ERLANG

Inets

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.
inets 6.5

March 26, 2018

Copyright © 1997-2018 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: inets | 1

1.1 Introduction

1 Inets User's Guide

Thel net s application provides a set of Internet-related services as follows:

« AnFTPclient
* A TFTPclient and server
 Anclient and server

The HTTP client and server are HTTP 1.1 compliant as defined in RFC 2616.

1.1 Introduction

1.1.1 Purpose
| net s isacontainer for Internet clients and serversincluding the following:

« AnFTPclient
e A TFTPclient and server
* Anclient and server

The HTTP client and server are HTTP 1.1 compliant as defined in RFC 2616.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of the FTP, TFTP, and HTTP protocols.

1.2 Inets

1.2.1 Service Concept

Each client and server in| net s isviewed as a service. Services can be configured to be started at application startup
or dynamically in runtime. Torun | net s as adistributed application that handles application failover and takeover,
configure the services to be started at application startup. When starting the | net s application, the | net s top
supervisor starts a number of subsupervisors and worker processes for handling the provided services. When starting
services dynamically, new children are added to the supervision tree, unless the service is started with the standalone
option. In this case the service is linked to the calling process and al OTP application features, such as soft upgrade,
arelost.

Services to be configured for startup at application startup are to be put into the Erlang node configuration file on
the following form:

[{inets, [{services, ListofConfiguredServices}]}].

For details of what to put in the list of configured services, see the documentation for the services to be configured.

2 | Ericsson AB. All Rights Reserved.: inets

href
href

1.3 FTP Client

1.3 FTP Client
1.3.1 Getting Started

FTP clients are considered to be rather temporary. Thus, they are only started and stopped during runtime and cannot
be started at application startup. The FTP client APl isdesigned to allow some functionsto return intermediate results.
Thisimpliesthat only the processthat started the FTP client can access it with preserved sane semantics. If the process
that started the FTP session dies, the FTP client process terminates.

The client supports IPv6 as long as the underlying mechanisms also do so.

The following is a simple example of an FTP session, where the user guest with password passwor d logs on to
the remote host er | ang. or g:

1> inets:start().

ok

2> {ok, Pid} = inets:start(ftpc, [{host, "erlang.org"}]).
{0k, <0.22.0>}

3> ftp:user(Pid, "guest", "password").
ok

4> ftp:pwd(Pid).

{ok, "/home/guest"}

5> ftp:cd(Pid, "appl/examples").

ok

6> ftp:lpwd(Pid).

{ok, "/home/fred"}.

7> ftp:lcd(Pid, "/home/eproj/examples").

ok

8> ftp:recv(Pid, "appl.erl").
ok

9> inets:stop(ftpc, Pid).

ok

Thefileappl . er | istransferred from the remote to the local host. When the session is opened, the current directory
at the remote host is/ hone/ guest , and / hone/ f r ed at the local host. Before transferring the file, the current
local directory ischangedto/ hone/ epr oj / exanpl es, andtheremotedirectory issetto/ hone/ guest / appl /
exanpl es.

1.4 HTTP Client

1.4.1 Configuration

The HTTP client default profileis started when the | net s application is started and is then available to all processes
on that Erlang node. Other profiles can also be started at application startup, or profiles can be started and stopped
dynamically in runtime. Each client profile spawnsanew processto handle each request, unless a persi stent connection
can be used with or without pipelining. The client adds ahost header and an empty t e header if there are no such
headers present in the request.

The client supports I Pv6 as long as the underlying mechanisms also do so.
Thefollowing isto be put in the Erlang node application configuration file to start a profile at application startup:

[{inets, [{services, [{httpc, PropertyList}1}]1}1

For valid properties, see httpc(3).

Ericsson AB. All Rights Reserved.: inets | 3

1.4 HTTP Client

1.4.2 Getting Started

Start | net s:

1 > inets:start().
ok

The following calls use the default client profile. Use the proxy " ww« pr oxy. nyconpany. com 8000" , except
from requests to localhost. This appliesto al the following requests.

Example:
2 > httpc:set options([{proxy, {{"www-proxy.mycompany.com", 8000},
["localhost"]}}1).
ok

Thefollowing is an ordinary synchronous request:

3 > {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
httpc:request(get, {"http://www.erlang.org", [1}, [1, [1).

With al the default values presented, a get request can also be written as follows:

4 > {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
httpc:request("http://www.erlang.org").

The following is an ordinary asynchronous request:

5 > {ok, RequestId} =
httpc:request(get, {"http://www.erlang.org", [1}, [1, [{sync, false}l).

Theresult issent tothe calling processas{ htt p, {Reqestld, Result}}.

In this case, the calling process is the shell, so the following result is received:

6 > receive {http, {RequestId, Result}} -> ok after 500 -> error end.
ok

This sends a request with a specified connection header:
7 > {ok, {{NewVersion, 200, NewReasonPhrase}, NewHeaders, NewBody}} =
httpc:request(get, {"http://www.erlang.org", [{"connection", "close"}1},
[1, c

This sends an HTTP request over a unix domain socket (experimental):
8 > httpc:set options([{ipfamily, local},
{unix socket,"/tmp/unix_socket/consul http.sock"}]).
9 > {ok, {{NewVersion, 200, NewReasonPhrase}, NewHeaders, NewBody}} =
httpc:request(put, {"http:///vl/kv/foo", [1, [1, "hello"}, [1, [1).
Start an HTTP client profile:

10 > {ok, Pid} = inets:start(httpc, [{profile, foo}]).
{ok, <0.45.0>}

The new profile has no proxy settings, so the connection is refused:

11 > httpc:request("http://www.erlang.org", foo).
{error, econnrefused}

Stop the HTTP client profile:

4 | Ericsson AB. All Rights Reserved.: inets

1.5 HTTP server

12 > inets:stop(httpc, foo).
ok

Alternative way to stop the HTTP client profile:

13 > inets:stop(httpc, Pid).
ok

1.5 HTTP server

1.5.1 Configuration

The HTTP server, also referred to as httpd, handles HTTP requests as described in RFC 2616 with afew exceptions,
such as gateway and proxy functionality. The server supports IPv6 as long as the underlying mechanisms also do so.

The server implements numerous features, such as:

e Secure Sockets Layer (SSL)

» Erlang Scripting Interface (ESI)

e Common Gateway Interface (CGI)

e User Authentication (using Mnesia, Dets or plain text database)

e Common Logfile Format (with or without disk_log(3) support)

e URL Aliasing

* Action Mappings

e Directory Listings

The configuration of the server is provided as an Erlang property list. For backwards compatibility, a configuration
file using apache-style configuration directivesis supported.

Asof | net s 5.0 the HTTP server is an easy to start/stop and customize web server providing the most basic web
server functionality. Inetsis designed for embedded systems and if you want afull-fledged web server there are exists
other erlang open source aternatives.

Almost all server functionality has been implemented using an especialy crafted server API, which is described in
the Erlang Web Server API. This API can be used to enhance the core server functionality, for example with custom
logging and authentication.

The following is to be put in the Erlang node application configuration file to start an HTTP server at application
startup:

[{inets, [{services, [{httpd, [{proplist file,
"/var/tmp/server _root/conf/8888 props.conf"}1},
{httpd, [{proplist file,
"/var/tmp/server _root/conf/8080 props.conf"}1}1}1}1.

The server is configured using an Erlang property list. For the available properties, see httpd(3). For backwards
compatibility, apache-like configuration files are also supported.

The available configuration properties are as follows:

Ericsson AB. All Rights Reserved.: inets | 5

href

1.5 HTTP server

httpd service() -> {httpd, httpd()}
httpd() -> [httpd config()]
httpd config() -> {file, file()} |
{proplist file, file()}
{debug, debug()} |
{accept_timeout, integer()}
debug() disable | [debug options()]
debug options() -> {all functions, modules()} |
{exported functions, modules()} |
{disable, modules()}
modules () -> [atom()]

\

Here:
{file, file()}
If you use an old apace-like configuration file.
{proplist_file, file()}
File containing an Erlang property list, followed by afull stop, describing the HTTP server configuration.
{debug, debug()}
Can enable trace on all functions or only exported functions on chosen modules.
{accept _timeout, integer()}
Sets the wanted time-out value for the server to set up arequest connection.

1.5.2 Getting Started

Start | net s:

1 > inets:start().
ok

Start an HTTP server with minimal required configuration. If you specify port 0, an arbitrary available port is used,
and you can use function i nf o to find which port number that was picked:

2 > {ok, Pid} = inets:start(httpd, [{port, 0O},

{server _name,"httpd test"}, {server root,"/tmp"},

{document root,"/tmp/htdocs"}, {bind address, "localhost"}]).
{ok, 0.79.0}

Cdli nf o:

3 > httpd:info(Pid).

[{mime_types, [{"html", "text/html"}, {"htm", "text/html"}1},
{server _name,"httpd test"},

{bind address, {127,0,0,1}},

{server _root,"/tmp"},

{port,59408},

{document_root,"/tmp/htdocs"}]

Reload the configuration without restarting the server:

4 > httpd:reload config([{port, 59408},
{server name, "httpd test"}, {server root,"/tmp/www test"},
{document_root,"/tmp/www_test/htdocs"},

{bind address, "localhost"}], non disturbing).
ok.

6 | Ericsson AB. All Rights Reserved.: inets

1.5 HTTP server

port and bi nd_addr ess cannot be changed. Clients trying to access the server during the reload get a service
temporary unavailable answer.

5 > httpd:info(Pid, [server root, document root]).
[{server root,"/tmp/www test"},{document root,"/tmp/www test/htdocs"}]

6 > ok = inets:stop(httpd, Pid).
Alternative:
6 > ok = inets:stop(httpd, {{127,0,0,1}, 59408}).

Notice that bi nd_addr ess must be the |P address reported by function i nf o and cannot be the hostname that is
allowed when putting in bi nd_addr ess.

1.5.3 Htaccess - User Configurable Authentication

Web server users without server administrative privileges that need to manage authentication of web pages that are
local to their user can use the per-directory runtime configurable user-authentication scheme ht access. It works
asfollows:

« Eachdirectory in the path to the requested asset is searched for an accessfile (default is. ht access), which
restricts the web servers rights to respond to arequest. If an accessfileisfound, the rulesin that file is applied
to the request.

* Therulesin an accessfile apply to filesin the same directory and in subdirectories. If there exists more than
one access file in the path to an asset, the rules in the access file nearest the requested asset is applied.

* Tochangethe rulesthat restrict the use of an asset, the user only needs write access to the directory where the
assetis.

e All accessfilesin the path to arequested asset are read once per request. This means that the load on the server
increaseswhen ht access is used.

» If adirectory islimited both by authentication directivesin the HTTP server configuration file and by the
ht access files, the user must be allowed to get access to the file by both methods for the request to succeed.
Access Files Directives

In every directory under Docunent Root or under an Al i as auser can place an accessfile. An accessfileisaplain
text file that specifiesthe restrictionsto consider before the web server answersto arequest. If there are more than one
access file in the path to the requested asset, the directives in the access file in the directory nearest the asset is used.

"allow"
Syntax: Al | owfrom subnet subnet | from all
Default: from al |
Same as directive al | owfor the server configuration file.

" AllowOverRide"
Syntax: Al l owOverRideall | none | Directives
Default: none

Al'l owOver Ri de specifies the parameters that access filesin subdirectories are not allowed to alter the value
for. If the parameter is set to none, no further accessfilesis parsed.

Ericsson AB. All Rights Reserved.: inets | 7

1.5 HTTP server

If only one access file exists, setting this parameter to none can ease the burden on the server as the server then
stops looking for access files.

" AuthGroupfile"
Syntax: Aut hGr oupFi | e Filename
Default: none

Aut hGr oupFi | e indicates which file that contains the list of groups. The filename must contain the absolute
path to the file. The format of the file is one group per row and every row contains the name of the group and
the members of the group, separated by a space, for example:

GroupName: Memberl Member2 MemberN

" AuthName"

Syntax: Aut hNane auth-domain

Default: none

Same as directive Aut hName for the server configuration file.
" AuthType"

Syntax: Aut hType Basi c

Default: Basi c

Aut hType specifies which authentication scheme to be used. Only Basic Authenticating using UUENncoding of
the password and user ID isimplemented.

" AuthUserFile"
Syntax: Aut hUser Fi | e Filename
Default:none

Aut hUser Fi | e indicateswhich filethat contains the list of users. The filename must contain the absol ute path
to the file. The username and password are not encrypted so do not place the file with users in a directory that
is accessible through the web server. The format of the file is one user per row. Every row contains User Nane
and Passwor d separated by a colon, for example:

UserName:Password
UserName:Password

deny
Syntax: deny from subnet subnet | from all
Context: Limit
Same as directive deny for the server configuration file.

" Limit"

Syntax: <Li mi t ReguestMethods>

Default: none

<Li mi t >and </ Li mi t > are used to enclose agroup of directives applying only to requests using the specified
methods. If no request method is specified, al request methods are verified against the restrictions.

Example:

8 | Ericsson AB. All Rights Reserved.: inets

1.5 HTTP server

<Limit POST GET HEAD>
order allow deny
require group groupl
allow from 123.145.244.5
</Limit>
"order"
Syntax: or der al | ow deny | deny all ow
Default: al | ow deny
or der definesif the deny or allow control isto be performed first.

If the order issetto al | ow deny, the users network addressisfirst controlled to be in the allow subset. If the
user network address is not in the allowed subset, the user is denied to get the asset. If the network addressisin
the allowed subset, asecond control isperformed. That is, the user network addressis not in the subset of network
addresses to be denied as specified by parameter deny.

If the order isset to deny al | ow, only users from networks specified to be in the allowed subset succeeds to
reguest assetsin the limited area.

"reguire"
Syntax: requi re group groupl group2... | user userl user2...
Default: none
Context: Limit
For more information, see directiver equi r e inmod_auth(3).

1.5.4 Dynamic Web Pages

I nets HTTP server provides two ways of creating dynamic web pages, each with its own advantages and
disadvantages:

CGI scripts

Common Gateway Interface (CGI) scripts can be written in any programming language. CGI scripts are
standardized and supported by most web servers. The drawback with CGI scripts is that they are resource-
intensive because of their design. CGI requires the server to fork a new OS process for each executable it needs
to start.

ESI-functions

Erlang Server Interface (ESI) functions provide atight and efficient interface to the execution of Erlang functions.
Thisinterface, on the other hand, is| net s specific.

CGI Version 1.1, RFC 3875

Themodulenod_cgi enablesexecution of CGI scriptson the server. A file matching the definition of a ScriptAlias
config directiveistreated asa CGI script. A CGI script is executed by the server and its output is returned to the client.

The CGI script response comprises a message header and a message body, separated by a blank line. The message
header contains one or more header fields. The body can be empty.

Example:

"Content-Type:text/plain\nAccept-Ranges:none\n\nsome very
plain text"

Ericsson AB. All Rights Reserved.: inets | 9

href

1.5 HTTP server

The server interprets the message headers and most of them are transformed into HTTP headers and sent back to the
client together with the message-body.

Support for CGI-1.1 isimplemented in accordance with RFC 3875.

ESI

The Erlang server interface isimplemented by module nod_esi .

ERL Scheme

The erl scheme is designed to mimic plain CGlI, but without the extra overhead. An URL that calls an Erlang er |
function has the following syntax (regular expression):

http://your.server.org/***/Module[:/]1Function(?QueryString|/PathInfo)

*** depends on how the ErlScriptAlias config directive has been used.

The module Modul e referred to must be found in the code path, and it must define a function Funct i on with an
arity of two or three. It is preferable to implement a function with arity three, asit permits to send chunks of the web
page to the client during the generation phase instead of first generating the whole web page and then sending it to
the client. The option to implement a function with arity two is only kept for backwards compatibility reasons. For
implementation details of the ESI callback function, see mod_esi(3).

EVAL Scheme

The eval schemeis straight-forward and does not mimic the behavior of plain CGI. An URL that callsan Erlang eval
function has the following syntax:

http://your.server.org/***/Mod:Func(Argl,...,ArgN)

*** depends on how the ErlScriptAlias config directive has been used.

The module Mod referred to must be found in the code path and data returned by the function Func is passed back to
theclient. Datareturned from the function must take the form as specified in the CGI specification. For implementation
details of the ESI callback function, see mod_esi(3).

The eval scheme can seriously threaten the integrity of the Erlang node housing a web server, for example:
http://your.server.org/eval?httpd example:print(atom_to list(apply(erlang,halt,[]1)))

This effectively closes down the Erlang node. Therefore, use the erl scheme instead, until this security breach is
fixed.

Today there are no good ways of solving this problem and therefore the eval scheme can be removed in future
releaseof | net s.

1.5.5 Logging

Three types of logs are supported: transfer logs, security logs, and error logs. The de-facto standard Common Logfile
Format is used for the transfer and security logging. There are numerous statistics programs available to anayze
Common Logfile Format. The Common L ogfile Format looks as follows:

remotehost rfc931 authuser [date] " request” status bytes
Here:

remotehost
Remote hostname.

10 | Ericsson AB. All Rights Reserved.: inets

href

1.5 HTTP server

rfco31

The client remote username (RFC 931).
authuser

The username used for authentication.
[date]

Date and time of the request (RFC 1123).
"request”

The request line exactly as it came from the client (RFC 1945).
status

The HTTP status code returned to the client (RFC 1945).
bytes

The content-length of the document transferred.

Internal server errors are recorded in the error log file. The format of thisfile isamore unplanned format than the logs
using Common L ogfile Format, but conforms to the following syntax:

[date] accessto path failed for remotehost, reason: reason

1.5.6 Erlang Web Server API

The process of handling an HTTP request involves several steps, such as:

e Setting up connections, sending and receiving data.

e URI tofilename trandation.

