ERLANG

crypto

Copyright © 1999-2018 Ericsson AB. All Rights Reserved.
crypto 4.2.1

March 26, 2018

Copyright © 1999-2018 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

1.1 Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

2 | Ericsson AB. All Rights Reserved.: crypto

1.1 Licenses

1.1.1 OpenSSL License

~
*

1.

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

. All advertising materials mentioning features or use of this

software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

. Products derived from this software may not be called "OpenSSL"

nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

. Redistributions of any form whatsoever must retain the following

acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

¥ O K K X K X K X K K X K X K X K X K X X K K K X K X K X K XK X K X K X K X K X X X X X X ¥ X ¥ ¥ ¥ ¥

*
~

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Ericsson AB. All Rights Reserved.: crypto | 3

1.2 FIPS mode

1.1.2 SSleay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

~
*

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " “AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

¥ O K K X K X K X K K K K X K X K X K K X K K K X K X K X K K K K X K X K X K X X X K X X K X X X X ¥ X ¥ ¥

*
~

1.2 FIPS mode

This chapter describes FIPS mode support in the crypto application.

4 | Ericsson AB. All Rights Reserved.: crypto

1.2 FIPS mode

1.2.1 Background

OpenSSL can be built to provide FIPS 140-2 validated cryptographic services. It is not the OpenSSL application that
isvalidated, but a special software component called the OpenSSL FIPS Object Module. However applications do not
use this Object Module directly, but through the regular API of the OpenSSL library.

The crypto application supports using OpenSSL in FIPS mode. In this scenario only the validated algorithms provided
by the Object Module are accessible, other algorithms usually available in OpenSSL (like md5) or implemented in
the Erlang code (like SRP) are disabled.

1.2.2 Enabling FIPS mode
e Build or install the FIPS Object Module and a FIPS enabled OpenSSL library.
Y ou should read and precisely follow the instructions of the Security Policy and User Guide.

It is very easy to build a working OpenSSL FIPS Object Module and library from the source. However it
does not qualify as FIPS 140-2 validated if the numerous restrictions in the Security Policy are not properly
followed.

e Configure and build Erlang/OTP with FIPS support:

$ cd $ERL TOP
$./otp build configure --enable-fips

éﬁécking for FIPS mode set... yes
$ make

If FI PS_node_set returnsno the OpenSSL library is not FIPS enabled and crypto won't support FIPS mode
either.

« Setthefi ps_nopde configuration setting of the crypto applicationtot r ue beforeloading the crypto module.

Thebest placeisinthesys. conf i g system configuration file of the release.

e Start and use the crypto application as usual. However take care to avoid the non-FIPS validated algorithms,
they will al throw exception not _support ed.

Entering and leaving FIPS mode on a node already running crypto is not supported. The reason is that OpenSSL is
designed to prevent an application requesting FIPS mode to end up accidentally running in non-FIPS mode. If entering
FIPS mode fails (e.g. the Object Module is not found or is compromised) any subsequent use of the OpenSSL API
would terminate the emulator.

An on-the-fly FIPS mode change would thus have to be performed in acritical section protected from any concurrently
running crypto operations. Furthermore in case of failure al crypto calls would have to be disabled from the Erlang
or nif code. Thiswould be too much effort put into this not too important feature.

1.2.3 Incompatibilities with regular builds

The Erlang API of the crypto application is identical regardless of building with or without FIPS support. However
the nif code internally uses adifferent OpenSSL API.

This means that the context (an opaque type) returned from streaming crypto functions (hash_(i nit |
update|final),hmac_(init|update|final) andstream (init|encrypt|decrypt))isdifferent
and incompatible with regular builds when compiling crypto with FIPS support.

Ericsson AB. All Rights Reserved.: crypto | 5

href
href

1.2 FIPS mode

1.2.4 Common caveats

In FIPS mode non-validated algorithms are disabled. This may cause some unexpected problemsin application relying
on crypto.

Do not try to work around these problems by using alternative implementations of the missing algorithms! An
application can only claim to be using a FIPS 140-2 validated cryptographic module if it uses it exclusively for
every cryptographic operation.

Restrictions on key sizes

Although public key algorithms are supported in FIPS mode they can only be used with secure key sizes. The Security
Policy requires the following minimum values:

RSA

1024 bit
DSS

1024 bit
EC algorithms

160 hit

Restrictions on elliptic curves

The Erlang API alows using arbitrary curve parameters, but in FIPS mode only those allowed by the Security Policy
shall be used.

Avoid md5 for hashing

Md5 isapopular choice as ahash function, but it is not secure enough to be validated. Try to use shainstead wherever
possible.

For exceptional, non-cryptographic use cases one may consider switchingtoer | ang: nd5/ 1 aswell.

Certificates and encrypted keys

Asmd5 is not availablein FIPS modeit is only possible to use certificates that were signed using sha hashing. When
validating an entire certificate chain all certificates (including the root CA's) must comply with thisrule.

For similar dependency on the md5 and des algorithms most encrypted private keys in PEM format do not work
either. However, the PBES2 encryption scheme allows the use of stronger FIPS verified algorithmswhich isaviable
alternative.

SNMP v3 limitations

It is only possible to use us THMACSHAAuUt hPr ot ocol and usmAesCf b128Pr ot ocol for authentication and
privacy respectively in FIPS mode. The snmp application however won't restrict selecting disabled protocols in any
way, and using them would result in run time crashes.

TLS 1.2 is required

All SSL and TLS versions prior to TLS 1.2 use a combination of md5 and shal hashes in the handshake for various
purposes:

e Authenticating the integrity of the handshake messages.

