
Erl_Interface
Copyright © 1998-2018 Ericsson AB. All Rights Reserved.

Erl_Interface 3.10.1
March 26, 2018



Copyright © 1998-2018 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018



Ericsson AB. All Rights Reserved.: Erl_Interface | 1



1.1  Erl_Interface User's Guide

2 | Ericsson AB. All Rights Reserved.: Erl_Interface

1    Erl_Interface User's Guide

1.1  Erl_Interface User's Guide
1.1.1  Introduction
The Erl_Interface library contains functions that help you integrate programs written in C and Erlang. The
functions in Erl_Interface support the following:

• Manipulation of data represented as Erlang data types

• Conversion of data between C and Erlang formats

• Encoding and decoding of Erlang data types for transmission or storage

• Communication between C nodes and Erlang processes

• Backup and restore of C node state to and from Mnesia

Note:

By default, the Erl_Interface libraries are only guaranteed to be compatible with other Erlang/
OTP components from the same release as the libraries themselves. For information about how to
communicate with Erlang/OTP components from earlier releases, see function  ei:ei_set_compat_rel and
erl_eterm:erl_set_compat_rel.

Scope
In the following sections, these topics are described:

• Compiling your code for use with Erl_Interface

• Initializing Erl_Interface

• Encoding, decoding, and sending Erlang terms

• Building terms and patterns

• Pattern matching

• Connecting to a distributed Erlang node

• Using the Erlang Port Mapper Daemon (EPMD)

• Sending and receiving Erlang messages

• Remote procedure calls

• Using global names

• Using the registry

Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.1.2  Compiling and Linking Your Code
To use any of the Erl_Interface functions, include the following lines in your code:



1.1  Erl_Interface User's Guide

Ericsson AB. All Rights Reserved.: Erl_Interface | 3

#include "erl_interface.h"
#include "ei.h"    

Determine where the top directory of your OTP installation is. To find this, start Erlang and enter the following
command at the Eshell prompt:

Eshell V4.7.4  (abort with ^G)
1> code:root_dir().
/usr/local/otp    

To compile your code, ensure that your C compiler knows where to find erl_interface.h by specifying an
appropriate -I argument on the command line, or add it to the CFLAGS definition in your Makefile. The correct
value for this path is $OTPROOT/lib/erl_interface-$EIVSN/include, where:

• $OTPROOT is the path reported by code:root_dir/0 in the example above.

• $EIVSN is the version of the Erl_Interface application, for example, erl_interface-3.2.3.

Compiling the code:

$ cc -c -I/usr/local/otp/lib/erl_interface-3.2.3/include myprog.c    

When linking:

• Specify the path to liberl_interface.a and libei.a with -L$OTPROOT/lib/
erl_interface-3.2.3/lib.

• Specify the name of the libraries with -lerl_interface -lei.

Do this on the command line or add the flags to the LDFLAGS definition in your Makefile.

Linking the code:

$ ld -L/usr/local/otp/lib/erl_interface-3.2.3/
                            lib myprog.o -lerl_interface -lei -o myprog    

On some systems it can be necessary to link with some more libraries (for example, libnsl.a and libsocket.a
on Solaris, or wsock32.lib on Windows) to use the communication facilities of Erl_Interface.

If you use the Erl_Interface functions in a threaded application based on POSIX threads or Solaris threads,
then Erl_Interface needs access to some of the synchronization facilities in your threads package. You must
specify extra compiler flags to indicate which of the packages you use. Define _REENTRANT and either STHREADS
or PTHREADS. The default is to use POSIX threads if _REENTRANT is specified.

1.1.3  Initializing the Erl_Interface Library
Before calling any of the other Erl_Interface functions, call erl_init() exactly once to initialize the library.
erl_init() takes two arguments. However, the arguments are no longer used by Erl_Interface and are
therefore to be specified as erl_init(NULL,0).

1.1.4  Encoding, Decoding, and Sending Erlang Terms
Data sent between distributed Erlang nodes is encoded in the Erlang external format. You must therefore encode
and decode Erlang terms into byte streams if you want to use the distribution protocol to communicate between a C
program and Erlang.

The Erl_Interface library supports this activity. It has several C functions that create and manipulate Erlang data
structures. The library also contains an encode and a decode function. The following example shows how to create
and encode an Erlang tuple {tobbe,3928}:



1.1  Erl_Interface User's Guide

4 | Ericsson AB. All Rights Reserved.: Erl_Interface

ETERM *arr[2], *tuple;
char buf[BUFSIZ];
int i;
  
arr[0] = erl_mk_atom("tobbe");
arr[1] = erl_mk_integer(3928);
tuple  = erl_mk_tuple(arr, 2);
i = erl_encode(tuple, buf);    

Alternatively, you can use erl_send() and erl_receive_msg, which handle the encoding and decoding of
messages transparently.

For a complete description, see the following modules:

• erl_eterm for creating Erlang terms

• erl_marshal for encoding and decoding routines

1.1.5  Building Terms and Patterns
The previous example can be simplified by using the erl_format module to create an Erlang term:

ETERM *ep;
ep = erl_format("{~a,~i}", "tobbe", 3928);    

For a complete description of the different format directives, see the erl_format module.

The following example is more complex:

ETERM *ep;
ep = erl_format("[{name,~a},{age,~i},{data,~w}]",
                 "madonna", 
                 21, 
                 erl_format("[{adr,~s,~i}]", "E-street", 42));
erl_free_compound(ep);      

As in the previous examples, it is your responsibility to free the memory allocated for Erlang terms. In this example,
erl_free_compound() ensures that the complete term pointed to by ep is released. This is necessary because
the pointer from the second call to erl_format is lost.

The following example shows a slightly different solution:

ETERM *ep,*ep2;
ep2 = erl_format("[{adr,~s,~i}]","E-street",42);
ep  = erl_format("[{name,~a},{age,~i},{data,~w}]",
                 "madonna", 21, ep2);
erl_free_term(ep);  
erl_free_term(ep2);      

In this case, you free the two terms independently. The order in which you free the terms ep and ep2 is not important,
because the Erl_Interface library uses reference counting to determine when it is safe to remove objects.

If you are unsure whether you have freed the terms properly, you can use the following function to see the status of
the fixed term allocator:

long allocated, freed;

erl_eterm_statistics(&allocated,&freed);
printf("currently allocated blocks: %ld\n",allocated);
printf("length of freelist: %ld\n",freed);

/* really free the freelist */
erl_eterm_release();



1.1  Erl_Interface User's Guide

Ericsson AB. All Rights Reserved.: Erl_Interface | 5

For more information, see the erl_malloc module.

1.1.6  Pattern Matching
An Erlang pattern is a term that can contain unbound variables or "do not care" symbols. Such a pattern can be
matched against a term and, if the match is successful, any unbound variables in the pattern will be bound as a side
effect. The content of a bound variable can then be retrieved:

ETERM *pattern;
pattern = erl_format("{madonna,Age,_}");    

The  erl_format:erl_match function performs pattern matching. It takes a pattern and a term and tries to match
them. As a side effect any unbound variables in the pattern will be bound. In the following example, a pattern is created
with a variable Age, which is included at two positions in the tuple. The pattern match is performed as follows:

• erl_match binds the contents of Age to 21 the first time it reaches the variable.

• The second occurrence of Age causes a test for equality between the terms, as Age is already bound to 21. As
Age is bound to 21, the equality test succeeds and the match continues until the end of the pattern.

• If the end of the pattern is reached, the match succeeds and you can retrieve the contents of the variable.

ETERM *pattern,*term;
pattern = erl_format("{madonna,Age,Age}");
term    = erl_format("{madonna,21,21}");
if (erl_match(pattern, term)) {
  fprintf(stderr, "Yes, they matched: Age = ");
  ep = erl_var_content(pattern, "Age"); 
  erl_print_term(stderr, ep);
  fprintf(stderr,"\n");
  erl_free_term(ep);
}
erl_free_term(pattern);
erl_free_term(term);    

For more information, see the  erl_format:erl_match function.

1.1.7  Connecting to a Distributed Erlang Node
To connect to a distributed Erlang node, you must first initialize the connection routine with
erl_connect:erl_connect_init, which stores information, such as the hostname, node name, and IP address
for later use:

int identification_number = 99;
int creation=1;
char *cookie="a secret cookie string"; /* An example */
erl_connect_init(identification_number, cookie, creation);    

For more information, see the erl_connect module.

After initialization, you set up the connection to the Erlang node. To specify the Erlang node you want to connect to,
use erl_connect(). The following example sets up the connection and is to result in a valid socket file descriptor:

int sockfd;
char *nodename="xyz@chivas.du.etx.ericsson.se"; /* An example */
if ((sockfd = erl_connect(nodename)) < 0)
  erl_err_quit("ERROR: erl_connect failed");    

erl_err_quit() prints the specified string and terminates the program. For more information, see the
erl_error module.



1.1  Erl_Interface User's Guide

6 | Ericsson AB. All Rights Reserved.: Erl_Interface

1.1.8  Using EPMD
erts:epmd is the Erlang Port Mapper Daemon. Distributed Erlang nodes register with epmd on the local host to
indicate to other nodes that they exist and can accept connections. epmd maintains a register of node and port number
information, and when a node wishes to connect to another node, it first contacts epmd to find the correct port number
to connect to.

When you use erl_connect to connect to an Erlang node, a connection is first made to epmd and, if the node is
known, a connection is then made to the Erlang node.

C nodes can also register themselves with epmd if they want other nodes in the system to be able to find and connect
to them.

Before registering with epmd, you must first create a listen socket and bind it to a port. Then:

int pub;

pub = erl_publish(port);    

pub is a file descriptor now connected to epmd. epmd monitors the other end of the connection. If it detects that the
connection has been closed, the node becomes unregistered. So, if you explicitly close the descriptor or if your node
fails, it becomes unregistered from epmd.

Notice that on some systems (such as VxWorks), a failed node is not detected by this mechanism, as the operating
system does not automatically close descriptors that were left open when the node failed. If a node has failed in this
way, epmd prevents you from registering a new node with the old name, as it thinks that the old name is still in use.
In this case, you must unregister the name explicitly:

erl_unpublish(node);    

This causes epmd to close the connection from the far end. Notice that if the name was in fact still in use by a node,
the results of this operation are unpredictable. Also, doing this does not cause the local end of the connection to close,
so resources can be consumed.

1.1.9  Sending and Receiving Erlang Messages
Use one of the following two functions to send messages:

• erl_connect:erl_send

• erl_connect:erl_reg_send

As in Erlang, messages can be sent to a pid or to a registered name. It is easier to send a message to a registered name,
as it avoids the problem of finding a suitable pid.

Use one of the following two functions to receive messages:

• erl_connect:erl_receive

• erl_connect:erl_receive_msg

erl_receive() receives the message into a buffer, while erl_receive_msg() decodes the message into an
Erlang term.

Example of Sending Messages
In the following example, {Pid, hello_world} is sent to a registered process my_server. The message is
encoded by erl_send():



1.1  Erl_Interface User's Guide

Ericsson AB. All Rights Reserved.: Erl_Interface | 7

extern const char *erl_thisnodename(void);
extern short erl_thiscreation(void);
#define SELF(fd) erl_mk_pid(erl_thisnodename(),fd,0,erl_thiscreation())
ETERM *arr[2], *emsg;
int sockfd, creation=1;
  
arr[0] = SELF(sockfd);
arr[1] = erl_mk_atom("Hello world");
emsg   = erl_mk_tuple(arr, 2);
  
erl_reg_send(sockfd, "my_server", emsg);
erl_free_term(emsg);      

The first element of the tuple that is sent is your own pid. This enables my_server to reply. For more information
about the primitives, see the erl_connect module.

Example of Receiving Messages
In this example, {Pid, Something} is received. The received pid is then used to return {goodbye,Pid}.

ETERM *arr[2], *answer;
int sockfd,rc;
char buf[BUFSIZE];
ErlMessage emsg;
  
if ((rc = erl_receive_msg(sockfd , buf, BUFSIZE, &emsg)) == ERL_MSG) {
   arr[0] = erl_mk_atom("goodbye");
   arr[1] = erl_element(1, emsg.msg); 
   answer = erl_mk_tuple(arr, 2);
   erl_send(sockfd, arr[1], answer);
   erl_free_term(answer);
   erl_free_term(emsg.msg);
   erl_free_term(emsg.to);
}      

To provide robustness, a distributed Erlang node occasionally polls all its connected neighbors in an attempt to
detect failed nodes or communication links. A node that receives such a message is expected to respond immediately
with an ERL_TICK message. This is done automatically by erl_receive(). However, when this has occurred,
erl_receive returns ERL_TICK to the caller without storing a message into the ErlMessage structure.

When a message has been received, it is the caller's responsibility to free the received message emsg.msg and
emsg.to or emsg.from, depending on the type of message received.

For more information, see the erl_connect and erl_eterm modules.

1.1.10  Remote Procedure Calls
An Erlang node acting as a client to another Erlang node typically sends a request and waits for a reply. Such a request
is included in a function call at a remote node and is called a remote procedure call.

The following example shows how the Erl_Interface library supports remote procedure calls:



1.1  Erl_Interface User's Guide

8 | Ericsson AB. All Rights Reserved.: Erl_Interface

char modname[]=THE_MODNAME;
ETERM *reply,*ep;
ep = erl_format("[~a,[]]", modname);
if (!(reply = erl_rpc(fd, "c", "c", ep)))
  erl_err_msg("<ERROR> when compiling file: %s.erl !\n", modname);
erl_free_term(ep);
ep = erl_format("{ok,_}");
if (!erl_match(ep, reply))
  erl_err_msg("<ERROR> compiler errors !\n");
erl_free_term(ep);
erl_free_term(reply);    

c:c/1 is called to compile the specified module on the remote node. erl_match() checks that the compilation
was successful by testing for the expected ok.

For more information about erl_rpc() and its companions erl_rpc_to() and erl_rpc_from(), see the
erl_connect module.

1.1.11  Using Global Names
A C node has access to names registered through the global module in Kernel. Names can be looked up, allowing
the C node to send messages to named Erlang services. C nodes can also register global names, allowing them to
provide named services to Erlang processes or other C nodes.

Erl_Interface does not provide a native implementation of the global service. Instead it uses the global services
provided by a "nearby" Erlang node. To use the services described in this section, it is necessary to first open a
connection to an Erlang node.

To see what names there are:

char **names;
int count;
int i;

names = erl_global_names(fd,&count);

if (names) 
  for (i=0; i<count; i++) 
    printf("%s\n",names[i]);

free(names);    

erl_global:erl_global_names allocates and returns a buffer containing all the names known to the global
module in Kernel. count is initialized to indicate the number of names in the array. The array of strings in names
is terminated by a NULL pointer, so it is not necessary to use count to determine when the last name is reached.

It is the caller's responsibility to free the array. erl_global_names allocates the array and all the strings using a
single call to malloc(), so free(names) is all that is necessary.

To look up one of the names:

ETERM *pid;
char node[256];

pid = erl_global_whereis(fd,"schedule",node);    

If "schedule" is known to the global module in Kernel, an Erlang pid is returned that can be used to send
messages to the schedule service. Also, node is initialized to contain the name of the node where the service is
registered, so that you can make a connection to it by simply passing the variable to erl_connect.



1.1  Erl_Interface User's Guide

Ericsson AB. All Rights Reserved.: Erl_Interface | 9

Before registering a name, you should already have registered your port number with epmd. This is not strictly
necessary, but if you neglect to do so, then other nodes wishing to communicate with your service cannot find or
connect to your process.

Create a pid that Erlang processes can use to communicate with your service:

ETERM *pid;

pid = erl_mk_pid(thisnode,14,0,0);
erl_global_register(fd,servicename,pid);    

After registering the name, use  erl_connect:erl_accept to wait for incoming connections.

Note:

Remember to free pid later with  erl_malloc:erl_free_term.

To unregister a name:

erl_global_unregister(fd,servicename);    

1.1.12  Using the Registry
This section describes the use of the registry, a simple mechanism for storing key-value pairs in a C-node, as well as
backing them up or restoring them from an Mnesia table on an Erlang node. For more detailed information about
the individual API functions, see the registry module.

Keys are strings, that is, NULL-terminated arrays of characters, and values are arbitrary objects. Although integers
and floating point numbers are treated specially by the registry, you can store strings or binary objects of any type
as pointers.