* Authentication/access checks.

« Retrieving/generating the response.

e Logging.

To provide customization and extensibility of the request handling of the HTTP servers, most of these stepsare handled
by one or more modules. These modules can be replaced or removed at runtime and new ones can be added. For each
reguest, all modules are traversed in the order specified by the module directive in the server configuration file. Some
parts, mainly the communication- rel ated steps, are considered server core functionality and are not implemented using

the Erlang web server API. A description of functionality implemented by the Erlang webserver API is described in
Section Inets Web Server Modules.

A module can use data generated by previous modulesin the Erlang webserver APl module sequence or generate data
to be used by consecutive Erlang Web Server APl modules. This is possible owing to an internal list of key-value
tuples, referred to as interaction data.

I nteraction dataenforcesmodul e dependenciesand isto be avoided if possible. Thismeansthat the order of modules
in the modules property is significant.

API Description

Each module that implements server functionality using the Erlang web server API isto implement the following call
back functions:

e do/ 1 (mandatory) - the function called when arequest isto be handled
e load/2

e store/2

e renove/l

The latter functions are needed only when new config directives are to be introduced. For details, see httpd(3).

Ericsson AB. All Rights Reserved.: inets | 11

href
href
href
href

1.5 HTTP server

1.5.7 Inets Web Server Modules

The convention is that all modules implementing some web server functionality has the name nod_*. When
configuring the web server, an appropriate selection of these modulesisto be present in the module directive. Notice
that there are some interaction dependencies to take into account, so the order of the modules cannot be random.
mod_action - Filetype/Method-Based Script Execution
This module runs CGI scripts whenever afile of acertain type or HTTP method (see RFC 1945) is requested.
Uses the following Erlang Web Server API interaction data:
e real nane -frommod alias.
Exports the following Erlang Web Server API interaction data, if possible:
{new request uri, RequestURl}
An dternative Request URI has been generated.
mod_alias - URL Aliasing

The mod_alias module makes it possible to map different parts of the host file system into the document tree, that
is, creates aliases and redirections.

Exports the following Erlang Web Server API interaction data, if possible:
{real _nane, Pat hDat a}

Pat hDat a isthe argument used for API function mod_alias: path/3.
mod_auth - User Authentication

The mod_auth(3) module provides for basic user authentication using textual files, Dets databases as well as Mnesia
databases.

Usesthe following Erlang Web Server API interaction data:
e« real nane-frommod alias
Exports the following Erlang Web Server API interaction data:

{renote_user, User}
The username used for authentication.

Mnesia As Authentication Database

If Mnesiais used as storage method, Mnesia must be started before the HTTP server. Thefirst time Mnesiais started,
the schema and the tables must be created before Mnesiais started. A simple example of a module with two functions
that creates and start Mnesiais provided here. Function f i r st _st art/ 0 isto be used the first time. It creates the
schemaandthetables. st ar t / 0 isto be used in consecutive startups. st ar t / 0 startsMnesiaand waitsfor thetables
to be initiated. This function must only be used when the schema and the tables are already created.

12 | Ericsson AB. All Rights Reserved.: inets

href

1.5 HTTP server

-module(mnesia test).
-export([start/0,load data/o0]).
-include lib("mod auth.hrl").

first start() ->

mnesia:create schema([node()]),
mnesia:start(),
mnesia:create table(httpd user,

[{type, bag},

{disc_copies, [node()1},

{attributes, record info(fields,

httpd user)}l),

mnesia:create table(httpd group,

[{type, bag},
{disc_copies, [node()]},
{attributes, record info(fields,

httpd group)}1),
mnesia:wait for tables([httpd user, httpd group], 60000).

start() ->
mnesia:start(),
mnesia:wait for tables([httpd user, httpd group], 60000).

To create the Mnesia tables, we use two records defined in nod_aut h. hrl, so that file must be included.
first_start/ 0 createsaschemathat specifies on which nodesthe databaseisto reside. Then it starts Mnesiaand
creates the tables. The first argument isthe name of the tables, the second argument isalist of options of how to create
thetable, seemmesi a(3) , documentation for moreinformation. Astheimplementation of themod_aut h_nmesi a
savesonerow for each user, thetype must be bag. When the schemaand the tables are created, function mnesia: start/0
is used to start Mnesia and waits for the tables to be loaded. Mnesia uses the directory specified asmmesi a_di r at
startup if specified, otherwise Mnesiauses the current directory. For security reasons, ensure that the Mnesiatablesare
stored outside the document tree of the HTTP server. If they are placed in the directory which it protects, clients can
download the tables. Only the Dets and Mnesia storage methods allow writing of dynamic user data to disk. pl ai n
isaread only method.

mod_cgi - CGI Scripts
This module handles invoking of CGI scripts.

mod_dir - Directories

This module generates an HTML directory listing (Apache-style) if aclient sends arequest for adirectory instead of
afile. This module must be removed from the Modules config directive if directory listings is unwanted.

Uses the following Erlang Web Server API interaction data:
e real _nane - frommod_alias
Exports the following Erlang Web Server API interaction data:
{m nme_type, M neType}
The file suffix of the incoming URL mapped intoaM neType.
mod_disk log - Logging Using Disk_Log.
Standard logging using the "Common Logfile Format" and disk |og(3).
Uses the following Erlang Web Server API interaction data:
e renote_user -fromnod_auth

Ericsson AB. All Rights Reserved.: inets | 13

1.5 HTTP server

mod_esi - Erlang Server Interface

The mod_esi(3) module implements the Erlang Server Interface (ESI) providing atight and efficient interface to the
execution of Erlang functions.

Usesthe following Erlang web server APl interaction data:
e renote_user -fromnod_aut h
Exports the following Erlang web server API interaction data:
{m me_type, M neType}
The file suffix of the incoming URL mapped intoaM neType
mod_get - Regular GET Requests

This module is responsible for handling GET requests to regular files. GET requests for parts of filesis handled by
nod_r ange.

Uses the following Erlang web server API interaction data:

 real _nane -frommod alias

mod_head - Regular HEAD Requests

Thismoduleisresponsiblefor handling HEAD requeststo regular files. HEAD requestsfor dynamic content ishandled
by each module responsible for dynamic content.

Uses the following Erlang Web Server API interaction data:

* real _nane - frommod_alias

mod_htaccess - User Configurable Access

This module provides per-directory user configurable access control.
Uses the following Erlang Web Server API interaction data:

e real nane -frommod alias

Exports the following Erlang Web Server API interaction data:

{renote_user_nane, User}
The username used for authentication.

mod_log - Logging Using Text Files.

Standard logging using the "Common Logdfile Format" and text files.
Uses the following Erlang Web Server API interaction data:

e renote_user -fromnod_aut h

mod_range - Requests with Range Headers

This module responses to requests for one or many ranges of afile. Thisis especially useful when downloading large
files, as a broken download can be resumed.

Notice that request for multiple parts of a document report a size of zero to thelog file.
Uses the following Erlang Web Server API interaction data:
e real nane -frommod alias

14 | Ericsson AB. All Rights Reserved.: inets

1.5 HTTP server

mod_response_control - Requests with If* Headers

Thismodule controlsthat the conditionsin the requests are fulfilled. For example, arequest can specify that the answer
only isof interest if the content is unchanged since the last retrieval. If the content is changed, the range request is to
be converted to arequest for the whole file instead.

If a client sends more than one of the header fields that restricts the servers right to respond, the standard does not
specify how thisis to be handled. httpd(3) controls each field in the following order and if one of the fields does not
match the current state, the request is rejected with a proper response:

| f-nodified

I f-Unnodified

| f-Match

| f- Nomat ch

Uses the following Erlang Web Server API interaction data:

* real _nane - frommod_alias

Exports the following Erlang Web Server API interaction data:

{if_range, send file}
The conditions for the range request are not fulfilled. The response must not be treated as a range request,
instead it must be treated as an ordinary get request.

mod_security - Security Filter

Themod_security module serves as afilter for authenticated requests handled in mod_auth(3). It provides apossibility
to restrict users from access for a specified amount of time if they fail to authenticate severa times. It logs failed
authentication as well as blocking of users, and it calls a configurable callback module when the events occur.

Thereisalso an API to block or unblock users manually. This API can also list blocked users or users who have been
authenticated within a configurable amount of time.

mod_trace - TRACE Request

nod_t r ace isresponsiblefor handling of TRACE requests. Traceisanew request method in HTTP/1.1. Theintended
use of trace requests is for testing. The body of the trace response is the request message that the responding web
server or proxy received.

Ericsson AB. All Rights Reserved.: inets | 15

1.5 HTTP server

2 Reference Manual

| net s isacontainer for Internet clients and servers. An FTP client, an HTTP client and server, and a TFTP client
and server areincorporated in | net s.

16 | Ericsson AB. All Rights Reserved.: inets

inets

inets

Erlang module

This module provides the most basic API to the clients and servers that are part of the | net s application, such as
start and stop.

DATA TYPES

Type definitions that are used more than once in this module:
service() = ftpc | tftp | httpc | httpd
property() = atom()

Exports

services() -> [{Service, Pid}]

Types:
Service = service()
Pid = pid()

Returns alist of currently running services.

|Servicesstarted asst and_al one arenot listed. |

services info() -> [{Service, Pid, Info}]

Types.
Service = service()
Pid = pid()

Info = [{Option, Value}]
Option = property()
Value = term))

Returns alist of currently running services where each service is described by an[{ Opti on, Val ue}] list. The
information in the list is specific for each service and each service has probably its own info function that gives more
details about the service.

service names() -> [Service]
Types.
Service = service()

Returns alist of available service names.

start() ->
start(Type) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: inets | 17

inets

Type = pernmanent | transient | tenporary
Startsthe | net s application. Default typeist enpor ar y. See also application(3).

start(Service, ServiceConfig) -> {ok, Pid} | {error, Reason}
start(Service, ServiceConfig, How) -> {ok, Pid} | {error, Reason}
Types:

Service = service()

ServiceConfig = [{Option, Value}]

Option = property()

Value = term)

How = inets | stand_alone - default is inets.

Dynamically startsan | net s service after the | net s application has been started.

Dynamically started services are not handled by application takeover and failover behavior when | net s isrun as
adistributed application. Nor are they automatically restarted when the | net s application is restarted. Aslong as
thel net s application is operational, they are supervised and can be soft code upgraded.

A service started as st and_al one, that is, the service is not started as part of the | net s application, lose all
OTP application benefits, such as soft upgrade. The st and_al one-service is linked to the process that started
it. Usually some supervision functionality is still in place and in some sense the calling process becomes the top
supervisor.

stop() -> ok
Stopsthe |l net s application. See also application(3).

stop(Service, Reference) -> ok | {error, Reason}

Types:
Service = service() | stand_al one
Reference = pid() | term() - service-specified reference
Reason = term()

Stops a started service of the | net s application or takes down a st and_al one-service gracefully. When option
st and_al one isused in start, only the pid isavalid argument to stop.

SEE ALSO
ftp(3), httpe(3), httpd(3), tftp(3)

18 | Ericsson AB. All Rights Reserved.: inets

ftp

ftp

Erlang module

This module implements a client for file transfer according to a subset of the File Transfer Protocol (FTP), see RFC
959.

Asfrom| net s 4.4.1, the FTP client always tries to use passive FTP mode and only resort to active FTP modeif this
fails. This default behavior can be changed by start option mode.

An FTP client can be started in two ways. One is using the Inets service framework, the other isto start it directly as
a standalone process using function open.

For asimple example of an FTP session, see Inets User's Guide.

In addition to the ordinary functions for receiving and sending files (seer ecv/ 2,recv/ 3,send/ 2, and send/ 3)
there are functions for receiving remote files as binaries (see r ecv_bi n/ 2) and for sending binaries to be stored as
remotefiles (seesend_bi n/ 3).

A set of functions is provvided for sending and receiving contiguous parts of a file to be stored in a remote
file. For send, see send_chunk_start/ 2, send_chunk/ 2, and send_chunk_end/ 1. For receive, see
recv_chunk_start/2andrecv_chunk/).

The return values of the following functions depend much on the implementation of the FTP server at the remote host.
In particular, the results from | s and nl i st varies. Often real errors are not reported as errors by | s, even if, for
example, afileor directory does not exist. nl i st isusually more strict, but some implementations have the peculiar
behaviour of responding with an error if the request is alisting of the contents of adirectory that exists but is empty.

FTP CLIENT SERVICE START/STOP

The FTP client can be started and stopped dynamically in runtime by calling the | nets application API
inets:start(ftpc, ServiceConfig),orinets:start(ftpc, ServiceConfig, How), and
i nets:stop(ftpc, Pid).Fordetals, seeinets(3).

The available configuration options are as follows:

{host, Host}
Host=string() | ip_address()
{port, Port}
Port=integer() > 0
Defaultis 21.

{mode, Mode}
Mode=active | passive
Default ispassi ve.
{verbose, Verbose}
Verbose = bool ean()
Determines if the FTP communication isto be verbose or not.
Defaultisf al se.
{ debug, Debug}
Debug=trace | debug | disable

Ericsson AB. All Rights Reserved.: inets | 19

href
href

ftp

Debugging using the dbg toolkit.
Default isdi sabl e.
{ipfamily, IpFamily}
IpFamily =i net | inet6 | inet6fb4
Withi net 6f b4 theclient behavesasbefore, that is, triesto use | Pv6, and only if that does not work it uses | Pv4).
Defaultisi net (1Pv4).
{timeout, Timeout}
Timeout =non_neg_i nt eger ()
Connection time-out.
Default is60000 (milliseconds).
{ dtimeout, DTimeout}
DTimeout =non_neg_integer() | infinity
Data connect time-out. The time the client waits for the server to connect to the data socket.
Defaultisi nfinity.
{progress, Progress}
Progress=i gnore | {CBMbdul e, CBFunction, InitProgress}
CBMbdul e = atom(),CBFunction = aton()
InitProgress = term))
Defaultisi gnor e.

Option pr ogr ess isintended to be used by applications that want to create some type of progress report, such asa
progress bar in a GUI. Default for the progress option isi gnor e, that is, the option is not used. When the progress
option is specified, the following happenswhenft p: send/ [3, 4] orftp:recv/[3, 4] arecaled:

» Before afileistransferred, the following call is made to indicate the start of the file transfer and how large the
fileis. The return value of the callback function isto be anew value for the User Pr ogr essTer mthat will be
used asinput the next time the callback function is called.

CBModul e: CBFunction(lnitProgress, File, {file_size, FileSize})
* Every timeachunk of bytesis transferred the following call is made:

CBModul e: CBFunction(UserProgressTerm File, {transfer_size, TransferSize})
» Attheend of thefile the following cal is made to indicate the end of the transfer:

CBModul e: CBFunction(User ProgressTerm File, {transfer_size, 0})
The callback function is to be defined as follows:
CBModul e: CBFuncti on(User ProgressTerm File, Size) -> UserProgressTerm
CBModul e = CBFunction = atom()
User ProgressTerm = term)
File = string()

Size = {transfer_size, integer()} | {file_size, integer()} | {file_size,
unknown}

For remote files, f t p cannot determine the file size in a platform independent way. In this case the size becomes
unknown and it is |eft to the application to determine the size.

20 | Ericsson AB. All Rights Reserved.: inets

ftp

The callback is made by a middleman process, hence the file transfer is not affected by the code in the progress
callback function. If the callback crashes, thisis detected by the FTP connection process, which then prints an info-
report and goes on asif the progress option was set to i gnor e.

Thefiletransfer typeis set to the default of the FTP server when the session is opened. Thisis usually ASCCI mode.

Thecurrent local working directory (comparel pwd/ 1) issettothevaluereportedbyfi | e: get _cwd/ 1,thewanted
local directory.

The return value Pi d is used as a reference to the newly created FTP client in al other functions, and they are to
be called by the process that created the connection. The FTP client process monitors the process that created it and
terminates if that process terminates.

DATA TYPES

The following type definitions are used by more than one function in the FTP client API:
pi d() =identifier of an FTP connection

string() =listof ASCII characters

shortage_reason() =etnospc | epnospc

restriction_reason() =epath | efnanena | elogin | enotbinary - al restrictions are not
alwaysrelevant to al functions

comon_reason() =econn | eclosed | term() - someexplanation of what went wrong

Exports

account(Pid, Account) -> ok | {error, Reason}
Types:

Pid = pid()

Account = string()

Reason = eacct | common_reason()

Sets the account for an operation, if needed.

append(Pid, LocalFile) ->
append(Pid, LocalFile, RemoteFile) -> ok | {error, Reason}
Types.
Pid = pid()
LocalFile = RenoteFile = string()
Reason = epath | elogin | etnospc | epnospc | efnanena | common_reason

Transfers the file Local Fi | e to the remote server. If Renot eFi | e is specified, the name of the remote file that
thefileis appended to is set to Renot eFi | e, otherwiseto Local Fi | e. If thefile does not exists, it is created.

append bin(Pid, Bin, RemoteFile) -> ok | {error, Reason}

Types.
Pid = pid()
Bin = binary() ()

Ericsson AB. All Rights Reserved.: inets | 21

ftp

RemoteFile = string()
Reason = restriction_reason()| shortage reason() | common_reason()

Transfers the binary Bi n to the remote server and appends it to the file Renot eFi | e. If the file does not exist, it
is created.

append chunk(Pid, Bin) -> ok | {error, Reason}

Types:
Pid = pid()
Bin = binary()

Reason = echunk | restriction_reason() | comon_reason()

Transfers the chunk Bi n to the remote server, which appends it to the file specified in the cal to
append_chunk_start/ 2.