* Inthe exchange of DH parameters in cipher suites providing non-anonymous PFS (perfect forward secrecy).

« Inthe PRF (pseud-random function) to generate keying materials in cipher suites not using PFS.

6 | Ericsson AB. All Rights Reserved.: crypto

1.3 Engine Load

OpenSSL handles these corner cases in FIPS mode, however the Erlang crypto and ssl applications are not prepared
for them and therefore you are limited to TLS 1.2 in FIPS mode.

On the other hand it worth mentioning that at least all cipher suites that would rely on non-validated algorithms are
automatically disabled in FIPS mode.

Certificates using weak (md5) digests may aso cause problems in TLS. Although TLS 1.2 has an extension for
specifying which type of signatures are accepted, and in FIPS mode the sdl application will use it properly, most
TL S implementations ignore this extension and simply send whatever certificates they were configured with.

1.3 Engine Load

This chapter describes the support for loading encryption enginesin the crypto application.

1.3.1 Background

OpenSSL exposes an Engine API, which makes it possible to plug in aternative implementations for some or all of
the cryptographic operations implemented by OpenSSL. When configured appropriately, OpenSSL calls the engine's
implementation of these operations instead of its own.

Typically, OpenSSL engines provide a hardware implementation of specific cryptographic operations. The hardware
implementation usually offers improved performance over its software-based counterpart, which is known as
cryptographic acceleration.

1.3.2 Use Cases

Dynamically load an engine from default directory
If the engine islocated in the OpenSSL/LibreSSL installation engi nes directory.

1> {ok, Engine} = crypto:engine load(<<"otp test engine">>, [], []).
{ok, #Ref}

| The file name requirement on the engine dynamic library can differ between SSL versions.

Load an engine with the dynamic engine
Load an engine with the help of the dynamic engine by giving the path to the library.

2> {ok, Engine} = crypto:engine load(<<"dynamic">>,
[{<<"SO PATH">>,
<<"/some/path/otp test engine.so">>},
{<<"ID">>, <<"MD5">>},
<<"LOAD">>],
[1.
{ok, #Ref}

The dynamic engine is not supported in LibreSSL from version 2.2.1 |

Ericsson AB. All Rights Reserved.: crypto | 7

1.4 Engine Stored Keys

Load an engine and replace some methods

Load an engine with the help of the dynamic engine and just replace some engine methods.

3> Methods = crypto:engine get all methods() -- [engine method dh,engine method rand,
engine method ciphers,engine method digests, engine method store,
engine method pkey meths, engine method pkey asnl meths].
[engine method rsa,engine method dsa,
engine method ecdh,engine method ecdsal
4> {ok, Engine} = crypto:engine load(<<"dynamic">>,
[{<<"SO PATH">>,
<<"/some/path/otp test engine.so">>},
{<<"ID">>, <<"MD5">>},
<<"LOAD">>],

[1,
Methods) .
{ok, #Ref}

List all engines currently loaded

5> crypto:engine list().
[<<"dynamic">>, <<"MD5">>]

1.4 Engine Stored Keys

This chapter describes the support in the crypto application for using public and private keys stored in encryption
engines.

1.4.1 Background

OpenSSL exposes an Engine API, which makes it possible to plug in alternative implementations for some of the
cryptographic operations implemented by OpenSSL. See the chapter Engine Load for details and how to load an
Engine.

An engine could among other tasks provide a storage for private or public keys. Such a storage could be made safer
than the normal file system. Thoose techniques are not described in this User's Guide. Here we concentrate on how
to use private or public keys stored in such an engine.

The storage engine must call ENGA NE_set | oad_privkey function and
ENG NE_set | oad_pubkey_ functi on. Seethe OpenSSL cryptolib's manpages.

OTP/Crypto requires that the user provides two or three items of information about the key. The application used by
the user is usually on a higher level, for examplein SSL. If using the crypto application directly, it is required that:

» an Engineisloaded, seethe chapter on Engine Load or the Reference Manual

« areferenceto akey inthe Engineis available. This should be an Erlang string or binary and depends on the
Engine loaded

» an Erlang map is constructed with the Engine reference, the key reference and possibly akey passphrase if
needed by the Engine. See the Reference Manual for details of the map.

1.4.2 Use Cases

Sign with an engine stored private key

This example shows how to construct a key reference that is used in a sign operation. The actual key is stored in the
engine that is loaded at prompt 1.

8 | Ericsson AB. All Rights Reserved.: crypto

href
href

1.4 Engine Stored Keys

1> {ok, EngineRef} = crypto:engine load(....).

{ok,#Ref<0.2399045421.3028942852.173962>}
2> PrivKey = #{engine => EngineRef,
key id => "id of the private key in Engine"}.

3> Signature = crypto:sign(rsa, sha, <<"The message">>, PrivKey).
<<65,6,125,254,54,233,84,77,83,63,168,28,169,214,121,76,
207,177,124,183,156, 185, 160,243,36,79,125,230,231, ...>>

Verify with an engine stored public key

Here the signature and message in the last example is verifyed using the public key. The public key is stored in an
engine, only to exemplify that it is possible. The public key could of course be handled openly as usual.

4> PublicKey = #{engine => EngineRef,
key id => "id of the public key in Engine"}.

5> crypto:verify(rsa, sha, <<"The message">>, Signature, PublicKey).
true
6>

Using a password protected private key

The same example as the first sign example, except that a password protects the key down in the Engine.

6> PrivKeyPwd = #{engine => EngineRef,
key id => "id of the pwd protected private key in Engine",
password => "password"}.

7> crypto:sign(rsa, sha, <<"The message">>, PrivKeyPwd).

