ERLANG

cosEventDomain

Copyright © 2001-2018 Ericsson AB. All Rights Reserved.
cosEventDomain 1.2.2
March 26, 2018

Copyright © 2001-2018 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: cosEventDomain | 1

1.1 The cosEventDomain Application

1 cosEventDomain User's Guide

The cosEventDomain application is an Erlang implementation of a CORBA Service CosEventDomainAdmin.

1.1 The cosEventDomain Application

1.1.1 Content Overview
The cosEventDomain documentation is divided into three sections:

* PART ONE - The User's Guide
Description of the cosEventDomain Application including services and a small tutorial demonstrating the
development of asimple service.

* PART TWO - Release Notes
A concise history of cosEventDomain.

» PART THREE - The Reference Manual
A quick reference guide, including a brief description, to al the functions available in cosEventDomain.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

* CosEventDomain overview
* CosEventDomain installation and examples

1.2 Introduction to cosEventDomain

1.2.1 Overview

The cosEventDomain application is a Event Domain Service compliant with the OMG Service
CosEventDomainAdmin.

Purpose and Dependencies
CosEventDomain is dependent on Or ber, which provides CORBA functionality in an Erlang environment.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming and CORBA.

1.3 Quality Of Service and Admin Properties

1.3.1 Quality Of Service and Admin Properties
This chapter explains the allowed propertiesit is possible to set for this application.

Quality Of Service
The cosEventDomain application supports the following QoS settings:

2 | Ericsson AB. All Rights Reserved.: cosEventDomain

href

1.3 Quality Of Service and Admin Properties

QoS Range Default

CycleDetection AuthorizeCycles/ForbidCycles ForbidCycles

DiamondDetection Auth_orlz_eD|amonds/ ForbidDiamonds
ForbidDiamonds

Table 3.1: Supported QoS settings

Commentson thetable'Supported QoS Settings':

CycleDetection
If acycleiscreated, the user must be aware of the fact that unless they set timeout on events, eventsthat are
not filtered will loop endlessly through the topology.

DiamondDetection
A Diamond in this context, means that the same event may reach a point in the graph by more than one route
(i.e. trangitive). Hence, it is possible that multiple copies are delivered.

Setting Quality Of Service

Assume we have a Consumer Admin object which we want to change the current Quality of Service. Typical usage:

QoS =
[#'CosNotification Property'
{name="'CosEventDomainAdmin': 'DiamondDetection'(),
value=any:create(orber tc:short(),
'CosEventDomainAdmin': 'AuthorizeDiamonds'())},
#'CosNotification Property'
{name="'CosEventDomainAdmin':'CycleDetection'(),
value=any:create(orber tc:short(),
'CosEventDomainAdmin': 'ForbidCycles'())}1,
'CosEventDomainAdmin EventDomain':set qos(ED, QoS),

If it is not possible to set the requested QoS the Unsuppor t edQoS exception is raised, which includes a sequence
of Pr oper t yEr r or 's describing which QoS, possible range and why is not allowed. The error codes are:

* UNSUPPORTED_PROPERTY - QoS not supported for this type of target object.

*+ UNAVAILABLE_PROPERTY - due to current QoS settings the given property is not allowed.

* UNSUPPORTED_VALUE - property value out of range; valid range is returned.

« UNAVAILABLE VALUE - dueto current QoS settings the given value is not allowed; valid range is returned.
e BAD_PROPERTY - unrecognized property.

* BAD_TYPE - type of supplied property isincorrect.

e BAD_VALUE-illega value.

The CosEventDomainAdmin_EventDomain interface also supports an operation called val i dat e_qos/ 2. The

purpose of this operationsisto check if a QoS setting is supported by the target object and if so, the operation returns
additional properties which could be optionally added as well.

Admin Properties

The OMG specification do not contain any definitions of Admin Properties. Hence, the cosEventDomain application
currently does not support any Admin Properties.