For some errors, for example, file system full, it is necessary to call append_chunk _end to get the proper reason.

append chunk start(Pid, File) -> ok | {error, Reason}
Types:
Pid = pid()
File = string()
Reason = restriction_reason() | conmon_reason()
Starts the transfer of chunks for appending to thefileFi | e at the remote server. If the file does not exigt, it is created.

append chunk end(Pid) -> ok | {error, Reason}
Types:
Pid = pid()
Reason = echunk | restriction_reason() | shortage_reason()

Stops transfer of chunks for appending to the remote server. The file at the remote server, specified in the call to
append_chunk_start/ 2, isclosed by the server.

cd(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir = string()

Reason = restriction_reason() | conmon_reason()

Changes the working directory at the remote serverto Di r .

close(Pid) -> ok
Types.
Pid = pid()

Ends an FTP session, created using function open.
delete(Pid, File) -> ok | {error, Reason}

Types:
Pid = pid()

22 | Ericsson AB. All Rights Reserved.: inets

ftp

File = string()
Reason = restriction_reason() | conmon_reason()
Deletesthefile Fi | e at the remote server.

formaterror(Tag) -> string()
Types:
Tag = {error, atom()} | aton()
Given an error return value{ err or, At onReason}, thisfunction returns a readable string describing the error.

lcd(Pid, Dir) -> ok | {error, Reason}
Types.

Pid = pid()

Dir = string()

Reason = restriction_reason()

Changes the working directory to Di r for thelocal client.

lpwd(Pid) -> {ok, Dir}
Types:
Pid = pid()
Returns the current working directory at the local client.

1s(Pid) ->
ls(Pid, Pathname) -> {ok, Listing} | {error, Reason}
Types:

Pid = pid()

Pat hname = string()

Listing = string()

Reason = restriction_reason() | conmon_reason()
Returns alist of filesin long format.
Pat hname can be adirectory, agroup of files, or afile. The Pat hnane string can contain wildcards.
I s/ 1 impliesthe current remote directory of the user.

The format of Li st i ng depends on the operating system. On UNIX, it istypically produced from the output of the
s -1 shell command.

mkdir(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir = string()

Reason = restriction_reason() | common_reason()
Createsthe directory Di r at the remote server.

Ericsson AB. All Rights Reserved.: inets | 23

ftp

nlist(Pid) ->
nlist(Pid, Pathname) -> {ok, Listing} | {error, Reason}
Types:
Pid = pid()
Pat hname = string()
Listing = string()
Reason = restriction_reason() | conmon_reason()
Returns alist of filesin short format.
Pat hname can be adirectory, agroup of files, or afile. The Pat hname string can contain wildcards.
nl i st/ 1 impliesthe current remote directory of the user.

The format of Li sti ng isastream of filenames where each filename is separated by <CRLF> or <NL>. Contrary
tofunction| s, the purpose of nl i st isto enable a program to process filename information automatically.

open(Host) -> {ok, Pid} | {error, Reason}
open(Host, Opts) -> {ok, Pid} | {error, Reason}

Types:
Host = string() | ip_address()
Opts = options()

options() = [option()]

option() = start_option() | open_option()

start_option() = {verbose, verbose()} | {debug, debug()}
verbose() = boolean() (default is false)

debug() = disable | debug | trace (default is disable)

open_option() = {ipfamly, ipfamly()} | {port, port()} | {node, node()}
| {tls, tls_ options()} | {timeout, timeout()} | {dtineout, dtimeout()} |
{progress, progress()}

ipfamly() =inet | inet6 | inet6fb4 (default is inet)
port() = integer() > 0 (default is 21)

node() = active | passive (default is passive)
tls_options() = [ssl:ssloption()]

timeout () = integer() > 0 (default is 60000 milliseconds)

dtimeout () = integer() >0 | infinity (default is infinity)

pogress() = ignore | {module(), function(), initial_data()} (default is
i gnore)

nmodul e() = atom()
function() = atom()
initial _data() = term)
Reason = ehost | term))

Starts a standalone FTP client process (without the | net s service framework) and opens a session with the FTP
server at Host .

If option{tls, tls_options()} ispresent,the FTP session istransported overt| s (f t ps, see RFC 4217).
Thelistt1s_opti ons() can be empty. The function ssl : connect/ 3 is used for securing both the control
connection and the data sessions.

24 | Ericsson AB. All Rights Reserved.: inets

href

ftp

A session opened in thisway is closed using function close.

pwd(Pid) -> {ok, Dir} | {error, Reason}
Types:
Pid = pid()
Reason = restriction_reason() | conmon_reason()

Returns the current working directory at the remote server.

recv(Pid, RemoteFile) ->
recv(Pid, RemoteFile, LocalFile) -> ok | {error, Reason}
Types:

Pid = pid()

RenmoteFile = Local File = string()

Reason = restriction_reason() | comon_reason() |
file_wite_ error_reason()

file_wite_ error_reason() = see file:wite/2

Transfers the file Renot eFi | e from the remote server to the file system of the local client. If Local Fil e is
specified, thelocal filewill be Local Fi | e, otherwise Renot eFi | e.

If the file write fals (for example, enospc), the command is aborted and {error,
file_wite_ error_reason()} isreturned. However, thefileisnot removed.

recv_bin(Pid, RemoteFile) -> {ok, Bin} | {error, Reason}

Types:
Pid = pid()
Bin = binary()

RemoteFile = string()
Reason = restriction_reason() | conmon_reason()

Transfersthe file Renot eFi | e from the remote server and receivesit asabinary.

recv_chunk start(Pid, RemoteFile) -> ok | {error, Reason}
Types.

Pid = pid()

RemoteFile = string()

Reason = restriction_reason() | conmon_reason()

Starts transfer of the file Renot eFi | e from the remote server.

recv_chunk(Pid) -> ok | {ok, Bin} | {error, Reason}

Types:
Pid = pid()
Bin = binary()

Reason = restriction_reason() | conmon_reason()

Receives achunk of theremotefile (Renot eFi | e of recv_chunk_st ar t). Thereturn values have the following
meaning:

Ericsson AB. All Rights Reserved.: inets | 25

ftp

» 0ok =thetransfer is complete.
« {ok, Bin} =justanother chunk of thefile.
e {error, Reason} =transfer failed.

rename (Pid, 0ld, New) -> ok | {error, Reason}
Types:

Pid = pid()

CurrFile = NewFile = string()

Reason = restriction_reason() | common_reason()

Renames A d to New at the remote server.

rmdir(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir = string()

Reason = restriction_reason() | common_reason()

Removes directory Di r at the remote server.

send(Pid, LocalFile) ->
send(Pid, LocalFile, RemoteFile) -> ok | {error, Reason}
Types:
Pid = pid()
Local File = RenpteFile = string()
Reason = restriction_reason() | conmon_reason() | shortage_reason()

Transfersthefile Local Fi | e to the remote server. If Renot eFi | e is specified, the name of the remotefile is set
to Renot eFi | e, otherwiseto Local Fi | e.

send bin(Pid, Bin, RemoteFile) -> ok | {error, Reason}

Types:
Pid = pid()
Bin = binary() ()

RemoteFile = string()
Reason = restriction_reason() | conmmon_reason() | shortage_reason()

Transfersthe binary Bi n into thefile Renot eFi | e at the remote server.

send chunk(Pid, Bin) -> ok | {error, Reason}

Types.
Pid = pid()
Bin = binary()

Reason = echunk | restriction_reason() | comon_reason()

Transfers the chunk Bi n to the remote server, which writes it into the file specified in the call to
send_chunk_start/ 2.

For some errors, for example, file system full, it is necessary to to call send_chunk _end to get the proper reason.

26 | Ericsson AB. All Rights Reserved.: inets

ftp

send chunk start(Pid, File) -> ok | {error, Reason}
Types.

Pid = pid()

File = string()

Reason = restriction_reason() | conmon_reason()

Starts transfer of chunks into thefile Fi | e at the remote server.

send chunk end(Pid) -> ok | {error, Reason}
Types.
Pid = pid()
Reason = restriction_reason() | conmon_reason() | shortage_reason()

Stops transfer of chunks to the remote server. The file at the remote server, specified in the cal to
send_chunk_st art/ 2 isclosed by the server.

type(Pid, Type) -> ok | {error, Reason}

Types:
Pid = pid()
Type = ascii | binary

Reason = etype | restriction_reason() | conmon_reason()

Setsthefiletransfer typetoasci i or bi nar y. When an FTP session is opened, the default transfer type of the server
isused, most often asci i , which is default according to RFC 959.

user(Pid, User, Password) -> ok | {error, Reason}
Types:

Pid = pid()

User = Password = string()

Reason = euser | common_reason()

Performslogin of User with Passwor d.

user(Pid, User, Password, Account) -> ok | {error, Reason}
Types:

Pid = pid()

User = Password = string()

Reason = euser | common_reason()

Performslogin of User with Passwor d to the account specified by Account .

quote(Pid, Command) -> [FTPLine]
Types:

Pid = pid()

Command = string()

FTPLi ne = string(

Ericsson AB. All Rights Reserved.: inets | 27

href

ftp

The telnet end of line characters, from the FTP protocol definition, CRLF, for example, "\r\\n" has been removed.

Sends an arbitrary FTP command and returns verbatim a list of the lines sent back by the FTP server. This function
is intended to give application accesses to FTP commands that are server-specific or that cannot be provided by this
FTPclient.

| FTP commands requiring a data connection cannot be successfully issued with this function. |

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by f or mat er r or / 1 are asfollows:
echunk
Synchronization error during chunk sending according to one of the following:

e Acdlismadetosend_chunk/ 2 or send_chunk_end/ 1 beforeacal tosend_chunk_start/ 2.

e A cdl has been made to another transfer function during chunk sending, that is, before a call to
send_chunk_end/ 1.

ecl osed
The session is closed.
econn
Connection to the remote server is prematurely closed.
ehost
Host is not found, FTP server is not found, or connection isrejected by FTP server.
el ogin
User isnot logged in.
enot bi nary
Termisnot abinary.
epat h
No such file or directory, or directory aready exists, or permission denied.
etype
No such type.
euser
Invalid username or password.
et nospc
Insufficient storage space in system [452].
epnospc
Exceeded storage allocation (for current directory or dataset) [552].

28 | Ericsson AB. All Rights Reserved.: inets

ftp

ef namena
Filename not allowed [553].

SEE ALSO
file(3) filename(3) and J. Postel and J. Reynolds: File Transfer Protocol (RFC 959).

Ericsson AB. All Rights Reserved.: inets | 29

href

tftp

tftp

Erlang module

Thisis a complete implementation of the following IETF standards:

* RFC 1350, The TFTP Protocol (revision 2)

e RFC 2347, TFTP Option Extension

* RFC 2348, TFTP Blocksize Option

* RFC 2349, TFTP Timeout Interval and Transfer Size Options

The only feature that not isimplemented is the "netascii” transfer mode.

The start/1 function starts a daemon process listening for UDP packets on a port. When it receives a request for read
or write, it spawns atemporary server process handling the transfer.

On the client side, function read_file/3 and write_file/3 spawn atemporary client process establishing contact with a
TFTP daemon and perform the file transfer.

t f t p uses a callback module to handle the file transfer. Two such callback modules are provided, t ft p_bi nary
andtftp file.Seeread file/3 and write file/3 for details. You can also implement your own callback modules,
see CALLBACK FUNCTIONS. A callback module provided by the user is registered using option cal | back, see
DATA TYPES

TFTP SERVER SERVICE START/STOP

A TFTP server can be configured to start statically when starting the | net s application. Alternatively, it can be
started dynamically (when| net s isalready started) by callingthel net s applicationAPli net s: start (tftpd,
ServiceConfig) orinets:start(tftpd, ServiceConfig, How), see inets(3) for details. The
Ser vi ceConfi g for TFTPisdescribed in the DATA TYPES section.

The TFTP server can be stopped usingi net s: st op(tftpd, Pid), seeinets(3) for details.

The TPFT client is of such atemporary nature that it is not handled asa servicein the | net s service framework.

DATA TYPES
ServiceConfig = Options

Options = [option()]

Most of the options are common for both the client and the server side, but some of them differsalittle. The available
option() sareasfollows:

{debug, Level}
Level = none | error | warning | brief | normal | verbose | all
Controlsthe level of debug printouts. Default isnone.
{host, Host}
Host = host nane(), seeinet(3).
The name or IP address of the host where the TFTP daemon resides. This option is only used by the client.
{port, Port}
Port = int()

30 | Ericsson AB. All Rights Reserved.: inets

tftp

The TFTP port where the daemon listens. Defaults is the standardized number 69. On the server side, it can
sometimes make sense to set it to 0, meaning that the daemon just picks a free port (which one is returned by
functioni nf o/ 1).

If a socket is connected already, option {udp, [{fd, integer()}]} can be used to passthe open file
descriptor to gen_udp. This can be automated by using a command-line argument stating the prebound file
descriptor number. For example, if the port is 69 and file descriptor 22 is opened by set ui d_socket _w ap,
the command-line argument "-tftpd_69 22" triggers the prebound file descriptor 22 to be used instead of opening
port 69. The UDPoption{ udp, [{fd, 22}]} isautomaticaly added. Seei ni t: get _ar gument/ about
command-line arguments and gen_udp: open/ 2 about UDP options.

{port_policy, Policy}

Policy = random | Port | {range, MnPort, MaxPort}
Port = MnPort = MaxPort = int()

Policy for the selection of the temporary port that is used by the server/client during the file transfer. Default is
r andom which is the standardized policy. With this policy a randomized free port is used. A single port or a
range of ports can be useful if the protocol passes through afirewall.

{udp, Options}

Options = [Opt], seegen_udp:open/2.

{use_tsize, Bool}

Bool = bool ()

Flag for automated use of optiont si ze. With thissettotrue, thewite fil e/ 3 client determines the
filesize and sends it to the server as the standardized t si ze option. Aread_fi |l e/ 3 client acquires only a
filesize from the server by sending azerot si ze.

{max_tsize, MaxTsize}

MaxTsize = int() | infinity
Threshold for the maximal filesizein bytes. Thetransfer isaborted if thelimitisexceeded. Defaultisi nfinity.

{max_conn, MaxConn}

MaxConn = int() | infinity

Threshold for the maximal number of active connections. The daemon rejects the setup of new connections if
the limit is exceeded. Default isi nfinity.

{TftpKey, TftpVal}

Tf t pKey
Tf t pVal

Name and value of a TFTP option.

string()
string()

{reject, Feature}

Feature = Modde | Tft pKey
Mbde = read | wite
TftpKey = string()

Controls which features to reject. Thisis mostly useful for the server as it can restrict the use of certain TFTP
options or read/write access.

{cal | back, {RegExp, Module, State}}

RegExp
Modul e

string()
atom)

Ericsson AB. All Rights Reserved.: inets | 31

tftp

State = term))

Registration of a callback module. When afile is to be transferred, its local filename is matched to the regular
expressions of the registered callbacks. The first matching callback is used during the transfer. See read file/3
and write file/3.

The callback module must implement thet f t p behavior, see CALLBACK FUNCTIONS,
{l ogger, Modul e}
Modul e = nodul e() ()

Callback module for customized logging of errors, warnings, and info messages. The callback module must
implement thet f t p_| ogger behavior, see LOGGER FUNCTIONS. The default moduleist ft p_| ogger.

{max_retries, MaxRetries}
MaxRetries = int()
Threshold for the maximal number of retries. By default the server/client tries to resend a message up to five
times when the time-out expires.

Exports

change config(daemons, Options) -> [{Pid, Result}]

Types:
Options = [option()]
Pid = pid()

Result = ok | {error, Reason}
Reason = term()

Changes configuration for all TFTP daemon processes.

change config(servers, Options) -> [{Pid, Result}]

Types:
Options = [option()]
Pid = pid()

Result = ok | {error, Reason}
Reason = term()

Changes configuration for all TFTP server processes.

change config(Pid, Options) -> Result
Types:
Pid = pid()
Options = [option()]
Result = ok | {error, Reason}
Reason = term()

Changes configuration for a TFTP daemon, server, or client process.

info(daemons) -> [{Pid, Options}]
Types:
Pid = [pid()()]

32 | Ericsson AB. All Rights Reserved.: inets

tftp

Options = [option()]
Reason = term()

Returnsinformation about al TFTP daemon processes.

info(servers) -> [{Pid, Options}]
Types:

Pid = [pid()()]

Options = [option()]

Reason = term()
Returns information about all TFTP server processes.

info(Pid) -> {ok, Options} | {error, Reason}
Types:

Options = [option()]

Reason = term)

Returns information about a TFTP daemon, server, or client process.

read file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState}
| {error, Reason}

Types:
Renot eFi | enanme = string()
Local Fil ename = binary | string()
Options = [option()]
Last Cal | backState = term))
Reason = term)

Reads a (virtua) file Renot eFi | enane from a TFTP server.

If Local Fi | enane istheatombi nary,tftp_bi nary isusedascallback module. It concatenatesall transferred
blocks and returnsthem asone single binary in Last Cal | backSt at e.

If Local Fi | enaneisastring andtherearenoregistered callback modules,t ft p_f i | e isused ascallback module.
It writes each transferred block to the file named Local Fi | enane and returns the number of transferred bytesin
Last Cal | backSt at e.

