
cosFileTransfer
Copyright © 2000-2018 Ericsson AB. All Rights Reserved.

cosFileTransfer 1.2.2
March 26, 2018

Copyright © 2000-2018 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: cosFileTransfer | 1

1.1 The cosFileTransfer Application

2 | Ericsson AB. All Rights Reserved.: cosFileTransfer

1 cosFileTransfer User's Guide

The cosFileTransfer Application is an Erlang implementation of the OMG CORBA FileTransfer Service.

1.1 The cosFileTransfer Application
1.1.1 Content Overview
The cosFileTransfer documentation is divided into three sections:

• PART ONE - The User's Guide
Description of the cosFileTransfer Application including services and a small tutorial demonstrating the
development of a simple service.

• PART TWO - Release Notes
A concise history of cosFileTransfer.

• PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in cosFileTransfer.

1.1.2 Brief description of the User's Guide
The User's Guide contains the following parts:

• cosFileTransfer overview

• cosFileTransfer installation

• A tutorial example

1.2 Introduction to cosFileTransfer
1.2.1 Overview
The cosFileTransfer application is a FileTransfer Service compliant with the OMG Service CosFileTransfer.

Purpose and Dependencies
If a Virtual File System is started as 'FTP', the inets-2.5.4 application, or later, must be installed.

cosFileTransfer is dependent on Orber, which provides CORBA functionality in an Erlang environment, and
cosProperty.

Prerequisites
To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming, CORBA, the Orber and cosProperty applications.

Recommended reading includes CORBA, Fundamentals and Programming - Jon Siegel and Open Telecom
Platform Documentation Set. It is also helpful to have read Concurrent Programming in Erlang.

href

1.3 Installing cosFileTransfer

Ericsson AB. All Rights Reserved.: cosFileTransfer | 3

1.3 Installing cosFileTransfer
1.3.1 Installation Process
This chapter describes how to install cosFileTransferApp in an Erlang Environment.

Preparation
Before starting the installation process for cosFileTransfer, the application Orber must be running and
cosProperty installed by using cosProperty:install(). Please note that it is NOT necessary to use
cosProperty:install_db() for running the cosFileTransfer application.

Configuration
When starting the cosFileTransfer application the following configuration parameters can be used:

• buffert_size - default is 64000. This option determine how many bytes will be read at a time when transferring
files.

1.4 Using the File Transfer Service
1.4.1 Overview
This chapter describes how two File Transfer Service applications interact.

Components
There are several ways the OMG File Transfer Service can be used. Below one scenario is visualized:

Figure 4.1: Figure 1: The File Transfer Service Components.

1.4 Using the File Transfer Service

4 | Ericsson AB. All Rights Reserved.: cosFileTransfer

• Source ORB: this is the ORB we want to transfer a file from/via and it holds an object reference to a Virtual
File System (VFS) which, in this example, represents an FTP server.

• Target ORB: the goal may be, for example, to transfer a new file or append to an existing file placed at the
location that this ORB's VFS represents. In this scenario it is the local disk or the NFS.

• Transport Protocol: initially the ORB's, i.e., target and source, communicate via normal CORBA requests to
determine whether or not they can communicate. If the File Transfer Service's have one, or more, Transport
Protocol in common the data will be streamed using this protocol. The cosFileTransfer application currently
supports TCP/IP and SSL.

Which type of file system the VFS is supposed to represent is determined by the options given when creating it, which
is also how one determine which Transport Protocol to use. Hence, the source and target VFS described above
can be started by invoking, respectively, the following operations:

1> SVFS = cosFileTransferApp:create_VFS('FTP', [], Host, 21, [{protocol, tcp}]),
2> TVFS = cosFileTransferApp:create_VFS({'NATIVE', 'cosFileTransferNATIVE_file'},
 [], OtherHost, 0, [{protocol, tcp}]),

Naturally can any combination of VFS-types be used and it is also possible to use own drivers, i.e., {'NATIVE',
'MyDriver'}.

After creating necessary VFS's we can login in and perform operations on files and directories residing on each file
system.

