(any, 2006).

server([Host,Port]) when is_list(Host), is_list(Port) ->
 {ok, #hostent{h_addr_list = [IP|_]}} = inet:gethostbyname(Host),
 io:format("~w -> ~w~n", [Host, IP]),
 server([IP, list_to_integer(Port)]).

server(IP, Port) when is_tuple(IP) orelse IP == any orelse IP == loopback,
 is_integer(Port) ->
 {ok,S} = gen_sctp:open(Port, [{recbuf,65536}, {ip,IP}]),
 io:format("Listening on ~w:~w. ~w~n", [IP,Port,S]),
 ok = gen_sctp:listen(S, true),
 server_loop(S).

server_loop(S) ->
 case gen_sctp:recv(S) of
 {error, Error} ->
 io:format("SCTP RECV ERROR: ~p~n", [Error]);
 Data ->
 io:format("Received: ~p~n", [Data])
 end,
 server_loop(S).

Example of an Erlang SCTP client interacting with the above server. Notice that in this example the client creates
an association with the server with 5 outbound streams. Therefore, sending of "Test 0" over stream 0 succeeds,
but sending of "Test 5" over stream 5 fails. The client then aborts the association, which results in that the
corresponding event is received on the server side.

gen_sctp

128 | Ericsson AB. All Rights Reserved.: Kernel

-module(sctp_client).

-export([client/0, client/1, client/2]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

client() ->
 client([localhost]).

client([Host]) ->
 client(Host, 2006);

client([Host, Port]) when is_list(Host), is_list(Port) ->
 client(Host,list_to_integer(Port)),
 init:stop().

client(Host, Port) when is_integer(Port) ->
 {ok,S} = gen_sctp:open(),
 {ok,Assoc} = gen_sctp:connect
 (S, Host, Port, [{sctp_initmsg,#sctp_initmsg{num_ostreams=5}}]),
 io:format("Connection Successful, Assoc=~p~n", [Assoc]),

 io:write(gen_sctp:send(S, Assoc, 0, <<"Test 0">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:send(S, Assoc, 5, <<"Test 5">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:abort(S, Assoc)),
 io:nl(),

 timer:sleep(1000),
 gen_sctp:close(S).

A simple Erlang SCTP client that uses the connect_init API:

gen_sctp

Ericsson AB. All Rights Reserved.: Kernel | 129

-module(ex3).

-export([client/4]).
-include_lib("kernel/include/inet.hrl").
-include_lib("kernel/include/inet_sctp.hrl").

client(Peer1, Port1, Peer2, Port2)
 when is_tuple(Peer1), is_integer(Port1), is_tuple(Peer2), is_integer(Port2) ->
 {ok,S} = gen_sctp:open(),
 SctpInitMsgOpt = {sctp_initmsg,#sctp_initmsg{num_ostreams=5}},
 ActiveOpt = {active, true},
 Opts = [SctpInitMsgOpt, ActiveOpt],
 ok = gen_sctp:connect(S, Peer1, Port1, Opts),
 ok = gen_sctp:connect(S, Peer2, Port2, Opts),
 io:format("Connections initiated~n", []),
 client_loop(S, Peer1, Port1, undefined, Peer2, Port2, undefined).

client_loop(S, Peer1, Port1, AssocId1, Peer2, Port2, AssocId2) ->
 receive
 {sctp, S, Peer1, Port1, {_Anc, SAC}}
 when is_record(SAC, sctp_assoc_change), AssocId1 == undefined ->
 io:format("Association 1 connect result: ~p. AssocId: ~p~n",
 [SAC#sctp_assoc_change.state,
 SAC#sctp_assoc_change.assoc_id]),
 client_loop(S, Peer1, Port1, SAC#sctp_assoc_change.assoc_id,
 Peer2, Port2, AssocId2);

 {sctp, S, Peer2, Port2, {_Anc, SAC}}
 when is_record(SAC, sctp_assoc_change), AssocId2 == undefined ->
 io:format("Association 2 connect result: ~p. AssocId: ~p~n",
 [SAC#sctp_assoc_change.state, SAC#sctp_assoc_change.assoc_id]),
 client_loop(S, Peer1, Port1, AssocId1, Peer2, Port2,
 SAC#sctp_assoc_change.assoc_id);

 {sctp, S, Peer1, Port1, Data} ->
 io:format("Association 1: received ~p~n", [Data]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2);

 {sctp, S, Peer2, Port2, Data} ->
 io:format("Association 2: received ~p~n", [Data]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2);

 Other ->
 io:format("Other ~p~n", [Other]),
 client_loop(S, Peer1, Port1, AssocId1,
 Peer2, Port2, AssocId2)

 after 5000 ->
 ok
 end.

See Also
gen_tcp(3), gen_udp(3), inet(3), RFC 2960 (Stream Control Transmission Protocol), Sockets API
Extensions for SCTP

href
href
href

gen_tcp

130 | Ericsson AB. All Rights Reserved.: Kernel

gen_tcp
Erlang module

This module provides functions for communicating with sockets using the TCP/IP protocol.

The following code fragment is a simple example of a client connecting to a server at port 5678, transferring a binary,
and closing the connection:

client() ->
 SomeHostInNet = "localhost", % to make it runnable on one machine
 {ok, Sock} = gen_tcp:connect(SomeHostInNet, 5678,
 [binary, {packet, 0}]),
 ok = gen_tcp:send(Sock, "Some Data"),
 ok = gen_tcp:close(Sock).

At the other end, a server is listening on port 5678, accepts the connection, and receives the binary:

server() ->
 {ok, LSock} = gen_tcp:listen(5678, [binary, {packet, 0},
 {active, false}]),
 {ok, Sock} = gen_tcp:accept(LSock),
 {ok, Bin} = do_recv(Sock, []),
 ok = gen_tcp:close(Sock),
 ok = gen_tcp:close(LSock),
 Bin.

do_recv(Sock, Bs) ->
 case gen_tcp:recv(Sock, 0) of
 {ok, B} ->
 do_recv(Sock, [Bs, B]);
 {error, closed} ->
 {ok, list_to_binary(Bs)}
 end.

For more examples, see section Examples.

Data Types
option() =
 {active, true | false | once | -32768..32767} |
 {buffer, integer() >= 0} |
 {delay_send, boolean()} |
 {deliver, port | term} |
 {dontroute, boolean()} |
 {exit_on_close, boolean()} |
 {header, integer() >= 0} |
 {high_msgq_watermark, integer() >= 1} |
 {high_watermark, integer() >= 0} |
 {keepalive, boolean()} |
 {linger, {boolean(), integer() >= 0}} |
 {low_msgq_watermark, integer() >= 1} |
 {low_watermark, integer() >= 0} |
 {mode, list | binary} |
 list |
 binary |
 {nodelay, boolean()} |

gen_tcp

Ericsson AB. All Rights Reserved.: Kernel | 131

 {packet,
 0 |
 1 |
 2 |
 4 |
 raw |
 sunrm |
 asn1 |
 cdr |
 fcgi |
 line |
 tpkt |
 http |
 httph |
 http_bin |
 httph_bin} |
 {packet_size, integer() >= 0} |
 {priority, integer() >= 0} |
 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueBin :: binary()} |
 {recbuf, integer() >= 0} |
 {reuseaddr, boolean()} |
 {send_timeout, integer() >= 0 | infinity} |
 {send_timeout_close, boolean()} |
 {show_econnreset, boolean()} |
 {sndbuf, integer() >= 0} |
 {tos, integer() >= 0} |
 {ipv6_v6only, boolean()}
option_name() =
 active |
 buffer |
 delay_send |
 deliver |
 dontroute |
 exit_on_close |
 header |
 high_msgq_watermark |
 high_watermark |
 keepalive |
 linger |
 low_msgq_watermark |
 low_watermark |
 mode |
 nodelay |
 packet |
 packet_size |
 priority |
 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,

gen_tcp

132 | Ericsson AB. All Rights Reserved.: Kernel

 ValueSpec ::
 (ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
 recbuf |
 reuseaddr |
 send_timeout |
 send_timeout_close |
 show_econnreset |
 sndbuf |
 tos |
 ipv6_v6only
connect_option() =
 {ip, inet:socket_address()} |
 {fd, Fd :: integer() >= 0} |
 {ifaddr, inet:socket_address()} |
 inet:address_family() |
 {port, inet:port_number()} |
 {tcp_module, module()} |
 option()
listen_option() =
 {ip, inet:socket_address()} |
 {fd, Fd :: integer() >= 0} |
 {ifaddr, inet:socket_address()} |
 inet:address_family() |
 {port, inet:port_number()} |
 {backlog, B :: integer() >= 0} |
 {tcp_module, module()} |
 option()
socket()
As returned by accept/1,2 and connect/3,4.

Exports

accept(ListenSocket) -> {ok, Socket} | {error, Reason}
accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
Types:

ListenSocket = socket()
Returned by listen/2.

Timeout = timeout()
Socket = socket()
Reason = closed | timeout | system_limit | inet:posix()

Accepts an incoming connection request on a listening socket. Socket must be a socket returned from listen/2.
Timeout specifies a time-out value in milliseconds. Defaults to infinity.

Returns:

• {ok, Socket} if a connection is established

• {error, closed} if ListenSocket is closed

• {error, timeout} if no connection is established within the specified time

• {error, system_limit} if all available ports in the Erlang emulator are in use

gen_tcp

Ericsson AB. All Rights Reserved.: Kernel | 133

• A POSIX error value if something else goes wrong, see inet(3) for possible error values

Packets can be sent to the returned socket Socket using send/2. Packets sent from the peer are delivered as
messages (unless {active, false} is specified in the option list for the listening socket, in which case packets
are retrieved by calling recv/2):

{tcp, Socket, Data}

Note:

The accept call does not have to be issued from the socket owner process. Using version 5.5.3 and higher of
the emulator, multiple simultaneous accept calls can be issued from different processes, which allows for a pool
of acceptor processes handling incoming connections.

close(Socket) -> ok
Types:

Socket = socket()
Closes a TCP socket.

Note that in most implementations of TCP, doing a close does not guarantee that any data sent is delivered to the
recipient before the close is detected at the remote side. If you want to guarantee delivery of the data to the recipient
there are two common ways to achieve this.

• Use gen_tcp:shutdown(Sock, write) to signal that no more data is to be sent and wait for the read
side of the socket to be closed.

• Use the socket option {packet, N} (or something similar) to make it possible for the receiver to close the
connection when it knowns it has received all the data.

connect(Address, Port, Options) -> {ok, Socket} | {error, Reason}
connect(Address, Port, Options, Timeout) ->
 {ok, Socket} | {error, Reason}
Types:

Address = inet:socket_address() | inet:hostname()
Port = inet:port_number()
Options = [connect_option()]
Timeout = timeout()
Socket = socket()
Reason = inet:posix()

Connects to a server on TCP port Port on the host with IP address Address. Argument Address can be a hostname
or an IP address.

The following options are available:

{ip, Address}

If the host has many network interfaces, this option specifies which one to use.

{ifaddr, Address}

Same as {ip, Address}. If the host has many network interfaces, this option specifies which one to use.

gen_tcp

134 | Ericsson AB. All Rights Reserved.: Kernel

{fd, integer() >= 0}

If a socket has somehow been connected without using gen_tcp, use this option to pass the file descriptor for
it. If {ip, Address} and/or {port, port_number()} is combined with this option, the fd is bound
to the specified interface and port before connecting. If these options are not specified, it is assumed that the fd
is already bound appropriately.

inet

Sets up the socket for IPv4.

inet6

Sets up the socket for IPv6.

local

Sets up a Unix Domain Socket. See inet:local_address()

{port, Port}

Specifies which local port number to use.

{tcp_module, module()}

Overrides which callback module is used. Defaults to inet_tcp for IPv4 and inet6_tcp for IPv6.

Opt

See inet:setopts/2.

Packets can be sent to the returned socket Socket using send/2. Packets sent from the peer are delivered as
messages:

{tcp, Socket, Data}

If the socket is in {active, N} mode (see inet:setopts/2 for details) and its message counter drops to 0, the
following message is delivered to indicate that the socket has transitioned to passive ({active, false}) mode:

{tcp_passive, Socket}

If the socket is closed, the following message is delivered:

{tcp_closed, Socket}

If an error occurs on the socket, the following message is delivered (unless {active, false} is specified in the
option list for the socket, in which case packets are retrieved by calling recv/2):

{tcp_error, Socket, Reason}

The optional Timeout parameter specifies a time-out in milliseconds. Defaults to infinity.

Note:

The default values for options specified to connect can be affected by the Kernel configuration parameter
inet_default_connect_options. For details, see inet(3).

controlling_process(Socket, Pid) -> ok | {error, Reason}
Types:

gen_tcp

Ericsson AB. All Rights Reserved.: Kernel | 135

Socket = socket()
Pid = pid()
Reason = closed | not_owner | badarg | inet:posix()

Assigns a new controlling process Pid to Socket. The controlling process is the process that receives messages from
the socket. If called by any other process than the current controlling process, {error, not_owner} is returned.
If the process identified by Pid is not an existing local pid, {error, badarg} is returned. {error, badarg}
may also be returned in some cases when Socket is closed during the execution of this function.

If the socket is set in active mode, this function will transfer any messages in the mailbox of the caller to the new
controlling process. If any other process is interacting with the socket while the transfer is happening, the transfer may
not work correctly and messages may remain in the caller's mailbox. For instance changing the sockets active mode
before the transfere is complete may cause this.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}
Types:

Port = inet:port_number()
Options = [listen_option()]
ListenSocket = socket()
Reason = system_limit | inet:posix()

Sets up a socket to listen on port Port on the local host.

If Port == 0, the underlying OS assigns an available port number, use inet:port/1 to retrieve it.

The following options are available:

list

Received Packet is delivered as a list.

binary

Received Packet is delivered as a binary.

{backlog, B}

B is an integer >= 0. The backlog value defines the maximum length that the queue of pending connections can
grow to. Defaults to 5.

{ip, Address}

If the host has many network interfaces, this option specifies which one to listen on.

{port, Port}

Specifies which local port number to use.

{fd, Fd}

If a socket has somehow been connected without using gen_tcp, use this option to pass the file descriptor for it.

{ifaddr, Address}

Same as {ip, Address}. If the host has many network interfaces, this option specifies which one to use.

inet6

Sets up the socket for IPv6.

inet

Sets up the socket for IPv4.

gen_tcp

136 | Ericsson AB. All Rights Reserved.: Kernel

{tcp_module, module()}

Overrides which callback module is used. Defaults to inet_tcp for IPv4 and inet6_tcp for IPv6.

Opt

See inet:setopts/2.

The returned socket ListenSocket should be used in calls to accept/1,2 to accept incoming connection
requests.

Note:

The default values for options specified to listen can be affected by the Kernel configuration parameter
inet_default_listen_options. For details, see inet(3).

recv(Socket, Length) -> {ok, Packet} | {error, Reason}
recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}
Types:

Socket = socket()
Length = integer() >= 0
Timeout = timeout()
Packet = string() | binary() | HttpPacket
Reason = closed | inet:posix()
HttpPacket = term()
See the description of HttpPacket in erlang:decode_packet/3 in ERTS.

Receives a packet from a socket in passive mode. A closed socket is indicated by return value {error, closed}.

Argument Length is only meaningful when the socket is in raw mode and denotes the number of bytes to read.
If Length is 0, all available bytes are returned. If Length > 0, exactly Length bytes are returned, or an error;
possibly discarding less than Length bytes of data when the socket is closed from the other side.

The optional Timeout parameter specifies a time-out in milliseconds. Defaults to infinity.

send(Socket, Packet) -> ok | {error, Reason}
Types:

Socket = socket()
Packet = iodata()
Reason = closed | inet:posix()

Sends a packet on a socket.

There is no send call with a time-out option, use socket option send_timeout if time-outs are desired. See section
Examples.

shutdown(Socket, How) -> ok | {error, Reason}
Types:

Socket = socket()
How = read | write | read_write
Reason = inet:posix()

Closes a socket in one or two directions.

gen_tcp

Ericsson AB. All Rights Reserved.: Kernel | 137

How == write means closing the socket for writing, reading from it is still possible.

If How == read or there is no outgoing data buffered in the Socket port, the socket is shut down immediately
and any error encountered is returned in Reason.

If there is data buffered in the socket port, the attempt to shutdown the socket is postponed until that data is written to
the kernel socket send buffer. If any errors are encountered, the socket is closed and {error, closed} is returned
on the next recv/2 or send/2.

Option {exit_on_close, false} is useful if the peer has done a shutdown on the write side.

Examples
The following example illustrates use of option {active,once} and multiple accepts by implementing a server
as a number of worker processes doing accept on a single listening socket. Function start/2 takes the number of
worker processes and the port number on which to listen for incoming connections. If LPort is specified as 0, an
ephemeral port number is used, which is why the start function returns the actual port number allocated:

start(Num,LPort) ->
 case gen_tcp:listen(LPort,[{active, false},{packet,2}]) of
 {ok, ListenSock} ->
 start_servers(Num,ListenSock),
 {ok, Port} = inet:port(ListenSock),
 Port;
 {error,Reason} ->
 {error,Reason}
 end.

start_servers(0,_) ->
 ok;
start_servers(Num,LS) ->
 spawn(?MODULE,server,[LS]),
 start_servers(Num-1,LS).

server(LS) ->
 case gen_tcp:accept(LS) of
 {ok,S} ->
 loop(S),
 server(LS);
 Other ->
 io:format("accept returned ~w - goodbye!~n",[Other]),
 ok
 end.

loop(S) ->
 inet:setopts(S,[{active,once}]),
 receive
 {tcp,S,Data} ->
 Answer = process(Data), % Not implemented in this example
 gen_tcp:send(S,Answer),
 loop(S);
 {tcp_closed,S} ->
 io:format("Socket ~w closed [~w]~n",[S,self()]),
 ok
 end.

Example of a simple client:

gen_tcp

138 | Ericsson AB. All Rights Reserved.: Kernel

client(PortNo,Message) ->
 {ok,Sock} = gen_tcp:connect("localhost",PortNo,[{active,false},
 {packet,2}]),
 gen_tcp:send(Sock,Message),
 A = gen_tcp:recv(Sock,0),
 gen_tcp:close(Sock),
 A.

The send call does not accept a time-out option because time-outs on send is handled through socket option
send_timeout. The behavior of a send operation with no receiver is mainly defined by the underlying TCP stack
and the network infrastructure. To write code that handles a hanging receiver that can eventually cause the sender to
hang on a send do like the following.

Consider a process that receives data from a client process to be forwarded to a server on the network. The process
is connected to the server through TCP/IP and does not get any acknowledge for each message it sends, but has to
rely on the send time-out option to detect that the other end is unresponsive. Option send_timeout can be used
when connecting:

...
{ok,Sock} = gen_tcp:connect(HostAddress, Port,
 [{active,false},
 {send_timeout, 5000},
 {packet,2}]),
 loop(Sock), % See below
...

In the loop where requests are handled, send time-outs can now be detected:

loop(Sock) ->
 receive
 {Client, send_data, Binary} ->
 case gen_tcp:send(Sock,[Binary]) of
 {error, timeout} ->
 io:format("Send timeout, closing!~n",
 []),
 handle_send_timeout(), % Not implemented here
 Client ! {self(),{error_sending, timeout}},
 %% Usually, it's a good idea to give up in case of a
 %% send timeout, as you never know how much actually
 %% reached the server, maybe only a packet header?!
 gen_tcp:close(Sock);
 {error, OtherSendError} ->
 io:format("Some other error on socket (~p), closing",
 [OtherSendError]),
 Client ! {self(),{error_sending, OtherSendError}},
 gen_tcp:close(Sock);
 ok ->
 Client ! {self(), data_sent},
 loop(Sock)
 end
 end.

Usually it suffices to detect time-outs on receive, as most protocols include some sort of acknowledgment from the
server, but if the protocol is strictly one way, option send_timeout comes in handy.

gen_udp

Ericsson AB. All Rights Reserved.: Kernel | 139

gen_udp
Erlang module

This module provides functions for communicating with sockets using the UDP protocol.

