| v

ERLANG

Common Test

Copyright © 2003-2009 Ericsson AB. All Rights Reserved.
Common Test 1.4.6

November 23 2009

Copyright © 2003-2009 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you

may not use this file except in compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
ANY KIND, either express or implied. See the License for the specific language governing rights and
limitations under the License. The Initial Developer of the Original Code is Ericsson AB. All Rights
Reserved..

November 23 2009

Ericsson AB. All Rights Reserved.: Common Test | 1

1.1 Common Test Basics

1 User's Guide

Common Test is a portable application for automated testing. It is suitable for black-box testing of target systems of
any type (i.e. not necessarily implemented in Erlang), aswell asfor white-box testing of Erlang/OTP programs. Black-
box testing is performed via standard O& M interfaces (such as SNMP, HTTP, Corba, Telnet, etc) and, if required, via
user specific interfaces (often called test ports). White-box testing of Erlang/OTP programsis easily accomplished by
calling the target API functions directly from the test case functions. Common Test also integrates usage of the OTP
cover tool for code coverage analysis of Erlang/OTP programs.

Common Test executes test suite programs automatically, without operator interaction. Test progress and results is
printed to logs on HTML format, easily browsed with a standard web browser. Common Test also sends notifications
about progress and results viaan OTP event manager to event handlers plugged in to the system. This way users can
integrate their own programs for e.g. logging, database storing or supervision with Common Test.

Common Test provides libraries that contain useful support functions to fill various testing needs and requirements.
There is for example support for flexible test declarations by means of so called test specifications. There is also
support for central configuration and control of multiple independent test sessions (towards different target systems)
running in parallel.

Common Test isimplemented as aframework based on the OTP Test Server application.

1.1 Common Test Basics

1.1.1 Introduction

The Common Test framework (CT) isatool which can support implementation and automated execution of test cases
towards different types of target systems. The framework is based on the OTP Test Server. Test cases can be run
individually or in batches. Common Test also features a distributed testing mode with central control and logging.
This feature makesit possible to test multiple systems independently in one common session. This can be very useful
e.g. for running automated large-scale regression tests.

The SUT (System Under Test) may consist of one or several target nodes. CT contains a generic test server which
together with other test utilities is used to perform test case execution. It is possible to start the tests from the CT
GUI or from an OS- or Erlang shell prompt. Test suites are files (Erlang modules) that contain the test cases (Erlang
functions) to be executed. Support modules provide functions that the test cases utilize in order to carry out the tests.

Themainideaisthat CT based test programs connect to the target system(s) viastandard O& M interfaces. CT provides
implementations and wrappers of some of these O&M interfaces and will be extended with more interfaces later.
There are a number of target independent interfaces supported in CT such as Generic Telnet, FTP etc. which can be
specialized or used directly for controlling instruments, traffic generators etc.

Common Test is also avery useful tool for white-box testing Erlang code since the test programs can call Erlang API
functionsdirectly. For black-box testing Erlang software, Erlang RPC aswell as standard O& M interfaces can be used.

A test case can handle several connections towards one or several target systems, instruments and traffic generators
in parallel in order to perform the necessary actions for atest. The handling of many connections in parallel is one
of the magjor strengths of Common Test!

1.1.2 Test Suite Organisation

Thetest suites are organized in test directories and each test suite may have a separate data directory. Typically, these
files and directories are version controlled similarly to other forms of source code (possibly by means of a version

2 | Ericsson AB. All Rights Reserved.: Common Test

1.1 Common Test Basics

control system like GIT or Subversion). However, CT does not itself put any requirements on (or has any form of
awareness of) possible file and directory versions.

1.1.3 Support Libraries

Support libraries contain functions that are useful for all test suites, or for test suites in a specific functiona area or
subsystem. In addition to the general support libraries provided by the CT framework, and the various libraries and
applications provided by Erlang/OTP, there might also be aneed for customized (user specific) support libraries.

1.1.4 Suites and Test Cases

Testing is performed by running test suites (sets of test cases) or individual test cases. A test suite isimplemented as
an Erlang module named <sui t e_nane>_SUl TE. er| which contains a number of test cases. A test case is an
Erlang function which tests one or more things. The test case is the smallest unit that the CT test server deals with.

Subsets of test cases, called test case groups, may also be defined. A test case group can have execution properties
associated with it. Execution properties specify whether the test casesin the group should be executed in random order,
in parallel, in sequence, and if the execution of the group should be repeated. Test case groups may aso be nested (i.e.
agroup may, besides test cases, contain sub-groups).

Besides test cases and groups, the test suite may also contain configuration functions. These functions are meant to
be used for setting up (and verifying) environment and state on the SUT (and/or the CT host node), required for the
tests to execute correctly. Examples of operations. Opening a connection to the SUT, initializing a database, running
an installation script, etc. Configuration may be performed per suite, per test case group and per individual test case.

Thetest suite module must conform to a callback interface specified by the CT test server. See the Writing Test Suites
chapter for more information.

A test case is considered successful if it returns to the caller, no matter what the returned value is. A few return
values have special meaning however (such as { ski p, Reason} which indicates that the test case is skipped,
{comrent , Comrent } which printsacomment inthelog for thetest caseand { save_confi g, Confi g} which
makesthe CT test server pass Conf i g tothe next test case). A test casefailureis specified asaruntimeerror (acrash),
no matter what the reason for termination is. If you use Erlang pattern matching effectively, you can take advantage of
this property. The result will be concise and readabl e test case functions that ook much more like scripts than actual
programs. Simple example:

session(_Config) ->
{started, Serverld} = ny_server:start(),
{clients,[]} = ny_server:get_clients(Serverld),

MWld = self(),

connected = ny_server:connect (Serverld, Mld),
{clients,[MIld]} = my_server:get_clients(Serverld),
di sconnected = ny_server:di sconnect (Serverld, Mld),
{clients,[]} = ny_server:get_clients(Serverld),
stopped = ny_server:stop(Serverld).

Asatest suiteruns, al information (including output to st dout) isrecorded in several different log files. A minimum
of information is displayed in the user console (only start and stop information, plus a note for each failed test case).

Theresult from each test caseisrecorded in adedicated HTML log file, created for the particul ar test run. An overview
pagedisplayseachtest caserepresented by row in atable showing total execution time, whether the casewas successful,
failed or skipped, plus an optional user comment. (For a failed test case, the reason for termination is also printed
in the comment field). The overview page has alink to each test case log file, providing simple navigation with any
standard HTML browser.

Ericsson AB. All Rights Reserved.: Common Test | 3

1.2 Installation

1.1.5 External Interfaces

The CT test server requires that the test suite defines and exports the following mandatory or optional callback
functions:

al()

Returns alist of al test casesin the suite. (Mandatory)
suite()

Info function used to return properties for the suite. (Optional)
groups()

For declaring test case groups. (Optional)
init_per_suite(Config)

Suite level configuration function, executed before the first test case. (Optional)
end_per_suite(Config)

Suite level configuration function, executed after the last test case. (Optional)
init_per_group(GroupName, Config)

Configuration function for a group, executed before the first test case. (Mandatory if groups are defined)
end_per_group(GroupName, Config)

Configuration function for a group, executed after the last test case. (Mandatory if groups are defined)
init_per_testcase(TestCase, Config)

Configuration function for a testcase, executed before each test case. (Optional)
end_per_testcase(TestCase, Config)

Configuration function for a testcase, executed after each test case. (Optional)

For each test case the CT test server expects these functions:

Testcasename()

Info function that returns alist of test case properties. (Optional)
Testcasename(Config)

The actual test case function.

1.2 Installation

1.2.1 General information

Thetwo main interfaces for running tests with Common Test are an executable Bourne shell script namedr un_t est
and an erlang module named ct . The shell script will work on Unix/Linux (and Linux-like environments such as
Cygwin on Windows) and thect interface functions can be called from the Erlang shell (or from any Erlang function)
on any supported platform.

The Common Test application isinstalled with the Erlang/OTP system and no explicit installation is required to start
using Common Test by means of the interface functionsin the ct module. If youwishtouser un_t est, however,
this script needs to be generated first, according to the instructions below.

1.2.2 Unix/Linux

Gototheconmon_t est - <vsn> directory, located among the other OTP applications (under the OTPlib directory).
Hereyou execute thei nst al | . sh script with argument | ocal :

$./install.sh |ocal

This generates the executable r un_t est script in the cormon_t est - <vsn>/ pri v/ bi n directory. The script
will include absol ute paths to the Common Test and Test Server application directories, so it's possibleto copy or move
the script to adifferent location on thefile system, if desired, without having to updateit. It's of course possibleto leave
the script under the pr i v/ bi n directory and update the PATH variable accordingly (or create alink or aliasto it).

4 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Writing Test Suites

If you, for any reason, have copied Common Test and Test Server to a different location than the default OTP lib
directory, you can generatear un_t est script with adifferent top level directory, simply by specifying the directory,
instead of | ocal , whenrunningi nst al | . sh. Example:

$ install.sh /usr/local/test_tools

Note that the comon_t est - <vsn>andt est _ser ver - <vsn> directories must be located under the same top
directory. Note aso that the install script does not copy files or update environment variables. It only generates the
run_test script.

Whenever youinstall anew version of Erlang/OTP, ther un_t est script needsto beregenerated, or updated manually
with new directory names (new version numbers), for it to "see" the latest Common Test and Test Server versions.

For moreinformation onther un_t est script and the ct module, please see the reference manual.

1.2.3 Windows

On Windowsiit is very convenient to use Cygwin (Wwww. cygwi n. com) for running Common Test and Erlang, since
it enables you to usether un_t est script for starting Common Test. If you are a Cygwin user, simply follow the
instructions above for generating ther un_t est script.

If you do not use Cygwin, you haveto rely on the API functionsinthect module (instead of r un_t est) for running
Common Test as described initially in this chapter.

If you, for any reason, have chosen to store Common Test and Test Server in adifferent location than the default OTP
lib directory, make sure the ebi n directories of these applications are included in the Erlang code server path (so the
application modules can be loaded).

1.3 Writing Test Suites

1.3.1 Support for test suite authors
Thect module provides the main interface for writing test cases. Thisincludes e.g:

* Functionsfor printing and logging

e Functionsfor reading configuration data

* Function for terminating a test case with error reason

e Function for adding commentsto the HTML overview page

Please see the reference manual for the ct module for details about these functions.

The CT application aso includes other modules named ct _<sonet hi ng> that provide various support, mainly
simplified use of communication protocols such as rpc, snmp, ftp, telnet, etc.

1.3.2 Test suites

A test suite is an ordinary Erlang module that contains test cases. It is recommended that the module has a name on
theform*_SUI TE. er | . Otherwise, the directory and auto compilation function in CT will not be able to locate it
(at least not per default).

Thect . hr| header file must beincluded in al test suitefiles.

Each test suite module must export the function al | / 0 which returns the list of all test case groups and test cases
in that module.

Ericsson AB. All Rights Reserved.: Common Test | 5

1.3 Writing Test Suites

1.3.3 Init and end per suite

Each test suite module may contain the optiona configuration functions init_per_suite/1 and
end_per _sui t e/ 1. If theinit function is defined, so must the end function be.

Ifitexists, i nit _per _suit eiscaledinitialy beforethetest cases are executed. It typically containsinitializations
that are common for al test cases in the suite, and that are only to be performed once. It is recommended to be used
for setting up and verifying state and environment on the SUT (System Under Test) and/or the CT host node, so that
the test cases in the suite will execute correctly. Examples of initial configuration operations. Opening a connection
to the SUT, initializing a database, running an installation script, etc.

end_per _sui t e iscaled as the fina stage of the test suite execution (after the last test case has finished). The
function is meant to be used for cleaning up afteri nit _per _suite.

init_per_suiteandend per_suit e will execute on dedicated Erlang processes, just like the test cases do.
The result of these functions is however not included in the test run statistics of successful, failed and skipped cases.

The argument to i nit _per _sui t e isConfi g, the same key-value list of runtime configuration data that each
test casetakes asinput argument. i ni t _per _sui t e can modify this parameter with information that the test cases
need. The possibly modified Conf i g list is the return value of the function.

Ifinit_per_suite fails, all test cases in the test suite will be skipped automatically (so called auto skipped),
includingend_per _suite.

1.3.4 Init and end per test case

Each test suite module can contain the optional configuration functions i nit_per testcase/2 and
end_per _test case/ 2. If theinit function is defined, so must the end function be.

Ifitexists,i nit _per _t est case iscalledbeforeeachtest caseinthesuite. It typically containsinitialization which
must be done for each test case (analoguetoi ni t _per _sui t e for the suite).

end_per _testcase/ 2 iscalled after each test case has finished, giving the opportunity to perform clean-up after
i nit_per _testcase.

The first argument to these functions is the name of the test case. This value can be used with pattern matching in
function clauses or conditional expressions to choose different initialization and cleanup routines for different test
cases, or perform the same routine for a number of, or all, test cases.

The second argument is the Conf i g key-value list of runtime configuration data, which has the same value as the
listreturned by i nit _per _suite.init_per_testcase/ 2 may modify this parameter or return it asis. The
return valueof i ni t _per _t est case/ 2 ispassed asthe Conf i g parameter to the test case itself.

The return value of end_per _t est case/ 2 isignored by the test server, with exception of the save _config and
fail tuple

It is possible in end_per _t est case to check if the test case was successful or not (which consequently may
determine how cleanup should be performed). This is done by reading the value tagged with t ¢c_st at us from
Confi g. The vaue is either ok, {fai | ed, Reason} (where Reason istinmetrap_ti nmeout, info from
exi t/ 1, or details of arun-timeerror), or { ski pped, Reason} (where Reason is a user specific term).

If init_per_testcase crashes, the test case itself is skipped automatically (so caled auto skipped). If
i nit_per _testcase returns aski p tuple, aso then will the test case be skipped (so called user skipped). In
either event, theend_per _t est case isnever caled.

If it is determined during execution of end_per t est case that the status of a successful test case should be
changed to failed, end_per _t est case may return thetuple: { f ai | , Reason} (where Reason describes why
the test casefails).

i nit_per_testcaseandend_per test case executeonthesameErlang processasthetest caseand printouts
from these configuration functions can be found in the test case log file.

6 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Writing Test Suites

1.3.5 Test cases

The smallest unit that the test server is concerned with is atest case. Each test case can actually test many things, for
example make several callsto the same interface function with different parameters.

It is possible to choose to put many or few tests into each test case. What exactly each test case does is of course up
to the author, but here are some things to keep in mind:

Having many small test casestend to result in extra, and possibly duplicated code, aswell asslow test execution because
of large overhead for initializations and cleanups. Duplicated code should be avoided, e.g. by means of common help
functions, or the resulting suite will be difficult to read and understand, and expensive to maintain.

Larger test cases make it harder to tell what went wrong if it fails, and large portions of test code will potentially be
skipped when errors occur. Furthermore, readability and maintainability suffers when test cases becometoo large and
extensive. Also, the resulting log files may not reflect very well the number of teststhat have actually been performed.

The test case function takes one argument, Conf i g, which contains configuration information such asdat a_di r
and pri v_di r. (See Data and Private Directories for more information about these). The value of Conf i g at the
time of the call, isthe same asthe return value fromi ni t _per _t est case, see above.

Note:

The test case function argument Conf i g should not be confused with the information that can be retrieved from
configuration files (using ct:get_config/[1,2]). The Config argument should be used for runtime configuration of the
test suite and the test cases, while configuration files should typically contain datarelated to the SUT. These two types
of configuration data are handled differently!

Since the Conf i g parameter is alist of key-value tuples, i.e. a data type generaly called a property list, it can be
handled by means of the pr opl i st s module in the OTP st dl i b. A value can for example be searched for and
returnedwiththepr opl i st s: get _val ue/ 2 function. Also, or aternatively, you might want to look in the general
I i sts module asoinstdlib, for useful functions. Normally, the only operations you ever perform on Conf i g
isinsert (adding atuple to the head of thelist) and lookup. Common Test provides a simple macro named ?confi g,
which returns a value of an item in Confi g given the key (exactly like propl i st s: get _val ue). Example:
PrivDir = ?config(priv_dir, Config).

