ERLANG

cosEvent

Copyright © 1999-2018 Ericsson AB. All Rights Reserved.
cosEvent 2.2.2

March 26, 2018

Copyright © 1999-2018 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 26, 2018

Ericsson AB. All Rights Reserved.: cosEvent | 1

1.1 The cosEvent Application

1 cosEvent User's Guide

The cosEvent application is an Erlang implementation of a CORBA Service CosEvent.

1.1 The cosEvent Application

1.1.1 Content Overview
The cosEvent documentation is divided into three sections:

* PART ONE - The User's Guide
Description of the cosEvent Application including services and a small tutorial demonstrating the development
of asimple service.

* PART TWO - Release Notes
A concise history of cosEvent.

» PART THREE - The Reference Manual
A quick reference guide, including a brief description, to al the functions available in cosEvent.
1.1.2 Brief Description of the User's Guide

The User's Guide contains the following parts:

* CosEvent overview
* CosEvent installation and examples

1.2 Introduction to cosEvent

1.2.1 Overview

The cosEvent application is a Event Service compliant with the OM G Event Service CosEvent.
Purpose and Dependencies

CosEvent is dependent on Orber, which provides CORBA functionality in an Erlang environment.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming and CORBA.

Recommended reading includes CORBA, Fundamentals and Programming - Jon Siegel and Open Telecom
Platform Documentation Set. It isalso helpful to have read Concurrent Programmingin Erlang.

2 | Ericsson AB. All Rights Reserved.: cosEvent

href

1.3 Event Service

1.3 Event Service

1.3.1 Overview of the CosEvent Service

The Event service allows programmers to subscribe to information channels. Suppliers can generate events without
knowing the consumer identities and the consumer can receive events without knowing the supplier identity. Both
push and pull event delivery are supported. The Event service will queue information and processes.

The CORBA Event service provides aflexible model for asynchronous, decoupled communication between objects.
This chapter outlines communication models and the roles and relationships of key components in the CosEvent
service. It shows a simple example on use of this service.

1.3.2 Event Service Components

There are five components in the OMG CosEvent service architecture. These are described below:

VEHis
7
T

Figure 3.1: Figure 1: Event service Components

e Suppliersand consumers. Consumers are the ultimate targets of events generated by suppliers. Consumers
and suppliers can both play active and passive roles. There could be two types of consumers and suppliers:
push or pull. A PushSupplier object can actively push an event to a passive PushConsumer object. Likewise, a
PullSupplier object can passively wait for a Pull Consumer object to actively pull an event fromit.

« EventChannel: The central abstraction in the CosEvent service is the EventChannel which playstherole
of amediator between consumers and suppliers. Consumers and suppliers register their interest with the
EventChannel. It can provide many-to-many communication. The channel consumes events from one or
more suppliers, and supplies events to one or more consumers. An EventChannel can support consumers and
suppliers using different communication models.

* ProxySuppliersand ProxyConsumers. ProxySuppliers act as middlemen between consumers and the
EventChannel. A ProxySupplier is similar to anormal supplier, but includes an additional method for
connecting a consumer to the ProxySupplier. Likewise, ProxyConsumers act as middlemen between suppliers
and the EventChannel. A ProxyConsumer is similar to anormal consumer, but includes an additional method
for connecting a supplier to the ProxyConsumer.

e Supplier and consumer administrations: Consumer administration acts as afactory for creating
ProxySuppliers. Supplier administration acts as a factory for creating ProxyConsumers.

1.3.3 Event Service Communication Models

There are four general models of component collaboration in the OMG CosEvent service architecture. The following
describes these models: (Please note that proxies are not shown in the diagrams for simplicity).