Data Types
option() =
 {active, true | false | once | -32768..32767} |
 {add_membership, {inet:ip_address(), inet:ip_address()}} |
 {broadcast, boolean()} |
 {buffer, integer() >= 0} |
 {deliver, port | term} |
 {dontroute, boolean()} |
 {drop_membership, {inet:ip_address(), inet:ip_address()}} |
 {header, integer() >= 0} |
 {high_msgq_watermark, integer() >= 1} |
 {low_msgq_watermark, integer() >= 1} |
 {mode, list | binary} |
 list |
 binary |
 {multicast_if, inet:ip_address()} |
 {multicast_loop, boolean()} |
 {multicast_ttl, integer() >= 0} |
 {priority, integer() >= 0} |
 {raw,
 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueBin :: binary()} |
 {read_packets, integer() >= 0} |
 {recbuf, integer() >= 0} |
 {reuseaddr, boolean()} |
 {sndbuf, integer() >= 0} |
 {tos, integer() >= 0} |
 {ipv6_v6only, boolean()}
option_name() =
 active |
 broadcast |
 buffer |
 deliver |
 dontroute |
 header |
 high_msgq_watermark |
 low_msgq_watermark |
 mode |
 multicast_if |
 multicast_loop |
 multicast_ttl |
 priority |
 {raw,

gen_udp

140 | Ericsson AB. All Rights Reserved.: Kernel

 Protocol :: integer() >= 0,
 OptionNum :: integer() >= 0,
 ValueSpec ::
 (ValueSize :: integer() >= 0) | (ValueBin :: binary())} |
 read_packets |
 recbuf |
 reuseaddr |
 sndbuf |
 tos |
 ipv6_v6only
socket()
As returned by open/1,2.

Exports

close(Socket) -> ok
Types:

Socket = socket()
Closes a UDP socket.

controlling_process(Socket, Pid) -> ok | {error, Reason}
Types:

Socket = socket()
Pid = pid()
Reason = closed | not_owner | badarg | inet:posix()

Assigns a new controlling process Pid to Socket. The controlling process is the process that receives messages from
the socket. If called by any other process than the current controlling process, {error, not_owner} is returned.
If the process identified by Pid is not an existing local pid, {error, badarg} is returned. {error, badarg}
may also be returned in some cases when Socket is closed during the execution of this function.

open(Port) -> {ok, Socket} | {error, Reason}
open(Port, Opts) -> {ok, Socket} | {error, Reason}
Types:

Port = inet:port_number()
Opts = [Option]
Option =
 {ip, inet:socket_address()} |
 {fd, integer() >= 0} |
 {ifaddr, inet:socket_address()} |
 inet:address_family() |
 {port, inet:port_number()} |
 option()
Socket = socket()
Reason = inet:posix()

Associates a UDP port number (Port) with the calling process.

The following options are available:

gen_udp

Ericsson AB. All Rights Reserved.: Kernel | 141

list

Received Packet is delivered as a list.

binary

Received Packet is delivered as a binary.

{ip, Address}

If the host has many network interfaces, this option specifies which one to use.

{ifaddr, Address}

Same as {ip, Address}. If the host has many network interfaces, this option specifies which one to use.

{fd, integer() >= 0}

If a socket has somehow been opened without using gen_udp, use this option to pass the file descriptor for it.
If Port is not set to 0 and/or {ip, ip_address()} is combined with this option, the fd is bound to the
specified interface and port after it is being opened. If these options are not specified, it is assumed that the fd
is already bound appropriately.

inet6

Sets up the socket for IPv6.

inet

Sets up the socket for IPv4.

local

Sets up a Unix Domain Socket. See inet:local_address()

{udp_module, module()}

Overrides which callback module is used. Defaults to inet_udp for IPv4 and inet6_udp for IPv6.

{multicast_if, Address}

Sets the local device for a multicast socket.

{multicast_loop, true | false}

When true, sent multicast packets are looped back to the local sockets.

{multicast_ttl, Integer}

Option multicast_ttl changes the time-to-live (TTL) for outgoing multicast datagrams to control the scope
of the multicasts.

Datagrams with a TTL of 1 are not forwarded beyond the local network. Defaults to 1.

{add_membership, {MultiAddress, InterfaceAddress}}

Joins a multicast group.

{drop_membership, {MultiAddress, InterfaceAddress}}

Leaves a multicast group.

Opt

See inet:setopts/2.

The returned socket Socket is used to send packets from this port with send/4. When UDP packets arrive at the
opened port, if the socket is in an active mode, the packets are delivered as messages to the controlling process:

{udp, Socket, IP, InPortNo, Packet}

gen_udp

142 | Ericsson AB. All Rights Reserved.: Kernel

If the socket is not in an active mode, data can be retrieved through the recv/2,3 calls. Notice that arriving UDP
packets that are longer than the receive buffer option specifies can be truncated without warning.

When a socket in {active, N} mode (see inet:setopts/2 for details), transitions to passive ({active,
false}) mode, the controlling process is notified by a message of the following form:

{udp_passive, Socket}

IP and InPortNo define the address from which Packet comes. Packet is a list of bytes if option list is
specified. Packet is a binary if option binary is specified.

Default value for the receive buffer option is {recbuf, 8192}.

If Port == 0, the underlying OS assigns a free UDP port, use inet:port/1 to retrieve it.

recv(Socket, Length) ->
 {ok, {Address, Port, Packet}} | {error, Reason}
recv(Socket, Length, Timeout) ->
 {ok, {Address, Port, Packet}} | {error, Reason}
Types:

Socket = socket()
Length = integer() >= 0
Timeout = timeout()
Address = inet:ip_address() | inet:returned_non_ip_address()
Port = inet:port_number()
Packet = string() | binary()
Reason = not_owner | inet:posix()

Receives a packet from a socket in passive mode. Optional parameter Timeout specifies a time-out in milliseconds.
Defaults to infinity.

send(Socket, Address, Port, Packet) -> ok | {error, Reason}
Types:

Socket = socket()
Address = inet:socket_address() | inet:hostname()
Port = inet:port_number()
Packet = iodata()
Reason = not_owner | inet:posix()

Sends a packet to the specified address and port. Argument Address can be a hostname or a socket address.

global

Ericsson AB. All Rights Reserved.: Kernel | 143

global
Erlang module

This module consists of the following services:

• Registration of global names

• Global locks

• Maintenance of the fully connected network

These services are controlled through the process global_name_server that exists on every node. The global
name server starts automatically when a node is started. With the term global is meant over a system consisting of
many Erlang nodes.

The ability to globally register names is a central concept in the programming of distributed Erlang systems. In this
module, the equivalent of the register/2 and whereis/1 BIFs (for local name registration) are provided, but
for a network of Erlang nodes. A registered name is an alias for a process identifier (pid). The global name server
monitors globally registered pids. If a process terminates, the name is also globally unregistered.

The registered names are stored in replica global name tables on every node. There is no central storage point. Thus,
the translation of a name to a pid is fast, as it is always done locally. For any action resulting in a change to the global
name table, all tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For example, the specified resource can be a pid.
When a global lock is set, access to the locked resource is denied for all resources other than the lock requester.

Both the registration and lock services are atomic. All nodes involved in these actions have the same view of the
information.

The global name server also performs the critical task of continuously monitoring changes in node configuration. If
a node that runs a globally registered process goes down, the name is globally unregistered. To this end, the global
name server subscribes to nodeup and nodedown messages sent from module net_kernel. Relevant Kernel
application variables in this context are net_setuptime, net_ticktime, and dist_auto_connect. See
also kernel(6).

The name server also maintains a fully connected network. For example, if node N1 connects to node N2 (which is
already connected to N3), the global name servers on the nodes N1 and N3 ensure that also N1 and N3 are connected.
If this is not desired, command-line flag -connect_all false can be used (see also erl(1)). In this case, the
name registration service cannot be used, but the lock mechanism still works.

If the global name server fails to connect nodes (N1 and N3 in the example), a warning event is sent to the error
logger. The presence of such an event does not exclude the nodes to connect later (you can, for example, try command
rpc:call(N1, net_adm, ping, [N2]) in the Erlang shell), but it indicates a network problem.

Note:

If the fully connected network is not set up properly, try first to increase the value of net_setuptime.

global

144 | Ericsson AB. All Rights Reserved.: Kernel

Data Types
id() = {ResourceId :: term(), LockRequesterId :: term()}

Exports

del_lock(Id) -> true
del_lock(Id, Nodes) -> true
Types:

Id = id()
Nodes = [node()]

Deletes the lock Id synchronously.

notify_all_name(Name, Pid1, Pid2) -> none
Types:

Name = term()
Pid1 = Pid2 = pid()

Can be used as a name resolving function for register_name/3 and re_register_name/3.

The function unregisters both pids and sends the message {global_name_conflict, Name, OtherPid}
to both processes.

random_exit_name(Name, Pid1, Pid2) -> pid()
Types:

Name = term()
Pid1 = Pid2 = pid()

Can be used as a name resolving function for register_name/3 and re_register_name/3.

The function randomly selects one of the pids for registration and kills the other one.

random_notify_name(Name, Pid1, Pid2) -> pid()
Types:

Name = term()
Pid1 = Pid2 = pid()

Can be used as a name resolving function for register_name/3 and re_register_name/3.

The function randomly selects one of the pids for registration, and sends the message {global_name_conflict,
Name} to the other pid.

re_register_name(Name, Pid) -> yes
re_register_name(Name, Pid, Resolve) -> yes
Types:

Name = term()
Pid = pid()
Resolve = method()
method() =

global

Ericsson AB. All Rights Reserved.: Kernel | 145

 fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->
 pid() | none)
{Module, Function} is also allowed.

Atomically changes the registered name Name on all nodes to refer to Pid.

Function Resolve has the same behavior as in register_name/2,3.

register_name(Name, Pid) -> yes | no
register_name(Name, Pid, Resolve) -> yes | no
Types:

Name = term()
Pid = pid()
Resolve = method()
method() =
 fun((Name :: term(), Pid :: pid(), Pid2 :: pid()) ->
 pid() | none)
{Module, Function} is also allowed for backward compatibility, but its use is deprecated.

Globally associates name Name with a pid, that is, globally notifies all nodes of a new global name in a network of
Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered names that already exist. The
network is also informed of any global names in newly connected nodes. If any name clashes are discovered, function
Resolve is called. Its purpose is to decide which pid is correct. If the function crashes, or returns anything other than
one of the pids, the name is unregistered. This function is called once for each name clash.

Warning:

If you plan to change code without restarting your system, you must use an external fun (fun
Module:Function/Arity) as function Resolve. If you use a local fun, you can never replace the code for
the module that the fun belongs to.

Three predefined resolve functions exist: random_exit_name/3, random_notify_name/3, and
notify_all_name/3. If no Resolve function is defined, random_exit_name is used. This means that one
of the two registered processes is selected as correct while the other is killed.

This function is completely synchronous, that is, when this function returns, the name is either registered on all nodes
or none.

The function returns yes if successful, no if it fails. For example, no is returned if an attempt is made to register an
already registered process or to register a process with a name that is already in use.

Note:

Releases up to and including Erlang/OTP R10 did not check if the process was already registered. The global name
table could therefore become inconsistent. The old (buggy) behavior can be chosen by giving the Kernel application
variable global_multi_name_action the value allow.

If a process with a registered name dies, or the node goes down, the name is unregistered on all nodes.

registered_names() -> [Name]
Types:

global

146 | Ericsson AB. All Rights Reserved.: Kernel

Name = term()
Returns a list of all globally registered names.

send(Name, Msg) -> Pid
Types:

Name = Msg = term()
Pid = pid()

Sends message Msg to the pid globally registered as Name.

If Name is not a globally registered name, the calling function exits with reason {badarg, {Name, Msg}}.

set_lock(Id) -> boolean()
set_lock(Id, Nodes) -> boolean()
set_lock(Id, Nodes, Retries) -> boolean()
Types:

Id = id()
Nodes = [node()]
Retries = retries()
id() = {ResourceId :: term(), LockRequesterId :: term()}
retries() = integer() >= 0 | infinity

Sets a lock on the specified nodes (or on all nodes if none are specified) on ResourceId for LockRequesterId.
If a lock already exists on ResourceId for another requester than LockRequesterId, and Retries is not equal
to 0, the process sleeps for a while and tries to execute the action later. When Retries attempts have been made,
false is returned, otherwise true. If Retries is infinity, true is eventually returned (unless the lock is
never released).

If no value for Retries is specified, infinity is used.

This function is completely synchronous.

If a process that holds a lock dies, or the node goes down, the locks held by the process are deleted.

The global name server keeps track of all processes sharing the same lock, that is, if two processes set the same lock,
both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur as long as processes only lock
one resource at a time. A deadlock can occur if some processes try to lock two or more resources. It is up to the
application to detect and rectify a deadlock.

Note:

Avoid the following values of ResourceId, otherwise Erlang/OTP does not work properly:

• dist_ac

• global

• mnesia_adjust_log_writes

• mnesia_table_lock

• pg2

global

Ericsson AB. All Rights Reserved.: Kernel | 147

sync() -> ok | {error, Reason :: term()}
Synchronizes the global name server with all nodes known to this node. These are the nodes that are returned from
erlang:nodes(). When this function returns, the global name server receives global information from all nodes.
This function can be called when new nodes are added to the network.

The only possible error reason Reason is {"global_groups definition error", Error}.

trans(Id, Fun) -> Res | aborted
trans(Id, Fun, Nodes) -> Res | aborted
trans(Id, Fun, Nodes, Retries) -> Res | aborted
Types:

Id = id()
Fun = trans_fun()
Nodes = [node()]
Retries = retries()
Res = term()
retries() = integer() >= 0 | infinity
trans_fun() = function() | {module(), atom()}

Sets a lock on Id (using set_lock/3). If this succeeds, Fun() is evaluated and the result Res is returned. Returns
aborted if the lock attempt fails. If Retries is set to infinity, the transaction does not abort.

infinity is the default setting and is used if no value is specified for Retries.

unregister_name(Name) -> term()
Types:

Name = term()
Removes the globally registered name Name from the network of Erlang nodes.

whereis_name(Name) -> pid() | undefined
Types:

Name = term()
Returns the pid with the globally registered name Name. Returns undefined if the name is not globally registered.

See Also
global_group(3), net_kernel(3)

global_group

148 | Ericsson AB. All Rights Reserved.: Kernel

global_group
Erlang module

This module makes it possible to partition the nodes of a system into global groups. Each global group has its own
global namespace, see global(3).

The main advantage of dividing systems into global groups is that the background load decreases while the number
of nodes to be updated is reduced when manipulating globally registered names.

The Kernel configuration parameter global_groups defines the global groups (see also kernel(6) and
config(4)):

{global_groups, [GroupTuple :: group_tuple()]}

For the processes and nodes to run smoothly using the global group functionality, the following criteria must be met:

• An instance of the global group server, global_group, must be running on each node. The processes are
automatically started and synchronized when a node is started.

• All involved nodes must agree on the global group definition, otherwise the behavior of the system is undefined.

• All nodes in the system must belong to exactly one global group.

In the following descriptions, a group node is a node belonging to the same global group as the local node.

Data Types
group_tuple() =
 {GroupName :: group_name(), [node()]} |
 {GroupName :: group_name(),
 PublishType :: publish_type(),
 [node()]}
A GroupTuple without PublishType is the same as a GroupTuple with PublishType equal to normal.

group_name() = atom()
publish_type() = hidden | normal
A node started with command-line flag -hidden (see erl(1)) is said to be a hidden node. A hidden node establishes
hidden connections to nodes not part of the same global group, but normal (visible) connections to nodes part of the
same global group.

A global group defined with PublishType equal to hidden is said to be a hidden global group. All nodes in a
hidden global group are hidden nodes, whether they are started with command-line flag -hidden or not.

name() = atom()
A registered name.

where() = {node, node()} | {group, group_name()}

Exports

global_groups() -> {GroupName, GroupNames} | undefined
Types:

global_group

Ericsson AB. All Rights Reserved.: Kernel | 149

GroupName = group_name()
GroupNames = [GroupName]

Returns a tuple containing the name of the global group that the local node belongs to, and the list of all other known
group names. Returns undefined if no global groups are defined.

info() -> [info_item()]
Types:

info_item() =
 {state, State :: sync_state()} |
 {own_group_name, GroupName :: group_name()} |
 {own_group_nodes, Nodes :: [node()]} |
 {synched_nodes, Nodes :: [node()]} |
 {sync_error, Nodes :: [node()]} |
 {no_contact, Nodes :: [node()]} |
 {other_groups, Groups :: [group_tuple()]} |
 {monitoring, Pids :: [pid()]}
sync_state() = no_conf | synced

Returns a list containing information about the global groups. Each list element is a tuple. The order of the tuples
is undefined.

{state, State}

If the local node is part of a global group, State is equal to synced. If no global groups are defined, State
is equal to no_conf.

{own_group_name, GroupName}

The name (atom) of the group that the local node belongs to.

{own_group_nodes, Nodes}

A list of node names (atoms), the group nodes.

{synced_nodes, Nodes}

A list of node names, the group nodes currently synchronized with the local node.

{sync_error, Nodes}

A list of node names, the group nodes with which the local node has failed to synchronize.

{no_contact, Nodes}

A list of node names, the group nodes to which there are currently no connections.

{other_groups, Groups}

Groups is a list of tuples {GroupName, Nodes}, specifying the name and nodes of the other global groups.

{monitoring, Pids}

A list of pids, specifying the processes that have subscribed to nodeup and nodedown messages.

monitor_nodes(Flag) -> ok
Types:

Flag = boolean()
Depending on Flag, the calling process starts subscribing (Flag equal to true) or stops subscribing (Flag equal
to false) to node status change messages.

global_group

150 | Ericsson AB. All Rights Reserved.: Kernel

A process that has subscribed receives the messages {nodeup, Node} and {nodedown, Node} when a group
node connects or disconnects, respectively.

own_nodes() -> Nodes
Types:

Nodes = [Node :: node()]
Returns the names of all group nodes, regardless of their current status.

registered_names(Where) -> Names
Types:

Where = where()
Names = [Name :: name()]

Returns a list of all names that are globally registered on the specified node or in the specified global group.

send(Name, Msg) -> pid() | {badarg, {Name, Msg}}
send(Where, Name, Msg) -> pid() | {badarg, {Name, Msg}}
Types:

Where = where()
Name = name()
Msg = term()

Searches for Name, globally registered on the specified node or in the specified global group, or (if argument Where
is not provided) in any global group. The global groups are searched in the order that they appear in the value of
configuration parameter global_groups.

If Name is found, message Msg is sent to the corresponding pid. The pid is also the return value of the function. If the
name is not found, the function returns {badarg, {Name, Msg}}.

sync() -> ok
Synchronizes the group nodes, that is, the global name servers on the group nodes. Also checks the names globally
registered in the current global group and unregisters them on any known node not part of the group.

If synchronization is not possible, an error report is sent to the error logger (see also error_logger(3).

Returns {error, {'invalid global_groups definition', Bad}} if configuration parameter
global_groups has an invalid value Bad.

whereis_name(Name) -> pid() | undefined
whereis_name(Where, Name) -> pid() | undefined
Types:

Where = where()
Name = name()

Searches for Name, globally registered on the specified node or in the specified global group, or (if argument Where
is not provided) in any global group. The global groups are searched in the order that they appear in the value of
configuration parameter global_groups.

If Name is found, the corresponding pid is returned. If the name is not found, the function returns undefined.

global_group

Ericsson AB. All Rights Reserved.: Kernel | 151

Notes
• In the situation where a node has lost its connections to other nodes in its global group, but has connections to

nodes in other global groups, a request from another global group can produce an incorrect or misleading result.
For example, the isolated node can have inaccurate information about registered names in its global group.

• Function send/2,3 is not secure.

• Distribution of applications is highly dependent of the global group definitions. It is not recommended that an
application is distributed over many global groups, as the registered names can be moved to another global group
at failover/takeover. Nothing prevents this to be done, but the application code must then handle the situation.

See Also
global(3), erl(1)

heart

152 | Ericsson AB. All Rights Reserved.: Kernel

heart
Erlang module

This modules contains the interface to the heart process. heart sends periodic heartbeats to an external port
program, which is also named heart. The purpose of the heart port program is to check that the Erlang
runtime system it is supervising is still running. If the port program has not received any heartbeats within
HEART_BEAT_TIMEOUT seconds (defaults to 60 seconds), the system can be rebooted.

An Erlang runtime system to be monitored by a heart program is to be started with command-line flag -heart (see
also erl(1)). The heart process is then started automatically:

% erl -heart ...

If the system is to be rebooted because of missing heartbeats, or a terminated Erlang runtime system, environment
variable HEART_COMMAND must be set before the system is started. If this variable is not set, a warning text is printed
but the system does not reboot.

To reboot on Windows, HEART_COMMAND can be set to heart -shutdown (included in the Erlang delivery) or
to any other suitable program that can activate a reboot.