If Local Fi | enane isastring and there are registered callback modules, Local Fi | enane istested against the
regexps of these and the callback module corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

start(Options) -> {ok, Pid} | {error, Reason}

Types:
Options = [option()]
Pid = pid()

Reason = term()

Starts a daemon process listening for UDP packets on a port. When it receives a request for read or write, it spawns
atemporary server process handling the actual transfer of the (virtual) file.

Ericsson AB. All Rights Reserved.: inets | 33

tftp

write file(RemoteFilename, LocalFilename, Options) -> {ok, LastCallbackState}
| {error, Reason}
Types.

Renot eFi | enane = string()

Local Fil enane = binary() | string()

Options = [option()]
Last Cal | backState = term)
Reason = term()

Writes a (virtua) file Renot eFi | enane toa TFTP server.

If Local Fi | enaneisabinary,t ft p_bi nary isused ascallback module. The binary istransferred block by block
and the number of transferred bytesisreturned in Last Cal | backSt at e.

If Local Fi | enane is a string and there are no registered callback modules, t ftp_fil e is used as callback
module. It reads the file named Local Fi | ename block by block and returns the number of transferred bytes in
Last Cal | backSt at e.

If Local Fi | ename isastring and there are registered callback modules, Local Fi | enane istested against the
regexps of these and the callback module corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

CALLBACK FUNCTIONS

At ft p calback moduleisto beimplemented asat f t p behavior and export the functions listed in the following.

On the server side, the callback interaction starts with a call to open/ 5 with the registered initial callback state.
open/ 5 isexpected to open the (virtua) file. Then either functionr ead/ 1 orwr i t e/ 2 isinvoked repeatedly, once
per transferred block. At each function call, the state returned from the previous call is obtained. When the last block
is encountered, functionr ead/ 1 orwr i t e/ 2 isexpected to close the (virtua) file and return its last state. Function
abort/ 3 isonly used in error situations. Function pr epar e/ 5 is not used on the server side.

On the client side, the callback interaction is the same, but it starts and ends a bit differently. It starts with a call
to pr epar e/ 5 with the same arguments as open/ 5 takes. pr epar e/ 5 is expected to validate the TFTP options
suggested by the user and to return the subset of them that it accepts. Then the options are sent to the server, which
performs the same TFTP option negotiation procedure. The options that are accepted by the server are forwarded to
function open/ 5 on the client side. On the client side, function open/ 5 must accept al option as-is or reject the
transfer. Then the callback interaction follows the same pattern as described for the server side. When the last block
isencounteredinr ead/ 1 orwr i t e/ 2, thereturned state is forwarded to the user and returned fromr ead _fi | e/3
oowite filel3.

If acallback (performing thefile accessin the TFTP server) takestoo long time (more than the double TFTP time-out),
the server aborts the connection and sends an error reply to the client. Thisimplies that the server releases resources
attached to the connection faster than before. The server simply assumes that the client has given up.

If the TFTP server receives yet another request from the same client (same host and port) whileit already has an active
connection to the client, it ignores the new request if the request is equal to the first one (same filename and options).
Thisimplies that the (new) client will be served by the already ongoing connection on the server side. By not setting
up yet another connection, in parallel with the ongoing one, the server consumes less resources.

Exports
Module:abort(Code, Text, State) -> ok

Types:
Code = undef | enoent | eacces | enospc

34 | Ericsson AB. All Rights Reserved.: inets

tftp

| badop | eexist | baduser | badopt
| int()
Text = string()
State = term()
Invoked when the file transfer is aborted.

The callback function is expected to clean up its used resources after the aborted file transfer, such as closing open
file descriptors and so on. The function is not invoked if any of the other callback functions returns an error, asit is
expected that they already have cleaned up the necessary resources. However, it isinvoked if the functionsfail (crash).

Module:open(Peer, Access, Filename, Mode, SuggestedOptions, State) -> {ok,
AcceptedOptions, NewState} | {error, {Code, Text}}

Types:
Peer = {Peer Type, PeerHost, PeerPort}
Peer Type = inet | inet6
Peer Host = i p_address()
PeerPort = integer()

Access = read | wite
Fil ename = string()
Mode = string()
Suggest edOpti ons = AcceptedOptions = [{Key, Val ue}]
Key = Value = string()
State = Initial State | term)
Initial State =[] | [{root_dir, string()}]
NewState = term)
Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
| int()
Text = string()

Opens afile for read or write access.

On the client side, where the open/ 5 call has been preceded by acall to pr epar e/ 5, all options must be accepted
or rejected.

On the server side, where there is no preceding pr epar e/ 5 call, no new options can be added, but those present in
Suggest edOpt i ons can be omitted or replaced with new valuesin Accept edOpt i ons.

Module:prepare(Peer, Access, Filename, Mode, SuggestedOptions, InitialState)
-> {ok, AcceptedOptions, NewState} | {error, {Code, Text}}

Types:
Peer = {PeerType, PeerHost, PeerPort}
Peer Type = inet | inet6
Peer Host = i p_address()
PeerPort = integer()

Access = read | wite
Fil ename = string()
Mode = string()

Ericsson AB. All Rights Reserved.: inets | 35

tftp

Suggest edOpti ons = AcceptedOptions = [{Key, Val ue}]
Key = Value = string()
Initial State = [] | [{root_dir, string()}]
NewState = term)
Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
| int()
Text = string()

Prepares to open afile on the client side.

No new options can be added, but those present in Suggest edOpt i ons can be omitted or replaced with new values
inAccept edOpt i ons.

Thisisfollowed by acal to open/ 4 before any read/write accessis performed. Accept edOpt i ons issent to the
server, which replieswith the optionsthat it accepts. These arethen forwarded to open/ 4 asSuggest edOpt i ons.

Module:read(State) -> {more, Bin, NewState} | {last, Bin, FileSize} | {error,
{Code, Text}}

Types.

State = NewState = term))

Bin = binary()

FileSize = int()

Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
| int()

Text = string()

Reads a chunk from thefile.

The callback function isexpected to close thefilewhen thelast file chunk isencountered. When an error isencountered,
the callback function is expected to clean up after the aborted file transfer, such as closing open file descriptors, and
so on. In both cases there will be no more calls to any of the callback functions.

Module:write(Bin, State) -> {more, NewState} | {last, FileSize} | {error,
{Code, Text}}

Types:

Bin = binary()

State = NewState = term))

FileSize = int()

Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
| int()

Text = string()

Writes a chunk to thefile.

Thecallback functionisexpected to closethefilewhen thelast file chunk isencountered. When an error isencountered,
the callback function is expected to clean up after the aborted file transfer, such as closing open file descriptors, and
so on. In both cases there will be no more calls to any of the callback functions.

36 | Ericsson AB. All Rights Reserved.: inets

tftp

LOGGER FUNCTIONS

A tftp_ | ogger calback moduleisto beimplemented asatftp | ogger behavior and export the following

functions:

Exports

Logger:error _msg(Format, Data) -> ok | exit(Reason)
Types:

Format = string()

Data = [term()]

Reason = term()

Logs an error message. Seeerror _| ogger: error _nsg/ 2 for details.

Logger:info msg(Format, Data) -> ok | exit(Reason)
Types:

Format = string()

Data = [term()]

Reason = term()

Logsaninfo message. Seeerror _| ogger: i nfo_nsg/ 2 for details.

Logger:warning msg(Format, Data) -> ok | exit(Reason)
Types:

Format = string()

Data = [term()]

Reason = term()

Logs awarning message. Seeer r or _| ogger : war ni ng_nsg/ 2 for details.

Ericsson AB. All Rights Reserved.: inets | 37

httpc

httpc

Erlang module

This module providesthe API to an HTTP/1.1 compatible client according to RFC 2616. Caching is not supported.

When starting the | net s application, a manager process for the default profile is started. The functions in this
API that do not explicitly use aprofile accesses the default profile. A profile keepstrack of proxy options, cookies,
and other options that can be applied to more than one request.

If the schemeht t ps isused, the SSL application must be started. When ht t ps links need to go through a proxy,
the CONNECT method extension to HTTP-1.1 is used to establish atunnel and then the connection is upgraded to
TLS. However, "TLS upgrade" according to RFC 2817is not supported.

Pipelining is only used if the pipeline time-out is set, otherwise persistent connections without pipelining are used.
That is, the client always waits for the previous response before sending the next request.

Some examples are provided in the Inets User's Guide.

DATA TYPES

Type definitions that are used more than once in this module:

bool ean() = true | false

string() =list of ASCII characters

request _id() = reference()

profile() = aton()

path() = string() representing afile path or directory path

i p_address() = Seetheinet(3) manual pagein Kernel.

socket _opt () = Seetheoptionsused by gen_tcp(3) gen_t cp(3) and ssl(3) connect(s)

HTTP DATA TYPES
Type definitions related to HTTP:
met hod() = head | get | put | post | trace | options | delete | patch
request ()
={url (), headers()}
[{url (), headers(), content_type(), body()}

url () = string() syntax according to the URI definition in RFC 2396, for example "http://
www. er | ang. or g"

status_line() = {http_version(), status_code(), reason_phrase()}
http_version() = string(),forexample "HTTP/ 1. 1"

status_code() = integer()

reason_phrase() = string()

content _type() = string()

38 | Ericsson AB. All Rights Reserved.: inets

href
href
href

httpc

headers() = [header ()]
header () = {field(), value()}

field() = string()
val ue() = string()
body ()

=string() | binary()
[{fun(accunul ator())
-> body_processing result(), accumulator()}
|{chunki fy, fun(accunul ator())
-> body_processing result(), accunulator()}
body processing_result() = eof | {ok, iolist(), accunulator()}
accunulator() = term)
filename() = string()
For more information about HTTP, see RFC 2616.

SSL DATA TYPES
See sd(3) for information about SSL options (ssl opti ons()).

HTTP CLIENT SERVICE START/STOP

An HTTP client can be configured to start when starting the | net s application or started dynamically in runtime by
caling the | net s application APl i nets: start (httpc, ServiceConfig) orinets:start(httpc,
Servi ceConfig, How), seeinets(3). The configuration options are as follows:

{profile, profile()}

Name of the profile, see DATA TYPES. This option is mandatory.
{data_dir, path()}

Directory where the profile can save persistent data. If omitted, all cookies are treated as session cookies.
Theclient can be stopped usingi net s: stop(httpc, Pid) orinets:stop(httpc, Profile).

Exports

cancel request(RequestId) ->

cancel request(RequestId, Profile) -> ok

Types.
Requestld = request_id() - A unique identifier as returned by request/4
Profile = profile() | pid()
When started st and__al one only the pid can be used.

Cancels an asynchronous HTTP request. Notice that this does not guarantee that the request response is not delivered.
Because it is asynchronous, the request can already have been completed when the cancellation arrives.

Ericsson AB. All Rights Reserved.: inets | 39

href

httpc

cookie header(Url) ->
cookie header(Url, Profile | Opts) -> header() | {error, Reason}
cookie header(Url, Opts, Profile) -> header() | {error, Reason}
Types:

Ul = url()

Opts = [cooki e_header _opt ()]

Profile = profile() | pid()

When started st and_al one.

cooki e_header _opt() = {ipv6_host_w th_brackets, bool ean()}

Returns the cookie header that would have been sent when making a request to Ur | using profile Prof i | e. If no
profile is specified, the default profile is used.

Optioni pv6_host _wi t h_bracket dealswith how to parse |Pv6 addresses. For details, see argument Qpt i ons
of request/[4,5].

get options(OptionItems) -> {ok, Values} | {error, Reason}
get options(OptionItems, Profile) -> {ok, Values} | {error, Reason}
Types:
Optionltens = all | [option_item()]
option_itenm() = proxy | https_proxy | nmax_sessions | keep_alive_tineout
nmax_keep_alive_length | pipeline_tineout | nmax_pipeline_length | cookies
ipfamly | ip | port | socket_opts | verbose | unix_socket
Profile = profile() | pid()
When started st and_al one only the pid can used.
Val ues = [{option_item(), term()}]
Reason = term()

Retrieves the options currently used by the client.

info() -> list()
info(Profile) -> list()
Types:
Profile = profile() | pid()
When started st and_al one only the pid can be used.

Produces a list of miscellaneous information. Intended for debugging. If no profile is specified, the default profile
isused.

reset cookies() -> void()
reset cookies(Profile) -> void()
Types:
Profile = profile() | pid()
When started st and_al one only the pid can be used.

Resets (clears) the cookie database for the specified Pr of i | e. If no profileis specified the default profile is used.

40 | Ericsson AB. All Rights Reserved.: inets

httpc

request(Url) ->
request(Url, Profile) -> {ok, Result} | {error, Reason}
Types:
Ul = url()
Result = {status_line(), headers(), Body} | {status_code(), Body}
request _id()
Body = string() | binary()
Profile = profile() | pid()
When started st and__al one only the pid can be used.
Reason = term()

Equivalenttoht t pc: request (get, {Ul, [1}, [1, [1).

request(Method, Request, HTTPOptions, Options) ->

request(Method, Request, HTTPOptions, Options, Profile) -> {ok, Result} |
{ok, saved to file} | {error, Reason}

Types.
Met hod = net hod()
Request = request ()
HTTPOptions = http_options()
http _options() = [http_option()]
http_option() = {tinmeout, tineout()} | {connect_tinmeout, tineout()}
{ssl, ssloptions()} | {essl, ssloptions()} | {autoredirect, bool ean()}

{proxy_auth, {userstring(), passwordstring()}} | {version, http_version()}
| {rel axed, bool ean()}

timeout () = integer() >= 0| infinity

Options = options()

options() = [option()]

option() = {sync, boolean()} | {stream streamto()} | {body_format,
body format ()} | {full_result, boolean()} | {headers_as_is,

bool ean() | {socket_opts, socket_opts()} | {receiver, receiver()}
{i pv6_host _wi th_brackets, bool ean()}

streamto() = none | self | {self, once} | filenamnme()

socket _opts() = [socket _opt()]

receiver() = pid() | function()/1 | {Mdule, Function, Args}
Modul e = atom()

Function = atom()

Args = list()

body format() = string | binary

Result = {status_line(), headers(), Body} | {status_code(), Body}
request _id()

Body = string() | binary()

Profile = profile() | pid()

When started st and_al one only the pid can be used.

Reason = {connect _failed, tern()} | {send_failed, term)} | term()

Ericsson AB. All Rights Reserved.: inets | 41

httpc

Sends an HTTP request. The function can be both synchronous and asynchronous. In the latter case, the function
returns{ ok, Request | d} andthentheinformation isdelivered tother ecei ver depending on that value.

HTTPoption (ht t p_opti on()) details:
ti meout
Time-out time for the request.
The clock starts ticking when the request is sent.
Timeisin milliseconds.
Defaultisi nfinity.
connect _ti nmeout
Connection time-out time, used during the initial request, when the client is connecting to the server.
Timeisin milliseconds.
Default isthe value of optiont i neout .
ssl
Thisisthe SSL/ TLS connectin configuration option.
Defaultsto[] . See ssl:connect/[2,3,4] for available options.
aut or edi r ect

The client automatically retrieves the information from the new URI and returns that as the result, instead of a
30X -result code.

For some 30X-result codes, automatic redirect is not allowed. In these cases the 30X -result is always returned.
Defaultist r ue.

proxy_aut h
A proxy-authorization header using the provided username and password is added to the request.

version

Can be used to make the client act asan HTTP/ 1. 0 or HTTP/ 0. 9 client. By default thisisan HTTP/ 1. 1
client. When using HTTP/ 1. O persistent connections are not used.

Default isthe string" HTTP/ 1. 1".
rel axed
If settot r ue, workarounds for known server deviations from the HTTP-standard are enabled.
Default isf al se.
Option (opt i on()) details:
sync
Option for the request to be synchronous or asynchronous.
Defaultist r ue.
stream

Streams the body of a 200 or 206 response to the calling process or to a file. When streaming to the calling
process using option sel f, the following stream messages are sent to that process: { htt p, {Request|d,

stream start, Headers}}, {http, {Requestld, stream BinBodyPart}}, and
{http, {Requestld, streamend, Headers}}.

42 | Ericsson AB. All Rights Reserved.: inets

httpc

When streaming to the calling processes using option { sel f, once}, thefirst message has an extra element,
thatis, {http, {Requestld, streamstart, Headers, Pid}}.Thisisthe processid to be used
asanargumentto ht t pc: st ream next/ 1 to trigger the next message to be sent to the calling process.

Notice that chunked encoding can add headers so that there are more headers in the st r eam end message
than in st r eam st art . When streaming to a file and the request is asynchronous, the message { htt p,
{Request|d, saved to file}} issent.

Defaultisnone.

body_f or nat
Definesif the body isto be delivered as a string or binary. This option is only valid for the synchronous request.
Defaultisstri ng.

full _result

Definesif a"full result" isto be returned to the caller (that is, the body, the headers, and the entire status line)
or not (the body and the status code).

Defaultist r ue.
headers_as_is
Definesif the headers provided by the user are to be made lower case or to be regarded as case sensitive.

The HTTP standard requires them to be case insensitive. Use this feature only if there is no other way to
communicate with the server or for testing purpose. When this option is used, no headers are automatically added.
All necessary headers must be provided by the user.

Defaultisf al se.

socket _opts
Socket options to be used for this and subsequent requests.
Overrides any value set by function set_options.

Thevalidity of the optionsisnot checked by the HTTP client they are assumed to be correct and passed on to ssl
application and inet driver, which may reject them if they are not correct. Note that the current implementation
assumes the reguests to the same host, port combination will use the same socket options.

