
cosNotification
Copyright © 2000-2018 Ericsson AB. All Rights Reserved.

cosNotification 1.2.3
March 26, 2018

Copyright © 2000-2018 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: cosNotification | 1

1.1 The cosNotification Application

2 | Ericsson AB. All Rights Reserved.: cosNotification

1 cosNotification User's Guide

The cosNotification application is an Erlang implementation of the OMG CORBA Notification Service.

1.1 The cosNotification Application
1.1.1 Content Overview
The cosNotification documentation is divided into three sections:

• PART ONE - The User's Guide
Description of the cosNotification Application including services and a small tutorial demonstrating the
development of a simple service.

• PART TWO - Release Notes
A concise history of cosNotification.

• PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in cosNotification.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

• cosNotification overview

• cosNotification installation

• A tutorial example

1.2 Introduction to cosNotification
1.2.1 Overview
The cosNotification application is a Notification Service compliant with the OMG Notification Service
CosNotification.

Purpose and Dependencies
cosNotification is dependent on Orber-3.1.7 or later, which provides CORBA functionality in an Erlang environment,
cosTime-1.0.1 or later and IDL-files to be compiled using IC-4.0.4 or later.

Prerequisites
To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming, CORBA and the Orber application.

Recommended reading includes books recommended by the OMG and Open Telecom Platform Documentation
Set. It is also helpful to have read Concurrent Programming in Erlang.

href

1.3 Installing cosNotification

Ericsson AB. All Rights Reserved.: cosNotification | 3

1.3 Installing cosNotification
1.3.1 Installation Process
This chapter describes how to install cosNotificationApp in an Erlang Environment.

Preparation
Before starting the installation process for cosNotification, the application Orber must be running.

Configuration
When using the Notification Service the cosNotification application first must be installed using
cosNotificationApp:install() or cosNotificationApp:install(Seconds), followed by
cosNotificationApp:start().

Then the Event Channel Factory must be started:

• cosNotificationApp:start_global_factory() - starts and returns a reference to a factory using
default configuration parameters. This operation should be used for a multi-node Orber.

• cosNotificationApp:start_global_factory(Options) - starts and returns a reference to a
factory using given configuration parameters. This operation should be used for a multi-node Orber.

• cosNotificationApp:start_factory() - starts and returns a reference to a factory using default
configuration parameters.

• cosNotificationApp:start_factory(Options) - starts and returns a reference to a factory using
given configuration parameters.

The following options exist:

• {pullInterval, Seconds} - determine how often Proxy Pull Consumers will check for new events with
the client application. The default value is 20 seconds.

• {filterOp, OperationType} - determine which type of Administrator objects should be started, i.e.,
'OR_OP' or 'AND_OP'. The default value is 'OR_OP'.

• {timeService, TimeServiceObj | 'undefined'} - to be able to use Start and/or Stop QoS this
option must be used. See the function start_time_service/2 in the cosTime application. The default
value is 'undefined'.

• {filterOp, OperationType} - determine which type of Administrator objects should be started, i.e.,
'OR_OP' or 'AND_OP'. The default value is 'OR_OP'.

• {gcTime, Seconds} - this option determines how often, for example, proxies will garbage collect expired
events. The default value is 60.

• {gcLimit, Amount} - determines how many events will be stored before, for example, proxies will
garbage collect expired events. The default value is 50. This option is tightly coupled with the QoS property
MaxEventsPerConsumer, i.e., the gcLimit should be less than MaxEventsPerConsumer and greater
than 0.

It is possible to define a set of global configuration parameters:

Key Range Default

type_check true | false true

notify atom() | false false

max_events integer() > 0 50

1.4 The Notification Service Components

4 | Ericsson AB. All Rights Reserved.: cosNotification

interval_events integer() > 0 10000 milliseconds

timeout_events integer() > interval_events 3000000 milliseconds

Table 3.1: Global Configuration Parameters

Comments on the table 'Global Configuration Parameters':

type_check
Determine if supplied IOR:s shall be type checked, i.e. invoking corba_object:is_a/2, or not.

notify
The given value shall point to an existing module exporting a function (arity 1) called terminated. This
operation is invoked when a proxy terminates and the argument is a list containing {proxy, IOR},
{client, IOR} and {reason, term()}. The return value is ignored.

max_events
If a supplier proxy has not been able to push events to a consumer and the queue exceeds this limit,
then the proxy will terminate. For this option to have any effect, the EventReliability and
ConnectionReliability QoS parameters must be set to Persistent. For more information, see also
the QoS chapter.

interval_events
The same requirements as for max_events. When a supplier proxy detects problems when trying to push
events, this parameter determines how often it should try to call the consumer.

timeout_events
The same requirements as for max_events. If the proxy has not been able to contact the consumer and this
time-limit is reached, then the proxy will terminate.

The Factory is now ready to use. For a more detailed description see Examples.

1.4 The Notification Service Components
1.4.1 The Notification Service Components
This chapter describes the Notification Service Components and how they interact.

Components
There are seven components in the OMG Notification Service architecture. These are described below:

1.4 The Notification Service Components

Ericsson AB. All Rights Reserved.: cosNotification | 5

Figure 4.1: Figure 1: The Notification Service Components.

• Event Channel: acts as a factory for Administrator objects. Allows clients to set Administrative Properties.

• Supplier Administrators: acts as a factory for Proxy Consumers. Administrators are started as 'AND_OP'-
or 'OR_OP'-type, which determines if events must be validated using both the Administrators associated
Filter and/or its Proxy children Filters.

• Consumer Administrators: acts in the same way as Supplier Administrators but handle Proxy Suppliers.

• Consumer Proxy: is connected to a client application. Can be started as Pull or Push object. If the proxy is
Push style the client application must push events to the Proxy, otherwise the Proxy is supposed to Pull events.
The CosNotification::AdminProperties is used to set the pacing interval.

• Supplier Proxy: Acts in a similar way as the Consumer Proxy, but if started as a Push proxy it will push
events to the client application.

• Filters: used to filter events. May be associated with Proxies and Administrators.

• Mapping Filters: used to override events Quality of Service settings. Can only be associated with Consumer
Administrators and Proxy Suppliers.

When a Proxy is started it is set to accept CORBA::Any, CosNotification::StructuredEvent or
CosNotification::EventBatch (a sequence of structured events).

1.5 Filters and the Constraint Language BNF

6 | Ericsson AB. All Rights Reserved.: cosNotification

If a Proxy is supposed to deliver structured events to a client application and receives an CORBA::Any event, the event
is converted to a structured event with type_name set to "%ANY" and the event is stored in remainder_of_body.

If a Proxy is supposed to deliver CORBA::Any events to a client application and receives a structured event, the event
is stored in an Any type. The Any Type Code will be equal to the CosNotification::StructuredEvent
Type Code.

1.5 Filters and the Constraint Language BNF
1.5.1 Filters and the Constraint Language BNF
This chapter describes, the grammar supported by CosNotifyFilter_Filter and CosNotifyFilter_MappingFilter, and
how to create and use filter objects.

How to create filter objects
To be able to filter events we must create a filter and associate it with one, or more, of the administrative or proxy
objects. In the example below, we choose to associate the filter with a ConsumerAdmin object.

FilterFactory = cosNotificationApp:start_filter_factory(),
Filter = 'CosNotifyFilter_FilterFactory':
 create_filter(FilterFactory,"EXTENDED_TCL"),
ConstraintInfoSeq = 'CosNotifyFilter_Filter':
 add_constraints(Filter, ConstraintExpSeq),
FilterID = 'CosNotifyChannelAdmin_ConsumerAdmin':
 add_filter(AdminConsumer, Filter),

"EXTENDED_TCL" is the only grammar supported by Orber Notification Service.

Depending on which operation type the Admin object uses, i.e., 'AND_OP' or 'OR_OP', events will be tested using
the associated filter. The operation properties are:

• 'AND_OP' - must be approved by the proxy's and its parent admin's filters. If all filters associated with an object
(Admin or Proxy) return false the event will be discarded. In this situation it is pointless to try and verify with the
other object's associated filters since the outcome still would be the same.

• 'OR_OP' - if one of the object's (Admin or Proxy) filters return true, the event will not be checked against any
other filter associated with a proxy or its parent admin. If a object's associated filters all return false, the event
will be forwarded to related proxies/admins, and tested against any associated filters.

Initially, filters are empty and will always return true. Hence, we must add constraints by using
'CosNotifyFilter_Filter':add_constraints/2. As input, the second argument must be a sequence of:

#'CosNotifyFilter_ConstraintExp'{
 event_types = [#'CosNotification_EventType'{
 domain_name = string(),
 type_name = string()}],
 constraint_expr = string()}

The event_types describes which types of events that should be matched using the associated
constraint_expr.

If a constraint expression is supposed to apply for all events, then the type_name can be set to the special event type
%ALL in a constraint's event type sequence. The domain_name should be "" or "*".

In the following sections we will take a closer look on how to write constraint expressions.

The CosNotification Constraint Language
The constraint language supported by the Notification Service is:

1.5 Filters and the Constraint Language BNF

Ericsson AB. All Rights Reserved.: cosNotification | 7

<constraint> := /* empty */
 | <bool>

<bool> := <bool_or>

<bool_or> := <bool_or> or <bool_and>
 | <bool_and>

<bool_and> := <bool_and> and <bool_compare>
 | <bool_compare>

<bool_compare> := <expr_in> == <expr_in>
 | <expr_in> != <expr_in>
 | <expr_in> < <expr_in>
 | <expr_in> <= <expr_in>
 | <expr_in> > <expr_in>
 | <expr_in> >= <expr_in>
 | <expr_in>

<expr_in> := <expr_twiddle> in <Ident> /* sequence only */
 | <expr_twiddle>
 | <expr_twiddle> in $ <Component> /* sequence only */

<expr_twiddle> := <expr> ~ <expr> /* string data types only */
 | <expr>

<expr> := <expr> + <term>
 | <expr> - <term>
 | <term>

<term> := <term> * <factor_not>
 | <term> / <factor_not>
 | <factor_not>

<factor_not> := not <factor>
 | <factor>

<factor> := (<bool_or>)
 | exist <Ident>
 | <Ident>
 | <Number>
 | - <Number>
 | <String>
 | TRUE
 | FALSE
 | + <Number>
 | exist $ <Component>
 | $ <Component>
 | default $ <Component> /* discriminated unions only */

<Component> := /* empty */
 | . <CompDot>
 | <CompArray>
 | <CompAssoc>
 | <Ident> <CompExt> /* run-time variable */

<CompExt> := /* empty */
 | . <CompDot>
 | <CompArray>
 | <CompAssoc>

<CompDot> := <Ident> <CompExt>
 | <CompPos>
 | <UnionPos>
 | _length /* only valid for arrays or sequences */

1.5 Filters and the Constraint Language BNF

8 | Ericsson AB. All Rights Reserved.: cosNotification

 | _d /* discriminated unions only */
 | _type_id /* only valid if possible to obtain */
 | _repos_id /* only valid if possible to obtain */

<CompArray> := [<Digits>] <CompExt>

<CompAssoc> := (<Ident>) <CompExt>

<CompPos> := <Digits> <CompExt>

<UnionPos> := (<UnionVal>) <CompExt>

<UnionVal> := /* empty */
 | <Digits>
 | - <Digits>
 | + <Digits>
 | <String>

/* Character set issues */
<Ident> :=<Leader> <FollowSeq>
 | \ < Leader> <FollowSeq>

<FollowSeq> := /* <empty> */
 | <FollowSeq> <Follow>

<Number> := <Mantissa>
 | <Mantissa> <Exponent>

<Mantissa> := <Digits>
 | <Digits> .
 | . <Digits>
 | <Digits> . <Digits>

<Exponent> := <Exp> <Sign> <Digits>

<Sign> := +
 | -

<Exp> := E
 | e

<Digits> := <Digits> <Digit>
 | <Digit>

<String> := ' <TextChars> '

<TextChars> := /* <empty> */
 | <TextChars> <TextChar>

<TextChar> := <Alpha>
 | <Digit>
 | <Other>
 | <Special>

<Special> := \\
 | \'

<Leader> := <Alpha>

<Follow> := <Alpha>
 | <Digit>
 | _

<Alpha> is the set of alphabetic characters [A-Za-z]
<Digit> is the set of digits [0-9]

1.5 Filters and the Constraint Language BNF

Ericsson AB. All Rights Reserved.: cosNotification | 9

<Other> is the set of ASCII characters that are not <Alpha>, <Digit>, or <Special>

In the absence of parentheses, the following precedence relations hold :

• (), exist, default, unary-sign

• not

• *, /

• +, -

• ~

• in

• ==, !=, <, <=, >, >=

• and

• or

The Constraint Language Data Types
The Notification Service Constraint Language, defines how to write constraint expressions, which can be used to filter
events. The representation does, however, differ slightly from ordinary Erlang terms.

When creating a ConstraintExp, the field constraint_expr must be set to contain a string, e.g., "1 < 2".
The Notification Service Constraint Language, is designed to be able to filter structured and unstructured events using
the same constraint expression. The Constraint Language Types and Operations can be divided into two sub-groups:

• Basic - arithmetics, strings, constants, numbers etc.

• Complex - accessing members of complex data types, such as unions.

Some of the basic types, e.g., integer, are self explanatory. Hence, they are not described further.