<<140,80,168,101,234,211,146,183,231,190,160,82,85,163,
175,106,77,241,141,120,72,149,181,181,194,154,175,76,
223,...>>

8>

Ericsson AB. All Rights Reserved.: crypto | 9

1.4 Engine Stored Keys

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Y oung (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
For full OpenSSL and SSL eay license texts, see Licenses.

10 | Ericsson AB. All Rights Reserved.: crypto

crypto

crypto

Application

The purpose of the Crypto application isto provide an Erlang API to cryptographic functions, see crypto(3). Note that
the APl ison afairly low level and there are some corresponding API functionsavailable in public_key(3), on ahigher
abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES

The current crypto implementation uses nifs to interface OpenSSLs crypto library and may work with limited
functionality with as old versions as OpenSSL 0.9.8c. FIPS mode support requires at least version 1.0.1 and a FIPS
capable OpenSSL installation. We recommend using a version that is officially supported by the OpenSSL project.
API compatible backends like LibreSSL should also work.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

CONFIGURATION

The following configuration parameters are defined for the crypto application. See app(3) for more information
about configuration parameters.

fi ps_nmode = bool ean()

Specifieswhether to run crypto in FIPS mode. This setting will take effect when the nif moduleisloaded. If FIPS
mode is requested but not available at run time the nif module and thus the crypto module will fail to load. This
mechanism prevents the accidental use of non-validated algorithms.

rand_cache_si ze = integer()

Sets the cache size in bytes to use by crypto:rand seed al g(crypto_cache) and
crypto:rand_seed_al g _s(crypto_cache) . Thisparameter isread when aseed functioniscalled, and
then kept in generators state object. It has a rather small default value that causes reads of strong random bytes
about once per hundred calls for a random value. The set value is rounded up to an integral number of words
of the size these seed functions use.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: crypto | 11

href

crypto

crypto

Erlang module

This module provides a set of cryptographic functions.

* Hashfunctions- Secure Hash Standard, The MD5 Message Digest Algorithm (RFC 1321) and The MD4
M essage Digest Algorithm (RFC 1320)

» Hmac functions- Keyed-Hashing for M essage Authentication (RFC 2104)

e Cmac functions- The AES-CMAC Algorithm (RFC 4493)

» Block ciphers- DESand AESin Block Cipher Modes- ECB, CBC, CFB, OFB, CTR and GCM
 RSA encryption RFC 1321

» Digital signatures Digital Signature Standard (DSS) and Elliptic Curve Digital Signature Algorithm
(ECDSA)

e Secure Remote Password Protocol (SRP - RFC 2945)

e gcm: Dworkin, M., "Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC", Nationa Institute of Standards and Technology SP 800- 38D, November 2007.

DATA TYPES

key value() = integer() | binary()
Alwaysbi nar y() when used as return value
rsa public() = [key value()] = [E, N]
Where E is the public exponent and N is public modulus.
rsa private() = [key value()] = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

Where E is the public exponent, N is public modulus and D is the private exponent. The longer key format contains
redundant information that will make the calculation faster. P1,P2 are first and second prime factors. E1,E2 are first
and second exponents. C isthe CRT coefficient. Terminology is taken from RFC 3447.

dss public() = [key value()] = [P, Q, G, Y]

Where P, Q and G are the dss parameters and Y is the public key.
dss private() = [key value()] = [P, Q, G, X]

Where P, Q and G are the dss parameters and X isthe private key.
srp public() = key value()

Whereis A or B from SRP design
srp_private() = key value()

Whereisa or b from SRP design

Where Verifier isv, Generator isg and Primeis N, DerivedKey is X, and Scrambler isu (optiona will be generated
if not provided) from SRP design Version="'3'|'6' | '6a

dh public() = key value()

12 | Ericsson AB. All Rights Reserved.: crypto

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

crypto

dh private() = key value()

dh _params() = [key value()] = [P, G] | [P, G, PrivateKeyBitLength]
ecdh public() = key value()

ecdh private() = key value()

ecdh params() = ec named curve() | ec explicit curve()

ec_explicit curve() =

{ec field(), Prime :: key value(), Point :: key value(), Order :: integer(),
CoFactor :: none | integer()}
ec_field() = {prime field, Prime :: integer()} |
{characteristic_two field, M :: integer(), Basis :: ec basis()}
ec_basis() = {tpbasis, K :: non_neg integer()} |
{ppbasis, K1 :: non_neg integer(), K2 :: non neg integer(), K3 :: non neg integer()} |
onbasis

ec_named curve() ->
sect571rl| sect571kl| sect409rl| sect409kl| secp521rl| secp384rl| secp224rl| secp224kl|
secpl92kl| secpl60Or2| secpl28r2| secpl28rl| sect233rl| sect233kl| sect193r2| sectl193rl|
sectl131r2| sectl3lrl| sect283rl| sect283kl| sectl63r2| secp256kl| secpl60kl| secpl6Orl|
secpll2r2| secpll2rl| sectll3r2| sectll3rl| sect239kl| sectl63rl| sectl63kl| secp256rl|
secpl92rl|
brainpoolP160rl| brainpoolP160tl| brainpoolP192rl| brainpoolP192t1l| brainpoolP224r1l|
brainpoolP224t1| brainpoolP256rl| brainpoolP256t1l| brainpoolP320rl| brainpoolP320t1|
brainpoolP384rl| brainpoolP384tl| brainpoolP512rl| brainpoolP512t1

Note that the sect curves are GF2m (characteristic two) curves and are only supported if the underlying OpenSSL has
support for them. See also crypto: supports/O

engine key ref() = #{engine 1= engine ref(),

key id := key id(),
password => password()}

engine ref() = term()
Theresult of acall to engine load/3.
key id() = string() | binary()