To start, open a registry:

ei_reg *reg;

reg = ei_reg_open(45);    

The number 45 in the example indicates the approximate number of objects that you expect to store in the registry.
Internally the registry uses hash tables with collision chaining, so there is no absolute upper limit on the number of
objects that the registry can contain, but if performance or memory usage is important, then you are to choose a number
accordingly. The registry can be resized later.

You can open as many registries as you like (if memory permits).

Objects are stored and retrieved through set and get functions. The following example shows how to store integers,
floats, strings, and arbitrary binary objects:

struct bonk *b = malloc(sizeof(*b));
char *name = malloc(7);

ei_reg_setival(reg,"age",29); 
ei_reg_setfval(reg,"height",1.85);

strcpy(name,"Martin");
ei_reg_setsval(reg,"name",name); 

b->l = 42;
b->m = 12;
ei_reg_setpval(reg,"jox",b,sizeof(*b));    



1.1  Erl_Interface User's Guide

10 | Ericsson AB. All Rights Reserved.: Erl_Interface

If you try to store an object in the registry and there is an existing object with the same key, the new value replaces the
old one. This is done regardless of whether the new object and the old one have the same type, so you can, for example,
replace a string with an integer. If the existing value is a string or binary, it is freed before the new value is assigned.

Stored values are retrieved from the registry as follows:

long i;
double f;
char *s;
struct bonk *b;
int size;

i = ei_reg_getival(reg,"age");
f = ei_reg_getfval(reg,"height");
s = ei_reg_getsval(reg,"name");
b = ei_reg_getpval(reg,"jox",&size);    

In all the above examples, the object must exist and it must be of the right type for the specified operation. If you do
not know the type of an object, you can ask:

struct ei_reg_stat buf;

ei_reg_stat(reg,"name",&buf);    

Buf is initialized to contain object attributes.

Objects can be removed from the registry:

ei_reg_delete(reg,"name");    

When you are finished with a registry, close it to remove all the objects and free the memory back to the system:

ei_reg_close(reg);    

Backing Up the Registry to Mnesia
The contents of a registry can be backed up to Mnesia on a "nearby" Erlang node. You must provide an open
connection to the Erlang node (see erl_connect). Also, Mnesia 3.0 or later must be running on the Erlang node
before the backup is initiated:

ei_reg_dump(fd, reg, "mtab", dumpflags);      

This example back up the contents of the registry to the specified Mnesia table "mtab". Once a registry has been
backed up to Mnesia like this, more backups only affect objects that have been modified since the most recent backup,
that is, objects that have been created, changed, or deleted. The backup operation is done as a single atomic transaction,
so that either the entire backup is performed or none of it.

Likewise, a registry can be restored from a Mnesia table:

ei_reg_restore(fd, reg, "mtab");      

This reads the entire contents of "mtab" into the specified registry. After the restore, all the objects in the registry
are marked as unmodified, so a later backup only affects objects that you have modified since the restore.

Notice that if you restore to a non-empty registry, objects in the table overwrite objects in the registry with the same
keys. Also, the entire contents of the registry is marked as unmodified after the restore, including any modified objects
that were not overwritten by the restore operation. This may not be your intention.

Storing Strings and Binaries
When string or binary objects are stored in the registry it is important that some simple guidelines are followed.



1.1  Erl_Interface User's Guide

Ericsson AB. All Rights Reserved.: Erl_Interface | 11

Most importantly, the object must have been created with a single call to malloc() (or similar), so that it can later
be removed by a single call to free(). Objects are freed by the registry when it is closed, or when you assign a new
value to an object that previously contained a string or binary.

Notice that if you store binary objects that are context-dependent (for example, containing pointers or open file
descriptors), they lose their meaning if they are backed up to a Mnesia table and later restored in a different context.

When you retrieve a stored string or binary value from the registry, the registry maintains a pointer to the object and
you are passed a copy of that pointer. You should never free an object retrieved in this manner because when the
registry later attempts to free it, a runtime error occurs that likely causes the C-node to crash.

You are free to modify the contents of an object retrieved this way. However, when you do so, the registry is not aware
of your changes, possibly causing it to be missed the next time you make an Mnesia backup of the registry contents.
This can be avoided if you mark the object as dirty after any such changes with  registry:ei_reg_markdirty,
or pass appropriate flags to  registry:ei_reg_dump.



1.1  Erl_Interface User's Guide

12 | Ericsson AB. All Rights Reserved.: Erl_Interface

2    Reference Manual



ei

Ericsson AB. All Rights Reserved.: Erl_Interface | 13

ei
C Library

The library ei contains macros and functions to encode and decode the Erlang binary term format.

ei allows you to convert atoms, lists, numbers, and binaries to and from the binary format. This is useful when writing
port programs and drivers. ei uses a given buffer, no dynamic memory (except ei_decode_fun()) and is often
quite fast.

ei also handles C-nodes, C-programs that talks Erlang distribution with Erlang nodes (or other C-nodes) using the
Erlang distribution format. The difference between ei and erl_interface is that ei uses the binary format
directly when sending and receiving terms. It is also thread safe, and using threads, one process can handle multiple
C-nodes. The erl_interface library is built on top of ei, but of legacy reasons, it does not allow for multiple C-
nodes. In general, ei is the preferred way of doing C-nodes.

The decode and encode functions use a buffer and an index into the buffer, which points at the point where to encode
and decode. The index is updated to point right after the term encoded/decoded. No checking is done whether the term
fits in the buffer or not. If encoding goes outside the buffer, the program can crash.

All functions take two parameters:

• buf is a pointer to the buffer where the binary data is or will be.

• index is a pointer to an index into the buffer. This parameter is incremented with the size of the term decoded/
encoded.

The data is thus at buf[*index] when an ei function is called.

All encode functions assume that the buf and index parameters point to a buffer large enough for the data. To get the
size of an encoded term, without encoding it, pass NULL instead of a buffer pointer. Parameter index is incremented,
but nothing will be encoded. This is the way in ei to "preflight" term encoding.

There are also encode functions that use a dynamic buffer. It is often more convenient to use these to encode data. All
encode functions comes in two versions; those starting with ei_x use a dynamic buffer.

All functions return 0 if successful, otherwise -1 (for example, if a term is not of the expected type, or the data to
decode is an invalid Erlang term).

Some of the decode functions need a pre-allocated buffer. This buffer must be allocated large enough, and for non-
compound types the ei_get_type() function returns the size required (notice that for strings an extra byte is
needed for the NULL-terminator).

Data Types
erlang_char_encoding

typedef enum {
    ERLANG_ASCII = 1,
    ERLANG_LATIN1 = 2,
    ERLANG_UTF8 = 4
} erlang_char_encoding;

The character encodings used for atoms. ERLANG_ASCII represents 7-bit ASCII. Latin-1 and UTF-8 are
different extensions of 7-bit ASCII. All 7-bit ASCII characters are valid Latin-1 and UTF-8 characters. ASCII
and Latin-1 both represent each character by one byte. An UTF-8 character can consist of 1-4 bytes. Notice that
these constants are bit-flags and can be combined with bitwise OR.



ei

14 | Ericsson AB. All Rights Reserved.: Erl_Interface

Exports

int ei_decode_atom(const char *buf, int *index, char *p)
Decodes an atom from the binary format. The NULL-terminated name of the atom is placed at p. At most MAXATOMLEN
bytes can be placed in the buffer.

int ei_decode_atom_as(const char *buf, int *index, char *p, int plen,
erlang_char_encoding want, erlang_char_encoding* was, erlang_char_encoding*
result)
Decodes an atom from the binary format. The NULL-terminated name of the atom is placed in buffer at p of length
plen bytes.

The wanted string encoding is specified by want. The original encoding used in the binary format (Latin-1 or UTF-8)
can be obtained from *was. The encoding of the resulting string (7-bit ASCII, Latin-1, or UTF-8) can be obtained
from *result. Both was and result can be NULL. *result can differ from want if want is a bitwise OR'd
combination like ERLANG_LATIN1|ERLANG_UTF8 or if *result turns out to be pure 7-bit ASCII (compatible
with both Latin-1 and UTF-8).

This function fails if the atom is too long for the buffer or if it cannot be represented with encoding want.

This function was introduced in Erlang/OTP R16 as part of a first step to support UTF-8 atoms.

int ei_decode_bignum(const char *buf, int *index, mpz_t obj)
Decodes an integer in the binary format to a GMP mpz_t integer. To use this function, the ei library must be
configured and compiled to use the GMP library.

int ei_decode_binary(const char *buf, int *index, void *p, long *len)
Decodes a binary from the binary format. Parameter len is set to the actual size of the binary. Notice that
ei_decode_binary() assumes that there is enough room for the binary. The size required can be fetched by
ei_get_type().

int ei_decode_boolean(const char *buf, int *index, int *p)
Decodes a boolean value from the binary format. A boolean is actually an atom, true decodes 1 and false decodes 0.

int ei_decode_char(const char *buf, int *index, char *p)
Decodes a char (8-bit) integer between 0-255 from the binary format. For historical reasons the returned integer is of
type char. Your C code is to consider the returned value to be of type unsigned char even if the C compilers
and system can define char to be signed.

int ei_decode_double(const char *buf, int *index, double *p)
Decodes a double-precision (64-bit) floating point number from the binary format.

int ei_decode_ei_term(const char* buf, int* index, ei_term* term)
Decodes any term, or at least tries to. If the term pointed at by *index in buf fits in the term union, it is decoded,
and the appropriate field in term->value is set, and *index is incremented by the term size.

The function returns 1 on successful decoding, -1 on error, and 0 if the term seems alright, but does not fit in the
term structure. If 1 is returned, the index is incremented, and term contains the decoded term.



ei

Ericsson AB. All Rights Reserved.: Erl_Interface | 15

The term structure contains the arity for a tuple or list, size for a binary, string, or atom. It contains a term if it is any
of the following: integer, float, atom, pid, port, or ref.

int ei_decode_fun(const char *buf, int *index, erlang_fun *p)
void free_fun(erlang_fun* f)
Decodes a fun from the binary format. Parameter p is to be NULL or point to an erlang_fun structure. This is
the only decode function that allocates memory. When the erlang_fun is no longer needed, it is to be freed with
free_fun. (This has to do with the arbitrary size of the environment for a fun.)

int ei_decode_list_header(const char *buf, int *index, int *arity)
Decodes a list header from the binary format. The number of elements is returned in arity. The arity+1 elements
follow (the last one is the tail of the list, normally an empty list). If arity is 0, it is an empty list.

Notice that lists are encoded as strings if they consist entirely of integers in the range 0..255. This function do not
decode such strings, use ei_decode_string() instead.

int ei_decode_long(const char *buf, int *index, long *p)
Decodes a long integer from the binary format. If the code is 64 bits, the function ei_decode_long() is the same
as ei_decode_longlong().

int ei_decode_longlong(const char *buf, int *index, long long *p)
Decodes a GCC long long or Visual C++ __int64 (64-bit) integer from the binary format. This function is
missing in the VxWorks port.

int ei_decode_map_header(const char *buf, int *index, int *arity)
Decodes a map header from the binary format. The number of key-value pairs is returned in *arity. Keys and values
follow in this order: K1, V1, K2, V2, ..., Kn, Vn. This makes a total of arity*2 terms. If arity is
zero, it is an empty map. A correctly encoded map does not have duplicate keys.

int ei_decode_pid(const char *buf, int *index, erlang_pid *p)
Decodes a process identifier (pid) from the binary format.

int ei_decode_port(const char *buf, int *index, erlang_port *p)
Decodes a port identifier from the binary format.

int ei_decode_ref(const char *buf, int *index, erlang_ref *p)
Decodes a reference from the binary format.

int ei_decode_string(const char *buf, int *index, char *p)
Decodes a string from the binary format. A string in Erlang is a list of integers between 0 and 255. Notice that as the
string is just a list, sometimes lists are encoded as strings by term_to_binary/1, even if it was not intended.

The string is copied to p, and enough space must be allocated. The returned string is NULL-terminated, so you must
add an extra byte to the memory requirement.



ei

16 | Ericsson AB. All Rights Reserved.: Erl_Interface

int ei_decode_term(const char *buf, int *index, void *t)
Decodes a term from the binary format. The term is return in t as a ETERM*, so t is actually an ETERM** (see
erl_eterm). The term is later to be deallocated.

Notice that this function is located in the Erl_Interface library.

int ei_decode_trace(const char *buf, int *index, erlang_trace *p)
Decodes an Erlang trace token from the binary format.

int ei_decode_tuple_header(const char *buf, int *index, int *arity)
Decodes a tuple header, the number of elements is returned in arity. The tuple elements follow in order in the buffer.

int ei_decode_ulong(const char *buf, int *index, unsigned long *p)
Decodes an unsigned long integer from the binary format. If the code is 64 bits, the function ei_decode_ulong()
is the same as ei_decode_ulonglong().

int ei_decode_ulonglong(const char *buf, int *index, unsigned long long *p)
Decodes a GCC unsigned long long or Visual C++ unsigned __int64 (64-bit) integer from the binary
format. This function is missing in the VxWorks port.

int ei_decode_version(const char *buf, int *index, int *version)
Decodes the version magic number for the Erlang binary term format. It must be the first token in a binary term.

int ei_encode_atom(char *buf, int *index, const char *p)
int ei_encode_atom_len(char *buf, int *index, const char *p, int len)
int ei_x_encode_atom(ei_x_buff* x, const char *p)
int ei_x_encode_atom_len(ei_x_buff* x, const char *p, int len)
Encodes an atom in the binary format. Parameter p is the name of the atom in Latin-1 encoding.
Only up to MAXATOMLEN-1 bytes are encoded. The name is to be NULL-terminated, except for the
ei_x_encode_atom_len() function.

int ei_encode_atom_as(char *buf, int *index, const char *p,
erlang_char_encoding from_enc, erlang_char_encoding to_enc)
int ei_encode_atom_len_as(char *buf, int *index, const char *p, int len,
erlang_char_encoding from_enc, erlang_char_encoding to_enc)
int ei_x_encode_atom_as(ei_x_buff* x, const char *p, erlang_char_encoding
from_enc, erlang_char_encoding to_enc)
int ei_x_encode_atom_len_as(ei_x_buff* x, const char *p, int len,
erlang_char_encoding from_enc, erlang_char_encoding to_enc)
Encodes an atom in the binary format. Parameter p is the name of the atom with character encoding from_enc
(ASCII, Latin-1, or UTF-8). The name must either be NULL-terminated or a function variant with a len parameter
must be used.

The encoding fails if p is not a valid string in encoding from_enc.

Argument to_enc is ignored. As from Erlang/OTP 20 the encoding is always done in UTF-8 which is readable by
nodes as old as Erlang/OTP R16.



ei

Ericsson AB. All Rights Reserved.: Erl_Interface | 17

int ei_encode_bignum(char *buf, int *index, mpz_t obj)
int ei_x_encode_bignum(ei_x_buff *x, mpz_t obj)
Encodes a GMP mpz_t integer to binary format. To use this function, the ei library must be configured and compiled
to use the GMP library.

int ei_encode_binary(char *buf, int *index, const void *p, long len)
int ei_x_encode_binary(ei_x_buff* x, const void *p, long len)
Encodes a binary in the binary format. The data is at p, of len bytes length.

int ei_encode_boolean(char *buf, int *index, int p)
int ei_x_encode_boolean(ei_x_buff* x, int p)
Encodes a boolean value as the atom true if p is not zero, or false if p is zero.

int ei_encode_char(char *buf, int *index, char p)
int ei_x_encode_char(ei_x_buff* x, char p)
Encodes a char (8-bit) as an integer between 0-255 in the binary format. For historical reasons the integer argument
is of type char. Your C code is to consider the specified argument to be of type unsigned char even if the C
compilers and system may define char to be signed.

int ei_encode_double(char *buf, int *index, double p)
int ei_x_encode_double(ei_x_buff* x, double p)
Encodes a double-precision (64-bit) floating point number in the binary format.

Returns -1 if the floating point number is not finite.

int ei_encode_empty_list(char* buf, int* index)
int ei_x_encode_empty_list(ei_x_buff* x)
Encodes an empty list. It is often used at the tail of a list.

int ei_encode_fun(char *buf, int *index, const erlang_fun *p)
int ei_x_encode_fun(ei_x_buff* x, const erlang_fun* fun)
Encodes a fun in the binary format. Parameter p points to an erlang_fun structure. The erlang_fun is not freed
automatically, the free_fun is to be called if the fun is not needed after encoding.

int ei_encode_list_header(char *buf, int *index, int arity)
int ei_x_encode_list_header(ei_x_buff* x, int arity)
Encodes a list header, with a specified arity. The next arity+1 terms are the elements (actually its arity cons
cells) and the tail of the list. Lists and tuples are encoded recursively, so that a list can contain another list or tuple.