Ericsson AB. All Rights Reserved.: cosEventDomain | 3

1.4 Event Domain Service

1.4 Event Domain Service

1.4.1 Overview of the CosEventDomain Service

The Event Domain service allows programmers to manage a cluster of information channels.

Event Domain Service Components
There are two components in the OMG CosEventDomainAdmin service architecture:

» EventDomainFactory: afactory for creating EventDomains.
e EventDomain: supplies atool, which makes it easy to create topologies of interconnected channels (i.e. a
directed graph).

A Tutorial on How to Create a Simple Service

To be able to use the cosEventDomain application, the cosNotification and, possibly, the cosTime application must
beinstalled.

How to Run Everything
Below isashort transcript on how to run cosEventDomain.

4 | Ericsson AB. All Rights Reserved.: cosEventDomain

1.4 Event Domain Service

%% Start Mnesia and Orber
mnesia:delete schema([node()]),
mnesia:create schema([node()]),
orber:install([node()]),
mnesia:start(),
orber:start(),

%% Install and start cosNotification.
cosNotificationApp:install(),
cosNotificationApp:start(),

%% Install and start cosEventDomain.
cosEventDomainApp:install(),
cosEventDomainApp:start(),

%% Start a CosEventDomainAdmin factory.
AdminFac = cosEventDomainApp:start factory(),

%% Define the desired QoS settings:
QoS =
[#'CosNotification Property'
{name="'CosEventDomainAdmin': 'DiamondDetection' (),
value=any:create(orber tc:short(),
'CosEventDomainAdmin': 'AuthorizeDiamonds' ())},
#'CosNotification Property'
{name="'CosEventDomainAdmin': 'CycleDetection' (),
value=any:create(orber tc:short(),
'CosEventDomainAdmin': 'ForbidCycles'())}1,

%% Create a new EventDomain:
{ED, EDId} = 'CosEventDomainAdmin EventDomainFactory':
create event domain(Fac, QoS, [1),

Now we can add Notification Channels to the Domain. How this

is done, see the cosNotification documentation. Let us assume

that we have gained access to two Channel Objects; add them to the
domain:

1 = 'CosEventDomainAdmin_ EventDomain':add channel(ED, Chl),

2 = 'CosEventDomainAdmin EventDomain':add channel(ED, Ch2),

H H o® o o of
O O o o o° o°

%% To connect them, we must first define a connection struct:

Cl = #'CosEventDomainAdmin Connection'{supplier id=ID1,
consumer_id=ID2,
ctype='STRUCTURED EVENT',
notification style='Pull'},

%% Connect them:
'CosEventDomainAdmin_ EventDomain':add connection(ED, (1),

Ericsson AB. All Rights Reserved.: cosEventDomain | 5

1.4 Event Domain Service

2 Reference Manual

The cosEventDomain application is an Erlang implementation of a CORBA Service CosEventDomainAdmin.

6 | Ericsson AB. All Rights Reserved.: cosEventDomain

cosEventDomainApp

cosEventDomainApp

Erlang module

To get access to the record definitions for the structures use:

-include_lib("cosEvent Domai n/include/*.hrl").

This module contains the functions for starting and stopping the application.

Exports

install() -> Return
Types:

Return = ok | {'EXCEPTION, B} | {'EXI T,

This operation installs the cosEventDomain application.

uninstall() -> Return
Types:

Return = ok | {'EXCEPTION, B | {'EXIT,

This operation uninstalls the cosEventDomain application.

start() -> Return
Types:
Return = ok | {error, Reason}
This operation starts the cosEventDomain application.

stop() -> Return
Types:
Return = ok | {error, Reason}
This operation stops the cosEventDomain application.

start_factory() -> Factory
Types.
Factory = #objref

This operation creates a new instance of a Event Domain Factory using the default settings.

start factory(Options) -> Factory

Types.
Options = [Option]
Option = currently no options defined.
Factory = #objref