The environment variable HEART_BEAT_TIMEOUT can be used to configure the heart time-outs; it can be set in the
operating system shell before Erlang is started or be specified at the command line:

% erl -heart -env HEART_BEAT_TIMEOUT 30 ...

The value (in seconds) must be in the range 10 < X <= 65535.

Notice that if the system clock is adjusted with more than HEART_BEAT_TIMEOUT seconds, heart times out and
tries to reboot the system. This can occur, for example, if the system clock is adjusted automatically by use of the
Network Time Protocol (NTP).

If a crash occurs, an erl_crash.dump is not written unless environment variable ERL_CRASH_DUMP_SECONDS
is set:

% erl -heart -env ERL_CRASH_DUMP_SECONDS 10 ...

If a regular core dump is wanted, let heart know by setting the kill signal to abort using environment variable
HEART_KILL_SIGNAL=SIGABRT. If unset, or not set to SIGABRT, the default behavior is a kill signal using
SIGKILL:

% erl -heart -env HEART_KILL_SIGNAL SIGABRT ...

If heart should not kill the Erlang runtime system, this can be indicated using the environment variable
HEART_NO_KILL=TRUE. This can be useful if the command executed by heart takes care of this, for example as part
of a specific cleanup sequence. If unset, or not set to TRUE, the default behaviour will be to kill as described above.

% erl -heart -env HEART_NO_KILL 1 ...

Furthermore, ERL_CRASH_DUMP_SECONDS has the following behavior on heart:

heart

Ericsson AB. All Rights Reserved.: Kernel | 153

ERL_CRASH_DUMP_SECONDS=0

Suppresses the writing of a crash dump file entirely, thus rebooting the runtime system immediately. This is the
same as not setting the environment variable.

ERL_CRASH_DUMP_SECONDS=-1

Setting the environment variable to a negative value does not reboot the runtime system until the crash dump
file is completly written.

ERL_CRASH_DUMP_SECONDS=S

heart waits for S seconds to let the crash dump file be written. After S seconds, heart reboots the runtime
system, whether the crash dump file is written or not.

In the following descriptions, all functions fail with reason badarg if heart is not started.

Data Types
heart_option() = check_schedulers

Exports

set_cmd(Cmd) -> ok | {error, {bad_cmd, Cmd}}
Types:

Cmd = string()
Sets a temporary reboot command. This command is used if a HEART_COMMAND other than the one specified with
the environment variable is to be used to reboot the system. The new Erlang runtime system uses (if it misbehaves)
environment variable HEART_COMMAND to reboot.

Limitations: Command string Cmd is sent to the heart program as an ISO Latin-1 or UTF-8 encoded binary,
depending on the filename encoding mode of the emulator (see file:native_name_encoding/0). The size of
the encoded binary must be less than 2047 bytes.

clear_cmd() -> ok
Clears the temporary boot command. If the system terminates, the normal HEART_COMMAND is used to reboot.

get_cmd() -> {ok, Cmd}
Types:

Cmd = string()
Gets the temporary reboot command. If the command is cleared, the empty string is returned.

set_callback(Module, Function) ->
 ok | {error, {bad_callback, {Module, Function}}}
Types:

Module = Function = atom()

This validation callback will be executed before any heartbeat is sent to the port program. For the validation to succeed
it needs to return with the value ok.

An exception within the callback will be treated as a validation failure.

The callback will be removed if the system reboots.

heart

154 | Ericsson AB. All Rights Reserved.: Kernel

clear_callback() -> ok
Removes the validation callback call before heartbeats.

get_callback() -> {ok, {Module, Function}} | none
Types:

Module = Function = atom()

Get the validation callback. If the callback is cleared, none will be returned.

set_options(Options) -> ok | {error, {bad_options, Options}}
Types:

Options = [heart_option()]
Valid options set_options are:

check_schedulers

If enabled, a signal will be sent to each scheduler to check its responsiveness. The system check occurs before any
heartbeat sent to the port program. If any scheduler is not responsive enough the heart program will not receive
its heartbeat and thus eventually terminate the node.

Returns with the value ok if the options are valid.

get_options() -> {ok, Options} | none
Types:

Options = [atom()]
Returns {ok, Options} where Options is a list of current options enabled for heart. If the callback is cleared,
none will be returned.

inet

Ericsson AB. All Rights Reserved.: Kernel | 155

inet
Erlang module

This module provides access to TCP/IP protocols.

See also ERTS User's Guide: Inet Configuration for more information about how to configure an Erlang runtime
system for IP communication.

The following two Kernel configuration parameters affect the behavior of all sockets opened on an Erlang node:

• inet_default_connect_options can contain a list of default options used for all sockets returned when
doing connect.

• inet_default_listen_options can contain a list of default options used when issuing a listen call.

When accept is issued, the values of the listening socket options are inherited. No such application variable is
therefore needed for accept.

Using the Kernel configuration parameters above, one can set default options for all TCP sockets on a node, but use
this with care. Options such as {delay_send,true} can be specified in this way. The following is an example of
starting an Erlang node with all sockets using delayed send:

$ erl -sname test -kernel \
inet_default_connect_options '[{delay_send,true}]' \
inet_default_listen_options '[{delay_send,true}]'

Notice that default option {active, true} cannot be changed, for internal reasons.

Addresses as inputs to functions can be either a string or a tuple. For example, the IP address 150.236.20.73 can be
passed to gethostbyaddr/1, either as string "150.236.20.73" or as tuple {150, 236, 20, 73}.

IPv4 address examples:

Address ip_address()
------- ------------
127.0.0.1 {127,0,0,1}
192.168.42.2 {192,168,42,2}

IPv6 address examples:

Address ip_address()
------- ------------
::1 {0,0,0,0,0,0,0,1}
::192.168.42.2 {0,0,0,0,0,0,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
::FFFF:192.168.42.2
 {0,0,0,0,0,16#FFFF,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
3ffe:b80:1f8d:2:204:acff:fe17:bf38
 {16#3ffe,16#b80,16#1f8d,16#2,16#204,16#acff,16#fe17,16#bf38}
fe80::204:acff:fe17:bf38
 {16#fe80,0,0,0,0,16#204,16#acff,16#fe17,16#bf38}

Function parse_address/1 can be useful:

1> inet:parse_address("192.168.42.2").
{ok,{192,168,42,2}}
2> inet:parse_address("::FFFF:192.168.42.2").
{ok,{0,0,0,0,0,65535,49320,10754}}

inet

156 | Ericsson AB. All Rights Reserved.: Kernel

Data Types
hostent() =
 #hostent{h_name = inet:hostname(),
 h_aliases = [inet:hostname()],
 h_addrtype = inet | inet6,
 h_length = integer() >= 0,
 h_addr_list = [inet:ip_address()]}
The record is defined in the Kernel include file "inet.hrl".

Add the following directive to the module:

-include_lib("kernel/include/inet.hrl").

hostname() = atom() | string()
ip_address() = ip4_address() | ip6_address()
ip4_address() = {0..255, 0..255, 0..255, 0..255}
ip6_address() =
 {0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535,
 0..65535}
port_number() = 0..65535
local_address() = {local, File :: binary() | string()}
This address family only works on Unix-like systems.

File is normally a file pathname in a local filesystem. It is limited in length by the operating system, traditionally
to 108 bytes.

A binary() is passed as is to the operating system, but a string() is encoded according to the system filename
encoding mode.

Other addresses are possible, for example Linux implements "Abstract Addresses". See the documentation for Unix
Domain Sockets on your system, normally unix in manual section 7.

In most API functions where you can use this address family the port number must be 0.

socket_address() =
 ip_address() | any | loopback | local_address()
socket_getopt() =
 gen_sctp:option_name() |
 gen_tcp:option_name() |
 gen_udp:option_name()
socket_setopt() =
 gen_sctp:option() | gen_tcp:option() | gen_udp:option()
returned_non_ip_address() =
 {local, binary()} | {unspec, <<>>} | {undefined, any()}
Addresses besides ip_address() ones that are returned from socket API functions. See in particular
local_address(). The unspec family corresponds to AF_UNSPEC and can occur if the other side has no

inet

Ericsson AB. All Rights Reserved.: Kernel | 157

socket address. The undefined family can only occur in the unlikely event of an address family that the VM does
not recognize.

posix() = exbadport | exbadseq | file:posix()
An atom that is named from the POSIX error codes used in Unix, and in the runtime libraries of most C compilers.
See section POSIX Error Codes.

socket()
See gen_tcp:type-socket and gen_udp:type-socket.

address_family() = inet | inet6 | local
socket_protocol() = tcp | udp | sctp

Exports

close(Socket) -> ok
Types:

Socket = socket()
Closes a socket of any type.

format_error(Reason) -> string()
Types:

Reason = posix() | system_limit
Returns a diagnostic error string. For possible POSIX values and corresponding strings, see section POSIX Error
Codes.

get_rc() ->
 [{Par :: atom(), Val :: any()} |
 {Par :: atom(), Val1 :: any(), Val2 :: any()}]
Returns the state of the Inet configuration database in form of a list of recorded configuration parameters. For more
information, see ERTS User's Guide: Inet Configuration.

Only actual parameters with other than default values are returned, for example not directives that specify other sources
for configuration parameters nor directives that clear parameters.

getaddr(Host, Family) -> {ok, Address} | {error, posix()}
Types:

Host = ip_address() | hostname()
Family = address_family()
Address = ip_address()

Returns the IP address for Host as a tuple of integers. Host can be an IP address, a single hostname, or a fully
qualified hostname.

getaddrs(Host, Family) -> {ok, Addresses} | {error, posix()}
Types:

inet

158 | Ericsson AB. All Rights Reserved.: Kernel

Host = ip_address() | hostname()
Family = address_family()
Addresses = [ip_address()]

Returns a list of all IP addresses for Host. Host can be an IP address, a single hostname, or a fully qualified hostname.

gethostbyaddr(Address) -> {ok, Hostent} | {error, posix()}
Types:

Address = string() | ip_address()
Hostent = hostent()

Returns a hostent record for the host with the specified address.

gethostbyname(Hostname) -> {ok, Hostent} | {error, posix()}
Types:

Hostname = hostname()
Hostent = hostent()

Returns a hostent record for the host with the specified hostname.

If resolver option inet6 is true, an IPv6 address is looked up.

gethostbyname(Hostname, Family) ->
 {ok, Hostent} | {error, posix()}
Types:

Hostname = hostname()
Family = address_family()
Hostent = hostent()

Returns a hostent record for the host with the specified name, restricted to the specified address family.

gethostname() -> {ok, Hostname}
Types:

Hostname = string()
Returns the local hostname. Never fails.

getifaddrs() -> {ok, Iflist} | {error, posix()}
Types:

Iflist = [{Ifname, [Ifopt]}]
Ifname = string()
Ifopt =
 {flags, [Flag]} |
 {addr, Addr} |
 {netmask, Netmask} |
 {broadaddr, Broadaddr} |
 {dstaddr, Dstaddr} |
 {hwaddr, Hwaddr}
Flag =

inet

Ericsson AB. All Rights Reserved.: Kernel | 159

 up | broadcast | loopback | pointtopoint | running | multicast
Addr = Netmask = Broadaddr = Dstaddr = ip_address()
Hwaddr = [byte()]

Returns a list of 2-tuples containing interface names and the interface addresses. Ifname is a Unicode string. Hwaddr
is hardware dependent, for example, on Ethernet interfaces it is the 6-byte Ethernet address (MAC address (EUI-48
address)).

The tuples {addr,Addr}, {netmask,_}, and {broadaddr,_} are repeated in the result list if the interface has
multiple addresses. If you come across an interface with multiple {flag,_} or {hwaddr,_} tuples, you have a
strange interface or possibly a bug in this function. The tuple {flag,_} is mandatory, all others are optional.

Do not rely too much on the order of Flag atoms or Ifopt tuples. There are however some rules:

• Immediately after {addr,_} follows {netmask,_}.

• Immediately thereafter follows {broadaddr,_} if flag broadcast is not set and flag pointtopoint is
set.

• Any {netmask,_}, {broadaddr,_}, or {dstaddr,_} tuples that follow an {addr,_} tuple concerns
that address.

The tuple {hwaddr,_} is not returned on Solaris, as the hardware address historically belongs to the link layer and
only the superuser can read such addresses.

Warning:

On Windows, the data is fetched from different OS API functions, so the Netmask and Broadaddr values can
be calculated, just as some Flag values. Report flagrant bugs.

getopts(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types:

Socket = socket()
Options = [socket_getopt()]
OptionValues = [socket_setopt()]

Gets one or more options for a socket. For a list of available options, see setopts/2.

The number of elements in the returned OptionValues list does not necessarily correspond to the number of options
asked for. If the operating system fails to support an option, it is left out in the returned list. An error tuple is returned
only when getting options for the socket is impossible (that is, the socket is closed or the buffer size in a raw request
is too large). This behavior is kept for backward compatibility reasons.

A raw option request RawOptReq = {raw, Protocol, OptionNum, ValueSpec} can be used to get
information about socket options not (explicitly) supported by the emulator. The use of raw socket options makes the
code non-portable, but allows the Erlang programmer to take advantage of unusual features present on the current
platform.

RawOptReq consists of tag raw followed by the protocol level, the option number, and either a binary or the size, in
bytes, of the buffer in which the option value is to be stored. A binary is to be used when the underlying getsockopt
requires input in the argument field. In this case, the binary size is to correspond to the required buffer size of the
return value. The supplied values in a RawOptReq correspond to the second, third, and fourth/fifth parameters to the
getsockopt call in the C socket API. The value stored in the buffer is returned as a binary ValueBin, where all
values are coded in the native endianess.

Asking for and inspecting raw socket options require low-level information about the current operating system and
TCP stack.

inet

160 | Ericsson AB. All Rights Reserved.: Kernel

Example:

Consider a Linux machine where option TCP_INFO can be used to collect TCP statistics for a socket. Assume you
are interested in field tcpi_sacked of struct tcp_info filled in when asking for TCP_INFO. To be able to
access this information, you need to know the following:

• The numeric value of protocol level IPPROTO_TCP

• The numeric value of option TCP_INFO

• The size of struct tcp_info

• The size and offset of the specific field

By inspecting the headers or writing a small C program, it is found that IPPROTO_TCP is 6, TCP_INFO is 11, the
structure size is 92 (bytes), the offset of tcpi_sacked is 28 bytes, and the value is a 32-bit integer. The following
code can be used to retrieve the value:

get_tcpi_sacked(Sock) ->
 {ok,[{raw,_,_,Info}]} = inet:getopts(Sock,[{raw,6,11,92}]),
 <<_:28/binary,TcpiSacked:32/native,_/binary>> = Info,
 TcpiSacked.

Preferably, you would check the machine type, the operating system, and the Kernel version before executing anything
similar to this code.

getstat(Socket) -> {ok, OptionValues} | {error, posix()}
getstat(Socket, Options) -> {ok, OptionValues} | {error, posix()}
Types:

Socket = socket()
Options = [stat_option()]
OptionValues = [{stat_option(), integer()}]
stat_option() =
 recv_cnt |
 recv_max |
 recv_avg |
 recv_oct |
 recv_dvi |
 send_cnt |
 send_max |
 send_avg |
 send_oct |
 send_pend

Gets one or more statistic options for a socket.

getstat(Socket) is equivalent to getstat(Socket, [recv_avg, recv_cnt, recv_dvi,
recv_max, recv_oct, send_avg, send_cnt, send_dvi, send_max, send_oct]).

The following options are available:

recv_avg

Average size of packets, in bytes, received by the socket.

recv_cnt

Number of packets received by the socket.

inet

Ericsson AB. All Rights Reserved.: Kernel | 161

recv_dvi

Average packet size deviation, in bytes, received by the socket.

recv_max

Size of the largest packet, in bytes, received by the socket.

recv_oct

Number of bytes received by the socket.

send_avg

Average size of packets, in bytes, sent from the socket.

send_cnt

Number of packets sent from the socket.

send_dvi

Average packet size deviation, in bytes, sent from the socket.

send_max

Size of the largest packet, in bytes, sent from the socket.

send_oct

Number of bytes sent from the socket.

i() -> ok
i(Proto :: socket_protocol()) -> ok
i(X1 :: socket_protocol(), Fs :: [atom()]) -> ok
Lists all TCP, UDP and SCTP sockets, including those that the Erlang runtime system uses as well as those created
by the application.

The following options are available:

port

The internal index of the port.

module

The callback module of the socket.

recv

Number of bytes received by the socket.

sent

Number of bytes sent from the socket.

owner

The socket owner process.

local_address

The local address of the socket.

foreign_address

The address and port of the other end of the connection.

inet

162 | Ericsson AB. All Rights Reserved.: Kernel

state

The connection state.

type

STREAM or DGRAM or SEQPACKET.

ntoa(IpAddress) -> Address | {error, einval}
Types:

Address = string()
IpAddress = ip_address()

Parses an ip_address() and returns an IPv4 or IPv6 address string.

parse_address(Address) -> {ok, IPAddress} | {error, einval}
Types:

Address = string()
IPAddress = ip_address()

Parses an IPv4 or IPv6 address string and returns an ip4_address() or ip6_address(). Accepts a shortened
IPv4 address string.

parse_ipv4_address(Address) -> {ok, IPv4Address} | {error, einval}
Types:

Address = string()
IPv4Address = ip_address()

Parses an IPv4 address string and returns an ip4_address(). Accepts a shortened IPv4 address string.

parse_ipv4strict_address(Address) ->
 {ok, IPv4Address} | {error, einval}
Types:

Address = string()
IPv4Address = ip_address()

Parses an IPv4 address string containing four fields, that is, not shortened, and returns an ip4_address().

parse_ipv6_address(Address) -> {ok, IPv6Address} | {error, einval}
Types:

Address = string()
IPv6Address = ip_address()

Parses an IPv6 address string and returns an ip6_address(). If an IPv4 address string is specified, an IPv4-mapped
IPv6 address is returned.

parse_ipv6strict_address(Address) ->
 {ok, IPv6Address} | {error, einval}
Types:

inet

Ericsson AB. All Rights Reserved.: Kernel | 163

Address = string()
IPv6Address = ip_address()

Parses an IPv6 address string and returns an ip6_address(). Does not accept IPv4 addresses.

ipv4_mapped_ipv6_address(X1 :: ip_address()) -> ip_address()
Convert an IPv4 address to an IPv4-mapped IPv6 address or the reverse. When converting from an IPv6 address all
but the 2 low words are ignored so this function also works on some other types of addresses than IPv4-mapped.

parse_strict_address(Address) -> {ok, IPAddress} | {error, einval}
Types:

Address = string()
IPAddress = ip_address()

Parses an IPv4 or IPv6 address string and returns an ip4_address() or ip6_address(). Does not accept a
shortened IPv4 address string.

peername(Socket :: socket()) ->
 {ok,
 {ip_address(), port_number()} |
 returned_non_ip_address()} |
 {error, posix()}
Returns the address and port for the other end of a connection.

Notice that for SCTP sockets, this function returns only one of the peer addresses of the socket. Function
peernames/1,2 returns all.

peernames(Socket :: socket()) ->
 {ok,
 [{ip_address(), port_number()} |
 returned_non_ip_address()]} |
 {error, posix()}
Equivalent to peernames(Socket, 0).

Notice that the behavior of this function for an SCTP one-to-many style socket is not defined by the SCTP Sockets
API Extensions.

peernames(Socket, Assoc) ->
 {ok, [{Address, Port}]} | {error, posix()}
Types:

Socket = socket()
Assoc = #sctp_assoc_change{} | gen_sctp:assoc_id()
Address = ip_address()
Port = integer() >= 0

Returns a list of all address/port number pairs for the other end of an association Assoc of a socket.

This function can return multiple addresses for multihomed sockets, such as SCTP sockets. For other sockets it returns
a one-element list.

Notice that parameter Assoc is by the SCTP Sockets API Extensions defined to be ignored for one-to-one style
sockets. What the special value 0 means, hence its behavior for one-to-many style sockets, is unfortunately undefined.

href
href
href

inet

164 | Ericsson AB. All Rights Reserved.: Kernel

port(Socket) -> {ok, Port} | {error, any()}
Types:

Socket = socket()
Port = port_number()

Returns the local port number for a socket.

setopts(Socket, Options) -> ok | {error, posix()}
Types:

Socket = socket()
Options = [socket_setopt()]

Sets one or more options for a socket.