For example, to encode the list [c, d, [e | f]]:



ei

18 | Ericsson AB. All Rights Reserved.: Erl_Interface

ei_encode_list_header(buf, &i, 3);
ei_encode_atom(buf, &i, "c");
ei_encode_atom(buf, &i, "d");
ei_encode_list_header(buf, &i, 1);
ei_encode_atom(buf, &i, "e");
ei_encode_atom(buf, &i, "f");
ei_encode_empty_list(buf, &i);

Note:

It may seem that there is no way to create a list without knowing the number of elements in advance. But indeed
there is a way. Notice that the list [a, b, c] can be written as [a | [b | [c]]]. Using this, a list can
be written as conses.

To encode a list, without knowing the arity in advance:

while (something()) {
    ei_x_encode_list_header(&x, 1);
    ei_x_encode_ulong(&x, i); /* just an example */
}
ei_x_encode_empty_list(&x);

int ei_encode_long(char *buf, int *index, long p)
int ei_x_encode_long(ei_x_buff* x, long p)
Encodes a long integer in the binary format. If the code is 64 bits, the function ei_encode_long() is the same
as ei_encode_longlong().

int ei_encode_longlong(char *buf, int *index, long long p)
int ei_x_encode_longlong(ei_x_buff* x, long long p)
Encodes a GCC long long or Visual C++ __int64 (64-bit) integer in the binary format. This function is missing
in the VxWorks port.

int ei_encode_map_header(char *buf, int *index, int arity)
int ei_x_encode_map_header(ei_x_buff* x, int arity)
Encodes a map header, with a specified arity. The next arity*2 terms encoded will be the keys and values of the
map encoded in the following order: K1, V1, K2, V2, ..., Kn, Vn.

For example, to encode the map #{a => "Apple", b => "Banana"}:

ei_x_encode_map_header(&x, 2);
ei_x_encode_atom(&x, "a");
ei_x_encode_string(&x, "Apple");
ei_x_encode_atom(&x, "b");
ei_x_encode_string(&x, "Banana");

A correctly encoded map cannot have duplicate keys.



ei

Ericsson AB. All Rights Reserved.: Erl_Interface | 19

int ei_encode_pid(char *buf, int *index, const erlang_pid *p)
int ei_x_encode_pid(ei_x_buff* x, const erlang_pid *p)
Encodes an Erlang process identifier (pid) in the binary format. Parameter p points to an erlang_pid structure
(which should have been obtained earlier with ei_decode_pid()).

int ei_encode_port(char *buf, int *index, const erlang_port *p)
int ei_x_encode_port(ei_x_buff* x, const erlang_port *p)
Encodes an Erlang port in the binary format. Parameter p points to a erlang_port structure (which should have
been obtained earlier with ei_decode_port()).

int ei_encode_ref(char *buf, int *index, const erlang_ref *p)
int ei_x_encode_ref(ei_x_buff* x, const erlang_ref *p)
Encodes an Erlang reference in the binary format. Parameter p points to a erlang_ref structure (which should have
been obtained earlier with ei_decode_ref()).

int ei_encode_string(char *buf, int *index, const char *p)
int ei_encode_string_len(char *buf, int *index, const char *p, int len)
int ei_x_encode_string(ei_x_buff* x, const char *p)
int ei_x_encode_string_len(ei_x_buff* x, const char* s, int len)
Encodes a string in the binary format. (A string in Erlang is a list, but is encoded as a character array in the binary
format.) The string is to be NULL-terminated, except for the ei_x_encode_string_len() function.

int ei_encode_term(char *buf, int *index, void *t)
int ei_x_encode_term(ei_x_buff* x, void *t)
Encodes an ETERM, as obtained from erl_interface. Parameter t is actually an ETERM pointer. This function
does not free the ETERM.

int ei_encode_trace(char *buf, int *index, const erlang_trace *p)
int ei_x_encode_trace(ei_x_buff* x, const erlang_trace *p)
Encodes an Erlang trace token in the binary format. Parameter p points to a erlang_trace structure (which should
have been obtained earlier with ei_decode_trace()).

int ei_encode_tuple_header(char *buf, int *index, int arity)
int ei_x_encode_tuple_header(ei_x_buff* x, int arity)
Encodes a tuple header, with a specified arity. The next arity terms encoded will be the elements of the tuple. Tuples
and lists are encoded recursively, so that a tuple can contain another tuple or list.

For example, to encode the tuple {a, {b, {}}}:

ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "a");
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "b");
ei_encode_tuple_header(buf, &i, 0);



ei

20 | Ericsson AB. All Rights Reserved.: Erl_Interface

int ei_encode_ulong(char *buf, int *index, unsigned long p)
int ei_x_encode_ulong(ei_x_buff* x, unsigned long p)
Encodes an unsigned long integer in the binary format. If the code is 64 bits, the function ei_encode_ulong()
is the same as ei_encode_ulonglong().

int ei_encode_ulonglong(char *buf, int *index, unsigned long long p)
int ei_x_encode_ulonglong(ei_x_buff* x, unsigned long long p)
Encodes a GCC unsigned long long or Visual C++ unsigned __int64 (64-bit) integer in the binary
format. This function is missing in the VxWorks port.

int ei_encode_version(char *buf, int *index)
int ei_x_encode_version(ei_x_buff* x)
Encodes a version magic number for the binary format. Must be the first token in a binary term.

int ei_get_type(const char *buf, const int *index, int *type, int *size)
Returns the type in type and size in size of the encoded term. For strings and atoms, size is the number of characters
not including the terminating NULL. For binaries, size is the number of bytes. For lists and tuples, size is the arity
of the object. For other types, size is 0. In all cases, index is left unchanged.

int ei_print_term(FILE* fp, const char* buf, int* index)
int ei_s_print_term(char** s, const char* buf, int* index)
Prints a term, in clear text, to the file specified by fp, or the buffer pointed to by s. It tries to resemble the term
printing in the Erlang shell.

In ei_s_print_term(), parameter s is to point to a dynamically (malloc) allocated string of BUFSIZ bytes or a
NULL pointer. The string can be reallocated (and *s can be updated) by this function if the result is more than BUFSIZ
characters. The string returned is NULL-terminated.

The return value is the number of characters written to the file or string, or -1 if buf[index] does not contain a
valid term. Unfortunately, I/O errors on fp is not checked.

Argument index is updated, that is, this function can be viewed as a decode function that decodes a term into a
human-readable format.

void ei_set_compat_rel(release_number)
Types:

unsigned release_number;

By default, the ei library is only guaranteed to be compatible with other Erlang/OTP components from the same
release as the ei library itself. For example, ei from Erlang/OTP R10 is not compatible with an Erlang emulator
from Erlang/OTP R9 by default.

A call to ei_set_compat_rel(release_number) sets the ei library in compatibility mode of release
release_number. Valid range of release_number is [7, current release]. This makes it possible to
communicate with Erlang/OTP components from earlier releases.

Note:

If this function is called, it can only be called once and must be called before any other functions in the ei library
are called.



ei

Ericsson AB. All Rights Reserved.: Erl_Interface | 21

Warning:

You can run into trouble if this feature is used carelessly. Always ensure that all communicating components are
either from the same Erlang/OTP release, or from release X and release Y where all components from release Y
are in compatibility mode of release X.

int ei_skip_term(const char* buf, int* index)
Skips a term in the specified buffer; recursively skips elements of lists and tuples, so that a full term is skipped. This
is a way to get the size of an Erlang term.

buf is the buffer.

index is updated to point right after the term in the buffer.

Note:

This can be useful when you want to hold arbitrary terms: skip them and copy the binary term data to some buffer.

Returns 0 on success, otherwise -1.

int ei_x_append(ei_x_buff* x, const ei_x_buff* x2)
int ei_x_append_buf(ei_x_buff* x, const char* buf, int len)
Appends data at the end of buffer x.

int ei_x_format(ei_x_buff* x, const char* fmt, ...)
int ei_x_format_wo_ver(ei_x_buff* x, const char *fmt, ... )
Formats a term, given as a string, to a buffer. Works like a sprintf for Erlang terms. fmt contains a format string, with
arguments like ~d, to insert terms from variables. The following formats are supported (with the C types given):

~a  An atom, char*
~c  A character, char
~s  A string, char*
~i  An integer, int
~l  A long integer, long int
~u  A unsigned long integer, unsigned long int
~f  A float, float
~d  A double float, double float
~p  An Erlang pid, erlang_pid*

For example, to encode a tuple with some stuff:

ei_x_format("{~a,~i,~d}", "numbers", 12, 3.14159)
encodes the tuple {numbers,12,3.14159}

ei_x_format_wo_ver() formats into a buffer, without the initial version byte.

int ei_x_free(ei_x_buff* x)
Frees an ei_x_buff buffer. The memory used by the buffer is returned to the OS.



ei

22 | Ericsson AB. All Rights Reserved.: Erl_Interface

int ei_x_new(ei_x_buff* x)
int ei_x_new_with_version(ei_x_buff* x)
Allocates a new ei_x_buff buffer. The fields of the structure pointed to by parameter x is filled in, and a default
buffer is allocated. ei_x_new_with_version() also puts an initial version byte, which is used in the binary
format (so that ei_x_encode_version() will not be needed.)

Debug Information
Some tips on what to check when the emulator does not seem to receive the terms that you send:

• Be careful with the version header, use ei_x_new_with_version() when appropriate.

• Turn on distribution tracing on the Erlang node.

• Check the result codes from ei_decode_-calls.

See Also
erl_eterm



ei_connect

Ericsson AB. All Rights Reserved.: Erl_Interface | 23

ei_connect
C Library

This module enables C-programs to communicate with Erlang nodes, using the Erlang distribution over TCP/IP.

A C-node appears to Erlang as a hidden node. That is, Erlang processes that know the name of the C-node
can communicate with it in a normal manner, but the node name is not shown in the listing provided by
erlang:nodes/0 in ERTS.

The environment variable ERL_EPMD_PORT can be used to indicate which logical cluster a C-node belongs to.

Time-Out Functions
Most functions appear in a version with the suffix _tmo appended to the function name. Those functions take an
extra argument, a time-out in milliseconds. The semantics is this: for each communication primitive involved in the
operation, if the primitive does not complete within the time specified, the function returns an error and erl_errno
is set to ETIMEDOUT. With communication primitive is meant an operation on the socket, like connect, accept,
recv, or send.

Clearly the time-outs are for implementing fault tolerance, not to keep hard real-time promises. The _tmo functions
are for detecting non-responsive peers and to avoid blocking on socket operations.

A time-out value of 0 (zero) means that time-outs are disabled. Calling a _tmo function with the last argument as 0
is therefore the same thing as calling the function without the _tmo suffix.

As with all other functions starting with ei_, you are not expected to put the socket in non-blocking mode yourself
in the program. Every use of non-blocking mode is embedded inside the time-out functions. The socket will always
be back in blocking mode after the operations are completed (regardless of the result). To avoid problems, leave the
socket options alone. ei handles any socket options that need modification.

In all other senses, the _tmo functions inherit all the return values and the semantics from the functions without the
_tmo suffix.

Exports

struct hostent *ei_gethostbyaddr(const char *addr, int len, int type)
struct hostent *ei_gethostbyaddr_r(const char *addr, int length, int type,
struct hostent *hostp, char *buffer, int buflen, int *h_errnop)
struct hostent *ei_gethostbyname(const char *name)
struct hostent *ei_gethostbyname_r(const char *name, struct hostent *hostp,
char *buffer, int buflen, int *h_errnop)
Convenience functions for some common name lookup functions.

int ei_accept(ei_cnode *ec, int listensock, ErlConnect *conp)
Used by a server process to accept a connection from a client process.

• ec is the C-node structure.

• listensock is an open socket descriptor on which listen() has previously been called.

• conp is a pointer to an ErlConnect struct, described as follows:



ei_connect

24 | Ericsson AB. All Rights Reserved.: Erl_Interface

typedef struct {
  char ipadr[4];             
  char nodename[MAXNODELEN];
} ErlConnect;

On success, conp is filled in with the address and node name of the connecting client and a file descriptor is returned.
On failure, ERL_ERROR is returned and erl_errno is set to EIO.

int ei_accept_tmo(ei_cnode *ec, int listensock, ErlConnect *conp, unsigned
timeout_ms)
Equivalent to ei_accept with an optional time-out argument, see the description at the beginning of this manual
page.

int ei_connect(ei_cnode* ec, char *nodename)
int ei_xconnect(ei_cnode* ec, Erl_IpAddr adr, char *alivename)
Sets up a connection to an Erlang node.

ei_xconnect() requires the IP address of the remote host and the alive name of the remote node to be specified.
ei_connect() provides an alternative interface and determines the information from the node name provided.

• addr is the 32-bit IP address of the remote host.

• alive is the alivename of the remote node.

• node is the name of the remote node.

These functions return an open file descriptor on success, or a negative value indicating that an error occurred. In the
latter case they set erl_errno to one of the following:

EHOSTUNREACH
The remote host node is unreachable.

ENOMEM
No more memory is available.

EIO
I/O error.

Also, errno values from socket(2) and connect(2) system calls may be propagated into erl_errno.

Example:

#define NODE   "madonna@chivas.du.etx.ericsson.se"
#define ALIVE  "madonna"
#define IP_ADDR "150.236.14.75"

/*** Variant 1 ***/
int fd = ei_connect(&ec, NODE);

/*** Variant 2 ***/
struct in_addr addr;
addr.s_addr = inet_addr(IP_ADDR);
fd = ei_xconnect(&ec, &addr, ALIVE);



ei_connect

Ericsson AB. All Rights Reserved.: Erl_Interface | 25

int ei_connect_init(ei_cnode* ec, const char* this_node_name, const char
*cookie, short creation)
int ei_connect_xinit(ei_cnode* ec, const char *thishostname, const char
*thisalivename, const char *thisnodename, Erl_IpAddr thisipaddr, const char
*cookie, short creation)
Initializes the ec structure, to identify the node name and cookie of the server. One of them must be called before other
functions that works on the ei_cnode type or a file descriptor associated with a connection to another node is used.

• ec is a structure containing information about the C-node. It is used in other ei functions for connecting and
receiving data.

• this_node_name is the registered name of the process (the name before '@').

• cookie is the cookie for the node.

• creation identifies a specific instance of a C-node. It can help prevent the node from receiving messages sent
to an earlier process with the same registered name.

• thishostname is the name of the machine we are running on. If long names are to be used, they are to be fully
qualified (that is, durin.erix.ericsson.se instead of durin).

• thisalivename is the registered name of the process.

• thisnodename is the full name of the node, that is, einode@durin.

• thispaddr if the IP address of the host.

A C-node acting as a server is assigned a creation number when it calls ei_publish().

A connection is closed by simply closing the socket. For information about how to close the socket gracefully (when
there are outgoing packets before close), see the relevant system documentation.

These functions return a negative value indicating that an error occurred.

Example 1:

int n = 0;
struct in_addr addr;
ei_cnode ec;
addr.s_addr = inet_addr("150.236.14.75");
if (ei_connect_xinit(&ec,
                     "chivas",
                     "madonna",
                     "madonna@chivas.du.etx.ericsson.se",
                     &addr;
                     "cookie...",
                     n++) < 0) {
    fprintf(stderr,"ERROR when initializing: %d",erl_errno);
    exit(-1);
}

Example 2:

if (ei_connect_init(&ec, "madonna", "cookie...", n++) < 0) {
    fprintf(stderr,"ERROR when initializing: %d",erl_errno);
    exit(-1);
}

int ei_connect_tmo(ei_cnode* ec, char *nodename, unsigned timeout_ms)
int ei_xconnect_tmo(ei_cnode* ec, Erl_IpAddr adr, char *alivename, unsigned
timeout_ms)
Equivalent to ei_connect and ei_xconnect with an optional time-out argument, see the description at the
beginning of this manual page.



ei_connect

26 | Ericsson AB. All Rights Reserved.: Erl_Interface

int ei_get_tracelevel(void)
void ei_set_tracelevel(int level)
Used to set tracing on the distribution. The levels are different verbosity levels. A higher level means more information.
See also section  Debug Information.

These functions are not thread safe.

int ei_publish(ei_cnode *ec, int port)
Used by a server process to register with the local name server EPMD, thereby allowing other processes to send
messages by using the registered name. Before calling either of these functions, the process should have called bind()
and listen() on an open socket.