This operation creates a new instance of a Event Domain Factory

R}

R}

Ericsson AB. All Rights Reserved.: cosEventDomain | 7

cosEventDomainApp

start factory link() -> Factory
Types:
Factory = #objref

This operation creates a new instance of a Event Domain Factory, which is linked to the invoking process, using the
default settings.

start factory link(Options) -> Factory
Types.
Options = [Option]
Option = currently no options defined.
Factory = #objref

This operation createsanew instance of a Event Domain Factory, which islinked to theinvoking process, with settings
defined by the given options. Allowed options are the same asfor cosEvent Domai nApp: start _factory/ 1.

stop factory(Factory) -> Reply
Types:

Factory = #objref

Reply = ok | {' EXCEPTION , E}
This operation stop the target factory.

8 | Ericsson AB. All Rights Reserved.: cosEventDomain

CosEventDomainAdmin

CosEventDomainAdmin

Erlang module

To get access to all definitions include necessary hr | files by using:
-include_lib("cosEvent Dormai n/include/*. hrl").

Exports

'CycleDetection' () -> string()
This function returns the CycleDetection identifier; required when defining QoS Properties.

"AuthorizeCycles' () -> short()
This function returns the AuthorizeCycles value; required when defining QoS Properties.

'"ForbidCycles'() -> short()
This function returns the ForbidCycles value; required when defining QoS Properties.

'DiamondDetection' () -> string()
This function returns the DiamondDetection identifier; required when defining QoS Properties.

"AuthorizeDiamonds' () -> short()
This function returns the AuthorizeDiamonds value; required when defining QoS Properties.

'"ForbidDiamonds' () -> short()
This function returns the ForbidDiamonds value; required when defining QoS Properties.

Ericsson AB. All Rights Reserved.: cosEventDomain | 9

CosEventDomainAdmin_EventDomainFactory

CosEventDomainAdmin_EventDomainFactory

Erlang module

To get access to al definitions include necessary hr | files by using:
-include_lib("cosEvent Dormai n/include/*. hrl").

Exports

create event domain(Factory, QoS, Admin) -> Reply
Types:

Factory = #obj ref

QS = CosNotification:: QSProperties

Admin = CosNotification::Adm nProperties

Reply = {Event Domai n, Domai nl D} | {'EXCEPTION ,
#' CosNoti ficati on_UnsupportedQS' {}} | {' EXCEPTI ON ,
#' CosNot i fi cati on_UnsupportedAdm n' {}}

Event Dormai n = #obj r ef
To create a new EventDomain this operation is used. If it is not possible to support the given QoSPr operti es or

Adm nProperti es an exception is raised, which list the properties not supported. For more information see the
cosNoti fi cati on user'sguide.

get all domains(Factory) -> DomainIDSeq
Types:

Factory = #objref

Domai nl DSeq = [l ong()]

This function returns a Domainl D sequence of all domains associated with the target object.

get event domain(Factory, DomainID) -> Reply
Types:

Factory = #objref

Domai nl D = | ong()

Reply = EventDomai n | {' EXCEPTI ON ,
#' CosEvent Dormai nAdm n_Domai nNot Found' {}}

Event Dormai n = #obj r ef

This operation returns the EventDomain object associated with the given DomainID. If no such binding exists an
exception israised.

10 | Ericsson AB. All Rights Reserved.: cosEventDomain

CosEventDomainAdmin_EventDomain

CosEventDomainAdmin_EventDomain

Erlang module

To get access to all definitions include necessary hr | files by using:
-include_lib("cosEvent Dormai n/include/*. hrl").

This module also exports the functions described in:

e CosNotification_QoSAdmin
* CosNotification_AdminPropertiesAdmin

Exports

add _channel(EventDomain, Channel) -> MemberID
Types:

Event Domai n = Channel = #objref

Menmber | D = | ong()

Adds the given channel to the target domain. The channel must be a
CosNot i f yChannel Adnmi n: : Event Channel .

get _all channels(EventDomain) -> MemberIDSeq
Types.