Identifies the key to be used. The format depends on the loaded engine. It is passed to the
ENG NE | oad_(private| public)_key functionsin libcrypto.

password() = string() | binary()
The key's password

stream cipher() = rc4 | aes ctr

block cipher() = aes cbc | aes cfb8 | aes cfb1l28 | aes ige256 | blowfish cbc |
blowfish cfb64 | des cbc | des cfb | des3 cbc | des3 cfb | des ede3 | rc2 cbc

aead cipher() = aes _gcm | chacha20 polyl305

stream key() = aes key() | rc4 key()

Ericsson AB. All Rights Reserved.: crypto | 13

crypto

block key() = aes key() | blowfish key() | des key()| des3 key()
aes key() = iodatal()

Key length is 128, 192 or 256 bits
rcd key() = iodata()

Variable key length from 8 bits up to 2048 bits (usually between 40 and 256)
blowfish_key() = iodata()

Variable key length from 32 bits up to 448 bits
des_key() = iodata()

Key length is 64 bits (in CBC mode only 8 bits are used)
des3 key() = [binary(), binary(), binary()]

Each key part is 64 bits (in CBC mode only 8 bits are used)

digest type() = md5 | sha | sha224 | sha256 | sha384 | sha512
rsa_digest type() = md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512

dss digest type() = sha | sha224 | sha256 | sha384 | sha512

Notethat the actual supported dss_digest_type depends on the underlying crypto library. In OpenSSL version>=1.0.1
the listed digest are supported, while in 1.0.0 only sha, sha224 and sha256 are supported. In version 0.9.8 only sha
is supported.

ecdsa digest type() = sha | sha224 | sha256 | sha384 | sha512

sign options() = [{rsa pad, rsa sign padding()} | {rsa pss saltlen, integer()}]

rsa_sign padding() rsa_pkcsl padding | rsa pkcsl pss padding

hash algorithms() = md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512

md4 is also supported for hash_init/1 and hash/2. Note that both md4 and md5 are recommended only for compatibility
with existing applications.

cipher algorithms() = aes cbc | aes cfb8 | aes cfb128 | aes ctr | aes gcm |

aes _1ige256 | blowfish cbc | blowfish cfb64 | chacha20 polyl1305 | des cbc |
des cfb | des3 cbc | des3 cfb | des ede3 | rc2 cbc | rc4

mac_algorithms() = hmac | cmac

public key algorithms() = rsa |dss | ecdsa | dh | ecdh | ec_gf2m

Note that ec_gf2m is not strictly a public key algorithm, but a restriction on what curves are supported with ecdsa
and ecdh.

engine method type() = engine method rsa | engine method dsa | engine method dh |
engine method rand | engine method ecdh | engine method ecdsa |
engine method ciphers | engine method digests | engine method store |
engine method pkey meths | engine method pkey asnl meths

14 | Ericsson AB. All Rights Reserved.: crypto

crypto

Exports

block encrypt(Type, Key, PlainText) -> CipherText
Types.

Type = des_ecb | blowfish _ecb | aes_ech

Key = bl ock_key()

Pl ai nText = iodata()

Encrypt Pl ai nText according to Type block cipher.
May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

block decrypt(Type, Key, CipherText) -> PlainText
Types:

Type = des_ecb | blowfish_ecb | aes_ecb

Key = bl ock_key()

Pl ai nText = iodata()

Decrypt G pher Text according to Type block cipher.
May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

block encrypt(Type, Key, Ivec, PlainText) -> CipherText

block encrypt(AeadType, Key, Ivec, {AAD, PlainText}) -> {CipherText,
CipherTag}

block encrypt(aes gcm, Key, Ivec, {AAD, PlainText, TagLength}) ->
{CipherText, CipherTag}

Types:
Type = bl ock_ci pher ()
AeadType = aead_ci pher ()
Key = bl ock_key()
Pl ai nText = iodata()
AAD = | Vec = CipherText = CipherTag = binary()
TagLength = 1..16
Encrypt Pl ai nText according to Type block cipher. | Vec isan arbitrary initializing vector.

In AEAD (Authenticated Encryption with Associated Data) mode, encrypt Pl ai nText according to Type block
cipher and calculate Ci pher Tag that aso authenticates the AAD (Associated Authenticated Data).

May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

block decrypt(Type, Key, Ivec, CipherText) -> PlainText

block decrypt(AeadType, Key, Ivec, {AAD, CipherText, CipherTag}) -> PlainText
| error

Types:
Type = bl ock_ci pher ()
AeadType = aead_ci pher ()
Key = bl ock_key()
Pl ai nText = iodata()

Ericsson AB. All Rights Reserved.: crypto | 15

crypto

AAD = | Vec = Ci pherText = CipherTag = binary()
Decrypt G pher Text according to Type block cipher. | Vec isan arbitrary initializing vector.
In AEAD (Authenticated Encryption with Associated Data) mode, decrypt Ci pher Text according to Type block

cipher and check the authenticity the Pl ai nText and AAD (Associated Authenticated Data) usingthe G pher Tag.
May return er r or if the decryption or validation fail's

May throw exception not sup in case the chosen Ty pe is not supported by the underlying OpenSSL implementation.

bytes to integer(Bin) -> Integer

Types:
Bin = binary() - as returned by crypto functions
I nteger = integer()

Convert binary representation, of an integer, to an Erlang integer.