• ec is the C-node structure.

• port is the local name to register, and is to be the same as the port number that was previously bound to the socket.

• addr is the 32-bit IP address of the local host.

To unregister with EPMD, simply close the returned descriptor. Do not use ei_unpublish(), which is deprecated
anyway.

On success, the function returns a descriptor connecting the calling process to EPMD. On failure, -1 is returned and
erl_errno is set to EIO.

Also, errno values from socket(2) and connect(2) system calls may be propagated into erl_errno.

int ei_publish_tmo(ei_cnode *ec, int port, unsigned timeout_ms)
Equivalent to ei_publish with an optional time-out argument, see the description at the beginning of this manual
page.

int ei_receive(int fd, unsigned char* bufp, int bufsize)
Receives a message consisting of a sequence of bytes in the Erlang external format.

• fd is an open descriptor to an Erlang connection. It is obtained from a previous ei_connect or ei_accept.

• bufp is a buffer large enough to hold the expected message.

• bufsize indicates the size of bufp.

If a tick occurs, that is, the Erlang node on the other end of the connection has polled this node to see if it is still alive,
the function returns ERL_TICK and no message is placed in the buffer. Also, erl_errno is set to EAGAIN.

On success, the message is placed in the specified buffer and the function returns the number of bytes actually read.
On failure, the function returns ERL_ERROR and sets erl_errno to one of the following:

EAGAIN
Temporary error: Try again.

EMSGSIZE
Buffer is too small.

EIO
I/O error.

int ei_receive_encoded(int fd, char **mbufp, int *bufsz, erlang_msg *msg, int
*msglen)
This function is retained for compatibility with code generated by the interface compiler and with code following
examples in the same application.



ei_connect

Ericsson AB. All Rights Reserved.: Erl_Interface | 27

In essence, the function performs the same operation as ei_xreceive_msg, but instead of using an ei_x_buff,
the function expects a pointer to a character pointer (mbufp), where the character pointer is to point to a memory
area allocated by malloc. Argument bufsz is to be a pointer to an integer containing the exact size (in bytes) of
the memory area. The function may reallocate the memory area and will in such cases put the new size in *bufsz
and update *mbufp.

Returns either ERL_TICK or the msgtype field of the erlang_msg *msg. The length of the message is put in
*msglen. On error a value < 0 is returned.

It is recommended to use ei_xreceive_msg instead when possible, for the sake of readability. However, the
function will be retained in the interface for compatibility and will not be removed in future releases without prior
notice.

int ei_receive_encoded_tmo(int fd, char **mbufp, int *bufsz, erlang_msg *msg,
int *msglen, unsigned timeout_ms)
Equivalent to ei_receive_encoded with an optional time-out argument, see the description at the beginning of
this manual page.

int ei_receive_msg(int fd, erlang_msg* msg, ei_x_buff* x)
int ei_xreceive_msg(int fd, erlang_msg* msg, ei_x_buff* x)
Receives a message to the buffer in x. ei_xreceive_msg allows the buffer in x to grow, but ei_receive_msg
fails if the message is larger than the pre-allocated buffer in x.

• fd is an open descriptor to an Erlang connection.

• msg is a pointer to an erlang_msg structure and contains information on the message received.

• x is buffer obtained from ei_x_new.

On success, the functions return ERL_MSG and the msg struct is initialized. erlang_msg is defined as follows:

typedef struct {
    long msgtype;
    erlang_pid from;
    erlang_pid to;
    char toname[MAXATOMLEN+1];
    char cookie[MAXATOMLEN+1];
    erlang_trace token;
} erlang_msg;

msgtype identifies the type of message, and is one of the following:

ERL_SEND

Indicates that an ordinary send operation has occurred. msg->to contains the pid of the recipient (the C-node).

ERL_REG_SEND

A registered send operation occurred. msg->from contains the pid of the sender.

ERL_LINK or ERL_UNLINK

msg->to and msg->from contain the pids of the sender and recipient of the link or unlink.

ERL_EXIT

Indicates a broken link. msg->to and msg->from contain the pids of the linked processes.

The return value is the same as for ei_receive.



ei_connect

28 | Ericsson AB. All Rights Reserved.: Erl_Interface

int ei_receive_msg_tmo(int fd, erlang_msg* msg, ei_x_buff* x, unsigned
imeout_ms)
int ei_xreceive_msg_tmo(int fd, erlang_msg* msg, ei_x_buff* x, unsigned
timeout_ms)
Equivalent to ei_receive_msg and ei_xreceive_msg with an optional time-out argument, see the description
at the beginning of this manual page.

int ei_receive_tmo(int fd, unsigned char* bufp, int bufsize, unsigned
timeout_ms)
Equivalent to ei_receive with an optional time-out argument, see the description at the beginning of this manual
page.

int ei_reg_send(ei_cnode* ec, int fd, char* server_name, char* buf, int len)
Sends an Erlang term to a registered process.

• fd is an open descriptor to an Erlang connection.

• server_name is the registered name of the intended recipient.

• buf is the buffer containing the term in binary format.

• len is the length of the message in bytes.

Returns 0 if successful, otherwise -1. In the latter case it sets erl_errno to EIO.

Example:

Send the atom "ok" to the process "worker":

ei_x_buff x;
ei_x_new_with_version(&x);
ei_x_encode_atom(&x, "ok");
if (ei_reg_send(&ec, fd, x.buff, x.index) < 0)
    handle_error();

int ei_reg_send_tmo(ei_cnode* ec, int fd, char* server_name, char* buf, int
len, unsigned timeout_ms)
Equivalent to ei_reg_send with an optional time-out argument, see the description at the beginning of this manual
page.

int ei_rpc(ei_cnode *ec, int fd, char *mod, char *fun, const char *argbuf,
int argbuflen, ei_x_buff *x)
int ei_rpc_to(ei_cnode *ec, int fd, char *mod, char *fun, const char *argbuf,
int argbuflen)
int ei_rpc_from(ei_cnode *ec, int fd, int timeout, erlang_msg *msg, ei_x_buff
*x)
Supports calling Erlang functions on remote nodes. ei_rpc_to() sends an RPC request to a remote node and
ei_rpc_from() receives the results of such a call. ei_rpc() combines the functionality of these two functions
by sending an RPC request and waiting for the results. See also  rpc:call/4 in Kernel.

• ec is the C-node structure previously initiated by a call to ei_connect_init() or ei_connect_xinit().

• fd is an open descriptor to an Erlang connection.

• timeout is the maximum time (in milliseconds) to wait for results. Specify ERL_NO_TIMEOUT to wait forever.
ei_rpc() waits infinitely for the answer, that is, the call will never time out.



ei_connect

Ericsson AB. All Rights Reserved.: Erl_Interface | 29

• mod is the name of the module containing the function to be run on the remote node.

• fun is the name of the function to run.

• argbuf is a pointer to a buffer with an encoded Erlang list, without a version magic number, containing the
arguments to be passed to the function.

• argbuflen is the length of the buffer containing the encoded Erlang list.

• msg is structure of type erlang_msg and contains information on the message received. For a description of
the erlang_msg format, see  ei_receive_msg.

• x points to the dynamic buffer that receives the result. For ei_rpc() this is the result without the version magic
number. For ei_rpc_from() the result returns a version magic number and a 2-tuple {rex,Reply}.

ei_rpc() returns the number of bytes in the result on success and -1 on failure. ei_rpc_from() returns the
number of bytes, otherwise one of ERL_TICK, ERL_TIMEOUT, and ERL_ERROR. When failing, all three functions
set erl_errno to one of the following:

EIO
I/O error.

ETIMEDOUT
Time-out expired.

EAGAIN
Temporary error: Try again.

Example:

Check to see if an Erlang process is alive:

int index = 0, is_alive;
ei_x_buff args, result;

ei_x_new(&result);
ei_x_new(&args);
ei_x_encode_list_header(&args, 1);
ei_x_encode_pid(&args, &check_pid);
ei_x_encode_empty_list(&args);

if (ei_rpc(&ec, fd, "erlang", "is_process_alive",
           args.buff, args.index, &result) < 0)
    handle_error();

if (ei_decode_version(result.buff, &index) < 0
    || ei_decode_bool(result.buff, &index, &is_alive) < 0)
    handle_error();

erlang_pid *ei_self(ei_cnode *ec)
Retrieves the pid of the C-node. Every C-node has a (pseudo) pid used in ei_send_reg, ei_rpc, and others. This
is contained in a field in the ec structure. It will be safe for a long time to fetch this field directly from the ei_cnode
structure.

int ei_send(int fd, erlang_pid* to, char* buf, int len)
Sends an Erlang term to a process.

• fd is an open descriptor to an Erlang connection.

• to is the pid of the intended recipient of the message.

• buf is the buffer containing the term in binary format.

• len is the length of the message in bytes.



ei_connect

30 | Ericsson AB. All Rights Reserved.: Erl_Interface

Returns 0 if successful, otherwise -1. In the latter case it sets erl_errno to EIO.

int ei_send_encoded(int fd, erlang_pid* to, char* buf, int len)
Works exactly as ei_send, the alternative name is retained for backward compatibility. The function will not be
removed without prior notice.

int ei_send_encoded_tmo(int fd, erlang_pid* to, char* buf, int len, unsigned
timeout_ms)
Equivalent to ei_send_encoded with an optional time-out argument, see the description at the beginning of this
manual page.

int ei_send_reg_encoded(int fd, const erlang_pid *from, const char *to, const
char *buf, int len)
This function is retained for compatibility with code generated by the interface compiler and with code following
examples in the same application.

The function works as ei_reg_send with one exception. Instead of taking ei_cnode as first argument, it takes
a second argument, an erlang_pid, which is to be the process identifier of the sending process (in the Erlang
distribution protocol).

A suitable erlang_pid can be constructed from the ei_cnode structure by the following example code:

ei_cnode ec;
erlang_pid *self;
int fd; /* the connection fd */
...
self = ei_self(&ec);
self->num = fd;

int ei_send_reg_encoded_tmo(int fd, const erlang_pid *from, const char *to,
const char *buf, int len)
Equivalent to ei_send_reg_encoded with an optional time-out argument, see the description at the beginning
of this manual page.

int ei_send_tmo(int fd, erlang_pid* to, char* buf, int len, unsigned
timeout_ms)
Equivalent to ei_send with an optional time-out argument, see the description at the beginning of this manual page.

const char *ei_thisnodename(ei_cnode *ec)
const char *ei_thishostname(ei_cnode *ec)
const char *ei_thisalivename(ei_cnode *ec)
Can be used to retrieve information about the C-node. These values are initially set with ei_connect_init() or
ei_connect_xinit().

These function simply fetch the appropriate field from the ec structure. Read the field directly will probably be safe
for a long time, so these functions are not really needed.

int ei_unpublish(ei_cnode *ec)
Can be called by a process to unregister a specified node from EPMD on the local host. This is, however, usually not
allowed, unless EPMD was started with flag -relaxed_command_check, which it normally is not.



ei_connect

Ericsson AB. All Rights Reserved.: Erl_Interface | 31

To unregister a node you have published, you should close the descriptor that was returned by ei_publish().

Warning:

This function is deprecated and will be removed in a future release.

ec is the node structure of the node to unregister.

If the node was successfully unregistered from EPMD, the function returns 0. Otherwise, -1 is returned and
erl_errno is set to EIO.

int ei_unpublish_tmo(ei_cnode *ec, unsigned timeout_ms)
Equivalent to ei_unpublish with an optional time-out argument, see the description at the beginning of this manual
page.

Debug Information
If a connection attempt fails, the following can be checked:

• erl_errno.

• That the correct cookie was used

• That EPMD is running

• That the remote Erlang node on the other side is running the same version of Erlang as the ei library

• That environment variable ERL_EPMD_PORT is set correctly

The connection attempt can be traced by setting a trace level by either using ei_set_tracelevel or by setting
environment variable EI_TRACELEVEL. The trace levels have the following messages:

• 1: Verbose error messages

• 2: Above messages and verbose warning messages

• 3: Above messages and progress reports for connection handling

• 4: Above messages and progress reports for communication

• 5: Above messages and progress reports for data conversion



registry

32 | Ericsson AB. All Rights Reserved.: Erl_Interface

registry
C Library

This module provides support for storing key-value pairs in a table known as a registry, backing up registries to Mnesia
in an atomic manner, and later restoring the contents of a registry from Mnesia.

Exports

int ei_reg_close(reg)
Types:

ei_reg *reg;

A registry that has previously been created with ei_reg_open() is closed, and all the objects it contains are freed.

reg is the registry to close.

Returns 0.

int ei_reg_delete(reg,key)
Types:

ei_reg *reg;

const char *key;

Deletes an object from the registry. The object is not removed from the registry, it is only marked for later removal so
that on later backups to Mnesia, the corresponding object can be removed from the Mnesia table as well. If another
object is later created with the same key, the object will be reused.

The object is removed from the registry after a call to ei_reg_dump() or ei_reg_purge().

• reg is the registry containing key.

• key is the object to remove.

Returns 0 on success, otherwise -1.

int ei_reg_dump(fd,reg,mntab,flags)
Types:

int fd;

ei_reg *reg;

const char *mntab;

int flags;

Dumps the contents of a registry to a Mnesia table in an atomic manner, that is, either all data or no data is updated.
If any errors are encountered while backing up the data, the entire operation is aborted.

• fd is an open connection to Erlang. Mnesia 3.0 or later must be running on the Erlang node.

• reg is the registry to back up.

• mntab is the name of the Mnesia table where the backed up data is to be placed. If the table does not exist,
it is created automatically using configurable defaults. For information about configuring this behavior, see
Mnesia.



registry

Ericsson AB. All Rights Reserved.: Erl_Interface | 33

If flags is 0, the backup includes only those objects that have been created, modified, or deleted since the last backup
or restore (that is, an incremental backup). After the backup, any objects that were marked dirty are now clean, and
any objects that had been marked for deletion are deleted.

Alternatively, setting flags to EI_FORCE causes a full backup to be done, and EI_NOPURGE causes the deleted
objects to be left in the registry afterwards. These can be bitwise OR'ed together if both behaviors are desired. If
EI_NOPURGE was specified, ei_reg_purge() can be used to explicitly remove the deleted items from the registry
later.

Returns 0 on success, otherwise -1.

double ei_reg_getfval(reg,key)
Types:

ei_reg *reg;

const char *key;

Gets the value associated with key in the registry. The value must be a floating point type.

• reg is the registry where the object will be looked up.

• key is the name of the object to look up.

On success, the function returns the value associated with key. If the object is not found or if it is not a floating point
object, -1.0 is returned. To avoid problems with in-band error reporting (that is, if you cannot distinguish between
-1.0 and a valid result), use the more general function ei_reg_getval() instead.

int ei_reg_getival(reg,key)
Types:

ei_reg *reg;

const char *key;

Gets the value associated with key in the registry. The value must be an integer.

• reg is the registry where the object will be looked up.

• key is the name of the object to look up.

On success, the function returns the value associated with key. If the object is not found or if it is not an integer object,
-1 is returned. To avoid problems with in-band error reporting (that is, if you cannot distinguish between -1 and a
valid result), use the more general function ei_reg_getval() instead.

const void *ei_reg_getpval(reg,key,size)
Types:

ei_reg *reg;

const char *key;

int size;

Gets the value associated with key in the registry. The value must be a binary (pointer) type.

• reg is the registry where the object will be looked up.

• key is the name of the object to look up.

• size is initialized to contain the length in bytes of the object, if it is found.

On success, the function returns the value associated with key and indicates its length in size. If the object is not
found or if it is not a binary object, NULL is returned. To avoid problems with in-band error reporting (that is, if you
cannot distinguish between NULL and a valid result), use the more general function ei_reg_getval() instead.



registry

34 | Ericsson AB. All Rights Reserved.: Erl_Interface

const char *ei_reg_getsval(reg,key)
Types:

ei_reg *reg;

const char *key;

Gets the value associated with key in the registry. The value must be a string.

• reg is the registry where the object will be looked up.

• key is the name of the object to look up.

On success, the function returns the value associated with key. If the object is not found or if it is not a string, NULL
is returned. To avoid problems with in-band error reporting (that is, if you cannot distinguish between NULL and a
valid result), use the more general function ei_reg_getval() instead.

int ei_reg_getval(reg,key,flags,v,...)
Types:

ei_reg *reg;

const char *key;

int flags;

void *v (see below)

A general function for retrieving any kind of object from the registry.

