ERLANG

cosNotification

Copyright © 2000-2018 Ericsson AB. All Rights Reserved.
cosNotification 1.2.3
March 26, 2018

Copyright © 2000-2018 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: cosNotification | 1

1.1 The cosNotification Application

1 cosNotification User's Guide

The cosNotification application is an Erlang implementation of the OMG CORBA Natification Service.

1.1 The cosNotification Application

1.1.1 Content Overview
The cosNotification documentation is divided into three sections:

* PART ONE - The User's Guide
Description of the cosNotification Application including services and a small tutorial demonstrating the
development of asimple service.

* PART TWO - Release Notes
A concise history of cosNotification.

» PART THREE - The Reference Manual
A quick reference guide, including a brief description, to al the functions available in cosNotification.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

+ cosNotification overview
» cosNotification installation
e A tutoria example

1.2 Introduction to cosNotification

1.2.1 Overview

The cosNotification application is a Notification Service compliant with the OMG Notification Service
CosNotification.

Purpose and Dependencies

cosNotification isdependent on Orber-3.1.7 or later, which provides CORBA functionality in an Erlang environment,
cosTime-1.0.1 or later and IDL-filesto be compiled using | C-4.0.4 or later.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming, CORBA and the Orber application.

Recommended reading includes books recommended by the OMG and Open Telecom Platform Documentation
Set. It isalso helpful to have read Concurrent Programming in Erlang.

2 | Ericsson AB. All Rights Reserved.: cosNotification

href

1.3 Installing cosNotification

1.3 Installing cosNotification

1.3.1 Installation Process

This chapter describes how to install cosNotificationApp in an Erlang Environment.

Preparation
Before starting the installation process for cosNotification, the application Orber must be running.

Configuration

When using the Notification Service the cosNoti fi cati on application first must be installed using
cosNotificationApp:install () or cosNotificationApp:install (Seconds), followed by
cosNoti ficationApp:start().

Then the Event Channel Factory must be started:

e cosNotificationApp:start_global factory() -startsand returns areference to afactory using
default configuration parameters. This operation should be used for a multi-node Orber.

e cosNotificationApp:start_gl obal _factory(Options) -statsand returnsareferenceto a
factory using given configuration parameters. This operation should be used for a multi-node Orber.

e cosNotificationApp:start_factory() - startsand returns areference to afactory using default
configuration parameters.

e cosNotificationApp:start_factory(Options) - startsand returns areference to afactory using
given configuration parameters.

The following options exist:

e {pulllnterval, Seconds} -determinehow often Proxy Pull Consumerswill check for new events with
the client application. The default value is 20 seconds.

« {filterQp, OperationType} - determinewhich type of Administrator objects should be started, i.e.,
"OR_OP' or' AND OF' . Thedefault valueis' OR_OFP' .

« {tinmeService, TinmeServiceObj | 'undefined'} -tobeabletouse Start and/or Stop QoSthis
option must be used. Seethefunctionstart _ti ne_servi ce/ 2 inthecosTi ne application. The default
valueis' undefi ned' .

« {filterQp, OperationType} -determinewhich type of Administrator objects should be started, i.e.,
"OR_OP' or' AND _OF' . Thedefault valueis' OR_OFP' .

 {gcTinme, Seconds} -thisoption determineshow often, for example, proxies will garbage collect expired
events. The default valueis 60.

e {gcLimt, Anount} -determineshow many eventswill be stored before, for example, proxieswill
garbage collect expired events. The default value is 50. This option is tightly coupled with the QoS property
MaxEvent sPer Consuner , i.e, thegcLi nmi t should be lessthan MaxEvent sPer Consuner and greater
than 0.

It is possible to define a set of global configuration parameters:

Key Range Default
type_check true | false true
notify atom() | false fase
max_events integer() >0 50

Ericsson AB. All Rights Reserved.: cosNotification | 3

1.4 The Notification Service Components

interval_events integer() >0 10000 milliseconds

timeout_events integer() > interval_events 3000000 milliseconds

Table 3.1: Global Configuration Parameters

Commentson thetable'Global Configuration Parameters':

type _check
Determine if supplied IOR:s shall be type checked, i.e. invoking corba object:is a2, or not.

notify
The given value shall point to an existing module exporting a function (arity 1) called terminated. This
operation isinvoked when a proxy terminates and the argument isalist containing { pr oxy, | OR},
{client, 1OR} and{reason, tern{()}.Thereturnvalueisignored.

max_events
If asupplier proxy has not been able to push events to a consumer and the queue exceeds this limit,
then the proxy will terminate. For this option to have any effect, the Event Rel i abi | i t y and
Connecti onRel i abi | i ty QoS parameters must be set to Per si st ent . For more information, see also
the QoS chapter.

interval_events
The same requirements as for max_event s. When asupplier proxy detects problems when trying to push
events, this parameter determines how often it should try to call the consumer.

timeout_events
The same requirements asfor max_event s. If the proxy has not been able to contact the consumer and this
time-limit is reached, then the proxy will terminate.

The Factory is now ready to use. For amore detailed description see Examples.

1.4 The Notification Service Components

1.4.1 The Notification Service Components

This chapter describes the Notification Service Components and how they interact.

Components
There are seven components in the OMG Notification Service architecture. These are described below:

4 | Ericsson AB. All Rights Reserved.: cosNotification

1.4 The Notification Service Components

Supplier
Admin

Consamer
Proxy

Supplier
Proxy

Fieh T Full

Event Flow Dirction
Full Pieh

Ewvent Lnput Ewvent Output

Figure 4.1: Figure 1: The Notification Service Components.

Event Channel: acts as afactory for Administrator objects. Allows clients to set Administrative Properties.
Supplier Administrators: acts as afactory for Proxy Consumers. Administrators are started as' AND_OP' -
or' OR_OFP' - type, which determines if events must be validated using both the Administrators associated
Filter and/or its Proxy children Filters.

Consumer Administrators: actsin the same way as Supplier Administrators but handle Proxy Suppliers.
Consumer Proxy: is connected to aclient application. Can be started asPul | or Push object. If the proxy is
Push style the client application must push events to the Proxy, otherwise the Proxy is supposed to Pull events.
TheCosNot i fi cation:: Adni nProperti es isused to set the pacing interval.

Supplier Proxy: Actsin asimilar way asthe Consumer Proxy, but if started asa Push proxy it will push
events to the client application.

Filters: used to filter events. May be associated with Proxies and Administrators.

M apping Filters: used to override events Quality of Service settings. Can only be associated with Consumer
Administrators and Proxy Suppliers.

When a Proxy is started it is set to accept CORBA: : Any, CosNoti fication:: StructuredEvent or
CosNoti fi cation:: Event Bat ch (asequence of structured events).

Ericsson AB. All Rights Reserved.: cosNotification | 5

1.5 Filters and the Constraint Language BNF

If aProxy issupposed to deliver structured eventsto aclient application and receivesan CORBA: : Any event, the event
isconverted to astructured event witht ype_name setto" ¥ANY" andtheeventisstoredinr emai nder _of _body.

If aProxy issupposed to deliver CORBA: : Any eventsto aclient application and receives a structured event, the event
is stored in an Any type. The Any Type Code will be equa to the CosNoti fi cati on:: StructuredEvent
Type Code.

1.5 Filters and the Constraint Language BNF

1.5.1 Filters and the Constraint Language BNF

This chapter describes, the grammar supported by CosNotifyFilter_Filter and CosNotifyFilter_MappingFilter, and
how to create and use filter objects.

How to create filter objects

To be able to filter events we must create a filter and associate it with one, or more, of the administrative or proxy
objects. In the example below, we choose to associate the filter with a ConsumerAdmin object.

FilterFactory = cosNotificationApp:start filter factory(),
Filter = 'CosNotifyFilter FilterFactory':

create filter(FilterFactory, "EXTENDED TCL"),
ConstraintInfoSeq = 'CosNotifyFilter Filter':

add constraints(Filter, ConstraintExpSeq),
FilterID = 'CosNotifyChannelAdmin ConsumerAdmin':

add filter(AdminConsumer, Filter),

" EXTENDED_TCL" isthe only grammar supported by Orber Notification Service.

Depending on which operation type the Admin object uses, i.e.,” AND_OP' or' OR_OP' , eventswill betested using
the associated filter. The operation properties are:

'AND_OP - must be approved by the proxy's and its parent admin'sfilters. If all filters associated with an object
(Admin or Proxy) return false the event will be discarded. In thissituation it is pointlessto try and verify with the
other object's associated filters since the outcome still would be the same.

* 'OR_OFP - if one of the object's (Admin or Proxy) filters return true, the event will not be checked against any
other filter associated with a proxy or its parent admin. If a object's associated filters al return false, the event
will be forwarded to related proxies/admins, and tested against any associated filters.

Initialy, filters are empty and will aways return true. Hence, we must add constraints by using
"CosNotifyFilter Filter':add constraints/2.Asinput, the second argument must be asequence of:

#'CosNotifyFilter ConstraintExp'{
event types = [#'CosNotification EventType'{
domain name = string(),
type name = string()}1],

constraint expr = string()}

The event _types describes which types of events that should be matched using the associated
constrai nt _expr.

If aconstraint expression is supposed to apply for all events, thenthet ype_nane can be set to the special event type
%ALL in aconstraint's event type sequence. Thedomai n_narme shouldbe" " or " *".

In the following sections we will take a closer look on how to write constraint expressions.

The CosNotification Constraint Language
The constraint language supported by the Notification Serviceis:

6 | Ericsson AB. All Rights Reserved.: cosNotification

1.5 Filters and the Constraint Language BNF

<constraint> := /* empty */
| <bool>

<bool> := <bool or>

<bool or> := <bool or> or <bool and>
| <bool and>

<bool and> := <bool and> and <bool compare>
| <bool compare>

<bool compare> := <expr_in> == <expr_in>
| <expr_in> != <expr_in>
| <expr_in> < <expr_in>
| <expr_in> <= <expr_in>
| <expr_in> > <expr_in>
| <expr_in> >= <expr_in>
| <expr_in>

<expr_in> := <expr_ twiddle> in <Ident> /* sequence only */
| <expr twiddle>
| <expr_twiddle> in $ <Component> /* sequence only */

<expr_twiddle> := <expr> ~ <expr> /* string data types only */
| <expr>

<expr> := <expr> + <term>
| <expr> - <term>
| <term>

<term> := <term> * <factor not>
| <term> / <factor not>
| <factor not>

<factor _not> := not <factor>
| <factor>

<factor> := (<bool or>)
| exist <Ident>

| <Ident>

| <Number>

| - <Number>

| <String>

| TRUE

| FALSE

| + <Number>

| exist $ <Component>

| $ <Component>

| default $ <Component> /* discriminated unions only */

<Component> := /* empty */
| . <CompDot>
| <CompArray>
| <CompAssoc>
| <Ident> <CompExt> /* run-time variable */

<CompExt> := /* empty */
| . <CompDot>
| <CompArray>
| <CompAssoc>

<CompDot> := <Ident> <CompExt>
| <CompPos>
| <UnionPos>
| length /* only valid for arrays or sequences */

Ericsson AB. All Rights Reserved.: cosNotification | 7

1.5 Filters and the Constraint Language BNF

| d /* discriminated unions only */
| type id /* only valid if possible to obtain
I

_repos_id /* only valid if possible to obtain
<CompArray> := [<Digits>] <CompExt>
<CompAssoc> := (<Ident>) <CompExt>

<CompPos> := <Digits> <CompExt>
<UnionPos> := (<UnionVal>) <CompExt>

<UnionVal> := /* empty */
| <Digits>
| - <Digits>
| + <Digits>
| <String>

/* Character set issues */
<Ident> :=<Leader> <FollowSeq>
| \ < Leader> <FollowSeqg>

<FollowSeqg> := /* <empty> */
| <FollowSeqg> <Follow>

<Number> := <Mantissa>
| <Mantissa> <Exponent>

<Mantissa> := <Digits>
| <Digits> .
| . <Digits>
| <Digits> . <Digits>

<Exponent> := <Exp> <Sign> <Digits>
<Sign> := +

| -
<Exp> := E

| e

<Digits> := <Digits> <Digit>
| <Digit>

<String> := ' <TextChars> '

<TextChars> := /* <empty> */
| <TextChars> <TextChar>

<TextChar> := <Alpha>
| <Digit>
| <Other>
| <Special>

<Special> := \\
[\

<Leader> :

<Alpha>
<Follow> := <Alpha>
| <Digit>
| _

<Alpha> is the set of alphabetic characters [A-Za-Z]
<Digit> is the set of digits [0-9]

8 | Ericsson AB. All Rights Reserved.: cosNotification

*/
*/

1.5 Filters and the Constraint Language BNF

<0ther> is the set of ASCII characters that are not <Alpha>, <Digit>, or <Special>

In the absence of parentheses, the following precedence relations hold :

e (),exist,default,unary-sign

e not

o« *x

. +, -

.« ~

e in

e ===, <=,> >=
e and

e or

The Constraint Language Data Types

The Notification Service Constraint Language, defines how to write constraint expressions, which can be used to filter
events. The representation does, however, differ slightly from ordinary Erlang terms.

When creating aConst r ai nt Exp, thefield const r ai nt _expr must be set to contain astring, e.g.,"1 < 2".
The Notification Service Constraint Language, is designed to be able to filter structured and unstructured events using
the same constraint expression. The Constraint Language Types and Operations can be divided into two sub-groups:

e Basic - arithmetics, strings, constants, numbers etc.
» Complex - accessing members of complex data types, such as unions.

Some of the basic types, e.g., integer, are self explanatory. Hence, they are not described further.

Type/Operation Examples Description

Strings are represented as a sequence
of zero or more <Text Char >s
enclosed in single quotes, e.g.,
"string'.

string "'MyString "

The operator ~is called the substring
~ "'Sringl' ~ 'String2'" operator and mean "Stringl is
contained within String2".