Event Domai n #obj r ef

Member 1 DSeq = [l ong()]

Returns a a sequence of al channels associated with the target object.

get channel(EventDomain, MemberID) -> Reply
Types:

Event Dormai n = #obj r ef

Menmber | D = | ong()

Reply = Channel | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

Channel = #objref

If the target domain have a CosNot i f yChannel Admi n: : Event Channel represented by the given id this
channel isreturned. Otherwise, an exception is raised.

remove channel(EventDomain, MemberID) -> Reply
Types.
Event Dormai n = #obj r ef
Menmber I D = | ong()
Reply = ok | {'EXCEPTION , #' CosNotifyChannel Adm n_Channel Not Found' {}}

If a CosNoti fyChannel Admi n: : Event Channel with the Menber | D exists it will removed and al its
Connect i ons terminated. Otherwise an exception is raised.

Ericsson AB. All Rights Reserved.: cosEventDomain | 11

CosEventDomainAdmin_EventDomain

add connection(EventDomain, Connection) -> Reply
Types:
Event Dormai n = #obj r ef
Connecti on = ' CosEvent Donai nAdnm n_Connecti on' {suppl i er_i d=Menber| D,
consuner _i d=Menber|I D, ctype=Type, notification_style=Styl e}
Menmber | D = | ong()
Type = ' ANY_EVENT' | ' STRUCTURED_EVENT' | ' SEQUENCE_EVENT'
Style = "Pull' | 'Push’
Reply = Connectionl D | {'EXCEPTION , Exc}
Connectionl D = | ong()
Exc = #' CosNoti f yChannel Adm n_Channel Not Found' {} |
#' CosNot i f yChannel Admi n_TypeError' {} |
#' CosEvent Donmai nAdni n_Al readyExi sts' {} |
#' CosEvent Dormai nAdm n_Di anondCr eat i onFor bi dden' { di anrRout eSeq} |
#' CosEvent Dorai nAdmi n_Cycl eCr eat i onFor bi dden' { cyc=Menber | DSeq}
Rout eSeq = [Menber | DSeq]
Member | DSeq = [l ong()]

The Connection parameter must contain valid data to enable the target domain to setup a connection between two
channels. The struct members suppl i er _i d and consuner _i d determines which channel should produce and
consume events. which type of events and if the supplier should push or the consumer pull events is determined by

ctypeandnotification_styl e respectively.
If the target domain is not able to setup the connection the appropriate exception is raised.

get _all connections(EventDomain) -> ConnectionIDSeq
Types:

Event Dormai n = #obj r ef

Connectionl DSeq = [l ong()]

This operation returns a sequence of al connections within the target domain.

get connection(EventDomain, ConnectionID) -> Reply
Types:

Event Dormai n = #obj r ef

Connectionl D = 1 ong()

Reply = Connection | {'EXCEPTION ,
#' CosEvent Donai nAdmi n_Connect i onNot Found' {}}

Connection = ' CosEvent Domai nAdni n_Connecti on' {suppl i er _i d=Menber | D,
consumer _i d=Menber | D, ctype=Type, notification_style=Styl e}
Menmber | D = | ong()
Type = ' ANY_EVENT' | ' STRUCTURED EVENT' | ' SEQUENCE_EVENT'
Style = "Pull' | 'Push’
If a connection identified by the given id exists within the target domain,

a

#' CosEvent Dormai nAdm n_Connection' {} which describe the connection is returned. Otherwise, an

exception israised.

12 | Ericsson AB. All Rights Reserved.: cosEventDomain

CosEventDomainAdmin_EventDomain

remove connection(EventDomain, ConnectionID) -> Reply
Types.
Event Dormai n = #obj r ef
Connectionl D = I ong()
Reply = ok | {' EXCEPTION , #' CosEventDomai nAdni n_Connecti onNot Found' {}}

If the supplied connection id exists, the connection the id represents is terminated. Otherwise, an exception is raised.

get offer channels(EventDomain, MemberID) -> Reply
Types.