• reg is the registry where the object will be looked up.

• key is the name of the object to look up.

• flags indicates the type of object that you are looking for. If flags is 0, any kind of object is returned. If
flags is EI_INT, EI_FLT, EI_STR, or EI_BIN, then only values of that kind are returned.

The buffer pointed to by v must be large enough to hold the return data, that is, it must be a pointer to one of
int, double, char*, or void*, respectively.

If flags is EI_BIN, a fifth argument int *size is required, so that the size of the object can be returned.

On success, v (and size if the object is binary) is initialized with the value associated with key, and the function
returns EI_INT, EI_FLT, EI_STR, or EI_BIN, indicating the type of object. On failure, -1 is returned and the
arguments are not updated.

int ei_reg_markdirty(reg,key)
Types:

ei_reg *reg;

const char *key;

Marks a registry object as dirty. This ensures that it is included in the next backup to Mnesia. Normally this operation
is not necessary, as all of the normal registry 'set' functions do this automatically. However, if you have retrieved
the value of a string or binary object from the registry and modified the contents, then the change is invisible to the
registry and the object is assumed to be unmodified. This function allows you to make such modifications and then
let the registry know about them.

• reg is the registry containing the object.

• key is the name of the object to mark.

Returns 0 on success, otherwise -1.



registry

Ericsson AB. All Rights Reserved.: Erl_Interface | 35

ei_reg *ei_reg_open(size)
Types:

int size;

Opens (creates) a registry, which initially is empty. To close the registry later, use ei_reg_close().

size is the approximate number of objects you intend to store in the registry. As the registry uses a hash table with
collision chaining, no absolute upper limit exists on the number of objects that can be stored in it. However, for reasons
of efficiency, it is a good idea to choose a number that is appropriate for your needs. To change the size later, use
ei_reg_resize(). Notice that the number you provide is increased to the nearest larger prime number.

Returns an empty registry on success, otherwise NULL.

int ei_reg_purge(reg)
Types:

ei_reg *reg;

Removes all objects marked for deletion. When objects are deleted with ei_reg_delete() they are not removed
from the registry, only marked for later removal. On a later backup to Mnesia, the objects can also be removed from
the Mnesia table. If you are not backing up to Mnesia, you may wish to remove the objects manually with this
function.

reg is a registry containing objects marked for deletion.

Returns 0 on success, otherwise -1.

int ei_reg_resize(reg,newsize)
Types:

ei_reg *reg;

int newsize;

Changes the size of a registry.

newsize is the new size to make the registry. The number is increased to the nearest larger prime number.

On success, the registry is resized, all contents rehashed, and 0 is returned. On failure, the registry is left unchanged
and -1 is returned.

int ei_reg_restore(fd,reg,mntab)
Types:

int fd;

ei_reg *reg;

const char *mntab;

The contents of a Mnesia table are read into the registry.

• fd is an open connection to Erlang. Mnesia 3.0 or later must be running on the Erlang node.

• reg is the registry where the data is to be placed.

• mntab is the name of the Mnesia table to read data from.

Notice that only tables of a certain format can be restored, that is, those that have been created and backed up to
with ei_reg_dump(). If the registry was not empty before the operation, the contents of the table are added to the
contents of the registry. If the table contains objects with the same keys as those already in the registry, the registry
objects are overwritten with the new values. If the registry contains objects that were not in the table, they are unchanged
by this operation.



registry

36 | Ericsson AB. All Rights Reserved.: Erl_Interface

After the restore operation, the entire contents of the registry is marked as unmodified. Notice that this includes any
objects that were modified before the restore and not overwritten by the restore.

Returns 0 on success, otherwise -1.

int ei_reg_setfval(reg,key,f)
Types:

ei_reg *reg;

const char *key;

double f;

Creates a key-value pair with the specified key and floating point value f. If an object already exists with the same
key, the new value replaces the old one. If the previous value was a binary or string, it is freed with free().

• reg is the registry where the object is to be placed.

• key is the object name.

• f is the floating point value to assign.

Returns 0 on success, otherwise -1.

int ei_reg_setival(reg,key,i)
Types:

ei_reg *reg;

const char *key;

int i;

Creates a key-value pair with the specified key and integer value i. If an object already exists with the same key,
the new value replaces the old one. If the previous value was a binary or string, it is freed with free().

• reg is the registry where the object is to be placed.

• key is the object name.

• i is the integer value to assign.

Returns 0 on success, otherwise -1.

int ei_reg_setpval(reg,key,p,size)
Types:

ei_reg *reg;

const char *key;

const void *p;

int size;

Creates a key-value pair with the specified key whose "value" is the binary object pointed to by p. If an object already
exists with the same key, the new value replaces the old one. If the previous value was a binary or string, it is freed
with free().

• reg is the registry where the object is to be placed.

• key is the object name.

• p is a pointer to the binary object. The object itself must have been created through a single call to malloc()
or a similar function, so that the registry can later delete it if necessary by calling free().

• size is the length in bytes of the binary object.

Returns 0 on success, otherwise -1.



registry

Ericsson AB. All Rights Reserved.: Erl_Interface | 37

int ei_reg_setsval(reg,key,s)
Types:

ei_reg *reg;

const char *key;

const char *s;

Creates a key-value pair with the specified key whose "value" is the specified string s. If an object already exists with
the same key, the new value replaces the old one. If the previous value was a binary or string, it is freed with free().

• reg is the registry where the object is to be placed.

• key is the object name.

• s is the string to assign. The string itself must have been created through a single call to malloc() or similar
a function, so that the registry can later delete it if necessary by calling free().

Returns 0 on success, otherwise -1.

int ei_reg_setval(reg,key,flags,v,...)
Types:

ei_reg *reg;

const char *key;

int flags;

v (see below)

Creates a key-value pair with the specified key whose value is specified by v. If an object already exists with the
same key, the new value replaces the old one. If the previous value was a binary or string, it is freed with free().

• reg is the registry where the object is to be placed.

• key is the object name.

• flags indicates the type of the object specified by v. Flags must be one of EI_INT, EI_FLT, EI_STR, and
EI_BIN, indicating whether v is int, double, char*, or void*.

If flags is EI_BIN, a fifth argument size is required, indicating the size in bytes of the object pointed to by v.

If you wish to store an arbitrary pointer in the registry, specify a size of 0. In this case, the object itself is not
transferred by an ei_reg_dump() operation, only the pointer value.

Returns 0 on success, otherwise -1.

int ei_reg_stat(reg,key,obuf)
Types:

ei_reg *reg;

const char *key;

struct ei_reg_stat *obuf;

Returns information about an object.

• reg is the registry containing the object.

• key is the object name.

• obuf is a pointer to an ei_reg_stat structure, defined as follows:

struct ei_reg_stat {
  int attr;
  int size;
};



registry

38 | Ericsson AB. All Rights Reserved.: Erl_Interface

In attr the attributes of the object are stored as the logical OR of its type (one of EI_INT, EI_FLT, EI_BIN, and
EI_STR), whether it is marked for deletion (EI_DELET), and whether it has been modified since the last backup
to Mnesia (EI_DIRTY).

Field size indicates the size in bytes required to store EI_STR (including the terminating 0) and EI_BIN objects,
or 0 for EI_INT and EI_FLT.

Returns 0 and initializes obuf on success, otherwise -1.

int ei_reg_tabstat(reg,obuf)
Types:

ei_reg *reg;

struct ei_reg_tabstat *obuf;

Returns information about a registry. Using information returned by this function, you can see whether the size of the
registry is suitable for the amount of data it contains.

• reg is the registry to return information about.

• obuf is a pointer to an ei_reg_tabstat structure, defined as follows:

struct ei_reg_tabstat {
  int size;  
  int nelem; 
  int npos;  
  int collisions; 
};

Field size indicates the number of hash positions in the registry. This is the number you provided when you created
or last resized the registry, rounded up to the nearest prime number.

• nelem indicates the number of elements stored in the registry. It includes objects that are deleted but not
purged.

• npos indicates the number of unique positions that are occupied in the registry.

• collisions indicates how many elements are sharing positions in the registry.

On success, 0 is returned and obuf is initialized to contain table statistics, otherwise -1 is returned.



erl_connect

Ericsson AB. All Rights Reserved.: Erl_Interface | 39

erl_connect
C Library

This module provides support for communication between distributed Erlang nodes and C-nodes, in a manner that is
transparent to Erlang processes.

A C-node appears to Erlang as a hidden node. That is, Erlang processes that know the name of the C-node
can communicate with it in a normal manner, but the node name does not appear in the listing provided by
erlang:nodes/0 in ERTS.

Exports

int erl_accept(listensock, conp)
Types:

int listensock;

ErlConnect *conp;

This function is used by a server process to accept a connection from a client process.

• listensock is an open socket descriptor on which listen() has previously been called.

• conp is a pointer to an ErlConnect struct, described as follows:

typedef struct {
  char ipadr[4];
  char nodename[MAXNODELEN];
} ErlConnect;

On success, conp is filled in with the address and node name of the connecting client and a file descriptor is returned.
On failure, ERL_ERROR is returned and erl_errno is set to EIO.

int erl_close_connection(fd)
Types:

int fd;

Closes an open connection to an Erlang node.

Fd is a file descriptor obtained from erl_connect() or erl_xconnect().

Returns 0 on success. If the call fails, a non-zero value is returned, and the reason for the error can be obtained with
the appropriate platform-dependent call.

int erl_connect(node)
int erl_xconnect(addr, alive)
Types:

char *node, *alive;

struct in_addr *addr;

Sets up a connection to an Erlang node.

erl_xconnect() requires the IP address of the remote host and the alivename of the remote node to be specified.
erl_connect() provides an alternative interface, and determines the information from the node name provided.

• addr is the 32-bit IP address of the remote host.



erl_connect

40 | Ericsson AB. All Rights Reserved.: Erl_Interface

• alive is the alivename of the remote node.

• node is the name of the remote node.

Returns an open file descriptor on success, otherwise a negative value. In the latter case erl_errno is set to one of:

EHOSTUNREACH
The remote host node is unreachable.

ENOMEM
No more memory is available.

EIO
I/O error.

Also, errno values from socket(2) and connect(2) system calls can be propagated into erl_errno.

Example:

#define NODE   "madonna@chivas.du.etx.ericsson.se"
#define ALIVE  "madonna"
#define IP_ADDR "150.236.14.75"

/*** Variant 1 ***/
erl_connect( NODE );

/*** Variant 2 ***/
struct in_addr addr;
addr = inet_addr(IP_ADDR);
erl_xconnect( &addr , ALIVE );

int erl_connect_init(number, cookie, creation)
int erl_connect_xinit(host, alive, node, addr, cookie, creation)
Types:

int number;

char *cookie;

short creation;

char *host,*alive,*node;

struct in_addr *addr;

Initializes the erl_connect module. In particular, these functions are used to identify the name of the C-node from
which they are called. One of these functions must be called before any of the other functions in the erl_connect
module are used.

erl_connect_xinit() stores for later use information about:

• Hostname of the node, host

• Alivename, alive

• Node name, node

• IP address, addr

• Cookie, cookie

• Creation number, creation

erl_connect_init() provides an alternative interface that does not require as much information from the caller.
Instead, erl_connect_init() uses gethostbyname() to obtain default values.

If you use erl_connect_init(), your node will have a short name, that is, it will not be fully qualified. If you
need to use fully qualified (long) names, use erl_connect_xinit() instead.

• host is the name of the host on which the node is running.



erl_connect

Ericsson AB. All Rights Reserved.: Erl_Interface | 41

• alive is the alivename of the node.

• node is the node name. It is to be of the form alivename@hostname.

• addr is the 32-bit IP address of host.

• cookie is the authorization string required for access to the remote node. If NULL, the user HOME directory is
searched for a cookie file .erlang.cookie. The path to the home directory is retrieved from environment
variable HOME on Unix and from the HOMEDRIVE and HOMEPATH variables on Windows. For more details, see
the  auth module in Kernel.

• creation helps identifying a particular instance of a C-node. In particular, it can help prevent us from receiving
messages sent to an earlier process with the same registered name.

A C-node acting as a server is assigned a creation number when it calls erl_publish().

number is used by erl_connect_init() to construct the actual node name. In Example 2 below,
"c17@a.DNS.name" is the resulting node name.

Example 1:

struct in_addr addr;
addr = inet_addr("150.236.14.75");
if (!erl_connect_xinit("chivas",
                       "madonna",
                       "madonna@chivas.du.etx.ericsson.se",
                       &addr;
                       "samplecookiestring..."),
                       0)
  erl_err_quit("<ERROR> when initializing !");

Example 2:

if (!erl_connect_init(17, "samplecookiestring...", 0))
  erl_err_quit("<ERROR> when initializing !");

int erl_publish(port)
Types:

int port;

This function is used by a server process to register with the local name server EPMD, thereby allowing other processes
to send messages by using the registered name. Before calling this function, the process should have called bind()
and listen() on an open socket.

port is the local name to register, and is to be the same as the port number that was previously bound to the socket.

To unregister with EPMD, simply close the returned descriptor.

On success, a descriptor connecting the calling process to EPMD is returned. On failure, -1 is returned and
erl_errno is set to:

EIO
I/O error.

Also, errno values from socket(2) and connect(2) system calls can be propagated into erl_errno.

int erl_receive(fd, bufp, bufsize)
Types:

int fd;

char *bufp;

int bufsize;



erl_connect

42 | Ericsson AB. All Rights Reserved.: Erl_Interface

Receives a message consisting of a sequence of bytes in the Erlang external format.

• fd is an open descriptor to an Erlang connection.

• bufp is a buffer large enough to hold the expected message.

• bufsize indicates the size of bufp.

If a tick occurs, that is, the Erlang node on the other end of the connection has polled this node to see if it is still alive,
the function returns ERL_TICK and no message is placed in the buffer. Also, erl_errno is set to EAGAIN.

On success, the message is placed in the specified buffer and the function returns the number of bytes actually read.
On failure, the function returns a negative value and sets erl_errno to one of:

EAGAIN
Temporary error: Try again.

EMSGSIZE
Buffer is too small.

EIO
I/O error.

int erl_receive_msg(fd, bufp, bufsize, emsg)
Types:

int fd;

unsigned char *bufp;

int bufsize;

ErlMessage *emsg;

Receives the message into the specified buffer and decodes into (ErlMessage *) emsg.

• fd is an open descriptor to an Erlang connection.

• bufp is a buffer large enough to hold the expected message.

• bufsize indicates the size of bufp.

• >emsg is a pointer to an ErlMessage structure into which the message will be decoded. ErlMessage is
defined as follows:

typedef struct {
  int type;
  ETERM *msg;
  ETERM *to;
  ETERM *from;
  char to_name[MAXREGLEN];
} ErlMessage;

Note:

The definition of ErlMessage has changed since earlier versions of Erl_Interface.

type identifies the type of message, one of the following:

ERL_SEND

An ordinary send operation has occurred and emsg->to contains the pid of the recipient. The message is in
emsg->msg.

ERL_REG_SEND

A registered send operation has occurred and emsg->from contains the pid of the sender. The message is in
emsg->msg.



erl_connect

Ericsson AB. All Rights Reserved.: Erl_Interface | 43

ERL_LINK or ERL_UNLINK

emsg->to and emsg->from contain the pids of the sender and recipient of the link or unlink. emsg->msg
is not used.

ERL_EXIT

A link is broken. emsg->to and emsg->from contain the pids of the linked processes, and emsg->msg
contains the reason for the exit.

Note:

It is the caller's responsibility to release the memory pointed to by emsg->msg, emsg->to, and emsg->from.

If a tick occurs, that is, the Erlang node on the other end of the connection has polled this node to see if it is still alive,
the function returns ERL_TICK indicating that the tick has been received and responded to, but no message is placed
in the buffer. In this case you are to call erl_receive_msg() again.

On success, the function returns ERL_MSG and the Emsg struct is initialized as described above, or ERL_TICK, in
which case no message is returned. On failure, the function returns ERL_ERROR and sets erl_errno to one of:

EMSGSIZE
Buffer is too small.

ENOMEM
No more memory is available.

EIO
I/O error.

int erl_reg_send(fd, to, msg)
Types:

int fd;

char *to;

ETERM *msg;

Sends an Erlang term to a registered process.

• fd is an open descriptor to an Erlang connection.

• to is a string containing the registered name of the intended recipient of the message.

• msg is the Erlang term to be sent.