Type/Operation Examples Description

string "'MyString'"

Strings are represented as a sequence
of zero or more <TextChar>s
enclosed in single quotes, e.g.,
'string'.

~ "'Sring1' ~ 'String2'"
The operator ~is called the substring
operator and mean "String1 is
contained within String2".

boolean
"TRUE == (('lang' ~
'Erlang' + 'fun' ~
'functional') >= 2)"

Booleans may only be TRUE or
FALSE, i.e., only capital letters.
Expressions which evaluate to
TRUE or FALSE can be summed up
and matched, where TRUE equals 1
and FALSE 0.

sequence "myIntegerSequence[2]"
The BNF use C/C++ notation,
i.e., the example will return the
thirdelement.

_length "myIntegerSequence._length"
Returns the length of an sequence or
array.

1.5 Filters and the Constraint Language BNF

10 | Ericsson AB. All Rights Reserved.: cosNotification

in
"'Erlang' in
$.FunctionalLanguagesStringSeq"

Returns TRUEif a given element is
found in the given sequence. The
element must be of a simple type
and the same as the sequence is
defined to contain.

$ "$ == 40"

Denote the current event as well as
any run-time variables. If the event
is unstructured and its contained
value 40, the example will return
TRUE.

. "$.MyStructMember == 40"

The structure member operator
.may be used to reference its
members when the data refers to
a named structure, discriminated
union, or CORBA::Any data
structure.

_type_id
"$._type_id ==
'MyStruct'"

Returns the unscoped IDL type
name of the component. This
operation is only valid if said
information can be obtained.

_repos_id
"$._repos_id ==
'IDL:MyModule/
MyStruct:1.0'"

Returns the RepositoryId of the
component. This operation is only
valid if said information can be
obtained.

_d "$.eventUnion._d"
May only be used when accessing
discriminated unions and refers to
the discriminator.

exist
"exist $.eventUnion._d
and $.eventUnion._d ==
10"

To avoid that a filtering of an event
fails due to that, for example, we try
to compare a union discriminator
which does not exist, we can use this
operator.

default
"default
$.eventUnion._d"

If the _doperation is in conjunction
with the defaultoperation, TRUE
will be returned if the union has a
default member that is active.

union
"$.(0) == 5"eq. "$.
('zero') == 5"

When the component refers to
a union, with one of the cases
defined as case 0: short
zero;, we use 0or 'zero'. The
result of the example is TRUEif
the union has a discriminator set
to 0and the value 5. If more than
one case is defined to be'zero',

1.5 Filters and the Constraint Language BNF

Ericsson AB. All Rights Reserved.: cosNotification | 11

$.('zero')accepts both; $.
(0)only returns TRUEif the
discriminator is set to 0. Leaving out
the identifier, i.e., $.(), refers to
the default value.

name-value pairs

"$.NameValueSeq('myID')
==
5"eq."$.NameValueSeq[1].name
== 'myID' and
$.NameValueSeq[1].value
== 5"

The Notification service makes
extensive use of name-value
pairssequences within structured
events, which allow us to via the
identifier nameaccess its value, as
shown in the example.

Table 5.1: Table 1: Type and Operator Examples

In the next section we will take a closer look at how it is possible to write constraints using different types of notation
etc.

Accessing Data In Events
To filter events, the supplied constraints must describe the contents of the events and desired values. We can, for
example, state that we are only interested in receiving events which are of type CommunicationsAlarm. To be able to
achieve this, the constraint must contain information that points out which fields to compare with. Figure one illustrates
a conceptual overview of a structured event. The exact definition is found in the CosNotification.idl file.

Figure 5.1: Figure 1: The structure of a structured event.

The Notification Service supports different constraint expressions notation:

• Fully scoped, e.g., "$.header.fixed_header.event_type.type_name == 'CommunicationsAlarm'"

• Short hand, e.g., "$type_name == 'CommunicationsAlarm'"

• Positional Notation, e.g., "$.0.0.0.1 == 'CommunicationsAlarm'"

1.5 Filters and the Constraint Language BNF

12 | Ericsson AB. All Rights Reserved.: cosNotification

Note:

Which notation to use is up to the user, however, the fully scoped may be easier to understand, but in some cases,
if received from an ORB that do not populate ID:s of named parts, the positional notation is the only option.

Note:

If a constraint, which access fields in a structured event structure, is supposed to handle unstructured events as
well, the CORBA::Any must contain the same type of members.

How to filter against the fixed header fields, is described in the table below.

Field Fully Scoped Constraint Short Hand Constraint

type_name
"$.header.fixed_header.event_type.type_name
== 'Type'"

"$type_name == 'Type'"

domain_name
"$.header.fixed_header.event_type.domain_name
== 'Domain'"

"$domain_name == 'Domain'"

event_name
"$.header.fixed_header.event_name
== 'Event'"

"$event_name == 'Event'"

Table 5.2: Table 2: Fixed Header Constraint Examples

If we are only interested in receiving events regarding 'Domain', 'Event' and 'Type', the constraint can look like
"$domain_name == 'Domain' and $event_name == 'Event' and $type_name == 'Type'".

The variable event header consists of a sequence of name-value pairs. One way to filter on these are to
use a constraint that looks like "($.header.variable_header[1].name == 'priority' and
$.header.variable_header[1].value > 0)". An easier way to accomplish the same result is to use a
constraint that treats the name-value pair as an associative array, i.e., when given a name the corresponding value is
returned. Hence, instead we can use "$.header.variable_header(priority) > 0".

Accessing the event body is done in the same way as for the event header fields. The user must, however, be aware
of, that if a run-time variable ($variable) is used data in the event header may take precedence. The order of
precedence is:

• Reserved, e.g., $curtime

• A simple-typed member of $.header.fixed_header.

• Properties in $.header.variable_header.

• Properties in $.filterable_data.

• If no match is found it is translated to $.variable.

Mapping Filters
Mapping Filters may only be associated with Consumer Administrators or Proxy Suppliers. The purpose of a Mapping
Filter is to override Quality of Service settings.

Initially, Mapping Filters are empty and will always return true. Hence, we must add constraints by using
'CosNotifyFilter_MappingFilter':add_mapping_constraints/2. If a constraint matches, the
associated value will be used instead of the related Quality of Service system settings.

1.6 Quality Of Service and Admin Properties

Ericsson AB. All Rights Reserved.: cosNotification | 13

As input, the second argument must be a sequence of:

#'CosNotifyFilter_MappingConstraintPair'{
 constraint_expression = #'CosNotifyFilter_ConstraintExp'{
 event_types = [#'CosNotification_EventType'{
 domain_name = string(),
 type_name = string()}],
 constraint_expr = string()},
 result_to_set = any()}

1.6 Quality Of Service and Admin Properties
1.6.1 Quality Of Service and Admin Properties
This chapter explains the allowed properties for CosNotification_QoSAdmin and
CosNotification_AdminPropertiesAdmin.

Quality Of Service
The cosNotification application supports the following QoS settings:

QoS Range Default

EventReliability BestEffort/Persistent BestEffort

ConnectionReliability BestEffort/Persistent BestEffort

Priority +/-32767 0

OrderPolicy
Any-, Fifo-, Priority- and Deadline-
Order

PriorityOrder

DiscardPolicy
RejectNewEvents, Any-, Fifo-,
Lifo-, Priority- and Deadline-Order

RejectNewEvents

MaximumBatchSize long() > 0 1

PacingInterval TimeBase::TimeT (see cosTime) 0

StartTimeSupported boolean false

StopTimeSupported boolean false

MaxEventsPerConsumer long() > 0 100

Timeout TimeBase::TimeT (see cosTime) No timeout

Table 6.1: Table 1: Supported QoS Settings

Comments on the table 'Supported QoS Settings':

EventReliability
To allow full Persistent EventReliability, every event must be stored in a stable storage which would create a
relatively huge overhead. Hence, only lightweight version of the Persistent QoS is supported. The configuration

1.6 Quality Of Service and Admin Properties

14 | Ericsson AB. All Rights Reserved.: cosNotification

parameters max_events, interval_events and timeout_events determine the behavior of this
setting.

ConnectionReliability
If this QoS is set to BestEffort and a client object returns anything other than ok to its associated Proxy, the
Proxy will discard all events and terminate. Using Persistent and anything other than ok is returned, events
will be dropped but the proxy will retry later when next delivery is due. A child may not have Persistent while
its parent has BestEffort QoS set, e.g., Proxy vs. Admin. If OBJECT_NOT_EXIST, NO_PERMISSION or
CosEventComm_Disconnected is thrown, the associated object will terminate even if this parameter is
set to Persistent.

Priority
This QoS will treat all events as if they have the Priority equal to current value, unless the event itself
contains a Priority setting, this event will be treated accordingly. Note: for this property to have any effect, the
DiscardPolicy and/or OrderPolicy must be set to PriorityOrder.

OrderPolicy
If set to PriorityOrder, events with the highest Priority will be delivered first. Deadline order will forward
events with shortest expiry time first. If two events have the same priority, they will be delivered in FIFO-
order.

DiscardPolicy
If set to PriorityOrder and MaxEventsPerConsumer limit is reached, events with the lowest Priority will be
discarded first. Deadline order will discard events with shortest expiry time first.

MaximumBatchSize
Only valid if the object is supposed to handle a sequence of structured events and determines the largest
amount of events that may be passed each time.

PacingInterval
Determines how long an object will wait before forwarding a structured event sequence of length equal to, or
less than MaximumBatchSize. If set to 0, which is the default behavior, no timeout is used and the events are
forwarded when the MaximumBatchSize is reached.

StartTimeSupported
If set to true events which contains the QoS Property StartTime (TimeBase::UtcT - absolute time) will not
be delivered until the StartTime value have been exceeded. See also the cosTime application.

StopTimeSupported
If set to true, events which contain the QoS Properties StopTime (TimeBase::UtcT - absolute time) or
Timeout (TimeBase::TimeT - relative time) will be discarded if the object has not been able to deliver the
event in time. See also the cosTime application.

MaxEventsPerConsumer
The maximum number of events the associated object may store before discarding events in the way described
by the DiscardPolicy.

Timeout
If this QoS property is not included in the event, and the Property StopTimeSupported equals true, this
setting will be applied if events cannot be delivered within its time limit.

Warning:

Several of the above QoS Properties can be changed during run-time but we strongly advice not to since, if a
relatively large amount of events are waiting for delivery, some of the QoS settings would require a total reorder
of the events. The QoS property ConnectioReliability may never be updated during run-time since it may
cause deadlock. Run-time, in this case, means activating the Channel by sending the first event.

Setting Quality Of Service
Assume we have a Consumer Admin object which we want to change the current Quality of Service. Typical usage:

1.7 cosNotification Examples

Ericsson AB. All Rights Reserved.: cosNotification | 15

QoSPersistent =
 [#'CosNotification_Property'
 {name='CosNotification':'ConnectionReliability'(),
 value=any:create(orber_tc:short(),
 'CosNotification':'Persistent'())}],
'CosNotification_QoSAdmin':set_qos(Ch, QoSPersistent),

If it is not possible to set the requested QoS the UnsupportedQoS exception is raised, which includes a sequence
of PropertyError's describing which QoS, possible range and why is not allowed. The error codes are:

• UNSUPPORTED_PROPERTY - QoS not supported for this type of target object.

• UNAVAILABLE_PROPERTY - due to current QoS settings the given property is not allowed.

• UNSUPPORTED_VALUE - property value out of range; valid range is returned.

• UNAVAILABLE_VALUE - due to current QoS settings the given value is not allowed; valid range is returned.

• BAD_PROPERTY - unrecognized property.

• BAD_TYPE - type of supplied property is incorrect.

• BAD_VALUE - illegal value.

The CosNotification_QoSAdmin interface also supports an operation called validate_qos/2. The purpose of this
operations is to check if a QoS setting is supported by the target object and if so, the operation returns additional
properties which could be optionally added as well.

Admin Properties
The cosNotification application supports the following Admin Properties:

Property Range Default

MaxQueueLength 0 0

MaxConsumers long() >= 0 0

MaxSuppliers long() >= 0 0

Table 6.2: Table 2: Supported Admin Properties

According to the OMG specification the default values for Admin Properties is supposed to be 0, which means that
no limit applies to these properties.

Note:

Admin Properties can only be set on a Channel Object level, i.e., they will not have an impact on any Admin or
Proxy Objects. Currently, setting the Admin Property MaxQueueLength have no effect since we cannot discard
events accordingly to the Quality of Service Property DiscardPolicy.

1.7 cosNotification Examples
1.7.1 A Tutorial on How to Create a Simple Service
Interface Design
To use the cosNotification application clients must be implemented. There are twelve types of clients:

1.7 cosNotification Examples

16 | Ericsson AB. All Rights Reserved.: cosNotification

• Structured Push Consumer

• Sequence Push Consumer

• Any Push Consumer

• Structured Pull Consumer

• Sequence Pull Consumer

• Any Pull Consumer

• Structured Push Supplier

• Sequence Push Supplier

• Any Push Supplier

• Structured Pull Supplier

• Sequence Pull Supplier

• Any Pull Supplier

The interfaces for these participants are defined in CosNotification.idl and CosNotifyComm.idl.