compute key(Type, OthersPublicKey, MyKey, Params) -> SharedSecret
Types:
Type = dh | ecdh | srp
O hersPubl i ckey = dh_public() | ecdh _public() | srp_public()
MyKey = dh_private() | ecdh_private() | {srp_public(),srp_private()}
Paranms = dh_parans() | ecdh_parans() | SrpUserParans | SrpHostParans

SrpUser Paranms = {user, [DerivedKey::binary(), Prime::binary(),
Cenerator::binary(), Version::aton() | [Scranbler:binary()]]}

SrpHost Paranms = {host, [Verifier::binary(), Prinme::binary(),
Version::atom() | [Scranbler::binary]]}

Shar edSecret = binary()
Computes the shared secret from the private key and the other party's public key. See also public_key:compute key/2

exor(Datal, Data2) -> Result
Types:
Datal, Data2 = iodata()
Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.

generate key(Type, Params) -> {PublicKey, PrivKeyOQut}
generate key(Type, Params, PrivKeyIn) -> {PublicKey, PrivKeyOut}
Types:
Type = dh | ecdh | rsa | srp
Paranms = dh_parans() | ecdh_paranms() | RsaParans | SrpUserParans |
Sr pHost Par ans

RsaParanms = {Modul usSi zelnBits::integer(), PublicExponent::key_val ue()}

SrpUser Paranms = {user, [Cenerator::binary(), Prine::binary(),
Version::atom()]}

SrpHost Parans = {host, [Verifier::binary(), Generator::binary(),
Prime::binary(), Version::atom()]}

Publ i cKey = dh_public() | ecdh_public() | rsa_public() | srp_public()

16 | Ericsson AB. All Rights Reserved.: crypto

crypto

PrivKeyln = undefined | dh_private() | ecdh _private() | srp_private()
PrivKeyQut = dh_private() | ecdh_private() | rsa_private() | srp_private()

Generates apublic key of type Type. Seeaso public_key:generate key/1. May throw exception an exception of class
error:

e badar g: an argument is of wrong type or hasan illegal value,
* | ow_entr opy: therandom generator failed due to lack of secure "randomness’,
e« conput ation_fail ed: thecomputation fails of another reasonthan| ow_ent r opy.

RSA key generation isonly availableif the runtime was built with dirty scheduler support. Otherwise, attempting
to generate an RSA key will throw exception er r or : not sup.

hash(Type, Data) -> Digest

Types:
Type = nmd4 | hash_al gorithns()
Data = iodata()

Di gest = binary()
Computes a message digest of type Ty pe from Dat a.
May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

hash init(Type) -> Context
Types:
Type = nmd4 | hash_al gorithns()
Initializesthe context for streaming hash operations. Ty pe determineswhich digest to use. Thereturned context should
be used as argument to hash_update.

May throw exception not sup in case the chosen Ty pe isnot supported by the underlying OpenSSL implementation.

hash update(Context, Data) -> NewContext
Types:
Data = iodata()
Updates the digest represented by Cont ext using the given Dat a. Cont ext must have been generated using

hash_init or a previous call to this function. Dat a can be any length. NewCont ext must be passed into the next
call tohash_updat e or hash_final.

hash final(Context) -> Digest
Types.
Di gest = binary()

Finalizes the hash operation referenced by Cont ext returned from a previous call to hash_update. The size of
Di gest isdetermined by the type of hash function used to generate it.

hmac(Type, Key, Data) -> Mac

hmac(Type, Key, Data, MacLength) -> Mac
Types:

Ericsson AB. All Rights Reserved.: crypto | 17

crypto

Type = hash_al gorithnms() - except ripendl60

Key = iodata()

Data = iodata()

MacLength = integer()

Mac = binary()
ComputesaHMAC of type Ty pe from Dat a using Key as the authentication key.
MacLengt h will limit the size of the resultant Mac.

hmac_init(Type, Key) -> Context

Types:
Type = hash_al gorithms() - except ripendl60
Key = iodata()
Context = binary()

Initializes the context for streaming HMAC operations. Ty pe determines which hash function to use in the HMAC
operation. Key isthe authentication key. The key can be any length.

hmac_update(Context, Data) -> NewContext
Types:
Cont ext = NewContext = binary()
Data = iodata()
Updates the HMAC represented by Cont ext using the given Dat a. Cont ext must have been generated using an

HMAC init function (such as hmac_init). Dat a can be any length. NewCont ext must be passed into the next call
tohmac_updat e or to one of the functions hmac_final and hmac _final_n

Donot useaCont ext asargument in morethan one call to hmac_update or hmac_final. The semantics of reusing
old contextsin any way is undefined and could even crash the VM in earlier releases. The reason for thislimitation
isalack of support in the underlying OpenSSL API.

hmac_final(Context) -> Mac
Types.
Context = Mac = binary()

Finalizes the HMAC operation referenced by Cont ext . The size of the resultant MAC is determined by the type of
hash function used to generateit.

hmac_final n(Context, HashLen) -> Mac

Types:
Context = Mac = binary()
HashLen = non_neg_i nteger ()

Finalizes the HMAC operation referenced by Cont ext . HashLen must be greater than zero. Mac will be abinary
with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

18 | Ericsson AB. All Rights Reserved.: crypto

crypto

cmac(Type, Key, Data) -> Mac
cmac(Type, Key, Data, MacLength) -> Mac
Types:
Type = bl ock_ci pher ()
Key = iodata()
Data = iodata()
MacLength = integer()
Mac = binary()
Computes a CMAC of type Type from Dat a using Key as the authentication key.

MacLengt h will limit the size of the resultant Mac.

info fips() -> Status
Types:
Status = enabled | not_enabled | not_supported
Providesinformation about the FIPS operating status of crypto and the underlying OpenSSL library. If crypto was built

with FIPS support this can be either enabl ed (when running in FIPS mode) or not _enabl ed. For other builds
thisvalueisalwaysnot _support ed.