The following options are available:

{active, true | false | once | N}

If the value is true, which is the default, everything received from the socket is sent as messages to the receiving
process.

If the value is false (passive mode), the process must explicitly receive incoming data by calling
gen_tcp:recv/2,3, gen_udp:recv/2,3, or gen_sctp:recv/1,2 (depending on the type of socket).

If the value is once ({active, once}), one data message from the socket is sent to the process. To receive
one more message, setopts/2 must be called again with option {active, once}.

If the value is an integer N in the range -32768 to 32767 (inclusive), the value is added to the socket's count of data
messages sent to the controlling process. A socket's default message count is 0. If a negative value is specified,
and its magnitude is equal to or greater than the socket's current message count, the socket's message count is set
to 0. Once the socket's message count reaches 0, either because of sending received data messages to the process
or by being explicitly set, the process is then notified by a special message, specific to the type of socket, that the
socket has entered passive mode. Once the socket enters passive mode, to receive more messages setopts/2
must be called again to set the socket back into an active mode.

When using {active, once} or {active, N}, the socket changes behavior automatically when data is
received. This can be confusing in combination with connection-oriented sockets (that is, gen_tcp), as a socket
with {active, false} behavior reports closing differently than a socket with {active, true} behavior.
To simplify programming, a socket where the peer closed, and this is detected while in {active, false}
mode, still generates message {tcp_closed,Socket} when set to {active, once}, {active,
true}, or {active, N} mode. It is therefore safe to assume that message {tcp_closed,Socket},
possibly followed by socket port termination (depending on option exit_on_close) eventually appears when
a socket changes back and forth between {active, true} and {active, false} mode. However, when
peer closing is detected it is all up to the underlying TCP/IP stack and protocol.

Notice that {active, true} mode provides no flow control; a fast sender can easily overflow the receiver
with incoming messages. The same is true for {active, N} mode, while the message count is greater than zero.

Use active mode only if your high-level protocol provides its own flow control (for example, acknowledging
received messages) or the amount of data exchanged is small. {active, false} mode, use of the {active,
once} mode, or {active, N} mode with values of N appropriate for the application provides flow control.
The other side cannot send faster than the receiver can read.

{broadcast, Boolean} (UDP sockets)

Enables/disables permission to send broadcasts.

inet

Ericsson AB. All Rights Reserved.: Kernel | 165

{buffer, Size}

The size of the user-level software buffer used by the driver. Not to be confused with options sndbuf
and recbuf, which correspond to the Kernel socket buffers. It is recommended to have val(buffer)
>= max(val(sndbuf),val(recbuf)) to avoid performance issues because of unnecessary copying.
val(buffer) is automatically set to the above maximum when values sndbuf or recbuf are set. However,
as the sizes set for sndbuf and recbuf usually become larger, you are encouraged to use getopts/2 to
analyze the behavior of your operating system.

Note that this is also the maximum amount of data that can be received from a single recv call. If you are using
higher than normal MTU consider setting buffer higher.

{delay_send, Boolean}

Normally, when an Erlang process sends to a socket, the driver tries to send the data immediately. If that fails,
the driver uses any means available to queue up the message to be sent whenever the operating system says it can
handle it. Setting {delay_send, true} makes all messages queue up. The messages sent to the network
are then larger but fewer. The option affects the scheduling of send requests versus Erlang processes instead of
changing any real property of the socket. The option is implementation-specific. Defaults to false.

{deliver, port | term}

When {active, true}, data is delivered on the form port : {S, {data, [H1,..Hsz | Data]}}
or term : {tcp, S, [H1..Hsz | Data]}.

{dontroute, Boolean}

Enables/disables routing bypass for outgoing messages.

{exit_on_close, Boolean}

This option is set to true by default.

The only reason to set it to false is if you want to continue sending data to the socket after a close is detected,
for example, if the peer uses gen_tcp:shutdown/2 to shut down the write side.

{header, Size}

This option is only meaningful if option binary was specified when the socket was created. If option header
is specified, the first Size number bytes of data received from the socket are elements of a list, and the remaining
data is a binary specified as the tail of the same list. For example, if Size == 2, the data received matches
[Byte1,Byte2|Binary].

{high_msgq_watermark, Size}

The socket message queue is set to a busy state when the amount of data on the message queue reaches this
limit. Notice that this limit only concerns data that has not yet reached the ERTS internal socket implementation.
Defaults to 8 kB.

Senders of data to the socket are suspended if either the socket message queue is busy or the socket itself is busy.

For more information, see options low_msgq_watermark, high_watermark, and low_watermark.

Notice that distribution sockets disable the use of high_msgq_watermark and low_msgq_watermark.
Instead use the distribution buffer busy limit, which is a similar feature.

{high_watermark, Size} (TCP/IP sockets)

The socket is set to a busy state when the amount of data queued internally by the ERTS socket implementation
reaches this limit. Defaults to 8 kB.

Senders of data to the socket are suspended if either the socket message queue is busy or the socket itself is busy.

For more information, see options low_watermark, high_msgq_watermark, and
low_msqg_watermark.

inet

166 | Ericsson AB. All Rights Reserved.: Kernel

{ipv6_v6only, Boolean}

Restricts the socket to use only IPv6, prohibiting any IPv4 connections. This is only applicable for IPv6 sockets
(option inet6).

On most platforms this option must be set on the socket before associating it to an address. It is therefore only
reasonable to specify it when creating the socket and not to use it when calling function (setopts/2) containing
this description.

The behavior of a socket with this option set to true is the only portable one. The original idea when IPv6 was
new of using IPv6 for all traffic is now not recommended by FreeBSD (you can use {ipv6_v6only,false}
to override the recommended system default value), forbidden by OpenBSD (the supported GENERIC kernel),
and impossible on Windows (which has separate IPv4 and IPv6 protocol stacks). Most Linux distros still have
a system default value of false. This policy shift among operating systems to separate IPv6 from IPv4 traffic
has evolved, as it gradually proved hard and complicated to get a dual stack implementation correct and secure.

On some platforms, the only allowed value for this option is true, for example, OpenBSD and Windows. Trying
to set this option to false, when creating the socket, fails in this case.

Setting this option on platforms where it does not exist is ignored. Getting this option with getopts/2 returns
no value, that is, the returned list does not contain an {ipv6_v6only,_} tuple. On Windows, the option does
not exist, but it is emulated as a read-only option with value true.

Therefore, setting this option to true when creating a socket never fails, except possibly on a platform where you
have customized the kernel to only allow false, which can be doable (but awkward) on, for example, OpenBSD.

If you read back the option value using getopts/2 and get no value, the option does not exist in the host
operating system. The behavior of both an IPv6 and an IPv4 socket listening on the same port, and for an IPv6
socket getting IPv4 traffic is then no longer predictable.

{keepalive, Boolean}(TCP/IP sockets)

Enables/disables periodic transmission on a connected socket when no other data is exchanged. If the other end
does not respond, the connection is considered broken and an error message is sent to the controlling process.
Defaults to disabled.

{linger, {true|false, Seconds}}

Determines the time-out, in seconds, for flushing unsent data in the close/1 socket call. If the first component
of the value tuple is false, the second is ignored. This means that close/1 returns immediately, not waiting
for data to be flushed. Otherwise, the second component is the flushing time-out, in seconds.

{low_msgq_watermark, Size}

If the socket message queue is in a busy state, the socket message queue is set in a not busy state when the amount
of data queued in the message queue falls below this limit. Notice that this limit only concerns data that has not
yet reached the ERTS internal socket implementation. Defaults to 4 kB.

Senders that are suspended because of either a busy message queue or a busy socket are resumed when the socket
message queue and the socket are not busy.

For more information, see options high_msgq_watermark, high_watermark, and low_watermark.

Notice that distribution sockets disable the use of high_msgq_watermark and low_msgq_watermark.
Instead they use the distribution buffer busy limit, which is a similar feature.

{low_watermark, Size} (TCP/IP sockets)

If the socket is in a busy state, the socket is set in a not busy state when the amount of data queued internally by
the ERTS socket implementation falls below this limit. Defaults to 4 kB.

Senders that are suspended because of a busy message queue or a busy socket are resumed when the socket
message queue and the socket are not busy.

inet

Ericsson AB. All Rights Reserved.: Kernel | 167

For more information, see options high_watermark, high_msgq_watermark, and
low_msgq_watermark.

{mode, Mode :: binary | list}

Received Packet is delivered as defined by Mode.

{netns, Namespace :: file:filename_all()}

Sets a network namespace for the socket. Parameter Namespace is a filename defining the namespace, for
example, "/var/run/netns/example", typically created by command ip netns add example.
This option must be used in a function call that creates a socket, that is, gen_tcp:connect/3,4,
gen_tcp:listen/2, gen_udp:open/1,2, or gen_sctp:open/0,1,2.

This option uses the Linux-specific syscall setns(), such as in Linux kernel 3.0 or later, and therefore only
exists when the runtime system is compiled for such an operating system.

The virtual machine also needs elevated privileges, either running as superuser or (for Linux) having
capability CAP_SYS_ADMIN according to the documentation for setns(2). However, during testing also
CAP_SYS_PTRACE and CAP_DAC_READ_SEARCH have proven to be necessary.

Example:

setcap cap_sys_admin,cap_sys_ptrace,cap_dac_read_search+epi beam.smp

Notice that the filesystem containing the virtual machine executable (beam.smp in the example) must be local,
mounted without flag nosetuid, support extended attributes, and the kernel must support file capabilities. All
this runs out of the box on at least Ubuntu 12.04 LTS, except that SCTP sockets appear to not support network
namespaces.

Namespace is a filename and is encoded and decoded as discussed in module file, with the following exceptions:

• Emulator flag +fnu is ignored.

• getopts/2 for this option returns a binary for the filename if the stored filename cannot be decoded. This
is only to occur if you set the option using a binary that cannot be decoded with the emulator's filename
encoding: file:native_name_encoding/0.

{bind_to_device, Ifname :: binary()}

Binds a socket to a specific network interface. This option must be used in a function call that
creates a socket, that is, gen_tcp:connect/3,4, gen_tcp:listen/2, gen_udp:open/1,2, or
gen_sctp:open/0,1,2.

Unlike getifaddrs/0, Ifname is encoded a binary. In the unlikely case that a system is using non-7-bit-ASCII
characters in network device names, special care has to be taken when encoding this argument.

This option uses the Linux-specific socket option SO_BINDTODEVICE, such as in Linux kernel 2.0.30 or later,
and therefore only exists when the runtime system is compiled for such an operating system.

Before Linux 3.8, this socket option could be set, but could not retrieved with getopts/2. Since Linux 3.8,
it is readable.

The virtual machine also needs elevated privileges, either running as superuser or (for Linux) having capability
CAP_NET_RAW.

The primary use case for this option is to bind sockets into Linux VRF instances.

list

Received Packet is delivered as a list.

binary

Received Packet is delivered as a binary.

href

inet

168 | Ericsson AB. All Rights Reserved.: Kernel

{nodelay, Boolean}(TCP/IP sockets)

If Boolean == true, option TCP_NODELAY is turned on for the socket, which means that also small amounts
of data are sent immediately.

{packet, PacketType}(TCP/IP sockets)

Defines the type of packets to use for a socket. Possible values:

raw | 0

No packaging is done.

1 | 2 | 4

Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes.
The header length can be one, two, or four bytes, and containing an unsigned integer in big-endian byte
order. Each send operation generates the header, and the header is stripped off on each receive operation.

The 4-byte header is limited to 2Gb.

asn1 | cdr | sunrm | fcgi | tpkt | line

These packet types only have effect on receiving. When sending a packet, it is the responsibility of the
application to supply a correct header. On receiving, however, one message is sent to the controlling process
for each complete packet received, and, similarly, each call to gen_tcp:recv/2,3 returns one complete
packet. The header is not stripped off.

The meanings of the packet types are as follows:

• asn1 - ASN.1 BER

• sunrm - Sun's RPC encoding

• cdr - CORBA (GIOP 1.1)

• fcgi - Fast CGI

• tpkt - TPKT format [RFC1006]

• line - Line mode, a packet is a line-terminated with newline, lines longer than the receive buffer are
truncated

http | http_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to HttpPacket
described in erlang:decode_packet/3 in ERTS. A socket in passive mode returns {ok,
HttpPacket} from gen_tcp:recv while an active socket sends messages like {http, Socket,
HttpPacket}.

httph | httph_bin

These two types are often not needed, as the socket automatically switches from http/http_bin to
httph/httph_bin internally after the first line is read. However, there can be occasions when they are
useful, such as parsing trailers from chunked encoding.

{packet_size, Integer}(TCP/IP sockets)

Sets the maximum allowed length of the packet body. If the packet header indicates that the length of the packet is
longer than the maximum allowed length, the packet is considered invalid. The same occurs if the packet header
is too large for the socket receive buffer.

For line-oriented protocols (line, http*), option packet_size also guarantees that lines up to the indicated
length are accepted and not considered invalid because of internal buffer limitations.

{line_delimiter, Char}(TCP/IP sockets)

Sets the line delimiting character for line-oriented protocols (line). Defaults to $\n.

inet

Ericsson AB. All Rights Reserved.: Kernel | 169

{raw, Protocol, OptionNum, ValueBin}

See below.

{read_packets, Integer}(UDP sockets)

Sets the maximum number of UDP packets to read without intervention from the socket when data is available.
When this many packets have been read and delivered to the destination process, new packets are not read until
a new notification of available data has arrived. Defaults to 5. If this parameter is set too high, the system can
become unresponsive because of UDP packet flooding.

{recbuf, Size}

The minimum size of the receive buffer to use for the socket. You are encouraged to use getopts/2 to retrieve
the size set by your operating system.

{reuseaddr, Boolean}

Allows or disallows local reuse of port numbers. By default, reuse is disallowed.

{send_timeout, Integer}

Only allowed for connection-oriented sockets.

Specifies a longest time to wait for a send operation to be accepted by the underlying TCP stack. When the limit
is exceeded, the send operation returns {error,timeout}. How much of a packet that got sent is unknown;
the socket is therefore to be closed whenever a time-out has occurred (see send_timeout_close below).
Defaults to infinity.

{send_timeout_close, Boolean}

Only allowed for connection-oriented sockets.

Used together with send_timeout to specify whether the socket is to be automatically closed when the send
operation returns {error,timeout}. The recommended setting is true, which automatically closes the
socket. Defaults to false because of backward compatibility.

{show_econnreset, Boolean}(TCP/IP sockets)

When this option is set to false, which is default, an RST received from the TCP peer is treated as a normal
close (as though an FIN was sent). A caller to gen_tcp:recv/2 gets {error, closed}. In active mode,
the controlling process receives a {tcp_close, Socket} message, indicating that the peer has closed the
connection.

Setting this option to true allows you to distinguish between a connection that was closed normally, and
one that was aborted (intentionally or unintentionally) by the TCP peer. A call to gen_tcp:recv/2 returns
{error, econnreset}. In active mode, the controlling process receives a {tcp_error, Socket,
econnreset} message before the usual {tcp_closed, Socket}, as is the case for any other socket error.
Calls to gen_tcp:send/2 also returns {error, econnreset} when it is detected that a TCP peer has
sent an RST.

A connected socket returned from gen_tcp:accept/1 inherits the show_econnreset setting from the
listening socket.

{sndbuf, Size}

The minimum size of the send buffer to use for the socket. You are encouraged to use getopts/2, to retrieve
the size set by your operating system.

{priority, Integer}

Sets the SO_PRIORITY socket level option on platforms where this is implemented. The behavior and allowed
range varies between different systems. The option is ignored on platforms where it is not implemented. Use
with caution.

inet

170 | Ericsson AB. All Rights Reserved.: Kernel

{tos, Integer}

Sets IP_TOS IP level options on platforms where this is implemented. The behavior and allowed range varies
between different systems. The option is ignored on platforms where it is not implemented. Use with caution.

{tclass, Integer}

Sets IPV6_TCLASS IP level options on platforms where this is implemented. The behavior and allowed range
varies between different systems. The option is ignored on platforms where it is not implemented. Use with
caution.

In addition to these options, raw option specifications can be used. The raw options are specified as a tuple of arity
four, beginning with tag raw, followed by the protocol level, the option number, and the option value specified as
a binary. This corresponds to the second, third, and fourth arguments to the setsockopt call in the C socket API.
The option value must be coded in the native endianess of the platform and, if a structure is required, must follow the
structure alignment conventions on the specific platform.

Using raw socket options requires detailed knowledge about the current operating system and TCP stack.

Example:

This example concerns the use of raw options. Consider a Linux system where you want to set option TCP_LINGER2
on protocol level IPPROTO_TCP in the stack. You know that on this particular system it defaults to 60 (seconds), but
you want to lower it to 30 for a particular socket. Option TCP_LINGER2 is not explicitly supported by inet, but you
know that the protocol level translates to number 6, the option number to number 8, and the value is to be specified as
a 32-bit integer. You can use this code line to set the option for the socket named Sock:

inet:setopts(Sock,[{raw,6,8,<<30:32/native>>}]),

As many options are silently discarded by the stack if they are specified out of range; it can be a good idea to check
that a raw option is accepted. The following code places the value in variable TcpLinger2:

{ok,[{raw,6,8,<<TcpLinger2:32/native>>}]}=inet:getopts(Sock,[{raw,6,8,4}]),

Code such as these examples is inherently non-portable, even different versions of the same OS on the same platform
can respond differently to this kind of option manipulation. Use with care.

Notice that the default options for TCP/IP sockets can be changed with the Kernel configuration parameters mentioned
in the beginning of this manual page.

sockname(Socket :: socket()) ->
 {ok,
 {ip_address(), port_number()} |
 returned_non_ip_address()} |
 {error, posix()}
Returns the local address and port number for a socket.

Notice that for SCTP sockets this function returns only one of the socket addresses. Function socknames/1,2
returns all.

socknames(Socket :: socket()) ->
 {ok,
 [{ip_address(), port_number()} |
 returned_non_ip_address()]} |
 {error, posix()}
Equivalent to socknames(Socket, 0).

inet

Ericsson AB. All Rights Reserved.: Kernel | 171

socknames(Socket, Assoc) ->
 {ok, [{Address, Port}]} | {error, posix()}
Types:

Socket = socket()
Assoc = #sctp_assoc_change{} | gen_sctp:assoc_id()
Address = ip_address()
Port = integer() >= 0

Returns a list of all local address/port number pairs for a socket for the specified association Assoc.

This function can return multiple addresses for multihomed sockets, such as SCTP sockets. For other sockets it returns
a one-element list.

Notice that parameter Assoc is by the SCTP Sockets API Extensions defined to be ignored for one-to-one style
sockets. For one-to-many style sockets, the special value 0 is defined to mean that the returned addresses must be
without any particular association. How different SCTP implementations interpret this varies somewhat.