Generating a Client Interface
We start by creating an interface which inherits from the correct interface, e.g.,
CosNotifyComm::SequencePushConsumer. Hence, we must also implement all operations defined in the
SequencePushConsumer interface. The IDL-file could look like:

#ifndef _MYCLIENT_IDL
#define _MYCLIENT_IDL
#include <CosNotification.idl>
#include <CosNotifyComm.idl>

module myClientImpl {

 interface ownInterface:CosNotifyComm::SequencePushConsumer {

 void ownFunctions(in any NeededArguments)
 raises(Systemexceptions,OwnExceptions);

 };
};

#endif

Run the IDL compiler on this file by calling the ic:gen/1 function. This will produce the API named
myClientImpl_ownInterface.erl. After generating the API stubs and the server skeletons it is
time to implement the servers and if no special options are sent to the IDl compiler the file name is
myClientImpl_ownInterface_impl.erl.

The callback module must contain the necessary functions inherited from CosNotification.idl and
CosNotifyComm.idl.

How to Run Everything
Below is a short transcript on how to run cosNotification.

1.7 cosNotification Examples

Ericsson AB. All Rights Reserved.: cosNotification | 17

%% Start Mnesia and Orber
mnesia:delete_schema([node()]),
mnesia:create_schema([node()]),
orber:install([node()]),
mnesia:start(),
orber:start(),

%% If cosEvent not installed before it is necessary to do it now.
cosEventApp:install(),

%% Install cosNotification in the IFR.
cosNotificationApp:install(30),

%% Register the application specific Client implementations
%% in the IFR.
'oe_myClientImpl':'oe_register'(),

%% Start the cosNotification application.
cosNotificationApp:start(),

%% Start a factory using the default configuration
ChFac = cosNotificationApp:start_factory(),
%% ... or use configuration parameters.
ChFac = cosNotificationApp:start_factory([]),

%% Create a new event channel. Note, if no QoS- anr/or Admin-properties
%% are supplied (i.e. empty list) the default settings are used.
{Ch, ChID} = 'CosNotifyChannelAdmin_EventChannelFactory':
 create_channel(ChFac, DefaultQoS, DefaultAdmin),

%% Retrieve a SupplierAdmin and a Consumer Admin.
{AdminSupplier, ASID}=
 'CosNotifyChannelAdmin_EventChannel':new_for_suppliers(Ch, 'OR_OP'),
{AdminConsumer, ACID}=
 'CosNotifyChannelAdmin_EventChannel':new_for_consumers(Ch,'OR_OP'),

%% Use the corresponding Admin object to get access to wanted Proxies

%% Create a Push Consumer Proxie, i.e., the Client Push Supplier will
%% push events to this Proxy.
{StructuredProxyPushConsumer,ID11}= 'CosNotifyChannelAdmin_SupplierAdmin':
 obtain_notification_push_consumer(AdminSupplier, 'STRUCTURED_EVENT')),

%% Create Push Suppliers Proxies, i.e., the Proxy will push events to the
%% registered Push Consumers.
{ProxyPushSupplier,I4D}='CosNotifyChannelAdmin_ConsumerAdmin':
 obtain_notification_push_supplier(AdminConsumer, 'ANY_EVENT'),
{StructuredProxyPushSupplier,ID5}='CosNotifyChannelAdmin_ConsumerAdmin':
 obtain_notification_push_supplier(AdminConsumer, 'STRUCTURED_EVENT'),
{SequenceProxyPushSupplier,ID6}='CosNotifyChannelAdmin_ConsumerAdmin':
 obtain_notification_push_supplier(AdminConsumer, 'SEQUENCE_EVENT'),

%% Create application Clients. We can, for example, start the Clients
%% our selves or look them up in the naming service. This is application
%% specific.
SupplierClient = ...
ConsumerClient1 = ...
ConsumerClient2 = ...
ConsumerClient3 = ...

%% Connect each Client to corresponding Proxy.
'CosNotifyChannelAdmin_StructuredProxyPushConsumer':
 connect_structured_push_supplier(StructuredProxyPushConsumer, SupplierClient),
'CosNotifyChannelAdmin_ProxyPushSupplier':
 connect_any_push_consumer(ProxyPushSupplier, ConsumerClient1),

1.7 cosNotification Examples

18 | Ericsson AB. All Rights Reserved.: cosNotification

'CosNotifyChannelAdmin_StructuredProxyPushSupplier':
 connect_structured_push_consumer(StructuredProxyPushSupplier, ConsumerClient2),
'CosNotifyChannelAdmin_SequenceProxyPushSupplier':
 connect_sequence_push_consumer(SequenceProxyPushSupplier, ConsumerClient3),

The example above, exemplifies a notification system where the SupplierClient in some way generates event and
pushes them to the proxy. The push supplier proxies will eventually push the events to each ConsumerClient.

1.7 cosNotification Examples

Ericsson AB. All Rights Reserved.: cosNotification | 19

2 Reference Manual

The cosNotification application is an Erlang implementation of the OMG CORBA Notification Service.

cosNotificationApp

20 | Ericsson AB. All Rights Reserved.: cosNotification

cosNotificationApp
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module contains the functions for starting and stopping the application.

Exports

install() -> Return
Types:

Return = ok | {'EXCEPTION', E}

This operation installs the cosNotification application.

install(Seconds) -> Return
Types:

Return = ok | {'EXCEPTION', E}

This operation installs the cosNotification application using Seconds delay between each block, currently 6, of IFR-
registrations. This approach spreads the IFR database access over a period of time to allow other applications to run
smother.

install_event() -> Return
Types:

Return = ok | {'EXCEPTION', E}

This operation, which may only be used if it is impossible to upgrade to cosEvent-2.0 or later, installs the necessary
cosEvent interfaces. If cosEvent-2.0 is available, use cosEventApp:install() instead.

install_event(Seconds) -> Return
Types:

Return = ok | {'EXCEPTION', E}

This operation, which may only be used if it is impossible to upgrade to cosEvent-2.0 or later, installs the necessary
cosEvent interfaces using Seconds delay between each block of IFR-registrations. If cosEvent-2.0 is available, use
cosEventApp:install() instead.

uninstall() -> Return
Types:

Return = ok | {'EXCEPTION', E}

This operation uninstalls the cosNotification application.

uninstall(Seconds) -> Return
Types:

Return = ok | {'EXCEPTION', E}

cosNotificationApp

Ericsson AB. All Rights Reserved.: cosNotification | 21

This operation uninstalls the cosNotification application using Seconds delay between each block, currently 6, of
IFR-unregistrations. This approach spreads the IFR database access over a period of time to allow other applications
to run smother.

uninstall_event() -> Return
Types:

Return = ok | {'EXCEPTION', E}

This operation uninstalls the inherited cosEvent interfaces. If cosEvent is in use this function may not be used.
This function may only be used if cosNotificationApp:install_event/1/2 was used. If not, use
cosEventApp:uninstall() instead.

uninstall_event(Seconds) -> Return
Types:

Return = ok | {'EXCEPTION', E}

This operation uninstalls the inherited cosEvent interfaces, using Seconds delay between each block of
IFR-unregistrations. If cosEvent is in use this function may not be used. This function may only be used
if cosNotificationApp:install_event/1/2 was used. If not, use cosEventApp:uninstall()
instead.

start() -> Return
Types:

Return = ok | {error, Reason}

This operation starts the cosNotification application.

stop() -> Return
Types:

Return = ok | {error, Reason}

This operation stops the cosNotification application.

start_global_factory() -> ChannelFactory
Types:

ChannelFactory = #objref

This operation creates a Event Channel Factory should be used for a multi-node Orber. The Factory is used to create
a new channel.

start_global_factory(Options) -> ChannelFactory
Types:

Options = [Option]

Option = {pullInterval, Seconds} | {filterOp, Op} | {gcTime, Seconds} |
{gcLimit, Anount} | {timeService, #objref}

ChannelFactory = #objref

This operation creates a Event Channel Factory and should be used for a multi-node Orber. The Factory is used to
create a new channel.

cosNotificationApp

22 | Ericsson AB. All Rights Reserved.: cosNotification

• {pullInterval, Seconds} - determine how often Proxy Pull Consumers will check for new events with
the client application. The default value is 20 seconds.

• {filterOp, OperationType} - determine which type of Administrator objects should be started, i.e.,
'OR_OP' or 'AND_OP'. The default value is 'OR_OP'.

• {timeService, TimeServiceObj | 'undefined'} - to be able to use Start and/or Stop QoS this
option must be used. See the function start_time_service/2 in the cosTime application. The default
value is 'undefined'.

• {filterOp, OperationType} - determine which type of Administrator objects should be started, i.e.,
'OR_OP' or 'AND_OP'. The default value is 'OR_OP'.

• {gcTime, Seconds} - this option determines how often, for example, proxies will garbage collect expired
events. The default value is 60.

• {gcLimit, Amount} - determines how many events will be stored before, for example, proxies will
garbage collect expired events. The default value is 50. This option is tightly coupled with the QoS property
MaxEventsPerConsumer, i.e., the gcLimit should be less than MaxEventsPerConsumer and greater
than 0.

start_factory() -> ChannelFactory
Types:

ChannelFactory = #objref

This operation creates a Event Channel Factory. The Factory is used to create a new channel.

start_factory(Options) -> ChannelFactory
Types:

Options = [Option]

Option = {pullInterval, Seconds} | {filterOp, Op} | {gcTime, Seconds} |
{gcLimit, Amount} | {timeService, #objref}

ChannelFactory = #objref

This operation creates a Event Channel Factory. The Factory is used to create a new channel.

stop_factory(ChannelFactory) -> Reply
Types:

ChannelFactory = #objref

Reply = ok | {'EXCEPTION', E}

This operation stop the target channel factory.

start_filter_factory() -> FilterFactory
Types:

FilterFactory = #objref

This operation creates a Filter Factory. The Factory is used to create a new Filter's and MappingFilter's.

stop_filter_factory(FilterFactory) -> Reply
Types:

FilterFactory = #objref

Reply = ok | {'EXCEPTION', E}

This operation stop the target filter factory.

cosNotificationApp

Ericsson AB. All Rights Reserved.: cosNotification | 23

create_structured_event(Domain, Type, Event, VariableHeader, FilterableBody,
BodyRemainder) -> Reply
Types:

Domain = string()

Type = string()

Event = string()

VariableHeader = [CosNotification::Property]

FilterableBody = [CosNotification::Property]

BodyRemainder = #any data-type

Reply = CosNotification::StructuredEvent | {'EXCEPTION', E}

An easy way to create a structured event is to use this function. Simple typechecks are performed and if one of the
arguments is not correct a 'BAD_PARAM' exception is thrown.

type_check() -> Reply
Types:

Reply = true | false

This operation returns the value of the configuration parameter type_check.

CosNotifyChannelAdmin_EventChannelFactory

24 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_EventChannelFactory
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

create_channel(ChannelFactory, InitialQoS, InitialAdmin) -> Return
Types:

ChannelFactory = #objref

InitialQoS = CosNotification::QoSProperties

InitialAdmin = CosNotification::AdminProperties

Return = {EventChannel, ChannelID}

EventChannel = #objref

ChannelID = long()

This operation creates a new event channel. Along with the channel reference an id is returned which can be used
when invoking other operations exported by this module. The Quality of Service argument supplied will be inherited
by objects created by the channel. For more information about QoS settings see the User's Guide.

If no QoS- and/or Admin-properties are supplied (i.e. empty list), the default settings will be used. For more
information, see the User's Guide.

get_all_channels(ChannelFactory) -> ChannelIDSeq
Types:

ChannelFactory = #objref

ChannelIDSeq = [long()]

This operation returns a id sequence of all channel's created by this ChannelFactory.

get_event_channel(ChannelFactory, ChannelID) -> Return
Types:

ChannelFactory = #objref

ChannelID = long()

Retrurn = EventChannel | {'EXCEPTION',
#'CosNotifyChannelAdmin_ChannelNotFound'{}}

EventChannel = #objref

This operation returns the EventChannel associated with the given id. If no channel is associated with the id, i.e., never
existed or have been terminated, an exception is raised.

CosNotifyChannelAdmin_EventChannel

Ericsson AB. All Rights Reserved.: cosNotification | 25

CosNotifyChannelAdmin_EventChannel
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotification_QoSAdmin

• CosNotification_AdminPropertiesAdmin

Exports

_get_MyFactory(Channel) -> ChannelFactory
Types:

Channel = #objref

ChannelFactory = #objref

This readonly attribute maintains the reference of the event channel factory that created the target channel.

_get_default_consumer_admin(Channel) -> ConsumerAdmin
Types:

Channel = #objref

ConsumerAdmin = #objref

This is a readonly attribute which maintains a reference to a default ConsumerAdmin object associated with the
target object.

_get_default_supplier_admin(Channel) -> SupplierAdmin
Types:

Channel = #objref

SupplierAdmin = #objref

This is a readonly attribute which maintains a reference to a default SupplierAdmin object associated with the
target object.