If the test case function crashes or exits purposely, it is considered failed. If it returns a value (no matter what actual
value) it is considered successful. An exception to this rule is the return value { ski p, Reason}. If this tuple is
returned, the test case is considered skipped and gets logged as such.

If the test case returns the tuple { commrent , Conment } , the caseis considered successful and Comrent is printed
out in the overview log file. Thisis by the way equal to calling ct : conmrent (Conmrent) .

1.3.6 Test case info function

For each test case function there can be an additional function with the same name but with no arguments. Thisisthe
test case info function. The test case info function is expected to return alist of tagged tuples that specifies various
properties regarding the test case.

The following tags have special meaning:
tinmetrap

Set the maximum time the test caseis allowed to execute. If the timetrap time is exceeded, the test case failswith
reasonti metrap_tineout.Notethati nit _per_testcaseandend_per testcase areincludedin
the timetrap time.

Ericsson AB. All Rights Reserved.: Common Test | 7

1.3 Writing Test Suites

userdat a

Use this to specify arbitrary data related to the testcase. This data can be retrieved at any time using the
ct: userdat a/ 3 utility function.

sil ent _connecti ons
Please see the Slent Connections chapter for details.
require

Usethisto specify configuration variablesthat are required by thetest case. If the required configuration variables
are not found in any of the test system configuration files, the test case is skipped.

It is also possible to give a required variable a default value that will be used if the variable
is not found in any configuration file. To specify a default value, add a tuple on the form:
{default_config, ConfigVari abl eNane, Val ue} to thetest case info list (the position in the list is
irrelevant). Examples:

testcasel() ->
[{require, ftp},
{default _config, ftp, [{ftp, "my_ftp_host"},
{usernane, "al addin"},
{password, "sesame"}]}}].

testcase2() ->
[{require, unix_telnet, {unix, [telnet, username, password]}},
{default _config, unix, [{telnet, "ny_telnet _host"},
{usernane, "al addin"},
{password, "sesame"}]}}].

See the Config files chapter and thect : r equi re/ [1, 2] function in the ct reference manual for more information
about r equi re.

Note:

Specifying a default value for a required variable can result in a test case always getting executed. This might not
be a desired behaviour!

If timetrap and/or require is not set specifically for a particular test case, default values specified by the
sui t e/ 0 function are used.

Other tags than the ones mentioned above will simply be ignored by the test server.

Example of atest caseinfo function:

reboot _node() ->
[
{timetrap, { seconds, 60}},
{require,interfaces},
{userdat a,
[{description,"System Upgrade: RpuAddition Normal Reboot Node"},
{fts,"http://soneserver.ericsson.se/test_doc4711. pdf"}]}

8 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Writing Test Suites

1.3.7 Test suite info function

Thesui t e/ 0 function can be used in atest suite module to set the default valuesfor thet i net rap andr equi re

tags. If atest case info function also specifies any of these tags, the default value is overruled. See above for more
information.

Other options that may be specified with the suiteinfo list are:

» styl esheet, see HTML Style Sheets.
e userdat a, see Test case info function.
e silent _connecti ons, see Slent Connections.

Example of the suite info function:

suite() ->
[
{timetrap, {m nutes, 10}},
{require, gl obal _nanes},
{userdata, [{info,"This suite tests database transactions."}]},
{silent_connections,[telnet]},
{styl esheet, "db_t esting. css"}
1.

1.3.8 Test case groups

A test case group is a set of test cases that share configuration functions and execution properties. Test case groups
are defined by means of the gr oups/ 0 function according to the following syntax:

groups() -> G oupDefs
Types:

G oupDefs = [GroupDef]

G oupDef = {G oupNane, Properties, G oupsAndTest Cases}

GroupNane = atonq()

G oupsAndTest Cases = [G oupDef | {group, G oupNane} | Test Case]
Test Case = aton()

G oupNane is the name of the group and should be unique within the test suite module. Groups may be nested,
and this is accomplished simply by including a group definition within the G oups AndTest Cases list of another
group. Proper ti es isthelist of execution properties for the group. The possible values are:

Properties = [parallel | sequence | Shuffle | {RepeatType, N}]

Shuffle = shuffle | {shuffle, Seed}

Seed = {integer(),integer(),integer()}

Repeat Type = repeat | repeat_until_all_ok | repeat_until_all_fail |
repeat _until _any_ok | repeat_until_any_fail

N = integer() | forever

If thepar al | el property isspecified, Common Test will executeall test casesinthegroupinparallel. If sequence
is specified, the cases will be executed in a sequence, as described in the chapter Dependencies between test cases

Ericsson AB. All Rights Reserved.: Common Test | 9

1.3 Writing Test Suites

and suites. If shuf f | e is specified, the cases in the group will be executed in random order. Ther epeat property
orders Common Test to repeat execution of the cases in the group a given number of times, or until any, or al, cases
fail or succeed.

Example:

groups() -> [{groupl, [parallel], [testla,testlb]},
{group2, [shuffle, sequence], [test2a,test2b,test2c]}].

To specify in which order groups should be executed (also with respect to test cases that are not part of any group),
tuplesontheform { gr oup, G- oupNane} should be added to theal | / O list. Example:

all () -> [testcasel, {group,groupl}, testcase2, {group,group2}].

Properties may be combined so that eg. if shuffl e, repeat _until _any fail and sequence are al
specified, the test cases in the group will be executed repeatedly and in random order until a test case fails, when
execution isimmediately stopped and the rest of the cases skipped.

Before execution of a group begins, the configuration functioni ni t _per _gr oup(G oupNane, Config) is
called (the function is mandatory if one or more test case groups are defined). The list of tuples returned from this
function is passed to the test cases in the usual manner by means of the Conf i g argument. i ni t _per _group/ 2
is meant to be used for initializations common for the test cases in the group. After execution of the group is finished,
theend_per _group(G oupNane, Confi g function is called. This function is meant to be used for cleaning
up afteri ni t _per _group/ 2.

Note:

init_per testcase/2andend_per testcase/ 2 areawayscalled for each individual test case, no matter
if the case belongs to a group or not.

The properties for a group is always printed on the top of the HTML log fori ni t _per _gr oup/ 2. Also, the total
execution time for a group can be found at the bottom of the log for end_per _gr oup/ 2.

Test case groups may be nested so that sets of groups can be configured with the samei ni t _per _gr oup/ 2 and
end_per _group/ 2 functions. Nested groups may be defined by including a group definition, or a group name
reference, in the test case list of another group. Example:

groups() -> [{groupl, [shuffle], [testla,

{group2, [], [test2a,test2b]},
test1b]},
{group3, [], [{group,group4},
{group, group5}]},
{group4, [parallel], [testda,test4b]},

{group5, [sequence], [testba,test5b,test5c]}].

In the example above, if al | /0 would return group name references in this order: [{group, groupl},

{group, group3}], the order of the configuration functions and test cases will be the following (note that
init_per testcase/2andend_per testcase/2: areasoawayscaled, but notincluded in thisexample
for simplification):

10 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Writing Test Suites

init_per_group(groupl, Config) -> Configl (*)
test 1a(Confi gl1)
init_per_group(group2, Configl) -> Config2
test 2a(Confi g2), test2b(Config2)
end_per _group(group2, Config2)
test 1b(Confi g1)
end_per _group(groupl, Configl)
init_per_group(group3, Config) -> Config3
init_per_group(group4, Config3) -> Config4
test4a(Config4), test4b(Config4) (**)
end_per _group(group4, Confi g4)
init_per_group(group5, Config3) -> Configh
test5a(Config5), test5b(Config5), test5c(Config5)
end_per _group(group5, Confi g5)
end_per _group(group3, Config3)
(*) The order of test case testla, testlb and group2 is not actually
defined since groupl has a shuffle property.
(**) These cases are not executed in order, but in parallel.
Properties are not inherited from top level groups to nested sub-groups. E.g, in the example above, the test casesin
gr oup2 will not be executed in random order (which isthe property of gr oupl).

1.3.9 The parallel property and nested groups

If agroup has a parallel property, its test cases will be spawned simultaneously and get executed in parallel. A test
case is not allowed to execute in parallel with end_per _gr oup/ 2 however, which means that the time it takes to
execute a parallel group is equal to the execution time of the slowest test case in the group. A negative side effect of
running test cases in parallel is that the HTML summary pages are not updated with links to the individual test case
logs until theend_per _gr oup/ 2 function for the group has finished.

A group nested under aparallel group will start executing in parallel with previous (parallel) test cases (no matter what
propertiesthe nested group has). Since, however, test casesare never executed in parallel withi ni t _per _group/ 2
or end_per _group/ 2 of the same group, it's only after a nested group has finished that any remaining parallel
cases in the previous group get spawned.

1.3.10 Repeated groups

A test case group may be repeated a certain number of times (specified by an integer) or indefinitely (specified
by forever). The repetition may also be stopped prematurely if any or al cases fal or succeed, i.e.
if the property repeat _until _any fail, repeat_until _any ok, repeat _until _all _fail, or
repeat _until _all _ ok isused. If the basic r epeat property is used, status of test cases isirrelevant for the
repeat operation.

Ericsson AB. All Rights Reserved.: Common Test | 11

1.3 Writing Test Suites

Itispossibletoreturnthe status of asub-group (ok or failed), to affect the execution of thegroup onthelevel above. This
is accomplished by, in end_per _gr oup/ 2, looking up the value of t c_gr oup_properti es inthe Confi g
list and checking the result of the test cases in the group. If status f ai | ed should be returned from the group as a
result, end_per _group/ 2 should returnthevalue{return_group_resul t, f ai | ed}. The status of a sub-
group istaken into account by Common Test when evaluating if execution of agroup should be repeated or not (unless
thebasicr epeat property is used).

Thetc_group_properties vaueisalist of status tuples, each with the key ok, ski pped and f ai | ed. The
value of a status tuple is alist containing names of test cases that have been executed with the corresponding status
asresult.

Here's an example of how to return the status from a group:

end_per _group(_Goup, Config) ->
Status = ?config(tc_group_result, Config),
case proplists:get_value(failed, Status) of

[1 -> % no failed cases
{return_group_result, ok};
_Failed -> % one or nore failed
{return_group_result,fail ed}
end.

Itisalso possible in end_per _gr oup/ 2 to check the status of a sub-group (maybe to determine what status the
current group should also return). Thisis as simple asillustrated in the example above, only the name of the group is
stored inatuple{ gr oup_r esul t , G oupNane}, which can be searched for in the status lists. Example:

end_per _group(groupl, Config) ->
Status = ?config(tc_group_result, Config),
Failed = proplists:get_value(failed, Status),
case |ists:nenber({group_result,group2}, Failed) of
true ->
{return_group_result,failed};
fal se ->
{return_group_result, ok}
end;

Note:

When atest case group is repeated, the configuration functions, i ni t _per _gr oup/ 2 and end_per _gr oup/ 2,
are also always called with each repetition.

1.3.11 Shuffled test case order

The order that test casesin agroup are executed, is under normal circumstances the same as the order specified in the
test case list in the group definition. With the shuf f | e property set, however, Common Test will instead execute
the test cases in random order.

The user may provide a seed value (a tuple of three integers) with the shuffle property: { shuf f | e, Seed}. This
way, the same shuffling order can be created every time the group is executed. If no seed value is given, Common
Test creates a"random” seed for the shuffling operation (using the return value of er I ang: now()). The seed value

12 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Writing Test Suites

isaways printed to thei nit _per _group/ 2 log file so that it can be used to recreate the same execution order
in a subsequent test run.

Note:
If ashuffled test case group is repeated, the seed will not be reset in between turns.

If asub-group isspecified in agroup withashuf f | e property, the execution order of this sub-groupin relation to the
test cases (and other sub-groups) in the group, is also random. The order of the test casesin the sub-group is however
not random (unless, of course, the sub-group also hasashuf f | e property).

1.3.12 Data and Private Directories

The data directory (dat a_dir) is the directory where the test module has its own files needed for the
testing. The name of the dat a_di r is the the name of the test suite followed by " data". For example,
"some_pat h/ f oo_SUl TE. beam' has the data directory "sone_pat h/ foo_SUl TE data/". Use this
directory for portahility, i.e. to avoid hardcoding directory names in your suite. Since the data directory is stored in
the same directory as your test suite, you should be able to rely on its existence at runtime, even if the path to your test
suite directory has changed between test suite implementation and execution.

Thepriv_dir isthetest suite's private directory. This directory should be used when atest case needs to write to
files. The name of the private directory is generated by the test server, which also creates the directory.

Note:

Y ou should not depend on current working directory for reading and writing data files since thisis not portable. All
scratch filesare to be writteninthepri v_di r and all datafiles should be located in dat a_di r . Note also that the
Common Test server sets current working directory to the test case log directory at the start of every case.

1.3.13 Execution environment

Each test case is executed by a dedicated Erlang process. The process is spawned when the test case
starts, and terminated when the test case is finished. The configuration functions i nit _per _t est case and
end_per _t est case execute on the same process as the test case.

Theconfiguration functionsi ni t _per _suit eandend_per _sui t e execute, liketest cases, on dedicated Erlang
processes.

Thedefault timelimit for atest caseis 30 minutes, unlessat i nmet r ap isspecified either by thetest caseinfo function
orthesui t e/ 0 function.

1.3.14 lllegal dependencies

Even though it is highly efficient to write test suites with the Common Test framework, there will surely be mistakes
made, mainly due to illegal dependencies. Noted below are some of the more frequent mistakes from our own
experience with running the Erlang/OTP test suites.

* Depending on current directory, and writing there:

Thisisacommon error in test suites. It is assumed that the current directory isthe same as what the author used as
current directory when the test case was devel oped. Many test cases even try to write scratch filesto thisdirectory.
Instead dat a_di r and pri v_di r should be used to locate data and for writing scratch files.

Ericsson AB. All Rights Reserved.: Common Test | 13

1.4 Test Structure

Depending on the Clearcase (file version control system) paths and files:

Thetest suitesare stored in Clearcase but are not (necessarily) run within thisenvironment. Thedirectory structure
may vary from test run to test run.

Depending on execution order:

During development of test suites, no assumption should be made (preferrably) about the execution order of the

test cases or suites. E.g. atest case should not assume that a server it depends on, has aready been started by a
previous test case. There are several reasonsfor this:

Firstly, the user/operator may specify the order at will, and maybe a different execution order is more relevant
or efficient on some particular occasion. Secondly, if the user specifies a whole directory of test suites for his/
her test, the order the suites are executed will depend on how the files are listed by the operating system, which
varies between systems. Thirdly, if auser wishesto run only a subset of atest suite, there is no way one test case
could successfully depend on another.

Depending on Unix:

Running unix commands through os: cd are likely not to work on non-unix platforms.

Nested test cases:

Invoking a test case from another not only tests the same thing twice, but also makes it harder to follow what

exactly is being tested. Also, if the called test case fails for some reason, so will the caller. This way one error
gives cause to several error reports, which islessthan ideal.

Functionality common for many test case functions may be implemented in common help functions. If these
functions are useful for test cases across suites, put the help functions into common help modules.

Failure to crash or exit when things go wrong:

Making requests without checking that the return value indicates success may be ok if the test case will fail at a

later stage, but it is never acceptable just to print an error message (into thelog file) and return successfully. Such
test cases do harm since they create a false sense of security when overviewing the test results.

Messing up for subsegquent test cases:

Test cases should restore as much of the execution environment as possible, so that the subsequent test cases will
not crash because of execution order of the test cases. The functionend_per _t est case issuitable for this.

1.4 Test Structure

1.4.1 Test structure

A test is performed by running one or more test suites. A test suite consists of test cases (as well as configuration
functions and info functions). Test cases may be grouped in so called test case groups. A test suiteisan Erlang module
and test cases are implemented as Erlang functions. Test suites are stored in test directories.