POSIX Error Codes
• e2big - Too long argument list

• eacces - Permission denied

• eaddrinuse - Address already in use

• eaddrnotavail - Cannot assign requested address

• eadv - Advertise error

• eafnosupport - Address family not supported by protocol family

• eagain - Resource temporarily unavailable

• ealign - EALIGN

• ealready - Operation already in progress

• ebade - Bad exchange descriptor

• ebadf - Bad file number

• ebadfd - File descriptor in bad state

• ebadmsg - Not a data message

• ebadr - Bad request descriptor

• ebadrpc - Bad RPC structure

• ebadrqc - Bad request code

• ebadslt - Invalid slot

• ebfont - Bad font file format

• ebusy - File busy

• echild - No children

• echrng - Channel number out of range

• ecomm - Communication error on send

• econnaborted - Software caused connection abort

• econnrefused - Connection refused

• econnreset - Connection reset by peer

• edeadlk - Resource deadlock avoided

• edeadlock - Resource deadlock avoided

• edestaddrreq - Destination address required

href

inet

172 | Ericsson AB. All Rights Reserved.: Kernel

• edirty - Mounting a dirty fs without force

• edom - Math argument out of range

• edotdot - Cross mount point

• edquot - Disk quota exceeded

• eduppkg - Duplicate package name

• eexist - File already exists

• efault - Bad address in system call argument

• efbig - File too large

• ehostdown - Host is down

• ehostunreach - Host is unreachable

• eidrm - Identifier removed

• einit - Initialization error

• einprogress - Operation now in progress

• eintr - Interrupted system call

• einval - Invalid argument

• eio - I/O error

• eisconn - Socket is already connected

• eisdir - Illegal operation on a directory

• eisnam - Is a named file

• el2hlt - Level 2 halted

• el2nsync - Level 2 not synchronized

• el3hlt - Level 3 halted

• el3rst - Level 3 reset

• elbin - ELBIN

• elibacc - Cannot access a needed shared library

• elibbad - Accessing a corrupted shared library

• elibexec - Cannot exec a shared library directly

• elibmax - Attempting to link in more shared libraries than system limit

• elibscn - .lib section in a.out corrupted

• elnrng - Link number out of range

• eloop - Too many levels of symbolic links

• emfile - Too many open files

• emlink - Too many links

• emsgsize - Message too long

• emultihop - Multihop attempted

• enametoolong - Filename too long

• enavail - Unavailable

• enet - ENET

• enetdown - Network is down

• enetreset - Network dropped connection on reset

• enetunreach - Network is unreachable

• enfile - File table overflow

• enoano - Anode table overflow

inet

Ericsson AB. All Rights Reserved.: Kernel | 173

• enobufs - No buffer space available

• enocsi - No CSI structure available

• enodata - No data available

• enodev - No such device

• enoent - No such file or directory

• enoexec - Exec format error

• enolck - No locks available

• enolink - Link has been severed

• enomem - Not enough memory

• enomsg - No message of desired type

• enonet - Machine is not on the network

• enopkg - Package not installed

• enoprotoopt - Bad protocol option

• enospc - No space left on device

• enosr - Out of stream resources or not a stream device

• enosym - Unresolved symbol name

• enosys - Function not implemented

• enotblk - Block device required

• enotconn - Socket is not connected

• enotdir - Not a directory

• enotempty - Directory not empty

• enotnam - Not a named file

• enotsock - Socket operation on non-socket

• enotsup - Operation not supported

• enotty - Inappropriate device for ioctl

• enotuniq - Name not unique on network

• enxio - No such device or address

• eopnotsupp - Operation not supported on socket

• eperm - Not owner

• epfnosupport - Protocol family not supported

• epipe - Broken pipe

• eproclim - Too many processes

• eprocunavail - Bad procedure for program

• eprogmismatch - Wrong program version

• eprogunavail - RPC program unavailable

• eproto - Protocol error

• eprotonosupport - Protocol not supported

• eprototype - Wrong protocol type for socket

• erange - Math result unrepresentable

• erefused - EREFUSED

• eremchg - Remote address changed

• eremdev - Remote device

• eremote - Pathname hit remote filesystem

inet

174 | Ericsson AB. All Rights Reserved.: Kernel

• eremoteio - Remote I/O error

• eremoterelease - EREMOTERELEASE

• erofs - Read-only filesystem

• erpcmismatch - Wrong RPC version

• erremote - Object is remote

• eshutdown - Cannot send after socket shutdown

• esocktnosupport - Socket type not supported

• espipe - Invalid seek

• esrch - No such process

• esrmnt - Srmount error

• estale - Stale remote file handle

• esuccess - Error 0

• etime - Timer expired

• etimedout - Connection timed out

• etoomanyrefs - Too many references

• etxtbsy - Text file or pseudo-device busy

• euclean - Structure needs cleaning

• eunatch - Protocol driver not attached

• eusers - Too many users

• eversion - Version mismatch

• ewouldblock - Operation would block

• exdev - Cross-domain link

• exfull - Message tables full

• nxdomain - Hostname or domain name cannot be found

inet_res

Ericsson AB. All Rights Reserved.: Kernel | 175

inet_res
Erlang module

This module performs DNS name resolving to recursive name servers.

See also ERTS User's Guide: Inet Configuration for more information about how to configure an Erlang runtime
system for IP communication, and how to enable this DNS client by defining 'dns' as a lookup method. The DNS
client then acts as a backend for the resolving functions in inet.

This DNS client can resolve DNS records even if it is not used for normal name resolving in the node.

This is not a full-fledged resolver, only a DNS client that relies on asking trusted recursive name servers.

Name Resolving
UDP queries are used unless resolver option usevc is true, which forces TCP queries. If the query is too large for
UDP, TCP is used instead. For regular DNS queries, 512 bytes is the size limit.

When EDNS is enabled (resolver option edns is set to the EDNS version (that is, 0 instead of false), resolver
option udp_payload_size sets the limit. If a name server replies with the TC bit set (truncation), indicating that
the answer is incomplete, the query is retried to that name server using TCP. Resolver option udp_payload_size
also sets the advertised size for the maximum allowed reply size, if EDNS is enabled, otherwise the name server uses
the limit 512 bytes. If the reply is larger, it gets truncated, forcing a TCP requery.

For UDP queries, resolver options timeout and retry control retransmission. Each name server in the
nameservers list is tried with a time-out of timeout/retry. Then all name servers are tried again, doubling the
time-out, for a total of retry times.

For queries not using the search list, if the query to all nameservers results in {error,nxdomain} or an
empty answer, the same query is tried for alt_nameservers.

Resolver Types
The following data types concern the resolver:

Data Types
res_option() =
 {alt_nameservers, [nameserver()]} |
 {edns, 0 | false} |
 {inet6, boolean()} |
 {nameservers, [nameserver()]} |
 {recurse, boolean()} |
 {retry, integer()} |
 {timeout, integer()} |
 {udp_payload_size, integer()} |
 {usevc, boolean()}
nameserver() = {inet:ip_address(), Port :: 1..65535}
res_error() =
 formerr |
 qfmterror |
 servfail |
 nxdomain |
 notimp |

inet_res

176 | Ericsson AB. All Rights Reserved.: Kernel

 refused |
 badvers |
 timeout

DNS Types
The following data types concern the DNS client:

Data Types
dns_name() = string()
A string with no adjacent dots.

rr_type() =
 a |
 aaaa |
 cname |
 gid |
 hinfo |
 ns |
 mb |
 md |
 mg |
 mf |
 minfo |
 mx |
 naptr |
 null |
 ptr |
 soa |
 spf |
 srv |
 txt |
 uid |
 uinfo |
 unspec |
 wks
dns_class() = in | chaos | hs | any
dns_msg() = term()
This is the start of a hiearchy of opaque data structures that can be examined with access functions in inet_dns,
which return lists of {Field,Value} tuples. The arity 2 functions only return the value for a specified field.

inet_res

Ericsson AB. All Rights Reserved.: Kernel | 177

dns_msg() = DnsMsg
 inet_dns:msg(DnsMsg) ->
 [{header, dns_header()}
 | {qdlist, dns_query()}
 | {anlist, dns_rr()}
 | {nslist, dns_rr()}
 | {arlist, dns_rr()}]
 inet_dns:msg(DnsMsg, header) -> dns_header() % for example
 inet_dns:msg(DnsMsg, Field) -> Value

dns_header() = DnsHeader
 inet_dns:header(DnsHeader) ->
 [{id, integer()}
 | {qr, boolean()}
 | {opcode, query | iquery | status | integer()}
 | {aa, boolean()}
 | {tc, boolean()}
 | {rd, boolean()}
 | {ra, boolean()}
 | {pr, boolean()}
 | {rcode, integer(0..16)}]
 inet_dns:header(DnsHeader, Field) -> Value

query_type() = axfr | mailb | maila | any | rr_type()

dns_query() = DnsQuery
 inet_dns:dns_query(DnsQuery) ->
 [{domain, dns_name()}
 | {type, query_type()}
 | {class, dns_class()}]
 inet_dns:dns_query(DnsQuery, Field) -> Value

dns_rr() = DnsRr
 inet_dns:rr(DnsRr) -> DnsRrFields | DnsRrOptFields
 DnsRrFields = [{domain, dns_name()}
 | {type, rr_type()}
 | {class, dns_class()}
 | {ttl, integer()}
 | {data, dns_data()}]
 DnsRrOptFields = [{domain, dns_name()}
 | {type, opt}
 | {udp_payload_size, integer()}
 | {ext_rcode, integer()}
 | {version, integer()}
 | {z, integer()}
 | {data, dns_data()}]
 inet_dns:rr(DnsRr, Field) -> Value

There is an information function for the types above:

inet_dns:record_type(dns_msg()) -> msg;
inet_dns:record_type(dns_header()) -> header;
inet_dns:record_type(dns_query()) -> dns_query;
inet_dns:record_type(dns_rr()) -> rr;
inet_dns:record_type(_) -> undefined.

So, inet_dns:(inet_dns:record_type(X))(X) converts any of these data structures into a
{Field,Value} list.

dns_data() =
 dns_name() |
 inet:ip4_address() |

inet_res

178 | Ericsson AB. All Rights Reserved.: Kernel

 inet:ip6_address() |
 {MName :: dns_name(),
 RName :: dns_name(),
 Serial :: integer(),
 Refresh :: integer(),
 Retry :: integer(),
 Expiry :: integer(),
 Minimum :: integer()} |
 {inet:ip4_address(), Proto :: integer(), BitMap :: binary()} |
 {CpuString :: string(), OsString :: string()} |
 {RM :: dns_name(), EM :: dns_name()} |
 {Prio :: integer(), dns_name()} |
 {Prio :: integer(),
 Weight :: integer(),
 Port :: integer(),
 dns_name()} |
 {Order :: integer(),
 Preference :: integer(),
 Flags :: string(),
 Services :: string(),
 Regexp :: string(),
 dns_name()} |
 [string()] |
 binary()
Regexp is a string with characters encoded in the UTF-8 coding standard.

Exports

getbyname(Name, Type) -> {ok, Hostent} | {error, Reason}
getbyname(Name, Type, Timeout) -> {ok, Hostent} | {error, Reason}
Types:

Name = dns_name()
Type = rr_type()
Timeout = timeout()
Hostent = inet:hostent()
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type for the specified host, of class in. Returns, on success, a hostent()
record with dns_data() elements in the address list field.

This function uses resolver option search that is a list of domain names. If the name to resolve contains no dots, it
is prepended to each domain name in the search list, and they are tried in order. If the name contains dots, it is first
tried as an absolute name and if that fails, the search list is used. If the name has a trailing dot, it is supposed to be
an absolute name and the search list is not used.

gethostbyaddr(Address) -> {ok, Hostent} | {error, Reason}
gethostbyaddr(Address, Timeout) -> {ok, Hostent} | {error, Reason}
Types:

inet_res

Ericsson AB. All Rights Reserved.: Kernel | 179

Address = inet:ip_address()
Timeout = timeout()
Hostent = inet:hostent()
Reason = inet:posix() | res_error()

Backend functions used by inet:gethostbyaddr/1.

gethostbyname(Name) -> {ok, Hostent} | {error, Reason}
gethostbyname(Name, Family) -> {ok, Hostent} | {error, Reason}
gethostbyname(Name, Family, Timeout) ->
 {ok, Hostent} | {error, Reason}
Types:

Name = dns_name()
Hostent = inet:hostent()
Timeout = timeout()
Family = inet:address_family()
Reason = inet:posix() | res_error()

Backend functions used by inet:gethostbyname/1,2.

This function uses resolver option search just like getbyname/2,3.

If resolver option inet6 is true, an IPv6 address is looked up.

lookup(Name, Class, Type) -> [dns_data()]
lookup(Name, Class, Type, Opts) -> [dns_data()]
lookup(Name, Class, Type, Opts, Timeout) -> [dns_data()]
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = rr_type()
Opts = [res_option() | verbose]
Timeout = timeout()

Resolves the DNS data for the record of the specified type and class for the specified name. On success, filters out
the answer records with the correct Class and Type, and returns a list of their data fields. So, a lookup for type
any gives an empty answer, as the answer records have specific types that are not any. An empty answer or a failed
lookup returns an empty list.

Calls resolve/* with the same arguments and filters the result, so Opts is described for those functions.

resolve(Name, Class, Type) -> {ok, dns_msg()} | Error
resolve(Name, Class, Type, Opts) -> {ok, dns_msg()} | Error
resolve(Name, Class, Type, Opts, Timeout) ->
 {ok, dns_msg()} | Error
Types:

inet_res

180 | Ericsson AB. All Rights Reserved.: Kernel

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = rr_type()
Opts = [Opt]
Opt = res_option() | verbose | atom()
Timeout = timeout()
Error = {error, Reason} | {error, {Reason, dns_msg()}}
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type and class for the specified name. The returned dns_msg() can be
examined using access functions in inet_db, as described in section in DNS Types.

If Name is an ip_address(), the domain name to query for is generated as the standard reverse ".IN-
ADDR.ARPA." name for an IPv4 address, or the ".IP6.ARPA." name for an IPv6 address. In this case, you most
probably want to use Class = in and Type = ptr, but it is not done automatically.

Opts overrides the corresponding resolver options. If option nameservers is specified, it is assumed that
it is the complete list of name serves, so resolver option alt_nameserves is ignored. However, if option
alt_nameserves is also specified to this function, it is used.

Option verbose (or rather {verbose,true}) causes diagnostics printout through io:format/2 of queries,
replies retransmissions, and so on, similar to from utilities, such as dig and nslookup.

If Opt is any atom, it is interpreted as {Opt,true} unless the atom string starts with "no", making the
interpretation {Opt,false}. For example, usevc is an alias for {usevc,true} and nousevc is an alias for
{usevc,false}.

Option inet6 has no effect on this function. You probably want to use Type = a | aaaa instead.

Example
This access functions example shows how lookup/3 can be implemented using resolve/3 from outside the
module:

example_lookup(Name, Class, Type) ->
 case inet_res:resolve(Name, Class, Type) of
 {ok,Msg} ->
 [inet_dns:rr(RR, data)
 || RR <- inet_dns:msg(Msg, anlist),
 inet_dns:rr(RR, type) =:= Type,
 inet_dns:rr(RR, class) =:= Class];
 {error,_} ->
 []
 end.

Legacy Functions
These are deprecated because the annoying double meaning of the name servers/time-out argument, and because they
have no decent place for a resolver options list.

Exports

nslookup(Name, Class, Type) -> {ok, dns_msg()} | {error, Reason}
nslookup(Name, Class, Type, Timeout) ->
 {ok, dns_msg()} | {error, Reason}
nslookup(Name, Class, Type, Nameservers) ->

inet_res

Ericsson AB. All Rights Reserved.: Kernel | 181

 {ok, dns_msg()} | {error, Reason}
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = rr_type()
Timeout = timeout()
Nameservers = [nameserver()]
Reason = inet:posix() | res_error()

Resolves a DNS record of the specified type and class for the specified name.

nnslookup(Name, Class, Type, Nameservers) ->
 {ok, dns_msg()} | {error, Reason}
nnslookup(Name, Class, Type, Nameservers, Timeout) ->
 {ok, dns_msg()} | {error, Reason}
Types:

Name = dns_name() | inet:ip_address()
Class = dns_class()
Type = rr_type()
Timeout = timeout()
Nameservers = [nameserver()]
Reason = inet:posix()

Resolves a DNS record of the specified type and class for the specified name.

init

182 | Ericsson AB. All Rights Reserved.: Kernel

init
Erlang module

This module is moved to the ERTS application.

net_adm

Ericsson AB. All Rights Reserved.: Kernel | 183

net_adm
Erlang module

This module contains various network utility functions.

Exports

dns_hostname(Host) -> {ok, Name} | {error, Host}
Types:

Host = atom() | string()
Name = string()

Returns the official name of Host, or {error, Host} if no such name is found. See also inet(3).

host_file() -> Hosts | {error, Reason}
Types:

Hosts = [Host :: atom()]
Reason =
 file:posix() |
 badarg |
 terminated |
 system_limit |
 {Line :: integer(), Mod :: module(), Term :: term()}

Reads file .hosts.erlang, see section Files. Returns the hosts in this file as a list. Returns {error, Reason}
if the file cannot be read or the Erlang terms on the file cannot be interpreted.

localhost() -> Name
Types:

Name = string()
Returns the name of the local host. If Erlang was started with command-line flag -name, Name is the fully qualified
name.

names() -> {ok, [{Name, Port}]} | {error, Reason}
names(Host) -> {ok, [{Name, Port}]} | {error, Reason}
Types:

Host = atom() | string() | inet:ip_address()
Name = string()
Port = integer() >= 0
Reason = address | file:posix()

Similar to epmd -names, see erts:epmd(1). Host defaults to the local host. Returns the names and associated
port numbers of the Erlang nodes that epmd registered at the specified host. Returns {error, address} if epmd
is not operational.

Example:

net_adm

184 | Ericsson AB. All Rights Reserved.: Kernel

(arne@dunn)1> net_adm:names().
{ok,[{"arne",40262}]}

ping(Node) -> pong | pang
Types:

Node = atom()
Sets up a connection to Node. Returns pong if it is successful, otherwise pang.

world() -> [node()]
world(Arg) -> [node()]
Types:

Arg = verbosity()
verbosity() = silent | verbose

Calls names(Host) for all hosts that are specified in the Erlang host file .hosts.erlang, collects the replies,
and then evaluates ping(Node) on all those nodes. Returns the list of all nodes that are successfully pinged.

Arg defaults to silent. If Arg == verbose, the function writes information about which nodes it is pinging
to stdout.

This function can be useful when a node is started, and the names of the other network nodes are not initially known.

Returns {error, Reason} if host_file() returns {error, Reason}.

world_list(Hosts) -> [node()]
world_list(Hosts, Arg) -> [node()]
Types:

Hosts = [atom()]
Arg = verbosity()
verbosity() = silent | verbose

Same as world/0,1, but the hosts are specified as argument instead of being read from .hosts.erlang.

Files
File .hosts.erlang consists of a number of host names written as Erlang terms. It is looked for in the current
work directory, the user's home directory, and $OTP_ROOT (the root directory of Erlang/OTP), in that order.

The format of file .hosts.erlang must be one host name per line. The host names must be within quotes.

Example:

'super.eua.ericsson.se'.
'renat.eua.ericsson.se'.
'grouse.eua.ericsson.se'.
'gauffin1.eua.ericsson.se'.
^ (new line)

net_kernel

Ericsson AB. All Rights Reserved.: Kernel | 185

net_kernel
Erlang module

The net kernel is a system process, registered as net_kernel, which must be operational for distributed Erlang to
work. The purpose of this process is to implement parts of the BIFs spawn/4 and spawn_link/4, and to provide
monitoring of the network.

An Erlang node is started using command-line flag -name or -sname:

$ erl -sname foobar

It is also possible to call net_kernel:start([foobar]) directly from the normal Erlang shell prompt:

1> net_kernel:start([foobar, shortnames]).
{ok,<0.64.0>}
(foobar@gringotts)2>

If the node is started with command-line flag -sname, the node name is foobar@Host, where Host is the short
name of the host (not the fully qualified domain name). If started with flag -name, the node name is foobar@Host,
where Host is the fully qualified domain name. For more information, see erl.

Normally, connections are established automatically when another node is referenced. This functionality can be
disabled by setting Kernel configuration parameter dist_auto_connect to never, see kernel(6). In this
case, connections must be established explicitly by calling connect_node/1.

Which nodes that are allowed to communicate with each other is handled by the magic cookie system, see section
Distributed Erlang in the Erlang Reference Manual.

Warning:

Starting a distributed node without also specifying -proto_dist inet_tls will expose the node to attacks that
may give the attacker complete access to the node and in extension the cluster. When using un-secure distributed
nodes, make sure that the network is configured to keep potential attackers out. See the Using SSL for Erlang
Distribution User's Guide for details on how to setup a secure distributed node.

Exports

allow(Nodes) -> ok | error
Types:

Nodes = [node()]
Permits access to the specified set of nodes.

Before the first call to allow/1, any node with the correct cookie can be connected. When allow/1 is called, a list
of allowed nodes is established. Any access attempts made from (or to) nodes not in that list will be rejected.

Subsequent calls to allow/1 will add the specified nodes to the list of allowed nodes. It is not possible to remove
nodes from the list.

Returns error if any element in Nodes is not an atom.

net_kernel

186 | Ericsson AB. All Rights Reserved.: Kernel

connect_node(Node) -> boolean() | ignored
Types:

Node = node()
Establishes a connection to Node. Returns true if successful, false if not, and ignored if the local node is not
alive.

get_net_ticktime() -> Res
Types:

Res = NetTicktime | {ongoing_change_to, NetTicktime} | ignored
NetTicktime = integer() >= 1

Gets net_ticktime (see kernel(6)).

Defined return values (Res):

NetTicktime

net_ticktime is NetTicktime seconds.

{ongoing_change_to, NetTicktime}

net_kernel is currently changing net_ticktime to NetTicktime seconds.

ignored

The local node is not alive.

getopts(Node, Options) ->
 {ok, OptionValues} | {error, Reason} | ignored
Types:

Node = node()
Options = [inet:socket_getopt()]
OptionValues = [inet:socket_setopt()]
Reason = inet:posix() | noconnection

Get one or more options for the distribution socket connected to Node.