_get_default_filter_factory(Channel) -> FilterFactory
Types:

Channel = #objref

FilterFactory = #objref

The default FilterFactory associated with the target channel is maintained by this readonly attribute.

new_for_consumers(Channel, OpType) -> Return
Types:

Channel = #objref

OpType = 'AND_OP' | 'OR_OP'

Return = {ConsumerAdmin, AdminID}

CosNotifyChannelAdmin_EventChannel

26 | Ericsson AB. All Rights Reserved.: cosNotification

ConsumerAdmin = #objref

AdminID = long()

This operation creates a new instance of a ConsumerAdmin and supplies an Id which may be used when invoking
other operations exported by this module. The returned object will inherit the Quality of Service properties of the
target channel.

for_consumers(Channel) -> ConsumerAdmin
Types:

Channel = #objref

ConsumerAdmin = #objref

A new new instance of a ConsumerAdmin object is created but no Id is returned. The returned object's operation
type, i.e., 'AND_OP' or 'OR_OP', will be set to the value of the configuration parameter filterOp. The target
object's Quality of Service properties will be inherited by the returned ConsumerAdmin.

new_for_suppliers(Channel, OpType) -> Return
Types:

Channel = #objref

OpType = 'AND_OP' | 'OR_OP'

Return = {SupplierAdmin, AdminID}

SupplierAdmin = #objref

AdminID = long()

Enables us to create a new instance of a SupplierAdmin. An Id, which may be used when invoking other operations
exported by this module, is also returned. The current Quality of Service settings associated with the target object will
be inherited by the SupplierAdmin.

for_suppliers(Channel) -> SupplierAdmin
Types:

Channel = #objref

SupplierAdmin = #objref

To create a new SupplierAdmin with the target object's current Quality of Service settings we can use this function.
The returned object's operation type ('AND_OP' or 'OR_OP') will be determined by the configuration variable
filterOp.

get_consumeradmin(Channel, AdminID) -> ConsumerAdmin
Types:

Channel = #objref

AdminID = long()

ConsumerAdmin = #objref | {'EXCEPTION',
#'CosNotifyChannelAdmin_AdminNotFound'{}}

If the given Id is associated with a ConsumerAdmin the object reference is returned. If such association never existed
or the ConsumerAdmin have terminated an exception is raised.

get_supplieradmin(Channel, AdminID) -> SupplierAdmin
Types:

Channel = #objref

CosNotifyChannelAdmin_EventChannel

Ericsson AB. All Rights Reserved.: cosNotification | 27

AdminID = long()

SupplierAdmin = #objref | {'EXCEPTION',
#'CosNotifyChannelAdmin_AdminNotFound'{}}

Equal to the operation get_consumeradmin/2 but a reference to a SupplierAdmin is returned.

get_all_consumeradmins(Channel) -> Reply
Types:

Channel = #objref

Reply = [AdminID]

AdminID = long()

To get access to all ConsumerAdmin Id's created by the target object, and still alive, this operation could be invoked.

get_all_supplieradmins(Channel) -> Reply
Types:

Channel = #objref

Reply = [AdminID]

AdminID = long()

Equal to the operation get_all_consumeradmins/1 but returns a list of all SupplierAdmin object ID's.

destroy(Channel) -> ok
Types:

Channel = #objref

The destroy operation will terminate the target channel and all associated Admin objects.

CosNotification

28 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotification
Erlang module

To get access to all definitions include necessary hrl files by using:
-include_lib("cosNotification/include/*.hrl").

Exports

'EventReliability'() -> string()
This function returns the EventReliability QoS identifier

'BestEffort'() -> short()
This function returns the BestEffort QoS value.

'Persistent'() -> short()
This function returns the Persistent QoS value.

'ConnectionReliability'() -> string()
This function returns the ConnectionReliability QoS identifier.

'Priority'() -> string()
This function returns the Priority QoS identifier.

'LowestPriority'() -> short()
This function returns the LowestPriority QoS value.

'HighestPriority'() -> short()
This function returns the HighestPriority QoS value.

'DefaultPriority'() -> short()
This function returns the DefaultPriority QoS value.

'StartTime'() -> string()
This function returns the StartTime QoS identifier.

'StopTime'() -> string()
This function returns the StopTime QoS identifier.

'Timeout'() -> string()
This function returns the Timeout QoS identifier.

CosNotification

Ericsson AB. All Rights Reserved.: cosNotification | 29

'OrderPolicy'() -> string()
This function returns the OrderPolicy QoS identifier.

'AnyOrder'() -> short()
This function returns the AnyOrder QoS value.

'FifoOrder'() -> short()
This function returns the FifoOrder QoS value.

'PriorityOrder'() -> short()
This function returns the PriorityOrder QoS value.

'DeadlineOrder'() -> short()
This function returns the DeadlineOrder QoS value.

'DiscardPolicy'() -> string()
This function returns the DiscardPolicy QoS identifier.

'LifoOrder'() -> short()
This function returns the LifoOrder QoS value.

'RejectNewEvents'() -> short()
This function returns the RejectNewEvents QoS value.

'MaximumBatchSize'() -> string()
This function returns the MaximumBatchSize QoS identifier.

'PacingInterval'() -> string()
This function returns the PacingInterval QoS identifier.

'StartTimeSupported'() -> string()
This function returns the StartTimeSupported QoS identifier.

'StopTimeSupported'() -> string()
This function returns the StopTimeSupported QoS identifier.

'MaxEventsPerConsumer'() -> string()
This function returns the MaxEventsPerConsumer QoS identifier.

'MaxQueueLength'() -> string()
This function returns the MaxQueueLength Admin identifier.

CosNotification

30 | Ericsson AB. All Rights Reserved.: cosNotification

'MaxConsumers'() -> string()
This function returns the MaxConsumers Admin identifier.

'MaxSuppliers'() -> string()
This function returns the MaxSuppliers Admin identifier.

CosNotification_QoSAdmin

Ericsson AB. All Rights Reserved.: cosNotification | 31

CosNotification_QoSAdmin
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit this interface, export functions described in this module.

Exports

get_qos(Object) -> Reply
Types:

Object = #objref

Reply = [QoSProperty]

QoSProperty = #'CosNotification_Property'{name, value}

name = string()

value = #any

This operation returns a list of name-value pairs which encapsulates the current QoS settings for the target object.

set_qos(Object, QoS) -> Reply
Types:

Object = #objref

QoS = [QoSProperty]

QoSProperty = #'CosNotification_Property'{name, value}

name = string()

value = #any

Reply = ok | {'EXCEPTION', #'CosNotification_UnsupportedQoS'{qos_err}}

qos_err = PropertyErrorSeq

PropertyErrorSeq = [PropertyError]

PropertyError = #'CosNotification_PropertyError'{code, name,
available_range}

code = 'UNSUPPORTED_PROPERTY' | 'UNAVAILABLE_PROPERTY' |
'UNSUPPORTED_VALUE' | 'UNAVAILABLE_VALUE' | 'BAD_PROPERTY' | 'BAD_TYPE' |
'BAD_VALUE'

name = string()

available_range = PropertyRange

PropertyRange = #CosNotification_PropertyRange{low_val, high_val}

low_val = high_val = #any

To alter the current QoS settings for the target object this function must be used. If it is not possible to set the requested
QoS the UnsupportedQoS exception is raised, which includes a sequence of PropertyError's describing which
QoS, possible range and why is not allowed.

validate_qos(Object, QoS) -> Reply
Types:

CosNotification_QoSAdmin

32 | Ericsson AB. All Rights Reserved.: cosNotification

Object = #objref

QoS = [QoSProperty]

QoSProperty = #'Property'{name, value}

name = string()

value = #any

Reply = {ok, NamedPropertyRangeSeq} | {'EXCEPTION',
CosNotification_UnsupportedQoS{}}

NamedPropertyRangeSeq = [NamedPropertyRange]

NamedPropertyRange = #CosNotification_NamedPropertyRange{name, range}

name = string()

range = #CosNotification_PropertyRange{low_val, high_val}

low_val = #any

high_val = #any

The purpose of this operations is to check if a QoS setting is supported by the target object and if so, the operation
returns additional properties which could be optionally added as well.

CosNotification_AdminPropertiesAdmin

Ericsson AB. All Rights Reserved.: cosNotification | 33

CosNotification_AdminPropertiesAdmin
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit this interface, export functions described in this module.

Exports

get_admin(Object) -> AdminProperties
Types:

Object = #objref

AdminProperties = [AdminProperty]

AdminProperty = #'CosNotification_Property'{name, value}

name = string()

value = #any

This operation returns sequence of name-value pairs which encapsulates the current administrative properties of the
target object.

set_admin(Object, AdminProperties) -> Reply
Types:

Object = #objref

AdminProperties = [AdminProperty]

AdminProperty = #'CosNotification_Property'{name, value}

name = string()

value = #any

Reply = ok | {'EXCEPTION', CosNotification_UnsupportedAdmin}

As input, this operation accepts a sequence of name-value pairs encapsulating the desired administrative settings for
the target object. If it is not possible to set the given properties the exception UnsupportedAdmin will be raised.

CosNotifyChannelAdmin_ConsumerAdmin

34 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ConsumerAdmin
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotification_QoSAdmin

• CosNotifyComm_NotifySubscribe

• CosNotifyFilter_FilterAdmin

Exports

_get_MyID(ConsumerAdmin) -> AdminID
Types:

ConsumerAdmin = #objref

AdminID = long()

The ID returned by the creating channel is equal to the value encapsulated by this readonly attribute.

_get_MyChannel(ConsumerAdmin) -> Channel
Types:

ConsumerAdmin = #objref

Channel = #objref

The creating channel's reference is maintained by this readonly attribute.

_get_MyOperator(ConsumerAdmin) -> OpType
Types:

ConsumerAdmin = #objref

OpType = 'AND_OP' | 'OR_OP'

When ConsumerAdmin's are created an operation type, i.e., 'AND_OP' or 'OR_OP', is supplied, which
determines the semantics used by the target object concerning evaluation against any associated Filter objects.

_get_priority_filter(ConsumerAdmin) -> MappingFilter
Types:

ConsumerAdmin = MappingFilter = #objref

If set, this operation returns the associated priority MappingFilter, otherwise a NIL object reference is returned.

_set_priority_filter(ConsumerAdmin, MappingFilter) -> ok
Types:

ConsumerAdmin = MappingFilter = #objref

To associate a priority MappingFilter with the target object this operation must be used.

CosNotifyChannelAdmin_ConsumerAdmin

Ericsson AB. All Rights Reserved.: cosNotification | 35

_get_lifetime_filter(ConsumerAdmin) -> MappingFilter
Types:

ConsumerAdmin = MappingFilter = #objref

Unless a lifetime MappingFilter have been associated with the target object a NIL object reference is returned
by this operation.

_set_lifetime_filter(ConsumerAdmin, MappingFilter) -> ok
Types:

ConsumerAdmin = MappingFilter = #objref

This operation associate a lifetime MappingFilter with the target object.

_get_pull_suppliers(ConsumerAdmin) -> ProxyIDSeq
Types:

ConsumerAdmin = #objref

ProxyIDSeq = [ProxyID]

ProxyID = long()

This readonly attribute maintains the Id's for all PullProxies created by the target object and still alive.

_get_push_suppliers(ConsumerAdmin) -> ProxyIDSeq
Types:

ConsumerAdmin = #objref

ProxyIDSeq = [ProxyID]

ProxyID = long()

This attribute is similar to the _get_pull_suppliers attribute but maintains the Id's for all PushProxies
created by the target object and still alive.

get_proxy_supplier(ConsumerAdmin, ProxyID) -> Reply
Types:

ConsumerAdmin = #objref

ProxyID = long()

Reply = Proxy | {'EXCEPTION', #'CosNotifyChannelAdmin_ProxyNotFound'{}}

Proxy = #objref

If a proxy with the given Id exists the reference to the object is returned, but if the object have terminated, or an
incorrect Id is supplied, an exception is raised.

obtain_notification_pull_supplier(ConsumerAdmin, ConsumerType) -> Reply
Types:

ConsumerAdmin = #objref

ConsumerType = 'ANY_EVENT' | 'STRUCTURED_EVENT' | 'SEQUENCE_EVENT'

Reply = {Proxy, ProxyID}

Proxy = #objref

ProxyID = long()

CosNotifyChannelAdmin_ConsumerAdmin

36 | Ericsson AB. All Rights Reserved.: cosNotification

Determined by the parameter ConsumerType, a proxy which will accept events of the defined type is created. Along
with the object reference an Id is returned.

obtain_pull_supplier(ConsumerAdmin) -> Proxy
Types:

ConsumerAdmin = #objref

Proxy = #objref

This operation creates a new proxy which accepts #any{} events.

obtain_notification_push_supplier(ConsumerAdmin, ConsumerType) -> Reply
Types:

ConsumerAdmin = #objref

ConsumerType = 'ANY_EVENT' | 'STRUCTURED_EVENT' | 'SEQUENCE_EVENT'

Reply = {Proxy, ProxyID}

Proxy = #objref

ProxyID = long()

A proxy which accepts events of the type described by the parameter ConsumerType is created by this operation.
A unique Id is returned as an out parameter.

obtain_push_supplier(ConsumerAdmin) -> Proxy
Types:

ConsumerAdmin = #objref

Proxy = #objref

The object created by this function is a proxy which accepts #any{} events.

destroy(ConsumerAdmin) -> ok
Types:

ConsumerAdmin = #objref

To terminate the target object this operation should be used. The associated Channel will be notified.

CosNotifyChannelAdmin_SupplierAdmin

Ericsson AB. All Rights Reserved.: cosNotification | 37

CosNotifyChannelAdmin_SupplierAdmin
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotification_QoSAdmin

• CosNotifyComm_NotifyPublish

• CosNotifyFilter_FilterAdmin

Exports

_get_MyID(SupplierAdmin) -> AdminID
Types:

SupplierAdmin = #objref

AdminID = long()

When a SupplierAdmin object is created it is given a unique Id by the creating channel. This readonly attribute
maintains this Id.