1.4.2 Skipping test cases

Itispossibleto skip certain test cases, for exampleif you know beforehand that a specific test case fails. Thismight be
functionality which isn't yet implemented, a bug that is known but not yet fixed or some functionality which doesn't
work or isn't applicable on a specific platform.

There are several different ways to state that one or more test cases should be skipped:

Using ski p_sui t es and ski p_cases termsin test specifications.
Returning { ski p, Reason} fromthei nit _per _testcase/2orinit_per_suite/1functions.
Returning { ski p, Reason} from the execution clause of the test case.

14 | Ericsson AB. All Rights Reserved.: Common Test

1.4 Test Structure

The latter of course means that the execution clause is actually called, so the author must make sure that the test case
does not run.

When atest caseis skipped, it will be noted as SKI PPED in the HTML log.

1.4.3 Definition of terms

Auto skipped test case
When a configuration function fails (i.e. terminates unexpectedly), the test cases that depend on the
configuration function will be skipped automatically by Common Test. The status of the test casesis then "auto
skipped". Test cases are also auto skipped by Common Test if required configuration datais not available at
runtime.

Configuration function
A function in atest suite that is meant to be used for setting up, cleaning up, and/or verifying the state and
environment on the SUT (System Under Test) and/or the Common Test host node, so that a test case (or a set
of test cases) can execute correctly.

Configuration file
A filethat contains datarelated to atest and/or an SUT (System Under Test), e.g. protocol server addresses,
client login details, hardware interface addresses, etc - any data that should be handled as variable in the suite
and not be hardcoded.

Configuration variable
A name (an Erlang atom) associated with a data value read from a configuration file.

data_dir
Data directory for atest suite. This directory contains any files used by the test suite, e.g. additional Erlang
modules, binaries or datafiles.

Info function
A function in atest suite that returns alist of properties (read by the Common Test server) that describes the
conditions for executing the test casesin the site.

Major log file

An overview and summary log file for one or more test suites.
Minor log file

A log file for one particular test case. Also called the test caselog file.
priv_dir

Private directory for atest suite. This directory should be used when the test suite needs to write to files.
run_test
The name of an executable Bourne shell script that may be used on Linux/Unix as an interface for specifying
and running tests with Common Test.
Test case
A singletest included in atest suite. A test caseisimplemented as afunction in atest suite module.
Test case group
A set of test cases that share configuration functions and execution properties. The execution properties specify
whether the test casesin the group should be executed in random order, in parallel, in sequence, and if the
execution of the group should be repeated. Test case groups may also be nested (i.e. a group may, besides test
cases, contain sub-groups).
Test suite
An erlang module containing a collection of test cases for a specific functional area.
Test directory
A directory that contains one or more test suite modules, i.e. agroup of test suites.
The Config argument
A list of key-value tuples (i.e. a property list) containing runtime configuration data passed from the
configuration functions to the test cases.

Ericsson AB. All Rights Reserved.: Common Test | 15

1.5 Examples and Templates

User skipped test case
Thisisthe status of atest case that has been explicitly skipped in any of the ways described in the " Skipping
test cases" section above.

1.5 Examples and Templates

1.5.1 Test suite example

This example test suite shows some tests of a database server.

-modul e(db_dat a_type_SUl TE) .
-include("ct.hrl").

%% Test server call backs

-export([suite/0, all/O,
init_per_suite/l, end_per_suite/1,
init_per_testcase/2, end_per_testcase/2]).

%% Test cases
-export([string/1, integer/1]).

- def i ne(CONNECT_STR, "DSN=sql server; U D=al | adi n; PAD=sesane") .

%% Function: suite() -> Info
%%

%Wolnfo = [tuple()]

%6 List of key/value pairs.

%%

%% Description: Returns list of tuples to set default properties

W for the suite.

Jfp === 22222222

suite() ->
[{timetrap, {m nutes, 1}}].

%% Function: init_per_suite(Config0) -> Configl

%%

%% Config0 = Configl = [tuple()]

%o A list of key/value pairs, holding the test case configuration.
%%

%% Description: Initialization before the suite.

init_per_suite(Config) ->
{ok, Ref} = db:connect(?CONNECT_STR, []),
Tabl eName = db_| i b: uni que_t abl e_nane(),
[{con_ref, Ref },{table_nane, Tabl eNane}| Config].

%% Function: end_per_suite(Config) -> void()

%%

%% Config = [tuple()]

%o A list of key/value pairs, holding the test case configuration.
%%

%% Description: Cleanup after the suite.

16 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Examples and Templates

end_per_suite(Config) ->
Ref = ?config(con_ref, Config),
db: di sconnect (Ref),

%6 Function: init_per_testcase(TestCase, Config0) -> Configl
W

%6 Test Case = atom()

%6 Name of the test case that is about to run.

%% Config0 = Configl = [tuple()]

%o A list of key/value pairs, holding the test case configuration.

W
%6 Description: Initialization before each test case.

L

init_per_testcase(Case, Config) ->
Ref = ?config(con_ref, Config),
Tabl eNane = ?confi g(tabl e_nane, Config),
ok = db:create_tabl e(Ref, Tabl eNanme, table_type(Case)),
Confi g.

%6 Function: end_per_testcase(Test Case, Config) -> void()
W

%% Test Case = atom()

%6 Name of the test case that is finished.

%6 Config = [tuple()]

%o A list of key/value pairs, holding the test case configuration.

W
%% Description: Cl eanup after each test case.

end_per _t estcase(_Case, Config) ->
Ref = ?config(con_ref, Config),
Tabl eNane = ?confi g(tabl e_nane, Config),
ok = db: del ete_t abl e(Ref, Tabl eNane),
ok.

%6 Function: all() -> G oupsAndTest Cases

W

%% G oupsAndTest Cases = [{group, G oupNane} | Test Case]
%% G oupNanme = atomn()

%6 Nane of a test case group.

%% Test Case = at om()

%6 Name of a test case.

W
%6 Description: Returns the |ist of groups and test cases that
W are to be executed.
(0. 7S
all() ->
[string, integer].
(0. 7S

string(Config) ->
insert_and_| ookup(dunmmy_key, "Dummy string", Config).

i nteger(Config) ->
insert_and_| ookup(dummy_key, 42, Config).

insert_and_| ookup(Key, Value, Config) ->

Ericsson AB. All Rights Reserved.: Common Test | 17

1.5 Examples and Templates

Ref = ?config(con_ref, Config),

Tabl eNane = ?confi g(tabl e_nane, Config),

ok = db:insert(Ref, Tabl eNane, Key, Value),
[Val ue] = db: | ookup(Ref, Tabl eNanme, Key),
ok = db: del ete(Ref, Tabl eNanme, Key),

[1 = db: | ookup(Ref, Tabl eNanme, Key),

ok.

1.5.2 Test suite templates

The Erlang mode for the Emacs editor includes two Common Test test suite templates, one with extensive information
inthefunction headers, and onewith minimal information. A test suitetemplate providesaquick start for implementing
a suite from scratch and gives you a good overview of the available callback functions. Here are the templates in
question:

Large Common Test suite

9B Fil e : exanpl e_SU TE. er|
9886 Aut hor

9%8%6 Descri ption :

L0

%86 Created :

- modul e(exanpl e_SUl TE) .

%% Note: This directive should only be used in test suites.
-conpi |l e(export_all).

-include("ct.hrl").

%% Function: suite() -> Info
%%

Wolnfo = [tuple()]

%6 List of key/value pairs.

Who

%% Description: Returns list of tuples to set default properties
W for the suite.

Who

%% Not e: The suite/0 function is only neant to be used to return
9%hb def aul t data val ues, not perform any other operations.

R e R
suite() ->

[{tinetrap, {m nutes, 10}}].
R e R
%6 Function: init_per_suite(Config0) ->
%0 Configl | {skip, Reason} | {skip_and_save, Reason, Confi g1}
Who

9% Config0 = Configl = [tuple()]

%o A list of key/value pairs, holding the test case configuration.
%% Reason = term()

%6 The reason for skipping the suite.

W

%% Description: Initialization before the suite.

18 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Examples and Templates

W
%% Note: This function is free to add any key/value pairs to the Config
%0 vari abl e, but should NOT alter/renmove any existing entries.

R e T R
init_per_suite(Config) ->

Confi g.
R e T R
%6 Function: end_per_suite(Config0) -> void() | {save_config, Configl}
W

%% Config0 = Configl = [tuple()]
%o A list of key/value pairs, holding the test case configuration.

W
%% Description: Cl eanup after the suite.
L S
end_per_suite(_Config) ->

ok.
OB =----ccccacccccccccccccccccccacccacccccccmcccmccccccacccacccaacaaa--
%6 Function: init_per_group(G oupNanme, Config0Q) ->
L) Configl | {skip, Reason} | {skip_and_save, Reason, Confi g1}
W

%% G oupNanme = atomn()

%6 Nane of the test case group that is about to run.

%% Config0 = Configl = [tuple()]

%o A list of key/value pairs, holding configuration data for the group.
%% Reason = term()

%6 The reason for skipping all test cases and subgroups in the group.

W
%06 Description: Initialization before each test case group.
R e T R
init_per_group(_G oupNane, Config) ->
Confi g.
R e T R
%6 Function: end_per_group(G oupNane, Config0) ->
L) voi d() | {save_config, Configl}
W

%% G oupNanme = atomn()

%6 Nane of the test case group that is finished.

%% Config0 = Configl = [tuple()]

%o A list of key/value pairs, holding configuration data for the group.
W

%% Description: Cl eanup after each test case group.

L S
end_per _group(_G oupNane, _Config) ->

ok.
OB =----ccccacccccccccccccccccccacccacccccccmcccmccccccacccacccaacaaa--
%6 Function: init_per_testcase(TestCase, Config0) ->
L) Configl | {skip, Reason} | {skip_and_save, Reason, Confi g1}
W

%6 Test Case = atom()

%6 Name of the test case that is about to run.

%% Config0 = Configl = [tuple()]

%o A list of key/value pairs, holding the test case configuration.
%% Reason = term()

%6 The reason for skipping the test case.

W

%6 Description: Initialization before each test case.

W

%% Note: This function is free to add any key/value pairs to the Config
% vari abl e, but should NOT alter/renmove any existing entries.

init_per_testcase(_TestCase, Config) ->

Ericsson AB. All Rights Reserved.: Common Test | 19

1.5 Examples and Templates

Confi g
R R
%% Function: end_per_testcase(Test Case, Config0) ->
L) voi d() | {save_config, Configl} | {fail, Reason}
W

%% Test Case = atom()
%6 Name of the test case that is finished.
%% Config0 = Configl = [tuple()]
%o A list of key/value pairs, holding the test case configuration.
%% Reason = term()
%6 The reason for failing the test case.
W
%6 Description: C eanup after each test case.
R R
end_per _t estcase(_Test Case, _Config) ->
ok.

%6 Function: groups() -> [G oup]

W

%6 G oup = { G oupNane, Properties, G oupsAndTest Cases}

%% G oupNanme = atom()

%6 The name of the group.

%6 Properties = [parallel | sequence | Shuffle | {RepeatType, N}]
%6 Goup properties that nmay be conbi ned.

%6 G oupsAndTest Cases = [Goup | {group, GoupNane} | Test Case]
%% Test Case = atom()

%6 The name of a test case.

%6 Shuffle = shuffle | {shuffle, Seed}

%6 To get cases executed in random order.

%6 Seed = {integer(),integer(),integer()}

%6 Repeat Type = repeat | repeat_until_all_ok | repeat_until_all_fail |

%% repeat _until _any_ok | repeat_until _any_fail
%6 To get execution of cases repeated.

%6 N = integer() | forever

W

%6 Description: Returns a |list of test case group definitions.
B R O SE e
groups() ->

(1.

%6 Function: all() -> G oupsAndTest Cases | {skip, Reason}
W

%% G oupsAndTest Cases = [{group, G oupNane} | Test Case]
%% G oupNanme = atom()

%6 Nane of a test case group.

%% Test Case = atom()

%6 Name of a test case.

%% Reason = term()

%6 The reason for skipping all groups and test cases.
W

%% Description: Returns the |ist of groups and test cases that
W are to be executed.

all () ->

20 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Examples and Templates

%6 Function: TestCase() -> Info
W

Wolnfo = [tuple()]

%6 List of key/value pairs.

W

%% Description: Test case info function - returns |list of tuples to set
L) properties for the test case.

W

%% Note: This function is only neant to be used to return a |ist of
% val ues, not perform any other operations.

(1.

%6 Function: Test Case(Config0) ->

L) ok | exit() | {skip, Reason} | {comrent, Corment} |

%o {save_confi g, Confi g1} | {skip_and_save, Reason, Confi g1}
W

%% Config0 = Configl = [tuple()]

%o A list of key/value pairs, holding the test case configuration.

%% Reason = term()

%6 The reason for skipping the test case.

%6 Commrent = term()

%6 A comment about the test case that will be printed in the htnl | og.

W

%6 Description: Test case function. (The name of it nust be specified in
%o the all/0 list or in a test case group for the test case
W to be executed).

[0 7
nmy_test_case(_Config) ->

ok.

Small Common Test suite

%Weo File : exanpl e_SUI TE. er|
%886 Aut hor

%86 Description :

0%

%86 Created :

- modul e(exanpl e_SUl TE) .
-conpi |l e(export_all).
-include("ct.hrl").

%6 Function: suite() -> Info
Wolnfo = [tuple()]

suite() ->
[{timetrap, {seconds, 30}}].

R e T
%6 Function: init_per_suite(Config0) ->
%o Configl | {skip, Reason} | {skip_and_save, Reason, Confi g1}

%% Config0 = Configl = [tuple()]
%% Reason = term()

init_per_suite(Config) ->

Ericsson AB. All Rights Reserved.: Common Test | 21

1.5 Examples and Templates

%% Function: end_per_suite(Config0) -> void() | {save_config, Configl}
%% Config0 = Configl = [tuple()]

R R
end_per_suite(_Config) ->

ok.
R R
%6 Function: init_per_group(G oupNane, Config0Q) ->
%o Configl | {skip, Reason} | {skip_and_save, Reason, Confi g1}

%% G oupNanme = atom()
%% Config0 = Configl = [tuple()]
%% Reason = term()

R R
init_per_group(_G oupNane, Config) ->

Confi g.
R R
%% Function: end_per_group(G oupNane, Config0) ->
L) voi d() | {save_config, Configl}

%% G oupNanme = atom()
%% Config0 = Configl = [tuple()]

R R
end_per _group(_G oupNane, _Config) ->

ok.
R R
%6 Function: init_per_testcase(TestCase, Config0) ->
L) Configl | {skip, Reason} | {skip_and_save, Reason, Confi g1}

%6 Test Case = atom()
%% Config0 = Configl = [tuple()]
%% Reason = term()

R R
init_per_testcase(_TestCase, Config) ->

Confi g.
R R
%6 Function: end_per_testcase(Test Case, Config0) ->
L) voi d() | {save_config, Configl} | {fail, Reason}

%% Test Case = atom()
%% Config0 = Configl = [tuple()]
%% Reason = term()

end_per _t estcase(_Test Case, _Config) ->
ok.

%6 Function: groups() -> [G oup]

%6 G oup = { G oupNane, Properties, G oupsAndTest Cases}

%% G oupNanme = atom()

%6 Properties = [parallel | sequence | Shuffle | {RepeatType, N}]

%6 G oupsAndTest Cases = [Goup | {group, GoupNane} | Test Case]

%% Test Case = atom()

%6 Shuffle = shuffle | {shuffle,{integer(),integer(),integer()}}

%6 Repeat Type = repeat | repeat_until_all_ok | repeat_until_all_fail |

%% repeat _until _any_ok | repeat_until _any_fail
%o N = integer() | forever
B R O SE e
groups() ->
[1.
B R O SE e

%6 Function: all() -> G oupsAndTest Cases | {skip, Reason}

22 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Running Test Suites

%% G oupsAndTest Cases = [{group, G oupNane} | Test Case]
%% G oupNanme = atomn()
%6 Test Case = atom()
%% Reason = term()
L S
all () ->
[my_test_case].