Event Dormai n = #obj r ef

Menber I D = | ong()

Reply = Menber| DSeq | {' EXCEPTI ON ,

#' CosNot i f yChannel Admi n_Channel Not Found' {}}

This operation returns a sequence, containing the member id's of all channels within the target domain which will
supply eventsto the channel identified by the given id. But, if no such id existsin this domain, an exception is raised.

get subscription channels(EventDomain, MemberID) -> Reply
Types:

Event Dormai n = #obj r ef

Reply = Menberl DSeq | {' EXCEPTI ON ,

#' CosNot i f yChannel Adm n_Channel Not Found' {}}

This operations behaves like get _subscri pti on_channel s; the difference is that the id's returned identifies
channels which will consume events supplied by the channel associated with the given id.

destroy(EventDomain) -> ok
Types:
Event Dormai n = #obj r ef

Calling this operation will terminate all connections within the target domain. The domain will terminate but all
channels will not be affected.

get cycles(EventDomain) -> RouteSeq
Types:

Event Dormai n = #obj r ef

Rout eSeq = [Menber | DSeq]

Member 1 DSeq = [l ong()]

Returnsalist of al cycles within the target domain.

get diamonds(EventDomain) -> DiamondSeq
Types:

Event Dormai n = #obj r ef

D anondSeq = [Rout eSeq]

Rout eSeq = [Menber | DSeq]

Member I DSeq = [l ong()]

Returns alist of all diamonds within the target domain

Ericsson AB. All Rights Reserved.: cosEventDomain | 13

CosEventDomainAdmin_EventDomain

set default consumer channel(EventDomain, MemberID) -> Reply
Types:
Event Dormai n = #obj r ef

Reply = MenberI D | {'EXCEPTI ON ,
#' CosNot i f yChannel Adm n_Channel Not Found' {}}

Menmber | D = | ong()

If the given id represents a channel within the target domain, this channel will be used when connection a supplier
client without specifying a certain channel. If no such channel exists an exceptionsis raised.

set default supplier channel(EventDomain, MemberID) -> Reply
Types:
Event Dormai n = #obj r ef

Reply = MenberI D | {' EXCEPTI ON ,
#' CosNot i f yChannel Adm n_Channel Not Found' {}}

Menmber | D = | ong()

If the given id represents a channel within the target domain, this channel will be used when connection a consumer
client without specifying a certain channel. If no such channel exists an exceptionsis raised.

connect push consumer(EventDomain, Consumer) -> Reply
Types:
Event Dormai n = #obj r ef
Consumer = CosEvent Comm : PushConsuner
Reply = CosNoti f yChannel Admi n:: ProxyPushSupplier | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given PushConsumer to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect pull consumer(EventDomain, Consumer) -> Reply
Types.
Event Dormai n = #obj r ef
Consumer = CosEvent Comm : Pul | Consuner
Reply = CosNoti fyChannel Admi n:: ProxyPul | Supplier | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given PullConsumer to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect push supplier(EventDomain, Supplier) -> Reply
Types.
Event Dormai n = #obj r ef
Suppl i er = CosEvent Comm : PushSuppl i er
Reply = CosNot i fyChannel Admi n:: ProxyPushConsuner | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given PushSupplier to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