Returns 1 on success, otherwise 0. In the latter case erl_errno is set to one of:

ENOMEM
No more memory is available.

EIO
I/O error.

ETERM *erl_rpc(fd, mod, fun, args)
int erl_rpc_from(fd, timeout, emsg)
int erl_rpc_to(fd, mod, fun, args)
Types:

int fd, timeout;

char *mod, *fun;

ETERM *args;



erl_connect

44 | Ericsson AB. All Rights Reserved.: Erl_Interface

ErlMessage *emsg;

Supports calling Erlang functions on remote nodes. erl_rpc_to() sends an RPC request to a remote node and
erl_rpc_from() receives the results of such a call. erl_rpc() combines the functionality of these two functions
by sending an RPC request and waiting for the results. See also  rpc:call/4 in Kernel.

• fd is an open descriptor to an Erlang connection.

• timeout is the maximum time (in milliseconds) to wait for results. To wait forever, specify
ERL_NO_TIMEOUT. When erl_rpc() calls erl_rpc_from(), the call will never timeout.

• mod is the name of the module containing the function to be run on the remote node.

• fun is the name of the function to run.

• args is an Erlang list, containing the arguments to be passed to the function.

• emsg is a message containing the result of the function call.

The actual message returned by the RPC server is a 2-tuple {rex,Reply}. If you use erl_rpc_from() in your
code, this is the message you will need to parse. If you use erl_rpc(), the tuple itself is parsed for you, and the
message returned to your program is the Erlang term containing Reply only. Replies to RPC requests are always
ERL_SEND messages.

Note:

It is the caller's responsibility to free the returned ETERM structure and the memory pointed to by emsg->msg
and emsg->to.

erl_rpc() returns the remote function's return value on success, otherwise NULL.

erl_rpc_to() returns 0 on success, otherwise a negative number.

erl_rcp_from() returns ERL_MSG on success (with Emsg now containing the reply tuple), otherwise one of
ERL_TICK, ERL_TIMEOUT, or ERL_ERROR.

When failing, all three functions set erl_errno to one of:

ENOMEM
No more memory is available.

EIO
I/O error.

ETIMEDOUT
Timeout has expired.

EAGAIN
Temporary error: Try again.

int erl_send(fd, to, msg)
Types:

int fd;

ETERM *to, *msg;

Sends an Erlang term to a process.

• fd is an open descriptor to an Erlang connection.

• to is an Erlang term containing the pid of the intended recipient of the message.

• >msg is the Erlang term to be sent.

Returns 1 on success, otherwise 0. In the latter case erl_errno is set to one of:



erl_connect

Ericsson AB. All Rights Reserved.: Erl_Interface | 45

EINVAL
Invalid argument: to is not a valid Erlang pid.

ENOMEM
No more memory is available.

EIO
I/O error.

const char *erl_thisalivename()
const char *erl_thiscookie()
short erl_thiscreation()
const char *erl_thishostname()
const char *erl_thisnodename()
Retrieves information about the C-node. These values are initially set with erl_connect_init() or
erl_connect_xinit().

int erl_unpublish(alive)
Types:

char *alive;

This function can be called by a process to unregister a specified node from EPMD on the local host. This is, however,
usually not allowed, unless EPMD was started with flag -relaxed_command_check, which it normally is not.

To unregister a node you have published, you should instead close the descriptor that was returned by
ei_publish().

Warning:

This function is deprecated and will be removed in a future release.

alive is the name of the node to unregister, that is, the first component of the node name, without @hostname.

If the node was successfully unregistered from EPMD, 0 is returned, otherwise -1 is returned and erl_errno is
set to EIO.

int erl_xreceive_msg(fd, bufpp, bufsizep, emsg)
Types:

int fd;

unsigned char **bufpp;

int *bufsizep;

ErlMessage *emsg;

Similar to erl_receive_msg. The difference is that erl_xreceive_msg expects the buffer to have been
allocated by malloc, and reallocates it if the received message does not fit into the original buffer. Therefore both
buffer and buffer length are given as pointers; their values can change by the call.

On success, the function returns ERL_MSG and the Emsg struct is initialized as described above, or ERL_TICK, in
which case no message is returned. On failure, the function returns ERL_ERROR and sets erl_errno to one of:

EMSGSIZE
Buffer is too small.

ENOMEM
No more memory is available.



erl_connect

46 | Ericsson AB. All Rights Reserved.: Erl_Interface

EIO
I/O error.

struct hostent *erl_gethostbyaddr(addr, length, type)
struct hostent *erl_gethostbyaddr_r(addr, length, type, hostp, buffer,
buflen, h_errnop)
struct hostent *erl_gethostbyname(name)
struct hostent *erl_gethostbyname_r(name, hostp, buffer, buflen, h_errnop)
Types:

const char *name;

const char *addr;

int length;

int type;

struct hostent *hostp;

char *buffer;

int buflen;

int *h_errnop;

Convenience functions for some common name lookup functions.

Debug Information
If a connection attempt fails, the following can be checked:

• erl_errno

• That the correct cookie was used

• That EPMD is running

• That the remote Erlang node on the other side is running the same version of Erlang as the erl_interface
library



erl_error

Ericsson AB. All Rights Reserved.: Erl_Interface | 47

erl_error
C Library

This module contains some error printing routines taken from "Advanced Programming in the UNIX Environment"
by W. Richard Stevens.

These functions are all called in the same manner as printf(), that is, with a string containing format specifiers
followed by a list of corresponding arguments. All output from these functions is to stderr.

Exports

void erl_err_msg(FormatStr, ... )
Types:

const char *FormatStr;

The message provided by the caller is printed. This function is simply a wrapper for fprintf().

void erl_err_quit(FormatStr, ... )
Types:

const char *FormatStr;

Use this function when a fatal error has occurred that is not because of a system call. The message provided by the
caller is printed and the process terminates with exit value 1. This function does not return.

void erl_err_ret(FormatStr, ... )
Types:

const char *FormatStr;

Use this function after a failed system call. The message provided by the caller is printed followed by a string describing
the reason for failure.

void erl_err_sys(FormatStr, ... )
Types:

const char *FormatStr;

Use this function after a failed system call. The message provided by the caller is printed followed by a string describing
the reason for failure, and the process terminates with exit value 1. This function does not return.

Error Reporting
Most functions in Erl_Interface report failures to the caller by returning some otherwise meaningless value
(typically NULL or a negative number). As this only tells you that things did not go well, examine the error code in
erl_errno if you want to find out more about the failure.

Exports

volatile int erl_errno
erl_errno is initially (at program startup) zero and is then set by many Erl_Interface functions on failure to a
non-zero error code to indicate what kind of error it encountered. A successful function call can change erl_errno



erl_error

48 | Ericsson AB. All Rights Reserved.: Erl_Interface

(by calling some other function that fails), but no function does never set it to zero. This means that you cannot use
erl_errno to see if a function call failed. Instead, each function reports failure in its own way (usually by returning
a negative number or NULL), in which case you can examine erl_errno for details.

erl_errno uses the error codes defined in your system's <errno.h>.

Note:

erl_errno is a "modifiable lvalue" (just like ISO C defines errno to be) rather than a variable. This means it
can be implemented as a macro (expanding to, for example, *_erl_errno()). For reasons of thread safety (or
task safety), this is exactly what we do on most platforms.



erl_eterm

Ericsson AB. All Rights Reserved.: Erl_Interface | 49

erl_eterm
C Library

This module provides functions for creating and manipulating Erlang terms.

An Erlang term is represented by a C structure of type ETERM. Applications should not reference any fields in this
structure directly, as it can be changed in future releases to provide faster and more compact term storage. Instead,
applications should use the macros and functions provided.

Each of the following macros takes a single ETERM pointer as an argument. The macros return a non-zero value if
the test is true, otherwise 0.

ERL_IS_INTEGER(t)
True if t is an integer.

ERL_IS_UNSIGNED_INTEGER(t)
True if t is an integer.

ERL_IS_FLOAT(t)
True if t is a floating point number.

ERL_IS_ATOM(t)
True if t is an atom.

ERL_IS_PID(t)
True if t is a pid (process identifier).

ERL_IS_PORT(t)
True if t is a port.

ERL_IS_REF(t)
True if t is a reference.

ERL_IS_TUPLE(t)
True if t is a tuple.

ERL_IS_BINARY(t)
True if t is a binary.

ERL_IS_LIST(t)
True if t is a list with zero or more elements.

ERL_IS_EMPTY_LIST(t)
True if t is an empty list.

ERL_IS_CONS(t)
True if t is a list with at least one element.

The following macros can be used for retrieving parts of Erlang terms. None of these do any type checking. Results
are undefined if you pass an ETERM* containing the wrong type. For example, passing a tuple to ERL_ATOM_PTR()
likely results in garbage.

char *ERL_ATOM_PTR(t)
char *ERL_ATOM_PTR_UTF8(t)

A string representing atom t.
int ERL_ATOM_SIZE(t)
int ERL_ATOM_SIZE_UTF8(t)

The length (in bytes) of atom t.
void *ERL_BIN_PTR(t)

A pointer to the contents of t.
int ERL_BIN_SIZE(t)

The length (in bytes) of binary object t.
int ERL_INT_VALUE(t)

The integer of t.



erl_eterm

50 | Ericsson AB. All Rights Reserved.: Erl_Interface

unsigned int ERL_INT_UVALUE(t)
The unsigned integer value of t.

double ERL_FLOAT_VALUE(t)
The floating point value of t.

ETERM *ERL_PID_NODE(t)
ETERM *ERL_PID_NODE_UTF8(t)

The node in pid t.
int ERL_PID_NUMBER(t)

The sequence number in pid t.
int ERL_PID_SERIAL(t)

The serial number in pid t.
int ERL_PID_CREATION(t)

The creation number in pid t.
int ERL_PORT_NUMBER(t)

The sequence number in port t.
int ERL_PORT_CREATION(t)

The creation number in port t.
ETERM *ERL_PORT_NODE(t)
ETERM *ERL_PORT_NODE_UTF8(t)

The node in port t.
int ERL_REF_NUMBER(t)

The first part of the reference number in ref t. Use only for compatibility.
int ERL_REF_NUMBERS(t)

Pointer to the array of reference numbers in ref t.
int ERL_REF_LEN(t)

The number of used reference numbers in ref t.
int ERL_REF_CREATION(t)

The creation number in ref t.
int ERL_TUPLE_SIZE(t)

The number of elements in tuple t.
ETERM *ERL_CONS_HEAD(t)

The head element of list t.
ETERM *ERL_CONS_TAIL(t)

A list representing the tail elements of list t.

Exports

ETERM *erl_cons(head, tail)
Types:

ETERM *head;

ETERM *tail;

Concatenates two Erlang terms, prepending head onto tail and thereby creating a cons cell. To make a proper
list, tail is always to be a list or an empty list. Notice that NULL is not a valid list.

• head is the new term to be added.

• tail is the existing list to which head is concatenated.

The function returns a new list.

ERL_CONS_HEAD(list) and ERL_CONS_TAIL(list) can be used to retrieve the head and tail components
from the list. erl_hd(list) and erl_tl(list) do the same thing, but check that the argument really is a list.

Example:



erl_eterm

Ericsson AB. All Rights Reserved.: Erl_Interface | 51

ETERM *list,*anAtom,*anInt;
anAtom = erl_mk_atom("madonna");
anInt  = erl_mk_int(21);
list   = erl_mk_empty_list();
list   = erl_cons(anAtom, list);
list   = erl_cons(anInt, list);
 ... /* do some work */
erl_free_compound(list);

ETERM *erl_copy_term(term)
Types:

ETERM *term;

Creates and returns a copy of the Erlang term term.

ETERM *erl_element(position, tuple)
Types:

int position;

ETERM *tuple;

Extracts a specified element from an Erlang tuple.

• position specifies which element to retrieve from tuple. The elements are numbered starting from 1.

• tuple is an Erlang term containing at least position elements.

Returns a new Erlang term corresponding to the requested element, or NULL if position was greater than the arity
of tuple.

ETERM *erl_hd(list)
Types:

ETERM *list;

Extracts the first element from a list.

list is an Erlang term containing a list.

Returns an Erlang term corresponding to the head head element in the list, or a NULL pointer if list was not a list.

void erl_init(NULL, 0)
Types:

void *NULL;

int 0;

This function must be called before any of the others in the Erl_Interface library to initialize the library functions.
The arguments must be specified as erl_init(NULL,0).

int erl_iolist_length(list)
Types:

ETERM *list;

Returns the length of an I/O list.

list is an Erlang term containing an I/O list.

Returns the length of list, or -1 if list is not an I/O list.



erl_eterm

52 | Ericsson AB. All Rights Reserved.: Erl_Interface

For the definition of an I/O list, see  erl_iolist_to_binary.

ETERM *erl_iolist_to_binary(term)
Types:

ETERM *list;

Converts an I/O list to a binary term.

list is an Erlang term containing a list.

Returns an Erlang binary term, or NULL if list was not an I/O list.

Informally, an I/O list is a deep list of characters and binaries that can be sent to an Erlang port. In BNF, an I/O list
is formally defined as follows:

iolist ::= []
        |   Binary
        |   [iohead | iolist]
        ;
iohead ::= Binary
        |   Byte (integer in the range [0..255])
        |   iolist
        ;

char *erl_iolist_to_string(list)
Types:

ETERM *list;

Converts an I/O list to a NULL-terminated C string.

list is an Erlang term containing an I/O list. The I/O list must not contain the integer 0, as C strings may not contain
this value except as a terminating marker.

Returns a pointer to a dynamically allocated buffer containing a string. If list is not an I/O list, or if list contains
the integer 0, NULL is returned. It is the caller's responsibility to free the allocated buffer with erl_free().

For the definition of an I/O list, see  erl_iolist_to_binary.

int erl_length(list)
Types:

ETERM *list;

Determines the length of a proper list.

list is an Erlang term containing a proper list. In a proper list, all tails except the last point to another list cell, and
the last tail points to an empty list.

Returns -1 if list is not a proper list.

ETERM *erl_mk_atom(string)
Types:

const char *string;

Creates an atom.

string is the sequence of characters that will be used to create the atom.

Returns an Erlang term containing an atom. Notice that it is the caller's responsibility to ensure that string contains
a valid name for an atom.



erl_eterm

Ericsson AB. All Rights Reserved.: Erl_Interface | 53

ERL_ATOM_PTR(atom) and ERL_ATOM_PTR_UTF8(atom) can be used to retrieve the atom name (as a NULL-
terminated string). ERL_ATOM_SIZE(atom) and ERL_ATOM_SIZE_UTF8(atom) return the length of the atom
name.

Note:

The UTF-8 variants were introduced in Erlang/OTP R16 and the string returned by ERL_ATOM_PTR(atom) was
not NULL-terminated on older releases.

ETERM *erl_mk_binary(bptr, size)
Types:

char *bptr;

int size;

Produces an Erlang binary object from a buffer containing a sequence of bytes.

• bptr is a pointer to a buffer containing data to be converted.

• size indicates the length of bptr.

Returns an Erlang binary object.

ERL_BIN_PTR(bin) retrieves a pointer to the binary data. ERL_BIN_SIZE(bin) retrieves the size.

ETERM *erl_mk_empty_list()
Creates and returns an empty Erlang list. Notice that NULL is not used to represent an empty list; Use this function
instead.

ETERM *erl_mk_estring(string, len)
Types:

char *string;

int len;

Creates a list from a sequence of bytes.

• string is a buffer containing a sequence of bytes. The buffer does not need to be NULL-terminated.

• len is the length of string.

Returns an Erlang list object corresponding to the character sequence in string.

ETERM *erl_mk_float(f)
Types:

double f;

Creates an Erlang float.

f is a value to be converted to an Erlang float.

Returns an Erlang float object with the value specified in f or NULL if f is not finite.

ERL_FLOAT_VALUE(t) can be used to retrieve the value from an Erlang float.

ETERM *erl_mk_int(n)
Types:

int n;



erl_eterm

54 | Ericsson AB. All Rights Reserved.: Erl_Interface

Creates an Erlang integer.

n is a value to be converted to an Erlang integer.

Returns an Erlang integer object with the value specified in n.

ERL_INT_VALUE(t) can be used to retrieve the value from an Erlang integer.

ETERM *erl_mk_list(array, arrsize)
Types:

ETERM **array;

int arrsize;

Creates an Erlang list from an array of Erlang terms, such that each element in the list corresponds to one element
in the array.

• array is an array of Erlang terms.

• arrsize is the number of elements in array.