%6 Function: TestCase() -> Info

Wolnfo = [tuple()]

L S
my_test_case() ->

(1.

[0 7
%6 Function: Test Case(Config0) ->

%o ok | exit() | {skip, Reason} | {comrent, Corment} |

L) {save_confi g, Confi gl} | {skip_and_save, Reason, Confi g1}

%% Config0 = Configl = [tuple()]
%% Reason = term()
%6 Commrent = term()
L S
my_test_case(_Config) ->
ok.

1.6 Running Test Suites

1.6.1 Using the Common Test Framework

The Common Test Framework provides a high level operator interface for testing. It adds the following features to
the Erlang/OTP Test Server:

e Automatic compilation of test suites (and help modules).

* Creation of additional HTML pages for better overview.

e Single command interface for running al available tests.

» Handling of configuration files specifying data related to the System Under Test (and any other variable data).

e Maode for running multiple independent test sessionsin parallel with central control and configuration.

1.6.2 Automatic compilation of test suites and help modules

When Common Test starts, it will automatically attempt to compile any suites included in the specified tests. If
particular suites have been specified, only those suites will be compiled. If a particular test object directory has been
specified (meaning al suitesin thisdirectory should be part of the test), Common Test runs make:all/1 in the directory
to compile the suites.

If compilation should fail for one or more suites, the compilation errors are printed to tty and the operator is asked if
the test run should proceed without the missing suites, or be aborted. If the operator chooses to proceed, it is noted
inthe HTML log which tests have missing suites.

Any help module (i.e. regular Erlang module with name not ending with"_SUITE") that residesin the same test object
directory asasuite which is part of the test, will also be automatically compiled. A help module will not be mistaken
for atest suite (unlessit hasa"_ SUITE" name of course). All help modules in a particular test object directory are
compiled no matter if al or only particular suitesin the directory are part of the test.

If test suites or help modules include header files stored in other locations than the test directory, you may
specify these include directories by means of the -i ncl ude flag with run_t est, or the i ncl ude option

Ericsson AB. All Rights Reserved.: Common Test | 23

1.6 Running Test Suites

with ct: run_t est/ 1. In addition to this, an include path may be specified with an OS environment variable;
CT_I NCLUDE_PATH. Example (bash):

$ export CT_I NCLUDE_PATH=~t est user/ comon_suite_fil es/incl ude: ~t est user/
common_lib files/include

Common Test will pass al include directories (specified either with the i ncl ude flag/option, or the
CT_I NCLUDE_PATH variable, or both) to the compiler.

It isalso possible to specify include directories in test specifications (see below).

If the user wants to run all test suites for atest object (or OTP application) by specifying only the top directory (e.g.
withthedi r start flag/option), Common Test will primarily look for test suite modulesin asubdirectory namedt est .
If this subdirectory doesn't exist, the specified top directory is assumed to be the actual test directory, and test suites
will be read from there instead.

It is possible to disable the automatic compilation feature by using the- no_aut o_conpi | e flagwithrun_t est,
orthe{aut o_conpi l e, f al se} optionwithct: run_t est/ 1. With automatic compilation disabled, the user
isresponsible for compiling the test suite modules (and any help modules) before the test run. Common Test will only
verify that the specified test suites exist before starting the tests.

1.6.3 Running tests from the UNIX command line
Thescriptr un_t est can be used for running tests from the Unix/Linux command line, e.g.
e run_test -config <configfilenames> -dir <dirs>
e run_test -config <configfilenanes> -suite <suitesw thfull path>
e run_test -config <configfilenanes> -suite <suitew thfullpath> -group
<gr oupnames> -case <casenanmes>
Examples:
$ run_test -config $CFGS/ sysl.cfg $CFGS/ sys2.cfg -dir $SYS1_TEST $SYS2_TEST
$ run_test -suite $SYS1 TEST/ setup_SU TE $SYS2_TEST/ confi g_SUl TE
$ run_test -suite $SYS1_TEST/setup_SUl TE -case start stop
$ run_test -suite $SYS1 TEST/setup SUI TE -group installation -case start stop
Other flags that may be used withr un_t est :

e -logdir <dir>,specifieswherethe HTML log files are to be written.

« -refresh_| ogs, refreshesthetop level HTML index files.

e -vts, start web based GUI (see below).

e -shel |, start interactive shell mode (see below).

e -step [step_opts], stepthrough test cases using the Erlang Debugger (see below).
e -spec <testspecs>, usetest specification asinput (see below).

e -allow user _terns,alowsuser specific termsin atest specification (see below).

e -silent_connections [conn_types],telsCommon Test to suppress printouts for specified
connections (see below).

» -stylesheet <css_fil e>, pointsout auser HTML style sheet (see below).

e -cover <cover_cfg fil e>,toperform code coverage test (see Code Coverage Analysis).
« -event_handl er <event _handl er s>, toinstal event handlers.

e -incl ude, specifiesinclude directories (see above).

* -no_auto_conpil e, disablesthe automatic test suite compilation feature (see above).

« -repeat <n>,tellsCommon Test to repeat the tests n times (see below).

24 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Running Test Suites

e -duration <tinme>,tellsCommon Test to repeat the tests for duration of time (see below).

e -until <stop_tinme>,tellsCommon Test to repeat the tests until stop_time (see below).

« -force_stop,ontimeout, thetest run will be aborted when current test job is finished (see below).
« -decrypt_key <key>, providesadecryption key for encrypted configuration files.

o -decrypt_file <key_fil e>, pointsout afile containing a decryption key for encrypted configuration
files.

e -basi c_ht nl, switches off html enhancements that might not be compatible with older browsers.

Note:
Directories passed to Common Test may have either relative or absolute paths.

Note:

Arbitrary start flagsto the Erlang Runtime System may also be passed as parameterstor un_t est . Itis, for example,
useful to be able to pass directories that should be added to the Erlang code server search path with the - pa or - pz
flag. If you have common help- or library modulesfor test suites (separately compiled), stored in other directoriesthan
the test suite directories, these help/lib directories are preferrably added to the code path this way. Example:

$ run_test -dir ./chat_server -logdir ./chat_server/testlogs -pa $PWY
chat _server/ebin

Note how in this example, the absolute path of thechat _ser ver/ ebi n directory is passed to the code server. This
isessential sincerelative paths are stored by the code server asrelative, and Common Test changesthe current working
directory of the Erlang Runtime System during the test run!

For details on how to generatether un_t est script, see the Installation chapter.

1.6.4 Running tests from the Web based GUI

The web based GUI, VTS, is started with ther un_t est script. From the GUI you can load config files, and select
directories, suites and cases to run. Y ou can also state the config files, directories, suites and cases on the command
line when starting the web based GUI.

e run_test -vts
e run_test -vts -config <configfil enane>

e run_test -vts -config <configfilenane> -suite <suitew thfull path> -case
<casenane>

From the GUI you can run tests and view the result and the logs.

Notethat r un_t est - vt s will try to open the Common Test start page in an existing web browser window or start
the browser if it is not running. Which browser should be started may be specified with the browser start command
option:

run_test -vts -browser <browser_start_cnd>
Example:
$ run_test -vts -browser 'firefox&

Note that the browser must run as a separate OS process or VTS will hang!

Ericsson AB. All Rights Reserved.: Common Test | 25

1.6 Running Test Suites

If no specific browser start command is specified, netscape will be the default browser on Unix platforms and Internet
Explorer on Windows. If Common Test fails to start a browser automatically, start your favourite browser manually
instead and type in the URL that Common Test displaysin the shell.

1.6.5 Running tests from the Erlang shell or from an Erlang program

Common Test provides an Erlang API for running tests. The main (and most flexible) function for specifying and
executing testsis called ct : run_t est/ 1. This function takes the same start parameters asther un_t est script
described above, only the flags are instead given as options in a list of key-value tuples. E.g. a test specified with
run_test like

$run_test -suite ./my_SUITE -logdir ./results

iswithct : run_t est/ 1 specified as:

1> ct:run_test([{suite,"./ny_SUTE"},{logdir,"./results"}]).
For detailed documentation, please seethe ct manual page.

1.6.6 Running the interactive shell mode

Y ou can start Common Test in aninteractive shell mode where no automatic testing is performed. Instead, in thismode,
Common Test starts its utility processes, installs configuration data (if any), and waits for the user to call functions
(typicaly test case support functions) from the Erlang shell.

The shell mode is useful e.g. for debugging test suites, for analysing and debugging the SUT during "simulated" test
case execution, and for trying out various operations during test suite development.

To invoke the interactive shell mode, you can start an Erlang shell manually and call ct : i nst al | / 1 toinstall any
configuration data you might need (use[] asargument otherwise), thencal ct: start _i nteracti ve/ 0 to start
Common Test. If you usether un_t est script, you may start the Erlang shell and Common Test in the same go by
usingthe- shel | and, optionally, the- conf i g flag:

e run_test -shell
e run_test -shell -config <configfil ename>

If no config fileis given with ther un_t est command, awarning will be displayed. If Common Test has been run
from the same directory earlier, the same config file(s) will be used again. If Common Test has not been run from this
directory before, no config fileswill be available.

If any functions using "required config data" (e.g. ct_telnet or ct_ftp functions) are to be called from the erlang shell,
config datamust first berequiredwithct : requi re/ [1, 2] . Thisisequivalenttoar equi r e statement in the Test
Suite Info Function or in the Test Case Info Function.

Example:

1> ct:require(uni x_tel net, unix).

ok

2> ct _tel net:open(unix_telnet).

{ ok, <0. 105. 0>}

4> ct_telnet:cnd(unix_telnet, "lIs .").
{ok,["lIs .","filel ...",...]}

Everything that Common Test normally prints in the test case logs, will in the interactive mode be written to alog
named ct | og. ht M in the ct _run. <ti nest anp> directory. A link to this file will be available in the file
named | ast _i nteractive. ht m inthedirectory from which you executed r un_t est . Currently, specifying
adifferent root directory for the logs than the current working directory, is not supported.

26 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Running Test Suites

If you wish to exit the interactive mode (e.g. to start an automated test runwithct : run_t est/ 1), call the function
ct:stop_interactive/0. This shuts down the running ct application. Associations between configuration
names and data created with r equi r e are consequently deleted. ct : start i nteracti ve/ 0 will get you back
into interactive mode, but the previous state is not restored.

1.6.7 Step by step execution of test cases with the Erlang Debugger

By meansof run_test -step [opts], orby passing the{ st ep, Opt s} optiontoct:run_test/1,itis
possible to get the Erlang Debugger started automatically and use its graphical interface to investigate the state of the
current test case and to execute it step by step and/or set execution breakpoints.

If no extraoptions are given with the st ep flag/option, breakpointswill be set automatically on the test cases that are
to be executed by Common Test, and those functions only. If the step option conf i g is specified, breakpoints will
also be initially set on the configuration functions in the suite, i.e. i nit _per_suite/ 1, end_per _suite/ 1,
init_per_testcase/2andend_per _testcase/?2.

Common Test enables the Debugger auto attach feature, which meansthat for every new interpreted test case function
that starts to execute, a new trace window will automatically pop up. (This is because each test case executes on a
dedicated Erlang process). Whenever a new test case starts, Common Test will attempt to close the inactive trace
window of the previous test case. However, if you prefer that Common Test leaves inactive trace windows, use the
keep_i nacti ve option.

The step functionality can be used together with the sui t e and the sui t e + case/ t est case flag/option, but
not together with di r .

1.6.8 Using test specifications

The most expressive way to specify what to test is to use a so called test specification. A test specification is a
sequence of Erlang terms. The terms may be declared in a text file or passed to the test server at runtime as a list
(seerun_t est spec/ 1 inthemanual pagefor ct). There are two general types of terms. configuration terms and
test specification terms.

With configuration terms it is possible to import configuration data (similar to run_t est - confi g), specify
HTML log directories (similar tor un_t est -1 ogdi r), give aiases to test nodes and test directories (to make a
specification easier to read and maintain), enable code coverage analysis (see the Code Coverage Analysis chapter)
and specify event_handler plugins (see the Event Handling chapter). There is also a term for specifying include
directories that should be passed on to the compiler when automatic compilation is performed (similartor un_t est
-incl ude, see above).

With test specification terms it is possible to state exactly which tests should run and in which order. A test term
specifies either one or more suites or one or more test cases. An arbitrary number of test terms may be declared in
sequence. A test term can also specify one or more test suites or test cases to be skipped. Skipped suites and cases are
not executed and show up in the HTML test log as SKIPPED.

Note:

Itisnot yet possibleto specify test case groupsin test specifications. Thiswill be supported in asoon upcoming release.

Below isthetest specification syntax. Test specifications can be used to run tests both in asingle test host environment
and in adistributed Common Test environment. Node parameters are only relevant in the latter (see the chapter about
running Common Test in distributed mode for information). For details on the event_handler term, see the Event
Handling chapter.

Config terms:

Ericsson AB. All Rights Reserved.: Common Test | 27

1.6 Running Test Suites

{node, NodeAlias, Node}.

{cover, Cover SpecFile}.

{cover, NodeRef, Cover SpecFile}.
{include, IncludeDirs}.

{incl ude, NodeRefs, IncludeDirs}.
{config, ConfigFiles}.

{config, NodeRefs, ConfigFiles}.
{alias, DirAlias, Dir}.

{logdir, LogDir}.

{l ogdir, NodeRefs, LogDir}.

{event _handl er,
{event _handl er,
{event _handl er,

Event Handl er s} .

NodeRef s,

Event Handl er s,

Event Handl er s} .
InitArgs}.

{event _handl er, NodeRefs, EventHandlers, InitArgs}.
Test terms:

{suites, DirRef, Suites}.

{suites, NodeRefs, DirRef, Suites}.

{cases, DirRef, Suite, Cases}.

{cases, NodeRefs, DirRef, Suite, Cases}.

{skip_suites, DirRef, Suites, Conmment}.

{skip_suites, NodeRefs, DirRef, Suites, Comment}.

{skip_cases, DirRef, Suite, Cases, Conment}.

{ski p_cases, NodeRefs, DirRef, Suite, Cases, Comment}.
Types:

NodeAl i as = atom()

Node = node()

NodeRef = NodeAlias | Node | master

NodeRef s = all _nodes | [NodeRef] | NodeRef

Cover SpecFile = string()

I ncl udeDirs = string() | [string()]

ConfigFiles = string() | [string()]

DirAlias = atom()

Dir = string()

LogDi r = string()

Event Handl ers = aton{) | [aton()]

I nitArgs = [term()]

Di r Ref =DirAlias | Dr

Sui tes = aton() | [atom()] | all

Cases = aton() | [atonm()] | all

Comment = string() | ""
Example:

28 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Running Test Suites

{logdir, "/home/test/|ogs"}.

{config, "/home/test/t1l/cfg/config.cfg"}.
{config, "/home/test/t2/cfg/config.cfg"}.
{config, "/home/test/t3/cfg/config.cfg"}.

{alias, t1, "/home/test/t1"}.
{alias, t2, "/home/test/t2"}.
{alias, t3, "/home/test/t3"}.

{suites, t1, all}.

{skip_suites, t1, [t1B SU TE, t1D SU TE], "Not i nplenmented"}.
{skip_cases, t1, t1A SU TE, [test3,test4], "lrrelevant"}.
{skip_cases, t1, t1C SU TE, [testl], "lgnore"}.

{suites, t2, [t2B SUITE, t2C_SU TE]}.
{cases, t2, t2A SUTE, [test4,testl,test7]}.

{skip_suites, t3, all, "Not inplenented"}.

The example specifies the following:

The specified logdir directory will be used for storing the HTML log files (in subdirectories tagged with node
name, date and time).

The variablesin the specified test system config fileswill be imported for the test.
Aliases are given for three test system directories. The suites in this example are stored in "/home/test/tX /test".

Thefirst test to run includes al suites for system t1. Excluded from the test are however the t1B and t1D suites.
Also test casestest3 and test4 in t1A aswell asthetestl case in t1C are excluded from the test.