In FIPS mode all non-FIPS compliant algorithms are disabled and throw exception not _support ed. Check
supports that in FIPS mode returns the restricted list of available algorithms.

info lib() -> [{Name,VerNum,VerStr}]
Types.

Name = binary()

Ver Num = i nt eger ()

Ver Str = binary()
Provides the name and version of the libraries used by crypto.

Nare is the name of the library. Ver Numis the numeric version according to the library's own versioning scheme.
Ver St r contains atext variant of the version.

> info_lib().
[{<<"OpenSSL">>,269484095,<<"0penSSL 1.1.0c 10 Nov 2016"">>}]

Note:

From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
openssl v. h) used when crypto was compiled. The text variant represents the OpenSSL library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

mod pow(N, P, M) -> Result
Types:

Ericsson AB. All Rights Reserved.: crypto | 19

crypto

N, P, M= binary() | integer()
Result = binary() | error
Computes the function N*\P nod M

next iv(Type, Data) -> NextIVec
next iv(Type, Data, IVec) -> NextIVec

Types:
Type = des_chc | des3 chc | aes_chc | des _cfb
Data = iodata()
I Vec = Nextl|Vec = binary()

Returnstheinitialization vector to be used in the next iteration of encrypt/decrypt of type Type. Dat a isthe encrypted
data from the previous iteration step. The | Vec argument is only needed for des_cf b as the vector used in the
previous iteration step.

private decrypt(Type, CipherText, PrivateKey, Padding) -> PlainText
Types.
Type = rsa
Ci pher Text = binary()
PrivateKey = rsa_private() | engine_key ref()
Paddi ng = rsa_pkcsl _padding | rsa_pkcsl_oaep_padding | rsa_no_paddi ng
Pl ai nText = binary()
Decryptsthe G pher Text , encrypted with public_encrypt/4 (or equivalent function) using the Pr i vat eKey, and

returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_private/[2,3]

privkey to pubkey(Type, EnginePrivateKeyRef) -> PublicKey
Types.

Type = rsa | dss

Engi nePri vat eKeyRef = engi ne_key ref()

PublicKey = rsa public() | dss_public()

Fetches the corresponding public key from a private key stored in an Engine. The key must be of the type indicated
by the Type parameter.

private encrypt(Type, PlainText, PrivateKey, Padding) -> CipherText
Types.

Type = rsa

Pl ai nText = binary()

Thesizeof the Pl ai nText must belessthanbyt e_si ze(N) - 11 if rsa_pkcs1l_paddi ng isused, and
byte_size(N) ifrsa_no_paddi ng isused, where N is public modulus of the RSA key.

PrivateKey = rsa_private() | engine_key ref()
Paddi ng = rsa_pkcsl _padding | rsa_no_paddi ng
Ci pher Text = binary()

Encryptsthe Pl ai nText usingthe Pri vat eKey and returnsthe ciphertext. Thisisalow level signature operation
used for instance by older versions of the SSL protocol. See also public_key:encrypt_private/[2,3]

20 | Ericsson AB. All Rights Reserved.: crypto

crypto

public decrypt(Type, CipherText, PublicKey, Padding) -> PlainText
Types.
Type = rsa
Ci pher Text = binary()
PublicKey = rsa public() | engine_key ref()
Paddi ng = rsa_pkcsl padding | rsa_no_paddi ng
Pl ai nText = binary()
Decryptsthe G pher Text , encrypted with private_encrypt/4(or equivalent function) using the Pr i vat eKey, and

returns the plaintext (message digest). Thisis alow level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_public/[2,3]

public encrypt(Type, PlainText, PublicKey, Padding) -> CipherText
Types:

Type = rsa

Pl ai nText = binary()

Thesizeof the Pl ai nText must belessthanbyt e _si ze(N)- 11 ifrsa_pkcsl_paddi ng isused, and
byte_size(N) ifrsa_no_paddi ng isused, where N is public modulus of the RSA key.

PublicKey = rsa public() | engine_key ref()
Paddi ng = rsa_pkcsl _padding | rsa_pkcsl_oaep_padding | rsa_no_paddi ng
Ci pher Text = binary()

Encryptsthe Pl ai nText (messagedigest) usingthe Publ i cKey and returnsthe Ci pher Text . Thisisalow level
signature operation used for instance by older versions of the SSL protocol. See also public_key:encrypt_public/[2,3]

rand seed(Seed) -> ok
Types:
Seed = binary()
Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the

system you are running on does not have enough "randomness’ built in. Normally thisis when strong_rand_bytes/1
throws| ow_ent r opy

rand uniform(Lo, Hi) -> N
Types:
Lo, H, N = integer()

Generate arandom number N, Lo =< N < Hi. Usesthecrypt o library pseudo-random number generator.
H must be larger than Lo.

sign(Algorithm, DigestType, Msg, Key) -> binary()
sign(Algorithm, DigestType, Msg, Key, Options) -> binary()
Types:

Algorithm=rsa | dss | ecdsa

Msg = binary() | {digest,binary()}

The msg is either the binary "cleartext" datato be signed or it is the hashed value of "cleartext” i.e. the digest
(plaintext).

Di gest Type = rsa_digest _type() | dss_digest type() | ecdsa_digest _type()

Ericsson AB. All Rights Reserved.: crypto | 21

crypto

Key = rsa_private() | dss_private() | [ecdh_private(), ecdh _parans()] |
engi ne_key ref()
Options = sign_options()

Creates adigital signature.

Algorithm dss can only be used together with digest type sha.