Ericsson AB. All Rights Reserved.: cosEvent | 3

1.3 Event Service

Supplier

Event C hantml

\\

X

A: The Canomical Push M:ndeé’

Supplier

Event Channel

\\

B: The Canenical Pull Modal

(ot D4

e/

' The Hpbrid Fush/Full Mode!

ot Dy

F'y

D The Fpbrid FullifPu sh Model

Figure 3.2:

Figure 2: Event service Communication Models

e TheCanonical Push Model: The Canonical push model shown in figure 2(A) allows the suppliers of events
to initiate the transfer of event data to consumers. In this model, suppliers are active initiators and consumers
are the passive targets of the requests. EventChannels play therole of Not i f i er . Thus, active suppliers use
EventChannels to push data to passive consumers that have registered with the EventChannels.

e TheCanonical Pull Model: The Canonical pull model shown in figure 2(B) allows consumers to request events
from suppliers. In this model, Consumers are active initiators and suppliers are the passive targets of the pull

requests. EventChannel playstherole of Pr ocur er

since it procures events on behalf of consumers. Thus,

active consumers can explicitly pull datafrom passive suppliers via the EventChannels.

e TheHybrid Push/Pull Modéd: The push/pull model

shown in figure 2(C) is ahybrid that allows consumersto

request events queued at an EventChannel by suppliers. In this model, both suppliers and consumers are active
initiators of the requests. EventChannels play the role of Queue. Thus, active consumers can explicitly pull
data deposited by active suppliers via the EventChannels.

e TheHybrid Pull/Push Modél: The pull/push model

shown in figure 2(D) is another hybrid that allows the

channel to pull events from suppliers and push them to consumers. In this model, suppliers are passive targets
of pull requests and consumers are passive targets of pushes. EventChannels play theroleof I nt el | i gent
Agent . Thus, active EventChannels can pull data from passive suppliers and push that data to passive

consumers.

1.3.4 A Tutorial on How to Create a Simple Service

To be able to use the cosEvent application supplier and consumer objects must be implemented, which must inherit
from the appropriate interface defined in the CosEventComm.idl specification.

We start by creating an interface which inherits from the correct interface, e.g., CosEventComm::PushConsumer.
Hence, we must also implement all operations defined in the PushConsumer interface. The IDL-file could look like:

4 | Ericsson AB. All Rights Reserved.: cosEvent

1.3 Event Service

#ifndef MYCLIENT IDL
#define MYCLIENT IDL
#include <CosEventComm.idl>
module myClientImpl {

interface ownInterface:CosEventComm: :PushConsumer {

void ownFunctions(in any NeededArguments)
raises(OwnExceptions);

};
};

#endif

Run the IDL compiler on this file by calling the i c: gen/ 1 function. This will produce the APl named
myCientlnpl _ownlnterface. erl. After generating the APl stubs and the server skeletons it is
time to implement the servers and if no specia options are sent to the IDI compiler the file name is
myCientlnpl_ownlnterface inpl.erl.

1.3.5 How to Run Everything

Below is ashort transcript on how to run cosEvent.

Ericsson AB. All Rights Reserved.: cosEvent | 5

1.3 Event Service

%% Start Mnesia and Orber
mnesia:delete schema([node()]),
mnesia:create schema([node()]),
orber:install([node()]),
mnesia:start(),
orber:start(),

%% Install cosEvent in the IFR.
cosEventApp:install(),

%% Register the application specific Client implementations
%% in the IFR.
'oe_myClientImpl':'oe register'(),

%% Start the cosEvent application.
cosEventApp:start(),

Start a channel using the default configuration
= cosEventApp:start channel(),
. or use configuration parameters.
= cosEventApp:start channel([{pull interval, 10}, {maxEvents, 50}1),

0O O

%
h
%
h

% Retrieve a SupplierAdmin and a ConsumerAdmin.
dminSupplier = 'CosEventChannelAdmin EventChannel':for suppliers(Ch),
dminConsumer = 'CosEventChannelAdmin EventChannel':for consumers(Ch),

> > L

o°

% Use the corresponding Admin object to get access to wanted Proxies

%% Create a Push Consumer Proxy, which the Client Push Supplier will push
%% events to.
ProxyPushConsumer =

'CosEventChannelAdmin SupplierAdmin':obtain push consumer(AdminSupplier),
%% Create a Push Supplier Proxy, which will push events to the registered
%% Push Consumer.
ProxyPushSupplier =

'CosEventChannelAdmin_ConsumerAdmin':obtain push supplier(AdminConsumer),

%% Create application Clients. We can, for example, start the Clients

%% our selves or look them up in the naming service. This is application
%% specific.