_get_MyChannel(SupplierAdmin) -> Channel
Types:

SupplierAdmin = #objref

Channel = #objref

The creating channel's reference is maintained by this readonly attribute.

_get_MyOperator(SupplierAdmin) -> OpType
Types:

SupplierAdmin = #objref

OpType = 'AND_OP' | 'OR_OP'

The Operation Type, which determines the semantics the target object will use for any associated Filters, is
maintained by this readonly attribute.

_get_pull_consumers(SupplierAdmin) -> ProxyIDSeq
Types:

SupplierAdmin = #objref

ProxyIDSeq = [ProxyID]

ProxyID = long()

A sequence of all associated PullProxy Id's is maintained by this readonly attribute.

_get_push_consumers(SupplierAdmin) -> ProxyIDSeq
Types:

SupplierAdmin = #objref

CosNotifyChannelAdmin_SupplierAdmin

38 | Ericsson AB. All Rights Reserved.: cosNotification

ProxyIDSeq = [ProxyID]

ProxyID = long()

This operation returns all PushProxy Id's created by the target object.

get_proxy_consumer(SupplierAdmin, ProxyID) -> Reply
Types:

SupplierAdmin = #objref

ProxyID = long()

Reply = Proxy | {'EXCEPTION', #'CosNotifyChannelAdmin_ProxyNotFound'{}}

Proxy = #objref

The Proxy which corresponds to the given Id is returned by this operation.

obtain_notification_pull_consumer(SupplierAdmin, SupplierType) -> Reply
Types:

SupplierAdmin = #objref

SupplierType = 'ANY_EVENT' | 'STRUCTURED_EVENT' | 'SEQUENCE_EVENT'

Reply = {Proxy, ProxyID}

Proxy = #objref

ProxyID = long()

This operation creates a new proxy and returns its object reference along with its ID. The SupplierType parameter
determines the event type accepted by the proxy.

obtain_pull_consumer(SupplierAdmin) -> Proxy
Types:

SupplierAdmin = #objref

Proxy = #objref

A proxy which accepts #any{} events is created by this operation.

obtain_notification_push_consumer(SupplierAdmin, SupplierType) -> Reply
Types:

SupplierAdmin = #objref

SupplierType = 'ANY_EVENT' | 'STRUCTURED_EVENT' | 'SEQUENCE_EVENT'

Reply = {Proxy, ProxyID}

Proxy = #objref

ProxyID = long()

Determined by the SupplierType parameter a compliant proxy is created and its object reference along with its
Id is returned by this operation.

obtain_push_consumer(SupplierAdmin) -> Proxy
Types:

SupplierAdmin = #objref

Proxy = #objref

A proxy which accepts #any{} events is created by this operation.

CosNotifyChannelAdmin_SupplierAdmin

Ericsson AB. All Rights Reserved.: cosNotification | 39

destroy(SupplierAdmin) -> ok
Types:

SupplierAdmin = #objref

This operation terminates the SupplierAdmin object and notifies the creating channel that the target object no longer
is active.

CosNotifyComm_NotifyPublish

40 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyComm_NotifyPublish
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit this interface, export functions described in this module.

Exports

offer_change(Object, Added, Removed) -> Reply
Types:

Object = #objref

Added = Removed = EventTypeSeq

EventTypeSeq = [type]

Reply = ok | {'EXCEPTION', CosNotifyComm_InvalidEventType{type}}

type = #'CosNotification_EventType'{domain_name, type_name}

domain_name = type_name = string()

Objects supporting this interface can be informed by supplier objects about which type of events that will be delivered
in the future. This operation accepts two parameters describing new and old event types respectively. If any of the
supplied event type names is syntactically incorrect an exception is raised.

CosNotifyComm_NotifySubscribe

Ericsson AB. All Rights Reserved.: cosNotification | 41

CosNotifyComm_NotifySubscribe
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit this interface, export functions described in this module.

Exports

subscription_change(Object, Added, Removed) -> Reply
Types:

Object = #objref

Added = Removed = EventTypeSeq

EventTypeSeq = [type]

Reply = ok | {'EXCEPTION', CosNotifyComm_InvalidEventType{type}}

type = #'CosNotification_EventType'{domain_name, type_name}

domain_name = type_name = string()

This operation takes as input two sequences of event type names specifying events the client will and will not accept
in the future respectively.

CosNotifyFilter_FilterAdmin

42 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_FilterAdmin
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit this interface, export functions described in this module.

Exports

add_filter(Object, Filter) -> FilterID
Types:

Object = #objref

Filter = #objref

FilterID = long()

This operation connects a new Filter to the target object. This Filter will, together with other associated
Filters, be used to select events to forward. A unique Id is returned and should be used if we no longer want to
consult the given Filter.

remove_filter(Object, FilterID) -> ok
Types:

Object = #objref

FilterID = long()

If a certain Filter no longer should be associated with the target object this operation must be used. Events will no
longer be tested against the Filter associated with the given Id.

get_filter(Object, FilterID) -> Reply
Types:

Object = #objref

FilterID = long()

Reply = Filter | {'EXCEPTION', #'CosNotifyFilter_FilterNotFound'{}}

Filter = #objref

If the target object is associated with a Filter matching the given Id the reference will be returned. If no such
Filter is known by the target object an exception is raised.

get_all_filters(Object) -> FilterIDSeq
Types:

Object = #objref

FilterIDSeq = [FilterID]

FilterID = long()

Id's for all Filter objects associated with the target object is returned by this operation.

remove_all_filters(Object) -> ok
Types:

CosNotifyFilter_FilterAdmin

Ericsson AB. All Rights Reserved.: cosNotification | 43

Object = #objref

If we want to remove all Filters associated with the target object we can use this function.

CosNotifyFilter_FilterFactory

44 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_FilterFactory
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

create_filter(FilterFactory, Grammar) -> Reply
Types:

FilterFactory = #objref

Grammar = string()

Reply = Filter | {'EXCEPTION', #'CosNotifyFilter_InvalidGrammar'{}}

Filter = #objref

This operation creates a new Filter object, under the condition that Grammar given is supported. Currently, only
"EXTENDED_TCL" is supported.

create_mapping_filter(FilterFactory, Grammar) -> Reply
Types:

FilterFactory = #objref

Grammar = string()

Reply = MappingFilter | {'EXCEPTION', #'CosNotifyFilter_InvalidGrammar'{}}

Filter = #objref

This operation creates a new MappingFilter object, under the condition that Grammar given is supported. Currently,
only "EXTENDED_TCL" is supported.

CosNotifyFilter_Filter

Ericsson AB. All Rights Reserved.: cosNotification | 45

CosNotifyFilter_Filter
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

_get_constraint_grammar(Filter) -> Grammar
Types:

Filter = #objref

Grammar = string()

This operation returns which type of Grammar the Filter uses. Currently, only "EXTENDED_TCL" is supported.

add_constraints(Filter, ConstraintExpSeq) -> Reply
Types:

Filter = #objref

ConstraintExpSeq = [Constraint]

ConstraintExp = #'CosNotifyFilter_ConstraintExp'{event_types,
constraint_expr}

event_types = #'CosNotification_EventTypeSeq'{}

constraint_expr = string()

Reply = ConstraintInfoSeq | {'EXCEPTION',
#'CosNotifyFilter_InvalidConstraint'{constr}}

constr = ConstraintExp

ConstraintInfoSeq = [ConstraintInfo]

ConstraintInfo = #'CosNotifyFilter_ConstraintInfo'{constraint_expression,
constraint_id}

constraint_expression = ConstraintExp

constraint_id = long()

Initially, Filters do not contain any constraints, hence, all events will be forwarded. The add_constraints/2
operation allow us to add constraints to the target object.

modify_constraints(Filter, ConstraintIDSeq, ConstraintInfoSeq) -> Reply
Types:

Filter = #objref

ConstraintIDSeq = [ConstraintID]

ConstraintID = long()

ConstraintInfoSeq = [ConstraintInfo]

ConstraintInfo = #'CosNotifyFilter_ConstraintInfo'{constraint_expression,
constraint_id}

constraint_expression = ConstraintExp

constraint_id = long()

CosNotifyFilter_Filter

46 | Ericsson AB. All Rights Reserved.: cosNotification

Reply = ok | {'EXCEPTION', #'CosNotifyFilter_InvalidConstraint'{constr}} |
{'EXCEPTION', #'CosNotifyFilter_ConstraintNotFound'{id}}

constr = ConstraintExp

id = long()

ConstraintExp = #'CosNotifyFilter_ConstraintExp'{event_types,
constraint_expr}

event_types = #'CosNotification_EventTypeSeq'{}

constraint_expr = string()

This operation is invoked by a client in order to modify the constraints associated with the target object. The constraints
related to the Id's in the parameter sequence ConstraintIDSeq will, if all values are valid, be deleted. The
ConstraintInfoSeq parameter contains of Id-Expression pairs and a constraint matching one of the unique Id's
will, if all input values are correct, be updated. If the parameters contain incorrect data en exception will be raised.

get_constraints(Filter, ConstraintIDSeq) -> Reply
Types:

Filter = #objref

ConstraintIDSeq = [ConstraintID]

ConstraintID = long()

Reply = ConstraintInfoSeq | {'EXCEPTION',
#'CosNotifyFilter_ConstraintNotFound'{id}}

ConstraintInfoSeq = [ConstraintInfo]

ConstraintInfo = #'CosNotifyFilter_ConstraintInfo'{constraint_expression,
constraint_id}

constraint_expression = ConstraintExp

constraint_id = id = long()

This operation return a sequence of ConstraintInfo's, related to the given ConstraintID's, associated with the target
object.

get_all_constraints(Filter) -> ConstraintInfoSeq
Types:

Filter = #objref

ConstraintInfoSeq = [ConstraintInfo]

ConstraintInfo = #'CosNotifyFilter_ConstraintInfo'{constraint_expression,
constraint_id}

constraint_expression = ConstraintExp

constraint_id = long()

All constraints, and their unique Id, associated with the target object will be returned by this operation.

remove_all_constraints(Filter) -> ok
Types:

Filter = #objref

All constraints associated with the target object are removed by this operation and, since the the target object no longer
contain any constraints, true will always be the result of any match operation.

CosNotifyFilter_Filter

Ericsson AB. All Rights Reserved.: cosNotification | 47

destroy(Filter) -> ok
Types:

Filter = #objref

This operation terminates the target object.

match(Filter, Event) -> Reply
Types:

Filter = #objref

Event = #any

Reply = boolean() | {'EXCEPTION',
#'CosNotifyFilter_UnsupportedFilterableData'{}}

This operation accepts an #any{} event and returns true if it satisfies at least one constraint. If the event contains
data of the wrong type, e.g., should be a string() but in fact i a short(), an exception is raised.

match_structured(Filter, Event) -> Reply
Types:

Filter = #objref

Event = #'CosNotification_StructuredEvent'{}

Reply = boolean() | {'EXCEPTION',
#'CosNotifyFilter_UnsupportedFilterableData'{}}

This operation is similar to the match operation but accepts structured events instead.

attach_callback(Filter, NotifySubscribe) -> CallbackID
Types:

Filter = #objref

NotifySubscribe = #objref

CallbackID = long()

This operation connects a NotifySubscribe object, which should be informed when the target object's constraints are
updated. A unique Id is returned which must be stored if we ever want to detach the callback object in the future.

detach_callback(Filter, CallbackID) -> Reply
Types:

Filter = #objref

CallbackID = long()

Reply = ok | {'EXCEPTION', #'CosNotifyFilter_CallbackNotFound'{}}

If the target object has an associated callback that matches the supplied Id it will be removed and longer informed of
any updates. If no object with a matching Id is found an exception is raised.

get_callbacks(Filter) -> CallbackIDSeq
Types:

Filter = #objref

CallbackIDSeq = [CallbackID]

CallbackID = long()

CosNotifyFilter_Filter

48 | Ericsson AB. All Rights Reserved.: cosNotification

This operation returns a sequence of all connected NotifySubscribe object Id's. If no callbacks are associated with the
target object the list will be empty.

CosNotifyFilter_MappingFilter

Ericsson AB. All Rights Reserved.: cosNotification | 49

CosNotifyFilter_MappingFilter
Erlang module

The main purpose of this module is to match events against associated constraints and return the value for the first
constraint that returns true for the given event. If all constraints return false the default value will be returned.

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

_get_constraint_grammar(MappingFilter) -> Grammar
Types:

MappingFilter = #objref

Grammar = string()

This operation returns which type of Grammar the MappingFilter uses. Currently, only "EXTENDED_TCL" is
supported.

_get_value_type(MappingFilter) -> CORBA::TypeCode
Types:

MappingFilter = #objref

This readonly attribute maintains the CORBA::TypeCode of the default value associated with the target object.