The function creates an Erlang list object, whose length arrsize and whose elements are taken from the terms in
array.

ETERM *erl_mk_long_ref(node, n1, n2, n3, creation)
Types:

const char *node;

unsigned int n1, n2, n3;

unsigned int creation;

Creates an Erlang reference, with 82 bits.

• node is the name of the C-node.

• n1, n2, and n3 can be seen as one big number n1*2^64+n2*2^32+n3, which is to be chosen uniquely for
each reference created for a given C-node.

• creation is an arbitrary number.

Notice that n3 and creation are limited in precision, so only the low 18 and 2 bits of these numbers are used.

Returns an Erlang reference object.

ERL_REF_NODE(ref), ERL_REF_NUMBERS(ref), ERL_REF_LEN(ref), and
ERL_REF_CREATION(ref) can be used to retrieve the values used to create the reference.

ETERM *erl_mk_pid(node, number, serial, creation)
Types:

const char *node;

unsigned int number;

unsigned int serial;

unsigned int creation;

Creates an Erlang process identifier (pid). The resulting pid can be used by Erlang processes wishing to communicate
with the C-node.

• node is the name of the C-node.

• number, serial, and creation are arbitrary numbers. Notice that these are limited in precision, so only
the low 15, 3, and 2 bits of these numbers are used.



erl_eterm

Ericsson AB. All Rights Reserved.: Erl_Interface | 55

Returns an Erlang pid object.

ERL_PID_NODE(pid), ERL_PID_NUMBER(pid), ERL_PID_SERIAL(pid), and
ERL_PID_CREATION(pid) can be used to retrieve the four values used to create the pid.

ETERM *erl_mk_port(node, number, creation)
Types:

const char *node;

unsigned int number;

unsigned int creation;

Creates an Erlang port identifier.

• node is the name of the C-node.

• number and creation are arbitrary numbers. Notice that these are limited in precision, so only the low 18
and 2 bits of these numbers are used.

Returns an Erlang port object.

ERL_PORT_NODE(port), ERL_PORT_NUMBER(port), and ERL_PORT_CREATION can be used to retrieve
the three values used to create the port.

ETERM *erl_mk_ref(node, number, creation)
Types:

const char *node;

unsigned int number;

unsigned int creation;

Creates an old Erlang reference, with only 18 bits - use erl_mk_long_ref instead.

• node is the name of the C-node.

• number is to be chosen uniquely for each reference created for a given C-node.

• creation is an arbitrary number.

Notice that number and creation are limited in precision, so only the low 18 and 2 bits of these numbers are used.

Returns an Erlang reference object.

ERL_REF_NODE(ref), ERL_REF_NUMBER(ref), and ERL_REF_CREATION(ref) can be used to retrieve
the three values used to create the reference.

ETERM *erl_mk_string(string)
Types:

char *string;

Creates a list from a NULL-terminated string.

string is a NULL-terminated sequence of characters (that is, a C string) from which the list will be created.

Returns an Erlang list.

ETERM *erl_mk_tuple(array, arrsize)
Types:

ETERM **array;

int arrsize;



erl_eterm

56 | Ericsson AB. All Rights Reserved.: Erl_Interface

Creates an Erlang tuple from an array of Erlang terms.

• array is an array of Erlang terms.

• arrsize is the number of elements in array.

The function creates an Erlang tuple, whose arity is size and whose elements are taken from the terms in array.

To retrieve the size of a tuple, either use function erl_size (which checks the type of the checked term and works
for a binary as well as for a tuple) or ERL_TUPLE_SIZE(tuple) returns the arity of a tuple. erl_size() does
the same thing, but it checks that the argument is a tuple. erl_element(index,tuple) returns the element
corresponding to a given position in the tuple.

ETERM *erl_mk_uint(n)
Types:

unsigned int n;

Creates an Erlang unsigned integer.

n is a value to be converted to an Erlang unsigned integer.

Returns an Erlang unsigned integer object with the value specified in n.

ERL_INT_UVALUE(t) can be used to retrieve the value from an Erlang unsigned integer.

ETERM *erl_mk_var(name)
Types:

char *name;

Creates an unbound Erlang variable. The variable can later be bound through pattern matching or assignment.

name specifies a name for the variable.

Returns an Erlang variable object with the name name.

int erl_print_term(stream, term)
Types:

FILE *stream;

ETERM *term;

Prints the specified Erlang term to the specified output stream.

• stream indicates where the function is to send its output.

• term is the Erlang term to print.

Returns the number of characters written on success, otherwise a negative value.

void erl_set_compat_rel(release_number)
Types:

unsigned release_number;

By default, the Erl_Interface library is only guaranteed to be compatible with other Erlang/OTP components
from the same release as the Erl_Interface library itself. For example, Erl_Interface from Erlang/OTP R10
is not compatible with an Erlang emulator from Erlang/OTP R9 by default.

A call to erl_set_compat_rel(release_number) sets the Erl_Interface library in compatibility mode
of release release_number. Valid range of release_number is [7, current release]. This makes it possible to
communicate with Erlang/OTP components from earlier releases.



erl_eterm

Ericsson AB. All Rights Reserved.: Erl_Interface | 57

Note:

If this function is called, it may only be called once directly after the call to function erl_init().

Warning:

You may run into trouble if this feature is used carelessly. Always ensure that all communicating components are
either from the same Erlang/OTP release, or from release X and release Y where all components from release Y
are in compatibility mode of release X.

int erl_size(term)
Types:

ETERM *term;

Returns either the arity of an Erlang tuple or the number of bytes in an Erlang binary object.

term is an Erlang tuple or an Erlang binary object.

Returns the size of term as described above, or -1 if term is not one of the two supported types.

ETERM *erl_tl(list)
Types:

ETERM *list;

Extracts the tail from a list.

list is an Erlang term containing a list.

Returns an Erlang list corresponding to the original list minus the first element, or NULL pointer if list was not a list.

ETERM *erl_var_content(term, name)
Types:

ETERM *term;

char *name;

Returns the contents of the specified variable in an Erlang term.

• term is an Erlang term. In order for this function to succeed, term must either be an Erlang variable with the
specified name, or it must be an Erlang list or tuple containing a variable with the specified name. Other Erlang
types cannot contain variables.

• name is the name of an Erlang variable.

Returns the Erlang object corresponding to the value of name in term. If no variable with the name name is found
in term, or if term is not a valid Erlang term, NULL is returned.



erl_format

58 | Ericsson AB. All Rights Reserved.: Erl_Interface

erl_format
C Library

This module contains two routines: one general function for creating Erlang terms and one for pattern matching Erlang
terms.

Exports

ETERM *erl_format(FormatStr, ...)
Types:

char *FormatStr;

A general function for creating Erlang terms using a format specifier and a corresponding set of arguments, much in
the way printf() works.

FormatStr is a format specification string. The valid format specifiers are as follows:

• ~i - Integer

• ~f - Floating point

• ~a - Atom

• ~s - String

• ~w - Arbitrary Erlang term

For each format specifier included in FormatStr, there must be a corresponding argument following FormatStr.
An Erlang term is built according to FormatStr with values and Erlang terms substituted from the corresponding
arguments, and according to the individual format specifiers. For example:

erl_format("[{name,~a},{age,~i},{data,~w}]",
           "madonna",
           21,
           erl_format("[{adr,~s,~i}]","E-street",42));

This creates an (ETERM *) structure corresponding to the Erlang term [{name,madonna},{age,21},{data,
[{adr,"E-street",42}]}]

The function returns an Erlang term, or NULL if FormatStr does not describe a valid Erlang term.

int erl_match(Pattern, Term)
Types:

ETERM *Pattern,*Term;

This function is used to perform pattern matching similar to that done in Erlang. For matching rules and more examples,
see section  Pattern Matching in the Erlang Reference Manual.

• Pattern is an Erlang term, possibly containing unbound variables.

• Term is an Erlang term that we wish to match against Pattern.

Term and Pattern are compared and any unbound variables in Pattern are bound to corresponding values in
Term.

If Term and Pattern can be matched, the function returns a non-zero value and binds any unbound variables in
Pattern. If Term and Pattern do not match, 0 is returned. For example:



erl_format

Ericsson AB. All Rights Reserved.: Erl_Interface | 59

ETERM *term, *pattern, *pattern2;
term1    = erl_format("{14,21}");
term2    = erl_format("{19,19}");
pattern1 = erl_format("{A,B}");
pattern2 = erl_format("{F,F}");
if (erl_match(pattern1, term1)) {
  /* match succeeds:
   * A gets bound to 14, 
   * B gets bound to 21 
   */
  ...  
}
if (erl_match(pattern2, term1)) {
  /* match fails because F cannot be 
   * bound to two separate values, 14 and 21
   */
  ...
}
if (erl_match(pattern2, term2)) {
  /* match succeeds and F gets bound to 19 */
  ...
}

erl_var_content() can be used to retrieve the content of any variables bound as a result of a call to
erl_match().



erl_global

60 | Ericsson AB. All Rights Reserved.: Erl_Interface

erl_global
C Library

This module provides support for registering, looking up, and unregistering names in the global module. For more
information, see kernel:global.

Notice that the functions below perform an RPC using an open file descriptor provided by the caller. This file descriptor
must not be used for other traffic during the global operation, as the function can then receive unexpected data and fail.

Exports

char **erl_global_names(fd,count)
Types:

int fd;

int *count;

Retrieves a list of all known global names.

• fd is an open descriptor to an Erlang connection.

• count is the address of an integer, or NULL. If count is not NULL, it is set by the function to the number of
names found.

On success, the function returns an array of strings, each containing a single registered name, and sets count to the
number of names found. The array is terminated by a single NULL pointer. On failure, the function returns NULL and
count is not modified.

Note:

It is the caller's responsibility to free the array afterwards. It has been allocated by the function with a single call
to malloc(), so a single free() is all that is necessary.

int erl_global_register(fd,name,pid)
Types:

int fd;

const char *name;

ETERM *pid;

Registers a name in global.

• fd is an open descriptor to an Erlang connection.

• name is the name to register in global.

• pid is the pid that is to be associated with name. This value is returned by global when processes request
the location of name.

Returns 0 on success, otherwise -1.

int erl_global_unregister(fd,name)
Types:

int fd;

const char *name;



erl_global

Ericsson AB. All Rights Reserved.: Erl_Interface | 61

Unregisters a name from global.

• fd is an open descriptor to an Erlang connection.

• name is the name to unregister from global.

Returns 0 on success, otherwise -1.

ETERM *erl_global_whereis(fd,name,node)
Types:

int fd;

const char *name;

char *node;

Looks up a name in global.

• fd is an open descriptor to an Erlang connection.

• name is the name that is to be looked up in global.

If node is not NULL, it is a pointer to a buffer where the function can fill in the name of the node where name is
found. node can be passed directly to erl_connect() if necessary.

On success, the function returns an Erlang pid containing the address of the specified name, and the node is initialized
to the node name where name is found. On failure, NULL is returned and node is not modified.



erl_malloc

62 | Ericsson AB. All Rights Reserved.: Erl_Interface

erl_malloc
C Library

This module provides functions for allocating and deallocating memory.

Exports

ETERM *erl_alloc_eterm(etype)
Types:

unsigned char etype;

Allocates an (ETERM) structure.

Specify etype as one of the following constants:

• ERL_INTEGER

• ERL_U_INTEGER (unsigned integer)

• ERL_ATOM

• ERL_PID (Erlang process identifier)

• ERL_PORT

• ERL_REF (Erlang reference)

• ERL_LIST

• ERL_EMPTY_LIST

• ERL_TUPLE

• ERL_BINARY

• ERL_FLOAT

• ERL_VARIABLE

• ERL_SMALL_BIG (bignum)

• ERL_U_SMALL_BIG (bignum)

ERL_SMALL_BIG and ERL_U_SMALL_BIG are for creating Erlang bignums, which can contain integers of any
size. The size of an integer in Erlang is machine-dependent, but any integer > 2^28 requires a bignum.

void erl_eterm_release(void)
Clears the freelist, where blocks are placed when they are released by erl_free_term() and
erl_free_compound().

void erl_eterm_statistics(allocated, freed)
Types:

long *allocated;

long *freed;

Reports term allocation statistics.

allocated and freed are initialized to contain information about the fix-allocator used to allocate ETERM
components.

• allocated is the number of blocks currently allocated to ETERM objects.



erl_malloc

Ericsson AB. All Rights Reserved.: Erl_Interface | 63

• freed is the length of the freelist, where blocks are placed when they are released by erl_free_term() and
erl_free_compound().

void erl_free(ptr)
Types:

void *ptr;

Calls the standard free() function.

void erl_free_array(array, size)
Types:

ETERM **array;

int size;

Frees an array of Erlang terms.

• array is an array of ETERM* objects.

• size is the number of terms in the array.

void erl_free_compound(t)
Types:

ETERM *t;

Normally it is the programmer's responsibility to free each Erlang term that has been returned from any of the
Erl_Interface functions. However, as many of the functions that build new Erlang terms in fact share objects
with other existing terms, it can be difficult for the programmer to maintain pointers to all such terms to free them
individually.

erl_free_compound() recursively frees all of the subterms associated with a specified Erlang term, regardless
of whether we are still holding pointers to the subterms.

For an example, see section Building Terms and Patterns in the User's Guide.

void erl_free_term(t)
Types:

ETERM *t;

Frees an Erlang term.

void erl_malloc(size)
Types:

long size;

Calls the standard malloc() function.



erl_marshal

64 | Ericsson AB. All Rights Reserved.: Erl_Interface

erl_marshal
C Library

This module contains functions for encoding Erlang terms into a sequence of bytes, and for decoding Erlang terms
from a sequence of bytes.

Exports

int erl_compare_ext(bufp1, bufp2)
Types:

unsigned char *bufp1,*bufp2;

Compares two encoded terms.

• bufp1 is a buffer containing an encoded Erlang term term1.

• bufp2 is a buffer containing an encoded Erlang term term2.

Returns 0 if the terms are equal, -1 if term1 < term2, or 1 if term2 < term1.

ETERM *erl_decode(bufp)
ETERM *erl_decode_buf(bufpp)
Types:

unsigned char *bufp;

unsigned char **bufpp;

erl_decode() and erl_decode_buf() decode the contents of a buffer and return the corresponding
Erlang term. erl_decode_buf() provides a simple mechanism for dealing with several encoded terms stored
consecutively in the buffer.

• bufp is a pointer to a buffer containing one or more encoded Erlang terms.

• bufpp is the address of a buffer pointer. The buffer contains one or more consecutively encoded Erlang terms.
Following a successful call to erl_decode_buf(), bufpp is updated so that it points to the next encoded
term.

erl_decode() returns an Erlang term corresponding to the contents of bufp on success, otherwise NULL.
erl_decode_buf() returns an Erlang term corresponding to the first of the consecutive terms in bufpp and
moves bufpp forward to point to the next term in the buffer. On failure, each of the functions return NULL.

int erl_encode(term, bufp)
int erl_encode_buf(term, bufpp)
Types:

ETERM *term;

unsigned char *bufp;

unsigned char **bufpp;

erl_encode() and erl_encode_buf() encode Erlang terms into external format for storage or transmission.
erl_encode_buf() provides a simple mechanism for encoding several terms consecutively in the same buffer.

• term is an Erlang term to be encoded.

• bufp is a pointer to a buffer containing one or more encoded Erlang terms.



erl_marshal

Ericsson AB. All Rights Reserved.: Erl_Interface | 65

• bufpp is a pointer to a pointer to a buffer containing one or more consecutively encoded Erlang terms. Following
a successful call to erl_encode_buf(), bufpp is updated so that it points to the position for the next encoded
term.

These functions return the number of bytes written to buffer on success, otherwise 0.

Notice that no bounds checking is done on the buffer. It is the caller's responsibility to ensure that the buffer is large
enough to hold the encoded terms. You can either use a static buffer that is large enough to hold the terms you expect
to need in your program, or use erl_term_len() to determine the exact requirements for a given term.

The following can help you estimate the buffer requirements for a term. Notice that this information is implementation-
specific, and can change in future versions. If you are unsure, use erl_term_len().

Erlang terms are encoded with a 1 byte tag that identifies the type of object, a 2- or 4-byte length field, and then the
data itself. Specifically:

Tuples
Need 5 bytes, plus the space for each element.

Lists
Need 5 bytes, plus the space for each element, and 1 more byte for the empty list at the end.