If Node is a connected node the return value is the same as from inet:getopts(Sock, Options) where Sock
is the distribution socket for Node.

Returns ignored if the local node is not alive or {error, noconnection} if Node is not connected.

monitor_nodes(Flag) -> ok | Error
monitor_nodes(Flag, Options) -> ok | Error
Types:

Flag = boolean()
Options = [Option]
Option = {node_type, NodeType} | nodedown_reason
NodeType = visible | hidden | all
Error = error | {error, term()}

The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered
to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is
disconnected.

net_kernel

Ericsson AB. All Rights Reserved.: Kernel | 187

If Flag is true, a new subscription is started. If Flag is false, all previous subscriptions started with the same
Options are stopped. Two option lists are considered the same if they contain the same set of options.

As from Kernel version 2.11.4, and ERTS version 5.5.4, the following is guaranteed:

• nodeup messages are delivered before delivery of any message from the remote node passed through the newly
established connection.

• nodedown messages are not delivered until all messages from the remote node that have been passed through
the connection have been delivered.

Notice that this is not guaranteed for Kernel versions before 2.11.4.

As from Kernel version 2.11.4, subscriptions can also be made before the net_kernel server is started, that is,
net_kernel:monitor_nodes/[1,2] does not return ignored.

As from Kernel version 2.13, and ERTS version 5.7, the following is guaranteed:

• nodeup messages are delivered after the corresponding node appears in results from erlang:nodes/X.

• nodedown messages are delivered after the corresponding node has disappeared in results from
erlang:nodes/X.

Notice that this is not guaranteed for Kernel versions before 2.13.

The format of the node status change messages depends on Options. If Options is [], which is the default, the
format is as follows:

{nodeup, Node} | {nodedown, Node}
 Node = node()

If Options is not [], the format is as follows:

{nodeup, Node, InfoList} | {nodedown, Node, InfoList}
 Node = node()
 InfoList = [{Tag, Val}]

InfoList is a list of tuples. Its contents depends on Options, see below.

Also, when OptionList == [], only visible nodes, that is, nodes that appear in the result of erlang:nodes/0,
are monitored.

Option can be any of the following:

{node_type, NodeType}

Valid values for NodeType:

visible

Subscribe to node status change messages for visible nodes only. The tuple {node_type, visible}
is included in InfoList.

hidden

Subscribe to node status change messages for hidden nodes only. The tuple {node_type, hidden} is
included in InfoList.

all

Subscribe to node status change messages for both visible and hidden nodes. The tuple {node_type,
visible | hidden} is included in InfoList.

nodedown_reason

The tuple {nodedown_reason, Reason} is included in InfoList in nodedown messages.

net_kernel

188 | Ericsson AB. All Rights Reserved.: Kernel

Reason can, depending on which distribution module or process that is used be any term, but for the standard
TCP distribution module it is any of the following:

connection_setup_failed

The connection setup failed (after nodeup messages were sent).

no_network

No network is available.

net_kernel_terminated

The net_kernel process terminated.

shutdown

Unspecified connection shutdown.

connection_closed

The connection was closed.

disconnect

The connection was disconnected (forced from the current node).

net_tick_timeout

Net tick time-out.

send_net_tick_failed

Failed to send net tick over the connection.

get_status_failed

Status information retrieval from the Port holding the connection failed.

set_net_ticktime(NetTicktime) -> Res
set_net_ticktime(NetTicktime, TransitionPeriod) -> Res
Types:

NetTicktime = integer() >= 1
TransitionPeriod = integer() >= 0
Res =
 unchanged |
 change_initiated |
 {ongoing_change_to, NewNetTicktime}
NewNetTicktime = integer() >= 1

Sets net_ticktime (see kernel(6)) to NetTicktime seconds. TransitionPeriod defaults to 60.

Some definitions:

Minimum transition traffic interval (MTTI)

minimum(NetTicktime, PreviousNetTicktime)*1000 div 4 milliseconds.

Transition period

The time of the least number of consecutive MTTIs to cover TransitionPeriod seconds following the call
to set_net_ticktime/2 (that is, ((TransitionPeriod*1000 - 1) div MTTI + 1)*MTTI
milliseconds).

net_kernel

Ericsson AB. All Rights Reserved.: Kernel | 189

If NetTicktime < PreviousNetTicktime, the net_ticktime change is done at the end of the transition
period; otherwise at the beginning. During the transition period, net_kernel ensures that there is outgoing traffic
on all connections at least every MTTI millisecond.

Note:

The net_ticktime changes must be initiated on all nodes in the network (with the same NetTicktime)
before the end of any transition period on any node; otherwise connections can erroneously be disconnected.

Returns one of the following:

unchanged

net_ticktime already has the value of NetTicktime and is left unchanged.

change_initiated

net_kernel initiated the change of net_ticktime to NetTicktime seconds.

{ongoing_change_to, NewNetTicktime}

The request is ignored because net_kernel is busy changing net_ticktime to NewNetTicktime
seconds.

setopts(Node, Options) -> ok | {error, Reason} | ignored
Types:

Node = node() | new
Options = [inet:socket_setopt()]
Reason = inet:posix() | noconnection

Set one or more options for distribution sockets. Argument Node can be either one node name or the atom new to
affect the distribution sockets of all future connected nodes.

The return value is the same as from inet:setopts/2 or {error, noconnection} if Node is not a connected
node or new.

If Node is new the Options will then also be added to kernel configration parameters inet_dist_listen_options and
inet_dist_connect_options.

Returns ignored if the local node is not alive.

start([Name]) -> {ok, pid()} | {error, Reason}
start([Name, NameType]) -> {ok, pid()} | {error, Reason}
start([Name, NameType, Ticktime]) -> {ok, pid()} | {error, Reason}
Types:

Name = atom()

NameType = shortnames | longnames

Reason = {already_started, pid()} | term()

Turns a non-distributed node into a distributed node by starting net_kernel and other necessary processes.

Notice that the argument is a list with exactly one, two, or three arguments. NameType defaults to longnames and
Ticktime to 15000.

stop() -> ok | {error, Reason}
Types:

net_kernel

190 | Ericsson AB. All Rights Reserved.: Kernel

Reason = not_allowed | not_found
Turns a distributed node into a non-distributed node. For other nodes in the network, this is the same as the node going
down. Only possible when the net kernel was started using start/1, otherwise {error, not_allowed} is
returned. Returns {error, not_found} if the local node is not alive.

os

Ericsson AB. All Rights Reserved.: Kernel | 191

os
Erlang module

The functions in this module are operating system-specific. Careless use of these functions results in programs that
will only run on a specific platform. On the other hand, with careful use, these functions can be of help in enabling
a program to run on most platforms.

Note:

File operations used to accept filenames containing null characters (integer value zero). This caused the name to be
truncated and in some cases arguments to primitive operations to be mixed up. Filenames containing null characters
inside the filename are now rejected and will cause primitive file operations to fail.

Also environment variable operations used to accept names and values of environment variables containing null
characters (integer value zero). This caused operations to silently produce erroneous results. Environment variable
names and values containing null characters inside the name or value are now rejected and will cause environment
variable operations to fail.

Data Types
env_var_name() = nonempty_string()
A string containing valid characters on the specific OS for environment variable names using
file:native_name_encoding() encoding. Note that specifically null characters (integer value zero) and $=
characters are not allowed. However, note that not all invalid characters necessarily will cause the primitiv operations
to fail, but may instead produce invalid results.

env_var_value() = string()
A string containing valid characters on the specific OS for environment variable values using
file:native_name_encoding() encoding. Note that specifically null characters (integer value zero) are not
allowed. However, note that not all invalid characters necessarily will cause the primitiv operations to fail, but may
instead produce invalid results.

env_var_name_value() = nonempty_string()
Assuming that environment variables has been correctly set, a strings containing valid characters on the specific OS
for environment variable names and values using file:native_name_encoding() encoding. The first $=
characters appearing in the string separates environment variable name (on the left) from environment variable value
(on the right).

os_command() = atom() | io_lib:chars()
All characters needs to be valid characters on the specific OS using file:native_name_encoding() encoding.
Note that specifically null characters (integer value zero) are not allowed. However, note that not all invalid characters
not necessarily will cause os:cmd/1 to fail, but may instead produce invalid results.

os_command_opts() = #{max_size => integer() >= 0 | infinity}
Options for os:cmd/2

max_size

The maximum size of the data returned by the os:cmd call. See the os:cmd/2 documentation for more details.

os

192 | Ericsson AB. All Rights Reserved.: Kernel

Exports

cmd(Command) -> string()
cmd(Command, Options) -> string()
Types:

Command = os_command()
Options = os_command_opts()

Executes Command in a command shell of the target OS, captures the standard output of the command, and returns
this result as a string.

Warning:

Previous implementation used to allow all characters as long as they were integer values greater than or equal to
zero. This sometimes lead to unwanted results since null characters (integer value zero) often are interpreted as
string termination. The current implementation rejects these.

Examples:

LsOut = os:cmd("ls"), % on unix platform
DirOut = os:cmd("dir"), % on Win32 platform

Notice that in some cases, standard output of a command when called from another program (for example, os:cmd/1)
can differ, compared with the standard output of the command when called directly from an OS command shell.

os:cmd/2 was added in kernel-5.5 (OTP-20.2.1). It makes it possible to pass an options map as the second argument
in order to control the behaviour of os:cmd. The possible options are:

max_size

The maximum size of the data returned by the os:cmd call. This option is a safety feature that should be used
when the command executed can return a very large, possibly infinite, result.

> os:cmd("cat /dev/zero", #{ max_size => 20 }).
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

find_executable(Name) -> Filename | false
find_executable(Name, Path) -> Filename | false
Types:

Name = Path = Filename = string()

These two functions look up an executable program, with the specified name and a search path, in the same way as
the underlying OS. find_executable/1 uses the current execution path (that is, the environment variable PATH
on Unix and Windows).

Path, if specified, is to conform to the syntax of execution paths on the OS. Returns the absolute filename of the
executable program Name, or false if the program is not found.

getenv() -> [env_var_name_value()]
Returns a list of all environment variables. Each environment variable is expressed as a single string on the format
"VarName=Value", where VarName is the name of the variable and Value its value.

If Unicode filename encoding is in effect (see the erl manual page), the strings can contain characters with codepoints
> 255.

os

Ericsson AB. All Rights Reserved.: Kernel | 193

getenv(VarName) -> Value | false
Types:

VarName = env_var_name()
Value = env_var_value()

Returns the Value of the environment variable VarName, or false if the environment variable is undefined.

If Unicode filename encoding is in effect (see the erl manual page), the strings VarName and Value can contain
characters with codepoints > 255.

getenv(VarName, DefaultValue) -> Value
Types:

VarName = env_var_name()
DefaultValue = Value = env_var_value()

Returns the Value of the environment variable VarName, or DefaultValue if the environment variable is
undefined.

If Unicode filename encoding is in effect (see the erl manual page), the strings VarName and Value can contain
characters with codepoints > 255.

getpid() -> Value
Types:

Value = string()
Returns the process identifier of the current Erlang emulator in the format most commonly used by the OS
environment. Returns Value as a string containing the (usually) numerical identifier for a process. On Unix,
this is typically the return value of the getpid() system call. On Windows, the process id as returned by the
GetCurrentProcessId() system call is used.

putenv(VarName, Value) -> true
Types:

VarName = env_var_name()
Value = env_var_value()

Sets a new Value for environment variable VarName.

If Unicode filename encoding is in effect (see the erl manual page), the strings VarName and Value can contain
characters with codepoints > 255.

On Unix platforms, the environment is set using UTF-8 encoding if Unicode filename translation is in effect. On
Windows, the environment is set using wide character interfaces.

Note:

VarName is not allowed to contain an $= character. Previous implementations used to just let the $= character
through which silently caused erroneous results. Current implementation will instead throw a badarg exception.

set_signal(Signal, Option) -> ok
Types:

Signal =
 sighup |

os

194 | Ericsson AB. All Rights Reserved.: Kernel

 sigquit |
 sigabrt |
 sigalrm |
 sigterm |
 sigusr1 |
 sigusr2 |
 sigchld |
 sigstop |
 sigtstp
Option = default | handle | ignore

Enables or disables OS signals.

Each signal my be set to one of the following options:

ignore
This signal will be ignored.

default
This signal will use the default signal handler for the operating system.

handle
This signal will notify erl_signal_server when it is received by the Erlang runtime system.

system_time() -> integer()
Returns the current OS system time in native time unit.

Note:

This time is not a monotonically increasing time.

system_time(Unit) -> integer()
Types:

Unit = erlang:time_unit()
Returns the current OS system time converted into the Unit passed as argument.

Calling os:system_time(Unit) is equivalent to erlang:convert_time_unit(os:system_time(),
native, Unit).

Note:

This time is not a monotonically increasing time.

timestamp() -> Timestamp
Types:

Timestamp = erlang:timestamp()
Timestamp = {MegaSecs, Secs, MicroSecs}

Returns the current OS system time in the same format as erlang:timestamp/0. The tuple can be used together
with function calendar:now_to_universal_time/1 or calendar:now_to_local_time/1 to get
calendar time. Using the calendar time, together with the MicroSecs part of the return tuple from this function,
allows you to log time stamps in high resolution and consistent with the time in the rest of the OS.

os

Ericsson AB. All Rights Reserved.: Kernel | 195

Example of code formatting a string in format "DD Mon YYYY HH:MM:SS.mmmmmm", where DD is the day of
month, Mon is the textual month name, YYYY is the year, HH:MM:SS is the time, and mmmmmm is the microseconds
in six positions:

-module(print_time).
-export([format_utc_timestamp/0]).
format_utc_timestamp() ->
 TS = {_,_,Micro} = os:timestamp(),
 {{Year,Month,Day},{Hour,Minute,Second}} =
calendar:now_to_universal_time(TS),
 Mstr = element(Month,{"Jan","Feb","Mar","Apr","May","Jun","Jul",
 "Aug","Sep","Oct","Nov","Dec"}),
 io_lib:format("~2w ~s ~4w ~2w:~2..0w:~2..0w.~6..0w",
 [Day,Mstr,Year,Hour,Minute,Second,Micro]).

This module can be used as follows:

1> io:format("~s~n",[print_time:format_utc_timestamp()]).
29 Apr 2009 9:55:30.051711

OS system time can also be retreived by system_time/0 and system_time/1.

perf_counter() -> Counter
Types:

Counter = integer()
Returns the current performance counter value in perf_counter time unit. This is a highly optimized call that
might not be traceable.

perf_counter(Unit) -> integer()
Types:

Unit = erlang:time_unit()
Returns a performance counter that can be used as a very fast and high resolution timestamp. This counter is read
directly from the hardware or operating system with the same guarantees. This means that two consecutive calls to the
function are not guaranteed to be monotonic, though it most likely will be. The performance counter will be converted
to the resolution passed as an argument.

1> T1 = os:perf_counter(1000),receive after 10000 -> ok end,T2 = os:perf_counter(1000).
176525861
2> T2 - T1.
10004

type() -> {Osfamily, Osname}
Types:

Osfamily = unix | win32
Osname = atom()

Returns the Osfamily and, in some cases, the Osname of the current OS.

On Unix, Osname has the same value as uname -s returns, but in lower case. For example, on Solaris 1 and 2,
it is sunos.

On Windows, Osname is nt.

os

196 | Ericsson AB. All Rights Reserved.: Kernel

Note:

Think twice before using this function. Use module filename if you want to inspect or build filenames in a
portable way. Avoid matching on atom Osname.

unsetenv(VarName) -> true
Types:

VarName = env_var_name()
Deletes the environment variable VarName.

If Unicode filename encoding is in effect (see the erl manual page), the string VarName can contain characters
with codepoints > 255.

version() -> VersionString | {Major, Minor, Release}
Types:

VersionString = string()
Major = Minor = Release = integer() >= 0

Returns the OS version. On most systems, this function returns a tuple, but a string is returned instead if the system
has versions that cannot be expressed as three numbers.

Note:

Think twice before using this function. If you still need to use it, always call os:type() first.

pg2

Ericsson AB. All Rights Reserved.: Kernel | 197

pg2
Erlang module

This module implements process groups. Each message can be sent to one, some, or all group members.

A group of processes can be accessed by a common name. For example, if there is a group named foobar, there can
be a set of processes (which can be located on different nodes) that are all members of the group foobar. There are
no special functions for sending a message to the group. Instead, client functions are to be written with the functions
get_members/1 and get_local_members/1 to determine which processes are members of the group. Then
the message can be sent to one or more group members.

If a member terminates, it is automatically removed from the group.

Warning:

This module is used by module disk_log for managing distributed disk logs. The disk log names are used as
group names, which means that some action can be needed to avoid name clashes.

Data Types
name() = any()
The name of a process group.

Exports

create(Name :: name()) -> ok
Creates a new, empty process group. The group is globally visible on all nodes. If the group exists, nothing happens.

delete(Name :: name()) -> ok
Deletes a process group.

get_closest_pid(Name) -> pid() | {error, Reason}
Types:

Name = name()
Reason = {no_process, Name} | {no_such_group, Name}

A useful dispatch function that can be used from client functions. It returns a process on the local node, if such a
process exists. Otherwise, it selects one randomly.

get_local_members(Name) ->
 [pid()] | {error, {no_such_group, Name}}
Types:

Name = name()
Returns all processes running on the local node in the group Name. This function is to be used from within a client
function that accesses the group. It is therefore optimized for speed.

pg2

198 | Ericsson AB. All Rights Reserved.: Kernel

get_members(Name) -> [pid()] | {error, {no_such_group, Name}}
Types:

Name = name()
Returns all processes in the group Name. This function is to be used from within a client function that accesses the
group. It is therefore optimized for speed.

join(Name, Pid :: pid()) -> ok | {error, {no_such_group, Name}}
Types:

Name = name()
Joins the process Pid to the group Name. A process can join a group many times and must then leave the group the
same number of times.

leave(Name, Pid :: pid()) -> ok | {error, {no_such_group, Name}}
Types:

Name = name()
Makes the process Pid leave the group Name. If the process is not a member of the group, ok is returned.

start() -> {ok, pid()} | {error, any()}
start_link() -> {ok, pid()} | {error, any()}
Starts the pg2 server. Normally, the server does not need to be started explicitly, as it is started dynamically if it
is needed. This is useful during development, but in a target system the server is to be started explicitly. Use the
configuration parameters for kernel(6) for this.

which_groups() -> [Name :: name()]
Returns a list of all known groups.

See Also
kernel(6)

rpc

Ericsson AB. All Rights Reserved.: Kernel | 199

rpc
Erlang module

This module contains services similar to Remote Procedure Calls. It also contains broadcast facilities and parallel
evaluators. A remote procedure call is a method to call a function on a remote node and collect the answer. It is used for
collecting information on a remote node, or for running a function with some specific side effects on the remote node.

Data Types
key()
As returned by async_call/4.

Exports

abcast(Name, Msg) -> abcast
Types:

Name = atom()
Msg = term()

Equivalent to abcast([node()|nodes()], Name, Msg).

abcast(Nodes, Name, Msg) -> abcast
Types:

Nodes = [node()]
Name = atom()
Msg = term()

Broadcasts the message Msg asynchronously to the registered process Name on the specified nodes.

async_call(Node, Module, Function, Args) -> Key
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Key = key()

Implements call streams with promises, a type of RPC that does not suspend the caller until the result is finished.
Instead, a key is returned, which can be used later to collect the value. The key can be viewed as a promise to deliver
the answer.

In this case, the key Key is returned, which can be used in a subsequent call to yield/1 or nb_yield/1,2 to
retrieve the value of evaluating apply(Module, Function, Args) on node Node.

Note:

yield/1 and nb_yield/1,2 must be called by the same process from which this function was made otherwise
they will never yield correctly.

rpc

200 | Ericsson AB. All Rights Reserved.: Kernel

block_call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()

Same as call/4, but the RPC server at Node does not create a separate process to handle the call. Thus, this function
can be used if the intention of the call is to block the RPC server from any other incoming requests until the request
has been handled. The function can also be used for efficiency reasons when very small fast functions are evaluated,
for example, BIFs that are guaranteed not to suspend.

block_call(Node, Module, Function, Args, Timeout) ->
 Res | {badrpc, Reason}
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Timeout = timeout()

Same as block_call/4, but with a time-out value in the same manner as call/5.

call(Node, Module, Function, Args) -> Res | {badrpc, Reason}
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()

Evaluates apply(Module, Function, Args) on node Node and returns the corresponding value Res, or
{badrpc, Reason} if the call fails.

call(Node, Module, Function, Args, Timeout) ->
 Res | {badrpc, Reason}
Types:

rpc

Ericsson AB. All Rights Reserved.: Kernel | 201

Node = node()
Module = module()
Function = atom()
Args = [term()]
Res = Reason = term()
Timeout = timeout()

Evaluates apply(Module, Function, Args) on node Node and returns the corresponding value Res, or
{badrpc, Reason} if the call fails. Timeout is a time-out value in milliseconds. If the call times out, Reason
is timeout.