How To Use SSL
To be able to use SSL as transport protocol a few configuration parameters must be set. The required parameters
depend on if Orber is the target or/and the source ORB. However, the SSL_CERT_FILE variable must be defined
in both cases.

Setting of a CA certificate file with an option does not work due to weaknesses in the SSLeay package. A work-around
in the ssl application is to set the OS environment variable SSL_CERT_FILE before SSL is started. However, then
the CA certificate file will be global for all connections (both incoming and outgoing calls).

Configurations when cosFileTransfer is Used as Target
The following three configuration variables can be used to configure cosFileTransfer's SSL target behavior.

• ssl_server_certfile which is a path to a file containing a chain of PEM encoded certificates for cosFileTransfer
as target.

• ssl_server_verify which specifies type of verification: 0 = do not verify peer; 1 = verify peer, verify client
once, 2 = verify peer, verify client once, fail if no peer certificate. The default value is 0.

• ssl_server_depth which specifies verification depth, i.e. how far in a chain of certificates the verification
process shall proceed before the verification is considered successful. The default value is 1.

There also exist a number of API functions for accessing the values of these variables:

• cosFileTransferApp:ssl_server_certfile/0

• cosFileTransferApp:ssl_server_verify/0

• cosFileTransferApp:ssl_server_depth/0

Configurations when cosFileTransfer is used as Source
Below is the list of configuration variables used when cosFileTransfer act as the source application.

• ssl_client_certfile which is a path to a file containing a chain of PEM encoded certificates used in outgoing
calls.

• ssl_client_verify which specifies type of verification: 0 = do not verify peer; 1 = verify peer, verify client once,
2 = verify peer, verify client once, fail if no peer certificate. The default value is 0.

1.5 cosFileTransfer Examples

Ericsson AB. All Rights Reserved.: cosFileTransfer | 5

• ssl_client_depth which specifies verification depth, i.e. how far in a chain of certificates the verification
process shall proceed before the verification is considered successful. The default value is 1.

There also exist a number of API functions for accessing the values of these variables in the client processes:

• cosFileTransferApp:ssl_client_certfile/0

• cosFileTransferApp:ssl_client_verify/0

• cosFileTransferApp:ssl_client_depth/0

1.5 cosFileTransfer Examples
1.5.1 A tutorial on how to create a simple service
Initiate the application
To use the complete cosFileTransfer application cosProperty must be installed.

How to run everything
Below is a short transcript on how to run cosFileTransfer.

1.5 cosFileTransfer Examples

6 | Ericsson AB. All Rights Reserved.: cosFileTransfer

%% Start Mnesia and Orber
mnesia:delete_schema([node()]),
mnesia:create_schema([node()]),
orber:install([node()]),
mnesia:start(),
orber:start(),

%% The File Transfer Service depends on the cosProperty
%% application. Hence, we must install cosProperty first.
%% It's NOT necessary to invoke cosProperty:install_db().
cosProperty:install(),

%% Install File Transfer Service in the IFR.
cosFileTransfer:install(),

%% Now start the application and necessary services.
cosFileTransfer:start(),

%% Create two Virtual File Systems respectively representing an FTP-
%% and the local NFS file system.
VFSFTP = cosFileTransferApp:create_VFS('FTP', [], FTPHost, 21),
VFSNATIVE = cosFileTransferApp:
 create_VFS({'NATIVE', 'cosFileTransferNATIVE_file'},
 [], MyLocalHost, 0),

%% Login to each system.
{FSFTP, DirFTP} = 'CosFileTransfer_VirtualFileSystem':
 login(VFSFTP, "myId", "myPwd", "myAccount"),
{FSNATIVE, DirNATIVE} = 'CosFileTransfer_VirtualFileSystem':
 login(VFSNATIVE, "myId", "myPwd", "myAccount"),

%% If we want to copy a file from the NFS to the FTP we must first
%% create a File object which contains its attributes.
Target = 'CosFileTransfer_FileTransferSession':create_file(FSFTP,
 ["/", "ftp", "incoming", "targetFile"])),

 #'CosFileTransfer_FileWrapper'{the_file = Dir} =
%% Lookup the file we want to copy.
FileWrapper = 'CosFileTransfer_FileTransferSession':get_file(FSNATIVE,
 ["/", "home", "myId", "sourceFile"]),
Source = FileWrapper#'CosFileTransfer_FileWrapper'.the_file,