Secondly, the test for system t2 should run. The included suites are t2B and t2C. Included are al so test cases
test4, testl and test7 in suite t2A. Note that the test cases will be executed in the specified order.

Lastly, all suitesfor systemst3 are to be completely skipped and this should be explicitly noted in the log files.

Itispossiblefor the user to provide atest specification that includes (for Common Test) unrecognizableterms. If thisis
desired, the- al | ow_user _t er ns flag should be used when starting testswith r un_t est . Thisforces Common
Test to ignore unrecognizable terms. Note that in this mode, Common Test is not able to check the specification for
errors as efficiently as if the scanner runs in default mode. If ct: run_t est/ 1 is used for starting the tests, the
relaxed scanner mode is enabled by means of thetuple: { al | ow_user _terns, true}

1.6.9 Log files

As the execution of the test suites proceed, events are logged in four different ways:

Text to the operator's console.

Suite related information is sent to the major log file.

Case related information is sent to the minor log file.

The HTML overview log file gets updated with test results.

A link to all runs executed from a certain directory iswritten in the log named "al_runs.html" and direct links
to al tests (the latest results) are written to the top level "index.html".

Typically the operator, who may run hundreds or thousands of test cases, doesn't want to fill the console with details
about, or printouts from, the specific test cases. By default, the operator will only see:

A confirmation that the test has started and information about how many test cases will be executed totally.
A small note about each failed test case.
A summary of all the run test cases.

Ericsson AB. All Rights Reserved.: Common Test | 29

1.6 Running Test Suites

e A confirmation that the test run is complete.

* Some special information like error reports and progress reports, printouts written with erlang:display/1, or
io:format/3 specifically addressed to a receiver other than st andar d_i o (e.g. the default group leader process
‘user).

If/when the operator wants to dig deeper into the general results, or the result of a specific test case, he should do so

by following the linksin the HTML presentation and take alook in the major or minor log files. The "all_runs.html"

pageisapractical starting point usualy. It'slocated in| ogdi r and contains alink to each test run including a quick
overview (date and time, node name, number of tests, test names and test result totals).

An"index.html" pageiswritten for each test run (i.e. stored in the "ct_run" directory tagged with node name, date and
time). This file gives a short overview of al individual tests performed in the same test run. The test names follow
this convention:

e TopLevelDir.TestDir (all suitesin TestDir executed)

» TopLevelDir.TestDir:suites (specific suites were executed)

e TopLevelDir.TestDir.Suite (all casesin Suite executed)

e TopLevelDir.TestDir.Suite: cases (specific test cases were executed)
» TopLevelDir.TestDir.Suite.Case (only Case was executed)

Onthetest run index page thereisalink to the Common Test Framework log file in which information about imported
configuration data and general test progressiswritten. Thislog fileis useful to get snapshot information about the test
run during execution. It can also be very helpful when analyzing test results or debugging test suites.

On the test run index page it is noted if atest has missing suites (i.e. suites that Common Test has failed to compile).
Names of the missing suites can be found in the Common Test Framework log file.

The major logfile shows a detailed report of the test run. It includes test suite and test case names, execution time, the
exact reason for failures etc. The information is available in both afile with textual and with HTML representation.
The HTML file shows a summary which gives a good overview of the test run. It also haslinksto each individual test
case log file for quick viewing with an HTML browser.

The minor log file contain full details of every single test case, each one in a separate file. This way the files should
be easy to compare with previous test runs, even if the set of test cases change.

Which information goes where is user configurable via the test server controller. Three threshold values determine
what comes out on screen, and in the major or minor log files. See the OTP Test Server manual for information. The
contents that goes to the HTML log fileis fixed however and cannot be altered.

The log files are written continously during a test run and links are always created initially when atest starts. This
makes it possible to follow test progress ssimply by refreshing pages in the HTML browser. Statistics totals are not
presented until atest is complete however.

1.6.10 HTML Style Sheets

Common Test includes the optional feature to use HTML style sheets (CSS) for customizing user printouts. The
functionsin ct that print to atest case HTML log file (I og/ 3 and pal / 3) accept Cat egor y as first argument.
With this argument it's possible to specify a category that can be mapped to a selector in a CSS definition. Thisis
useful especially for coloring text differently depending on the type of (or reason for) the printout. Say you want one
color for test system configuration information, a different one for test system state information and finally one for
errors detected by the test case functions. The corresponding style sheet may look like this:

<styl e>
div.ct_internal { background:|ightgrey; color:black }
di v. def aul t { background:|ightgreen; color:black }

div.sys_config { background: bl ue; color:white }

30 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Running Test Suites

div.sys_state { background: yel | ow; col or: bl ack }
div.error { background:red; color:white }
</styl e>

To install the CSS file (Common Test inlines the definition in the HTML code), the name may be provided when
executing r un_t est . Example:

$ run_test -dir $TEST/prog -styl esheet $TEST/styl es/test_categories.css

Categories in a CSSfile installed with the - st yl esheet flag are on aglobal test level in the sense that they can
be used in any suite which is part of the test run.

It isalso possibleto install style sheets on a per suite and per test case basis. Example:

- modul e(my_SUl TE) .
suite() ->[..., {stylesheet,"suite categories.css"}, ...].

nmy_testcase(_) ->

ct:log(sys_config, "Test node version: ~p", [Versionlnfo]),
ct:log(sys_state, "Connections: ~p", [Connectionlnfo]),
ct:pal (error, "Error ~p detected! Info: ~p", [SoneFault,Errorinfo]),

ct:fail (SomeFault).

If the style sheet isinstalled asin thisexample, the categories are private to the suitein question. They can be used by all
test casesin the suite, but can not be used by other suites. A suite private style sheet, if specified, will be used in favour
of aglobal style sheet (one specified with the - st yl esheet flag). A stylesheet tuple (as returned by sui t e/ 0
above) can also bereturned from atest caseinfo function. In this casethe categories specified in the style sheet can only
be used in that particul ar test case. A test case private style sheet isused in favour of asuite or global level style sheet.

In a tuple {styl esheet, CSSFil e}, if CSSFile is specified with a path, eg. "$TEST/ styl es/
cat egori es. css", thisfull name will be used to locate the file. If only the file name is specified however, e.g.
"categories.css', then the CSSfile is assumed to be located in the data directory, dat a_di r, of the suite. The latter
usage is recommended since it is portable compared to hard coding path names in the suite!

The Cat egory argument in the example above may have the value (atom) sys_confi g (white on blue),
sys_st at e (black on yellow) or er r or (white on red).

If the Cat egor y argument is not specified, Common Test will usethe CSS selector di v. def aul t for the printout.
For this reason auser supplied style sheet must include this selector. Also the selector di v. ct _i nt er nal must be
included. Hence a minimal user style sheet should look like this (which is also the default style sheet Common Test
usesif no user CSSfileis provided):

<styl e>

div.ct_internal { background:lightgrey; color:black }
di v. defaul t { background:|ightgreen; color:black }
</styl e>

Ericsson AB. All Rights Reserved.: Common Test | 31

1.6 Running Test Suites

1.6.11 Repeating tests

Y ou can order Common Test to repeat the tests you specify. Y ou can choose to repeat tests a certain number of times,
repeat testsfor a specific period of time, or repeat tests until aparticular stop timeisreached. If repetition is controlled
by means of time, it is aso possible to specify what action Common Test should take upon timeout. Either Common
Test performsall testsin the current run before stopping, or it stops as soon asthe current test job isfinished. Repetition
can be activated by means of r un_t est start flags, or tuplesinthect : run: t est/ 1 option list argument. The
flags (options in parenthesis) are:

e -repeat N ({repeat, N}),whereNisapositive integer.

e ~-duration DurTime ({duration, DurTi ne}),whereDur Ti ne isthe duration, see below.
e -until StopTinme ({until, StopTi ne}),whereStopTi ne isfinishtime, see below.

e -force_stop ({force_stop,true})

The duration time, DurTinme, is specified as HHWESS. Example: -duration 012030 or
{duration,"012030"}, means the tests will be executed and (if time allows) repeated, until timeout occurs
after 1 h, 20 min and 30 secs. St opTi e can be specified as HHMVSS and is then interpreted as a time today (or
possibly tomorrow). St opTi e can also be specified as YYMo Mo DDHHWVSS. Example: - unti | 071001120000
or{until,"071001120000"}, which means the tests will be executed and (if time allows) repeated, until 12
o'clock on the 1st of Oct 2007.

When timeout occurs, Common Test will never abort the test run immediately, since this might leave the system under
test in an undefined, and possibly bad, state. Instead Common Test will finish the current test job, or the compl ete test
run, before stopping. The latter is the default behaviour. Thef or ce_st op flag/option tells Common Test to stop as
soon as the current test job is finished. Note that since Common Test always finishes off the current test job or test
session, the time specified withdur at i on orunti | isnever definitive!

Log filesfrom every single repeated test run is saved in normal Common Test fashion (see above). Common Test may
later support an optional feature to only store the last (and possibly the first) set of logs of repeated test runs, but for
now the user must be careful not to run out of disk space if tests are repeated during long periods of time.

Note that for each test run that is part of a repeated session, information about the particular test run is printed in the
Common Test Framework Log. There you can read the repetition number, remaining time, etc.

Example 1:

$ run_test -dir $TEST_ROOT/tol $TEST_ROOT/to02 -duration 001000 -force_stop

Here the suites in test directory tol, followed by the suites in to2, will be executed in one test run. A timeout event
will occur after 10 minutes. Aslong as there istime left, Common Test will repeat the test run (i.e. starting over with
the tol test). When the timeout occurs, Common Test will stop as soon as the current job is finished (because of the
force_st op flag). Asaresult, the specified test run might be aborted after the tol test and before the to2 test.

Example 2:

$ date
Fri Sep 28 15:00: 00 MEST 2007

$ run_test -dir $TEST_ROOT/tol $TEST_ROOT/to02 -until 160000

Here the same test run as in the example above will be executed (and possibly repeated). In this example, however,
the timeout will occur after 1 hour and when that happens, Common Test will finish the entire test run before stopping
(i.e. thetol and to2 test will always both be executed in the same test run).

32| Ericsson AB. All Rights Reserved.: Common Test

1.6 Running Test Suites

Example 3:

$ run_test -dir $TEST _ROOI/tol $TEST ROOT/to2 -repeat 5

Here the test run, including both the tol and the to2 test, will be repeated 5 times.

Note:

This feature should not be confused with the r epeat property of atest case group. The options described here are
used to repeat execution of entiretest runs, whilether epeat property of atest case group makesit possible to repeat
execution of sets of test cases within a suite. For more information about the latter, see the Writing Test Suites chapter.

1.6.12 Silent Connections

The protocol handling processesin Common Test, implemented by ct_telnet, ct_ftp etc, do verbose printing to the test
case logs. This can be switched off by means of the- si | ent _connect i ons flag:

run_test -silent_connections [conn_types]

whereconn_t ypes specifiest el net, ftp, rpc andorsnnp.

Example:

run_test ... -silent_connections telnet ftp

switches off logging for telnet and ftp connections.

run_test ... -silent_connections

switches off logging for all connection types.

Basic and important information such as opening and closing aconnection, fatal communication error and reconnection
attempts will always be printed even if logging has been suppressed for the connection type in question. However,
operations such as sending and receiving data may be performed silently.

It is possible to also specify si | ent _connecti ons in atest suite. This is accomplished by returning a tuple,
{sil ent_connections, ConnTypes},inthesui t e/ 0 ortest caseinfolist. If ConnTypes isalist of atoms
(tel net, ftp, rpc and/or snnp), output for any corresponding connections will be suppressed. Full logging
is per default enabled for any connection of type not specified in ConnTypes. Hence, if ConnTypes isthe empty
list, logging is enabled for all connections.

Thesi | ent _connect i ons setting returned from atest case info function overrides, for the test case in question,
any setting made with sui t e/ 0 (which isthe setting used for all cases in the suite). Example:

- modul e(my_SUl TE) .

Ericsson AB. All Rights Reserved.: Common Test | 33

1.7 Config Files

suite() ->[..., {silent_connections,[telnet,ftp]}, ...].

my_testcasel() ->
[{silent_connections,[ftp]}].
my_testcasel(_) ->

ny_testcase2(_) ->

Inthisexample, sui t e/ 0 tells Common Test to suppress printouts from telnet and ftp connections. Thisisvalid for
all test cases. However, my _t est casel/ 0 specifies that for this test case, only ftp should be silent. The result is
that ny_t est casel will get telnet info (if any) printed in the log, but not ftp info. my_t est case2 will get no
info from either connection printed.

The-sil ent _connecti ons tag (or si | ent _connecti ons tagged tupleinthecal toct:run_test/1)
overrides any settingsin the test suite.

Note that in the current Common Test version, the si | ent _connecti ons feature only works for telnet
connections. Support for other connection types will be added in future Common Test versions.

1.7 Config Files

1.7.1 General

The Common Test framework uses configuration files to describe data related to a test and/or an SUT (System
Under Test). The configuration data makes it possible to change properties without changing the test program itself.
Configuration data can for example be:

e Addressesto the test plant or other instruments

» Filenamesfor files needed by the test

e Program names for programs that shall be run by the test
* Any other variable that is needed by the test

1.7.2 Syntax

A configuration file can contain any number of elements of the type:

{Key, Val ue}.

where

Key = atom()
Value = term() | [{Key, Val ue}]

1.7.3 Requiring and reading configuration data

In atest suite, one must require that a configuration variable exists before attempting to read the associated value in
atest case.

requi r e isan assert statement that can be part of the test suite info function or test case info function. If the required
variable is not available, the test is skipped (unless a default value has been specified, see the test case info function

34 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Config Files

chapter for details). Thereisalso afunctionct : requi re/ [1, 2] which can be called from atest case in order to
check if aspecific variableisavailable. The return value from this function must be checked explicitly and appropriate
action be taken depending on the result (e.g. to skip the test case if the variable in question doesn't exist).

A requi r e statement in the test suite info- or test case info-list should look like this: { r equi r e, Requi r ed}
or {requi re, Nane, Requi r ed}. The arguments Nane and Requi r ed are the same as the arguments to
ct:require/[1,2] which are described in the reference manua for ct. Nane becomes an aias for the
configuration variable Requi r ed, and can be used as reference to the configuration data value. The configuration
variable may be associated with an arbitrary number of alias names, but each name must be unique within the same
test suite. There are two main uses for alias names:

* They may beintroduced to identify connections (see below).
e They may used to help adapt configuration data to atest suite (or test case) and improve readability.

To read the value of a config variable, use the function get _confi g/ [1, 2, 3] which is aso described in the
reference manua for ct.

Example:

suite() ->
[{require, domain, 'CONN_SPEC DNS_SUFFI X'}].

testcase(Config) ->
Domai n = ct: get_confi g(donmain),

1.7.4 Using configuration variables defined in multiple files

If a configuration variable is defined in multiple files and you want to access al possible values, you may use the
ct: get _confi g/ 3 function and specify al | in the options list. The values will then be returned in a list and the
order of the elements corresponds to the order that the config files were specified at startup. Please see the ct reference
manual for details.

1.7.5 Encrypted configuration files

It is possible to encrypt configuration files containing sensitive data if these files must be stored in open and shared
directories.

Cdlct:encrypt _config file/[2,3] tohave Common Test encrypt aspecified file using the DES3 function
inthe OTP cr ypt o application. The encrypted file can then be used as a regular configuration file, in combination
with other encrypted files or normal text files. The key for decrypting the configuration file must be provided when
running the test, however. This can be done by means of the decr ypt _key or decrypt _fi | e flag/option, or a
key filein a predefined location.

Common Test also provides decryption functions, ct: decrypt _config file/[2, 3], for recreating the
original text files.

Please see the ct reference manual for more information.

1.7.6 Opening connections by using configuration data

Therearetwo different methods for opening aconnection by means of the support functionsine.g.ct _ssh,ct _ftp,
andct _telnet:

e Using aconfiguration target name (an alias) as reference.