Booleans may only be TRUE or
FALSE, i.e, only capital letters.
Expressions which evaluate to
TRUE or FAL SE can be summed up
and matched, where TRUE equals 1
and FALSE 0.

"TRUE == (('lang' ~
bool ean "Erlang’ + 'fun' ~
"functional') >= 2)"

The BNF use C/C++ notation,
sequence "nyl nt eger Sequence[2] " i.e., the example will return the
thir delement.

]Returnsthe length of an sequence or

_length nmyl nt eger Sequence. _| engt aray.

Ericsson AB. All Rights Reserved.: cosNotification | 9

1.5 Filters and the Constraint Language BNF

""Erlang’ in
$. Functi onal LanguagesStri

Returns TRUEIf agiven element is

found in the given sequence. The
element must be of asimple type

A %%e same as the sequenceis

defined to contain.

n $ - 40||

Denote the current event aswell as
any run-time variables. If the event
is unstructured and its contained
value 40, the example will return
TRUE.

"$. MySt ruct Menber == 40"

The structure member operator

. may be used to reference its
members when the data refers to
anamed structure, discriminated
union, or CORBA::Any data
structure.

_type_id

"$. _type_id ==
"MyStruct'”

Returns the unscoped IDL type
name of the component. This
operation isonly valid if said
information can be obtained.

_repos_id

"$. repos_id ==
"I DL: MyModul e/
MyStruct:1.0""

Returns the Repositoryld of the
component. This operation isonly
valid if said information can be
obtained.

"$. event Uni on. _d"

May only be used when accessing
discriminated unions and refers to
the discriminator.

exi st

"exi st $.eventUnion. d
and $.eventUnion._d ==
10"

To avoid that afiltering of an event
fails due to that, for example, we try
to compare a union discriminator
which does not exist, we can use this
operator.

def aul t

"defaul t
$. event Uni on. _d"

If the _doperation isin conjunction
with thedef aul t operation, TRUE
will be returned if the union has a
default member that is active.

uni on

"$.(0) == 5"eq."$.
('zero') == 5"

10 | Ericsson AB. All Rights Reserved.: cosNotification

When the component refers to
aunion, with one of the cases
definedascase 0: short
zero; ,weuseQor' zero' . The
result of the example is TRUEIf
the union has a discriminator set
to Oand the value 5. If more than

onecaseisdefinedtobe zero',

1.5 Filters and the Constraint Language BNF

$. (' zero') accepts both; $.

(0) only returns TRUEIf the
discriminator is set to 0. Leaving out
the identifier, i.e., $. () , refersto
the default value.

"$. NaneVal ueSeq(' nyl D) The Notification service makes
== extensive use of name- val ue

name-val ue pairs 5"eq." $. NameVal ueSeq[1] . nafrpai r ssequences within structured

== 'nylD and events, which allow usto viathe
$. NanmeVal ueSeq[1] . val ue identifier nameaccessitsval ue, as
== 5" shown in the example.

Table 5.1: Table 1: Type and Operator Examples

In the next section we will take a closer ook at how it is possible to write constraints using different types of notation
etc.

Accessing Data In Events

To filter events, the supplied constraints must describe the contents of the events and desired values. We can, for
example, state that we are only interested in receiving eventswhich are of type CommunicationsAlarm. To beableto
achievethis, the constraint must contain information that points out which fieldsto compare with. Figureoneillustrates
aconceptual overview of a structured event. The exact definitionisfound inthe CosNot i fi cati on. i dl file.

I|*|I cdormain_name |'"'|
type_name Fim=d Header
event_name I'||'I
Event Headzr ohf_name ohf_wvaloe .I"l.
ohf_name ohf_value Wariable Header
"*" | ohf name ohf_valoe I'||'I
I|*|I fd_name fd_valos |'"'|
fd_name fd_valoe Filterabls Bady
Event B ody
fd_name fd_valos I'||'I
Il*lI " rernainder_of body Rernaining Body

Figure 5.1: Figure 1: The structure of a structured event.

The Notification Service supports different constraint expressions notation:

e Fully scoped, e.g., "$.header.fixed_header.event_type.type_name == 'CommunicationsAlarm™
e Short hand, e.g., "$type_name == 'CommunicationsAlarm™
» Positional Notation, e.g., "$.0.0.0.1 == 'CommunicationsAlarm™

Ericsson AB. All Rights Reserved.: cosNotification | 11

1.5 Filters and the Constraint Language BNF

Which notation to use is up to the user, however, the fully scoped may be easier to understand, but in some cases,
if received from an ORB that do not populate 1D:s of named parts, the positional notation is the only option.

If a constraint, which access fields in a structured event structure, is supposed to handle unstructured events as
well, the CORBA::Any must contain the same type of members.

How to filter against the fixed header fields, is described in the table below.

Field Fully Scoped Constraint Short Hand Constraint
type_name E rlleader".'f|xed_header.event_type.type${1§a&i name == "Type"
=="Type
domain_name E rlleader._f |xed |_header.event_type.dom nm'rr]m%lnr]ﬁname =='Domain™
=='Domain
event_name $.header."f‘|xed_header.event_name “Sevent_name == 'Event”

=="Event

Table 5.2: Table 2: Fixed Header Constraint Examples

If we are only interested in receiving events regarding '‘Domain’, 'Event' and 'Type', the constraint can look like

"$domai n_nane == 'Donmai n' and $event _nane == 'Event' and $type_nanme == 'Type'".

The variable event header consists of a sequence of name-value pairs. One way to filter on these are to
use a congstraint that looks like " ($. header. vari abl e_header[1].name == ‘priority' and
$. header. vari abl e_header[1].val ue > 0)".An easier way to accomplish the same result is to use a
constraint that treats the name-value pair as an associative array, i.e., when given a name the corresponding value is
returned. Hence, instead we canuse" $. header . vari abl e_header (priority) > 0".

Accessing the event body is done in the same way as for the event header fields. The user must, however, be aware
of, that if a run-time variable ($var i abl e) is used data in the event header may take precedence. The order of
precedenceis:

 Reserved, eg., $Scurti me

o A simpletyped member of $. header . fi xed_header.

* Propertiesin$. header . vari abl e_header.

» Propertiesin$. fil terabl e_dat a.

e If nomatchisfounditistransatedto $. vari abl e.

Mapping Filters

Mapping Filters may only be associated with Consumer Administrators or Proxy Suppliers. The purpose of aMapping
Filter isto override Quality of Service settings.

Initially, Mapping Filters are empty and will aways return true. Hence, we must add constraints by using
" CosNoti fyFilter_ MappingFilter':add_mappi ng_constraints/2. If a constraint matches, the
associated value will be used instead of the related Quality of Service system settings.

12 | Ericsson AB. All Rights Reserved.: cosNotification

1.6 Quality Of Service and Admin Properties

Asinput, the second argument must be a sequence of :

#'CosNotifyFilter MappingConstraintPair'{
constraint _expression = #'CosNotifyFilter ConstraintExp'{

event types =

[#'CosNotification EventType'{
domain_name = string(),
type name = string()}],

constraint expr = string()},

result to set = any()}

1.6 Quality Of Service and Admin Properties

1.6.1 Quality Of Service and Admin Properties

This chapter

explains

alowed properties for

CosNatification_AdminPropertiesAdmin.

Quality Of Service

The cosNatification application supports the following QoS settings:

CosNatification_QoSAdmin

and

QoS Range Default
EventReliability BestEffort/Persistent BestEffort
ConnectionRéliability BestEffort/Persistent BestEffort
Priority +/-32767 0
OrderPolicy g?gi/er Fifo-, Priority- and Deadline- PriorityOrder
DiscardPolicy E??tg?gﬁ\;enafd%g;dﬂ:& dor | REIECiNewEvents
MaximumBatchSize long() >0 1
Pacinglnterval TimeBase:: TimeT (see cosTime) 0
StartTimeSupported boolean fase
StopTimeSupported boolean fase
MaxEventsPerConsumer long() >0 100
Timeout TimeBase:: TimeT (see cosTime) No timeout

Table 6.1: Table 1: Supported QoS Settings

Commentson thetable'Supported QoS Settings':

EventReliability

To allow full Persistent EventReliability, every event must be stored in a stable storage which would create a
relatively huge overhead. Hence, only lightweight version of the Persistent QoS is supported. The configuration

Ericsson AB. All Rights Reserved.: cosNotification | 13

1.6 Quality Of Service and Admin Properties

parametersmax_event s,i nterval _event s andti neout _event s determine the behavior of this
Setting.

ConnectionRéliability
If this QoS is set to BestEffort and a client object returns anything other than ok to its associated Proxy, the
Proxy will discard al events and terminate. Using Persistent and anything other than ok is returned, events
will be dropped but the proxy will retry later when next delivery isdue. A child may not have Persistent while
its parent has BestEffort QoS set, e.g., Proxy vs. Admin. If OBJECT_NOT_EXI ST, NO_PERM SSI ONor
CosEvent Conm Di sconnect ed isthrown, the associated object will terminate even if this parameter is
Set to Persistent.

Priority
This QoS will treat all events asif they have the Priority equal to current value, unless the event itself
contains a Priority setting, this event will be treated accordingly. Note: for this property to have any effect, the
DiscardPolicy and/or OrderPolicy must be set to PriorityOrder.

OrderPolicy
If set to PriorityOrder, events with the highest Priority will be delivered first. Deadline order will forward
events with shortest expiry time first. If two events have the same priority, they will be delivered in FIFO-
order.

DiscardPolicy
If set to PriorityOrder and MaxEventsPerConsumer limit is reached, events with the lowest Priority will be
discarded first. Deadline order will discard events with shortest expiry time first.

MaximumBatchSize
Only valid if the object is supposed to handle a sequence of structured events and determines the largest
amount of events that may be passed each time.

Pacingl nterval
Determines how long an object will wait before forwarding a structured event sequence of length equal to, or
less than MaximumBatchSize. If set to 0, which is the default behavior, no timeout is used and the events are
forwarded when the MaximumBatchSize is reached.

StartTimeSupported
If set to true events which contains the QoS Property St ar t Ti me (TimeBase::UtcT - absolute time) will not
be delivered until the StartTime value have been exceeded. See also the cosTi e application.

StopTimeSupported
If set to true, events which contain the QoS Properties St opTi nme (TimeBase::UtcT - absolute time) or
Ti meout (TimeBase::TimeT - relative time) will be discarded if the object has not been able to deliver the
event in time. See also thecosTi me application.

M axEventsPer Consumer
The maximum number of events the associated object may store before discarding events in the way described
by the DiscardPoalicy.

Timeout
If this QoS property is not included in the event, and the Property St opTi meSuppor t ed equalstrue, this
setting will be applied if events cannot be delivered within its time limit.

Severa of the above QoS Properties can be changed during run-time but we strongly advice not to since, if a
relatively large amount of events are waiting for delivery, some of the QoS settings would require a total reorder
of the events. The QoS property Connect i oRel i abi | i t y may never be updated during run-time since it may
cause deadlock. Run-time, in this case, means activating the Channel by sending the first event.

Setting Quality Of Service

Assume we have a Consumer Admin object which we want to change the current Quality of Service. Typical usage:

14 | Ericsson AB. All Rights Reserved.: cosNotification

1.7 cosNotification Examples

QoSPersistent =
[#'CosNotification Property'
{name="'CosNotification':'ConnectionReliability"' (),
value=any:create(orber_tc:short(),
'CosNotification':'Persistent'())}],
'CosNotification QoSAdmin':set qos(Ch, QoSPersistent),

If it is not possible to set the requested QoS the Unsuppor t edQoS exception is raised, which includes a sequence
of Propert yEr r or 'sdescribing which QoS, possible range and why is not allowed. The error codes are:

e UNSUPPORTED_PROPERTY - QoS not supported for this type of target object.

« UNAVAILABLE_PROPERTY - due to current QoS settings the given property is not allowed.

* UNSUPPORTED_VALUE - property value out of range; valid range is returned.

e UNAVAILABLE VALUE - dueto current QoS settings the given value is not allowed; valid range is returned.
« BAD_PROPERTY - unrecognized property.

« BAD_TYPE - type of supplied property isincorrect.

e BAD_VALUE-illega vaue.

The CosNoatification QoSAdmin interface also supports an operation called val i dat e_qos/ 2. The purpose of this

operations is to check if a QoS setting is supported by the target object and if so, the operation returns additional
properties which could be optionally added as well.

Admin Properties
The cosNatification application supports the following Admin Properties:

Property Range Default
MaxQueuel ength 0 0
MaxConsumers long() >=0 0
MaxSuppliers long() >=0 0

Table 6.2: Table 2: Supported Admin Properties

According to the OMG specification the default values for Admin Properties is supposed to be 0, which means that
no limit applies to these properties.

Admin Properties can only be set on a Channel Object level, i.e., they will not have an impact on any Admin or
Proxy Objects. Currently, setting the Admin Property Max QueueLengt h have no effect since we cannot discard
events accordingly to the Quality of Service Property Di scar dPol i cy.

1.7 cosNotification Examples

1.7.1 A Tutorial on How to Create a Simple Service

Interface Design

To use the cosNotification application clients must be implemented. There are twelve types of clients:

Ericsson AB. All Rights Reserved.: cosNotification | 15

1.7 cosNotification Examples

* Structured Push Consumer
e Sequence Push Consumer
e Any Push Consumer

e Structured Pull Consumer
* Sequence Pull Consumer

* Any Pull Consumer

e Structured Push Supplier

* Seguence Push Supplier

e Any Push Supplier

e Structured Pull Supplier

* Sequence Pull Supplier

e Any Pull Supplier
Theinterfaces for these participants are defined in CosNotification.idl and CosNotifyComm.idl.