If the reply arrives after the call times out, no message contaminates the caller's message queue, as this function spawns
off a middleman process to act as (a void) destination for such an orphan reply. This feature also makes this function
more expensive than call/4 at the caller's end.

cast(Node, Module, Function, Args) -> true
Types:

Node = node()
Module = module()
Function = atom()
Args = [term()]

Evaluates apply(Module, Function, Args) on node Node. No response is delivered and the calling process
is not suspended until the evaluation is complete, as is the case with call/4,5.

eval_everywhere(Module, Function, Args) -> abcast
Types:

Module = module()
Function = atom()
Args = [term()]

Equivalent to eval_everywhere([node()|nodes()], Module, Function, Args).

eval_everywhere(Nodes, Module, Function, Args) -> abcast
Types:

Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]

Evaluates apply(Module, Function, Args) on the specified nodes. No answers are collected.

multi_server_call(Name, Msg) -> {Replies, BadNodes}
Types:

rpc

202 | Ericsson AB. All Rights Reserved.: Kernel

Name = atom()
Msg = term()
Replies = [Reply :: term()]
BadNodes = [node()]

Equivalent to multi_server_call([node()|nodes()], Name, Msg).

multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}
Types:

Nodes = [node()]
Name = atom()
Msg = term()
Replies = [Reply :: term()]
BadNodes = [node()]

Can be used when interacting with servers called Name on the specified nodes. It is assumed that the servers receive
messages in the format {From, Msg} and reply using From ! {Name, Node, Reply}, where Node is the
name of the node where the server is located. The function returns {Replies, BadNodes}, where Replies is
a list of all Reply values, and BadNodes is one of the following:

• A list of the nodes that do not exist

• A list of the nodes where the server does not exist

• A list of the nodes where the server terminated before sending any reply.

multicall(Module, Function, Args) -> {ResL, BadNodes}
Types:

Module = module()
Function = atom()
Args = [term()]
ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

Equivalent to multicall([node()|nodes()], Module, Function, Args, infinity).

multicall(Nodes, Module, Function, Args) -> {ResL, BadNodes}
Types:

Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]
ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

Equivalent to multicall(Nodes, Module, Function, Args, infinity).

multicall(Module, Function, Args, Timeout) -> {ResL, BadNodes}
Types:

rpc

Ericsson AB. All Rights Reserved.: Kernel | 203

Module = module()
Function = atom()
Args = [term()]
Timeout = timeout()
ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

Equivalent to multicall([node()|nodes()], Module, Function, Args, Timeout).

multicall(Nodes, Module, Function, Args, Timeout) ->
 {ResL, BadNodes}
Types:

Nodes = [node()]
Module = module()
Function = atom()
Args = [term()]
Timeout = timeout()
ResL = [Res :: term() | {badrpc, Reason :: term()}]
BadNodes = [node()]

In contrast to an RPC, a multicall is an RPC that is sent concurrently from one client to multiple servers. This is useful
for collecting information from a set of nodes, or for calling a function on a set of nodes to achieve some side effects.
It is semantically the same as iteratively making a series of RPCs on all the nodes, but the multicall is faster, as all the
requests are sent at the same time and are collected one by one as they come back.

The function evaluates apply(Module, Function, Args) on the specified nodes and collects the answers.
It returns {ResL, BadNodes}, where BadNodes is a list of the nodes that do not exist, and ResL is a list of the
return values, or {badrpc, Reason} for failing calls. Timeout is a time (integer) in milliseconds, or infinity.

The following example is useful when new object code is to be loaded on all nodes in the network, and indicates some
side effects that RPCs can produce:

%% Find object code for module Mod
{Mod, Bin, File} = code:get_object_code(Mod),

%% and load it on all nodes including this one
{ResL, _} = rpc:multicall(code, load_binary, [Mod, File, Bin]),

%% and then maybe check the ResL list.

nb_yield(Key) -> {value, Val} | timeout
Types:

Key = key()
Val = (Res :: term()) | {badrpc, Reason :: term()}

Equivalent to nb_yield(Key, 0).

nb_yield(Key, Timeout) -> {value, Val} | timeout
Types:

rpc

204 | Ericsson AB. All Rights Reserved.: Kernel

Key = key()
Timeout = timeout()
Val = (Res :: term()) | {badrpc, Reason :: term()}

Non-blocking version of yield/1. It returns the tuple {value, Val} when the computation is finished, or
timeout when Timeout milliseconds has elapsed.

Note:

This function must be called by the same process from which async_call/4 was made otherwise it will only
return timeout.

parallel_eval(FuncCalls) -> ResL
Types:

FuncCalls = [{Module, Function, Args}]
Module = module()
Function = atom()
Args = ResL = [term()]

Evaluates, for every tuple in FuncCalls, apply(Module, Function, Args) on some node in the network.
Returns the list of return values, in the same order as in FuncCalls.

pinfo(Pid) -> [{Item, Info}] | undefined
Types:

Pid = pid()
Item = atom()
Info = term()

Location transparent version of the BIF erlang:process_info/1 in ERTS.

pinfo(Pid, Item) -> {Item, Info} | undefined | []
pinfo(Pid, ItemList) -> [{Item, Info}] | undefined | []
Types:

Pid = pid()
Item = atom()
ItemList = [Item]
Info = term()

Location transparent version of the BIF erlang:process_info/2 in ERTS.

pmap(FuncSpec, ExtraArgs, List1) -> List2
Types:

rpc

Ericsson AB. All Rights Reserved.: Kernel | 205

FuncSpec = {Module, Function}
Module = module()
Function = atom()
ExtraArgs = [term()]
List1 = [Elem :: term()]
List2 = [term()]

Evaluates apply(Module, Function, [Elem|ExtraArgs]) for every element Elem in List1, in parallel.
Returns the list of return values, in the same order as in List1.

sbcast(Name, Msg) -> {GoodNodes, BadNodes}
Types:

Name = atom()
Msg = term()
GoodNodes = BadNodes = [node()]

Equivalent to sbcast([node()|nodes()], Name, Msg).

sbcast(Nodes, Name, Msg) -> {GoodNodes, BadNodes}
Types:

Name = atom()
Msg = term()
Nodes = GoodNodes = BadNodes = [node()]

Broadcasts the message Msg synchronously to the registered process Name on the specified nodes.

Returns {GoodNodes, BadNodes}, where GoodNodes is the list of nodes that have Name as a registered process.

The function is synchronous in the sense that it is known that all servers have received the message when the call
returns. It is not possible to know that the servers have processed the message.

Any further messages sent to the servers, after this function has returned, are received by all servers after this message.

server_call(Node, Name, ReplyWrapper, Msg) ->
 Reply | {error, Reason}
Types:

Node = node()
Name = atom()
ReplyWrapper = Msg = Reply = term()
Reason = nodedown

Can be used when interacting with a server called Name on node Node. It is assumed that the server receives messages
in the format {From, Msg} and replies using From ! {ReplyWrapper, Node, Reply}. This function
makes such a server call and ensures that the entire call is packed into an atomic transaction, which either succeeds
or fails. It never hangs, unless the server itself hangs.

The function returns the answer Reply as produced by the server Name, or {error, Reason}.

yield(Key) -> Res | {badrpc, Reason}
Types:

rpc

206 | Ericsson AB. All Rights Reserved.: Kernel

Key = key()
Res = Reason = term()

Returns the promised answer from a previous async_call/4. If the answer is available, it is returned immediately.
Otherwise, the calling process is suspended until the answer arrives from Node.

Note:

This function must be called by the same process from which async_call/4 was made otherwise it will never
return.

seq_trace

Ericsson AB. All Rights Reserved.: Kernel | 207

seq_trace
Erlang module

Sequential tracing makes it possible to trace all messages resulting from one initial message. Sequential tracing
is independent of the ordinary tracing in Erlang, which is controlled by the erlang:trace/3 BIF. For more
information about what sequential tracing is and how it can be used, see section Sequential Tracing.

seq_trace provides functions that control all aspects of sequential tracing. There are functions for activation,
deactivation, inspection, and for collection of the trace output.

Data Types
token() = {integer(), boolean(), term(), term(), term()}
An opaque term (a tuple) representing a trace token.

Exports

set_token(Token) -> PreviousToken | ok
Types:

Token = PreviousToken = [] | token()

Sets the trace token for the calling process to Token. If Token == [] then tracing is disabled, otherwise
Token should be an Erlang term returned from get_token/0 or set_token/1. set_token/1 can be used to
temporarily exclude message passing from the trace by setting the trace token to empty like this:

OldToken = seq_trace:set_token([]), % set to empty and save
 % old value
% do something that should not be part of the trace
io:format("Exclude the signalling caused by this~n"),
seq_trace:set_token(OldToken), % activate the trace token again
...

Returns the previous value of the trace token.

set_token(Component, Val) -> {Component, OldVal}
Types:

Component = component()
Val = OldVal = value()
component() = label | serial | flag()
flag() =
 send |
 'receive' |
 print |
 timestamp |
 monotonic_timestamp |
 strict_monotonic_timestamp
value() =
 (Integer :: integer() >= 0) |
 {Previous :: integer() >= 0, Current :: integer() >= 0} |

seq_trace

208 | Ericsson AB. All Rights Reserved.: Kernel

 (Bool :: boolean())
Sets the individual Component of the trace token to Val. Returns the previous value of the component.

set_token(label, Integer)

The label component is an integer which identifies all events belonging to the same sequential trace. If several
sequential traces can be active simultaneously, label is used to identify the separate traces. Default is 0.

set_token(serial, SerialValue)

SerialValue = {Previous, Current}. The serial component contains counters which enables the
traced messages to be sorted, should never be set explicitly by the user as these counters are updated automatically.
Default is {0, 0}.

set_token(send, Bool)

A trace token flag (true | false) which enables/disables tracing on message sending. Default is false.

set_token('receive', Bool)

A trace token flag (true | false) which enables/disables tracing on message reception. Default is false.

set_token(print, Bool)

A trace token flag (true | false) which enables/disables tracing on explicit calls to seq_trace:print/1.
Default is false.

set_token(timestamp, Bool)

A trace token flag (true | false) which enables/disables a timestamp to be generated for each traced event.
Default is false.

set_token(strict_monotonic_timestamp, Bool)

A trace token flag (true | false) which enables/disables a strict monotonic timestamp to be
generated for each traced event. Default is false. Timestamps will consist of Erlang monotonic time
and a monotonically increasing integer. The time-stamp has the same format and value as produced by
{erlang:monotonic_time(nanosecond), erlang:unique_integer([monotonic])}.

set_token(monotonic_timestamp, Bool)

A trace token flag (true | false) which enables/disables a strict monotonic timestamp to be generated for
each traced event. Default is false. Timestamps will use Erlang monotonic time. The time-stamp has the same
format and value as produced by erlang:monotonic_time(nanosecond).

If multiple timestamp flags are passed, timestamp has precedence over strict_monotonic_timestamp
which in turn has precedence over monotonic_timestamp. All timestamp flags are remembered, so if two are
passed and the one with highest precedence later is disabled the other one will become active.

get_token() -> [] | token()
Returns the value of the trace token for the calling process. If [] is returned, it means that tracing is not active. Any
other value returned is the value of an active trace token. The value returned can be used as input to the set_token/1
function.

get_token(Component) -> {Component, Val}
Types:

seq_trace

Ericsson AB. All Rights Reserved.: Kernel | 209

Component = component()
Val = value()
component() = label | serial | flag()
flag() =
 send |
 'receive' |
 print |
 timestamp |
 monotonic_timestamp |
 strict_monotonic_timestamp
value() =
 (Integer :: integer() >= 0) |
 {Previous :: integer() >= 0, Current :: integer() >= 0} |
 (Bool :: boolean())

Returns the value of the trace token component Component. See set_token/2 for possible values of Component
and Val.

print(TraceInfo) -> ok
Types:

TraceInfo = term()
Puts the Erlang term TraceInfo into the sequential trace output if the calling process currently is executing within
a sequential trace and the print flag of the trace token is set.

print(Label, TraceInfo) -> ok
Types:

Label = integer()
TraceInfo = term()

Same as print/1 with the additional condition that TraceInfo is output only if Label is equal to the label
component of the trace token.

reset_trace() -> true
Sets the trace token to empty for all processes on the local node. The process internal counters used to create the serial
of the trace token is set to 0. The trace token is set to empty for all messages in message queues. Together this will
effectively stop all ongoing sequential tracing in the local node.

set_system_tracer(Tracer) -> OldTracer
Types:

Tracer = OldTracer = tracer()
tracer() =
 (Pid :: pid()) |
 port() |
 (TracerModule :: {module(), term()}) |
 false

Sets the system tracer. The system tracer can be either a process, port or tracer module denoted by Tracer. Returns
the previous value (which can be false if no system tracer is active).

Failure: {badarg, Info}} if Pid is not an existing local pid.

seq_trace

210 | Ericsson AB. All Rights Reserved.: Kernel

get_system_tracer() -> Tracer
Types:

Tracer = tracer()
tracer() =
 (Pid :: pid()) |
 port() |
 (TracerModule :: {module(), term()}) |
 false

Returns the pid, port identifier or tracer module of the current system tracer or false if no system tracer is activated.

Trace Messages Sent to the System Tracer
The format of the messages is one of the following, depending on if flag timestamp of the trace token is set to
true or false:

{seq_trace, Label, SeqTraceInfo, TimeStamp}

or

{seq_trace, Label, SeqTraceInfo}

Where:

Label = int()
TimeStamp = {Seconds, Milliseconds, Microseconds}
 Seconds = Milliseconds = Microseconds = int()

SeqTraceInfo can have the following formats:

{send, Serial, From, To, Message}

Used when a process From with its trace token flag print set to true has sent a message.

{'receive', Serial, From, To, Message}

Used when a process To receives a message with a trace token that has flag 'receive' set to true.

{print, Serial, From, _, Info}

Used when a process From has called seq_trace:print(Label, TraceInfo) and has a trace token
with flag print set to true, and label set to Label.

Serial is a tuple {PreviousSerial, ThisSerial}, where:

• Integer PreviousSerial denotes the serial counter passed in the last received message that carried a trace
token. If the process is the first in a new sequential trace, PreviousSerial is set to the value of the process
internal "trace clock".

• Integer ThisSerial is the serial counter that a process sets on outgoing messages. It is based on the process
internal "trace clock", which is incremented by one before it is attached to the trace token in the message.

Sequential Tracing
Sequential tracing is a way to trace a sequence of messages sent between different local or remote processes, where
the sequence is initiated by a single message. In short, it works as follows:

Each process has a trace token, which can be empty or not empty. When not empty, the trace token can be seen as
the tuple {Label, Flags, Serial, From}. The trace token is passed invisibly with each message.

To start a sequential trace, the user must explicitly set the trace token in the process that will send the first message
in a sequence.

seq_trace

Ericsson AB. All Rights Reserved.: Kernel | 211

The trace token of a process is set each time the process matches a message in a receive statement, according to the
trace token carried by the received message, empty or not.

On each Erlang node, a process can be set as the system tracer. This process will receive trace messages each time a
message with a trace token is sent or received (if the trace token flag send or 'receive' is set). The system tracer
can then print each trace event, write it to a file, or whatever suitable.

Note:

The system tracer only receives those trace events that occur locally within the Erlang node. To get the whole
picture of a sequential trace, involving processes on many Erlang nodes, the output from the system tracer on each
involved node must be merged (offline).

The following sections describe sequential tracing and its most fundamental concepts.

Trace Token
Each process has a current trace token. Initially, the token is empty. When the process sends a message to another
process, a copy of the current token is sent "invisibly" along with the message.

The current token of a process is set in one of the following two ways:

• Explicitly by the process itself, through a call to seq_trace:set_token/1,2

• When a message is received

In both cases, the current token is set. In particular, if the token of a received message is empty, the current token of
the process is set to empty.

A trace token contains a label and a set of flags. Both the label and the flags are set in both alternatives above.

Serial
The trace token contains a component called serial. It consists of two integers, Previous and Current.
The purpose is to uniquely identify each traced event within a trace sequence, as well as to order the messages
chronologically and in the different branches, if any.

The algorithm for updating Serial can be described as follows:

Let each process have two counters, prev_cnt and curr_cnt, both are set to 0 when a process is created. The
counters are updated at the following occasions:

• When the process is about to send a message and the trace token is not empty.

Let the serial of the trace token be tprev and tcurr.

curr_cnt := curr_cnt + 1
tprev := prev_cnt
tcurr := curr_cnt

The trace token with tprev and tcurr is then passed along with the message.

• When the process calls seq_trace:print(Label, Info), Label matches the label part of the trace
token and the trace token print flag is true.

The algorithm is the same as for send above.

• When a message is received and contains a non-empty trace token.

The process trace token is set to the trace token from the message.

Let the serial of the trace token be tprev and tcurr.

seq_trace

212 | Ericsson AB. All Rights Reserved.: Kernel

if (curr_cnt < tcurr)
 curr_cnt := tcurr
prev_cnt := tcurr

curr_cnt of a process is incremented each time the process is involved in a sequential trace. The counter can reach
its limit (27 bits) if a process is very long-lived and is involved in much sequential tracing. If the counter overflows,
the serial for ordering of the trace events cannot be used. To prevent the counter from overflowing in the middle of a
sequential trace, function seq_trace:reset_trace/0 can be called to reset prev_cnt and curr_cnt of all
processes in the Erlang node. This function also sets all trace tokens in processes and their message queues to empty,
and thus stops all ongoing sequential tracing.

Performance Considerations
The performance degradation for a system that is enabled for sequential tracing is negligible as long as no tracing
is activated. When tracing is activated, there is an extra cost for each traced message, but all other messages are
unaffected.

Ports
Sequential tracing is not performed across ports.

If the user for some reason wants to pass the trace token to a port, this must be done manually in the code of the port
controlling process. The port controlling processes have to check the appropriate sequential trace settings (as obtained
from seq_trace:get_token/1) and include trace information in the message data sent to their respective ports.

Similarly, for messages received from a port, a port controller has to retrieve trace-specific information, and set
appropriate sequential trace flags through calls to seq_trace:set_token/2.

Distribution
Sequential tracing between nodes is performed transparently. This applies to C-nodes built with Erl_Interface
too. A C-node built with Erl_Interface only maintains one trace token, which means that the C-node appears as
one process from the sequential tracing point of view.

Example of Use
This example gives a rough idea of how the new primitives can be used and what kind of output it produces.

Assume that you have an initiating process with Pid == <0.30.0> like this:

-module(seqex).
-compile(export_all).

loop(Port) ->
 receive
 {Port,Message} ->
 seq_trace:set_token(label,17),
 seq_trace:set_token('receive',true),
 seq_trace:set_token(print,true),
 seq_trace:print(17,"**** Trace Started ****"),
 call_server ! {self(),the_message};
 {ack,Ack} ->
 ok
 end,
 loop(Port).

And a registered process call_server with Pid == <0.31.0> like this:

seq_trace

Ericsson AB. All Rights Reserved.: Kernel | 213

loop() ->
 receive
 {PortController,Message} ->
 Ack = {received, Message},
 seq_trace:print(17,"We are here now"),
 PortController ! {ack,Ack}
 end,
 loop().