%% Now we are ready to transfer the file. Please note that we most
%% call the source Session object.
'CosFileTransfer_FileTransferSession':transfer(FSNATIVE, Source, Target),

1.5 cosFileTransfer Examples

Ericsson AB. All Rights Reserved.: cosFileTransfer | 7

2 Reference Manual

The cosFileTransfer Application is an Erlang implementation of the OMG CORBA File Transfer Service.

cosFileTransferApp

8 | Ericsson AB. All Rights Reserved.: cosFileTransfer

cosFileTransferApp
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosFileTransfer/include/*.hrl").

This module contains the functions for starting and stopping the application.

Exports

install() -> Return
Types:

Return = ok | {'EXIT', Reason}

This operation installs the cosFileTransfer application. Note, the cosProperty application must be installed prior
to invoking this operation.

uninstall() -> Return
Types:

Return = ok | {'EXIT', Reason}

This operation uninstalls the cosFileTransfer application.

start() -> Return
Types:

Return = ok | {error, Reason}

This operation starts the cosFileTransfer application.

stop() -> Return
Types:

Return = ok | {error, Reason}

This operation stops the cosFileTransfer application.

create_VFS(Type, Content, Host, Port [,Options]) -> Return
Types:

Type = 'FTP' | {'NATIVE', 'cosFileTransferNATIVE_file'} | {'NATIVE',
MyModule}

Content = []

Host = string(), e.g. "myHost@myServer" or "012.345.678.910"

Port = integer()

Options = [Option]

Option = {protocol, Protocol} | {connect_timeout, Seconds}

Protocol = tcp | ssl

Return = VFS | {'EXCEPTION, E}

VFS = #objref

cosFileTransferApp

Ericsson AB. All Rights Reserved.: cosFileTransfer | 9

This operation creates a new instance of a Virtual File System. The Type parameter determines which type we want
the VFS to represent. 'FTP' maps to the INETS ftp implementation, while {'NATIVE', 'cosFileTransferNATIVE_file'}
uses the file module. It is also possible to implement own mappings which are activated by supplying {'NATIVE',
MyModule}. The MyModule module must export the same functions and behave in the same way as the INETS ftp
module, and an operation named open(Host, Port), which shall return {ok, Pid} or {error, Reason}.

If no Options are supplied the default setting will be used, i.e., tcp and 60 seconds.

The Content parameter is currently ignored by must be supplied as an empty list.

ssl_server_certfile() -> string()
This function returns a path to a file containing a chain of PEM encoded certificates for the cosFileTransfer as target.
This is configured by setting the application variable ssl_server_certfile.

ssl_client_certfile() -> string()
This function returns a path to a file containing a chain of PEM encoded certificates used in outgoing calls. The default
value is configured by setting the application variable ssl_client_certfile.

ssl_server_verify() -> 0 | 1 | 2
This function returns the type of verification used by SSL during authentication of the other peer for incoming calls.
It is configured by setting the application variable ssl_server_verify.

ssl_client_verify() -> 0 | 1 | 2
This function returns the type of verification used by SSL during authentication of the other peer for outgoing calls.
The default value is configured by setting the application variable ssl_client_verify.

ssl_server_depth() -> int()
This function returns the SSL verification depth for incoming calls. It is configured by setting the application variable
ssl_server_depth.

ssl_client_depth() -> int()
This function returns the SSL verification depth for outgoing calls. The default value is configured by setting the
application variable ssl_client_depth.

CosFileTransfer_File

10 | Ericsson AB. All Rights Reserved.: cosFileTransfer

CosFileTransfer_File
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosFileTransfer/include/*.hrl").

This module also exports the functions described in:

• CosPropertyService_PropertySetDef in the cosProperty application.

Exports

'_get_name'(File) -> string()
Types:

File = #objref

This read only attribute represents the target object's associated name.

'_get_complete_file_name'(File) -> string()
Types:

File = #objref

This read only attribute represents the target object's associated absolute name.

