
HiPE
Copyright © 2006-2018 Ericsson AB. All Rights Reserved.

HiPE 3.17.1
March 26, 2018

Copyright © 2006-2018 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: HiPE | 1

2 | Ericsson AB. All Rights Reserved.: HiPE

1 Reference Manual

HiPE

Ericsson AB. All Rights Reserved.: HiPE | 3

HiPE
Application

The normal way to native-compile an Erlang module using HiPE is to include the atom native in the Erlang compiler
options, as in:

 1> c(my_module, [native]).

Options to the HiPE compiler are then passed as follows:

 1> c(my_module, [native,{hipe,Options}]).

For on-line help in the Erlang shell, call hipe:help(). Details on HiPE compiler options are given by
hipe:help_options().

Feature Limitations
The HiPE compiler is in general compliant with the normal BEAM compiler, with respect to semantic behavior. There
are however features in the BEAM compiler and the runtime system that have limited or no support for HiPE compiled
modules.

Stack traces

Stack traces returned from erlang:get_stacktrace/0 or as part of 'EXIT' terms can look incomplete
if HiPE compiled functions are involved. Typically a stack trace will contain only BEAM compiled functions or
only HiPE compiled functions, depending on where the exception was raised.

Source code line numbers in stack traces are also not supported by HiPE compiled functions.

Tracing

Erlang call trace is not supported by HiPE. Calling erlang:trace_pattern({M,F,A}, ...) does not
have any effect on HiPE compiled modules.

NIFs

Modules compiled with HiPE can not call erlang:load_nif/2 to load NIFs.

-on_load

Modules compiled with HiPE can not use -on_load() directives.

Performance Limitations
The HiPE compiler does in general produce faster code than the BEAM compiler. There are however some situation
when HiPE compiled code will perform worse than BEAM code.

Mode switches

Every time a process changes from executing code in a HiPE compiled module to a BEAM compiled module (or
vice versa), it will do a mode switch. This involves a certain amount of CPU overhead which can have a negative
net impact if the process is switching back and forth without getting enough done in each mode.

Optimization for receive with unique references

The BEAM compiler can do an optimization when a receive statement is only waiting for messages containing a
reference created before the receive. All messages that existed in the queue when the reference was created will

HiPE

4 | Ericsson AB. All Rights Reserved.: HiPE

be bypassed, as they cannot possibly contain the reference. HiPE currently has an optimization similar this, but
it is not guaranteed to bypass all messages. In the worst case scenario it, cannot bypass any messages at all.

An example of this is when gen_server:call() waits for the reply message.

Stability Issues
Not yielding in receive statements

HiPE will not yield in receive statements where appropriate. If a process have lots of signals in its signal queue
and execute a HiPE compiled receive statement, the scheduler thread performing the execution may be stuck
in the receive statement for a very long time. This can in turn cause various severe issues such as for example
prevent the runtime system from being able to release memory.

SEE ALSO
c(3), compile(3)

	HiPE
	Reference Manual
	HiPE