A possible output from the system's sequential_tracer can be like this:

17:<0.30.0> Info {0,1} WITH
"**** Trace Started ****"
17:<0.31.0> Received {0,2} FROM <0.30.0> WITH
{<0.30.0>,the_message}
17:<0.31.0> Info {2,3} WITH
"We are here now"
17:<0.30.0> Received {2,4} FROM <0.31.0> WITH
{ack,{received,the_message}}

The implementation of a system tracer process that produces this printout can look like this:

tracer() ->
 receive
 {seq_trace,Label,TraceInfo} ->
 print_trace(Label,TraceInfo,false);
 {seq_trace,Label,TraceInfo,Ts} ->
 print_trace(Label,TraceInfo,Ts);
 Other -> ignore
 end,
 tracer().

print_trace(Label,TraceInfo,false) ->
 io:format("~p:",[Label]),
 print_trace(TraceInfo);
print_trace(Label,TraceInfo,Ts) ->
 io:format("~p ~p:",[Label,Ts]),
 print_trace(TraceInfo).

print_trace({print,Serial,From,_,Info}) ->
 io:format("~p Info ~p WITH~n~p~n", [From,Serial,Info]);
print_trace({'receive',Serial,From,To,Message}) ->
 io:format("~p Received ~p FROM ~p WITH~n~p~n",
 [To,Serial,From,Message]);
print_trace({send,Serial,From,To,Message}) ->
 io:format("~p Sent ~p TO ~p WITH~n~p~n",
 [From,Serial,To,Message]).

The code that creates a process that runs this tracer function and sets that process as the system tracer can look like this:

start() ->
 Pid = spawn(?MODULE,tracer,[]),
 seq_trace:set_system_tracer(Pid), % set Pid as the system tracer
 ok.

With a function like test/0, the whole example can be started:

test() ->
 P = spawn(?MODULE, loop, [port]),
 register(call_server, spawn(?MODULE, loop, [])),
 start(),
 P ! {port,message}.

user

214 | Ericsson AB. All Rights Reserved.: Kernel

user
Erlang module

user is a server that responds to all messages defined in the I/O interface. The code in user.erl can be used as
a model for building alternative I/O servers.

wrap_log_reader

Ericsson AB. All Rights Reserved.: Kernel | 215

wrap_log_reader
Erlang module

This module makes it possible to read internally formatted wrap disk logs, see disk_log(3). wrap_log_reader
does not interfere with disk_log activities; there is however a bug in this version of the wrap_log_reader, see
section Known Limitations.

A wrap disk log file consists of many files, called index files. A log file can be opened and closed. Also, a single index
file can be opened separately. If a non-existent or non-internally formatted file is opened, an error message is returned.
If the file is corrupt, no attempt is made to repair it, but an error message is returned.

If a log is configured to be distributed, it is possible that all items are not logged on all nodes. wrap_log_reader
only reads the log on the called node; it is up to the user to be sure that all items are read.

Data Types
continuation()
Continuation returned by open/1,2 or chunk/1,2.

Exports

chunk(Continuation) -> chunk_ret()
chunk(Continuation, N) -> chunk_ret()
Types:

Continuation = continuation()
N = infinity | integer() >= 1
chunk_ret() =
 {Continuation2, Terms :: [term()]} |
 {Continuation2,
 Terms :: [term()],
 Badbytes :: integer() >= 0} |
 {Continuation2, eof} |
 {error, Reason :: term()}

Enables to efficiently read the terms that are appended to a log. Minimises disk I/O by reading 64 kilobyte chunks
from the file.

The first time chunk() is called, an initial continuation returned from open/1 or open/2 must be provided.

When chunk/3 is called, N controls the maximum number of terms that are read from the log in each chunk. Defaults
to infinity, which means that all the terms contained in the 8K chunk are read. If less than N terms are returned,
this does not necessarily mean that end of file is reached.

Returns a tuple {Continuation2, Terms}, where Terms is a list of terms found in the log. Continuation2
is yet another continuation that must be passed on to any subsequent calls to chunk(). With a series of calls to
chunk(), it is then possible to extract all terms from a log.

Returns a tuple {Continuation2, Terms, Badbytes} if the log is opened in read only mode and the read
chunk is corrupt. Badbytes indicates the number of non-Erlang terms found in the chunk. Notice that the log is
not repaired.

Returns {Continuation2, eof} when the end of the log is reached, and {error, Reason} if an error occurs.

wrap_log_reader

216 | Ericsson AB. All Rights Reserved.: Kernel

The returned continuation either is or is not valid in the next call to this function. This is because the log can wrap
and delete the file into which the continuation points. To ensure this does not occur, the log can be blocked during
the search.

close(Continuation) -> ok | {error, Reason}
Types:

Continuation = continuation()
Reason = file:posix()

Closes a log file properly.

open(Filename) -> open_ret()
open(Filename, N) -> open_ret()
Types:

Filename = string() | atom()
N = integer()
open_ret() =
 {ok, Continuation :: continuation()} |
 {error, Reason :: tuple()}

Filename specifies the name of the file to be read.

N specifies the index of the file to be read. If N is omitted, the whole wrap log file is read; if it is specified, only the
specified index file is read.

Returns {ok, Continuation} if the log/index file is opened successfully. Continuation is to be used when
chunking or closing the file.

Returns {error, Reason} for all errors.

Known Limitations
This version of wrap_log_reader does not detect if disk_log wraps to a new index file between a call to
wrap_log_reader:open() and the first call to wrap_log_reader:chunk(). If this occurs, the call to
chunk() reads the last logged items in the log file, as the opened index file was truncated by disk_log.

See Also
disk_log(3)

zlib

Ericsson AB. All Rights Reserved.: Kernel | 217

zlib
Erlang module

This module is moved to the ERTS application.

app

218 | Ericsson AB. All Rights Reserved.: Kernel

app
Name

The application resource file specifies the resources an application uses, and how the application is started. There
must always be one application resource file called Application.app for each application Application in
the system.

The file is read by the application controller when an application is loaded/started. It is also used by the functions in
systools, for example when generating start scripts.

File Syntax
The application resource file is to be called Application.app, where Application is the application name.
The file is to be located in directory ebin for the application.

The file must contain a single Erlang term, which is called an application specification:

{application, Application,
 [{description, Description},
 {id, Id},
 {vsn, Vsn},
 {modules, Modules},
 {maxP, MaxP},
 {maxT, MaxT},
 {registered, Names},
 {included_applications, Apps},
 {applications, Apps},
 {env, Env},
 {mod, Start},
 {start_phases, Phases},
 {runtime_dependencies, RTDeps}]}.

 Value Default
 ----- -------
Application atom() -
Description string() ""
Id string() ""
Vsn string() ""
Modules [Module] []
MaxP int() infinity
MaxT int() infinity
Names [Name] []
Apps [App] []
Env [{Par,Val}] []
Start {Module,StartArgs} []
Phases [{Phase,PhaseArgs}] undefined
RTDeps [ApplicationVersion] []

Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArgs = term()
ApplicationVersion = string()

Application
Application name.

For the application controller, all keys are optional. The respective default values are used for any omitted keys.

The functions in systools require more information. If they are used, the following keys are mandatory:

• description

app

Ericsson AB. All Rights Reserved.: Kernel | 219

• vsn

• modules

• registered

• applications

The other keys are ignored by systools.

description

A one-line description of the application.

id

Product identification, or similar.

vsn

Version of the application.

modules

All modules introduced by this application. systools uses this list when generating start scripts and tar files.
A module can only be defined in one application.

maxP

Deprecated - is ignored

Maximum number of processes allowed in the application.

maxT

Maximum time, in milliseconds, that the application is allowed to run. After the specified time, the application
terminates automatically.

registered

All names of registered processes started in this application. systools uses this list to detect name clashes
between different applications.

included_applications

All applications included by this application. When this application is started, all included applications are loaded
automatically, but not started, by the application controller. It is assumed that the top-most supervisor of the
included application is started by a supervisor of this application.

applications

All applications that must be started before this application is allowed to be started. systools uses this list to
generate correct start scripts. Defaults to the empty list, but notice that all applications have dependencies to (at
least) Kernel and STDLIB.

env

Configuration parameters used by the application. The value of a configuration parameter is retrieved by calling
application:get_env/1,2. The values in the application resource file can be overridden by values in a
configuration file (see config(4)) or by command-line flags (see erts:erl(1)).

mod

Specifies the application callback module and a start argument, see application(3).

Key mod is necessary for an application implemented as a supervision tree, otherwise the application controller
does not know how to start it. mod can be omitted for applications without processes, typically code libraries,
for example, STDLIB.

app

220 | Ericsson AB. All Rights Reserved.: Kernel

start_phases

A list of start phases and corresponding start arguments for the application. If this key
is present, the application master, in addition to the usual call to Module:start/2, also
calls Module:start_phase(Phase,Type,PhaseArgs) for each start phase defined by key
start_phases. Only after this extended start procedure, application:start(Application) returns.

Start phases can be used to synchronize startup of an application and its included applications. In this case, key
mod must be specified as follows:

{mod, {application_starter,[Module,StartArgs]}}

The application master then calls Module:start/2 for the primary application, followed by calls to
Module:start_phase/3 for each start phase (as defined for the primary application), both for the primary
application and for each of its included applications, for which the start phase is defined.

This implies that for an included application, the set of start phases must be a subset of the set of phases defined
for the primary application. For more information, see OTP Design Principles.

runtime_dependencies

A list of application versions that the application depends on. An example of such an application version is
"kernel-3.0". Application versions specified as runtime dependencies are minimum requirements. That is,
a larger application version than the one specified in the dependency satisfies the requirement. For information
about how to compare application versions, see section Versions in the System Principles User's Guide.

Notice that the application version specifies a source code version. One more, indirect, requirement is that the
installed binary application of the specified version is built so that it is compatible with the rest of the system.

Some dependencies can only be required in specific runtime scenarios. When such optional dependencies exist,
these are specified and documented in the corresponding "App" documentation of the specific application.

Warning:

The runtime_dependencies key was introduced in OTP 17.0. The type of its value might be subject
to changes during the OTP 17 release.

Warning:

All runtime dependencies specified in OTP applications during the OTP 17 release may not be completely
correct. This is actively being worked on. Declared runtime dependencies in OTP applications are expected
to be correct in OTP 18.

See Also
application(3), systools(3)

config

Ericsson AB. All Rights Reserved.: Kernel | 221

config
Name

A configuration file contains values for configuration parameters for the applications in the system. The erl
command-line argument -config Name tells the system to use data in the system configuration file Name.config.

Configuration parameter values in the configuration file override the values in the application resource files (see
app(4). The values in the configuration file can be overridden by command-line flags (see erts:erl(1).

The value of a configuration parameter is retrieved by calling application:get_env/1,2.

File Syntax
The configuration file is to be called Name.config, where Name is any name.

File .config contains a single Erlang term and has the following syntax:

[{Application1, [{Par11, Val11}, ...]},
 ...
 {ApplicationN, [{ParN1, ValN1}, ...]}].

Application = atom()

Application name.

Par = atom()

Name of a configuration parameter.

Val = term()

Value of a configuration parameter.

sys.config
When starting Erlang in embedded mode, it is assumed that exactly one system configuration file is used, named
sys.config. This file is to be located in $ROOT/releases/Vsn, where $ROOT is the Erlang/OTP root
installation directory and Vsn is the release version.

Release handling relies on this assumption. When installing a new release version, the new sys.config is read and
used to update the application configurations.

This means that specifying another .config file, or more .config files, leads to inconsistent update of application
configurations. There is, however, a syntax for sys.config that allows pointing out other .config files:

[{Application, [{Par, Val}]} | File].

File = string()
Name of another .config file. Extension .config can be omitted. It is recommended to use absolute paths.
A relative path is relative the current working directory of the emulator.

When traversing the contents of sys.config and a filename is encountered, its contents are read and merged with
the result so far. When an application configuration tuple {Application, Env} is found, it is merged with the
result so far. Merging means that new parameters are added and existing parameter values overwritten.

Example:

config

222 | Ericsson AB. All Rights Reserved.: Kernel

sys.config:

[{myapp,[{par1,val1},{par2,val2}]},
 "/home/user/myconfig"].

myconfig.config:

[{myapp,[{par2,val3},{par3,val4}]}].

This yields the following environment for myapp:

[{par1,val1},{par2,val3},{par3,val4}]

The behavior if a file specified in sys.config does not exist, or is erroneous, is backwards compatible. Starting
the runtime system will fail. Installing a new release version will not fail, but an error message is returned and the
erroneous file is ignored.

See Also
app(4), erts:erl(1), OTP Design Principles

	Kernel
	Reference Manual
	kernel
	application
	ensure_all_started/1
	ensure_all_started/2
	ensure_started/1
	ensure_started/2
	get_all_env/0
	get_all_env/1
	get_all_key/0
	get_all_key/1
	get_application/0
	get_application/1
	get_env/1
	get_env/2
	get_env/3
	get_key/1
	get_key/2
	load/1
	load/2
	loaded_applications/0
	permit/2
	set_env/3
	set_env/4
	start/1
	start/2
	start_type/0
	stop/1
	takeover/2
	unload/1
	unset_env/2
	unset_env/3
	which_applications/0
	which_applications/1
	Module:start/2
	Module:start_phase/3
	Module:prep_stop/1
	Module:stop/1
	Module:config_change/3

	auth
	cookie/0
	cookie/1
	is_auth/1
	node_cookie/1
	node_cookie/2

	code
	set_path/1
	get_path/0
	add_path/1
	add_pathz/1
	add_patha/1
	add_paths/1
	add_pathsz/1
	add_pathsa/1
	del_path/1
	replace_path/2
	load_file/1
	load_abs/1
	ensure_loaded/1
	load_binary/3
	atomic_load/1
	prepare_loading/1
	finish_loading/1
	ensure_modules_loaded/1
	delete/1
	purge/1
	soft_purge/1
	is_loaded/1
	all_loaded/0
	which/1
	get_object_code/1
	root_dir/0
	lib_dir/0
	lib_dir/1
	lib_dir/2
	compiler_dir/0
	priv_dir/1
	objfile_extension/0
	stick_dir/1
	unstick_dir/1
	is_sticky/1
	where_is_file/1
	clash/0
	module_status/1
	modified_modules/0
	is_module_native/1
	get_mode/0

	disk_log
	accessible_logs/0
	alog/2
	balog/2
	alog_terms/2
	balog_terms/2
	block/1
	block/2
	change_header/2
	change_notify/3
	change_size/2
	chunk/2
	chunk/3
	bchunk/2
	bchunk/3
	chunk_info/1
	chunk_step/3
	close/1
	format_error/1
	inc_wrap_file/1
	info/1
	lclose/1
	lclose/2
	log/2
	blog/2
	log_terms/2
	blog_terms/2
	open/1
	pid2name/1
	reopen/2
	reopen/3
	breopen/3
	sync/1
	truncate/1
	truncate/2
	btruncate/2
	unblock/1

	erl_boot_server
	add_slave/1
	delete_slave/1
	start/1
	start_link/1
	which_slaves/0

	erl_ddll
	demonitor/1
	format_error/1
	info/0
	info/1
	info/2
	load/2
	load_driver/2
	loaded_drivers/0
	monitor/2
	reload/2
	reload_driver/2
	try_load/3
	try_unload/2
	unload/1
	unload_driver/1

	erl_prim_loader
	erlang
	error_handler
	raise_undef_exception/3
	undefined_function/3
	undefined_lambda/3

	error_logger
	add_report_handler/1
	add_report_handler/2
	delete_report_handler/1
	error_msg/1
	error_msg/2
	format/2
	error_report/1
	error_report/2
	get_format_depth/0
	info_msg/1
	info_msg/2
	info_report/1
	info_report/2
	logfile/1
	logfile/1
	logfile/1
	tty/1
	warning_map/0
	warning_msg/1
	warning_msg/2
	warning_report/1
	warning_report/2

	file
	advise/4
	allocate/3
	change_group/2
	change_mode/2
	change_owner/2
	change_owner/3
	change_time/2
	change_time/3
	close/1
	consult/1
	copy/2
	copy/3
	datasync/1
	del_dir/1
	delete/1
	eval/1
	eval/2
	format_error/1
	get_cwd/0
	get_cwd/1
	list_dir/1
	list_dir_all/1
	make_dir/1
	make_link/2
	make_symlink/2
	native_name_encoding/0
	open/2
	path_consult/2
	path_eval/2
	path_open/3
	path_script/2
	path_script/3
	pid2name/1
	position/2
	pread/2
	pread/3
	pwrite/2
	pwrite/3
	read/2
	read_file/1
	read_file_info/1
	read_file_info/2
	read_line/1
	read_link/1
	read_link_all/1
	read_link_info/1
	read_link_info/2
	rename/2
	script/1
	script/2
	sendfile/2
	sendfile/5
	set_cwd/1
	sync/1
	truncate/1
	write/2
	write_file/2
	write_file/3
	write_file_info/2
	write_file_info/3

	gen_sctp
	abort/2
	close/1
	connect/4
	connect/5
	connect_init/4
	connect_init/5
	controlling_process/2
	eof/2
	error_string/1
	listen/2
	listen/2
	open/0
	open/1
	open/1
	open/2
	peeloff/2
	recv/1
	recv/2
	send/3
	send/4

	gen_tcp
	accept/1
	accept/2
	close/1
	connect/3
	connect/4
	controlling_process/2
	listen/2
	recv/2
	recv/3
	send/2
	shutdown/2

	gen_udp
	close/1
	controlling_process/2
	open/1
	open/2
	recv/2
	recv/3
	send/4

	global
	del_lock/1
	del_lock/2
	notify_all_name/3
	random_exit_name/3
	random_notify_name/3
	re_register_name/2
	re_register_name/3
	register_name/2
	register_name/3
	registered_names/0
	send/2
	set_lock/1
	set_lock/2
	set_lock/3
	sync/0
	trans/2
	trans/3
	trans/4
	unregister_name/1
	whereis_name/1

	global_group
	global_groups/0
	info/0
	monitor_nodes/1
	own_nodes/0
	registered_names/1
	send/2
	send/3
	sync/0
	whereis_name/1
	whereis_name/2

	heart
	set_cmd/1
	clear_cmd/0
	get_cmd/0
	set_callback/2
	clear_callback/0
	get_callback/0
	set_options/1
	get_options/0

	inet
	close/1
	format_error/1
	get_rc/0
	getaddr/2
	getaddrs/2
	gethostbyaddr/1
	gethostbyname/1
	gethostbyname/2
	gethostname/0
	getifaddrs/0
	getopts/2
	getstat/1
	getstat/2
	i/0
	i/1
	i/2
	ntoa/1
	parse_address/1
	parse_ipv4_address/1
	parse_ipv4strict_address/1
	parse_ipv6_address/1
	parse_ipv6strict_address/1
	ipv4_mapped_ipv6_address/1
	parse_strict_address/1
	peername/1
	peernames/1
	peernames/2
	port/1
	setopts/2
	sockname/1
	socknames/1
	socknames/2

	inet_res
	getbyname/2
	getbyname/3
	gethostbyaddr/1
	gethostbyaddr/2
	gethostbyname/1
	gethostbyname/2
	gethostbyname/3
	lookup/3
	lookup/4
	lookup/5
	resolve/3
	resolve/4
	resolve/5
	nslookup/3
	nslookup/4
	nslookup/4
	nnslookup/4
	nnslookup/5

	init
	net_adm
	dns_hostname/1
	host_file/0
	localhost/0
	names/0
	names/1
	ping/1
	world/0
	world/1
	world_list/1
	world_list/2

	net_kernel
	allow/1
	connect_node/1
	get_net_ticktime/0
	getopts/2
	monitor_nodes/1
	monitor_nodes/2
	set_net_ticktime/1
	set_net_ticktime/2
	setopts/2
	start/1
	start/1
	start/1
	stop/0

	os
	cmd/1
	cmd/2
	find_executable/1
	find_executable/2
	getenv/0
	getenv/1
	getenv/2
	getpid/0
	putenv/2
	set_signal/2
	system_time/0
	system_time/1
	timestamp/0
	perf_counter/0
	perf_counter/1
	type/0
	unsetenv/1
	version/0

	pg2
	create/1
	delete/1
	get_closest_pid/1
	get_local_members/1
	get_members/1
	join/2
	leave/2
	start/0
	start_link/0
	which_groups/0

	rpc
	abcast/2
	abcast/3
	async_call/4
	block_call/4
	block_call/5
	call/4
	call/5
	cast/4
	eval_everywhere/3
	eval_everywhere/4
	multi_server_call/2
	multi_server_call/3
	multicall/3
	multicall/4
	multicall/4
	multicall/5
	nb_yield/1
	nb_yield/2
	parallel_eval/1
	pinfo/1
	pinfo/2
	pinfo/2
	pmap/3
	sbcast/2
	sbcast/3
	server_call/4
	yield/1

	seq_trace
	set_token/1
	set_token/2
	get_token/0
	get_token/1
	print/1
	print/2
	reset_trace/0
	set_system_tracer/1
	get_system_tracer/0

	user
	wrap_log_reader
	chunk/1
	chunk/2
	close/1
	open/1
	open/2

	zlib
	app
	config