14 | Ericsson AB. All Rights Reserved.: cosEventDomain

CosEventDomainAdmin_EventDomain

connect pull supplier(EventDomain, Supplier) -> Reply
Types.
Event Dormai n = #obj r ef
Suppl i er = CosEvent Corm : Pul | Suppl i er
Reply = CosNot i fyChannel Admi n: : ProxyPushConsuner | {' EXCEPTI ON ,
#' CosNot i f yChannel Adnmi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given PullSupplier to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect structured push consumer(EventDomain, Consumer) -> Reply
Types.
Event Dormai n = #obj r ef
Consuner = CosNoti fyConm : StructuredPushConsuner
Reply = CosNoti f yChannel Adm n:: St ruct uredPr oxyPushSupplier | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given StructuredPushConsumer to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect structured pull consumer(EventDomain, Consumer) -> Reply
Types:
Event Dormai n = #obj r ef
Consuner = CosNoti fyConm : StructuredPul | Consuner
Reply = CosNoti f yChannel Adm n:: St ruct uredProxyPul | Supplier | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given StructuredPullConsumer to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect structured push supplier(EventDomain, Supplier) -> Reply
Types.
Event Dormai n = #obj r ef
Supplier = CosNotifyConm : StructuredPushSuppli er
Reply = CosNot i fyChannel Admi n:: StructuredProxyPushConsumer | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given StructuredPushSupplier to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect structured pull supplier(EventDomain, Supplier) -> Reply
Types.
Event Dormai n = #obj r ef
Supplier = CosNotifyConm : StructuredPul | Suppli er
Reply = CosNot i fyChannel Admi n:: StructuredProxyPul | Consurme | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given StructuredPullSupplier to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

Ericsson AB. All Rights Reserved.: cosEventDomain | 15

CosEventDomainAdmin_EventDomain

connect sequence push consumer(EventDomain, Consumer) -> Reply
Types.
Event Dormai n = #obj r ef
Consuner = CosNoti f yConm : SequencePushConsuner
Reply = CosNoti f yChannel Adm n:: SequencePr oxyPushSupplier | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given SequencePushConsumer to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect sequence pull consumer(EventDomain, Consumer) -> Reply
Types.
Event Dormai n = #obj r ef
Consuner = CosNoti fyConm : SequencePul | Consuner
Reply = CosNoti f yChannel Adm n:: SequencePr oxyPul | Supplier | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given SequencePullConsumer to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect sequence push supplier(EventDomain, Supplier) -> Reply
Types.
Event Dormai n = #obj r ef
Suppl i er = CosNoti fyConm : SequencePushSuppl i er
Reply = CosNoti f yChannel Adm n: : SequencePr oxyPushConsumner | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given SequencePushSupplier to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect sequence pull supplier(EventDomain, Supplier) -> Reply
Types.
Event Dormai n = #obj r ef
Suppl i er = CosNoti fyConm : SequencePul | Suppli er
Reply = CosNoti f yChannel Adm n:: SequencePr oxyPul | Consumer | {' EXCEPTI ON,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a default Channel have been set, this operation connects the given SequencePullSupplier to it. Otherwise, the
#' CosNot i f yChannel Admi n_Channel Not Found' {} exception israised.

connect push consumer with id(EventDomain, Consumer, MemberID) -> Reply
Types.

Event Dormai n = #obj r ef

Consumer = CosEvent Comm : PushConsuner

Menmber | D = | ong()

Reply = CosNoti f yChannel Adm n:: ProxyPushSupplier | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

16 | Ericsson AB. All Rights Reserved.: cosEventDomain

CosEventDomainAdmin_EventDomain

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the
given PushConsumer to it. Otherwise, the #' CosNot i f yChannel Admi n_Channel Not Found' {} exception
israised.

connect pull consumer with id(EventDomain, Consumer, MemberID) -> Reply
Types:

Event Dormai n = #obj r ef

Consumer = CosEvent Comm : Pul | Consuner

Menber I D = | ong()

Reply = CosNot i fyChannel Admi n:: ProxyPul | Supplier | {'EXCEPTION ,

#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
PullConsumer toit. Otherwise, the#' CosNot i f yChannel Admi n_Channel Not Found' {} exceptionisraised.

connect push supplier with_ id(EventDomain, Supplier, MemberID) -> Reply
Types.