By default the socket options set by function set_options/[1,2] are used when establishing a connection.
receiver
Defines how the client deliversthe result of an asynchronous request (sync hasthevaluef al se).
pi d()
Messages are sent to this processintheformat { ht t p, Repl yl nf o}.
function/1
Information is delivered to the receiver through calls to the provided fun Recei ver (Repl yl nf 0) .
{Modul e, Function, Args}

Information is delivered to the receiver through cals to the callback function appl y(Modul e,
Function, [Replylnfo | Args]).

In all of these cases, Repl yI nf o hasthe following structure:

Ericsson AB. All Rights Reserved.: inets | 43

httpc

{RequestId, saved to file}

{RequestlId, {error, Reason}}

{RequestId, Result}

{RequestId, stream start, Headers}

{RequestId, stream start, Headers, HandlerPid}
{RequestlId, stream, BinBodyPart}

{RequestId, stream end, Headers}

Default isthe pi d of the process calling the request function (sel f ()).
i pv6_host _wit h_brackets

Defines when parsing the Host-Port part of an URI with an 1Pv6 address with brackets, if those brackets are to
beretained (t r ue) or stripped (f al se).

Default isf al se.

set options(Options) ->
set options(Options, Profile) -> ok | {error, Reason}
Types:
Options = [Option]
Option = {proxy, {Proxy, NoProxy}}
| {https_proxy, {Proxy, NoProxy}}
| {nmax_sessions, MaxSessi ons}
| {max_keep_alive_l ength, MaxKeepAlive}
| {keep_alive_tineout, KeepAliveTi neout}
| {max_pipeline_|l ength, MxPipeline}
| {pipeline_tinmeout, PipelineTimeout}
| {cookies, CookieMde}
| {ipfamly, IpFamly}
| {ip, |pAddress}
| {port, Port}
| {socket opts, socket opts()}
| {verbose, Verbosehbde}
| {unix_socket, UnixSocket}
Proxy = {Hostnanme, Port}
Host name = string()
Example: "localhost” or "foo.bar.se”
Port = integer()
Example: 8080
NoProxy = [NoPr oxyDesc]
NoPr oxyDesc = Domai nDesc | HostName | | PDesc
Domai nDesc = "*. Domai n"
Example: "*.ericsson.se”
| pDesc = string()
Example: "134.138" or "[FEDC:BA98" (all IP addresses starting with 134.138 or FEDC:BA98),

"66.35.250.150" or "[2010:836B:4179::836B:4179]" (a complete |P address). pr oxy defaults to
{undefined, []},thatis, noproxy isconfiguredand htt ps_pr oxy defaultsto the value of pr oxy.

44 | Ericsson AB. All Rights Reserved.: inets

httpc

MaxSessi ons = integer()

Maximum number of persistent connections to a host. Default is 2.

MaxKeepAl i ve = integer ()

Maximum number of outstanding requests on the same connection to a host. Default is 5.

KeepAl i veTi neout = integer()

If apersistent connectionisidle longer thanthekeep_al i ve_t i meout in milliseconds, the client closes the
connection. The server can aso have such atime-out but do not take that for granted. Default is 120000 (= 2
min).

MaxPi pel i ne = integer()

Maximum number of outstanding requests on a pipelined connection to a host. Default is 2.

Pi pel i neTi meout = integer()

If apersistent connection isidle longer than the pi pel i ne_t i neout in milliseconds, the client closes the
connection. Default is 0, which results in pipelining not being used.

Cooki eMbde = enabled | disabled | verify

If cookies are enabled, all valid cookies are automatically saved in the cookie database of the client manager. If
optionveri fy isused, functionst or e_cooki es/ 2 hasto be called for the cookies to be saved. Default is
di sabl ed.

IpFamily = inet | inet6 | |ocal
Defaultisi net .
| pAddress = i p_address()

If the host has several network interfaces, this option specifies which one to use. See gen_tcp: connect/3,4 for
details.

Port = integer()
Local port number to use. See gen_tcp: connect/3,4 for details.
socket _opts() = [socket _opt()]

The options are appended to the socket options used by the client. These are the default values when a
new request handler is started (for the initial connect). They are passed directly to the underlying transport
(gen_t cp or SSL) without verification.

Ver boseMode = fal se | verbose | debug | trace

Default isf al se. Thisoption is used to switch on (or off) different levels of Erlang trace on the client. Itisa
debug feature.

Profile = profile() | pid()
When started st and_al one only the pid can be used.
Uni xSocket = pat h()

Experimental option for sending HTTP requests over a unix domain socket. The value of uni x_socket
shall be the full path to a unix domain socket file with read/write permissions for the erlang process. Default is
undefi ned.

Sets options to be used for subsequent requests.

Ericsson AB. All Rights Reserved.: inets | 45

httpc

If possible, the client keepsits connections alive and uses persistent connectionswith or without pipeline depending
on configuration and current circumstances. The HT TP/1.1 specification does not provide aguideline for how many
requests that are ideal to be sent on a persistent connection. This depends much on the application.

A long queue of requests can cause a user-perceived delay, as earlier requests can take a long time to complete.
The HTTP/1.1 specification suggests a limit of two persistent connections per server, which is the default value
of option max_sessi ons.

store cookies(SetCookieHeaders, Url) ->
store cookies(SetCookieHeaders, Url, Profile) -> ok | {error, Reason}

Types:
Set Cooki eHeaders = headers() - where field = "set-cookie"
Ul = url()

Profile = profile() | pid()
When started st and__al one only the pid can be used.

Saves the cookies defined in Set Cooki eHeader s in the client profile cookie database. Call this function if option
cooki esissettoveri fy.If noprofileis specified, the default profileis used.

stream next(Pid) -> ok
Types:
Pid = pid()
Asreceivedinthestream start nessage
Triggers the next message to be streamed, that is, the same behavior as active ones for sockets.

which cookies() -> cookies()
which cookies(Profile) -> cookies()
Types.
Profile = profile() | pid()
When started st and_al one only the pid can be used.
cooki es() = [cookie_stores()]
cooki e_stores() = {cookies, cookies()} | {session_cookies, cookies()}
cooki es() = [cookie()]
cookie() = term)

Produces a list of the entire cookie database. Intended for debugging/testing purposes. If no profile is specified, the
default profileis used.

which sessions() -> session info()
which sessions(Profile) -> session info()
Types:
Profile = profile() | pid()
When started st and_al one only the pid can be used.
session_info() = {GoodSessi ons, BadSessi ons, NonSessi ons}

46 | Ericsson AB. All Rights Reserved.: inets

httpc

GoodSessi ons = session()
BadSessi ons = tuple()
NonSessions = tern()

Produces a dlightly processed dump of the session database. It is intended for debugging. If no profile is specified,
the default profile is used.

SEE ALSO
RFC 2616, inets(3), gen_tcp(3), sdl(3)

Ericsson AB. All Rights Reserved.: inets | 47

href

httpd

httpd

Erlang module

Animplementation of an HTTP 1.1 compliant web server, asdefined in RFC 2616. Provides web server start options,
administrative functions, and an Erlang callback API.

DATA TYPES

Type definitions that are used more than once in this modul e:

bool ean() = true | false

string() =list of ASCII characters

pat h() = string() representing afile or adirectory path

i p_address() = {N1, N2, N3, N4} % IPv4 | {K1, K2, K3, K4, K5, K6, K7, K8} % | Pv6
host name() = string() representing ahost, for example, "foo.bar.com”

property() = atom()

ERLANG HTTP SERVER SERVICE START/STOP

A web server can be configured to start when starting the | net s application, or dynamically in runtime by
caling the |l net s application APl i nets: start (httpd, ServiceConfig) orinets:start(httpd,
Servi ceConfig, How), seeinets(3). The configuration options, also called properties, are as follows:

File Properties

When the web server is started at application start time, the properties are to be fetched from a configuration file that
can consist of aregular Erlang property list, that is, [{ Opti on, Val ue}],where Option = property()
and Val ue = term(), followed by afull stop, or for backwards compatibility, an Apache-like configuration file.
If the web server is started dynamically at runtime, afile can still be specified but also the compl ete property list.

{proplist_file, path()}

If this property is defined, | net s expectsto find all other properties defined in this file. The file must include
all properties listed under mandatory properties.

{file, path()}

If this property is defined, | net s expects to find al other properties defined in this file, which uses Apache-
like syntax. Thefile must include all properties listed under mandatory properties. The Apache-like syntax isthe
property, written as one word where each new word begins with a capital, followed by a white-space, followed
by the value, followed by a new line.

Example:
{server _root, "/urs/local/www"} -> ServerRoot /usr/local/www

A few exceptions are documented for each property that behaves differently, and the special
cases {directory, {path(), PropertyList}} and {security_directory, {Dir,
PropertylList}}, arerepresented as:

48 | Ericsson AB. All Rights Reserved.: inets

href

httpd

<Directory Dir>
<Properties handled as described above>
</Directory>

Thepropertiespropl i st _fileandfil e aremutualy exclusive. Also newer properties may not be supported
as Apache-like options, thisis alegacy feature.

Mandatory Properties

{port, integer()}
The port that the HTTP server listen to. If zero is specified as port, an arbitrary available port is picked and
function ht t pd: i nf o/ 2 can be used to determine which port was picked.

{server_name, string()}
The name of your server, normally afully qualified domain name.
{server_root, path()}

Defines the home directory of the server, where log files, and so on, can be stored. Relative paths specified in
other properties refer to this directory.

{ document_root, path()}

Defines the top directory for the documents that are available on the HTTP server.
Communication Properties
{bind_address, ip_address() | hostname() | any}

Defaultisany. any isdenoted * in the Apache-like configuration file.

{profile, atom()}

Used together with bi nd_addr ess and port to uniquely identify a HTTP server. This can be useful in a
virtualized environment, where there can be more that one server that has the same bind_address and port. If this
property is not explicitly set, it is assumed that the bi nd_addr ess and por t uniquely identifies the HTTP
Server.

{socket_type, ip_comm |{ip_comm, Config::proplist()} | {essl, Config::proplist()}}

For i p_commconfiguration options, see gen tcp:listen/2, some options that are used internally by httpd can
not be set.

For SSL configuration options, see s3l:listen/2.

Defaultisi p_comm
{ipfamily, inet | inet6}

Defaultisi net , legacy optioni net 6f b4 no longer makes sense and will be translated to inet.
{minimum_bytes per_second, integer()}

If given, sets a minimum of bytes per second value for connections.

If the value is unreached, the socket closes for that connection.

The option is good for reducing the risk of "slow DoS" attacks.

Ericsson AB. All Rights Reserved.: inets | 49

httpd

Erlang Web Server APl Modules
{modules, [atom()]}

Defines which modulesthe HTTP server uses when handling requests. Defaultis[nod_al i as, nod_aut h,
nmod_esi , nod_acti ons, nod_cgi , nod_dir, nod_get, nod_head, nod_| og,
nmod_di sk_| og] . Notice that some nod-modules are dependent on others, so the order cannot be entirely
arbitrary. See the Inets Web Server Modules in the User's Guide for details.

Limit properties
{ customize, atom()}

A callback module to customize the inets HTTP servers behaviour see httpd_custom_api
{disable_chunked transfer_encoding_send, boolean()}

Allows you to disable chunked transfer-encoding when sending a response to an HTTP/1.1 client. Default is
fal se.

{keep_alive, boolean()}

Instructs the server whether to use persistent connections when the client claims to be HTTP/1.1 compliant.
Defaultist r ue.

{keep_alive_timeout, integer()}

The number of seconds the server waits for a subsequent request from the client before closing the connection.
Default is 150.

{max_body_size, integer()}

Limits the size of the message body of an HTTP request. Default is no limit.
{max_clients, integer()}

Limits the number of simultaneous requests that can be supported. Default is 150.
{max_header_size, integer()}

Limits the size of the message header of an HTTP request. Default is 10240.
{ max_content_length, integer()}

Maximum content-length in an incoming request, in bytes. Requests with content larger than this are answered
with status 413. Default is 100000000 (100 MB).

{max_uri_size, integer()}
Limitsthe size of the HTTP request URI. Default is no limit.
{max_keep alive request, integer()}

The number of requests that a client can do on one connection. When the server has responded to the number
of requests defined by max_keep_al i ve_r equest s, the server closes the connection. The server closes it
even if there are queued request. Default is no limit.

{max_client_body_chunk, integer()}

Enforces chunking of aHTTP PUT or POST body data to be deliverd to the mod_esi callback. Note thisis not
supported for mod_cgi. Default is no limit e.i the whole body is deliverd as one entity, which could be very
memory consuming. mod_esi(3).

Administrative Properties

50 | Ericsson AB. All Rights Reserved.: inets

httpd

{mime_types, [{ MimeType, Extension}] | path()}

M meType = string() and Extensi on = string().Filesdelivered to the client are MIME typed
according to RFC 1590. File suffixes are mapped to MIME types before file delivery. The mapping between file
suffixes and MIME types can be specified as an Apache-like file or directly in the property list. Such afile can
look like the follwoing:

MIME type Extension
text/html html htm
text/plain asc txt

Default is [{"html","text/html"} ,{"htm","text/html"}].
{mime_type, string()}

When the server is asked to provide a document type that cannot be determined by the MIME Type Settings,
the server uses this default type.

{server_admin, string()}

Defines the email-address of the server administrator to beincluded in any error messages returned by the server.
{ server_tokens, nonelprod|major|minor|minimaljos|full{ private, string()} }

Defines the ook of the value of the server header.

Example: Assuming the version of | net s is5.8.1, the server header string can look as follows for the different
values of server-tokens:

none
"" % A Server: header will not be generated
prod
"inets'
maj or
"inets/5"
m nor
"inets/5.8"
m ni mal
"inetsy/5.8.1"
0s
"inets/5.8.1 (unix)"
full
"inets/5.8.1 (unix/linux) OTP/R15B"
{private, "fool/bar"}
"fool/bar"
By default, the value is as before, that is, mi ni mal .
{log_format, common | combined}

Definesif accesslogs are to be written according to the conmon log format or the extended common log format.
Theconmon format isonelinelooking likethis: r enot ehost rfc931 aut huser [date] "request"”
status bytes.

Ericsson AB. All Rights Reserved.: inets | 51

httpd

Here:

r enot ehost
Remote.
rfco3l
The remote username of the client (RFC 931).
aut huser
The username used for authentication.
[dat e]
Date and time of the request (RFC 1123).
"request”
Therequest line as it came from the client (RFC 1945).
status
The HTTP status code returned to the client (RFC 1945).
byt es
The content-length of the document transferred.

The combi ned format is one line looking like this: r enot ehost rfc931 aut huser [date]
"request"” status bytes "referer" "user_agent”

In addition to the earlier:

"referer"
The URL the client was on before requesting the URL (if it could not be determined, aminus signis
placed in thisfield).

"user_agent"
The software the client claims to be using (if it could not be determined, aminus sign is placed in this
field).

This affects the access logs written by nod_| og and nmod_di sk_|I og.
{error_log_format, pretty | compact}
Default ispret ty. If theerror log is meant to be read directly by ahuman, pr et t y isthe best option.
pr et ty hasaformat corresponding to:
io:format("[~s] ~s, reason: ~n ~p ~n~n", [Date, Msg, Reason]).
conpact hasaformat corresponding to:
io:format("[~s] ~s, reason: ~w ~n", [Date, Msg, Reason]).
This affects the error logs written by nod_| og and nod_di sk_| og.
URL Aliasing Properties - Requiresmod_alias
{alias, {Alias, RealName} }

Alias = string() andReal Nane = string().alias alowsdocumentsto be stored in thelocal file
system instead of the docunent _r oot location. URLs with a path beginning with url-path is mapped to local
files beginning with directory-filename, for example:

{alias, {"/image", "/ftp/pub/image"}}

Access to http://your.server.org/image/foo.gif would refer to the file /ftp/pub/image/foo.gif.

52 | Ericsson AB. All Rights Reserved.: inets

href
href
href
href

httpd

{re_write, { Re, Replacement} }

Re = string() andRepl acenent = string().re_wite alowsdocumentsto be storedinthelocal
file system instead of the documrent _r oot location. URLS are rewritten by r e: r epl ace/ 3 to produce a
path in the local file-system, for example:

{re write, {"~/[~1(["/1+)(.*)$", "/home/\\1/public\\2"}}

Access to http://your.server.org/~bob/foo.gif would refer to the file /home/bob/public/foo.gif. In an Apache-like
configuration file, Re is separated from Repl acenent with one single space, and as expected backslashes do
not need to be backslash escaped, the same example would become:

ReWrite ~/[~]1([~/1+)(.*)$ /home/\1/public\2

Beware of trailing space in Repl acenent to be used. If you must have a space in Re, use, for example, the
character encoding\ 040, seere(3).

{directory_index, [string()]}

di rectory_i ndex specifiesalist of resourcesto look for if aclient requests adirectory using a/ at the end
of thedirectory name. f i | e depictsthe name of afilein the directory. Several files can be given, in which case
the server returnsthe first it finds, for example:

{directory index, ["index.html", "welcome.html"]}

Access to http://your.server.org/docy would return http://your.server.org/docs/index.html or http://
your.server.org/docs/wel come.html if index.html does not exist.