Generating a Client Interface

We dat by creating an interface which inherits from the correct interface, e.g.,
CosNotifyComm::SequencePushConsumer. Hence, we must also implement al operations defined in the
SequencePushConsumer interface. The IDL-file could look like:

#ifndef MYCLIENT IDL

#define MYCLIENT IDL

#include <CosNotification.idl>
#include <CosNotifyComm.idl>

module myClientImpl {
interface ownInterface:CosNotifyComm: :SequencePushConsumer {

void ownFunctions(in any NeededArguments)
raises(Systemexceptions,OwnExceptions);

};
};

#endif

Run the IDL compiler on this file by calling the i c: gen/ 1 function. This will produce the APl named
nydientlnpl _ownlnterface. erl. After generating the APl stubs and the server skeletons it is
time to implement the servers and if no specia options are sent to the IDI compiler the file name is
myCientlnmpl _ownlnterface inpl.erl.

The calback module must contain the necessary functions inherited from CosNotification.idl and
CosNotifyComm.idl.

How to Run Everything

Below is ashort transcript on how to run cosNotification.

16 | Ericsson AB. All Rights Reserved.: cosNotification

1.7 cosNotification Examples

%% Start Mnesia and Orber
mnesia:delete schema([node()]),
mnesia:create schema([node()]),
orber:install([node()]),
mnesia:start(),
orber:start(),

%% If cosEvent not installed before it is necessary to do it now.
cosEventApp:install(),

%% Install cosNotification in the IFR.
cosNotificationApp:install(30),

% Register the application specific Client implementations
% in the IFR.
oe_myClientImpl':'oe register'(),

[
o
[

o

%% Start the cosNotification application.
cosNotificationApp:start(),

%% Start a factory using the default configuration
ChFac = cosNotificationApp:start factory(),

%% ... or use configuration parameters.

ChFac = cosNotificationApp:start factory([]),

%% Create a new event channel. Note, if no QoS- anr/or Admin-properties
%% are supplied (i.e. empty list) the default settings are used.
{Ch, ChID} = 'CosNotifyChannelAdmin EventChannelFactory"':

create channel(ChFac, DefaultQoS, DefaultAdmin),

%% Retrieve a SupplierAdmin and a Consumer Admin.
{AdminSupplier, ASID}=

'CosNotifyChannelAdmin EventChannel':new for suppliers(Ch, 'OR OP'),
{AdminConsumer, ACID}=

'CosNotifyChannelAdmin_ EventChannel':new for consumers(Ch,'OR OP'),

%% Use the corresponding Admin object to get access to wanted Proxies

%% Create a Push Consumer Proxie, i.e., the Client Push Supplier will

%% push events to this Proxy.

{StructuredProxyPushConsumer,ID11}= 'CosNotifyChannelAdmin SupplierAdmin':
obtain notification push consumer(AdminSupplier, 'STRUCTURED EVENT')),

% Create Push Suppliers Proxies, i.e., the Proxy will push events to the
% registered Push Consumers.
{ProxyPushSupplier,I4D}="'CosNotifyChannelAdmin ConsumerAdmin':

obtain notification push supplier(AdminConsumer, 'ANY_EVENT'),
{StructuredProxyPushSupplier,ID5}="'CosNotifyChannelAdmin ConsumerAdmin"':

obtain notification push supplier(AdminConsumer, 'STRUCTURED EVENT'),
{SequenceProxyPushSupplier,ID6}="'CosNotifyChannelAdmin ConsumerAdmin':
obtain notification push supplier(AdminConsumer, 'SEQUENCE EVENT'),

[
o
[

o

%% Create application Clients. We can, for example, start the Clients

%% our selves or look them up in the naming service. This is application
%% specific.
SupplierClient
ConsumerClientl
ConsumerClient2
ConsumerClient3

%% Connect each Client to corresponding Proxy.
'CosNotifyChannelAdmin_ StructuredProxyPushConsumer':

connect structured push supplier(StructuredProxyPushConsumer, SupplierClient),
'CosNotifyChannelAdmin_ ProxyPushSupplier':

connect_any push _consumer(ProxyPushSupplier, ConsumerClientl),

Ericsson AB. All Rights Reserved.: cosNotification | 17

1.7 cosNotification Examples

'CosNotifyChannelAdmin_ StructuredProxyPushSupplier':

connect structured push consumer(StructuredProxyPushSupplier, ConsumerClient2),
'CosNotifyChannelAdmin_SequenceProxyPushSupplier':

connect sequence push consumer(SequenceProxyPushSupplier, ConsumerClient3),

The example above, exemplifies a notification system where the SupplierClient in some way generates event and
pushes them to the proxy. The push supplier proxies will eventually push the events to each ConsumerClient.

18 | Ericsson AB. All Rights Reserved.: cosNotification

1.7 cosNotification Examples

2 Reference Manual

The cosNotification application is an Erlang implementation of the OMG CORBA Natification Service.

Ericsson AB. All Rights Reserved.: cosNotification | 19

cosNotificationApp

cosNotificationApp

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module contains the functions for starting and stopping the application.

Exports

install() -> Return
Types:

Return = ok | {' EXCEPTION , E}
This operation installs the cosNotification application.

install(Seconds) -> Return
Types:
Return = ok | {' EXCEPTION , E}
This operation installs the cosNatification application using Seconds delay between each block, currently 6, of IFR-

registrations. This approach spreads the IFR database access over a period of time to alow other applications to run
smother.

install event() -> Return
Types:
Return = ok | {' EXCEPTION , E}

This operation, which may only be used if it is impossible to upgrade to cosEvent-2.0 or later, installs the necessary
cosEvent interfaces. If cosEvent-2.0 isavailable, use cosEvent App: i nstal | () instead.

install event(Seconds) -> Return
Types:
Return = ok | {' EXCEPTION , E}
This operation, which may only be used if it isimpossible to upgrade to cosEvent-2.0 or later, installs the necessary

cosEvent interfaces using Seconds delay between each block of |FR-registrations. If cosEvent-2.0 is available, use
cosEvent App:instal |l () instead.

uninstall() -> Return
Types.
Return = ok | {' EXCEPTION , E}
This operation uninstalls the cosNotification application.

uninstall(Seconds) -> Return

Types:
Return = ok | {' EXCEPTION , E}

20 | Ericsson AB. All Rights Reserved.: cosNotification

cosNotificationApp

This operation uninstalls the cosNotification application using Seconds delay between each block, currently 6, of
| FR-unregistrations. This approach spreads the IFR database access over a period of time to allow other applications
to run smother.

uninstall event() -> Return
Types:
Return = ok | {' EXCEPTION , E}
This operation uninstalls the inherited cosEvent interfaces. If cosEvent is in use this function may not be used.

This function may only be used if cosNotificati onApp:install_event/1/2 was used. If not, use
cosEvent App: uni nstal | () instead.

uninstall event(Seconds) -> Return
Types:
Return = ok | {' EXCEPTION , E}
This operation uninstals the inherited cosEvent interfaces, using Seconds delay between each block of
IFR-unregistrations. If cosEvent is in use this function may not be used. This function may only be used

if cosNotificationApp:install_event/1/2 was used. If not, use cosEvent App: uni nstal | ()
instead.

start() -> Return
Types:

Return = ok | {error, Reason}
This operation starts the cosNotification application.

stop() -> Return
Types:

Return = ok | {error, Reason}
This operation stops the cosNotification application.

start global factory() -> ChannelFactory
Types.
Channel Factory = #objref

This operation creates a Event Channel Factory should be used for a multi-node Orber. The Factory is used to create
anew channel.

start global factory(Options) -> ChannelFactory

Types:
Options = [Option]
Option = {pulllnterval, Seconds} | {filterQp, Op} | {gcTine, Seconds} |
{gcLimt, Anount} | {tinmeService, #objref}

Channel Factory = #objref

This operation creates a Event Channel Factory and should be used for a multi-node Orber. The Factory is used to
create a new channel.

Ericsson AB. All Rights Reserved.: cosNotification | 21

cosNotificationApp

e {pulllnterval, Seconds} - determinehow often Proxy Pull Consumerswill check for new events with
the client application. The default value is 20 seconds.

« {filterQp, OperationType} -determinewhich type of Administrator objects should be started, i.e.,
'"OR_OP' or' AND_OF' . Thedefault valueis' OR_OP' .
« {timeService, TimeServiceObj | 'undefined'} -tobeabletouse Start and/or Stop QoSthis

option must be used. Seethefunctionstart _ti nme_servi ce/ 2 inthecosTi ne application. The default
valueis' undefi ned' .

o {filterOp, OperationType} -determinewhich type of Administrator objects should be started, i.e.,
'"OR_OP' or' AND_OF' . Thedefault valueis' OR_OP' .

« {gcTinme, Seconds} -thisoption determines how often, for example, proxies will garbage collect expired
events. The default valueis 60.

e {gcLinmt, Anount} -determineshow many eventswill be stored before, for example, proxieswill
garbage collect expired events. The default value is 50. This option istightly coupled with the QoS property
MaxEvent sPer Consuner ,i.e, thegcLi mi t should belessthan MaxEvent sPer Consumer and greater
than 0.

start factory() -> ChannelFactory
Types:
Channel Fact ory = #obj ref
This operation creates a Event Channel Factory. The Factory is used to create a new channel.

start _factory(Options) -> ChannelFactory

Types:
Options = [Option]
Option = {pulllnterval, Seconds} | {filterQo, Op} | {gcTine, Seconds} |
{gcLimt, Anount} | {tineService, #objref}

Channel Factory = #obj ref
This operation creates a Event Channel Factory. The Factory is used to create a new channel.

stop_factory(ChannelFactory) -> Reply
Types:

Channel Factory = #obj ref

Reply = ok | {'EXCEPTION , E}

This operation stop the target channel factory.

start_filter_ factory() -> FilterFactory
Types:
FilterFactory = #objref
This operation creates a Filter Factory. The Factory is used to create a new Filter's and MappingFilter's.

stop filter factory(FilterFactory) -> Reply
Types:

FilterFactory = #objref

Reply = ok | {' EXCEPTION , E}
This operation stop the target filter factory.

22 | Ericsson AB. All Rights Reserved.: cosNotification

cosNotificationApp

create structured event(Domain, Type, Event, VariableHeader, FilterableBody,
BodyRemainder) -> Reply

Types.
Domai n = string()
Type = string()
Event = string()
Vari abl eHeader = [CosNotification:: Property]
Filterabl eBody = [CosNotification::Property]
BodyRemai nder = #any data-type
Reply = CosNotification::StructuredEvent | {' EXCEPTION , E}

An easy way to create a structured event is to use this function. Simple typechecks are performed and if one of the
argumentsis not correct a'BAD_PARAM' exception isthrown.

type check() -> Reply
Types:
Reply = true | false

This operation returns the value of the configuration parameter t ype_check.

Ericsson AB. All Rights Reserved.: cosNotification | 23

CosNotifyChannelAdmin_EventChannelFactory

CosNotifyChannelAdmin_EventChannelFactory

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

create channel(ChannelFactory, InitialQoS, InitialAdmin) -> Return
Types:
Channel Factory = #obj ref
Initial QS = CosNotification::QSProperties
Initial Admin = CosNotification::Adm nProperties
Return = {Event Channel, Channel | D}
Event Channel = #objref
Channel I D = | ong()
This operation creates a new event channel. Along with the channel reference an id is returned which can be used

when invoking other operations exported by this module. The Quality of Service argument supplied will be inherited
by objects created by the channel. For more information about QoS settings seethe User' s Qui de.

If no QoS- and/or Admin-properties are supplied (i.e. empty list), the default settings will be used. For more
information, see the User's Guide.

get _all channels(ChannelFactory) -> ChannelIDSeq
Types:

Channel Fact ory = #obj ref

Channel I DSeq = [l ong()]

This operation returns aid sequence of all channel's created by this Channel Factory.

get event channel(ChannelFactory, ChannelID) -> Return
Types.

Channel Factory = #obj ref

Channel I D = | ong()

Retrurn = Event Channel | {'EXCEPTION ,
#' CosNot i f yChannel Adri n_Channel Not Found' {}}

Event Channel = #objref

This operation returns the EventChannel associated with the givenid. If no channel isassociated withtheid, i.e., never
existed or have been terminated, an exception is raised.

24 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_EventChannel

CosNotifyChannelAdmin_EventChannel

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

* CosNatification_QoSAdmin
» CosNatification_AdminPropertiesAdmin

Exports

_get MyFactory(Channel) -> ChannelFactory
Types:

Channel = #objref

Channel Factory = #obj ref

This readonly attribute maintains the reference of the event channel factory that created the target channel.

_get default consumer admin(Channel) -> ConsumerAdmin
Types.

Channel = #objref

Consumer Adm n = #obj r ef

This is a readonly attribute which maintains a reference to a default Consumer Adm n object associated with the
target object.

_get default supplier admin(Channel) -> SupplierAdmin
Types:

Channel = #objref

Suppl i er Adm n = #obj ref

This is a readonly attribute which maintains a reference to a default Suppl i er Adm n object associated with the
target object.