_get_default_value(MappingFilter) -> #any
Types:

MappingFilter = #objref

This readonly attribute maintains the #any{} default value associated with the target object.

add_mapping_constraints(MappingFilter, MappingConstraintPairSeq) -> Reply
Types:

MappingFilter = #objref

MappingConstraintPairSeq = [MappingConstraintPair]

MappingConstraintPair =
#'CosNotifyFilter_MappingConstraintPair'{constraint_expression,
result_to_set}

constraint_expression = #'CosNotifyFilter_ConstraintExp'{event_types,
constraint_expr}

event_types = #'CosNotification_EventTypeSeq'{}

constraint_expr = string()

result_to_set = #any

Reply = MappingConstraintInfoSeq | {'EXCEPTION',
#'CosNotifyFilter_InvalidConstraint'{constr}} | {'EXCEPTION',
#'CosNotifyFilter_InvalidValue'{constr, value}}

constr = ConstraintExp

CosNotifyFilter_MappingFilter

50 | Ericsson AB. All Rights Reserved.: cosNotification

ConstraintExp = #'CosNotifyFilter_ConstraintExp'{event_types,
constraint_expr}

event_types = #'CosNotification_EventTypeSeq'{}

constraint_expr = string()

MappingConstraintInfoSeq = [MappingConstraintInfo]

MappingConstraintInfo =
#'CosNotifyFilter_MappingConstraintInfo'{constraint_expression,
constraint_id, value}

constraint_expression = ConstraintExp

constraint_id = long()

value = #any

This operation add new mapping constraints, which will be used when trying to override Quality of Service settings
defined in the given event. If a constraint return true the associated value will be returned, otherwise the default value.

modify_constraints(MappingFilter, ConstraintIDSeq, MappingConstraintInfoSeq)
-> Reply
Types:

MappingFilter = #objref

ConstraintIDSeq = [ConstraintID]

ConstraintID = long()

MappingConstraintInfoSeq = [MappingConstraintInfo]

MappingConstraintInfo =
#'CosNotifyFilter_MappingConstraintInfo'{constraint_expression,
constraint_id, value}

constraint_expression = ConstraintExp

constraint_id = long()

value = #any

ConstraintInfoSeq = [ConstraintInfo]

ConstraintInfo = #'CosNotifyFilter_ConstraintInfo'{constraint_expression,
constraint_id}

constraint_expression = ConstraintExp

constraint_id = long()

Reply = ok | {'EXCEPTION', #'CosNotifyFilter_InvalidConstraint'{constr}}
| {'EXCEPTION', #'CosNotifyFilter_ConstraintNotFound'{id}} | {'EXCEPTION',
#'CosNotifyFilter_InvalidValue'{constr, value}}

constr = ConstraintExp

id = long()

value = #any

ConstraintExp = #'CosNotifyFilter_ConstraintExp'{event_types,
constraint_expr}

event_types = #'CosNotification_EventTypeSeq'{}

constraint_expr = string()

The ConstraintIDSeq supplied should relate to constraints the caller wishes to remove. If any of the supplied Id's
are not found an exception will be raised. This operation also accepts a sequence of MappingConstraintInfo

CosNotifyFilter_MappingFilter

Ericsson AB. All Rights Reserved.: cosNotification | 51

which will be added. If the target object cannot modify the constraints as requested an exception is raised describing
which constraint, and why, could not be updated.

get_mapping_constraints(MappingFilter, ConstraintIDSeq) -> Reply
Types:

MappingFilter = #objref

ConstraintIDSeq = [ConstraintID]

ConstraintID = long()

Reply = MappingConstraintInfoSeq | {'EXCEPTION',
#'CosNotifyFilter_ConstraintNotFound'{id}}

MappingConstraintInfoSeq = [MappingConstraintInfo]

MappingConstraintInfo =
#'CosNotifyFilter_MappingConstraintInfo'{constraint_expression,
constraint_id, value}

constraint_expression = ConstraintExp

ConstraintExp = #'CosNotifyFilter_ConstraintExp'{event_types,
constraint_expr}

event_types = #'CosNotification_EventTypeSeq'{}

constraint_expr = string()

constraint_id = id = long()

value = #any

When adding a new constraint a unique Id is returned, which is accepted as input for this operation. The associated
constraint is returned, but if no such Id exists an exception is raised.

get_all_mapping_constraints(MappingFilter) -> MappingConstraintInfoSeq
Types:

MappingFilter = #objref

MappingConstraintInfoSeq = [MappingConstraintInfo]

MappingConstraintInfo =
#'CosNotifyFilter_MappingConstraintInfo'{constraint_expression,
constraint_id, value}

constraint_expression = ConstraintExp

ConstraintExp = #'CosNotifyFilter_ConstraintExp'{event_types,
constraint_expr}

event_types = #'CosNotification_EventTypeSeq'{}

constraint_expr = string()

constraint_id = long()

value = #any

This operation returns a sequence of all unique Id's associated with the target object. If no constraint have been added
the sequence will be empty.

remove_all_mapping_constraints(MappingFilter) -> ok
Types:

MappingFilter = #objref

This operation removes all constraints associated with the target object.

CosNotifyFilter_MappingFilter

52 | Ericsson AB. All Rights Reserved.: cosNotification

destroy(MappingFilter) -> ok
Types:

MappingFilter = #objref

This operation terminates the target object. Remember to remove this Filter from the objects it have been associated
with.

match(MappingFilter, Event) -> Reply
Types:

MappingFilter = #objref

Event = #any

Reply = {boolean(), #any} | {'EXCEPTION',
#'CosNotifyFilter_UnsupportedFilterableData'{}}

This operation evaluates Any events with the Filter's constraints, and returns the value to use. The value is the default
value if all constraints returns false and the value associated with the first constraint returning true.

match_structured(MappingFilter, Event) -> Reply
Types:

MappingFilter = #objref

Event = #'CosNotification_StructuredEvent'{}

Reply = {boolean(), #any} | {'EXCEPTION',
#'CosNotifyFilter_UnsupportedFilterableData'{}}

Similar to match/2 but accepts a structured event as input.

CosNotifyChannelAdmin_ProxyConsumer

Ericsson AB. All Rights Reserved.: cosNotification | 53

CosNotifyChannelAdmin_ProxyConsumer
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

Exports

_get_MyType(ProxyConsumer) -> ProxyType
Types:

ProxyConsumer = #objref

ProxyType = 'PUSH_ANY' | 'PULL_ANY' | 'PUSH_STRUCTURED' |
'PULL_STRUCTURED' | 'PUSH_SEQUENCE' | 'PULL_SEQUENCE'

This readonly attribute maintains the enumerant describing the which type the target object is.

_get_MyAdmin(ProxyConsumer) -> AdminObject
Types:

ProxyConsumer = AdminObject = #objref

This readonly attribute maintains the admin's reference which created the target object.

obtain_subscription_types(ProxyConsumer, ObtainInfoMode) -> EventTypeSeq
Types:

ProxyConsumer = #objref

ObtainInfoMode = 'ALL_NOW_UPDATES_OFF' | 'ALL_NOW_UPDATES_ON' |
'NONE_NOW_UPDATES_OFF' | 'NONE_NOW_UPDATES_ON'

EventTypeSeq = [EventType]

EventType = #'CosNotification_EventType'{domain_name, type_name}

domain_name = type_name = string()

Depending on the input parameter ObtainInfoMode, this operation may return a sequence of the EventTypes
the target object is interested in receiving. If 'ALL_NOW_UPDATES_OFF' or 'ALL_NOW_UPDATES_ON' is given
a sequence will be returned, otherwise not. If 'ALL_NOW_UPDATES_OFF' or 'NONE_NOW_UPDATES_OFF'
are issued the target object will not inform the associated NotifySubscribe object when an update occurs.
'ALL_NOW_UPDATES_ON' or 'NONE_NOW_UPDATES_ON' will result in that update information will be sent.

validate_event_qos(ProxyConsumer, QoSProperties) -> Reply
Types:

ProxyConsumer = #objref

QoSProperties = [QoSProperty]

QoSProperty = #'CosNotification_Property'{name, value}

name = string()

CosNotifyChannelAdmin_ProxyConsumer

54 | Ericsson AB. All Rights Reserved.: cosNotification

value = #any

Reply = {ok, NamedPropertyRangeSeq} | {'EXCEPTION',
CosNotification_UnsupportedQoS{qos_err}}

NamedPropertyRangeSeq = [NamedPropertyRange]

NamedPropertyRange = #CosNotification_NamedPropertyRange{name, range}

name = string()

range = #CosNotification_PropertyRange{low_val, high_val}

low_val = #any

high_val = #any

qos_err = PropertyErrorSeq

PropertyErrorSeq = [PropertyError]

PropertyError = #'CosNotification_PropertyError'{code, name,
available_range}

code = 'UNSUPPORTED_PROPERTY' | 'UNAVAILABLE_PROPERTY' |
'UNSUPPORTED_VALUE' | 'UNAVAILABLE_VALUE' | 'BAD_PROPERTY' | 'BAD_TYPE' |
'BAD_VALUE'

name = string()

available_range = PropertyRange

PropertyRange = #CosNotification_PropertyRange{low_val, high_val}

low_val = high_val = #any

To check if certain Quality of Service properties can be added to events in the current context of the target object this
operation should be used. If we cannot support the required settings an exception describing why will be raised.

CosNotifyChannelAdmin_ProxySupplier

Ericsson AB. All Rights Reserved.: cosNotification | 55

CosNotifyChannelAdmin_ProxySupplier
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

Exports

_get_MyType(ProxySupplier) -> ProxyType
Types:

ProxySupplier = #objref

ProxyType = 'PUSH_ANY' | 'PULL_ANY' | 'PUSH_STRUCTURED' |
'PULL_STRUCTURED' | 'PUSH_SEQUENCE' | 'PULL_SEQUENCE'

This readonly attribute maintains the enumerant describing the which type the target object is.

_get_MyAdmin(ProxySupplier) -> AdminObject
Types:

ProxySupplier = #objref

AdminObject = #objref

This readonly attribute maintains the admin's reference which created the target object.

_get_priority_filter(ProxySupplier) -> MappingFilter
Types:

ProxySupplier = #objref

MappingFilter = #objref

This operation returns the associated priority MappingFilter. If no such object exist a NIL reference is returned.

_set_priority_filter(ProxySupplier, MappingFilter) -> ok
Types:

ProxySupplier = #objref

MappingFilter = #objref

This operation associate a new priority MappingFilter with the target object.

_get_lifetime_filter(ProxySupplier) -> MappingFilter
Types:

ProxySupplier = #objref

MappingFilter = #objref

This operation returns the associated lifetime MappingFilter. If no such object exist a NIL reference is returned.

CosNotifyChannelAdmin_ProxySupplier

56 | Ericsson AB. All Rights Reserved.: cosNotification

_set_lifetime_filter(ProxySupplier, MappingFilter) -> ok
Types:

ProxySupplier = #objref

MappingFilter = #objref

This operation associate a new lifetime MappingFilter with the target object.

obtain_offered_types(ProxySupplier, ObtainInfoMode) -> EventTypeSeq
Types:

ProxySupplier = #objref

ObtainInfoMode = 'ALL_NOW_UPDATES_OFF' | 'ALL_NOW_UPDATES_ON' |
'NONE_NOW_UPDATES_OFF' | 'NONE_NOW_UPDATES_ON'

EventTypeSeq = [EventType]

EventType = #'CosNotification_EventType'{domain_name, type_name}

domain_name = type_name = string()

Depending on the input parameter ObtainInfoMode, this operation may return a sequence of the EventTypes
the target object is interested in receiving. If 'ALL_NOW_UPDATES_OFF' or 'ALL_NOW_UPDATES_ON' is given
a sequence will be returned, otherwise not. If 'ALL_NOW_UPDATES_OFF' or 'NONE_NOW_UPDATES_OFF'
are issued the target object will not inform the associated NotifySubscribe object when an update occurs.
'ALL_NOW_UPDATES_ON' or 'NONE_NOW_UPDATES_ON' will result in that update information will be sent.

validate_event_qos(ProxySupplier, QoSProperties) -> Reply
Types:

ProxySupplier = #objref

QoSProperties = [QoSProperty]

QoSProperty = #'CosNotification_Property'{name, value}

name = string()

value = #any

Reply = {ok, NamedPropertyRangeSeq} | {'EXCEPTION',
CosNotification_UnsupportedQoS{qos_err}}

NamedPropertyRangeSeq = [NamedPropertyRange]

NamedPropertyRange = #CosNotification_NamedPropertyRange{name, range}

name = string()

range = #CosNotification_PropertyRange{low_val, high_val}

low_val = #any

high_val = #any

qos_err = PropertyErrorSeq

PropertyErrorSeq = [PropertyError]

PropertyError = #'CosNotification_PropertyError'{code, name,
available_range}

code = 'UNSUPPORTED_PROPERTY' | 'UNAVAILABLE_PROPERTY' |
'UNSUPPORTED_VALUE' | 'UNAVAILABLE_VALUE' | 'BAD_PROPERTY' | 'BAD_TYPE' |
'BAD_VALUE'

name = string()

available_range = PropertyRange

PropertyRange = #CosNotification_PropertyRange{low_val, high_val}

CosNotifyChannelAdmin_ProxySupplier

Ericsson AB. All Rights Reserved.: cosNotification | 57

low_val = high_val = #any

To check if certain Quality of Service properties can be added to events in the current context of the target object this
operation should be used. If we cannot support the required settings an exception describing why will be raised.