Ericsson AB. All Rights Reserved.: Common Test | 35

1.7 Config Files

e Using the configuration variable as reference.

When atarget nameisused for referencing the configuration data (that specifiesthe connection to be opened), the same
name may be used as connection identity in all subsequent calls related to the connection (also for closing it). It'sonly
possible to have one open connection per target name. If attempting to open a new connection using a name already
associated with an open connection, Common Test will return the already existing handle so that the previously opened
connection will beused. Thisisapractical feature sinceit makesit possibleto call the function for opening a particular
connection whenever useful. An action like this will not necessarily open any new connections unless it's required
(which could be the case if e.g. the previous connection has been closed unexpectedly by the server). Another benefit
of using named connectionsisthat it's not necessary to pass handle references around in the suite for these connections.

When a configuration variable name is used as reference to the data specifying the connection, the handle returned
as aresult of opening the connection must be used in all subsequent calls (also for closing the connection). Repeated
callsto the open function with the same variable name as reference will result in multiple connections being opened.
This can be useful e.g. if atest case needs to open multiple connections to the same server on the target node (using
the same configuration data for each connection).

1.7.7 Examples

A config file for using the FTP client to access files on aremote host could look like this:

{ftp_host, [{ftp,"targethost"},
{usernane, "tester"},
{password, "l etnein"}]}.

{Imdirectory, "/test/l|oadnmodul es"}.

Example of how to assert that the configuration datais available and use it for an FTP session:

init_per_testcase(ftptest, Config) ->
{ok, _} = ct_ftp:open(ftp),
Confi g.

end_per_testcase(ftptest, _Config) ->
ct_ftp:close(ftp).

ftptest() ->
[{require, ftp, ftp_host},
{require,Imdirectory}].

ftptest(Config) ->
Renote = filenane:join(ct:get_config(lmdirectory), "loadnodX"),
Local = fil enane:join(?config(priv_dir,Config), "loadnodule"),
ok = ct_ftp:recv(ftp, Renmpte, Local),

An example of how the above functions could be rewritten if necessary to open multiple connectionsto the FTP server:

init_per_testcase(ftptest, Config) ->
{ok, Handl e1} = ct_ftp:open(ftp_host),
{ok, Handl e2} = ct_ftp:open(ftp_host),
[{ftp_handl es, [Handl e1, Handl e2]} | Config].

end_per_testcase(ftptest, Config) ->
lists:foreach(fun(Handle) -> ct_ftp:close(Handl e) end,

36 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Code Coverage Analysis

?confi g(ftp_handl es, Config)).

ftptest() ->
[{require, ftp_host},
{require,I mdirectory}].

ftptest(Config) ->
Rermote = fil enane:join(ct:get_config(lmdirectory), "loadnodX"),
Local = fil ename:join(?config(priv_dir,Config), "l|oadnodule"),
[Handl e | MoreHandl es] = ?config(ftp_handl es, Config),
ok = ct_ftp:recv(Handl e, Renote, Local),

1.8 Code Coverage Analysis

1.8.1 General

Although Common Test was created primarly for the purpose of black box testing, nothing prevents it from working
perfectly as a white box testing tool as well. Thisis especially true when the application to test is written in Erlang.
Then the test ports are easily realized by means of Erlang function calls.

When white box testing an Erlang application, it is useful to be able to measure the code coverage of the test. Common
Test providessimpleaccessto the OTP Cover tool for this purpose. Common Test handlesall necessary communication
with the Cover tool (starting, compiling, analysing, etc). All the Common Test user needsto do isto specify the extent
of the code coverage analysis.

1.8.2 Usage

To specify what modules should be included in the code coverage test, you provide a cover specification file. Using
this file you can point out specific modules or specify directories that contain modules which should al be included
in the analysis. Y ou can also, in the same fashion, specify modules that should be excluded from the analysis.

If you aretesting adistributed Erlang application, it islikely that code you want included in the code coverage analysis
gets executed on an Erlang node other than the one Common Test isrunning on. If thisisthe case you need to specify
these other nodes in the cover specification file or add them dynamically to the code coverage set of nodes. See the
ct _cover pagein the reference manual for details on the latter.

In the cover specification file you can also specify your required level of the code coverage analysis; det ai | s
or over vi ew. In detailed mode, you get a coverage overview page, showing you per module and total coverage
percentages, aswell asone HTML file printed for each module included in the analysis that shows exactly what parts
of the code have been executed during the test. In overview mode, only the code coverage overview page gets printed.

Note: Currently, for Common Test to be able to print code coverage HTML files for the modules included in the
analysis, the source code files of these modules must be located in the same directory as the corresponding . beam
files. Thisisalimitation that will be removed later.

Y ou can choose to export and import code coverage data between tests. If you specify the name of an export file in
the cover specification file, Common Test will export collected coverage data to thisfile at the end of the test. You
may similarly specify that previously exported data should be imported and included in the analysisfor atest (you can
specify multiple import files). This way it is possible to analyse total code coverage without necessarily running all
tests at once. Note that even if you run separate tests in one test run, code coverage data will not be passed on from
one test to another unless you specify an export file for Common Test to use for this purpose.

To activate the code coverage support, you simply specify the name of the cover specification file asyou start Common
Test. Thisyou do either by using the - cover flagwithrun_t est . Example:

$ run_test -dir $TESTOBIS/ db -cover $TESTOBIS/ db/confi g/ db. coverspec

Ericsson AB. All Rights Reserved.: Common Test | 37

1.8 Code Coverage Analysis

You may aso pass the cover specification file name in a cal to ct:run_test/1, by adding a
{cover, Cover Spec} tuple to the Opt s argument. Also, you can of course enable code coverage in your test
specifications (read more in the chapter about using test specifications).

1.8.3 The cover specification file

These are the terms allowed in a cover specification file:

%0 Li st of Nodes on which cover will be active during test.
%% Nodes = [aton()]
{nodes, Nodes}.

%o Files with previously exported cover data to include in analysis.
%% CoverDataFiles = [string()]
{inport, CoverDataFiles}.

%6 Cover data file to export fromthis session.
%% CoverDataFile = string()
{export, CoverDataFile}.

%6 Cover anal ysis |evel.
%06 Level = details | overview
{l evel, Level}.

%b Directories to include in cover.
WoDirs = [string()]
{incl _dirs, Dirs}.

%06 Di rectories, including subdirectories, to include.
{incl _dirs_r, Dirs}.

%% Speci fic nmodul es to include in cover.
%6 Mods = [aton()]
{incl _nods, Mods}.

%0 Directories to exclude in cover.
{excl _dirs, Dirs}.

%06 Di rectories, including subdirectories, to exclude.
{excl _dirs_r, Dirs}.

%% Speci fic nmodul es to exclude in cover.
{excl _nmods, Mods}.

Theincl _dirs_r andexcl _dirs_r termstell Common Test to search the given directories recursively and
include or exclude any module found during the search. Thei ncl _di rs and excl _di rs termsresult in a non-
recursive search for modules (i.e. only modules found in the given directories are included or excluded).

Note: Directories containing Erlang modules that are to be included in a code coverage test must exist in the code
server path, or the cover tool will fail to recompile the modules. (It is not sufficient to specify these directoriesin the
cover specification file for Common Test).

1.8.4 Logging

To view the result of a code coverage test, follow the "Coverage log" link on the test suite results page. This takes
you to the code coverage overview page. If you have successfully performed a detailed coverage analysis, you find
links to each individual module coverage page here.

38| Ericsson AB. All Rights Reserved.: Common Test

1.9 Using Common Test for Large Scale Testing

1.9 Using Common Test for Large Scale Testing

1.9.1 General

Large scale automated testing requires running multiple independent test sessionsin parallel. Thisisaccomplished by
running a number of Common Test nodes on one or more hosts, testing different target systems. Configuring, starting
and controlling the test nodes independently can be a cumbersome operation. To aid thiskind of automated large scale
testing, CT offersamaster test node component, CT Master, that handles central configuration and control in asystem
of distributed CT nodes.

The CT Master server runs on one dedicated Erlang node and uses distributed Erlang to communicate with any number
of CT test nodes, each hosting a regular CT server. Test specifications are used as input to specify what to test on
which test nodes, using what configuration.

The CT Master server writes progress information to HTML log files similarly to the regular CT server. The logs
contain test statistics and links to the log files written by each independent CT server.

The CT master APl is exported by thect _nmast er module.

1.9.2 Usage

CT Master requires al test nodes to be on the same network and share a common file system. As of this date, CT
Master can not start test nodes automatically. The nodes must have been started in advance for CT Master to be able
to start test sessions on them.

Tests are started by calling:
ct _master:run(Test Specs) orct_naster:run(Test Specs, |ncl Nodes, Excl Nodes)

Test Specs is either the name of atest specification file (string) or alist of test specifications. In case of alist, the
specifications will be handled (and the corresponding tests executed) in sequence. An element in aTest Specs list
can also belist of test specifications. The specificationsin such alist will be merged into one combined specification
prior to test execution. For example:

ct_master:run(["tsl","ts2",["ts3","ts4"]])

means first the tests specified by "ts1" will run, then the tests specified by "ts2" and finally the tests specified by both
"ts3" and "tsA4".

Thel ncl Nodes argumenttor un/ 3 isalist of node names. Ther un/ 3 function runsthetestsin Test Specs just
likerun/ 1 but will also take any test in Test Specs that's not explicitly tagged with a particular node name and
execute it on the nodes listed in | ncl Nodes. By using r un/ 3 thisway it is possible to use any test specification,
with or without node information, in a large scale test environment! Excl Nodes is alist of nodes that should be
excluded from the test. |.e. tests that have been specified in the test specification to run on a particular node will not
be performed if that nodeis at runtime listed in Excl Nodes.

If CT Master failsinitially to connect to any of the test nodes specified in a test specification or in the | ncl Nodes
list, the operator will be prompted with the option to either start over again (after manually checking the status of the
node(s) in question), to run without the missing nodes, or to abort the operation.

When tests start, CT Master prints information to console about the nodes that are involved. CT Master aso reports
when tests finish, successfully or unsuccessfully. If connection is lost to a node, the test on that node is considered
finished. CT Master will not attempt to reestablish contact with the failing node. At any time to get the current status
of the test nodes, call the function:

ct _master: progress()
To stop one or more tests, use:
ct _master:abort () (stopal)orct naster: abort(Nodes)

Ericsson AB. All Rights Reserved.: Common Test | 39

1.9 Using Common Test for Large Scale Testing

For detailed information about thect _nmast er API, please see the manual page for this module.

1.9.3 Test Specifications

The test specifications used as input to CT Master are fully compatible with the specifications used as input to the
regular CT server. The syntax is described in the Running Test Suites chapter.

All test specificationterms can haveaNodeRef s element. Thiselement specifieswhich node or nodesaconfiguration
operation or atest isto be executed on. NodeRef s isdefined as:

NodeRefs = all _nodes | [NodeRef] | NodeRef
where
NodeRef = NodeAlias | node() | master

A NodeAl i as (at om()) isused in atest specification as areference to a node name (so the actual node name only
needs to be declared once). The dliasis declared with anode term:

{node, NodeAlias, NodeNane}

If NodeRef s hasthevalueal | _nodes, the operation or test will be performed on all given test nodes. (Declaring a
term without aNodeRef s element actually has the same effect). If NodeRef s hasthevaluemast er , the operation
isonly performed on the CT Master node (namely set the log directory or install an event handler).

Consider the example in the Running Test Suites chapter, now extended with node information and intended to be
executed by the CT Master:

{node, nodel, ct_node@ost_x}.
{node, node2, ct_node@ost_y}.

{logdir, master, "/hone/test/master_|ogs"}.
{logdir, "/home/test/|ogs"}.

{config, nodel, "/hone/test/t1/cfg/config.cfg"}.
{config, node2, "/hone/test/t2/cfg/config.cfg"}.
{config, "/home/test/t3/cfg/config.cfg"}.

{alias, t1, "/home/test/t1"}.
{alias, t2, "/home/test/t2"}.
{alias, t3, "/home/test/t3"}.

{suites, nodel, t1, all}.

{skip_suites, nodel, t1, [t1B SU TE, t1D SU TE], "Not i nplenmented"}.
{ski p_cases, nodel, t1, t1A SU TE, [test3,test4], "lrrelevant"}.
{ski p_cases, nodel, t1, t1C SU TE, [testl], "lgnore"}.

{suites, node2, t2, [t2B _SUl TE, t2C _SU TE]}.
{cases, node2, t2, t2A SUTE, [test4,testl,test7]}.

{skip_suites, t3, all, "Not inplenented"}.

This example specifies the same tests as the original example. But now if started with a cal to
ct _master:run(Test SpecNane) ,thetl test will be executed onnodect _node@ost _x (nodel), thet2 test
onct _node@ost _y (node2) and thet3 test on both nodel and node2. Thetl config filewill only be read on nodel
and the t2 config file only on node2, while the t3 config file will be read on both nodel and node2. Both test nodes
will write log files to the same directory. (The CT Master node will however use a different log directory than the
test nodes).

40 | Ericsson AB. All Rights Reserved.: Common Test

1.10 Event Handling

If the test session isinstead started with acall toct _nast er: run(Test SpecNane, [ct_node@ost _z],
[ct _node@ost x]),theresultisthat thetl test doesnot runonct node@ost _x (or any other node) while
thet3test runsonct _node@ost _y andct _node@ost _z.

A nicefeatureisthat atest specification that includes nodeinformation can still be used asinput to the regular Common
Test server (as described in the Running Test Suites chapter). The result is that any test specified to run on a node
with the same name as the Common Test node in question (typically ct @ onehost if started withther un_t est
script), will be performed. Tests without explicit node association will always be performed too of course!

Note:

It is recommended that absolute paths are used for log directories, config files and test directory aliases in the test
specifications so that current working directory settings are not important.

1.10 Event Handling
1.10.1 General

It ispossible for the operator of a Common Test system to receive event notifications continously during atest run. It
isreported e.g. when atest case starts and stops, what the current count of successful, failed and skipped casesis, etc.
Thisinformation can be used for different purposes such as logging progress and results on other format than HTML,
saving statistics to a database for report generation and test system supervision.

Common Test has a framework for event handling which is based on the OTP event manager concept and gen_event
behaviour. When the Common Test server starts, it spawns an event manager. During test execution the manager gets
anatification from the server every time something of potential interest happens. Any event handler plugged into the
event manager can match on events of interest, take action, or maybe simply pass the information on. Event handlers
are Erlang modulesimplemented by the Common Test user according to the gen_event behaviour (seethe OTP User's
Guide and Reference Manual for more information).

As already described, a Common Test server always starts an event manager. The server also plugsin adefault event
handler which has as its only purpose to relay notifications to a globally registered CT Master event manager (if a
CT Master server isrunning in the system). The CT Master also spawns an event manager at startup. Event handlers
plugged into this manager will receive the events from all the test nodes as well as information from the CT Master
server itself.

1.10.2 Usage

Event handlers may be installed by means of an event handl er sart flag (run_test) or option
(ct:run_test/ 1), wherethe argument specifies the names of one or more event handler modules. Example:

$ run_test -suite test/ny_SU TE -event_handler handlers/ny_evhl handlers/
ny_evh2 -pa $PWD handl ers

All event handler modules must have gen_event behaviour. Note a so that these modules must be precompiled, and
that their locations must be added explicitly to the Erlang code server search path (like in the example).

It isnot possible to specify start arguments to the event handlerswhen using ther un_t est script. Y ou may however
pass along start argumentsif you usethect : run_t est/ 1 function. An event_handler tuple in the argument Opt s
has the following definition (seeasoct : run_t est/ 1 in the reference manual):

{event _handl er, Event Handl er s}

Ericsson AB. All Rights Reserved.: Common Test | 41

1.10 Event Handling

Event Handl ers = EH | [EH
EH = atom() | {aton(),InitArgs} | {[atom()],InitArgs}
InitArgs = [term()]

Example:

1> ct:run_test([{suite,"test/ my_SU TE"}, {event _handl er, [ny_evhl, {ny_evh2, [node()]}]1}]).