~get default filter factory(Channel) -> FilterFactory
Types:

Channel = #objref

FilterFactory = #objref

Thedefault Fi | t er Fact or y associated with the target channel is maintained by this readonly attribute.

new for consumers(Channel, OpType) -> Return

Types:
Channel = #objref
OpType = "AND O | 'OR O
Return = {Consuner Admi n, Adni nl D}

Ericsson AB. All Rights Reserved.: cosNotification | 25

CosNotifyChannelAdmin_EventChannel

Consuner Adm n = #obj r ef
Adm nl D = | ong()
This operation creates a new instance of a Consuner Admi n and supplies an Id which may be used when invoking

other operations exported by this module. The returned object will inherit the Quality of Service properties of the
target channel.

for _consumers(Channel) -> ConsumerAdmin
Types:
Channel = #objref
Consuner Adm n = #obj ref
A new new instance of a Consumer Admi n object is created but no Id is returned. The returned object's operation

type, i.e, ' AND_OP' or' OR_OFP' , will be set to the value of the configuration parameter fi | t er Op. The target
object's Quality of Service propertieswill be inherited by the returned Consurmer Admi n.

new for suppliers(Channel, OpType) -> Return

Types:
Channel = #objref
OpType = "AND OP' | 'OR OF

Return = {Supplier Admi n, Adni nl D}
Suppl i er Adm n = #obj ref
Adninl D = 1 ong()
Enablesusto create anew instance of aSuppl i er Adm n. Anld, which may be used when invoking other operations

exported by thismodule, is also returned. The current Quality of Service settings associated with the target object will
be inherited by the Suppl i er Adm n.

for suppliers(Channel) -> SupplierAdmin
Types:

Channel = #objref

Suppl i er Adm n = #obj ref
Tocreateanew Suppl i er Admi n withthetarget object's current Quality of Service settingswe can usethisfunction.
The returned object's operation type (' AND_OP' or ' OR_OP') will be determined by the configuration variable
filterQOp.

get consumeradmin(Channel, AdminID) -> ConsumerAdmin

Types:
Channel = #objref
Admi nl D = | ong()

Consumer Adm n = #objref | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Adm nNot Found' {}}

If thegiven Idisassociated withaConsumer Adni n the object referenceisreturned. If such association never existed
or the Consumer Adni n have terminated an exception is raised.

get supplieradmin(Channel, AdminID) -> SupplierAdmin

Types:
Channel = #objref

26 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_EventChannel

Admi nl D = | ong()
Suppl i erAdm n = #objref | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Adm nNot Found' {}}

Equal to the operation get _consuner admi n/ 2 but areferenceto aSuppl i er Adm n isreturned.

get all consumeradmins(Channel) -> Reply
Types:
Channel = #objref
Reply = [Adni nl D]
Adm nl D = | ong()
To get accessto all Consuner Admi n |d's created by thetarget object, and still aive, this operation could beinvoked.

get all supplieradmins(Channel) -> Reply
Types:
Channel = #objref
Reply = [Adni nl D]
Adm nl D = | ong()
Equal to the operationget _al | _consuner admi ns/ 1 but returnsalist of al Suppl i er Admi n object ID's.

destroy(Channel) -> ok
Types:
Channel = #objref
Thedest r oy operation will terminate the target channel and all associated Admin objects.

Ericsson AB. All Rights Reserved.: cosNotification | 27

CosNotification

CosNotification

Erlang module

To get access to al definitions include necessary hr | files by using:
-include_lib("cosNotification/include/*.hrl").

Exports

"EventReliability'() -> string()
This function returns the EventReliability QoS identifier

'BestEffort'() -> short()
This function returns the BestEffort QoS value.

'Persistent' () -> short()
This function returns the Persistent QoS value.

"ConnectionReliability'() -> string()
This function returns the ConnectionReliability QoS identifier.

'"Priority'() -> string()
This function returns the Priority QoS identifier.

"LowestPriority'() -> short()
This function returns the LowestPriority QoS value.

'HighestPriority'() -> short()
This function returns the HighestPriority QoS value.

'DefaultPriority'() -> short()
This function returns the DefaultPriority QoS value.

'StartTime' () -> string()
This function returns the StartTime QoS identifier.

'StopTime' () -> string()
This function returns the StopTime QoS identifier.

'Timeout' () -> string()
This function returns the Timeout QoS identifier.

28 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotification

'OrderPolicy' () -> string()
This function returns the OrderPolicy QoS identifier.

"AnyOrder' () -> short()
This function returns the AnyOrder QoS value.

'"FifoOrder'() -> short()
This function returns the FifoOrder QoS value.

'"PriorityOrder'() -> short()
This function returns the PriorityOrder QoS value.

'DeadlineOrder' () -> short()
This function returns the DeadlineOrder QoS value.

'DiscardPolicy'() -> string()
This function returns the DiscardPolicy QoS identifier.

'LifoOrder' () -> short()
This function returns the LifoOrder QoS value.

'RejectNewEvents' () -> short()
This function returns the RejectNewEvents QoS value.

'MaximumBatchSize' () -> string()
This function returns the MaximumBatchSize QoS identifier.

'"PacingInterval'() -> string()

This function returns the Pacinglnterval QoS identifier.

'StartTimeSupported' () -> string()
This function returns the StartTimeSupported QoS identifier.

'StopTimeSupported' () -> string()
This function returns the StopTimeSupported QoS identifier.

'MaxEventsPerConsumer' () -> string()

This function returns the MaxEventsPerConsumer QoS identifier.

'MaxQueuelLength' () -> string()
This function returns the MaxQueuel ength Admin identifier.

Ericsson AB. All Rights Reserved

. cosNotification | 29

CosNotification

'"MaxConsumers' () -> string()

This function returns the MaxConsumers Admin identifier.

'"MaxSuppliers'() -> string()
This function returns the MaxSuppliers Admin identifier.

30 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotification_QoSAdmin

CosNotification_QoSAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit thisinterface, export functions described in this module.

Exports

get qos(Object) -> Reply
Types:
bj ect = #objref
Reply = [QoSProperty]
QoSProperty = # CosNotification Property' {name, val ue}
nane = string()
val ue = #any

This operation returns a list of name-value pairs which encapsulates the current QoS settings for the target object.

set qos(Object, QoS) -> Reply
Types.
Ooj ect = #obj ref
QS = [QSProperty]
QoSProperty = # CosNotification_Property' {nanme, val ue}
nane = string()
val ue = #any
Reply ok | {' EXCEPTION , # CosNotification_UnsupportedQsS {qos_err}}
qos_err = PropertyErrorSeq
PropertyErrorSeq = [PropertyError]

PropertyError = # CosNotification_PropertyError’' {code, nane,
avai |l abl e_range}

code = ' UNSUPPORTED PROPERTY' | ' UNAVAI LABLE_PROPERTY' |
' UNSUPPORTED VALUE' | ' UNAVAI LABLE_VALUE | ' BAD PROPERTY' | 'BAD TYPE |
' BAD_VALUE

nane = string()
avai | abl e_range = PropertyRange
PropertyRange = #CosNoti ficati on_PropertyRange{l ow val, high_val}
| ow val = high_val = #any
To alter the current QoS settings for the target object this function must be used. If it isnot possible to set the requested

QoStheUnsuppor t edQoS exceptionisraised, which includesasequence of Pr oper t yEr r or 'sdescribing which
QoS, possible range and why is not allowed.

validate qos(Object, QoS) -> Reply
Types:

Ericsson AB. All Rights Reserved.: cosNotification | 31

CosNotification_QoSAdmin

bj ect = #objref

QS = [QSProperty]

QoSProperty = # Property' {nane, val ue}
name = string()

val ue = #any

Reply = {ok, NanmedPropertyRangeSeq} | {' EXCEPTI ON ,
CosNoti fication_UnsupportedQS{}}

NamedPr opert yRangeSeq = [NanmedPr opert yRange]

NamedPr opert yRange = #CosNoti fi cati on_NamedPropertyRange{ nane, range}

nane = string()

range = #CosNoti ficati on_PropertyRange{low val, high_val}

| ow val = #any

hi gh_val = #any
The purpose of this operations is to check if a QoS setting is supported by the target object and if so, the operation
returns additional properties which could be optionally added as well.

32 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotification_AdminPropertiesAdmin

CosNotification_AdminPropertiesAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit thisinterface, export functions described in this module.

Exports

get admin(Object) -> AdminProperties
Types:
bj ect = #objref
Admi nProperties = [Adm nProperty]
Admi nProperty = #' CosNotification Property' {nane, val ue}
nane = string()
val ue = #any

This operation returns sequence of name-value pairs which encapsulates the current administrative properties of the
target object.

set admin(Object, AdminProperties) -> Reply
Types.
Ooj ect = #obj ref
Adm nProperties = [Adm nProperty]
Admi nProperty = #' CosNotification_Property' {nanme, val ue}
nane = string()
val ue = #any
Reply = ok | {'EXCEPTION , CosNotification_UnsupportedAdni n}

As input, this operation accepts a sequence of name-value pairs encapsulating the desired administrative settings for
the target object. If it is not possible to set the given properties the exception Unsuppor t edAdmi n will be raised.

Ericsson AB. All Rights Reserved.: cosNotification | 33

CosNotifyChannelAdmin_ConsumerAdmin

CosNotifyChannelAdmin_ConsumerAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:
« CosNatification_QoSAdmin

e CosNotifyComm_NotifySubscribe

e CosNatifyFilter_FilterAdmin

Exports

_get MyID(ConsumerAdmin) -> AdminID
Types.

Consumer Adnmi n = #obj r ef

Adm nl D = | ong()

The ID returned by the creating channel is equa to the value encapsulated by this readonly attribute.

_get MyChannel(ConsumerAdmin) -> Channel
Types:

Consumer Adm n = #obj r ef

Channel = #objref

The creating channel's reference is maintained by this readonly attribute.

_get MyOperator(ConsumerAdmin) -> OpType

Types:
Consumer Admi n = #obj r ef
OpType = "AND OP' | 'OR O

When Consumer Adm n' s are created an operation type, i.e, ' AND_OP' or ' OR_OP', is supplied, which
determines the semantics used by the target object concerning evaluation against any associated Fi | t er objects.

_get priority filter(ConsumerAdmin) -> MappingFilter
Types:
Consumer Admi n = Mappi ngFilter = #objref
If set, this operation returns the associated priority Mappi ngFi | t er, otherwise aNI L object referenceis returned.

_set priority filter(ConsumerAdmin, MappingFilter) -> ok
Types:
Consumer Admi n = Mappi ngFil ter = #objref
To associate apriority Mappi ngFi | t er with thetarget object this operation must be used.

34 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ConsumerAdmin

_get lifetime filter(ConsumerAdmin) -> MappingFilter
Types.
Consumer Admi n = Mappi ngFil ter = #objref

Unless a lifetime Mappi ngFi | t er have been associated with the target object a NI L object reference is returned
by this operation.

~set lifetime filter(ConsumerAdmin, MappingFilter) -> ok
Types:

Consuner Adm n = Mappi ngFil ter = #objref
This operation associate a lifetime Mappi ngFi | t er with the target object.

~get pull suppliers(ConsumerAdmin) -> ProxyIDSeq
Types:
Consuner Adm n = #obj r ef
Proxyl DSeq = [Proxyl D
Proxyl D = | ong()
This readonly attribute maintains the Id's for al Pul | Pr oxi es created by the target object and till alive.

~get push suppliers(ConsumerAdmin) -> ProxyIDSeq
Types:

Consuner Adm n = #obj ref

Proxyl DSeq = [Proxyl D

Proxyl D = | ong()

This attribute is similar to the _get _pul | _suppl i er s attribute but maintains the Id's for al PushPr oxi es
created by the target object and still alive.

get proxy supplier(ConsumerAdmin, ProxyID) -> Reply
Types:
Consuner Adm n = #obj ref
Proxyl D = 1 ong()
Reply = Proxy | {' EXCEPTION , #' CosNotifyChannel Admi n_ProxyNot Found' {}}
Proxy = #objref

If a proxy with the given Id exists the reference to the object is returned, but if the object have terminated, or an
incorrect Id is supplied, an exception is raised.

obtain notification pull supplier(ConsumerAdmin, ConsumerType) -> Reply
Types:
Consumner Admi n = #obj ref
Consuner Type = ' ANY_EVENT' | ' STRUCTURED EVENT' | ' SEQUENCE_EVENT'
Reply = {Proxy, Proxyl D}
Proxy = #objref
Proxyl D = I ong()

Ericsson AB. All Rights Reserved.: cosNotification | 35

CosNotifyChannelAdmin_ConsumerAdmin

Determined by the parameter Consuner Ty pe, aproxy which will accept events of the defined typeiscreated. Along
with the object reference an 1d is returned.

obtain pull supplier(ConsumerAdmin) -> Proxy
Types:

Consumer Adm n = #obj r ef

Proxy = #objref

This operation creates anew proxy which accepts#any{} events.

obtain notification push supplier(ConsumerAdmin, ConsumerType) -> Reply
Types.
Consumer Adnmi n = #obj r ef
Consumer Type = ' ANY_EVENT' | ' STRUCTURED EVENT' | ' SEQUENCE_EVENT'
Reply = {Proxy, ProxylD}
Proxy = #objref
Proxyl D = | ong()

A proxy which accepts events of the type described by the parameter Consuner Type is created by this operation.
A unique |d isreturned as an out parameter.

obtain push supplier(ConsumerAdmin) -> Proxy
Types.

Consumer Adnmi n = #obj r ef

Proxy = #objref

The object created by this function is a proxy which accepts#any{} events.

destroy(ConsumerAdmin) -> ok
Types:
Consumer Adm n = #obj r ef
To terminate the target object this operation should be used. The associated Channel will be notified.

36 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SupplierAdmin

CosNotifyChannelAdmin_SupplierAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:
* CosNatification_QoSAdmin

e CosNotifyComm_NotifyPublish

e CosNotifyFilter_FilterAdmin

Exports

_get MyID(SupplierAdmin) -> AdminID
Types.

Suppl i er Admi n = #obj ref

Adm nl D = | ong()

When a Suppl i er Adm n object is created it is given a unique Id by the creating channel. This readonly attribute
maintains this 1d.

_get MyChannel(SupplierAdmin) -> Channel
Types:
Suppl i er Adm n = #obj ref
Channel = #objref
The creating channel's reference is maintained by this readonly attribute.

_get MyOperator(SupplierAdmin) -> OpType

Types.
Suppl i er Adm n = #obj ref
OpType = "AND OP' | 'OR OF

The Operation Type, which determines the semantics the target object will use for any associated Fi | t ers, is
maintained by this readonly attribute.