CosNotifyChannelAdmin_ProxyPullConsumer

58 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyPullConsumer
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifyPublish

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxyConsumer

Exports

connect_any_pull_supplier(ProxyPullConsumer, PullSupplier) -> Reply
Types:

ProxyPullConsumer = #objref

PullSupplier = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}} |
{'EXCEPTION', #'CosEventChannelAdmin_TypeError'{}}

This operation connects the given PullSupplier to the target object. If a client is already connected the
AlreadyConnected exception will be raised. The client must support the operations pull and try_pull,
otherwise the TypeError exception is raised.

suspend_connection(ProxyPullConsumer) -> Reply
Types:

ProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

If we want to temporarily suspend the connection with the target object this operation must be sued. If the connection
already have been suspended or no client have been connected an exception is raised.

resume_connection(ProxyPullConsumer) -> Reply
Types:

ProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyActive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

If The connection have been suspended earlier we can invoke this operation to reinstate the connection. If the
connection already is active or no client have been connected to the target object an exception is raised.

disconnect_pull_consumer(ProxyPullConsumer) -> ok
Types:

CosNotifyChannelAdmin_ProxyPullConsumer

Ericsson AB. All Rights Reserved.: cosNotification | 59

ProxyPullConsumer = #objref

Invoking this operation disconnects the client from the target object which then terminates and inform its administrative
parent.

CosNotifyChannelAdmin_ProxyPullSupplier

60 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyPullSupplier
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifySubscribe

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxySupplier

Exports

connect_any_pull_consumer(ProxyPullSupplier, PullConsumer) -> Reply
Types:

ProxyPullSupplier = #objref

PullConsumer = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects the given PullConsumer to the target object. If a connection already exists the
AlreadyConnected exception is raised.

pull(ProxyPullSupplier) -> Reply
Types:

ProxyPullSupplier = #objref

Reply = #any | {'EXCEPTION', #'CosEventChannelAdmin_Disconnected'{}}

This operation pulls next #any{} event, and blocks, if the target object have no events to forward, until an event can
be delivered. If no client have been connected the Disconnected exception is raised.

try_pull(ProxyPullSupplier) -> Reply
Types:

ProxyPullSupplier = #objref

Reply = {#any, HasEvent} | {'EXCEPTION',
#'CosEventChannelAdmin_Disconnected'{}}

HasEvent = boolean()

This operation pulls next event, but do not block if the target object have no event to forward. If no client have been
connected the Disconnected exception is raised.

disconnect_pull_supplier(ProxyPullSupplier) -> ok
Types:

ProxyPullSupplier = #objref

Invoking this operation will cause the target object to close the connection and terminate.

CosNotifyChannelAdmin_ProxyPushConsumer

Ericsson AB. All Rights Reserved.: cosNotification | 61

CosNotifyChannelAdmin_ProxyPushConsumer
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifyPublish

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxyConsumer

Exports

connect_any_push_supplier(ProxyPushConsumer, PushSupplier) -> Reply
Types:

ProxyPushConsumer = #objref

PushSupplier = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects a PushSupplier to the target object. If a connection already exists the
AlreadyConnected exception is raised.

push(ProxyPushConsumer, Event) -> Reply
Types:

ProxyPushConsumer = #objref

Event = #any

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_Disconnected'{}}

This operation pushes an #any{} event to the target object. If no client have been connected the Disconnected
exception is raised.

disconnect_push_consumer(ProxyPushConsumer) -> ok
Types:

ProxyPushConsumer = #objref

Invoking this operation will cause the target object to close the connection and terminate.

CosNotifyChannelAdmin_ProxyPushSupplier

62 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyPushSupplier
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifySubscribe

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmi

• CosNotifyChannelAdmin_ProxySupplier

Exports

connect_any_push_consumer(ProxyPushSupplier, PushConsumer) -> Reply
Types:

ProxyPushSupplier = #objref

PushConsumer = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}} |
{'EXCEPTION', #'CosEventChannelAdmin_TypeError'{}}

This operation connects a PushConsumer to the target object. If a connection already exists or the given client does
not support the operation push an exception, AlreadyConnected and TypeError respectively, is raised.

suspend_connection(ProxyPushSupplier) -> Reply
Types:

ProxyPushSupplier = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

This operation suspends the connection with the client object. If the connection already is suspended or no client have
been associated an exception is raised.

resume_connection(ProxyPushSupplier) -> Reply
Types:

ProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

If a connection have been suspended earlier, calling this operation will resume the connection. If the connection already
is active or no client have been connected an exception is raised.

disconnect_push_supplier(ProxyPushSupplier) -> ok
Types:

ProxyPushSupplier = #objref

CosNotifyChannelAdmin_ProxyPushSupplier

Ericsson AB. All Rights Reserved.: cosNotification | 63

This operation cause the target object to close the connection and terminate.

CosNotifyChannelAdmin_SequenceProxyPullConsumer

64 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPullConsumer
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifyPublish

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxyConsumer

Exports

connect_sequence_pull_supplier(SequenceProxyPullConsumer, PullSupplier) ->
Reply
Types:

SequenceProxyPullConsumer = #objref

PullSupplier = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}} |
{'EXCEPTION', #'CosEventChannelAdmin_TypeError'{}}

This operation connects a PullSupplier to the target object. If a connection already exists or the supplied
client does not support the functions pull_structured_events and try_pull_structured_events an
exception is raised.

suspend_connection(SequenceProxyPullConsumer) -> Reply
Types:

SequenceProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

If a connection exist, invoking this operation will suspend the connection until instructed otherwise. Otherwise, no
client have been connected or this operation already have been invoked an exception is raised.

resume_connection(SequenceProxyPullConsumer) -> Reply
Types:

SequenceProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

If an connection have been suspended this operation must be used to resume the connection. If the connection already
is active or no client have been connected an exception is raised.

disconnect_sequence_pull_consumer(SequenceProxyPullConsumer) -> ok
Types:

CosNotifyChannelAdmin_SequenceProxyPullConsumer

Ericsson AB. All Rights Reserved.: cosNotification | 65

SequenceProxyPullConsumer = #objref

This operation close the connection to the client and terminates the target object.

CosNotifyChannelAdmin_SequenceProxyPullSupplier

66 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPullSupplier
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifySubscribe

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxySupplier

Exports

connect_sequence_pull_consumer(SequenceProxyPullSupplier, PullConsumer) ->
Reply
Types:

SequenceProxyPullSupplier = #objref

PullConsumer = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects a PullConsumer to the target object. If a connection already exists an exception is raised.

pull_structured_events(SequenceProxyPullSupplier, MaxEvents) -> Reply
Types:

SequenceProxyPullSupplier = #objref

MaxEvents = long()

Reply = EventBatch | {'EXCEPTION', #'CosEventChannelAdmin_Disconnected'{}}

EventBatch = [StructuredEvent]

StructuredEvent = #'CosNotification_StructuredEvent'{header,
filterable_data, remainder_of_body}

header = EventHeader

filterable_data = [#'CosNotification_Property'{name, value}]

name = string()

value = #any

remainder_of_body = #any

EventHeader = #'CosNotification_EventHeader'{fixed_header,
variable_header}

fixed_header = FixedEventHeader

variable_header = OptionalHeaderFields

FixedEventHeader = #'CosNotification_FixedEventHeader'{event_type,
event_name}

event_type = EventType

event_name = string()

EventType = #'CosNotification_EventType'{domain_name, type_name}

CosNotifyChannelAdmin_SequenceProxyPullSupplier

Ericsson AB. All Rights Reserved.: cosNotification | 67

domain_name = type_name = string()

OptionalHeaderFields = [#'CosNotification_Property'{name, value}]

A client use this operation to pull next event sequence of maximum length MaxEvents. This operation is blocking
and will not reply until the requested amount of events can be delivered or the QoS property PacingInterval is
reached. For more information see the User's Guide.

try_pull_structured_events(SequenceProxyPullSupplier, MaxEvents) -> Reply
Types:

SequenceProxyPullSupplier = #objref

MaxEvents = long()

Reply = {EventBatch, HasEvent} | {'EXCEPTION',
#'CosEventChannelAdmin_Disconnected'{}}

HasEvent = boolean()

EventBatch = [StructuredEvent]

StructuredEvent = #'CosNotification_StructuredEvent'{header,
filterable_data, remainder_of_body}

header = EventHeader

filterable_data = [#'CosNotification_Property'{name, value}]

name = string()

value = #any

remainder_of_body = #any

EventHeader = #'CosNotification_EventHeader'{fixed_header,
variable_header}

fixed_header = FixedEventHeader

variable_header = OptionalHeaderFields

FixedEventHeader = #'CosNotification_FixedEventHeader'{event_type,
event_name}

event_type = EventType

event_name = string()

EventType = #'CosNotification_EventType'{domain_name, type_name}

domain_name = type_name = string()

OptionalHeaderFields = [#'CosNotification_Property'{name, value}]

This operation pulls an event sequence of the maximum length MaxEvents, but do not block if the target object have
no events to forward. The outparameter, HasEvent is true if the sequence contain any events.

disconnect_sequence_pull_supplier(SequenceProxyPullSupplier) -> ok
Types:

SequenceProxyPullSupplier = #objref

This operation cause the target object to close the connection and terminate.

CosNotifyChannelAdmin_SequenceProxyPushConsumer

68 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPushConsumer
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifyPublish

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxyConsumer

Exports

connect_sequence_push_supplier(SequenceProxyPushConsumer, PushSupplier) ->
Reply
Types:

SequenceProxyPushConsumer = #objref

PushSupplier = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects a PushSupplier to the target object. If a connection already exists the
AlreadyConnected exception is raised.

push_structured_events(SequenceProxyPushConsumer, EventBatch) -> Reply
Types:

SequenceProxyPushConsumer = #objref

EventBatch = [StructuredEvent]

StructuredEvent = #'CosNotification_StructuredEvent'{header,
filterable_data, remainder_of_body}

header = EventHeader

filterable_data = [#'CosNotification_Property'{name, value}]

name = string()

value = #any

remainder_of_body = #any

EventHeader = #'CosNotification_EventHeader'{fixed_header,
variable_header}

fixed_header = FixedEventHeader

variable_header = OptionalHeaderFields

FixedEventHeader = #'CosNotification_FixedEventHeader'{event_type,
event_name}

event_type = EventType

event_name = string()

EventType = #'CosNotification_EventType'{domain_name, type_name}

domain_name = type_name = string()

CosNotifyChannelAdmin_SequenceProxyPushConsumer

Ericsson AB. All Rights Reserved.: cosNotification | 69

OptionalHeaderFields = [#'CosNotification_Property'{name, value}]

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_Disconnected'{}}

A client must use this operation when it wishes to push a new sequence of events to the target object. If no connection
exists the Disconnected exception is raised.

disconnect_sequence_push_consumer(SequenceProxyPushConsumer) -> ok
Types:

SequenceProxyPushConsumer = #objref

This operation cause the target object to close the connection and terminate.

CosNotifyChannelAdmin_SequenceProxyPushSupplier

70 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPushSupplier
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifySubscribe

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxySupplier

Exports

connect_sequence_push_consumer(SequenceProxyPushSupplier, PushConsumer) ->
Reply
Types:

SequenceProxyPushSupplier = #objref

PushConsumer = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}} |
{'EXCEPTION', #'CosEventChannelAdmin_TypeError'{}}

This operation connects a PushConsumer to the target object. If a connection already exists or the function
psuh_structured_events is not supported the exceptions AlreadyConnected or TypeError will be
raised respectively.

suspend_connection(SequenceProxyPushSupplier) -> Reply
Types:

SequenceProxyPushSupplier = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

This operation suspends the connection between the client and the target object. If no connection exists or the
connection is already suspended an exception is raised.

resume_connection(SequenceProxyPushSupplier) -> Reply
Types:

SequenceProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

If the connection have previously been suspended this operation must used if we want to resume the connection. If no
object have been connected or the connection already is active an exception is raised.

disconnect_sequence_push_supplier(SequenceProxyPushSupplier) -> ok
Types:

CosNotifyChannelAdmin_SequenceProxyPushSupplier

Ericsson AB. All Rights Reserved.: cosNotification | 71

SequenceProxyPushSupplier = #objref

This operation cause the target object to close the connection and terminate.

CosNotifyChannelAdmin_StructuredProxyPullConsumer

72 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPullConsumer
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifyPublish

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxyConsumer

Exports

connect_structured_pull_supplier(StructuredProxyPullConsumer, PullSupplier) -
> Reply
Types:

StructuredProxyPullConsumer = #objref

PullSupplier = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}} |
{'EXCEPTION', #'CosEventChannelAdmin_TypeError'{}}

This operation connects a PullSupplier to the target object. If a connection already exists or the given client object
does not support the functions pull_structured_event and try_pull_structured_event an exception
is raised.

suspend_connection(StructuredProxyPullConsumer) -> Reply
Types:

StructuredProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

This operation suspends the connection between the target object and its client. If no connection exists or already
suspended an exception is raised.

resume_connection(StructuredProxyPullConsumer) -> Reply
Types:

StructuredProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

If the connection have been suspended this operation must be used if we want to resume the connection. If the
connection already are active or no connection have been created an exception is raised.

disconnect_structured_pull_consumer(StructuredProxyPullConsumer) -> ok
Types:

CosNotifyChannelAdmin_StructuredProxyPullConsumer

Ericsson AB. All Rights Reserved.: cosNotification | 73

StructuredProxyPullConsumer = #objref

This operation cause the target object to close the connection and terminate.