'_get_parent'(File) -> Directory
Types:

File = Directory = #objref

This read only attribute represents the target object's container. In some cases a NIL object will be returned.

'_get_associated_session'(File) -> FileTransferSession
Types:

File = FileTransferSession = #objref

This read only attribute represents the target object's associated FileTransferSession.

CosFileTransfer_Directory

Ericsson AB. All Rights Reserved.: cosFileTransfer | 11

CosFileTransfer_Directory
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosFileTransfer/include/*.hrl").

This module also exports the functions described in:

• CosFileTransfer_File

• CosPropertyService_PropertySetDef in the cosProperty application.

Exports

list(Directory, Max) -> Return
Types:

Directory = #objref

Return = {ok, FileList, FileIterator}

FileList = [File]

File = FileIterator = #objref

This operation returns a list, of length Max or less, containing Object References representing files or directories
contained within the target Directory. If the amount of objects found is less than Max the returned Iterator will be
a NIL object.

CosFileTransfer_FileIterator

12 | Ericsson AB. All Rights Reserved.: cosFileTransfer

CosFileTransfer_FileIterator
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosFileTransfer/include/*.hrl").

Exports

next_one(Iterator) -> Return
Types:

Iterator = #objref

Return = {boolean(), #'CosFileTransfer_FileWrapper'{the_file = File
file_type = Type}}

File = #objref

Type = nfile | ndirectory

This operation returns true if a FileWrapper exists at the current position and the out parameter contains a valid
File reference. If false is returned the out parameter is a non-valid FileWrapper.

next_n(Iterator, Max) -> Return
Types:

Iterator = #objref

Max = unsigned long()

Return = {boolean(), FileList}

FileList = [#'CosFileTransfer_FileWrapper'{the_file = File file_type =
Type}]

File = #objref

Type = nfile | ndirectory

This operation returns true if the requested number of FileWrappers can be delivered and there are additional
FileWrappers. If false is returned a list, of length Max or less, containing the last valid FileWrappers associated
with the target object.

destroy(Iterator) -> ok
Types:

Iterator = #objref

This operation terminates the target object.

CosFileTransfer_VirtualFileSystem

Ericsson AB. All Rights Reserved.: cosFileTransfer | 13

CosFileTransfer_VirtualFileSystem
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosFileTransfer/include/*.hrl").

Exports

'_get_file_system_type'(VFS) -> Return
Types:

VFS = #objref

Return = 'FTP' | 'NATIVE'

This read only attribute represents the target object's associated file system.

'_get_supported_content_types'(VFS) -> Return
Types:

VFS = #objref

Return =

This read only attribute represents the target object's supported content types.

login(VFS, User, Password, Account) -> Return
Types:

VFS = #objref

User = Password = Account = string()

Return = {FileTransferSession, Directory} | {'EXCEPTION', E}

FileTransferSession = Directory = #objref

This operation creates a new instance of a FileTransferSession and a Directory. The later represents the
current working directory of the returned FileTransferSession.

CosFileTransfer_FileTransferSession

14 | Ericsson AB. All Rights Reserved.: cosFileTransfer

CosFileTransfer_FileTransferSession
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosFileTransfer/include/*.hrl").

Exports

'_get_protocols_supported'(FTS) -> Return
Types:

FTS = #objref

Return = [#'CosFileTransfer_ProtocolSupport'{protocol_name=Type,
addresses=[Address]}]

Type = Address = string()

This read only attribute returns the protocols supported by the target object.

set_directory(FTS, Directory) -> Return
Types:

FTS = Directory = #objref

Return = ok | {'EXCEPTION, E}

Invoking this operation will change the current working directory of the target object's associated file system. If fail
to do so the appropriate exception is raised.

create_file(FTS, FileNameList) -> Return
Types:

FTS = #objref

FileNameList = [string()]

Return = File | {'EXCEPTION, E}

File = #objref

This operation creates a File Object representing a file which may or may not exist. For this operation to be
independent of the working directory the supplied FileNameList must represent the absolute name.

create_directory(FTS, FileNameList) -> Return
Types:

FTS = #objref

FileNameList = [string()]