_get pull consumers(SupplierAdmin) -> ProxyIDSeq
Types:
Suppl i er Admi n = #obj ref
Proxyl DSeq = [Proxyl D]
Proxyl D = | ong()
A sequence of all associated Pul | Pr oxy Id'sis maintained by this readonly attribute.

_get push consumers(SupplierAdmin) -> ProxyIDSeq

Types:
Suppl i er Admi n = #obj ref

Ericsson AB. All Rights Reserved.: cosNotification | 37

CosNotifyChannelAdmin_SupplierAdmin

Proxyl DSeq = [Proxyl D]
Proxyl D = | ong()
This operation returns all PushPr oxy Id's created by the target object.

get proxy consumer(SupplierAdmin, ProxyID) -> Reply
Types:
Suppl i er Admi n = #obj ref
Proxyl D = | ong()
Reply = Proxy | {' EXCEPTION , #' CosNotifyChannel Adm n_ProxyNot Found' {}}
Proxy = #obj ref

The Proxy which corresponds to the given Id is returned by this operation.

obtain notification pull consumer(SupplierAdmin, SupplierType) -> Reply
Types.
Suppl i er Adm n = #obj ref
Suppl i er Type = ' ANY_EVENT' | ' STRUCTURED EVENT' | ' SEQUENCE EVENT'
Reply = {Proxy, ProxylD}
Proxy = #objref
Proxyl D = | ong()

This operation creates anew proxy and returnsits object reference along with itsID. The Suppl i er Type parameter
determines the event type accepted by the proxy.

obtain pull consumer(SupplierAdmin) -> Proxy
Types:

Suppl i er Adm n = #obj ref

Proxy = #objref
A proxy which accepts#any{} eventsis created by this operation.

obtain notification push consumer(SupplierAdmin, SupplierType) -> Reply
Types:
Suppl i er Adm n = #obj ref
Suppl i er Type = ' ANY_EVENT' | ' STRUCTURED EVENT' | ' SEQUENCE_EVENT'
Reply = {Proxy, Proxyl D}
Proxy = #objref
Proxyl D = | ong()

Determined by the Suppl i er Type parameter a compliant proxy is created and its object reference along with its
Id isreturned by this operation.

obtain push consumer(SupplierAdmin) -> Proxy
Types:

Suppl i er Adm n = #objref

Proxy = #objref
A proxy which accepts#any{} eventsis created by this operation.

38 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SupplierAdmin

destroy(SupplierAdmin) -> ok
Types:
Suppl i er Adm n = #obj ref
This operation terminates the SupplierAdmin object and notifies the creating channel that the target object no longer
isactive.

Ericsson AB. All Rights Reserved.: cosNotification | 39

CosNotifyComm_NotifyPublish

CosNotifyComm_NotifyPublish

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit this interface, export functions described in this module.

Exports

offer change(Object, Added, Removed) -> Reply
Types:
bj ect = #objref
Added = Renopved = Event TypeSeq
Event TypeSeq = [type]
Reply = ok | {' EXCEPTION , CosNotifyComm | nvali dEvent Type{type}}
type = # CosNotification_EventType' {domai n_nane, type_nane}
domai n_nane = type_nane = string()
Objects supporting thisinterface can beinformed by supplier objects about which type of eventsthat will be delivered

in the future. This operation accepts two parameters describing new and old event types respectively. If any of the
supplied event type names is syntactically incorrect an exception is raised.

40 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyComm_NotifySubscribe

CosNotifyComm_NotifySubscribe

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit thisinterface, export functions described in this module.

Exports

subscription change(Object, Added, Removed) -> Reply

Types:
bj ect = #objref
Added = Renoved = Event TypeSeq
Event TypeSeq = [type]
Reply = ok | {'EXCEPTION, CosNotifyComm | nvali dEvent Type{type}}
type = # CosNotification_EventType' {domai n_nane, type_nane}
domai n_nane = type_nanme = string()

This operation takes as input two sequences of event type names specifying events the client will and will not accept

in the future respectively.

Ericsson AB. All Rights Reserved.: cosNotification | 41

CosNotifyFilter_FilterAdmin

CosNotifyFilter FilterAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit this interface, export functions described in this module.

Exports

add filter(Object, Filter) -> FilterID
Types:
bj ect = #objref
Filter = #objref
FilterlD = I ong()
This operation connects a new Fi | t er to the target object. This Fi | t er will, together with other associated

Fi |l t ers, be used to select events to forward. A unique Id is returned and should be used if we no longer want to
consult thegivenFi | t er .

remove filter(Object, FilterID) -> ok
Types:

bj ect = #objref

FilterI D = I ong()

If acertainFi | t er nolonger should be associated with the target object this operation must be used. Events will no
longer betested against the Fi | t er associated with the given Id.

get filter(Object, FilterID) -> Reply
Types:
oj ect = #obj ref
FilterID = I ong()
Reply = Filter | {' EXCEPTION , #' CosNotifyFilter_ FilterNotFound {}}
Filter = #objref

If the target object is associated with a Fi | t er matching the given Id the reference will be returned. If no such
Fi | t er isknown by the target object an exception is raised.

get all filters(Object) -> FilterIDSeq
Types:

bj ect = #objref

FilterIDSeq = [Filterl D]

FilterlD = I ong()

Id'sfor al Fi | t er objects associated with the target object is returned by this operation.

remove all filters(Object) -> ok
Types:

42 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_FilterAdmin

bj ect = #objref

If wewant to remove al Fi | t er s associated with the target object we can use this function.

Ericsson AB. All Rights Reserved.: cosNotification | 43

CosNotifyFilter_FilterFactory

CosNotifyFilter FilterFactory

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

create filter(FilterFactory, Grammar) -> Reply
Types:
FilterFactory = #objref
Grammar = string()
Reply = Filter | {'EXCEPTION , # CosNotifyFilter InvalidGamar'{}}
Filter = #objref

This operation creates a new Filter object, under the condition that Grammar given is supported. Currently, only
" EXTENDED_TCL" issupported.

create mapping filter(FilterFactory, Grammar) -> Reply
Types:
FilterFactory = #objref
Grammar = string()
Reply = MappingFilter | {' EXCEPTION , # CosNotifyFilter_lnvalidGammar'{}}
Filter = #objref

This operation creates a new MappingFilter object, under the condition that Grammar given is supported. Currently,
only " EXTENDED TCL" is supported.

44 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_Filter

CosNotifyFilter Filter

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

_get constraint grammar(Filter) -> Grammar
Types:
Filter = #objref
Grammar = string()
This operation returns which type of Grammar the Filter uses. Currently, only " EXTENDED TCL" is supported.

add constraints(Filter, ConstraintExpSeq) -> Reply
Types.

Filter = #objref

Constrai nt ExpSeq = [Constraint]

Constrai nt Exp = #' CosNoti fyFilter_ Constraint Exp' {event types
constraint _expr}

event _types = # CosNotification Event TypeSeq' {}
constraint_expr = string()

Reply = ConstraintlnfoSeq | {'EXCEPTION ,
CosNotifyFilter_lnvalidConstraint' {constr}}

constr = Constraint Exp
Constrai ntl nfoSeq = [Constraintlnfo]

Constraintinfo = # CosNotifyFilter Constraintlnfo' {constraint_expression
constraint _id}

constrai nt _expression = Constraint Exp
constraint_id = long()

Initially, Filters do not contain any constraints, hence, all events will be forwarded. The add_const rai nt s/ 2
operation allow us to add constraints to the target object.

modify constraints(Filter, ConstraintIDSeq, ConstraintInfoSeq) -> Reply
Types:

Filter = #objref

Constraintl DSeq = [Constraintl| D

Constraint1 D = | ong()

Constrai nt1 nfoSeq = [Constraintlnfo]

Constraintinfo = # CosNotifyFilter_Constraintlnfo' {constraint_expression,
constraint _id}

constrai nt_expressi on = Constraint Exp
constraint_id = long()

Ericsson AB. All Rights Reserved.: cosNotification | 45

CosNotifyFilter_Filter

Reply = ok | {'EXCEPTION , # CosNotifyFilter InvalidConstraint'{constr}} |
{' EXCEPTION' , #' CosNotifyFilter_ConstraintNotFound' {id}}

constr = Constraint Exp

id = 1ong()

Constrai nt Exp = # CosNotifyFilter_Constraint Exp' {event _types,

constraint_expr}

event _types = # CosNotification_Event TypeSeq' {}

constraint_expr = string()
Thisoperation isinvoked by aclient in order to modify the constraints associated with the target object. The constraints
related to the Id's in the parameter sequence Const r ai nt | DSeq will, if al values are valid, be deleted. The

Const rai nt | nf 0Seq parameter contains of |d-Expression pairs and a constraint matching one of the unique Id's
will, if al input values are correct, be updated. If the parameters contain incorrect data en exception will be raised.

get constraints(Filter, ConstraintIDSeq) -> Reply
Types:

Filter = #objref

Constraintl DSeq = [Constraintl| D

Constraint1 D = | ong()

Reply = ConstraintlnfoSeq | {' EXCEPTION ,
#' CosNot i fyFilter_Constraint Not Found' {id}}

Constrai ntlnfoSeq = [Constraintlnfo]

Constraintlnfo = # CosNotifyFilter_Constraintlnfo' {constraint_expression,
constraint _id}

constrai nt _expressi on = Constrai nt Exp

constraint _id =id = long()
This operation return a sequence of Constraintinfo's, related to the given Constraintl D's, associated with the target
object.

get all constraints(Filter) -> ConstraintInfoSeq
Types:

Filter = #objref

Constrai ntlnfoSeq = [Constraintlnfo]

Constraintinfo = # CosNotifyFilter Constraintlnfo' {constrai nt_expression,
constraint _id}

constrai nt _expression = Constraint Exp
constraint_id = long()

All constraints, and their unique Id, associated with the target object will be returned by this operation.

remove all constraints(Filter) -> ok
Types:
Filter = #objref

All constraints associated with the target object are removed by this operation and, since the the target object no longer
contain any constraints, true will always be the result of any match operation.

46 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_Filter

destroy(Filter) -> ok
Types:
Filter = #objref
This operation terminates the target object.

match(Filter, Event) -> Reply
Types.
Filter = #objref
Event = #any
Reply = boolean() | {'EXCEPTION ,
#' CosNotifyFilter UnsupportedFilterableData' {}}

This operation accepts an #any{} event and returnst r ue if it satisfies at least one constraint. If the event contains
data of the wrong type, e.g., should be a string() but in fact i a short(), an exception is raised.

match structured(Filter, Event) -> Reply
Types.
Filter = #objref
Event = #' CosNotification_StructuredEvent' {}
Reply = boolean() | {'EXCEPTION ,
#' CosNoti fyFilter UnsupportedFilterableData' {}}

This operation is similar to the mat ch operation but accepts structured events instead.

attach callback(Filter, NotifySubscribe) -> CallbackID
Types.

Filter = #objref

Not i f ySubscri be = #obj ref

Cal | backl D = 1 ong()

This operation connects a NotifySubscribe object, which should be informed when the target object's constraints are
updated. A unique Id is returned which must be stored if we ever want to detach the callback object in the future.

detach callback(Filter, CallbackID) -> Reply
Types.
Filter = #objref
Cal | backl D = 1 ong()
Reply = ok | {'EXCEPTION , # CosNotifyFilter_CallbackNot Found' {}}

If the target object has an associated callback that matches the supplied Id it will be removed and longer informed of
any updates. If no object with amatching Id isfound an exception is raised.

get callbacks(Filter) -> CallbackIDSeq
Types.

Filter = #objref

Cal | backl DSeq = [Cal | backl D]

Cal | backl D = 1 ong()

Ericsson AB. All Rights Reserved.: cosNotification | 47

CosNotifyFilter_Filter

This operation returns a sequence of all connected NotifySubscribe object Id's. If no callbacks are associated with the
target object the list will be empty.

48 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_MappingFilter

CosNotifyFilter MappingFilter

Erlang module

The main purpose of this module is to match events against associated constraints and return the value for the first
constraint that returns true for the given event. If all constraints return fal se the default value will be returned.

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*. hrl").

Exports

~get constraint grammar(MappingFilter) -> Grammar
Types:

Mappi ngFi | ter = #obj ref

Grammar = string()

This operation returns which type of Grammar the MappingFilter uses. Currently, only " EXTENDED TCL" is
supported.

_get value type(MappingFilter) -> CORBA::TypeCode
Types:
Mappi ngFi | ter = #obj ref
This readonly attribute maintains the CORBA: : Ty peCode of the default value associated with the target object.