Thiswill install two event handlers for themy _SUI TE test. Event handler ny_evhl1 isstarted with[] asargument
to theinit function. Event handler ny_evh2 is started with the name of the current node in the init argument list.

Event handlers can aso be plugged in by means of test specification terms:
{event _handl er, Event Handl ers},or

{event _handl er, EventHandl ers, |nitArgs},or

{event _handl er, NodeRefs, EventHandl ers},or

{event _handl er, NodeRefs, EventHandl ers, InitArgs}

Event Handl er s isalist of module names. Before a test session starts, the init function of each plugged in event
handler is called (with the InitArgs list as argument or [] if no start arguments are given).

To plug ahandler into the CT Master event manager, specify nast er asthenodein NodeRef s.

For an event handler to be able to match on events, the module must include the header filect _event . hrl . An
event isarecord with the following definition:

#event { nane, node, dat a}

nane isthe label (type) of the event. node is the name of the node the event has originated from (only relevant for
CT Master event handlers). dat a is specific for the particular event.

General events:
e #event{nane = start_|ogging, data = LogDir}
LogDir = string(),toplevel log directory for the test run.

Indicates that the logging process of Common Test has started successfully and is ready to receive |O messages.
e #event{nane = stop logging, data =[]}

Indicates that the logging process of Common Test has been shut down at the end of the test run.
e #event{nane = test_start, data = {StartTi nme, LogDir}}

StartTinme = {date(),tine()},testrunstart date and time.
LogDir = string(),toplevel log directory for the test run.

This event indicates that Common Test has finished initial preparations and will begin executing test cases.
« #event{nane = test_done, data = EndTi ne}

EndTi ne = {date(),time()}, dateand timethetest run finished.

Thisindicates that the last test case has been executed and Common Test is shutting down.
e #event{nane = start_info, data = {Tests, Suites, Cases}}

Tests = integer(),thenumber of tests.
Sui tes = integer (), thetotal number of suites.

42 | Ericsson AB. All Rights Reserved.: Common Test

1.10 Event Handling

Cases = integer() | unknown,thetotal number of test cases.

Initial test run information that can be interpreted as. "This test run will execute Test s separate tests, in total
containing Cases number of test cases, in Sui t es number of suites'. Notethat if atest case group with arepeat
property existsin any test, the total number of test cases can not be calculated (unknown).

#event{name = tc_start, data = {Suite, FuncOr G oup}}
Sui te = atomn(), name of the test suite.
FuncOrGroup = Func | {Conf, GroupNane, G oupProperti es}

Func at om() , name of test case or configuration function.

Conf = init_per_group | end_per_group,group configuration function.
G oupNane = at on(), name of the group.

G oupProperties = list(),list of execution propertiesfor the group.

This event informs about the start of a test case, or a group configuration function. The event is sent also for
init_per suiteandend _per_suite,butnotforinit _per testcaseandend_per testcase.
If agroup configuration function is starting, the group name and execution properties are also given.

#event {name = tc_done, data = {Suite, FuhcOr G oup, Result}}
Sui te = atom(), name of the suite.
FuncOr G oup = Func | {Conf, GroupNane, G oupProperti es}

Func at om() , name of test case or configuration function.

Conf = init_per_group | end_per _group, group configuration function.

GroupNane = unknown | aton{), name of the group (unknown if init- or end function times out).
GroupProperties = list(),list of execution propertiesfor the group.

Result = ok | {skipped, Ski pReason} | {fail ed, Fail Reason}, theresult.

Ski pReason = {require_fail ed, Requi rel nf o} |
{require_failed_in_suite0, Requirelnfo} | {fail ed,
{Suite,init_per_testcase, Faillnfo}} | User Ter m thereasonwhy the case has been skipped.

Fail Reason = {error, Faillnfo} | {error, {RunTi neError, StackTrace}} |
{timetrap_timeout,integer()} | {failed, {Suite, end_per_testcase, Faillnfo}},
reason for failure.

Requirel nfo = {not_avail abl e, at om() }, why require hasfailed.

Faillnfo = {timetrap_tineout,integer()} | {RunTineError, StackTrace} |
User Ter m detailed information about an error.

RunTi meError = term(),arun-timeerror, e.g. badmatch, undef, etc.
StackTrace = list(),listof function cals preceeding arun-time error.
User Term = term(), arbitrary data specified by user, or exi t / 1 info.

This event informs about the end of atest case or a configuration function (seethet c_st art event for details
on the FuncOrGroup element). With this event comes the final result of the function in question. It is possible to
determine on the top level of Resul t if the function was successful, skipped (by the user), or if it failed. It is of
course possible to dig deeper and also perform pattern matching on the various reasons for skipped or failed. Note
that {' EXI T' , Reason} tupleshave been trandated into{ error, Reason}. Noteasothat if a{f ai | ed,
{Sui te, end_per_testcase, Fai |l | nf o} resultisreceived, it actually meansthetest case was successful,
but that end_per _t est case for the case failed.

Ericsson AB. All Rights Reserved.: Common Test | 43

1.10 Event Handling

#event{nanme = tc_auto_skip, data = {Suite, Func, Reason}}
Suite = atom(), the name of the suite.
Func = at om(), the name of the test case or configuration function.

Reason = {failed, Fail Reason} | {require_failed_in_suiteO0, Requirelnfo},reason
for auto skipping Func.

Fai | Reason = {Suite, ConfigFunc, Faillnfo}} | {Suite, Fail edCasel nSequence},
reason for failure.

Requirelnfo = {not _avail abl e, at om() }, why require hasfailed.
ConfigFunc = init_per_suite | init_per_group

Faillnfo = {tinmetrap_tineout,integer()} | {RunTineError, StackTrace} |
bad return | User Ter m detailed information about an error.

Fai | edCasel nSequence = at on{), name of acasethat hasfailed in a sequence.
RunTi meError = term(),arun-timeerror, e.g. badmatch, undef, etc.
StackTrace = list(),list of function calls preceeding arun-time error.

User Term = term(), arbitrary data specified by user, or exi t / 1 info.

This event gets sent for every test case or configuration function that Common Test has skipped automatically
because of either afailedinit _per _suiteorinit_per_group, afailedrequireinsuite/0,ora
failed test casein asequence. Notethat thisevent isnever received asaresult of atest case getting skipped because
ofinit_per _testcase faling, sincethat information iscarried withthet ¢_done event.

#event {name = tc_user_skip, data = {Suite, Test Case, Comrent}}
Sui te = atomn(), name of the suite.

Test Case = at on{), name of the test case.

Comrent = string(), reason for skipping thetest case.

This event specifiesthat atest case has been skipped by the user. It is only ever received if the skip was declared
in atest specification. Otherwise, user skip information is received as a{ ski pped, Ski pReason} result in
thet c_done event for the test case.

#event{nane = test_stats, data = {Ck, Fail ed, Ski pped}}
Ok = integer (), thecurrent number of successful test cases.

Fail ed = integer(), thecurrent number of failed test cases.

Ski pped = {User Ski pped, Aut oSki pped}

User Ski pped = i nt eger (), the current number of user skipped test cases.
Aut oSki pped = i nteger (), thecurrent number of auto skipped test cases.

Thisis astatistics event with the current count of successful, skipped and failed test cases so far. This event gets
sent after the end of each test case, immediately following thet ¢_done event.

Internal events:

#event {nanme = start_neke, data = Dir}
Dir = string(),running makein thisdirectory.

An internal event saying that Common Test will start compiling modulesin directory Di r .
#event {nane = fini shed nake, data = Dir}
Dir = string(),finished running makein this directory.

44 | Ericsson AB. All Rights Reserved.: Common Test

1.11 Dependencies between Test Cases and Suites

Aninternal event saying that Common Test is finished compiling modulesin directory Di r .
e #event{nane = start_wite file, data = Full NaneFil e}

Ful | NameFile = string(), full name of the file.

Aninternal event used by the Common Test Master process to synchronize particular file operations.
e #event{nane = finished wite file, data = Full NaneFil e}

Ful | NameFile = string(), full name of the file.
Aninternal event used by the Common Test Master process to synchronize particular file operations.

The eventsare also documentedinct _event . er | . Thismodule may serve as an example of what an event handler
for the CT event manager can look like.

Note:

To ensure that printouts to standard out (or printouts made with ct : | og/ 2/ 3 or ct : pal / 2/ 3) get written to the
test case log file, and not to the Common Test framework log, you can syncronize with the Common Test server by
matchingonthet c_start andt c_done events. In the period between these events, all 10 gets directed to the test
case log file. These events are sent synchronously to avoid potential timing problems (e.g. that the test case log file
gets closed just before an | O message from an external process getsthrough). Knowing this, you need to be careful that
your handl e_event / 2 callback function doesn't stall the test execution, possibly causing unexpected behaviour
asaresult.

1.11 Dependencies between Test Cases and Suites

1.11.1 General

When creating test suites, it is strongly recommended to not create dependencies between test cases, i.e. letting test

cases depend on the result of previoustest cases. There are various reasons for this, for example:

* Itmakesitimpossible to run test cases individualy.

e |t makesitimpossibleto run test casesin different order.

* It makes debugging very difficult (since afault could be the result of a problem in a different test case than the
one failing).

* Thereexists no good and explicit ways to declare dependencies, so it may be very difficult to see and
understand these in test suite code and in test logs.

» Extending, restructuring and maintaining test suites with test case dependencies is difficult.

There are often sufficient meansto work around the need for test case dependencies. Generally, the problem isrelated

to the state of the system under test (SUT). The action of one test case may alter the state of the system and for some
other test case to run properly, the new state must be known.

Instead of passing data between test cases, it is recommended that the test cases read the state from the SUT and
perform assertions (i.e. let the test case run if the state is as expected, otherwise reset or fail) and/or use the state to
set variables necessary for the test case to execute properly. Common actions can often be implemented as library
functionsfor test casesto call to set the SUT in arequired state. (Such common actions may of course al so be separately
tested if necessary, to ensure they are working as expected). It is sometimes also possible, but not always desirable, to
group tests together in onetest case, i.e. let atest case perform a"scenario” test (atest that consists of subtests).

Consider for example a server application under test. The following functionality isto be tested:
e Starting the server.

Ericsson AB. All Rights Reserved.: Common Test | 45

1.11 Dependencies between Test Cases and Suites

e Configuring the server.

« Connecting aclient to the server.

» Disconnecting aclient from the server.
e Stopping the server.

There are obvious dependencies between the listed functions. We can't configure the server if it hasn't first been started,
we can't connect a client until the server has been properly configured, etc. If we want to have one test case for each
of the functions, we might be tempted to try to always run the test cases in the stated order and carry possible data
(identities, handles, etc) between the cases and therefore introduce dependenci es between them. To avoid thiswe could
consider starting and stopping the server for every test. We would implement the start and stop action as common
functions that may be called from init_per_testcase and end_per_testcase. (We would of course test the start and stop
functionality separately). The configuration could perhaps al so be implemented as acommon function, maybe grouped
with the start function. Finally the testing of connecting and disconnecting a client may be grouped into one test case.
The resulting suite would look something like this:

- modul e(my_server _SUl TE) .
-conpi |l e(export_all).
-include_lib("ct.hrl").

%6 init and end functions...
suite() -> [{require,ny_server_cfg}].

init_per_testcase(start_and_stop, Config) ->
Confi g;

init_per_testcase(config, Config) ->
[{server_pid,start_server()} | Config];

init_per_testcase(_, Config) ->
ServerPid = start_server(),
configure_server(),
[{server_pid, ServerPid} | Config].

end_per_testcase(start_and_stop,) ->
ok;

end_per_testcase(_,) ->
ServerPid = ?config(server_pid),
stop_server (ServerPid).

%080t est cases...
all () -> [start_and_stop, config, connect_and_di sconnect].

%Wotest that starting and stoppi ng works
start_and_stop(_) ->

ServerPid = start_server(),

st op_server (ServerPid).

%% configuration test

config(Config) ->
ServerPid = ?config(server_pid, Config),
configure_server(ServerPid).

%6 test connecting and di sconnecting client

connect _and_di sconnect (Config) ->
ServerPid = ?config(server_pid, Config),
{ok, Sessi onl d} = ny_server:connect (ServerPid),
ok = ny_server:di sconnect (ServerPi d, Sessionld).

46 | Ericsson AB. All Rights Reserved.: Common Test

1.11 Dependencies between Test Cases and Suites

%86 cormon functions. ..

start_server() ->
{ok, ServerPid} = nmy_server:start(),
Server Pi d.

stop_server (ServerPid) ->
ok = ny_server:stop(),
ok.

configure_server(ServerPid) ->
ServerCfgbata = ct:get_config(ny_server_cfg),
ok = ny_server:configure(ServerPid, ServerCfgData),
ok.

1.11.2 Saving configuration data

There might be situations where it is impossible, or infeasible at least, to implement independent test cases. Maybe
it issimply not possible to read the SUT state. Maybe resetting the SUT isimpossible and it takes much too long to
restart the system. In situations where test case dependency is necessary, CT offers a structured way to carry datafrom
one test case to the next. The same mechanism may also be used to carry data from one test suite to the next.

The mechanism for passing dataiscalledsave_confi g. Theideaisthat onetest case (or suite) may savethe current
value of Config - or any list of key-value tuples - so that it can be read by the next executing test case (or test suite).
The configuration data is not saved permanently but can only be passed from one case (or suite) to the next.

To save Conf i g data, return the tuple:
{save_confi g, Confi gLi st}

fromend_per _t est case or from the main test case function. To read data saved by a previous test case, use the
confi g macrowithasaved_confi g key:

{Saver, ConfigList} = ?config(saved_config, Config)

Saver (at om()) isthe name of the previoustest case (where the datawas saved). The conf i g macro may be used
to extract particular data also from the recalled Conf i gLi st . It is strongly recommended that Saver is aways
matched to the expected name of the saving test case. This way problems due to restructuring of the test suite may be
avoided. Also it makes the dependency more explicit and the test suite easier to read and maintain.

To pass data from one test suite to another, the same mechanism is used. The data should be saved by the
end_per _suite functionand read by i ni t _per _sui t e in the suite that follows. When passing data between
suites, Saver carriesthe name of the test suite.

Example:

- modul e(server _b_SUl TE) .
-conpi |l e(export_all).
-include_lib("ct.hrl").

%% init and end functions...

init_per_suite(Config) ->
%o read config saved by previous test suite
{server_a_SU TE, A dConfi g} = ?config(saved_config, Config),
%6 extract server identity (comes from server_a_SU TE)
Serverld = ?config(server_id, ddConfig),
Sessionld = connect _to_server(Serverld),
[{ids,{Serverld, Sessionld}} | Config].

Ericsson AB. All Rights Reserved.: Common Test | 47

1.11 Dependencies between Test Cases and Suites

end_per_suite(Config) ->
%6 save config for server_c_SU TE (session_id and server_id)
{save_confi g, Confi g}

%00t est cases. ..
all () -> [allocate, deallocate].

al | ocate(Config) ->
{Serverld, Sessionld} = ?config(ids, Config),
{ok, Handl e} = all ocate_resource(Serverld, Sessionld),
9%b save handl e for deal |l ocation test
NewConfi g = [{handl e, Handl e}],
{save_confi g, NewConfi g} .

deal | ocat e(Config) ->
{Serverld, Sessionld} = ?config(ids, Config),
{all ocate, A dConfi g} = ?config(saved_config, Config),
Handl e = ?confi g(handl e, 4 dConfig),
ok = deal | ocate_resource(Serverld, Sessionld, Handle).

Itisalso possibleto save Conf i g datafrom atest case that isto be skipped. To accomplish this, return the following
tuple:

{ski p_and_save, Reason, Confi gLi st}

The result will be that the test case is skipped with Reason printed to the log file (as described in previous
chapters), and Confi gLi st is saved for the next test case. Confi gLi st may be read by means of ?
config(saved_config, Config), as described above. ski p_and_save may also be returned from
i nit_per_suite,inwhichcasethesaved datacanberead by i ni t _per _sui t e inthe suite that follows.