Event Dormai n = #obj r ef

Suppl i er = CosEvent Comm : PushSuppl i er

Menmber | D = | ong()

Reply = CosNoti f yChannel Admi n:: ProxyPushConsumer | {' EXCEPTI ON ,

#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
PushSupplier to it. Otherwise, the#' CosNot i f yChannel Adni n_Channel Not Found' {} exceptionisraised.

connect pull supplier with id(EventDomain, Supplier, MemberID) -> Reply
Types:

Event Dormai n = #obj r ef

Suppl i er = CosEvent Comm : Pul | Suppl i er

Menmber I D = | ong()

Reply = CosNoti f yChannel Admi n:: ProxyPushConsumer | {' EXCEPTI ON ,

#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a Channel associated with the given Member|D exists within the target Domain, this operation connects the given
PullSupplier to it. Otherwise, the#' CosNot i f yChannel Adm n_Channel Not Found' {} exception israised.

connect structured push consumer with id(EventDomain, Consumer, MemberID) ->
Reply
Types:
Event Dormai n = #obj r ef
Consuner = CosNotifyConm : Struct uredPushConsumner
Member I D = | ong()
Reply = CosNoti f yChannel Adm n:: St ruct uredProxyPushSupplier | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the
given StructuredPushConsumer to it. Otherwise, the # CosNot i f yChannel Admi n_Channel Not Found' {}
exception is raised.

Ericsson AB. All Rights Reserved.: cosEventDomain | 17

CosEventDomainAdmin_EventDomain

connect structured pull consumer with id(EventDomain, Consumer, MemberID) ->
Reply
Types.
Event Dormai n = #obj r ef
Consuner = CosNoti fyConm : StructuredPul | Consuner
Menmber | D = | ong()
Reply = CosNoti fyChannel Adm n:: Struct uredProxyPul | Supplier | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the
given StructuredPullConsumer to it. Otherwise, the #' CosNot i f yChannel Admi n_Channel Not Found' {}
exception israised.

connect structured push supplier with id(EventDomain, Supplier, MemberID) ->
Reply
Types:
Event Domai n = #obj r ef
Supplier = CosNotifyConm : StructuredPushSupplier
Menmber I D = | ong()
Reply = CosNoti f yChannel Adm n: : St ruct ur edPr oxyPushConsuner | {' EXCEPTI ON ,
#' CosNot i f yChannel Adni n_Channel Not Found' {}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
StructuredPushSupplier toit. Otherwise, the#' CosNot i f yChannel Admi n_Channel Not Found' {} exception
israised.

connect structured pull supplier with id(EventDomain, Supplier, MemberID) ->
Reply
Types:
Event Dormai n = #obj r ef
Supplier = CosNotifyConm : StructuredPul | Supplier
Member I D = | ong()
Reply = CosNoti f yChannel Adm n:: St ruct uredProxyPul | Consuner | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
StructuredPull Supplier to it. Otherwise, the#' CosNot i f yChannel Admi n_Channel Not Found' {} exception
israised.

connect sequence push consumer with id(EventDomain, Consumer, MemberID) ->
Reply
Types:

Event Dormai n = #obj r ef

Consumer = CosNoti fyConm : SequencePushConsuner

Menmber| D = | ong()

Reply = CosNoti f yChannel Adm n: : SequencePr oxyPushSupplier | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

18 | Ericsson AB. All Rights Reserved.: cosEventDomain

CosEventDomainAdmin_EventDomain

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the
given SequencePushConsumer to it. Otherwise, the #' CosNot i f yChannel Admi n_Channel Not Found' {}
exception is raised.

connect sequence pull consumer with id(EventDomain, Consumer, MemberID) ->
Reply
Types:
Event Dormai n = #obj r ef
Consumer = CosNoti fyConm : SequencePul | Consuner
Menber I D = | ong()
Reply = CosNoti f yChannel Adm n:: SequenceProxyPul | Supplier | {'EXCEPTION ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a Channel associated with the given MemberlD exists within the target Domain, this operation connects the
given SequencePullConsumer to it. Otherwise, the #' CosNot i f yChannel Admi n_Channel Not Found' {}
exception israised.