_get default value(MappingFilter) -> #any
Types:
Mappi ngFi | ter = #obj ref
This readonly attribute maintains the #any{ } default value associated with the target object.

add mapping constraints(MappingFilter, MappingConstraintPairSeq) -> Reply
Types:

Mappi ngFi |l ter = #obj ref

Mappi ngConst r ai nt Pai r Seq = [Mappi ngConstr ai nt Pai r]

Mappi ngConstrai ntPair =

#' CosNoti fyFilter_Mappi ngConstraintPair' {constraint_expression,

result _to_set}

constrai nt_expression = # CosNotifyFilter_Constraint Exp' {event _types,
constraint_expr}

event _types = # CosNotification_Event TypeSeq' {}
constraint_expr = string()
result_to_set = #any

Reply = Mappi ngConstrai ntlnfoSeq | {' EXCEPTI ON ,
#' CosNotifyFilter InvalidConstraint'{constr}} | {'EXCEPTION ,
#' CosNotifyFilter InvalidValue' {constr, value}}

constr = Constraint Exp

Ericsson AB. All Rights Reserved.: cosNotification | 49

CosNotifyFilter_MappingFilter

Constrai nt Exp = #' CosNoti fyFilter_ Constraint Exp' {event types,
constrai nt _expr}

event _types = # CosNotification_Event TypeSeq' {}
constraint _expr = string()
Mappi ngConstrai ntl nfoSeq = [Mappi ngConstr ai nt | nf 0]

Mappi ngConstraintinfo =
#' CosNoti fyFilter_ Mappi ngConstrai ntlnfo' {constraint_expression
constraint_id, value}

constrai nt_expressi on = Constrai nt Exp
constraint_id = long()
val ue = #any

This operation add new mapping constraints, which will be used when trying to override Quality of Service settings
defined in the given event. If aconstraint return true the associated value will be returned, otherwise the default value.

modify constraints(MappingFilter, ConstraintIDSeq, MappingConstraintInfoSeq)
-> Reply
Types:

Mappi ngFi | ter = #obj ref

Constraint1 DSeq = [Constraintl D

Constraint1 D = | ong()

Mappi ngConst rai nt 1 nfoSeq = [Mappi ngConstr ai nt | nf o]

Mappi ngConstraintinfo =
#' CosNoti fyFilter_ Mappi ngConstraintlnfo' {constraint_expression
constraint_id, value}

constrai nt_expressi on = Constrai nt Exp

constraint_id = | ong()

val ue = #any

Constrai nt1 nfoSeq = [Constraintlnfo]

Constraintinfo = # CosNotifyFilter_Constraintlnfo' {constraint_expression
constraint _i d}

constrai nt _expressi on = Constrai nt Exp

constraint_id = | ong()

Reply = ok | {'EXCEPTION , # CosNotifyFilter_InvalidConstraint'{constr}}
| {' EXCEPTION , #' CosNotifyFilter_ConstraintNotFound {id}} | {' EXCEPTION ,
#' CosNotifyFilter InvalidValue' {constr, value}}

constr = Constraint Exp
id = 1ong()
val ue = #any

Constrai nt Exp = #' CosNoti fyFilter_Constraint Exp' {event _types,
constrai nt _expr}

event _types = # CosNotification Event TypeSeq' {}
constraint_expr = string()

TheConst r ai nt | DSeq supplied should relate to constraints the caller wishesto remove. If any of the supplied Id's
are not found an exception will be raised. This operation also accepts a sequence of Mappi nhgConst rai nt | nfo

50 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_MappingFilter

which will be added. If the target object cannot modify the constraints as requested an exception is raised describing
which constraint, and why, could not be updated.

get mapping constraints(MappingFilter, ConstraintIDSeq) -> Reply
Types:

Mappi ngFi | ter = #obj ref

Constraintl DSeq = [Constraintl| D

Constraint1I D = | ong()

Reply = Mappi ngConstraintlnfoSeq | {' EXCEPTI ON ,
#' CosNot i fyFilter_Constraint Not Found' {id}}

Mappi ngConst rai nt | nfoSeq = [Mappi ngConstr ai nt | nf o]

Mappi ngConstraintlnfo =
#' CosNoti fyFilter_Mppi ngConstraintlnfo' {constraint_expression,
constraint_id, value}

constrai nt_expressi on = Constrai nt Exp

Constrai nt Exp = # CosNotifyFilter_Constraint Exp' {event _types,
constraint_expr}

event _types = # CosNotification_Event TypeSeq' {}
constraint_expr = string()

constraint_id =id = long()

val ue = #any

When adding a new constraint a unique Id is returned, which is accepted as input for this operation. The associated
constraint is returned, but if no such Id exists an exception is raised.

get all mapping constraints(MappingFilter) -> MappingConstraintInfoSeq
Types:

Mappi ngFi |l ter = #obj ref

Mappi ngConst rai nt 1 nf oSeq = [Mappi ngConst r ai nt | nf o]

Mappi ngConstraintlnfo =
#' CosNoti fyFilter Mappi ngConstraintlnfo' {constraint_expression,
constraint_id, value}

constrai nt _expressi on = Constrai nt Exp

Constrai nt Exp = #' CosNoti fyFilter_Constraint Exp' {event _types,
constraint _expr}

event _types = # CosNotification Event TypeSeq' {}
constraint _expr = string()

constraint_id = long()

val ue = #any

This operation returns a sequence of all unique |d's associated with the target object. If no constraint have been added
the sequence will be empty.

remove_all mapping constraints(MappingFilter) -> ok
Types:

Mappi ngFi l ter = #objref
This operation removes all constraints associated with the target object.

Ericsson AB. All Rights Reserved.: cosNotification | 51

CosNotifyFilter_MappingFilter

destroy(MappingFilter) -> ok
Types:
Mappi ngFi |l ter = #obj ref
This operation terminates the target object. Remember to remove this Filter from the objects it have been associated
with.

match(MappingFilter, Event) -> Reply
Types.
Mappi ngFi | ter = #obj ref
Event = #any
Reply = {bool ean(), #any} | {' EXCEPTION ,
#' CosNoti fyFilter_UnsupportedFilterableData' {}}

This operation evaluates Any events with the Filter's constraints, and returns the value to use. The value is the default
valueif al constraints returns false and the value associated with the first constraint returning true.

match structured(MappingFilter, Event) -> Reply
Types.
Mappi ngFi | ter = #obj ref
Event = #' CosNotification_StructuredEvent' {}
Reply = {bool ean(), #any} | {' EXCEPTION ,
#' CosNoti fyFilter_UnsupportedFilterableData' {}}

Similar to mat ch/ 2 but accepts a structured event asinput.

52 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyConsumer

CosNotifyChannelAdmin_ProxyConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

* CosNatification_QoSAdmin
* CosNotifyFilter_FilterAdmin

Exports

_get MyType(ProxyConsumer) -> ProxyType

Types:
ProxyConsuner = #obj ref
ProxyType = ' PUSH _ANY' | 'PULL_ANY' | 'PUSH STRUCTURED |
"PULL_STRUCTURED | ' PUSH SEQUENCE | ' PULL_SEQUENCE

This readonly attribute maintains the enumerant describing the which type the target object is.

_get MyAdmin(ProxyConsumer) -> AdminObject
Types:
ProxyConsuner = Adm nCbj ect = #objref
This readonly attribute maintains the admin's reference which created the target object.

obtain subscription types(ProxyConsumer, ObtainInfoMode) -> EventTypeSeq

Types:
Pr oxyConsuner = #obj ref
ot ai nl nfoMbde = ' ALL_NOW UPDATES OFF' | ' ALL_NOW UPDATES ON |
' NONE_NOW UPDATES _OFF' | ' NONE_NOW UPDATES_ON

Event TypeSeq = [Event Type]
Event Type = #' CosNotifi cati on_Event Type' {domai n_nane, type_nane}
domai n_nane = type_name = string()

Depending on the input parameter Cbt ai nl nf oMode, this operation may return a sequence of the Event Types
thetarget object isinterested inreceiving. If* ALL_NOW UPDATES OFF' or' ALL_NOW UPDATES ON isgiven
a sequence will be returned, otherwise not. If ' ALL_NOW UPDATES OFF' or ' NONE_NOW UPDATES COFF'
are issued the target object will not inform the associated Not i f ySubscri be object when an update occurs.
" ALL_NOW UPDATES ON' or' NONE_NOW UPDATES ON' will result in that update information will be sent.

validate event gos(ProxyConsumer, QoSProperties) -> Reply
Types.
Pr oxyConsuner = #obj ref
QoSProperties [QSProperty]
QoSProperty = # CosNotification_Property' {nanme, val ue}
nane = string()

Ericsson AB. All Rights Reserved.: cosNotification | 53

CosNotifyChannelAdmin_ProxyConsumer

val ue = #any

Reply = {ok, NanmedPropertyRangeSeq} | {' EXCEPTI ON ,
CosNoti fication_UnsupportedQS{qos_err}}

NamedPr opert yRangeSeq = [NamedPr opert yRange]

NanedPr opert yRange = #CosNoti fi cati on_NanedPropertyRange{nane, range}
name = string()

range = #CosNoti fication_PropertyRange{l ow val, high_val}

| ow val = #any

hi gh_val = #any

qos_err = PropertyError Seq

PropertyErrorSeq = [PropertyError]

PropertyError = # CosNotification PropertyError'{code, nane,
avai | abl e_r ange}

code = ' UNSUPPORTED_PROPERTY' | ' UNAVAI LABLE PROPERTY' |
" UNSUPPORTED_VALUE' | ' UNAVAILABLE VALUE' | 'BAD PROPERTY' | 'BAD TYPE |
' BAD_VALUE'

nane = string()

avai | abl e_range = PropertyRange

PropertyRange = #CosNoti fication_PropertyRange{l ow val, high_val}

| ow val = high_val = #any
To check if certain Quality of Service properties can be added to eventsin the current context of the target object this
operation should be used. If we cannot support the required settings an exception describing why will be raised.

54 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxySupplier

CosNotifyChannelAdmin_ProxySupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

* CosNatification_QoSAdmin
* CosNotifyFilter_FilterAdmin

Exports

_get MyType(ProxySupplier) -> ProxyType

Types:
ProxySuppl i er = #objref
ProxyType = ' PUSH _ANY' | 'PULL_ANY' | 'PUSH STRUCTURED |
"PULL_STRUCTURED | ' PUSH SEQUENCE | ' PULL_SEQUENCE

This readonly attribute maintains the enumerant describing the which type the target object is.

_get MyAdmin(ProxySupplier) -> AdminObject
Types:
ProxySuppl i er = #objref
Adm nCbj ect = #obj ref
This readonly attribute maintains the admin's reference which created the target object.

_get priority filter(ProxySupplier) -> MappingFilter
Types:
ProxySuppl i er = #objref
Mappi ngFi | ter = #obj ref
This operation returns the associated priority MappingFilter. If no such object exist aNI L referenceis returned.

_set priority filter(ProxySupplier, MappingFilter) -> ok
Types:

Pr oxySuppl i er = #objref

Mappi ngFi | ter = #obj ref

This operation associate a new priority MappingFilter with the target object.

_get lifetime filter(ProxySupplier) -> MappingFilter
Types:
ProxySuppl i er
Mappi ngFi | ter

#obj r ef
#obj r ef

This operation returns the associated lifetime MappingFilter. If no such object exist aNI L referenceis returned.

Ericsson AB. All Rights Reserved.: cosNotification | 55

CosNotifyChannelAdmin_ProxySupplier

_set lifetime filter(ProxySupplier, MappingFilter) -> ok
Types.

ProxySuppl i er = #objref

Mappi ngFi | ter = #obj ref

This operation associate a new lifetime MappingFilter with the target object.

obtain offered types(ProxySupplier, ObtainInfoMode) -> EventTypeSeq
Types:

ProxySuppl i er = #objref

ot ai nl nf oMbde = ' ALL_NOW UPDATES OFF' | ' ALL_NOW UPDATES ON |

' NONE_NOW UPDATES_OFF' | ' NONE_NOW UPDATES ON

Event TypeSeq = [Event Type]

Event Type = #' CosNotifi cati on_Event Type' {domai n_nane, type_nane}

domai n_nane = type_nanme = string()
Depending on the input parameter Cbt ai nl nf oMbde, this operation may return a sequence of the Event Types
thetarget object isinterested inreceiving. If * ALL_NOW UPDATES_OFF' or' ALL_NOW UPDATES ON isgiven
a sequence will be returned, otherwise not. If * ALL_NOW UPDATES OFF' or ' NONE_NOW UPDATES_COFF'

are issued the target object will not inform the associated Not i f ySubscri be object when an update occurs.
" ALL_NOW UPDATES _ON or' NONE_NOW UPDATES_ON will result in that update information will be sent.

validate event qos(ProxySupplier, QoSProperties) -> Reply
Types:
Pr oxySuppl i er #obj r ef
QoSProperties = [QSProperty]
QoSProperty = # CosNotification_ Property' {nanme, val ue}
nane = string()
val ue = #any

Reply = {ok, NanmedPropertyRangeSeq} | {' EXCEPTION ,
CosNoti fication_UnsupportedQS{qos_err}}

NamedPr opert yRangeSeq = [NanmedPr opert yRange]

NamedPr opert yRange = #CosNoti fi cati on_NamedPropertyRange{ nane, range}
name = string()

range = #CosNoti ficati on_PropertyRange{l ow val, high_val}

| ow val = #any

hi gh_val = #any

qos_err = PropertyError Seq

PropertyErrorSeq = [PropertyError]

PropertyError = # CosNotification_ PropertyError'{code, nane,
avai | abl e_r ange}

code = ' UNSUPPORTED_PROPERTY' | ' UNAVAI LABLE PROPERTY' |
" UNSUPPORTED_VALUE' | ' UNAVAI LABLE_VALUE | ' BAD PROPERTY' | 'BAD_TYPE |
' BAD_VALUE'

name = string()
avai | abl e_range = PropertyRange
PropertyRange = #CosNotification_PropertyRange{l ow val, high_val}

56 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxySupplier

| ow val = high val = #any

To check if certain Quality of Service properties can be added to eventsin the current context of the target object this
operation should be used. If we cannot support the required settings an exception describing why will be raised.

Ericsson AB. All Rights Reserved.: cosNotification | 57

CosNotifyChannelAdmin_ProxyPullConsumer

CosNotifyChannelAdmin_ProxyPullConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect any pull supplier(ProxyPullConsumer, PullSupplier) -> Reply
Types:
Pr oxyPul | Consumer = #obj ref
Pul | Suppl i er = #objref
Reply = ok | {'EXCEPTION , #' CosEvent Channel Admi n_Al readyConnected' {}} |
{' EXCEPTI ON' , #' CosEvent Channel Adm n_TypeError'{}}

This operation connects the given Pul | Suppl i er to the target object. If a client is already connected the
Al readyConnect ed exception will be raised. The client must support the operations pul | and try_pul |,
otherwisethe TypeEr r or exception israised.

suspend connection(ProxyPullConsumer) -> Reply
Types:
Pr oxyPul | Consumer = #obj ref
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Adnmi n_Not Connected' {}}

If we want to temporarily suspend the connection with the target object this operation must be sued. If the connection
already have been suspended or no client have been connected an exception is raised.

resume_connection(ProxyPullConsumer) -> Reply
Types:
ProxyPul | Consurner = #obj ref
Reply = ok | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Connecti onAl readyActive' {}} | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Not Connected' {}}

If The connection have been suspended earlier we can invoke this operation to reinstate the connection. If the
connection aready is active or no client have been connected to the target object an exception is raised.

disconnect pull consumer(ProxyPullConsumer) -> ok
Types:

58 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyPullConsumer

Pr oxyPul | Consumer = #obj ref

Invoking thisoperation disconnectsthe client from the target object which then terminatesand informitsadministrative
parent.