Consumer = myClientImpl ownInterface:oe create(),

Supplier = ...

%% Connect each Client to the corresponding Proxy.
'CosEventChannelAdmin ProxyPushConsumer':

connect push_supplier(ProxyPushConsumer, Supplier),
'CosEventChannelAdmin_ ProxyPushSupplier':

connect push_consumer(ProxyPushSupplier, Consumer),

The example above, exemplifies a event system, i.e., the Canonical Push Model, where the Supplier client in some
way generates event and pushes them to the proxy. The push supplier proxies will eventually push the eventsto each
Consumer client.

6 | Ericsson AB. All Rights Reserved.: cosEvent

1.3 Event Service

2 Reference Manual

The cosEvent application is an Erlang implementation of a CORBA Service CosEvent.

Ericsson AB. All Rights Reserved.: cosEvent | 7

cosEventApp

coskEventApp

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosEvent/include/*.hrl").

This module contains the functions for starting and stopping the application.

Exports

install() -> Return
Types:

Return = ok | {'EXCEPTION, E} | {'EXIT', R}
This operation installs the cosEvent application.

uninstall() -> Return
Types:

Return = ok | {'EXCEPTION, E} | {'EXIT, R
This operation uninstalls the cosEvent application.

start() -> Return
Types:

Return = ok | {error, Reason}
This operation starts the cosEvent application.

stop() -> Return
Types:

Return = ok | {error, Reason}
This operation stops the cosEvent application.

start_channel() -> Channel
Types:
Channel = #objref
This operation creates a new instance of a Event Channel using the default settings.

start _channel(Options) -> Channel

Types:
Options = [Option]
Option = {pull _interval, Seconds} | {typecheck, Boolean} | {maxEvents,

Integer} | {bl ocking, Bool ean}
Channel = #objref

This operation creates a new instance of a Event Channel

8 | Ericsson AB. All Rights Reserved.: cosEvent

cosEventApp

* {pull_interval, Seconds} - determine how often Proxy Pull Consumerswill check for new events
with the client application. The default value is 20 seconds.

e {typecheck, Bool ean} -if thisoptionis set to true the proxies will check if the supplied client object is
of correct type. The default valueisfalse.

« {maxEvents, Integer} -thisoptiondetermine how many eventsthe Pr oxyPul | Suppl i er s will
store before discarding events. If the limit is reached events will be discarded in any order. The default valueis
300.

« {bl ocki ng, Bool ean} - thisoption determine the behavior of the channel when handling events
internally. If settot r ue therisk of asingle event supplier floods the system is reduced, but the performance
may also be reduced. The default valueist r ue.

start channel link() -> Channel
Types:
Channel = #objref

This operation creates a new instance of a Event Channel, which is linked to the invoking process, using the default
settings.

start _channel link(Options) -> Channel

Types:
Options = [Option]
Option = {pull _interval, Seconds} | {typecheck, Boolean} | {maxEvents,

Integer} | {blocking, Bool ean}
Channel = #objref

This operation createsanew instance of a Event Channel, whichislinked to theinvoking process, with settings defined
by the given options. Allowed options are the same asfor cosEvent App: start _channel / 1.

stop_channel(Channel) -> Reply
Types.

Channel = #objref

Reply = ok | {' EXCEPTION , E}

This operation stop the target event channel.

Ericsson AB. All Rights Reserved.: cosEvent | 9

CosEventChannelAdmin

CosEventChannelAdmin

Erlang module

The event service defines two roles for objects: the supplier role and the consumer role. Suppliers supply event data
to the event channel and consumers receive event data from the channel. Suppliers do not need to know the identity
of the consumers, and vice versa. Consumers and suppliers are connected to the event channel via proxies, which are
managed by ConsumerAdmin and SupplierAdmin objects.

There are four general models of communication. These are:

» Thecanonical push moddl. It alows the suppliers of eventsto initiate the transfer of event data to consumers.
Event channels play therole of Not i fi er . Active suppliers use event channel to push data to passive
consumers registered with the event channel.