CGI Properties- Requiresmod_cgi
{script_alias, { Alias, RealName} }
Alias = string() andReal Name = string() . Have the same behavior as property al i as, except
that they also mark the target directory as containing CGI scripts. URLs with a path beginning with url-path are
mapped to scripts beginning with directory-filename, for example:
{script_alias, {"/cgi-bin/", "/web/cgi-bin/"}}
Access to http://your.server.org/cgi-bin/foo would cause the server to run the script /web/cgi-bin/foo.
{script_re_write, { Re, Replacement} }

Re = string() and Repl acenent = string() . Have the same behavior as property re_wite,
except that they also mark the target directory as containing CGI scripts. URLs with a path beginning with url-
path are mapped to scripts beginning with directory-filename, for example:

{script re write, {""~/cgi-bin/(\\d+)/", "/web/\\1/cgi-bin/"}}

Access to http://your.server.org/cgi-bin/17/foo would cause the server to run the script /web/17/cgi-bin/foo.
{ script_nocache, boolean()}

If scri pt_nocache issettot rue, the HTTP server by default adds the header fields necessary to prevent
proxies from caching the page. Generally thisis preferred. Default tof al se.

{ script_timeout, integer()}

The time in seconds the web server waits between each chunk of data from the script. If the CGI script does not
deliver any data before the timeout, the connection to the client is closed. Default is 15.

Ericsson AB. All Rights Reserved.: inets | 53

httpd

{action, { MimeType, CgiScript}} - requires mod_action

M nmeType = string() andCgi Scri pt = string().acti on addsan action activating a CGI script
whenever afileof acertain MIME typeisrequested. It propagatesthe URL and file path of the requested document
using the standard CGI PATH_INFO and PATH_TRANSLATED environment variables.

Example:
{action, {"text/plain", "/cgi-bin/log and deliver text"}}
{ script, { Method, CgiScript}} - requires mod_action

Met hod = string() andCgi Script = string().script addsan action activating a CGI script
whenever afile is requested using a certain HTTP method. The method is either GET or POST, as defined in
RFC 1945. It propagates the URL and file path of the requested document using the standard CGl PATH_INFO
and PATH_TRANSLATED environment variables.

Example:
{script, {"PUT", "/cgi-bin/put"}}
ESI Properties- Requiresmod_esi
{erl_script_alias, { URLPath, [AllowedModule]} }

URLPath = string() and Al |l owedModul e = aton{).erl _script_alias marksal URLs
matching url-path as erl scheme scripts. A matching URL is mapped into a specific module and function, for
example:

{erl script alias, {"/cgi-bin/example", [httpd example]}}

A request to http://your.server.org/cgi-bin/example/httpd_example:yahoo would refer to httpd_example:yahoo/3
or, if that does not exist, httpd_example:yahoo/2 and http://your.server.org/cgi-bin/exampl e/other:yahoo would
not be allowed to execute.

{ erl_script_nocache, boolean()}

Iferl script_nocacheissettot r ue, theserver addsHTTP header fields preventing proxiesfrom caching
the page. Thisis generally a good idea for dynamic content, as the content often varies between each request.
Defaultisf al se.

{erl_script_timeout, integer()}

Iferl _script_timeout setsthetimein secondsthe server waits between each chunk of datato be delivered
through nmod_esi : del i ver/ 2. Defaultis15. Thisisonly relevant for scriptsthat use the erl scheme.

{eval_script_alias, { URLPath, [AllowedModule]}}

URLPat h = string() andAl | onedMbdul e = at on().Sameaser| _scri pt _al i as but for scripts
using the eval scheme. Thisis only supported for backwards compatibility. The eval scheme is deprecated.

Log Properties- Requiresmod_log
{error_log, path()}

Defines the filename of the error log file to be used to log server errors. If the filename does not begin with a
slash (/), it isassumed to berelativetotheser ver _r oot .

{security_log, path()}

Defines the filename of the access log file to be used to log security events. If the filename does not begin with
adlash (/), itisassumed to be relativeto theser ver _r oot .

54 | Ericsson AB. All Rights Reserved.: inets

href

httpd

{transfer_log, path()}

Defines the filename of the access log file to be used to log incoming requests. If the filename does not begin
with adlash (/), it isassumed to be relativeto the ser ver _r oot .

Disk Log Properties - Requiresmod_disk_log
{disk_log_format, internal | external}

Definesthe file format of thelog files. Seedi sk_| og for details. If theinternal file format is used, the log file
is repaired after a crash. When alog file is repaired, data can disappear. When the external file format is used,
ht t pd does not start if the log file is broken. Default isext er nal .

{error_disk_log, path()}

Defines the filename of the (di sk_I og(3)) error log file to be used to log server errors. If the filename does
not begin with aslash (/), it is assumed to be relativeto theser ver _r oot .

{error_disk_log_size, { MaxBytes, MaxFiles}}

MaxByt es = i nteger() andVaxFi |l es = i nt eger () .Definesthe propertiesof the(di sk_I og(3))
error log file. Thisfileis of type wrap log and max bytes is written to each file and max files is used before the
first fileis truncated and reused.

{security_disk_log, path()}

Defines the filename of the (di sk_I og(3)) access log file logging incoming security events, that is,
authenticated requests. If the filename does not begin with a slash (/), it is assumed to be relative to the
server _root.

{security_disk log_size, { MaxBytes, MaxFiles}}

MaxByt es = integer() andMaxFiles = integer () .Definesthe propertiesof thedi sk_I og(3)
access log file. This fileis of type wrap log and max bytes is written to each file and max files is used before
thefirst fileis truncated and reused.

{transfer_disk_log, path()}

Definesthe filename of the (di sk_| og(3)) accesslog file logging incoming requests. If the filename does not
begin with aslash (/), it isassumed to berelative to theser ver _r oot .

{transfer_disk log_size, { MaxBytes, MaxFiles}}

MaxByt es = integer() and MaxFiles = integer () .Definesthe propertiesof thedi sk_I og(3)
access log file. This fileis of type wrap log and max bytes is written to each file and max files is used before
the first fileis truncated and reused.

Authentication Properties - Requiresmod_auth

{directory, {path(), [{property(), term()}]}}
The properties for directories are as follows:

{alow_from, all | [RegxpHostString]}
Defines a set of hosts to be granted access to a given directory, for example:

{allow_from, ["123.34.56.11", "150.100.23"]}

Thehost 123. 34. 56. 11 and all machines on the 150. 100. 23 subnet are allowed access.
{deny_from, al | [RegxpHostString]}
Defines a set of hosts to be denied accessto a given directory, for example:

{deny_from, ["123.34.56.11", "150.100.23"]}

Ericsson AB. All Rights Reserved.: inets | 55

httpd

Thehost 123. 34. 56. 11 and al machineson the 150. 100. 23 subnet are not allowed access.
{auth_type, plain | dets | mnesia}

Sets the type of authentication database that is used for the directory. The key difference between the different
methodsisthat dynamic data can be saved when Mnesiaand Detsare used. This property iscalled Aut hDb Ty pe
in the Apache-like configuration files.

{auth_user_file, path()}

Sets the name of afile containing the list of users and passwords for user authentication. The filename can be
either absolute or relative to the ser ver _r oot . If using the plain storage method, this file is a plain text file
where each line contains a username followed by a colon, followed by the non-encrypted password. If usernames
are duplicated, the behavior is undefined.

Example:

ragnar:s7Xxv7
edward:wwjau8

If the Dets storage method is used, the user database is maintained by Dets and must not be edited by hand. Use
the API functionsin module nod_aut h to create/edit the user database. This directive isignored if the Mnesia
storage method is used. For security reasons, ensurethat aut h_user _fi | e isstored outside the document tree
of the web server. If it is placed in the directory that it protects, clients can download it.

{auth_group _file, path()}

Setsthe name of afilecontaining thelist of user groupsfor user authentication. Thefilename can beeither absolute
or relative to the ser ver _r oot . If the plain storage method is used, the group file is a plain text file, where
each line contains a group name followed by a colon, followed by the members usernames separated by spaces.

Example:
groupl: bob joe ante

If the Dets storage method is used, the group database is maintained by Dets and must not be edited by hand. Use
the API for module nrod_aut h to create/edit the group database. This directive isignored if the Mnesia storage
method is used. For security reasons, ensure that the aut h_gr oup_fi | e is stored outside the document tree
of the web server. If it is placed in the directory that it protects, clients can download it.

{auth_name, string()}

Sets the name of the authorization realm (auth-domain) for adirectory. This string informsthe client about which
username and password to use.

{auth_access password, string()}

If set to other than "NoPassword", the password is required for all APl calls. If the password is set to
"DummyPassword", the password must be changed before any other API calls. To secure the authenticating
data, the password must be changed after the web server is started. Otherwise it is written in clear text in the
configuration file.

{require_user, [string()]}

Defines users to grant access to a given directory using a secret password.
{require_group, [string()]}

Defines users to grant access to a given directory using a secret password.

Htaccess Authentication Properties - Requires mod_htaccess

56 | Ericsson AB. All Rights Reserved.: inets

httpd

{access files, [path()]}

Specifies the filenames that are used for access files. When a request comes, every directory in the path to the
reguested asset are searched after files with the names specified by this parameter. If such afileisfound, thefile
is parsed and the restrictions specified in it are applied to the request.

Security Properties- Requires mod_security
{security_directory, {path(), [{property(), term()}]}}
The properties for the security directories are as follows:
{data_file, path()}

Name of the security data file. The filename can either be absolute or relative to the ser ver _r oot . Thisfile
is used to store persistent data for module mod_security.

{max_retries, integer()}
Specifies the maximum number of attempts to authenticate a user before the user is blocked out. If a user
successfully authenticates while blocked, the user receives a 403 (Forbidden) response from the server. If the

user makes a failed attempt while blocked, the server returns 401 (Unauthorized), for security reasons. Default
is3. Can be set to infinity.

{block_time, integer()}

Specifiesthe number of minutesauser isblocked. After thistimehas passed, the user automatically regainsaccess.
Default is60.

{fail_expire_time, integer()}
Specifies the number of minutes afailed user authentication isremembered. If auser authenticates after thistime
has passed, the previous failed authentications are forgotten. Default is 30.

{auth_timeout, integer()}
Specifies the number of seconds a successful user authentication is remembered. After this time has passed, the
authentication is no longer reported. Default is 30.

Exports

info(Pid) ->
info(Pid, Properties) -> [{Option, Value}]
Types:

Properties = [property()]

Option = property()

Value = term))

Fetches information about the HTTP server. When called with only the pid, al properties are fetched. When called
with alist of specific properties, they arefetched. The available propertiesarethe same asthe start options of the server.

Pid is the pid returned from i nets: start/[2, 3] . Can aso be retrieved form i net s: servi ces/ 0 and
i nets:services_info/ 0, seeinets(3).

Ericsson AB. All Rights Reserved.: inets | 57

httpd

info(Address, Port) ->
info(Address, Port, Profile) ->
info(Address, Port, Profile, Properties) -> [{Option, Value}]
info(Address, Port, Properties) -> [{Option, Value}]
Types:
Address = i p_address()
Port = integer()

Profile = aton()
Properties = [property()]
Option = property()
Value = term)

Fetches information about the HTTP server. When called with only Addr ess and Por t , all properties are fetched.
When called with alist of specific properties, they arefetched. The available properties are the same asthe start options
of the server.

| The address must be the | P address and cannot be the hostname. |

reload config(Config, Mode) -> ok | {error, Reason}
Types:

Config = path() | [{Option, Value}]

Option = property()

Value = term)

Mode = non_disturbing | disturbing

Reloadsthe HT TP server configuration without restarting the server. Incoming requests are answered with atemporary
down message during the reload time.

Available properties are the same as the start options of the server, but the propertiesbi nd_addr ess and por t
cannot be changed.

If mode is disturbing, the server is blocked forcefully, al ongoing requests terminates, and the reload starts
immediately. If modeisnon-disturbing, no new connectionsare accepted, but ongoing requestsare allowed to complete
before the reload is done.

ERLANG WEB SERVER API DATA TYPES

The Erlang web server API datatypes are as follows:

58 | Ericsson AB. All Rights Reserved.: inets

httpd

ModData = #mod{}

-record(mod, {
data = [],
socket type = ip comm,
socket,
config db,
method,
absolute uri,
request uri,
http version,
request line,
parsed header = [],
entity body,
connection

3.

To acess the record in your callback-module use:
-include lib("inets/include/httpd.hrl").

Thefields of record nod have the following meaning:
dat a

Type[{I nteracti onKey, I nteracti onVal ue}] isused to propagate data between modules. Depicted
i nteraction_data() infunction type declarations.

socket type
socket _type() indicateswhether itisan IP socket or anssl socket.
socket

The socket, informat i p_commor ssl , depending on socket _t ype.

config_db
The config file directives stored as key-value tuplesin an ETS table. Depicted conf i g_db() infunction type
declarations.

net hod
Type" GET" | "POST" | "HEAD' | "TRACE",thatis, the HTTP method.

absol ute_uri

If the request isan HTTP/1.1 request, the URI can bein the absolute URI format. In that case, ht t pd savesthe
absolute URI in this field. An Example of an absolute URI is" htt p: // Server Name: Part/ cgi - bi n/
find. pl ?per son=j ocke"

request _uri

TheRequest - URI asdefined in RFC 1945, for example, " / cgi - bi n/ fi nd. pl ?per son=j ocke".
http_version

The HTTP version of therequest, that is, "HTTP/0.9", "HTTP/1.0", or "HTTP/1.1".
request _I|ine

The Request - Li ne asdefined inRFC 1945, for example, " GET / cgi - bi n/ fi nd. pl ?per son=j ocke
HTTP/ 1. 0".

par sed_header
Type[{ Header Key, Header Val ue}] . par sed_header containsal HTTP header fields from the
HTTP request stored in alist as key-value tuples. See RFC 2616 for alisting of all header fields. For example,

Ericsson AB. All Rights Reserved.: inets | 59

href
href
href

httpd

thedatefieldisstored as{ "dat e", "Wed, 15 COct 1997 14:35:17 GWI"}.RFC 2616 defines that
HTTP isacase-insensitive protocol and the header fields can be in lower case or upper case. ht t pd ensures
that all header field names are in lower case.

entity_body

Theent i t y- Body asdefined in RFC 2616, for example, data sent from a CGI script using the POST method.
connection

true | false.Ifsettotrue,the connection to the client is a persistent connection and is not closed when
the request is served.

ERLANG WEB SERVER APl CALLBACK FUNCTIONS

Exports

Module:do(ModData)-> {proceed, OldData} | {proceed, NewData} | {break,
NewData} | done

Types:
A dData = list()
NewDat a = [{response, { St at usCode, Body}}]

| [{response, {response, Head, Body}}]

| [{response, {al ready_sent, St atuscode, Si ze}}]
St at usCode = integer()

Body = io_list() | nobody | {Fun, Arg}

Head = [Header Opti on]

Header Opti on = {Option, Value} | {code, StatusCode}
Option = accept _ranges | all ow

| cache_control | content_ M5

| content _encoding | content | anguage

| content length | content | ocation

| content_range | content _type | date

| etag | expires | last_nodified

| location | pragma | retry_after

| server | trailer | transfer_encoding

Val ue = string()

= fun(Arg) -> sent| close | Body

Arg = [tern()]

When avalid request reaches ht t pd, it callsdo/ 1 in each module, defined by the configuration option of Modul e.
The function can generate data for other modules or a response that can be sent back to the client.

Thefield dat a in ModDat a isalist. Thislist isthelist returned from the last call to do/ 1.

Tn

c

>
[

Body is the body of the HTTP response that is sent back to the client. An appropriate header is appended to the
message. St at usCode isthe status code of the response, see RFC 2616 for the appropriate values.

Head isakey valuelist of HTTP header fields. The server constructs an HTTP header from this data. See RFC 2616
for the appropriate value for each header field. If the clientisan HTTP/1.0 client, the server filtersthe list so that only
HTTP/1.0 header fields are sent back to the client.

60 | Ericsson AB. All Rights Reserved.: inets

href
href
href

httpd

If Body isreturned and equal to { Fun, Ar g}, the web server tries appl y/ 2 on Fun with Ar g as argument. The
web server expectsthat the fun either returnsalist (Body) thatisan HTTP repsonse, or theatom sent if theHTTP
responseis sent back to theclient. If cl ose isreturned from the fun, something has gone wrong and the server signals
thisto the client by closing the connection.

Module:load(Line, AccIn)-> eof | ok | {ok, AccOut} | {ok, AccOut, {Option,
Value}} | {ok, AccOut, [{Option, Value}]} | {error, Reason}

Types:
Line = string()
Accln = [{Option, Value}]
AccCQut [{Option, Value}]
Opti on property()
Value = term)
Reason = term()

Converts a line in an Apache-like configuration file to an {Opti on, Val ue} tuple. Some more complex
configuration options, suchasdi rect ory andsecuri ty_direct ory, createan accumulator. Thisfunction only
needs clauses for the options implemented by this particular callback module.

Module:remove(ConfigDB) -> ok | {error, Reason}
Types:

ConfigDB = ets_tabl e()

Reason = term()

When ht t pd isshut down, it triesto executer enove/ 1 ineach Erlang web server callback module. The programmer
can use this function to clean up resources created in the store function.

Module:store({Option, Value}, Config)-> {ok, {Option, NewValue}} | {error,
Reason}

Types:
Line = string()
Option = property()
Config [{Option, Value}]
Value = term))
Reason = term)

Checks the validity of the configuration options before saving them in the internal database. This function can also
have a side effect, that is, setup of necessary extra resources implied by the configuration option. It can aso resolve
possible dependencies among configuration options by changing the value of the option. This function only needs
clauses for the options implemented by this particular callback module.

ERLANG WEB SERVER APl HELP FUNCTIONS

Exports
parse _query(QueryString) -> [{Key,Value}]

Types:
QueryString = string()

Ericsson AB. All Rights Reserved.: inets | 61

httpd

Key = string()
Val ue = string()

par se_query/ 1 parsesincoming datato er | and eval scripts (see mod_esi(3)) as defined in the standard URL
format, that is, '+' becomes 'space’ and decoding of hexadecimal characters (% x).