CosNotifyChannelAdmin_StructuredProxyPullSupplier

74 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPullSupplier
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifySubscribe

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxySupplier

Exports

connect_structured_pull_consumer(StructuredProxyPullSupplier, PullConsumer) -
> Reply
Types:

StructuredProxyPullSupplier = #objref

PullConsumer = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects a PullConsumer to the target object. If a connection already exists the
AlreadyConnected exception is raised.

pull_structured_event(StructuredProxyPullSupplier) -> Reply
Types:

StructuredProxyPullSupplier = #objref

Reply = StructuredEvent | {'EXCEPTION',
#'CosEventChannelAdmin_Disconnected'{}}

StructuredEvent = #'CosNotification_StructuredEvent'{header,
filterable_data, remainder_of_body}

header = EventHeader

filterable_data = [#'CosNotification_Property'{name, value}]

name = string()

value = #any

remainder_of_body = #any

EventHeader = #'CosNotification_EventHeader'{fixed_header,
variable_header}

fixed_header = FixedEventHeader

variable_header = OptionalHeaderFields

FixedEventHeader = #'CosNotification_FixedEventHeader'{event_type,
event_name}

event_type = EventType

event_name = string()

EventType = #'CosNotification_EventType'{domain_name, type_name}

CosNotifyChannelAdmin_StructuredProxyPullSupplier

Ericsson AB. All Rights Reserved.: cosNotification | 75

domain_name = type_name = string()

OptionalHeaderFields = [#'CosNotification_Property'{name, value}]

This operation pulls next event from the target object; if an event cannot be delivered this function blocks until an
event arrives.

try_pull_structured_event(StructuredProxyPullSupplier) -> Reply
Types:

StructuredProxyPullSupplier = #objref

Reply = {StructuredEvent, HasEvent} | {'EXCEPTION',
#'CosEventChannelAdmin_Disconnected'{}}

HasEvent = boolean()

StructuredEvent = #'CosNotification_StructuredEvent'{header,
filterable_data, remainder_of_body}

header = EventHeader

filterable_data = [#'CosNotification_Property'{name, value}]

name = string()

value = #any

remainder_of_body = #any

EventHeader = #'CosNotification_EventHeader'{fixed_header,
variable_header}

fixed_header = FixedEventHeader

variable_header = OptionalHeaderFields

FixedEventHeader = #'CosNotification_FixedEventHeader'{event_type,
event_name}

event_type = EventType

event_name = string()

EventType = #'CosNotification_EventType'{domain_name, type_name}

domain_name = type_name = string()

OptionalHeaderFields = [#'CosNotification_Property'{name, value}]

This operation try to pull next event from the target object. If no event have arrived an empty event is returned and the
out parameter HasEvent is set to false. Otherwise, the boolean flag is set to true and an valid event is returned.

disconnect_structured_pull_supplier(StructuredProxyPullSupplier) -> ok
Types:

StructuredProxyPullSupplier = #objref

This operation cause the target object to close the connection and terminate.

CosNotifyChannelAdmin_StructuredProxyPushConsumer

76 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPushConsumer
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifyPublish

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxyConsumer

Exports

connect_structured_push_supplier(StructuredProxyPushConsumer, PushSupplier) -
> Reply
Types:

StructuredProxyPushConsumer = #objref

PushSupplier = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects a PushSupplier to the target object. If a connection already exists an exception is raised.

push_structured_event(StructuredProxyPushConsumer, StructuredEvent) -> Reply
Types:

StructuredProxyPushConsumer = #objref

StructuredEvent = #'CosNotification_StructuredEvent'{header,
filterable_data, remainder_of_body}

header = EventHeader

filterable_data = [#'CosNotification_Property'{name, value}]

name = string()

value = #any

remainder_of_body = #any

EventHeader = #'CosNotification_EventHeader'{fixed_header,
variable_header}

fixed_header = FixedEventHeader

variable_header = OptionalHeaderFields

FixedEventHeader = #'CosNotification_FixedEventHeader'{event_type,
event_name}

event_type = EventType

event_name = string()

EventType = #'CosNotification_EventType'{domain_name, type_name}

domain_name = type_name = string()

OptionalHeaderFields = [#'CosNotification_Property'{name, value}]

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_Disconnected'{}}

CosNotifyChannelAdmin_StructuredProxyPushConsumer

Ericsson AB. All Rights Reserved.: cosNotification | 77

When a client want to push a new event to the target object this operation must be used.

disconnect_structured_push_consumer(StructuredProxyPushConsumer) -> ok
Types:

StructuredProxyPushConsumer = #objref

This operation cause the target object to close the connection and terminate.

CosNotifyChannelAdmin_StructuredProxyPushSupplier

78 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPushSupplier
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

• CosNotifyComm_NotifySubscribe

• CosNotification_QoSAdmin

• CosNotifyFilter_FilterAdmin

• CosNotifyChannelAdmin_ProxySupplier

Exports

connect_structured_push_consumer(StructuredProxyPushSupplier, PushConsumer) -
> Reply
Types:

StructuredProxyPushSupplier = #objref

PushConsumer = #objref

Reply = ok | {'EXCEPTION', #'CosEventChannelAdmin_AlreadyConnected'{}} |
{'EXCEPTION', #'CosEventChannelAdmin_TypeError'{}}

This operation connects a PushConsumer to the target object. If a connection already exists or the function
push_structured_event is not supported by the client object an exception is raised.

suspend_connection(StructuredProxyPushSupplier) -> Reply
Types:

StructuredProxyPushSupplier = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

This operation suspends the connection with the target object. If no connection exists or the connection already is
suspended an exception is raised.

resume_connection(StructuredProxyPushSupplier) -> Reply
Types:

StructuredProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION',
#'CosNotifyChannelAdmin_ConnectionAlreadyInactive'{}} | {'EXCEPTION',
#'CosNotifyChannelAdmin_NotConnected'{}}

If the connection with the target object have been suspended this function must be used to resume the connection. If
no client have been connected or the connection is active an exception is raised.

disconnect_structured_push_supplier(StructuredProxyPushSupplier) -> ok
Types:

CosNotifyChannelAdmin_StructuredProxyPushSupplier

Ericsson AB. All Rights Reserved.: cosNotification | 79

StructuredProxyPushSupplier = #objref

This operation cause the target object to close the connection and terminate.

	cosNotification
	cosNotification User's Guide
	The cosNotification Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosNotification
	Overview
	Purpose and Dependencies
	Prerequisites

	Installing cosNotification
	Installation Process
	Preparation
	Configuration

	The Notification Service Components
	The Notification Service Components
	Components

	Filters and the Constraint Language BNF
	Filters and the Constraint Language BNF
	How to create filter objects
	The CosNotification Constraint Language
	The Constraint Language Data Types
	Accessing Data In Events
	Mapping Filters

	Quality Of Service and Admin Properties
	Quality Of Service and Admin Properties
	Quality Of Service
	Setting Quality Of Service
	Admin Properties

	cosNotification Examples
	A Tutorial on How to Create a Simple Service
	Interface Design
	Generating a Client Interface
	How to Run Everything

	Reference Manual
	cosNotificationApp
	install/0
	install/1
	install_event/0
	install_event/1
	uninstall/0
	uninstall/1
	uninstall_event/0
	uninstall_event/1
	start/0
	stop/0
	start_global_factory/0
	start_global_factory/1
	start_factory/0
	start_factory/1
	stop_factory/1
	start_filter_factory/0
	stop_filter_factory/1
	create_structured_event/6
	type_check/0

	CosNotifyChannelAdmin_EventChannelFactory
	create_channel/3
	get_all_channels/1
	get_event_channel/2

	CosNotifyChannelAdmin_EventChannel
	_get_MyFactory/1
	_get_default_consumer_admin/1
	_get_default_supplier_admin/1
	_get_default_filter_factory/1
	new_for_consumers/2
	for_consumers/1
	new_for_suppliers/2
	for_suppliers/1
	get_consumeradmin/2
	get_supplieradmin/2
	get_all_consumeradmins/1
	get_all_supplieradmins/1
	destroy/1

	CosNotification
	'EventReliability'/0
	'BestEffort'/0
	'Persistent'/0
	'ConnectionReliability'/0
	'Priority'/0
	'LowestPriority'/0
	'HighestPriority'/0
	'DefaultPriority'/0
	'StartTime'/0
	'StopTime'/0
	'Timeout'/0
	'OrderPolicy'/0
	'AnyOrder'/0
	'FifoOrder'/0
	'PriorityOrder'/0
	'DeadlineOrder'/0
	'DiscardPolicy'/0
	'LifoOrder'/0
	'RejectNewEvents'/0
	'MaximumBatchSize'/0
	'PacingInterval'/0
	'StartTimeSupported'/0
	'StopTimeSupported'/0
	'MaxEventsPerConsumer'/0
	'MaxQueueLength'/0
	'MaxConsumers'/0
	'MaxSuppliers'/0

	CosNotification_QoSAdmin
	get_qos/1
	set_qos/2
	validate_qos/2

	CosNotification_AdminPropertiesAdmin
	get_admin/1
	set_admin/2

	CosNotifyChannelAdmin_ConsumerAdmin
	_get_MyID/1
	_get_MyChannel/1
	_get_MyOperator/1
	_get_priority_filter/1
	_set_priority_filter/2
	_get_lifetime_filter/1
	_set_lifetime_filter/2
	_get_pull_suppliers/1
	_get_push_suppliers/1
	get_proxy_supplier/2
	obtain_notification_pull_supplier/2
	obtain_pull_supplier/1
	obtain_notification_push_supplier/2
	obtain_push_supplier/1
	destroy/1

	CosNotifyChannelAdmin_SupplierAdmin
	_get_MyID/1
	_get_MyChannel/1
	_get_MyOperator/1
	_get_pull_consumers/1
	_get_push_consumers/1
	get_proxy_consumer/2
	obtain_notification_pull_consumer/2
	obtain_pull_consumer/1
	obtain_notification_push_consumer/2
	obtain_push_consumer/1
	destroy/1

	CosNotifyComm_NotifyPublish
	offer_change/3

	CosNotifyComm_NotifySubscribe
	subscription_change/3

	CosNotifyFilter_FilterAdmin
	add_filter/2
	remove_filter/2
	get_filter/2
	get_all_filters/1
	remove_all_filters/1

	CosNotifyFilter_FilterFactory
	create_filter/2
	create_mapping_filter/2

	CosNotifyFilter_Filter
	_get_constraint_grammar/1
	add_constraints/2
	modify_constraints/3
	get_constraints/2
	get_all_constraints/1
	remove_all_constraints/1
	destroy/1
	match/2
	match_structured/2
	attach_callback/2
	detach_callback/2
	get_callbacks/1

	CosNotifyFilter_MappingFilter
	_get_constraint_grammar/1
	_get_value_type/1
	_get_default_value/1
	add_mapping_constraints/2
	modify_constraints/3
	get_mapping_constraints/2
	get_all_mapping_constraints/1
	remove_all_mapping_constraints/1
	destroy/1
	match/2
	match_structured/2

	CosNotifyChannelAdmin_ProxyConsumer
	_get_MyType/1
	_get_MyAdmin/1
	obtain_subscription_types/2
	validate_event_qos/2

	CosNotifyChannelAdmin_ProxySupplier
	_get_MyType/1
	_get_MyAdmin/1
	_get_priority_filter/1
	_set_priority_filter/2
	_get_lifetime_filter/1
	_set_lifetime_filter/2
	obtain_offered_types/2
	validate_event_qos/2

	CosNotifyChannelAdmin_ProxyPullConsumer
	connect_any_pull_supplier/2
	suspend_connection/1
	resume_connection/1
	disconnect_pull_consumer/1

	CosNotifyChannelAdmin_ProxyPullSupplier
	connect_any_pull_consumer/2
	pull/1
	try_pull/1
	disconnect_pull_supplier/1

	CosNotifyChannelAdmin_ProxyPushConsumer
	connect_any_push_supplier/2
	push/2
	disconnect_push_consumer/1

	CosNotifyChannelAdmin_ProxyPushSupplier
	connect_any_push_consumer/2
	suspend_connection/1
	resume_connection/1
	disconnect_push_supplier/1

	CosNotifyChannelAdmin_SequenceProxyPullConsumer
	connect_sequence_pull_supplier/2
	suspend_connection/1
	resume_connection/1
	disconnect_sequence_pull_consumer/1

	CosNotifyChannelAdmin_SequenceProxyPullSupplier
	connect_sequence_pull_consumer/2
	pull_structured_events/2
	try_pull_structured_events/2
	disconnect_sequence_pull_supplier/1

	CosNotifyChannelAdmin_SequenceProxyPushConsumer
	connect_sequence_push_supplier/2
	push_structured_events/2
	disconnect_sequence_push_consumer/1

	CosNotifyChannelAdmin_SequenceProxyPushSupplier
	connect_sequence_push_consumer/2
	suspend_connection/1
	resume_connection/1
	disconnect_sequence_push_supplier/1

	CosNotifyChannelAdmin_StructuredProxyPullConsumer
	connect_structured_pull_supplier/2
	suspend_connection/1
	resume_connection/1
	disconnect_structured_pull_consumer/1

	CosNotifyChannelAdmin_StructuredProxyPullSupplier
	connect_structured_pull_consumer/2
	pull_structured_event/1
	try_pull_structured_event/1
	disconnect_structured_pull_supplier/1

	CosNotifyChannelAdmin_StructuredProxyPushConsumer
	connect_structured_push_supplier/2
	push_structured_event/2
	disconnect_structured_push_consumer/1

	CosNotifyChannelAdmin_StructuredProxyPushSupplier
	connect_structured_push_consumer/2
	suspend_connection/1
	resume_connection/1
	disconnect_structured_push_supplier/1