Ericsson AB. All Rights Reserved.: cosNotification | 59

CosNotifyChannelAdmin_ProxyPullSupplier

CosNotifyChannelAdmin_ProxyPullSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

» CosNotifyChannel Admin_ProxySupplier

Exports

connect any pull consumer(ProxyPullSupplier, PullConsumer) -> Reply
Types:

Pr oxyPul | Suppl i er = #objref

Pul | Consuner = #obj ref

Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}

This operation connects the given Pul | Consuner to the target object. If a connection already exists the
Al r eadyConnect ed exception israised.

pull(ProxyPullSupplier) -> Reply
Types:
Pr oxyPul | Suppl i er = #objref
Reply = #any | {' EXCEPTION , #' CosEvent Channel Adnmi n_Di sconnected' {}}

This operation pullsnext #any{ } event, and blocks, if the target object have no eventsto forward, until an event can
be delivered. If no client have been connected the Di sconnect ed exception is raised.

try pull(ProxyPullSupplier) -> Reply
Types.
ProxyPul | Suppl i er = #objref

Reply = {#any, HasEvent} | {'EXCEPTION ,
#' CosEvent Channel Adm n_Di sconnected' {}}

HasEvent = bool ean()

This operation pulls next event, but do not block if the target object have no event to forward. If no client have been
connected the Di sconnect ed exception israised.

disconnect pull supplier(ProxyPullSupplier) -> ok
Types:
ProxyPul | Suppl i er = #objref
Invoking this operation will cause the target object to close the connection and terminate.

60 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyPushConsumer

CosNotifyChannelAdmin_ProxyPushConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNotifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect any push supplier(ProxyPushConsumer, PushSupplier) -> Reply
Types:

Pr oxyPushConsumer = #obj ref

PushSuppl i er = #objref

Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}

This operation connects a PushSupplier to the target object. If a connection aready exists the
Al r eadyConnect ed exception israised.

push(ProxyPushConsumer, Event) -> Reply
Types:
Pr oxyPushConsumer = #obj ref
Event = #any
Reply = ok | {'EXCEPTION , #' CosEventChannel Adm n_Di sconnected' {}}

This operation pushes an #any{} event to the target object. If no client have been connected the Di sconnect ed
exception is raised.

disconnect push consumer(ProxyPushConsumer) -> ok
Types:
Pr oxyPushConsuner = #obj ref
Invoking this operation will cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 61

CosNotifyChannelAdmin_ProxyPushSupplier

CosNotifyChannelAdmin_ProxyPushSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmi

» CosNotifyChannel Admin_ProxySupplier

Exports

connect any push consumer(ProxyPushSupplier, PushConsumer) -> Reply
Types:
Pr oxyPushSuppl i er = #obj ref
PushConsuner = #obj ref
Reply = ok | {'EXCEPTION , #' CosEvent Channel Admi n_Al readyConnected' {}} |
{' EXCEPTI ON' , #' CosEvent Channel Adm n_TypeError'{}}

This operation connectsaPushConsuner to thetarget object. If aconnection already exists or the given client does
not support the operation push an exception, Al r eadyConnect ed and TypeEr r or respectively, israised.

suspend connection(ProxyPushSupplier) -> Reply
Types:
Pr oxyPushSuppl i er = #obj ref

Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Adnmi n_Not Connected' {}}

This operation suspends the connection with the client object. If the connection already is suspended or no client have
been associated an exception is raised.

resume_connection(ProxyPushSupplier) -> Reply
Types:
ProxyPul | Consurner = #obj ref
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Not Connected' {}}

If aconnection have been suspended earlier, calling thisoperation will resumethe connection. If the connection already
isactive or no client have been connected an exception is raised.

disconnect push supplier(ProxyPushSupplier) -> ok

Types:
ProxyPushSuppl i er = #objref

62 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyPushSupplier

This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 63

CosNotifyChannelAdmin_SequenceProxyPullConsumer

CosNotifyChannelAdmin_SequenceProxyPullConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect sequence pull supplier(SequenceProxyPullConsumer, PullSupplier) ->
Reply
Types:
SequencePr oxyPul | Consuner = #obj ref
Pul | Suppl i er = #objref
Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}
{' EXCEPTI ON', #' CosEvent Channel Adnmi n_TypeError'{}}

This operation connects a Pul | Suppl i er to the target object. If a connection already exists or the supplied
client does not support the functionspul | _structured_events andtry_pul |l _structured_events an
exception israised.

suspend connection(SequenceProxyPullConsumer) -> Reply
Types:
SequencePr oxyPul | Consuner = #obj ref
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Adnmi n_Not Connected' {}}

If a connection exist, invoking this operation will suspend the connection until instructed otherwise. Otherwise, no
client have been connected or this operation already have been invoked an exception is raised.

resume_connection(SequenceProxyPullConsumer) -> Reply
Types:
SequencePr oxyPul | Consuner = #obj ref
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Not Connected' {}}

If an connection have been suspended this operation must be used to resume the connection. If the connection already
isactive or no client have been connected an exception is raised.

disconnect sequence pull consumer(SequenceProxyPullConsumer) -> ok
Types:

64 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPullConsumer

SequencePr oxyPul | Consuner = #obj ref

This operation close the connection to the client and terminates the target object.

Ericsson AB. All Rights Reserved.: cosNotification | 65

CosNotifyChannelAdmin_SequenceProxyPullSupplier

CosNotifyChannelAdmin_SequenceProxyPullSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

» CosNotifyChannel Admin_ProxySupplier

Exports

connect sequence pull consumer(SequenceProxyPullSupplier, PullConsumer) ->
Reply
Types:

SequencePr oxyPul | Suppl i er = #objref

Pul | Consuner = #obj ref

Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}

This operation connectsaPul | Consuner to the target object. If a connection already exists an exception is raised.

pull structured events(SequenceProxyPullSupplier, MaxEvents) -> Reply
Types:
SequencePr oxyPul | Suppl i er = #objref
MaxEvents = | ong()
Reply = EventBatch | {'EXCEPTION , #' CosEvent Channel Adm n_Di sconnected' {}}
Event Batch = [Struct uredEvent]

StructuredEvent = # CosNotification_StructuredEvent'{header,
filterabl e_data, renai nder_of body}

header = Event Header

filterable data = [# CosNotification_Property' {nanme, val ue}]
nane = string()

val ue = #any

remai nder _of body = #any

Event Header = #' CosNotifi cati on_Event Header' {fi xed_header,
vari abl e_header}

fi xed_header = Fi xedEvent Header
vari abl e_header = Opti onal Header Fi el ds

Fi xedEvent Header = #' CosNotificati on_Fi xedEvent Header' { event _t ype,
event _nane}

event _type = Event Type
event _nanme = string()
Event Type = #' CosNotifi cati on_Event Type' {donmai n_nane, type_nane}

66 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPullSupplier

domai n_nane = type_nanme = string()
Opti onal Header Fi el ds = [#' CosNoti fication_Property' {nanme, val ue}]
A client use this operation to pull next event sequence of maximum length MaxEvent s. This operation is blocking

and will not reply until the requested amount of events can be delivered or the QoS property Paci ngl nt er val is
reached. For moreinformation seethe User ' s Cui de.

try pull structured events(SequenceProxyPullSupplier, MaxEvents) -> Reply
Types:

SequencePr oxyPul | Suppl i er = #objref

MaxEvents = | ong()

Reply = {EventBatch, HasEvent} | {'EXCEPTION ,
#' CosEvent Channel Adm n_Di sconnected' {}}

HasEvent = bool ean()
Event Batch = [StructuredEvent]

StructuredEvent = # CosNotification_StructuredEvent'{header,
filterabl e_data, renainder_of_ body}

header = Event Header

filterable data = [# CosNotification_Property' {nanme, val ue}]
nane = string()

val ue = #any

remai nder _of _body = #any

Event Header = #' CosNotification_Event Header' {fi xed_header
vari abl e_header}

fi xed_header = Fi xedEvent Header
vari abl e_header = Opti onal Header Fi el ds

Fi xedEvent Header = #' CosNotification_Fi xedEvent Header' {event _t ype,
event _nane}

event _type = Event Type

event _nanme = string()

Event Type = #' CosNotifi cati on_Event Type' {domai n_nane, type_nane}
domai n_nane = type_nanme = string()

Opti onal Header Fi el ds = [#' CosNoti fication_Property' {nanme, val ue}]

This operation pulls an event sequence of the maximum length Max Event s, but do not block if the target object have
no events to forward. The outparameter, HasEvent istrueif the sequence contain any events.

disconnect sequence pull supplier(SequenceProxyPullSupplier) -> ok
Types:

SequencePr oxyPul | Supplier = #objref
This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 67

CosNotifyChannelAdmin_SequenceProxyPushConsumer

CosNotifyChannelAdmin_SequenceProxyPushConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect sequence push supplier(SequenceProxyPushConsumer, PushSupplier) ->
Reply
Types:

SequencePr oxyPushConsuner = #obj ref

PushSuppl i er = #objref

Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}

This operation connects a PushSupplier to the target object. If a connection aready exists the
Al r eadyConnect ed exception israised.

push structured events(SequenceProxyPushConsumer, EventBatch) -> Reply
Types:

SequencePr oxyPushConsuner = #obj ref

Event Batch = [StructuredEvent]

StructuredEvent = #' CosNotification_StructuredEvent'{header,
filterabl e_data, renai nder_of body}

header = Event Header

filterable data = [# CosNotification Property'{nanme, val ue}]
name = string()

val ue = #any

remai nder _of body = #any

Event Header = #' CosNotifi cati on_Event Header' {fi xed_header,
vari abl e_header}

fi xed_header = Fi xedEvent Header
vari abl e_header = Opti onal Header Fi el ds

Fi xedEvent Header = #' CosNotification_Fi xedEvent Header' { event _t ype,
event _nane}

event _type Event Type

event _nane string()

Event Type = #' CosNotifi cati on_Event Type' {donmai n_nane, type_nane}
domai n_nane = type_nanme = string()

68 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPushConsumer

Opti onal Header Fi el ds = [#' CosNotification_Property' {nane, val ue}]
Reply = ok | {'EXCEPTION , #' CosEvent Channel Admi n_Di sconnected' {}}

A client must use this operation when it wishes to push a new segquence of eventsto the target object. If no connection
existsthe Di sconnect ed exception is raised.

disconnect sequence push consumer(SequenceProxyPushConsumer) -> ok
Types:

SequencePr oxyPushConsuner = #obj ref
This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 69

CosNotifyChannelAdmin_SequenceProxyPushSupplier

CosNotifyChannelAdmin_SequenceProxyPushSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

» CosNotifyChannel Admin_ProxySupplier

Exports

connect sequence push consumer(SequenceProxyPushSupplier, PushConsumer) ->
Reply
Types:
SequencePr oxyPushSuppl i er = #obj ref
PushConsuner = #obj ref
Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}
{' EXCEPTI ON', #' CosEvent Channel Adnmi n_TypeError'{}}

This operation connects a PushConsuner to the target object. If a connection already exists or the function
psuh_struct ured_events is not supported the exceptions Al r eadyConnect ed or TypeError will be
raised respectively.

suspend connection(SequenceProxyPushSupplier) -> Reply
Types:
SequencePr oxyPushSuppl i er = #obj ref
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Adnmi n_Not Connected' {}}

This operation suspends the connection between the client and the target object. If no connection exists or the
connection is already suspended an exception is raised.

resume_connection(SequenceProxyPushSupplier) -> Reply
Types:
SequencePr oxyPul | Consuner = #obj ref
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Not Connected' {}}

If the connection have previously been suspended this operation must used if we want to resume the connection. If no
object have been connected or the connection already is active an exception is raised.

disconnect sequence push supplier(SequenceProxyPushSupplier) -> ok
Types:

70 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPushSupplier

SequencePr oxyPushSuppl i er = #obj ref

This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 71

CosNotifyChannelAdmin_StructuredProxyPullConsumer

CosNotifyChannelAdmin_StructuredProxyPullConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect structured pull supplier(StructuredProxyPullConsumer, PullSupplier) -
> Reply
Types:

Struct uredPr oxyPul | Consunmer = #obj ref

Pul | Suppl i er = #objref

Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}

{' EXCEPTI ON', #' CosEvent Channel Adnmi n_TypeError'{}}

Thisoperation connectsaPul | Suppl i er tothetarget object. If aconnection already existsor the given client object
does not support thefunctionspul | _st ruct ured_event andtry_pul | _structured_event anexception
israised.

suspend connection(StructuredProxyPullConsumer) -> Reply
Types:
Struct uredPr oxyPul | Consunmer = #obj r ef
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Adnmi n_Not Connected' {}}

This operation suspends the connection between the target object and its client. If no connection exists or already
suspended an exception is raised.

resume_connection(StructuredProxyPullConsumer) -> Reply
Types:
St ruct ur edPr oxyPul | Consurner = #obj r ef
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Not Connected' {}}

If the connection have been suspended this operation must be used if we want to resume the connection. If the
connection already are active or no connection have been created an exception is raised.

disconnect structured pull consumer(StructuredProxyPullConsumer) -> ok
Types:

72 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPullConsumer

Struct uredProxyPul | Consurer = #obj r ef

This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 73

CosNotifyChannelAdmin_StructuredProxyPullSupplier

CosNotifyChannelAdmin_StructuredProxyPullSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