SEE ALSO
RFC 2616, inets(3), ss(3)

62 | Ericsson AB. All Rights Reserved.: inets

href

httpd_custom_api

httpd _custom_api

Erlang module

The module implementing this behaviour shall be supplied to to the servers configuration with the option customize

Exports

response default headers() -> [Header]

Types:
Header = {HeaderNane :: string(), HeaderValue::string()}
string:to_lower/1 will be performed on the HeaderName

Provide default headers for the HTTP servers responses. Note that this option may override built-in defaults.

response header({HeaderName, HeaderValue}) -> {true, Header} | false
Types.

Header = {HeaderName :: string(), HeaderValue::string()}

The header name will bein lower case and should not be altered.

Filter and possible alter HTTP response headers before they are sent to the client.

request header({HeaderName, HeaderValue}) -> {true, Header} | false
Types:

Header = {HeaderNane :: string(), HeaderValue::string()}

The header name will bein lower case and should not be altered.

Filter and possible alter HTTP request headers before they are processed by the server.

Ericsson AB. All Rights Reserved.: inets | 63

httpd_socket

httpd_socket

Erlang module

This module provides the Erlang web server APl module programmer with utility functions for generic sockets
communication. The appropriate communication mechanism is transparently used, that is, i p_conmor ssl .

Exports

deliver(SocketType, Socket, Data) -> Result
Types:

Socket Type = socket _type()

Socket = socket ()

Data = io_list() | binary()

Result = socket_closed | void()

del i ver/ 3 sendsDat a over Socket using the specified Socket Type. Socket and Socket Type isto bethe
socket and the socket _t ype form the nod record asdefined inht t pd. hrl

peername (SocketType,Socket) -> {Port,IPAddress}
Types:

Socket Type = socket type()

Socket = socket ()

Port = integer()

| PAddress = string()
peer nane/ 2 returnsthe Por t and | PAddr ess of the remote Socket .

resolve() -> HostName
Types:
Host Name = string()
r esol ve/ 0 returnsthe official Host Nane of the current host.

SEE ALSO
httpd(3)

64 | Ericsson AB. All Rights Reserved.: inets

httpd_util

httpd_util

Erlang module

This module provides the Erlang web server APl module programmer with miscellaneous utility functions.

Exports

convert request date(DateString) -> ErlDate|bad date
Types:
DateString = string()
Erl Date = {{Year, Mont h, Dat e}, { Hour, M n, Sec}}
Year = Month = Date = Hour = Mn = Sec = integer()
convert _request _dat e/ 1 convertsDat eSt r i ng to the Erlang date format. Dat eSt r i ng must be in one of
the three date formats defined in RFC 2616.

create etag(FileInfo) -> Etag
Types:
Filelnfo = file_info()
Etag = string()

creat e_et ag/ 1 caculates the Etag for afile from its size and time for last modification. Fi | el nf o isarecord
definedinkernel /i nclude/file. hrl.

day (NthDayOfWeek) -> DayOfWeek
Types:
Nt hDayOf Week = 1-7
DayOf Week = string()
day/ 1 convertsthe day of the week (Nt hDay Of Week) from an integer (1-7) to an abbreviated string, that is:

1="Mon",2="Tue", ..., 7="Sat".

decode hex(HexValue) -> DecValue
Types:
HexVal ue = DecVal ue = string()
Converts the hexadecimal value HexVal ue into its decimal equivalent (DecVal ue).

flatlength(NestedList) -> Size
Types:
Nest edList = list()
Size = integer()
fl atl engt h/ 1 computes the size of the possibly nested list Nest edLi st , which can contain binaries.

hexlist to integer(HexString) -> Number
Types:

Ericsson AB. All Rights Reserved.: inets | 65

href

httpd_util

Number = integer()
HexString = string()

hexl i st _to_i nt eger convertsthe hexadecimal value of Hex St r i ng to an integer.

integer to hexlist(Number) -> HexString
Types:

Nunmber = integer()

HexString = string()

i nteger_to_hexlist/1returnsastring representing Nunber in ahexadecimal form.

lookup(ETSTable,Key) -> Result
lookup (ETSTable,Key,Undefined) -> Result

Types:
ETSTabl e = ets_tabl e()
Key = term)

Result = term() | undefined | Undefined
Undefined = term()
| ookup extracts{ Key, Val ue} tuplesfromETSTabl e andreturnstheVal ue associatedwithKey. If ETSTabl e

is of type bag, only the first Val ue associated with Key is returned. | ookup/ 2 returns undefi ned and
| ookup/ 3 returnsUndef i ned if no Val ue isfound.

lookup mime(ConfigDB,Suffix)
lookup mime(ConfigDB,Suffix,Undefined) -> MimeType
Types:
ConfigDB = ets_table()
Suffix = string()
M meType = string() | undefined | Undefined
Undefined = term()

| ookup_m e returns the MIME type associated with a specific file suffix as specified in the filem me. t ypes
(located in the config directory).

lookup mime default(ConfigDB,Suffix)
lookup mime default(ConfigDB,Suffix,Undefined) -> MimeType
Types:
ConfigDB = ets_tabl e()
Suffix = string()
M meType = string() | undefined | Undefined
Undefined = tern()
| ookup_m nme_def aul t returns the MIME type associated with a specific file suffix as specified in the

m ne. t ypes file(located inthe config directory). If no appropriate association isfound, thevalue of Def aul t Type
isreturned.

message(StatusCode,PhraseArgs,ConfigDB) -> Message
Types:

66 | Ericsson AB. All Rights Reserved.: inets

httpd_util

St at usCode 301 | 400 | 403 | 404 | 500 | 501 | 504
PhraseArgs = tern()

ConfigDB = ets_table

Message = string()

nessage/ 3 returns an informative HTTP 1.1 status string in HTML. Each St at usCode requires a specific
Phr aseAr gs:

301

string(): A URL pointing at the new document position.
400 | 401 | 500

none (no Phr aseAr gs).
403 | 404

string():ARequest-URl asdescribed in RFC 2616.
501

{Met hod, Request URI , HTTPVer si on} : The HTTP Met hod, Request - URI , and HTTP- Ver si on as
defined in RFC 2616.

504

string(): A string describing why the service was unavailable.

month(NthMonth) -> Month
Types:
Nt hMonth = 1-12
Month = string()
nont h/ 1 converts the month Nt hivbnt h as an integer (1-12) to an abbreviated string, that is:
1="Jan", 2="Feb", ..., 12 ="Dec".

multi lookup(ETSTable,Key) -> Result

Types:
ETSTabl e = ets_tabl e()
Key = term)

Result = [term()]

mul ti _| ookup extracts all { Key, Val ue} tuplesfrom an ETSTabl e and returns all Val ues associated with
Key inalist.

reason phrase(StatusCode) -> Description
Types:
Stat usCode = 100] 200 | 201 | 202 | 204 | 205 | 206 | 300 | 301 | 302

303 | 304 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 410 411 | 412 | 413
| 414 415 | 416 | 417 | 500 | 501 | 502 | 503 | 504 | 505

Description = string()

reason_phrase returns Descri pti on of an HTTP 1.1 St at usCode, for example, 200 is "OK" and 201 is
"Created". For more information, see RFC 2616.

Ericsson AB. All Rights Reserved.: inets | 67

href
href

httpd_util

rfcl123 date() -> RFCl123Date
rfcll23 date({{YYYY,MM,DD},{Hour,Min,Sec}}) -> RFCl123Date
Types:
YYYY = MM = DD = Hour = Mn = Sec = integer()
RFC1123Date = string()

rfcl123_dat e/ O returns the current date in RFC 1123 format. r f ¢_dat e/ 1 converts the date in the Erlang
format to the RFC 1123 date format.

split(String,RegExp,N) -> SplitRes
Types.
String = RegExp = string()
SplitRes = {ok, FieldList} | {error, errordesc()}
Fieldlist = [string()]
N = integer
split/3 splits String in N chunks using RegExp. split/3 is equivalent to r egexp: spl it/ 2 with the
exception that N defines the maximum number of fieldsin Fi el dLi st .

split script path(RequestLine) -> Splitted

Types:
Request Li ne = string()
Splitted = not_a _script | {Path, Pathlnfo, QueryString}
Path = QueryString = Pathlnfo = string()

split_script_path/1lisequivalenttosplit_path/ 1 with one exception. If thelongest possible path is not
aregular, accessible, and executablefile, thennot _a_scri pt isreturned.

split _path(RequestLine) -> {Path,QueryStringOrPathInfo}
Types:

RequestLine = Path = QueryStringOrPathinfo = string()
split_path/1splitsRequest Li ne inafilereference (Pat h), andaQuer ySt ri ng or aPat hl nf o string as
specified in RFC 2616. A Quer ySt ri ng isisolated from Pat h with a question mark (?) and Pat hl nf o with a
dash (/). Inthe case of aQuer y St r i ng, everything before ? isaPat h and everything after ? isaQuer ySt ri ng.
Inthecaseof aPat hl nf o, Request Li ne isscanned from left-to-right on the hunt for longest possible Pat h being
afile or adirectory. Everything after the longest possible Pat h, isolated with a/ , is regarded as Pat hl nf 0. The
resulting Pat h isdecoded using decode_hex/ 1 before delivery.

strip(String) -> Stripped
Types:
String = Stripped = string()

stri p/ 1 removes any leading or trailing linear white space from the string. Linear white space is to be read as
horizontal tab or space.

suffix(FileName) -> Suffix

Types:
FileName = Suffix = string()

68 | Ericsson AB. All Rights Reserved.: inets

href

httpd_util

suf fix/ 1 isequivalent to fi |l enane: ext ensi on/ 1 with the exception that Suf f i x is returned without a
leading dot (.).

SEE ALSO
httpd(3)

Ericsson AB. All Rights Reserved.: inets | 69

mod_alias

mod_alias

Erlang module

Erlang web server internal API for handling of, for example, interaction data exported by module mod_al i as.

Exports

default index(ConfigDB, Path) -> NewPath
Types:
ConfigDB = config_db()
Path = NewPath = string()
If Pat h isadirectory, def aul t _i ndex/ 2, it starts searching for resources or filesthat are specified in the config
directive Di r ect or yl ndex. If an appropriate resource or fileisfound, it is appended to the end of Pat h and then

returned. Pat h is returned unaltered if no appropriate fileis found or if Pat h isnot adirectory. confi g_db() is
the server config filein ETS table format as described in Inets User's Guide.

path(PathData, ConfigDB, RequestURI) -> Path
Types.
Pat hData = interaction_data()
ConfigDB = config_db()
Request URI = Path = string()
pat h/ 3 returns the file Pat h in the Request URI (see RFC 1945). If the interaction data {r eal _nane,
{Pat h, Aft er Pat h} } has been exported by nod_al i as, Pat h is returned. If no interaction data has been

exported, Ser ver Root is used to generate a file Pat h. confi g _db() and i nteraction_data() areas
defined in Inets User's Guide.

real name(ConfigDB, RequestURI, Aliases) -> Ret
Types.

ConfigDB = config_db()

Request URI = string()

Ali ases = [{FakeNane, Real Nane}]

Ret = {Short Pat h, Pat h, Aft er Pat h}

ShortPath = Path = AfterPath = string()
real nane/ 3 traverses Al i ases, typicaly extracted from Conf i gDB, and matches each FakeNane with
Request URI . If a match is found, FakeNane is replaced with Real Nane in the match. The resulting path is
split into two parts, Shor t Pat h and Af t er Pat h, as defined in httpd_util:split_path/1. Pat h is generated from

Shor t Pat h, that is, the result from default_index/2 with Shor t Pat h asanargument. confi g_db() istheserver
config filein ETS table format as described in Inets User's Guide.

real script name(ConfigDB, RequestURI, ScriptAliases) -> Ret
Types:

ConfigDB = config_db()

Request URI = string()

ScriptAli ases = [{FakeNane, Real Nane}]

70 | Ericsson AB. All Rights Reserved.: inets

href

mod_alias

Ret = {ShortPath, AfterPath} | not_a_script
ShortPath = AfterPath = string()

real _script_name/ 3 traverses Scri pt Al i ases, typicaly extracted from Conf i gDB, and matches each
FakeName with Request URI . If amatch isfound, FakeNane is replaced with Real Name in the match. If the
resulting match is not an executable script, not _a_scri pt isreturned. If it isascript, the resulting script pathisin
two parts, Shor t Pat h and Af t er Pat h, as defined in httpd_util: split_script_path/1. conf i g_db() isthe server
config filein ETS table format as described in Inets User's Guide.

Ericsson AB. All Rights Reserved.: inets | 71

mod_auth

mod_auth

Erlang module

This module provides for basic user authentication using textual files, Dets databases, or Mnesia databases.

Exports

add _group member(GroupName, UserName, Options) -> true | {error, Reason}
add group member(GroupName, UserName, Port, Dir) -> true | {error, Reason}

add group member(GroupName, UserName, Address, Port, Dir) -> true | {error,
Reason}

Types:
GroupNanme = string()
User Nanme = string()
Options = [Option]

Option = {port,Port} | {addr, Address} | {dir,Directory}
{aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A/B,C,D} | string() | undefined
Dir = string()
Aut hPassword = string()
Reason = term()
add_group_nenber/ 3, add_group_nenber/ 4,andadd_gr oup_nenber/ 5 each addsauser to agroup

If the group does not exist, it is created and the user is added to the group. Upon successful operation, this function
returnst r ue. Whenadd_gr oup_nenber s/ 3 iscaled, optionsPort and Di r are mandatory.

add user(UserName, Options) -> true| {error, Reason}
add user(UserName, Password, UserData, Port, Dir) -> true | {error, Reason}

add user(UserName, Password, UserData, Address, Port, Dir) -> true | {error,
Reason}

Types:
User Nane = string()
Options = [Option]
Option = {password, Password} | {userData, UserData} | {port, Port}
{addr, Address} | {dir,Directory} | {authPassword, Aut hPasswor d}

Password = string()

UserData = term()

Port = integer()

Address = {A,B,C, D} | string() | undefined
Dir = string()

Aut hPassword =string()

Reason = term()

72 | Ericsson AB. All Rights Reserved.: inets

mod_auth

add_user/2, add_user/5, and add_user/ 6 each adds a user to the user database. If the operation is
successful, this function returnst r ue. If an error occurs, { er r or , Reason} isreturned. When add_user/ 2 is
caled, options Passwor d, User Dat a, Port , and Di r are mandatory.

delete group(GroupName, Options) -> true | {error,Reason}
<name>delete group(GroupName, Port, Dir) -> true | {error, Reason}

delete group(GroupName, Address, Port, Dir) -> true | {error, Reason}
Types:

Options = [Option]

Option = {port,Port} | {addr,Address} | {dir,Directory} |

{ aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A,B,C, D} | string() | undefined
Dir = string()
GroupNanme = string()
Aut hPassword = string()
Reason = term)
del ete_group/ 2, del ete_group/ 3, anddel et e_gr oup/ 4 each deletes the group specified and returns

true. If thereisanerror,{ error, Reason} isreturned. Whendel et e_gr oup/ 2 iscalled, option Port and
Di r are mandatory.

delete group member(GroupName, UserName, Options) -> true | {error, Reason}
delete group member(GroupName, UserName, Port, Dir) -> true | {error, Reason}

delete group member(GroupName, UserName, Address, Port, Dir) -> true |
{error, Reason}

Types:
G oupNane = string()
User Nane = string()
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir,Directory} |
{aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A,B,C,D} | string() | undefined
Dir = string()
Aut hPassword = string()
Reason = term)
del ete_group_nenber/ 3, del ete_group_nenber/ 4, and del et e_gr oup_nenber /5 each deletes

a user from a group. If the group or the user does not exigt, this function returns an error, otherwise t r ue. When
del et e_group_nenber/ 3 iscaled, theoptionsPort and Di r are mandatory.

delete user(UserName,Options) -> true | {error, Reason}
delete user(UserName, Port, Dir) -> true | {error, Reason}
delete user(UserName, Address, Port, Dir) -> true | {error, Reason}
Types.
User Nane = string()

Ericsson AB. All Rights Reserved.: inets | 73

mod_auth

Options = [Option]
Option = {port,Port} | {addr, Address} | {dir,Directory} |
{aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A,B,C,D} | string() | undefined
Dir = string()
Aut hPassword = string()
Reason = term()
del ete_user/2, delete_user/3, and del ete_user/ 4 each deletes a user from the user database. If

the operation is successful, this function returns t r ue. If an error occurs, { er r or , Reason} is returned. When
del et e_user/ 2iscdled, optionsPort and Di r are mandatory.

get user(UserName,Options) -> {ok, #httpd user} |{error, Reason}
get user(UserName, Port, Dir) -> {ok, #httpd user} | {error, Reason}
get user(UserName, Address, Port, Dir) -> {ok, #httpd user} | {error, Reason}
Types:
User Nanme = string()
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir, Directory}
{aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A/B,C,D} | string() | undefined
Dir = string()
Aut hPassword = string()
Reason = term()
get _user/2, get_user/3,andget user/ 4 eachreturnsan htt pd_user record containing the userdata

for a specific user. If the user cannot be found, { error, Reason} isreturned. When get _user/ 2 is caled,
optionsPor t and Di r are mandatory.

list groups(Options) -> {ok, Groups} | {error, Reason}
list groups(Port, Dir) -> {ok, Groups} | {error, Reason}
list groups(Address, Port, Dir) -> {ok, Groups} | {error, Reason}
Types:
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir, Directory}
{aut hPasswor d, Aut hPasswor d}

Port = integer()

Address = {A,B,C,D} | string() | undefined
Dir = string()

Goups = list()

Aut hPassword = string()

Reason = term()

list groups/1, list _groups/2,andlist_groups/3 each listsal the groups available. If thereis an
error,{ error, Reason} isreturned. Whenl i st _groups/ 1iscalled, optionsPort and Di r are mandatory.