See aso public_key:sign/3.

start() -> ok
Equivalent to application:start(crypto).

stop() -> ok
Equivalent to application:stop(crypto).

strong rand bytes(N) -> binary()
Types:
N = integer()
Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng

seeded and periodically mixed with operating system provided entropy. By default thisis the RAND_byt es method
from OpenSSL.

May throw exception | ow_ent r opy in case the random generator failed due to lack of secure "randomness’.

rand seed() -> rand:state()

Creates state object for random number generation, in order to generate cryptographically strong random numbers
(based on OpenSSL's BN_r and_r ange), and savesit in the process dictionary before returning it as well. See also
rand:seed/1 and rand _seed /0.

When using the state object from this function the rand functions using it may throw exception | ow_ent r opy in
case the random generator failed due to lack of secure "randomness’.

Example

= crypto:rand seed(),
_IntegerValue = rand:uniform(42),
_FloatValue = rand:uniform().

1; 42]
0.0; 1.0

% [
% [
rand seed s() -> rand:state()

Creates state object for random number generation, in order to generate cryptographically strongly random numbers
(based on OpenSSL'sBN _rand_r ange). Seeasorand:seed /1.

When using the state object from this function the rand functions using it may throw exception | ow_ent r opy in
case the random generator failed due to lack of secure "randomness’.

The state returned from this function can not be used to get a reproducabl e random sequence as from the other rand
functions, since reproducability does not match cryptographically safe.

The only supported usage is to generate one distinct random sequence from this start state.

22 | Ericsson AB. All Rights Reserved.: crypto

crypto

rand seed alg(Alg) -> rand:state()
Types.
Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strong random numbers.
See also rand: seed/1 and rand_seed_alg_g/1.

When using the state object from this function the rand functions using it may throw exception | ow_ent r opy in
case the random generator failed due to lack of secure "randomness’.

The cache size can be changed from its default value using the crypto app's configuration parameter
rand_cache_si ze.

Example

= crypto:rand seed alg(crypto cache),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[

rand seed alg s(Alg) -> rand:state()
Types:
Alg = crypto | crypto_cache

Creates state object for random number generation, in order to generate cryptographically strongly random numbers.
Seeadsorand:seed 91

If Al g iscrypt o thisfunction behaves exactly likerand seed </0.

If Al giscrypt o_cache thisfunction fetches random data with OpenSSL's RAND byt es and cachesit for speed
using an internal word size of 56 bits that makes calculations fast on 64 bit machines.

When using the state object from this function the rand functions using it may throw exception | ow_ent r opy in
case the random generator failed due to lack of secure "randomness’.

The cache size can be changed from its default value using the crypto app's configuration parameter
rand_cache_si ze.

The state returned from this function can not be used to get a reproducabl e random sequence as from the other rand
functions, since reproducability does not match cryptographically safe.

In fact since random data is cached some numbers may get reproduced if you try, but thisis unpredictable.
The only supported usage is to generate one distinct random sequence from this start state.

stream init(Type, Key) -> State
Types.
Type = rc4
State = opaque()
Key = iodata()
Initializes the state for use in RC4 stream encryption stream_encrypt and stream_decrypt

Ericsson AB. All Rights Reserved.: crypto | 23

crypto

stream init(Type, Key, IVec) -> State
Types.
Type = aes_ctr
State = opaque()
Key = iodata()
I Vec = binary()
Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key is the AES key and must

be either 128, 192, or 256 hits long. | Vec is an arbitrary initializing vector of 128 hits (16 bytes). This state is for
use with stream_encrypt and stream_decrypt.

stream encrypt(State, PlainText) -> { NewState, CipherText}
Types:
Text = iodata()
Ci pher Text = binary()
Encrypts Pl ai nText according to the stream cipher Type specified in stream_init/3. Text can be any number

of bytes. The initial St ate is created using stream init. NewSt at e must be passed into the next call to
stream encrypt.

stream decrypt(State, CipherText) -> { NewState, PlainText }
Types:
Ci pher Text = iodata()
Pl ai nText = binary()
Decrypts G pher Text according to the stream cipher Type specified in stream_init/3. Pl ai nText can be any

number of bytes. The initial St at e is created using stream init. NewSt at e must be passed into the next call to
stream decrypt.

supports() -> AlgorithmList

Types:
Al gorithniist = [{hashs, [hash_algorithns()]}, {ciphers,
[cipher_algorithms()]}, {public_keys, [public_key algorithnms()]}, {nacs,
[mac_al gorithms()]}]

Can be used to determine which crypto agorithms that are supported by the underlying OpenSSL library

ec_curves() -> EllipticCurvelList
Types:
Elli pticCurvelList = [ec_naned_curve()]
Can be used to determine which named elliptic curves are supported.

ec_curve(NamedCurve) -> EllipticCurve
Types:
NamedCurve = ec_nanmed_curve()
EllipticCurve = ec_explicit_curve()
Return the defining parameters of aelliptic curve.