» CosNotifyChannel Admin_ProxySupplier

Exports

connect structured pull consumer(StructuredProxyPullSupplier, PullConsumer) -
> Reply
Types:

Struct uredProxyPul | Supplier = #objref

Pul | Consuner = #obj ref

Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}

This operation connects a Pul | Consuner to the target object. If a connection aready exists the
Al r eadyConnect ed exception israised.

pull structured event(StructuredProxyPullSupplier) -> Reply
Types:
Struct uredProxyPul | Supplier = #objref

Reply = StructuredEvent | {' EXCEPTION ,
#' CosEvent Channel Admi n_Di sconnected' {}}

StructuredEvent = #' CosNotification_StructuredEvent'{header,
filterabl e_data, renai nder_of body}

header = Event Header

filterable data = [# CosNotification Property'{nanme, val ue}]
name = string()

val ue = #any

remai nder _of body = #any

Event Header = #' CosNotifi cati on_Event Header' {fi xed_header,
vari abl e_header}

fi xed_header = Fi xedEvent Header
vari abl e_header = Opti onal Header Fi el ds

Fi xedEvent Header = #' CosNotification_Fi xedEvent Header' { event _t ype,
event _nane}

event _type = Event Type
event _nanme = string()
Event Type = #' CosNotifi cati on_Event Type' {donmai n_nane, type_nane}

74 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPullSupplier

domai n_nane = type_nanme = string()
Opti onal Header Fi el ds = [#' CosNoti fication_Property' {nanme, val ue}]

This operation pulls next event from the target object; if an event cannot be delivered this function blocks until an
event arrives.

try pull structured event(StructuredProxyPullSupplier) -> Reply
Types:
St ruct ur edProxyPul | Suppl i er = #obj ref

Reply = {StructuredEvent, HasEvent} | {' EXCEPTION ,
#' CosEvent Channel Adm n_Di sconnected' {}}

HasEvent = bool ean()

StructuredEvent = # CosNotification_StructuredEvent'{header,
filterabl e_data, renai nder_of body}

header = Event Header

filterable data = [# CosNotification_Property' {nanme, val ue}]
nane = string()

val ue = #any

remai nder _of body = #any

Event Header = #' CosNotifi cati on_Event Header' {fi xed_header,
vari abl e_header}

fi xed_header = Fi xedEvent Header
vari abl e_header = Opti onal Header Fi el ds

Fi xedEvent Header = #' CosNotification_Fi xedEvent Header' { event _t ype,
event _nane}

event _type = Event Type

event _nanme = string()

Event Type = #' CosNotifi cati on_Event Type' {donmai n_nane, type_nane}
dormai n_name = type_nanme = string()

Opti onal Header Fi el ds = [#' CosNotification_Property' {nane, val ue}]

This operation try to pull next event from the target object. If no event have arrived an empty event isreturned and the
out parameter HasEvent isset to false. Otherwise, the boolean flag is set to true and an valid event is returned.

disconnect structured pull supplier(StructuredProxyPullSupplier) -> ok
Types:

Struct uredProxyPul | Supplier = #objref
This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 75

CosNotifyChannelAdmin_StructuredProxyPushConsumer

CosNotifyChannelAdmin_StructuredProxyPushConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect structured push supplier(StructuredProxyPushConsumer, PushSupplier) -
> Reply
Types:

Struct ur edPr oxyPushConsuner = #obj r ef

PushSuppl i er = #objref

Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}

This operation connectsaPushSuppl i er tothetarget object. If a connection already exists an exception is raised.

push structured event(StructuredProxyPushConsumer, StructuredEvent) -> Reply
Types:
Struct ur edPr oxyPushConsuner = #obj r ef

StructuredEvent = # CosNotification_StructuredEvent'{header,
filterabl e_data, renainder_of_body}

header = Event Header

filterable data = [# CosNotification_Property' {nanme, val ue}]
name = string()

val ue = #any

remai nder _of _body = #any

Event Header = #' CosNotificati on_Event Header' {fi xed_header,
vari abl e_header}

fi xed_header = Fi xedEvent Header
vari abl e_header = Opti onal Header Fi el ds

Fi xedEvent Header = #' CosNotification_Fi xedEvent Header' { event _t ype,
event _nane}

event _type Event Type

event _nane = string()

Event Type = # CosNoti ficati on_Event Type' {domai n_nane, type_nane}
domai n_nane = type_nanme = string()

Opti onal Header Fi el ds = [#' CosNotification_Property' {nanme, val ue}]
Reply = ok | {' EXCEPTION , #' CosEvent Channel Adni n_Di sconnected' {}}

76 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPushConsumer

When aclient want to push a new event to the target object this operation must be used.

disconnect structured push consumer(StructuredProxyPushConsumer) -> ok
Types:

St ruct ur edPr oxyPushConsuner = #obj r ef
This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 77

CosNotifyChannelAdmin_StructuredProxyPushSupplier

CosNotifyChannelAdmin_StructuredProxyPushSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

» CosNotifyChannel Admin_ProxySupplier

Exports

connect structured push consumer(StructuredProxyPushSupplier, PushConsumer) -
> Reply
Types:

Struct uredPr oxyPushSuppl i er = #obj ref

PushConsuner = #obj ref

Reply = ok | {'EXCEPTION , #' CosEvent Channel Adni n_Al readyConnected' {}}

{' EXCEPTI ON', #' CosEvent Channel Adnmi n_TypeError'{}}

This operation connects a PushConsuner to the target object. If a connection already exists or the function
push_struct ured_event isnot supported by the client object an exception is raised.

suspend connection(StructuredProxyPushSupplier) -> Reply
Types:
Struct ur edPr oxyPushSuppl i er = #obj ref
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Adnmi n_Not Connected' {}}

This operation suspends the connection with the target object. If no connection exists or the connection already is
suspended an exception is raised.

resume_connection(StructuredProxyPushSupplier) -> Reply
Types:
St ruct ur edPr oxyPul | Consurner = #obj r ef
Reply = ok | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Connecti onAl readyl nactive' {}} | {' EXCEPTION ,
#' CosNot i f yChannel Admi n_Not Connected' {}}

If the connection with the target object have been suspended this function must be used to resume the connection. If
no client have been connected or the connection is active an exception is raised.

disconnect structured push supplier(StructuredProxyPushSupplier) -> ok
Types:

78 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPushSupplier

Struct ur edPr oxyPushSuppl i er = #obj ref

This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 79

	cosNotification
	cosNotification User's Guide
	The cosNotification Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosNotification
	Overview
	Purpose and Dependencies
	Prerequisites

	Installing cosNotification
	Installation Process
	Preparation
	Configuration

	The Notification Service Components
	The Notification Service Components
	Components

	Filters and the Constraint Language BNF
	Filters and the Constraint Language BNF
	How to create filter objects
	The CosNotification Constraint Language
	The Constraint Language Data Types
	Accessing Data In Events
	Mapping Filters

	Quality Of Service and Admin Properties
	Quality Of Service and Admin Properties
	Quality Of Service
	Setting Quality Of Service
	Admin Properties

	cosNotification Examples
	A Tutorial on How to Create a Simple Service
	Interface Design
	Generating a Client Interface
	How to Run Everything

	Reference Manual
	cosNotificationApp
	install/0
	install/1
	install_event/0
	install_event/1
	uninstall/0
	uninstall/1
	uninstall_event/0
	uninstall_event/1
	start/0
	stop/0
	start_global_factory/0
	start_global_factory/1
	start_factory/0
	start_factory/1
	stop_factory/1
	start_filter_factory/0
	stop_filter_factory/1
	create_structured_event/6
	type_check/0

	CosNotifyChannelAdmin_EventChannelFactory
	create_channel/3
	get_all_channels/1
	get_event_channel/2

	CosNotifyChannelAdmin_EventChannel
	_get_MyFactory/1
	_get_default_consumer_admin/1
	_get_default_supplier_admin/1
	_get_default_filter_factory/1
	new_for_consumers/2
	for_consumers/1
	new_for_suppliers/2
	for_suppliers/1
	get_consumeradmin/2
	get_supplieradmin/2
	get_all_consumeradmins/1
	get_all_supplieradmins/1
	destroy/1

	CosNotification
	'EventReliability'/0
	'BestEffort'/0
	'Persistent'/0
	'ConnectionReliability'/0
	'Priority'/0
	'LowestPriority'/0
	'HighestPriority'/0
	'DefaultPriority'/0
	'StartTime'/0
	'StopTime'/0
	'Timeout'/0
	'OrderPolicy'/0
	'AnyOrder'/0
	'FifoOrder'/0
	'PriorityOrder'/0
	'DeadlineOrder'/0
	'DiscardPolicy'/0
	'LifoOrder'/0
	'RejectNewEvents'/0
	'MaximumBatchSize'/0
	'PacingInterval'/0
	'StartTimeSupported'/0
	'StopTimeSupported'/0
	'MaxEventsPerConsumer'/0
	'MaxQueueLength'/0
	'MaxConsumers'/0
	'MaxSuppliers'/0

	CosNotification_QoSAdmin
	get_qos/1
	set_qos/2
	validate_qos/2

	CosNotification_AdminPropertiesAdmin
	get_admin/1
	set_admin/2

	CosNotifyChannelAdmin_ConsumerAdmin
	_get_MyID/1
	_get_MyChannel/1
	_get_MyOperator/1
	_get_priority_filter/1
	_set_priority_filter/2
	_get_lifetime_filter/1
	_set_lifetime_filter/2
	_get_pull_suppliers/1
	_get_push_suppliers/1
	get_proxy_supplier/2
	obtain_notification_pull_supplier/2
	obtain_pull_supplier/1
	obtain_notification_push_supplier/2
	obtain_push_supplier/1
	destroy/1

	CosNotifyChannelAdmin_SupplierAdmin
	_get_MyID/1
	_get_MyChannel/1
	_get_MyOperator/1
	_get_pull_consumers/1
	_get_push_consumers/1
	get_proxy_consumer/2
	obtain_notification_pull_consumer/2
	obtain_pull_consumer/1
	obtain_notification_push_consumer/2
	obtain_push_consumer/1
	destroy/1

	CosNotifyComm_NotifyPublish
	offer_change/3

	CosNotifyComm_NotifySubscribe
	subscription_change/3

	CosNotifyFilter_FilterAdmin
	add_filter/2
	remove_filter/2
	get_filter/2
	get_all_filters/1
	remove_all_filters/1

	CosNotifyFilter_FilterFactory
	create_filter/2
	create_mapping_filter/2

	CosNotifyFilter_Filter
	_get_constraint_grammar/1
	add_constraints/2
	modify_constraints/3
	get_constraints/2
	get_all_constraints/1
	remove_all_constraints/1
	destroy/1
	match/2
	match_structured/2
	attach_callback/2
	detach_callback/2
	get_callbacks/1

	CosNotifyFilter_MappingFilter
	_get_constraint_grammar/1
	_get_value_type/1
	_get_default_value/1
	add_mapping_constraints/2
	modify_constraints/3
	get_mapping_constraints/2
	get_all_mapping_constraints/1
	remove_all_mapping_constraints/1
	destroy/1
	match/2
	match_structured/2

	CosNotifyChannelAdmin_ProxyConsumer
	_get_MyType/1
	_get_MyAdmin/1
	obtain_subscription_types/2
	validate_event_qos/2

	CosNotifyChannelAdmin_ProxySupplier
	_get_MyType/1
	_get_MyAdmin/1
	_get_priority_filter/1
	_set_priority_filter/2
	_get_lifetime_filter/1
	_set_lifetime_filter/2
	obtain_offered_types/2
	validate_event_qos/2

	CosNotifyChannelAdmin_ProxyPullConsumer
	connect_any_pull_supplier/2
	suspend_connection/1
	resume_connection/1
	disconnect_pull_consumer/1

	CosNotifyChannelAdmin_ProxyPullSupplier
	connect_any_pull_consumer/2
	pull/1
	try_pull/1
	disconnect_pull_supplier/1

	CosNotifyChannelAdmin_ProxyPushConsumer
	connect_any_push_supplier/2
	push/2
	disconnect_push_consumer/1

	CosNotifyChannelAdmin_ProxyPushSupplier
	connect_any_push_consumer/2
	suspend_connection/1
	resume_connection/1
	disconnect_push_supplier/1

	CosNotifyChannelAdmin_SequenceProxyPullConsumer
	connect_sequence_pull_supplier/2
	suspend_connection/1
	resume_connection/1
	disconnect_sequence_pull_consumer/1

	CosNotifyChannelAdmin_SequenceProxyPullSupplier
	connect_sequence_pull_consumer/2
	pull_structured_events/2
	try_pull_structured_events/2
	disconnect_sequence_pull_supplier/1

	CosNotifyChannelAdmin_SequenceProxyPushConsumer
	connect_sequence_push_supplier/2
	push_structured_events/2
	disconnect_sequence_push_consumer/1

	CosNotifyChannelAdmin_SequenceProxyPushSupplier
	connect_sequence_push_consumer/2
	suspend_connection/1
	resume_connection/1
	disconnect_sequence_push_supplier/1

	CosNotifyChannelAdmin_StructuredProxyPullConsumer
	connect_structured_pull_supplier/2
	suspend_connection/1
	resume_connection/1
	disconnect_structured_pull_consumer/1

	CosNotifyChannelAdmin_StructuredProxyPullSupplier
	connect_structured_pull_consumer/2
	pull_structured_event/1
	try_pull_structured_event/1
	disconnect_structured_pull_supplier/1

	CosNotifyChannelAdmin_StructuredProxyPushConsumer
	connect_structured_push_supplier/2
	push_structured_event/2
	disconnect_structured_push_consumer/1

	CosNotifyChannelAdmin_StructuredProxyPushSupplier
	connect_structured_push_consumer/2
	suspend_connection/1
	resume_connection/1
	disconnect_structured_push_supplier/1