» Thecanonica pull model. It allows consumers to request events from suppliers. Event channels play the role
of Pr ocur e sincethey procure events on behalf of consumers. Active consumers can explicitly pull datafrom
passive suppliers via the event channels.

e Thehybrid push/pull model. It allows consumers request events queued at a channel by suppliers. Event
channels play the role of Queue. Active consumers explicitly pull data deposited by active suppliers viathe
event channels.

» Thehybrid pull/push model. It allows the channel to pull events from suppliers and push them to consumers.
Event channels play theroleof I nt el | i gent agent . Active event channels can pull datafrom passive
suppliersto push it to passive consumers.

To get access to al definitions, e.g., exceptions, include necessary hr | files by using:
-include_lib("cosEvent/include/*.hrl").

There are seven different interfaces supported in the service:
e ProxyPushConsumer

* ProxyPullSupplier

* ProxyPullConsumer

e ProxyPushSupplier

e ConsumerAdmin

e SupplierAdmin

e EventChannel

10 | Ericsson AB. All Rights Reserved.: cosEvent

CosEventChannelAdmin_ConsumerAdmin

CosEventChannelAdmin_ConsumerAdmin

Erlang module

The ConsumerAdmin interface definesthe first step for connecting consumersto the event channel. It acts asafactory
for creating proxy suppliers. Both consumer administration and supplier administration are defined as separate objects
so that the creator of the channel can control the addition of suppliers and consumers.

To get access to all definitions include necessary hr | files by using:
-include_lib("cosEvent/include/*.hrl").

Exports

obtain push supplier(Object) -> Return
Types:

bj ect = #objref

Ret urn = #obj ref
This operation returns a ProxyPushSupplier object reference.

obtain pull supplier(Object) -> Return
Types:

bj ect #obj r ef

Ret urn = #obj ref

This operation returns a ProxyPull Supplier object reference.

Ericsson AB. All Rights Reserved.: cosEvent | 11

CosEventChannelAdmin_SupplierAdmin

CosEventChannelAdmin_SupplierAdmin

Erlang module

The SupplierAdmin interface defines the first step for connecting suppliersto the event channel. It actsas afactory for
creating proxy consumers. Both consumer administration and supplier administration are defined as separate objects
so that the creator of the channel can control the addition of suppliers and consumers.

To get access to al definitions include necessary hr | files by using:
-include_lib("cosEvent/include/*.hrl").

Exports

obtain push consumer(Object) -> Return
Types:

bj ect = #objref

Return = #obj ref
This operation returns a ProxyPushConsumer object reference.

obtain pull consumer(Object) -> Return
Types:

bj ect #obj r ef

Ret urn = #obj ref

This operation returns a ProxyPull Consumer object reference.

12 | Ericsson AB. All Rights Reserved.: cosEvent

CosEventChannelAdmin_EventChannel

CosEventChannelAdmin_EventChannel

Erlang module

An event channel is an object that allows multiple suppliers to communicate with multiple consumers in a highly
decoupled, asynchronous manner. The event channel is built up incrementally. When an event channel is created
no suppliers or consumers are connected to it. Event Channel can implement group communication by serving as a
replicator, broadcaster, or multicaster that forward events from one or more suppliers to multiple consumers.

It is up to the user to decide when an event channel is created and how references to the event channel are obtained.
By representing the event channel as an object, it has all of the properties that apply to objects. One way to manage
an event channel isto register it in a naming context, or export it through an operation on an object.

To get access to al definitionsinclude necessary hr | files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supportsthe ProxyPull Consumer interface can perform thefollowing
operations:

Exports

for _consumers(0Object) -> Return
Types.

hj ect = #objref

Ret urn = #obj ref

This operation returns a ConsumerAdmin object reference. If ConsumerAdmin object does not exist already it creates
one.

for suppliers(0Object) -> Return

Types:
hj ect = #objref
Ret urn = #obj ref

This operation returns a SupplierAdmin object reference. If SupplierAdmin object does not exist already it createsone.

destroy(Object) -> Return

Types.
oj ect = #obj ref
Return = #obj ref

Ericsson AB. All Rights Reserved.: cosEvent | 13

CosEventChannelAdmin_ProxyPullConsumer

CosEventChannelAdmin_ProxyPullConsumer

Erlang module

The ProxyPullConsumer interface defines the second step for connecting pull suppliersto the event channel. A proxy
consumer is similar to a normal consumer, but includes an additional method for connecting a supplier to the proxy
consumer.