24 | Ericsson AB. All Rights Reserved.: crypto

crypto

verify(Algorithm, DigestType, Msg, Signature, Key) -> boolean()
verify(Algorithm, DigestType, Msg, Signature, Key, Options) -> boolean()
Types:
Algorithm=rsa | dss | ecdsa
Msg = binary() | {digest,binary()}
The msg is either the binary "cleartext" data or it is the hashed value of "cleartext” i.e. the digest (plaintext).
Di gest Type = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
Si gnature = binary()

Key = rsa_public() | dss_public() | [ecdh_public(),ecdh_parans()] |
engi ne_key ref()

Options = sign_options()
Verifiesadigital signature
Algorithm dss can only be used together with digest type sha.
See dso public_key:verify/4.

engine get all methods() -> Result
Types:
Result = [Engi neMet hod: : at on()]
Returns alist of all possible engine methods.
May throw exception notsup in case there is no engine support in the underlying OpenSSL implementation.
See also the chapter Engine Load in the User's Guide.

engine load(EngineId, PreCmds, PostCmds) -> Result
Types:
Engi nel d = uni code: char dat a()
PreCnds, PostCrds = [{uni code: chardata(), unicode:chardata()}]
Result = {ok, Engine::term()} | {error, Reason::tern()}
Loads the OpenSSL engine given by Engi nel d if it is available and then returns ok and an engine handle. This

function is the same as calling engi ne_| oad/ 4 with Engi neMet hods set to alist of all the possible methods.
An error tupleisreturned if the engine can't be loaded.

The function throws a badarg if the parameters are in wrong format. It may also throw the exception notsup in case
there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine load(EngineId, PreCmds, PostCmds, EngineMethods) -> Result
Types:
Engi nel d = uni code: chardat a()
PreCmds, PostCrds = [{uni code: chardata(), unicode:chardata()}]
Engi neMet hods = [engi ne_net hod_type()]
Result = {ok, Engine::term()} | {error, Reason::tern()}

L oads the OpenSSL engine given by Engi nel d if it isavailable and then returns ok and an engine handle. An error
tupleis returned if the engine can't be loaded.

Ericsson AB. All Rights Reserved.: crypto | 25

crypto

The function throws a badarg if the parameters are in wrong format. It may also throw the exception notsup in case
there is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine unload(Engine) -> Result
Types:
Engi ne term))
Result = ok | {error, Reason::tern()}

Unloads the OpenSSL engine given by Engi nel d. An error tupleisreturned if the engine can't be unloaded.

Thefunction throws a badarg if the parameter isin wrong format. It may also throw the exception notsup in case there
is no engine support in the underlying OpenSSL implementation.

See also the chapter Engine Load in the User's Guide.

engine list() -> Result
Types:
Result = [Engi nel d:: uni code: chardat a()]
List theid's of al enginesin OpenSSL'sinternal list.
It may a so throw the exception notsup in case there is no engine support in the underlying OpenSSL implementation.
See also the chapter Engine Load in the User's Guide.

engine ctrl cmd string(Engine, CmdName, CmdArg) -> Result
Types:

Engine = term()

CnmdNanme = uni code: chardat a()

CndArg = uni code: chardat a()

Result = ok | {error, Reason::term)}

Sends ctrl commands to the OpenSSL engine given by Engi ne. This function is the same as calling
engine_ctrl _cnd_string/ 4 withOptional settof al se.

The function throws a badarg if the parameters are in wrong format. It may also throw the exception notsup in case
there is no engine support in the underlying OpenSSL implementation.

engine ctrl cmd string(Engine, CmdName, CmdArg, Optional) -> Result
Types:

Engine = term)

CndNane = uni code: chardat a()

CndArg = uni code: chardat a()

Optional = bool ean()

Result = ok | {error, Reason::tern()}
Sends ctrl commands to the OpenSSL engine given by Engi ne. Opt i onal is aboolean argument that can relax
the semantics of the function. If settot r ue it will only return failure if the ENGINE supported the given command
name but failed while executing it, if the ENGINE doesn't support the command name it will simply return success

without doing anything. In this case we assume the user is only supplying commands specific to the given ENGINE
sowe set thistof al se.

26 | Ericsson AB. All Rights Reserved.: crypto

crypto

The function throws a badarg if the parameters are in wrong format. It may also throw the exception notsup in case
there is no engine support in the underlying OpenSSL implementation.

Ericsson AB. All Rights Reserved.: crypto | 27

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	FIPS mode
	Background
	Enabling FIPS mode
	Incompatibilities with regular builds
	Common caveats
	Restrictions on key sizes
	Restrictions on elliptic curves
	Avoid md5 for hashing
	Certificates and encrypted keys
	SNMP v3 limitations
	TLS 1.2 is required

	Engine Load
	Background
	Use Cases
	Dynamically load an engine from default directory
	Load an engine with the dynamic engine
	Load an engine and replace some methods
	List all engines currently loaded

	Engine Stored Keys
	Background
	Use Cases
	Sign with an engine stored private key
	Verify with an engine stored public key
	Using a password protected private key

	Reference Manual
	crypto
	crypto
	block_encrypt/3
	block_decrypt/3
	block_encrypt/4
	block_encrypt/4
	block_encrypt/4
	block_decrypt/4
	block_decrypt/4
	bytes_to_integer/1
	compute_key/4
	exor/2
	generate_key/2
	generate_key/3
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	cmac/3
	cmac/4
	info_fips/0
	info_lib/0
	mod_pow/3
	next_iv/2
	next_iv/3
	private_decrypt/4
	privkey_to_pubkey/2
	private_encrypt/4
	public_decrypt/4
	public_encrypt/4
	rand_seed/1
	rand_uniform/2
	sign/4
	sign/5
	start/0
	stop/0
	strong_rand_bytes/1
	rand_seed/0
	rand_seed_s/0
	rand_seed_alg/1
	rand_seed_alg_s/1
	stream_init/2
	stream_init/3
	stream_encrypt/2
	stream_decrypt/2
	supports/0
	ec_curves/0
	ec_curve/1
	verify/5
	verify/6
	engine_get_all_methods/0
	engine_load/3
	engine_load/4
	engine_unload/1
	engine_list/0
	engine_ctrl_cmd_string/3
	engine_ctrl_cmd_string/4