Strings and atoms
Need 3 bytes, plus 1 byte for each character (the terminating 0 is not encoded). Really long strings (more than
64k characters) are encoded as lists. Atoms cannot contain more than 256 characters.

Integers
Need 5 bytes.

Characters
(Integers < 256) need 2 bytes.

Floating point numbers
Need 32 bytes.

Pids
Need 10 bytes, plus the space for the node name, which is an atom.

Ports and Refs
Need 6 bytes, plus the space for the node name, which is an atom.

The total space required is the result calculated from the information above, plus 1 more byte for a version identifier.

int erl_ext_size(bufp)
Types:

unsigned char *bufp;

Returns the number of elements in an encoded term.

unsigned char erl_ext_type(bufp)
Types:

unsigned char *bufp;

Identifies and returns the type of Erlang term encoded in a buffer. It skips a trailing magic identifier.

Returns 0 if the type cannot be determined or one of:

• ERL_INTEGER

• ERL_ATOM

• ERL_PID (Erlang process identifier)

• ERL_PORT

• ERL_REF (Erlang reference)



erl_marshal

66 | Ericsson AB. All Rights Reserved.: Erl_Interface

• ERL_EMPTY_LIST

• ERL_LIST

• ERL_TUPLE

• ERL_FLOAT

• ERL_BINARY

• ERL_FUNCTION

unsigned char *erl_peek_ext(bufp, pos)
Types:

unsigned char *bufp;

int pos;

This function is used for stepping over one or more encoded terms in a buffer, to directly access later term.

• bufp is a pointer to a buffer containing one or more encoded Erlang terms.

• pos indicates how many terms to step over in the buffer.

Returns a pointer to a subterm that can be used in a later call to erl_decode() to retrieve the term at that position.
If there is no term, or pos would exceed the size of the terms in the buffer, NULL is returned.

int erl_term_len(t)
Types:

ETERM *t;

Determines the buffer space that would be needed by t if it were encoded into Erlang external format by
erl_encode().

Returns the size in bytes.



erl_call

Ericsson AB. All Rights Reserved.: Erl_Interface | 67

erl_call
Command

erl_call makes it possible to start and/or communicate with a distributed Erlang node. It is built upon the
Erl_Interface library as an example application. Its purpose is to use a Unix shell script to interact with a
distributed Erlang node. It performs all communication with the Erlang rex server, using the standard Erlang RPC
facility. It does not require any special software to be run at the Erlang target node.

The main use is to either start a distributed Erlang node or to make an ordinary function call. However, it is also
possible to pipe an Erlang module to erl_call and have it compiled, or to pipe a sequence of Erlang expressions
to be evaluated (similar to the Erlang shell).

Options, which cause stdin to be read, can be used with advantage, as scripts from within (Unix) shell scripts.
Another nice use of erl_call could be from (HTTP) CGI-bin scripts.

Exports

erl_call <options>
Starts/calls Erlang.

Each option flag is described below with its name, type, and meaning.

-a [Mod [Fun [Args]]]]

(Optional.) Applies the specified function and returns the result. Mod must be specified. However, start
and [] are assumed for unspecified Fun and Args, respectively. Args is to be in the same format as for
erlang:apply/3 in ERTS.

Notice that this flag takes exactly one argument, so quoting can be necessary to group Mod, Fun, and Args in
a manner dependent on the behavior of your command shell.

-c Cookie

(Optional.) Use this option to specify a certain cookie. If no cookie is specified, the ~/.erlang.cookie file is
read and its content is used as cookie. The Erlang node we want to communicate with must have the same cookie.

-d

(Optional.) Debug mode. This causes all I/O to be output to the ~/.erl_call.out.Nodename file, where
Nodename is the node name of the Erlang node in question.

-e

(Optional.) Reads a sequence of Erlang expressions, separated by comma (,) and ended with a full stop (.), from
stdin until EOF (Control-D). Evaluates the expressions and returns the result from the last expression. Returns
{ok,Result} on success.

-h HiddenName

(Optional.) Specifies the name of the hidden node that erl_call represents.

-m

(Optional.) Reads an Erlang module from stdin and compiles it.

-n Node

(One of -n, -name, -sname is required.) Has the same meaning as -name and can still be used for backward
compatibility reasons.



erl_call

68 | Ericsson AB. All Rights Reserved.: Erl_Interface

-name Node

(One of -n, -name, -sname is required.) Node is the name of the node to be started or communicated with.
It is assumed that Node is started with erl -name, which means that fully qualified long node names are used.
If option -s is specified, an Erlang node will (if necessary) be started with erl -name.

-q

(Optional.) Halts the Erlang node specified with switch -n. This switch overrides switch -s.

-r

(Optional.) Generates a random name of the hidden node that erl_call represents.

-s

(Optional.) Starts a distributed Erlang node if necessary. This means that in a sequence of calls, where '-s' and
'-n Node' are constant, only the first call starts the Erlang node. This makes the rest of the communication very
fast. This flag is currently only available on Unix-like platforms (Linux, Mac OS X, Solaris, and so on).

-sname Node

(One of -n, -name, -sname is required.) Node is the name of the node to be started or communicated with.
It is assumed that Node is started with erl -sname, which means that short node names are used. If option -
s is specified, an Erlang node is started (if necessary) with erl -sname.

-v

(Optional.) Prints a lot of verbose information. This is only useful for the developer and maintainer of
erl_call.

-x ErlScript

(Optional.) Specifies another name of the Erlang startup script to be used. If not specified, the standard erl
startup script is used.

Examples
To start an Erlang node and call erlang:time/0:

erl_call -s -a 'erlang time' -n madonna
{18,27,34}

To terminate an Erlang node by calling erlang:halt/0:

erl_call -s -a 'erlang halt' -n madonna

To apply with many arguments:

erl_call -s -a 'lists seq [1,10]' -n madonna

To evaluate some expressions (the input ends with EOF (Control-D)):

erl_call -s -e -n madonna
statistics(runtime),
X=1,
Y=2,
{_,T}=statistics(runtime),
{X+Y,T}.
^D
{ok,{3,0}}

To compile a module and run it (again, the input ends with EOF (Control-D)):

(In the example, the output has been formatted afterwards.)



erl_call

Ericsson AB. All Rights Reserved.: Erl_Interface | 69

erl_call -s -m -a procnames -n madonna
-module(procnames).
-compile(export_all).
start() ->
        P = processes(),
        F = fun(X) -> {X,process_info(X,registered_name)} end,
        lists:map(F,[],P).
^D
[{<madonna@chivas.du.etx.ericsson.se,0,0>,
                  {registered_name,init}},
 {<madonna@chivas.du.etx.ericsson.se,2,0>,
                  {registered_name,erl_prim_loader}},
 {<madonna@chivas.du.etx.ericsson.se,4,0>,
                  {registered_name,error_logger}},
 {<madonna@chivas.du.etx.ericsson.se,5,0>,
                  {registered_name,application_controller}},
 {<madonna@chivas.du.etx.ericsson.se,6,0>,
                  {registered_name,kernel}},
 {<madonna@chivas.du.etx.ericsson.se,7,0>,
                  []},
 {<madonna@chivas.du.etx.ericsson.se,8,0>,
                  {registered_name,kernel_sup}},
 {<madonna@chivas.du.etx.ericsson.se,9,0>,
                  {registered_name,net_sup}},
 {<madonna@chivas.du.etx.ericsson.se,10,0>,
                  {registered_name,net_kernel}},
 {<madonna@chivas.du.etx.ericsson.se,11,0>,
                  []},
 {<madonna@chivas.du.etx.ericsson.se,12,0>,
                  {registered_name,global_name_server}},
 {<madonna@chivas.du.etx.ericsson.se,13,0>,
                  {registered_name,auth}},
 {<madonna@chivas.du.etx.ericsson.se,14,0>,
                  {registered_name,rex}},
 {<madonna@chivas.du.etx.ericsson.se,15,0>,
                  []},
 {<madonna@chivas.du.etx.ericsson.se,16,0>,
                  {registered_name,file_server}},
 {<madonna@chivas.du.etx.ericsson.se,17,0>,
                  {registered_name,code_server}},
 {<madonna@chivas.du.etx.ericsson.se,20,0>,
                  {registered_name,user}},
 {<madonna@chivas.du.etx.ericsson.se,38,0>,
                  []}]


	Erl_Interface
	Erl_Interface User's Guide
	Erl_Interface User's Guide
	Introduction
	Scope
	Prerequisites

	Compiling and Linking Your Code
	Initializing the Erl_Interface Library
	Encoding, Decoding, and Sending Erlang Terms
	Building Terms and Patterns
	Pattern Matching
	Connecting to a Distributed Erlang Node
	Using EPMD
	Sending and Receiving Erlang Messages
	Example of Sending Messages
	Example of Receiving Messages

	Remote Procedure Calls
	Using Global Names
	Using the Registry
	Backing Up the Registry to Mnesia
	Storing Strings and Binaries



	Reference Manual
	ei
	ei_decode_atom()
               
	ei_decode_atom_as()
               
	ei_decode_bignum()
               
	ei_decode_binary()
               
	ei_decode_boolean()
               
	ei_decode_char()
               
	ei_decode_double()
               
	ei_decode_ei_term()
               
	ei_decode_fun()
               
	free_fun()
               
	ei_decode_list_header()
               
	ei_decode_long()
               
	ei_decode_longlong()
               
	ei_decode_map_header()
               
	ei_decode_pid()
               
	ei_decode_port()
               
	ei_decode_ref()
               
	ei_decode_string()
               
	ei_decode_term()
               
	ei_decode_trace()
               
	ei_decode_tuple_header()
               
	ei_decode_ulong()
               
	ei_decode_ulonglong()
               
	ei_decode_version()
               
	ei_encode_atom()
               
	ei_encode_atom_len()
               
	ei_x_encode_atom()
               
	ei_x_encode_atom_len()
               
	ei_encode_atom_as()
               
	ei_encode_atom_len_as()
               
	ei_x_encode_atom_as()
               
	ei_x_encode_atom_len_as()
               
	ei_encode_bignum()
               
	ei_x_encode_bignum()
               
	ei_encode_binary()
               
	ei_x_encode_binary()
               
	ei_encode_boolean()
               
	ei_x_encode_boolean()
               
	ei_encode_char()
               
	ei_x_encode_char()
               
	ei_encode_double()
               
	ei_x_encode_double()
               
	ei_encode_empty_list()
               
	ei_x_encode_empty_list()
               
	ei_encode_fun()
               
	ei_x_encode_fun()
               
	ei_encode_list_header()
               
	ei_x_encode_list_header()
               
	ei_encode_long()
               
	ei_x_encode_long()
               
	ei_encode_longlong()
               
	ei_x_encode_longlong()
               
	ei_encode_map_header()
               
	ei_x_encode_map_header()
               
	ei_encode_pid()
               
	ei_x_encode_pid()
               
	ei_encode_port()
               
	ei_x_encode_port()
               
	ei_encode_ref()
               
	ei_x_encode_ref()
               
	ei_encode_string()
               
	ei_encode_string_len()
               
	ei_x_encode_string()
               
	ei_x_encode_string_len()
               
	ei_encode_term()
               
	ei_x_encode_term()
               
	ei_encode_trace()
               
	ei_x_encode_trace()
               
	ei_encode_tuple_header()
               
	ei_x_encode_tuple_header()
               
	ei_encode_ulong()
               
	ei_x_encode_ulong()
               
	ei_encode_ulonglong()
               
	ei_x_encode_ulonglong()
               
	ei_encode_version()
               
	ei_x_encode_version()
               
	ei_get_type()
               
	ei_print_term()
               
	ei_s_print_term()
               
	ei_set_compat_rel()
               
	ei_skip_term()
               
	ei_x_append()
               
	ei_x_append_buf()
               
	ei_x_format()
               
	ei_x_format_wo_ver()
               
	ei_x_free()
               
	ei_x_new()
               
	ei_x_new_with_version()
               

	ei_connect
	*ei_gethostbyaddr()
               
	*ei_gethostbyaddr_r()
               
	*ei_gethostbyname()
               
	*ei_gethostbyname_r()
               
	ei_accept()
               
	ei_accept_tmo()
               
	ei_connect()
               
	ei_xconnect()
               
	ei_connect_init()
               
	ei_connect_xinit()
               
	ei_connect_tmo()
               
	ei_xconnect_tmo()
               
	ei_get_tracelevel()
               
	ei_set_tracelevel()
               
	ei_publish()
               
	ei_publish_tmo()
               
	ei_receive()
               
	ei_receive_encoded()
               
	ei_receive_encoded_tmo()
               
	ei_receive_msg()
               
	ei_xreceive_msg()
               
	ei_receive_msg_tmo()
               
	ei_xreceive_msg_tmo()
               
	ei_receive_tmo()
               
	ei_reg_send()
               
	ei_reg_send_tmo()
               
	ei_rpc()
               
	ei_rpc_to()
               
	ei_rpc_from()
               
	ei_self()
               
	ei_send()
               
	ei_send_encoded()
               
	ei_send_encoded_tmo()
               
	ei_send_reg_encoded()
               
	ei_send_reg_encoded_tmo()
               
	ei_send_tmo()
               
	ei_thisnodename()
               
	ei_thishostname()
               
	ei_thisalivename()
               
	ei_unpublish()
               
	ei_unpublish_tmo()
               

	registry
	ei_reg_close()
               
	ei_reg_delete()
               
	ei_reg_dump()
               
	ei_reg_getfval()
               
	ei_reg_getival()
               
	ei_reg_getpval()
               
	ei_reg_getsval()
               
	ei_reg_getval()
               
	ei_reg_markdirty()
               
	ei_reg_open()
               
	ei_reg_purge()
               
	ei_reg_resize()
               
	ei_reg_restore()
               
	ei_reg_setfval()
               
	ei_reg_setival()
               
	ei_reg_setpval()
               
	ei_reg_setsval()
               
	ei_reg_setval()
               
	ei_reg_stat()
               
	ei_reg_tabstat()
               

	erl_connect
	erl_accept()
               
	erl_close_connection()
               
	erl_connect()
               
	erl_xconnect()
               
	erl_connect_init()
               
	erl_connect_xinit()
               
	erl_publish()
               
	erl_receive()
               
	erl_receive_msg()
               
	erl_reg_send()
               
	erl_rpc()
               
	erl_rpc_from()
               
	erl_rpc_to()
               
	erl_send()
               
	erl_thisalivename()
               
	erl_thiscookie()
               
	erl_thiscreation()
               
	erl_thishostname()
               
	erl_thisnodename()
               
	erl_unpublish()
               
	erl_xreceive_msg()
               
	*erl_gethostbyaddr()
               
	*erl_gethostbyaddr_r()
               
	*erl_gethostbyname()
               
	*erl_gethostbyname_r()
               

	erl_error
	erl_err_msg()
               
	erl_err_quit()
               
	erl_err_ret()
               
	erl_err_sys()
               
	erl_errno()
                

	erl_eterm
	erl_cons()
               
	erl_copy_term()
               
	erl_element()
               
	erl_hd()
               
	erl_init()
               
	erl_iolist_length()
               
	erl_iolist_to_binary()
               
	erl_iolist_to_string()
               
	erl_length()
               
	erl_mk_atom()
               
	erl_mk_binary()
               
	erl_mk_empty_list()
               
	erl_mk_estring()
               
	erl_mk_float()
               
	erl_mk_int()
               
	erl_mk_list()
               
	erl_mk_long_ref()
               
	erl_mk_pid()
               
	erl_mk_port()
               
	erl_mk_ref()
               
	erl_mk_string()
               
	erl_mk_tuple()
               
	erl_mk_uint()
               
	erl_mk_var()
               
	erl_print_term()
               
	erl_set_compat_rel()
               
	erl_size()
               
	erl_tl()
               
	erl_var_content()
               

	erl_format
	erl_format()
               
	erl_match()
               

	erl_global
	erl_global_names()
               
	erl_global_register()
               
	erl_global_unregister()
               
	erl_global_whereis()
               

	erl_malloc
	erl_alloc_eterm()
               
	erl_eterm_release()
               
	erl_eterm_statistics()
               
	erl_free()
               
	erl_free_array()
               
	erl_free_compound()
               
	erl_free_term()
               
	erl_malloc()
               

	erl_marshal
	erl_compare_ext()
               
	erl_decode()
               
	erl_decode_buf()
               
	erl_encode()
               
	erl_encode_buf()
               
	erl_ext_size()
               
	erl_ext_type()
               
	erl_peek_ext()
               
	erl_term_len()
               

	erl_call