To get access to al definitions, e.g., exceptions, include necessary hr | files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supportsthe ProxyPull Consumer interface can perform thefollowing
operations:

Exports

connect pull supplier(Object, PullSupplier) -> Return
Types.

hj ect = #objref

Pul | Supplier = #objref of Pull Supplier type

Return = ok | {' EXCEPTION , E}

E = #' CosEvent Channel Adm n_Al r eadyConnect ed' {}

#' CosEvent Channel Admi n_TypeError' {}

This operation connects PullSupplier object to the ProxyPullConsumer object. If a nil object reference is
passed CORBA standard BAD PARAM exception is raised. If the ProxyPullConsumer is already connected to a
PullSupplier, then the CosEvent Channel Adm n_Al r eadyConnect ed exception is raised. Implementations
of ProxyPullConsumers may require additional interface functionality; if these requirements are not met the
CosEvent Channel Adni n_TypeEr r or exception will be raised.

disconnect pull consumer(Object) -> Return

Types:
hj ect = #objref
Return = ok

This operation disconnects proxy pull consumer from the event channel and sends a natification about the loss of the
connection to the pull supplier attached to it.

14 | Ericsson AB. All Rights Reserved.: cosEvent

CosEventChannelAdmin_ProxyPushConsumer

CosEventChannelAdmin_ProxyPushConsumer

Erlang module

The ProxyPushConsumer interface defines the second step for connecting push suppliersto the event channel. A proxy
consumer is similar to a normal consumer, but includes an additional method for connecting a supplier to the proxy
consumer.

To get access to al definitions, e.g., exceptions, include necessary hr | files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supports the ProxyPushConsumer interface can perform the
following operations:

Exports

connect push supplier(Object, PushSupplier) -> Return
Types.
bj ect = #objref
PushSuppl i er = #objref of PushSupplier type
Return = ok | {' EXCEPTION , #' CosEvent Channel Adm n_Al readyConnected' {}}
This operation connects PushSupplier object to the ProxyPushConsumer object. A nil object reference can be passed
to this operation. If so a channel cannot invoke the disconnect_push_supplier operation on the supplier; the supplier

may be disconnected from the channel without being informed. If the ProxyPushConsumer is already connected to a
PushSupplier, then the CosEvent Channel Adm n_Al r eadyConnect ed exception israised.

disconnect push consumer(Object) -> Return
Types.

Ooj ect = #obj ref

Return = ok

This operation disconnects proxy push consumer from the event channel. Sends a notification about the loss of the
connection to the push supplier attached to it, unless nil object reference was passed at the connection time.

push(Object, Data) -> Return

Types:
hj ect = #objref
Data = any

Return = ok | {' EXCEPTION , #' CosEvent Comm Di sconnected' {}}

This operation sends event data to all connected consumers via the event channel. If the event communication has
already been disconnected, the CosEvent Comm Di sconnect ed israised.

Ericsson AB. All Rights Reserved.: cosEvent | 15

CosEventChannelAdmin_ProxyPullSupplier

CosEventChannelAdmin_ProxyPullSupplier

Erlang module

The ProxyPullSupplier interface defines the second step for connecting pull consumersto the event channel. A proxy
supplier is similar to a normal supplier, but includes an additional method for connecting a consumer to the proxy
supplier.

To get access to al definitions, e.g., exceptions, include necessary hr | files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supports the ProxyPull Supplier interface can perform the following
operations:

Exports

connect pull consumer(Object, PullConsumer) -> Return
Types.
hj ect = #objref
Pul | Consumer = #objref of Pull Consumer type
Return = ok | {' EXCEPTION , #' CosEvent Channel Adm n_Al readyConnected' {}}
This operation connects Pull Consumer object to the ProxyPull Supplier object. A nil object reference can be passed to
this operation. If so achannel cannot invoke the disconnect_pull_consumer operation on the consumer; the consumer

may be disconnected from the channel without being informed. If the ProxyPullSupplier is aready connected to a
PullConsumer, then the CosEvent Channel Adm n_Al r eadyConnect ed exception israised.