74 | Ericsson AB. All Rights Reserved.: inets

mod_auth

list group members(GroupName, Options) -> {ok, Users} | {error, Reason}
list group members(GroupName, Port, Dir) -> {ok, Users} | {error, Reason}

list group members(GroupName, Address, Port, Dir) -> {ok, Users} | {error,
Reason}

Types:
G oupNanme = string()
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir,Directory} |
{aut hPasswor d, Aut hPasswor d}

Port = integer()
Address = {A,B,C,D} | string() | undefined
Dir = string()
Users = list()
Aut hPassword = string()
Reason = term)
list_group_nenbers/2, 1ist_group_menbers/3, and | ist_group_nenbers/4 each lists the

members of a specified group. If the group does not exist or thereisan error, { err or, Reason} isreturned. When
Iist_group_nenbers/2iscaled, optionsPort and Di r are mandatory.

list users(Options) -> {ok, Users} | {error, Reason}
list users(Port, Dir) -> {ok, Users} | {error, Reason}
list users(Address, Port, Dir) -> {ok, Users} | {error, Reason}
Types.
Options = [Option]
Option = {port,Port} | {addr, Address} | {dir, Directory}
{aut hPasswor d, Aut hPasswor d}

Port = integer()

Address = {A,B,C,D} | string() | undefined
Dir = string()

Users = list()

Aut hPassword = string()

Reason = atom()

list users/1l, list _users/2,andlist _users/3 eachreturnsalist of usersin the user database for a
specificPort/ Di r . Whenl i st _users/ 1iscalled, optionsPort and Di r are mandatory.

update password(Port, Dir, OldPassword, NewPassword, NewPassword) -> ok |
{error, Reason}

update password(Address,Port, Dir, OldPassword, NewPassword, NewPassword) ->
ok | {error, Reason}

Types:
Port = integer()
Address = {A,B,C, D} | string() | undefined
Dir = string()
GroupNanme = string()

Ericsson AB. All Rights Reserved.: inets | 75

mod_auth

ad dPasswor d string()
NewPassword = string()
Reason = term)

updat e_passwor d/ 5 and updat e_passwor d/ 6 each updates Aut hAccessPasswor d for the specified
directory. If NewPasswor d is equal to "NoPassword”, no password is required to change authorisation data. If
NewPasswor d is equa to "DummyPassword", no changes can be done without changing the password first.

SEE ALSO
httpd(3), mod_alias(3)

76 | Ericsson AB. All Rights Reserved.: inets

mod_esi

mod_esi

Erlang module

This module definesthe Erlang Server Interface (ESI) API. It isamore efficient way of writing Erlang scriptsfor your
| net s web server than writing them as common CGl scripts.

DATA TYPES

The following data types are used in the functions for mod_esi:
env() =
{EnvKey()::atom(), Value::term()}
Currently supported key value pairs
{server_software, string()}
Indicates the inets version.
{server_nane, string()}
The local hostname.
{gateway_interface, string()}
Legacy string used in CGl, just ignore.
{server_protocol, string()}
HTTP version, currently "HTTP/1.1"
{server_port, integer()}
Servers port number.
{request _nethod, "GET | "PUT" | "DELETE" | "POST" | "PATCH'}
HTTP regquest method.
{renote_adress, inet:ip_address()}
The clientsip address.
{peer_cert, undefined | no_peercert | DER binary()}

For TL S connectionswhere client certificates are used thiswill be an ASN.1 DER-encoded X509-certificate
as an Erlang binary. If client certificates are not used the value will be no_peer cert, andif TLSis not
used (HTTP or connection islost due to network failure) the value will beundef i ned.

{script_nane, string()}
Request URI

{http_Lower CaseHTTPHeader Nanme, string()}
example: { http_content_type, "text/ntml"}

Exports
deliver(SessionID, Data) -> ok | {error, Reason}

Types:
SessionlD = tern()

Ericsson AB. All Rights Reserved.: inets | 77

mod_esi

Data = string() | io_ list() | binary()
Reason = term()

This function is only intended to be used from functions called by the Erl Scheme interface to deliver parts of the
content to the user.

Sends data from an Erl Scheme script back to the client.

If any HTTP header fields are added by the script, they must be in the first call to del i ver/ 2, and the datain
the call must be astring. Calls after the headers are complete can contain binary data to reduce copying overhead.
Do not assume anything about the data type of Sessi onl D. Sessi onl D must be the value given as input to the
ESI callback function that you implemented.

ESI Callback Functions
Exports

Module:Function(SessionID, Env, Input)-> {continue, State} | _
Types.
SessionlD = term)
Env = env()
Input = string() | chunked_data()
chunked data() = {first, Data::binary()} | {continue, Data::binary(),
State::term()} | {last, Data::binary(), State::term()}
State = term))

Mbdul e must be found in the code path and export Funct i on with an arity of three. Aner| Scri pt Al i as must
also be set up in the configuration file for the web server.

nod_esi : del i ver/ 2 shall beused to generate theresponsetotheclient and Sessi onl Disanidentifier that shall
by used when calling this function, do not assume anything about the datatype. This function may be called severa
times to chunk the response data. Notice that the first chunk of data sent to the client must at least contain all HTTP
header fields that the response will generate. If the first chunk does not contain the end of HTTP header, that is, "\ r

\n\r\n", theserver assumesthat no HTTP header fields will be generated.

Env environment data of the request see description above.

I nput isquery data of a GET request or the body of aPUT or POST request. The default behavior (legacy reasons)
for delivering the body, is that the whole body is gathered and converted to a string. But if the httpd config parameter
max_client_body_chunkisset, the body will be delivered as binary chunksinstead. The maximum size of the chunksis
either max_client_body_chunk or decide by the client if it uses HT TP chunked encoding to send the body. When using
the chunking mechanism this callback must return { continue, State::term()} for all callswherel nput is{first,
Data::binary()} or{continue, Data::binary(), State::term()}.Whenlnput is{l ast,
Data::binary(), State::term()} thereturnvauewill beignored.

Note that if the body issmall all data may be delivered in only one chunk and then the callback will be called with
{last, Data::binary(), undefined} without getting called with{first, Data::binary()}.

78 | Ericsson AB. All Rights Reserved.: inets

mod_esi

The input St at e isthe last returned St at e, in it the callback can include any data that it needs to keep track of
when handling the chunks.

Module:Function(Env, Input)-> Response
Types:

Env = env()

I nput = string()

Response = string()

This callback format consumes much memory, as the whole response must be generated before it is sent to the user.
This callback format is deprecated. For new development, use Modul e: Functi on/ 3.

Ericsson AB. All Rights Reserved.: inets | 79

mod_security

mod_security

Erlang module

Security Audit and Trailing Functionality

Exports

block user(User, Port, Dir, Seconds) -> true | {error, Reason}
block user(User, Address, Port, Dir, Seconds) -> true | {error, Reason}

Types:
User = string()
Port = integer()

Address = {A/B,C,D} | string() | undefined
Dir = string()
Seconds = integer() | infinity
Reason = no_such_directory
bl ock_user/ 4 andbl ock _user/ 5 eachhlockstheuser User fromdirectory Di r for aspecified amount of time.

list auth users(Port) -> Users | []
list auth users(Address, Port) -> Users | []
list auth users(Port, Dir) -> Users | []
list auth users(Address, Port, Dir) -> Users | []
Types:
Port = integer()
Address = {A/B,C,D} | string() | undefined
Dir = string()
Users = list() = [string()]
list auth users/1,list_auth_users/2,andlist_auth_users/ 3 eachreturnsalist of usersthat are
currently authenticated. Authentications are stored for Secur i t yAut hTi meout seconds, and then discarded.

list blocked users(Port) -> Users | []
list blocked users(Address, Port) -> Users | []
list blocked users(Port, Dir) -> Users | []
list blocked users(Address, Port, Dir) -> Users | []
Types.
Port = integer()
Address = {A,B,C,D} | string() | undefined
Dir = string()
Users = list() = [string()]
list blocked users/1,list_blocked users/2,andlist bl ocked users/ 3 eachreturnsalist of
users that are currently blocked from access.

80 | Ericsson AB. All Rights Reserved.: inets

mod_security

unblock user(User, Port) -> true | {error, Reason}

unblock user(User, Address, Port) -> true | {error, Reason}
unblock user(User, Port, Dir) -> true | {error, Reason}

unblock user(User, Address, Port, Dir) -> true | {error, Reason}

Types:
User = string()
Port = integer()

Address = {A,B,C, D} | string() | undefined
Dir = string()
Reason = term)

unbl ock_user/ 2, unbl ock_user/ 3, and unbl ock_user/ 4 each removes the user User from the list of
blocked usersfor Port (and Di r).

SecurityCallbackModule

The Securi tyCal | backModul e is a user-written module that can receive events from the mod_security
Erlang web server APl module. This module only exports the functions event/[4,5] which are described here.

Exports

Module:event(What, Port, Dir, Data) -> ignored
Module:event(What, Address, Port, Dir, Data) -> ignored

Types:
What = atom()
Port = integer()

Address = {A/B,C,D} | string() <v>Dir = string()
Data = [nfo]
Info = {Nane, Val ue}

event/ 4 orevent /5 iscalled whenever an event occursinthenod_securi t y Erlang web server APl module.
(event/ 4 iscalledif Addr ess isundefined, otherwiseevent / 5. Argument What specifiesthe type of event that
has occurred and is one of the following reasons:

auth_fail

A failed user authentication.
user bl ock

A user is being blocked from access.

user _unbl ock

A user is being removed from the block list.

The event user _unbl ock is not triggered when a user is removed from the block list explicitly using the
unbl ock_user function.

Ericsson AB. All Rights Reserved.: inets | 81

http_uri

http_uri

Erlang module

This module provides utility functions for working with URIs, according to RFC 3986.

DATA TYPES

Type definitions that are used more than once in this modul e:
bool ean() = true | false

string() =list of ASCII characters

URI DATA TYPES
Type definitions that are related to URI:
uri() = string() | binary()
Syntax according to the URI definition in RFC 3986, for example, "http://www.erlang.org/"
user _info() = string() | binary()

schene() = atom)
Example: http, https

host() = string() | binary()
port() = inet:port_nunber()
path() = string() | binary()

Represents afile path or directory path
query() = string() | binary()
fragment () = string() | binary()

For more information about URI, see RFC 3986.

Exports

decode (HexEncodedURI) -> URI

Types:
HexEncodedURI = string() | binary() - A possibly hexadeci mal encoded UR
URI = uri()

Decodes a possibly hexadecimal encoded URI.

encode(URI) -> HexEncodedURI
Types.
URI = uri()
HexEncodedURI = string() | binary() - Hexadecinmal encoded UR

Encodes a hexadecimal encoded URI.

82 | Ericsson AB. All Rights Reserved.: inets

href
href

http_uri

parse(URI) -> {ok, Result} | {error, Reason}
parse(URI, Options) -> {ok, Result} | {error, Reason}
Types:
URI = uri()
Options = [Option]
Option = {ipv6e_host with brackets, boolean()} | {schene_defaults,
schene_defaults()} | {fragnent, boolean()} | {schene_validation_fun

fun()}
Result = {Scheme, Userlnfo, Host, Port, Path, Query} | {Schene, Userl nfo,
Host, Port, Path, Query, Fragnent}

Schene = schene()
Userinfo = user_info()
Host = host ()

Port = inet:port_nunber()
Path = path()

Query = query()
Fragment = fragment ()
Reason = term)

Parses a URI. If no scheme defaults are provided, the value of the scheme_defaults function is used.

When parsing a URI with an unknown scheme (that is, a scheme not found in the scheme defaults), a port number
must be provided, otherwise the parsing fails.

If the fragment optionist r ue, the URI fragment is returned as part of the parsing result, otherwise it isignored.
Scheme validation fun is to be defined as follows:

fun(SchemeStr :: string() | binary()) ->
valid | {error, Reason :: term()}.

It is called before scheme string gets converted into scheme atom and thus possible atom leak could be prevented

The scheme portion of the URI gets converted into atom, meaning that atom leak may occur. Specifying a scheme
validation fun is recommended unless the URI is already sanitized.

scheme defaults() -> SchemeDefaults

Types:
ScheneDefaults = [{scheme(), default_schenme_port_nunber()}]
default _schene_port _nunber() = inet:port_nunber()

Provides alist of the scheme and their default port numbers supported (by default) by this utility.

Ericsson AB. All Rights Reserved.: inets | 83

	inets
	Inets User's Guide
	Introduction
	Purpose
	Prerequisites

	Inets
	Service Concept

	FTP Client
	Getting Started

	HTTP Client
	Configuration
	Getting Started

	HTTP server
	Configuration
	Getting Started
	Htaccess - User Configurable Authentication
	Access Files Directives

	Dynamic Web Pages
	CGI Version 1.1, RFC 3875
	ESI
	ERL Scheme
	EVAL Scheme

	Logging
	Erlang Web Server API
	API Description

	Inets Web Server Modules
	mod_action - Filetype/Method-Based Script Execution
	mod_alias - URL Aliasing
	mod_auth - User Authentication
	Mnesia As Authentication Database

	mod_cgi - CGI Scripts
	mod_dir - Directories
	mod_disk_log - Logging Using Disk_Log.
	mod_esi - Erlang Server Interface
	mod_get - Regular GET Requests
	mod_head - Regular HEAD Requests
	mod_htaccess - User Configurable Access
	mod_log - Logging Using Text Files.
	mod_range - Requests with Range Headers
	mod_response_control - Requests with If* Headers
	mod_security - Security Filter
	mod_trace - TRACE Request

	Reference Manual
	inets
	services/0
	services_info/0
	service_names/0
	start/0
	start/1
	start/2
	start/3
	stop/0
	stop/2

	ftp
	account/2
	append/2
	append/3
	append_bin/3
	append_chunk/2
	append_chunk_start/2
	append_chunk_end/1
	cd/2
	close/1
	delete/2
	formaterror/1
	lcd/2
	lpwd/1
	ls/1
	ls/2
	mkdir/2
	nlist/1
	nlist/2
	open/1
	open/2
	pwd/1
	recv/2
	recv/3
	recv_bin/2
	recv_chunk_start/2
	recv_chunk/1
	rename/3
	rmdir/2
	send/2
	send/3
	send_bin/3
	send_chunk/2
	send_chunk_start/2
	send_chunk_end/1
	type/2
	user/3
	user/4
	quote/2

	tftp
	change_config/2
	change_config/2
	change_config/2
	info/1
	info/1
	info/1
	read_file/3
	start/1
	write_file/3
	Module:abort/3
	Module:open/6
	Module:prepare/6
	Module:read/1
	Module:write/2
	Logger:error_msg/2
	Logger:info_msg/2
	Logger:warning_msg/2

	httpc
	cancel_request/1
	cancel_request/2
	cookie_header/1
	cookie_header/2
	cookie_header/3
	get_options/1
	get_options/2
	info/0
	info/1
	reset_cookies/0
	reset_cookies/1
	request/1
	request/2
	request/4
	request/5
	set_options/1
	set_options/2
	store_cookies/2
	store_cookies/3
	stream_next/1
	which_cookies/0
	which_cookies/1
	which_sessions/0
	which_sessions/1

	httpd
	info/1
	info/2
	info/2
	info/3
	info/4
	info/3
	reload_config/2
	Module:do/1
	Module:load/2
	Module:remove/1
	Module:store/2
	parse_query/1

	httpd_custom_api
	response_default_headers/0
	response_header/1
	request_header/1

	httpd_socket
	deliver/3
	peername/2
	resolve/0

	httpd_util
	convert_request_date/1
	create_etag/1
	day/1
	decode_hex/1
	flatlength/1
	hexlist_to_integer/1
	integer_to_hexlist/1
	lookup/2
	lookup/3
	lookup_mime/2
	lookup_mime/3
	lookup_mime_default/2
	lookup_mime_default/3
	message/3
	month/1
	multi_lookup/2
	reason_phrase/1
	rfc1123_date/0
	rfc1123_date/2
	split/3
	split_script_path/1
	split_path/1
	strip/1
	suffix/1

	mod_alias
	default_index/2
	path/3
	real_name/3
	real_script_name/3

	mod_auth
	add_group_member/3
	add_group_member/4
	add_group_member/5
	add_user/2
	add_user/5
	add_user/6
	delete_group/2
	delete_group/4
	delete_group_member/3
	delete_group_member/4
	delete_group_member/5
	delete_user/2
	delete_user/3
	delete_user/4
	get_user/2
	get_user/3
	get_user/4
	list_groups/1
	list_groups/2
	list_groups/3
	list_group_members/2
	list_group_members/3
	list_group_members/4
	list_users/1
	list_users/2
	list_users/3
	update_password/5
	update_password/6

	mod_esi
	deliver/2
	Module:Function/3
	Module:Function/2

	mod_security
	block_user/4
	block_user/5
	list_auth_users/1
	list_auth_users/2
	list_auth_users/2
	list_auth_users/3
	list_blocked_users/1
	list_blocked_users/2
	list_blocked_users/2
	list_blocked_users/3
	unblock_user/2
	unblock_user/3
	unblock_user/3
	unblock_user/4
	Module:event/4
	Module:event/5

	http_uri
	decode/1
	encode/1
	parse/1
	parse/2
	scheme_defaults/0