connect sequence push supplier with id(EventDomain, Supplier, MemberID) ->
Reply
Types.
Event Dormai n = #obj r ef
Suppl i er = CosNotifyConmm : SequencePushSuppl i er
Menmber | D = | ong()
Reply = CosNoti f yChannel Adm n: : SequencePr oxyPushConsuner | {' EXCEPTI ON',
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a Channel associated with the given MemberID exists within the target Domain, this operation connects the given
SequencePushSupplier toit. Otherwise, the#' CosNot i f yChannel Adm n_Channel Not Found' {} exception
israised.

connect sequence pull supplier with id(EventDomain, Supplier, MemberID) ->
Reply
Types:
Event Dormai n = #obj r ef
Suppl i er = CosNotifyConm : SequencePul | Suppl i er
Menmber I D = | ong()
Reply = CosNoti f yChannel Adm n:: SequencePr oxyPul | Consumer | {' EXCEPTI ON ,
#' CosNot i f yChannel Admi n_Channel Not Found' {}}

If a Channel associated with the given Member|D exists within the target Domain, this operation connects the given
SequencePullSupplier to it. Otherwise, the #' CosNot i f yChannel Adni n_Channel Not Found' {} exception
israised.

Ericsson AB. All Rights Reserved.: cosEventDomain | 19

	cosEventDomain
	cosEventDomain User's Guide
	The cosEventDomain Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosEventDomain
	Overview
	Purpose and Dependencies
	Prerequisites

	Quality Of Service and Admin Properties
	Quality Of Service and Admin Properties
	Quality Of Service
	Setting Quality Of Service
	Admin Properties

	Event Domain Service
	Overview of the CosEventDomain Service
	Event Domain Service Components
	A Tutorial on How to Create a Simple Service
	How to Run Everything

	Reference Manual
	cosEventDomainApp
	install/0
	uninstall/0
	start/0
	stop/0
	start_factory/0
	start_factory/1
	start_factory_link/0
	start_factory_link/1
	stop_factory/1

	CosEventDomainAdmin
	'CycleDetection'/0
	'AuthorizeCycles'/0
	'ForbidCycles'/0
	'DiamondDetection'/0
	'AuthorizeDiamonds'/0
	'ForbidDiamonds'/0

	CosEventDomainAdmin_EventDomainFactory
	create_event_domain/3
	get_all_domains/1
	get_event_domain/2

	CosEventDomainAdmin_EventDomain
	add_channel/2
	get_all_channels/1
	get_channel/2
	remove_channel/2
	add_connection/2
	get_all_connections/1
	get_connection/2
	remove_connection/2
	get_offer_channels/2
	get_subscription_channels/2
	destroy/1
	get_cycles/1
	get_diamonds/1
	set_default_consumer_channel/2
	set_default_supplier_channel/2
	connect_push_consumer/2
	connect_pull_consumer/2
	connect_push_supplier/2
	connect_pull_supplier/2
	connect_structured_push_consumer/2
	connect_structured_pull_consumer/2
	connect_structured_push_supplier/2
	connect_structured_pull_supplier/2
	connect_sequence_push_consumer/2
	connect_sequence_pull_consumer/2
	connect_sequence_push_supplier/2
	connect_sequence_pull_supplier/2
	connect_push_consumer_with_id/3
	connect_pull_consumer_with_id/3
	connect_push_supplier_with_id/3
	connect_pull_supplier_with_id/3
	connect_structured_push_consumer_with_id/3
	connect_structured_pull_consumer_with_id/3
	connect_structured_push_supplier_with_id/3
	connect_structured_pull_supplier_with_id/3
	connect_sequence_push_consumer_with_id/3
	connect_sequence_pull_consumer_with_id/3
	connect_sequence_push_supplier_with_id/3
	connect_sequence_pull_supplier_with_id/3