disconnect pull supplier(Object) -> Return
Types.

hj ect = #obj ref

Return = ok

This operation disconnects proxy pull supplier from the event channel. It sends a notification about the loss of the
connection to the pull consumer attached to it, unless nil object reference was passed at the connection time.

pull(Object) -> Return

Types:
bj ect = #objref
Return = any

This operation blocks until the event datais available or the CosEvent Comm Di sconnect ed exceptionisraised.
It returns the event data to the consumer.

try pull(Object) -> Return

Types:
Obj ect = #obj ref
Return = {any, bool ()}

16 | Ericsson AB. All Rights Reserved.: cosEvent

CosEventChannelAdmin_ProxyPullSupplier

This operation does not block: if the event data is available, it returns the event data and sets the data availability
flag to true; otherwise it returns a long with an undefined value and sets the data availability to false. If the event
communication has already been disconnected, the CosEvent Comm Di sconnect ed exception is raised.

Ericsson AB. All Rights Reserved.: cosEvent | 17

CosEventChannelAdmin_ProxyPushSupplier

CosEventChannelAdmin_ProxyPushSupplier

Erlang module

The ProxyPushSupplier interface defines the second step for connecting push consumersto the event channel. A proxy
supplier is similar to a normal supplier, but includes an additional method for connecting a consumer to the proxy
supplier.

To get access to al definitions, e.g., exceptions, include necessary hr | files by using:
-include_lib("cosEvent/include/*.hrl").

Any object that possesses an object reference that supports the ProxyPushSupplier interface can perform the following
operations:

Exports

connect _push _consumer(0Object, PushConsumer) -> Return
Types.

hj ect = #objref

PushConsumer = #objref of PushConsumer type

Return = ok | {' EXCEPTION , E}

E = #' CosEvent Channel Adm n_Al r eadyConnect ed' {}

#' CosEvent Channel Admi n_TypeError' {}

This operation connects PushConsumer object to the ProxyPushSupplier object. If a nil object reference is
passed CORBA standard BAD_PARAM exception is raised. If the ProxyPushSupplier is already connected to a
PushConsumer, thenthe Cos Event Channel Admi n_Al r eadyConnect ed exception israised. Implementations
of ProxyPushSuppliers may require additional interface functionality; if these requirements are not met the
CosEvent Channel Adni n_TypeEr r or exception will be raised.

disconnect push supplier(Object) -> Return

Types:
hj ect = #objref
Return = ok

This operation disconnects proxy push supplier from the event channel and sends a natification about the loss of the
connection to the push consumer attached to it.

18 | Ericsson AB. All Rights Reserved.: cosEvent

	cosEvent
	cosEvent User's Guide
	The cosEvent Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosEvent
	Overview
	Purpose and Dependencies
	Prerequisites

	Event Service
	Overview of the CosEvent Service
	Event Service Components
	Event Service Communication Models
	A Tutorial on How to Create a Simple Service
	How to Run Everything

	Reference Manual
	cosEventApp
	install/0
	uninstall/0
	start/0
	stop/0
	start_channel/0
	start_channel/1
	start_channel_link/0
	start_channel_link/1
	stop_channel/1

	CosEventChannelAdmin
	CosEventChannelAdmin_ConsumerAdmin
	obtain_push_supplier/1
	obtain_pull_supplier/1

	CosEventChannelAdmin_SupplierAdmin
	obtain_push_consumer/1
	obtain_pull_consumer/1

	CosEventChannelAdmin_EventChannel
	for_consumers/1
	for_suppliers/1
	destroy/1

	CosEventChannelAdmin_ProxyPullConsumer
	connect_pull_supplier/2
	disconnect_pull_consumer/1

	CosEventChannelAdmin_ProxyPushConsumer
	connect_push_supplier/2
	disconnect_push_consumer/1
	push/2

	CosEventChannelAdmin_ProxyPullSupplier
	connect_pull_consumer/2
	disconnect_pull_supplier/1
	pull/1
	try_pull/1

	CosEventChannelAdmin_ProxyPushSupplier
	connect_push_consumer/2
	disconnect_push_supplier/1