Return = Directory | {'EXCEPTION, E}

Directory = #objref

This operation creates a new directory in the target objects associated file systems domain. If fail to do so an exception
is raised but, if successful, a Directory object representing the new directory is returned.

get_file(FTS, FileNameList) -> Return
Types:

CosFileTransfer_FileTransferSession

Ericsson AB. All Rights Reserved.: cosFileTransfer | 15

FTS = #objref

FileNameList = [string()]

Return = FileWrapper | {'EXCEPTION, E}

FileWrapper = #'CosFileTransfer_FileWrapper'{the_file = File file_type =
Type}

File = #objref

Type = nfile | ndirectory

This operation, creates a FileWrapper which represents a file or directory, and should be independent of the
working Directory, i.e., a full path name must be supplied. Furthermore, the file or directory represented by the
FileNameList must exist.

delete(FTS, File) -> Return
Types:

FTS = File = #objref

Return = ok | {'EXCEPTION', E}

This operation removes the file or directory, represented by the File object, from the target objects associated file
system. If it is a non-empty directory or non-existing file or directory an exception is raised.

transfer(FTS, SourceFile, DestinationFile) -> Return
Types:

FTS = SourceFile = DestinationFile = #objref

Return = ok | {'EXCEPTION', E}

If the target object's and the DestinationFile's associated FileTransferSession's support the same
protocol(s) this operation will copy the file represented by the SourceFile from the target object's file system to a
file in the destination FileTransferSession's file system. The file is represented by the DestinationFile
object and may not exist. This operation must be invoked on the FileTransferSession associated with the
SourceFile object.

append(FTS, SourceFile, DestinationFile) -> Return
Types:

FTS = SourceFile = DestinationFile = #objref

Return = ok | {'EXCEPTION', E}

This operation behaves almost like the transfer/3 operation. The difference is that the DestinationFile must
exist since the SourceFile will be appended to the DestinationFile.

Currently, it is not possible to use this operation when the target object represents FTP.

insert(FTS, SourceFile, DestinationFile, Offset) -> Return
Types:

FTS = SourceFile = DestinationFile = #objref

Offset = long()

Return = ok | {'EXCEPTION', E}

This operation behaves almost like the append/3 operation. The difference is that the SourceFile will be inserted
into the DestinationFile Offset bytes from the start of the file.

Currently, it is not possible to use this operation when the target object represents FTP.

CosFileTransfer_FileTransferSession

16 | Ericsson AB. All Rights Reserved.: cosFileTransfer

logout(FTS) -> ok
Types:

FTS = #objref

This operation terminates the target object and closes the connection to the file system it represents.

	cosFileTransfer
	cosFileTransfer User's Guide
	The cosFileTransfer Application
	Content Overview
	Brief description of the User's Guide

	Introduction to cosFileTransfer
	Overview
	Purpose and Dependencies
	Prerequisites

	Installing cosFileTransfer
	Installation Process
	Preparation
	Configuration

	Using the File Transfer Service
	Overview
	Components
	How To Use SSL
	Configurations when cosFileTransfer is Used as Target
	Configurations when cosFileTransfer is used as Source

	cosFileTransfer Examples
	A tutorial on how to create a simple service
	Initiate the application
	How to run everything

	Reference Manual
	cosFileTransferApp
	install/0
	uninstall/0
	start/0
	stop/0
	create_VFS/4
	ssl_server_certfile/0
	ssl_client_certfile/0
	ssl_server_verify/0
	ssl_client_verify/0
	ssl_server_depth/0
	ssl_client_depth/0

	CosFileTransfer_File
	'_get_name'/1
	'_get_complete_file_name'/1
	'_get_parent'/1
	'_get_associated_session'/1

	CosFileTransfer_Directory
	list/2

	CosFileTransfer_FileIterator
	next_one/1
	next_n/2
	destroy/1

	CosFileTransfer_VirtualFileSystem
	'_get_file_system_type'/1
	'_get_supported_content_types'/1
	login/4

	CosFileTransfer_FileTransferSession
	'_get_protocols_supported'/1
	set_directory/2
	create_file/2
	create_directory/2
	get_file/2
	delete/2
	transfer/3
	append/3
	insert/4
	logout/1