1.11.3 Sequences

Itis possiblethat test cases depend on each other so that if one casefails, the following test(s) should not be executed.
Typicaly, if the save_confi g facility is used and a test case that is expected to save data crashes, the following
case can not run. CT offers away to declare such dependencies, called sequences.

A sequence of test casesis defined as atest case group with asequence property. Test case groups are defined by
means of the gr oups/ 0 function in the test suite (see the Test case groups chapter for details).

For example, if wewould liketo makesurethatif al | ocat e inserver _b_SUl TE (above) crashes, deal | ocat e
is skipped, we may define a sequence like this:

groups() -> [{alloc_and_deal | oc, [sequence], [alloc,dealloc]}].

Let's also assume the suite contains the test case get _r esour ce_st at us, which isindependent of the other two
cases, thentheal | function could look like this:

all () -> [{group,alloc_and deal |l oc}, get_resource_status].

If all oc succeeds, deal | oc is aso executed. If al | oc fails however, deal | oc is not executed but
marked as SKIPPED in the html log. get resource_status will run no matter what happens to the
al l oc_and_deal | oc cases.

48 | Ericsson AB. All Rights Reserved.: Common Test

1.12 Some thoughts about testing

Test cases in a sequence will be executed in order until they have all succeeded or until one case fails. If one fails,
all following cases in the sequence are skipped. The cases in the sequence that have succeeded up to that point are
reported as successful in the log. An arbitrary number of sequences may be specified. Example:

groups() -> [{scenari oA, [sequence], [testAl, testA2]},
{scenarioB, [sequence], [testBl, testB2, testB3]}].

all () -> [test],
test2,
{group, scenari oA},
test3,
{group, scenari oB},
test4].

It is possible to have sub-groups in a sequence group. Such sub-groups can have any property, i.e. they are not
reguired to also be sequences. If you want the status of the sub-group to affect the sequence on the level above, return
{return_group_result, Status} fromend_per _group/ 2, asdescribed in the Repeated groups chapter.
A failed sub-group (St at us == fai | ed) will cause the execution of a sequence to fail in the same way a test
case does.

1.12 Some thoughts about testing
1.12.1 Goals

It's not possible to prove that a program is correct by testing. On the contrary, it has been formally proven that it is
impossible to prove programsin general by testing. Theoretical program proofs or plain examination of code may be
viable options for those that wish to certify that a program is correct. The test server, asit is based on testing, cannot
be used for certification. Its intended use is instead to (cost effectively) find bugs. A successful test suite is one that
revealsabug. If atest suite resultsin Ok, then we know very little that we didn't know before.

1.12.2 What to test?

There are many kinds of test suites. Some concentrate on calling every function or command (in the documented way)
in a certain interface. Some other do the same, but uses all kinds of illegal parameters, and verifies that the server
stays alive and rejects the requests with reasonable error codes. Some test suites simulate an application (typically
consisting of a few modules of an application), some try to do tricky requests in general, some test suites even test
interna functions with help of specia load-modules on target.

Another interesting category of test suites are the ones that check that fixed bugs don't reoccur. When a bugfix is
introduced, atest case that checks for that specific bug should be written and submitted to the affected test suite(s).

Aim for finding bugs. Write whatever test that has the highest probability of finding a bug, now or in the future.
Concentrate more on the critical parts. Bugsin critical subsystems are alot more expensive than others.

Aimfor functionality testing rather than implementation details. I mplementation detail s change quite often, and the test
suites should be long lived. Often implementation details differ on different platforms and versions. If implementation
details have to be tested, try to factor them out into separate test cases. Later on these test cases may be rewritten,
or just skipped.

Also, aim for testing everything once, no less, no more. It's not effective having every test case fail just because one
function in the interface changed.

Ericsson AB. All Rights Reserved.: Common Test | 49

1.12 Some thoughts about testing

2 Reference Manual

Common Test is a portable application for automated testing. It is suitable for black-box testing of target systems of
any type (i.e. not necessarily implemented in Erlang), aswell asfor white-box testing of Erlang/OTP programs. Black-
box testing is performed via standard O& M interfaces (such as SNMP, HTTP, Corba, Telnet, etc) and, if required, via
user specific interfaces (often called test ports). White-box testing of Erlang/OTP programsis easily accomplished by
calling the target API functions directly from the test case functions. Common Test also integrates usage of the OTP
cover tool for code coverage analysis of Erlang/OTP programs.

Common Test executes test suite programs automatically, without operator interaction. Test progress and results is
printed to logs on HTML format, easily browsed with a standard web browser. Common Test also sends notifications
about progress and results viaan OTP event manager to event handlers plugged in to the system. This way users can
integrate their own programs for e.g. logging, database storing or supervision with Common Test.

Common Test provides libraries that contain useful support functions to fill various testing needs and requirements.
There is for example support for flexible test declarations by means of so called test specifications. There is also
support for central configuration and control of multiple independent test sessions (towards different target systems)
running in parallel.

Common Test isimplemented as aframework based on the OTP Test Server application.

50 | Ericsson AB. All Rights Reserved.: Common Test

common_test

common_test

Erlang module

The Common Test framework is an environment for implementing and performing automatic and semi-automatic
execution of test cases. Common Test usesthe OTP Test Server as engine for test case execution and logging.

In brief, Common Test supports:

* Automated execution of test suites (sets of test cases).
e Logging of the events during execution.

* HTML presentation of test suite results.

e HTML presentation of test suite code.

e Support functions for test suite authors.

« Step by step execution of test cases.

The following sections describe the mandatory and optional test suite functions Common Test will call during test
execution. For more details see Common Test User's Guide.

TEST CASE CALLBACK FUNCTIONS

The following functions define the callback interface for atest suite.

Exports

Modul e: al | () -> TestCases | {skip, Reason}
Types.

TestCases = [atom() | {group,GroupName}]

Reason = term()

GroupName = atom()

MANDATORY

This function must return the list of all test cases and test case groups in the test suite module that are to be executed.
This list also specifies the order the cases and groups will be executed by Common Test. A test case is represented
by an atom, the name of the test case function. A test case group is represented by a{ gr oup, G- oupNane} tuple,
where G oupNane, an atom, is the name of the group (defined with gr oups/ 0).

If { ski p, Reason} isreturned, all test cases in the module will be skipped, and the Reason will be printed on
the HTML result page.

For details on groups, see Test case groupsin the User's Guide.

Modul e: groups() -> G oupDefs

Types:
GroupDefs = [Group]
Group = {GroupName,Properties,GroupsAndTestCases}
GroupName = atom()
Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
TestCase = atom()

Ericsson AB. All Rights Reserved.: Common Test | 51

common_test

Shuffle = shuffle | {shuffle,Seed}
Seed = {integer (),integer (),integer)}
RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail | repeat_until_any ok |
repeat_until_any _fail
N =integer() | forever
OPTIONAL
See Test case groups in the User's Guide for details.

Modul e: suite() -> [Info]
Types.
Info = {timetrap,Time} | {require,Required} | {require,Name,Required} | {userdata,User Data} |
{silent_connections,Conns} | {stylesheet, CSSFile}
Time = MilliSec | {seconds,integer ()} | {minutes,integer ()} | {hours,integer)}
MilliSec = integer ()
Required = Key | {Key,SubK eys}
Key = atom()
SubKeys= SubKey | [SubK ey]
SubKey = atom()
Name = atom()
User Data = term()
Conns = [atom()]
CSSFile = string()
OPTIONAL

Thisisthetest suiteinfo function. It issupposed to return alist of tagged tuplesthat specify various propertiesregarding
the execution of this test suite (common for all test casesin the suite).

Thet i met r ap tag sets the maximum time each test case is allowed to take (includingi nit _per _t estcase/ 2
and end_per _testcase/2). If the timetrap time is exceeded, the test case fals with reason
tinmetrap_tineout.

The r equi r e tag specifies configuration variables that are required by test cases in the suite. If the required
configuration variables are not found in any of the configuration files, all test cases are skipped. For more information
about the 'require’ functionality, see the reference manual for the functionct : require/[1, 2] .

With user dat a, it is possible for the user to specify arbitrary test suite related information which can be read by
calingct : user dat a/ 2.

Other tuples than the ones defined will simply be ignored.
For more information about the test suite info function, see Test suite info function in the User's Guide.

Modul e:init_per_suite(Config) -> NewConfig | {skip, Reason} |
{ski p_and_save, Reason, SaveConfi g}

Types:
Config = NewConfig = SaveConfig = [{Key,Value}]
Key = atom()
Value=term()
Reason =term()

52 | Ericsson AB. All Rights Reserved.: Common Test

common_test

OPTIONAL

This function is called as the first function in the suite. It typically contains initialization which is common for all
test cases in the suite, and which shall only be done once. The Conf i g parameter is the configuration which can be
modified here. Whatever is returned from this function is given as Conf i g to all configuration functions and test
cases in the suite. If { ski p, Reason} isreturned, al test cases in the suite will be skipped and Reason printed
in the overview log for the suite.

For informationonsave_confi g andski p_and_save, please see Dependencies between Test Cases and Suites
in the User's Guide.

Modul e: end_per _suite(Config) -> void() | {save_config, SaveConfi g}
Types:

Config = SaveConfig = [{Key,Value}]

Key = atom()

Value=term()
OPTIONAL

This function is caled as the last test case in the suite. It is meant to be used for cleaning up after
init_per_suite/ l.Forinformationonsave_conf i g, please see Dependencies between Test Casesand Suites
in the User's Guide.

Modul e:init_per_group(G oupNane, Config) -> NewConfig | {skip, Reason}
Types:

GroupName = atom()

Config = NewConfig = [{Key,Value}]

Key = atom()

Value=term()

Reason = term()

MANDATORY (only if one or more groups are defined)

This function is called before execution of atest case group. It typically contains initialization which is common for
all test casesin the group, and which shall only be performed once. G oupNane isthe name of the group, as specified
in the group definition (see gr oups/ 0). The Conf i g parameter is the configuration which can be modified here.
Whatever is returned from this function is given as Conf i g to all test cases in the group. If { ski p, Reason} is
returned, all test casesin the group will be skipped and Reason printed in the overview log for the group.

For information about test case groups, please see Test case groups chapter in the User's Guide.

Modul e: end_per _group(G oupNane, Config) -> void() |
{return_group_result, Status}

Types.
GroupName = atom()
Config = [{Key,Value}]
Key = atom()
Value=term()
Status = ok | skipped | failed
MANDATORY (only if one or more groups are defined)

Ericsson AB. All Rights Reserved.: Common Test | 53

common_test

Thisfunction is called after the execution of atest case group is finished. It is meant to be used for cleaning up after
init_per_group/2.Bymeansof {return_group_result, Status},itispossbleto returnastatusvaue
for a nested sub-group. The status can be retrieved in end_per _gr oup/ 2 for the group on the level above. The
status will also be used by Common Test for deciding if execution of a group should proceed in case the property
sequence orrepeat _until _* isset.

For more information about test case groups, please see Test case groups chapter in the User's Guide.

Modul e:init_per_testcase(TestCase, Config) -> NewConfig | {skip, Reason}
Types.

TestCase = atom()

Config = NewConfig = [{Key,Value}]

Key = atom()

Value=term()

Reason =term()

OPTIONAL

Thisfunctioniscalled before each test case. The Test Case argument isthe name of thetest case, and Conf i g isthe
configuration which can be modified here. Whatever isreturned from thisfunctionisgiven asConf i g tothetest case.
If { ski p, Reason} isreturned, the test case will be skipped and Reason printed in the overview log for the suite.

Modul e: end_per _testcase(Test Case, Config) -> void() | {fail, Reason} |
{save_confi g, SaveConfi g}

Types:
TestCase = atom()
Config = SaveConfig = [{Key,Value}]
Key = atom()
Value=term()
Reason = term()

OPTIONAL

Thisfunction is called after each test case, and can be used to clean up afteri ni t _per _t est case/ 2 and the test
case. Any return value (besides{ f ai | , Reason} and{save_confi g, SaveConfi g}) isignored. By returning
{fail, Reason}, Test Case will be marked as failed (even though it was actually successful in the sense that it
returned a value instead of terminating). For information on save_conf i g, please see Dependencies between Test
Cases and Suites in the User's Guide

Modul e: testcase() -> [Info]
Types:
Info = {timetrap,Time} | {require,Required} | {require,Name Required} | {userdata,User Data} |
{silent_connections,Conns}
Time = MilliSec | {seconds,integer ()} | {minutes,integer ()} | {hours,integer ()}
MilliSec = integer ()
Required = Key | {Key,SubK eys}
Key = atom()
SubKeys = SubKey | [SubK ey]
SubK ey = atom()
Name = atom()

54 | Ericsson AB. All Rights Reserved.: Common Test

common_test

User Data = term()
Conns=[atom()]

OPTIONAL

Thisisthetest caseinfo function. It issupposed to return alist of tagged tuplesthat specify various propertiesregarding
the execution of this particular test case.

Theti nmetrap tag sets the maximum time the test case is alowed to take. If the timetrap time is exceeded, the
test case failswithreasonti metrap_tineout.init _per_testcase/ 2 andend _per_testcasel/ 2 are
included in the timetrap time.

Ther equi r e tag specifies configuration variables that are required by the test case. If the required configuration
variables are not found in any of the configuration files, the test case is skipped. For more information about the
‘require functionality, see the reference manua for the functionct : require/ [1, 2] .

Ifti metrap and/orr equi r e isnot set, the default values specified in the sui t e/ O return list will be used.

With user dat a, it is possible for the user to specify arbitrary test case related information which can be read by
calingct : user dat a/ 3.

Other tuples than the ones defined will simply be ignored.
For more information about the test case info function, see Test case info function in the User's Guide.

Modul e: testcase(Config) -> void() | {skip, Reason} | {comment, Conment} |
{save_config, SaveConfi g} | {skip_and_save, Reason, SaveConfig} | exit()

Types.
Config = SaveConfig = [{Key,Value}]
Key = atom()
Value=term()
Reason =term()
Comment = string()

MANDATORY

This is the implementation of atest case. Here you must call the functions you want to test, and do whatever you
need to check the result. If something fails, make sure the function causesaruntime error, or call ct : fai | /[0, 1]
(which also causes the test case processto crash).

Elements from the Conf i g parameter can be read with the ?conf i g macro. The conf i g macro is defined in
ct. hrl

You can return { ski p, Reason} if you decide not to run the test case after all. Reason will then be printed in
‘Comment’ field on the HTML result page.

You can return { comrent , Comment } if you wish to print some information in the '‘Comment' field on the HTML
result page.

If the function returns anything else, the test case is considered successful. (The return value always gets printed in
the test case log file).

For more information about test case implementation, please see Test cases in the User's Guide.

For informationonsave_confi g andski p_and_save, please see Dependencies between Test Cases and Suites
in the User's Guide.

Ericsson AB. All Rights Reserved.: Common Test | 55

run_test

run_test

Command

Therun_t est script is automatically generated as Common Test is installed (please see the Installation chapter
in the Common Test User's Guide for more information). The script accepts a number of different start flags. Some
flagstrigger r un_t est to start the Common Test application and pass on datato it. Some flags start an Erlang node
prepared for running Common Test in a particular mode.

run_t est aso accepts Erlang emulator flags. These are used whenr un_t est callser| to start the Erlang node
(making it possible to e.g. add directories to the code server path, change the cookie on the node, start additional
applications, etc).

If run_t est iscalled without parameters, it prints all valid start flags to stdout.

Run tests from command line

run_test [-dir TestDirl TestDir2 .. TestDirN |
[-suite Suitel Suite2 .. SuiteN
[[-group Groupl Goup2 .. GoupN [-case Casel Case2 .. CaseN]]

[-step [config | keep_inactive]]
[-config ConfigFilel ConfigFile2 .. ConfigFileN
[-decrypt _key Key] | [-decrypt_file KeyFile]
[-1ogdir LogDir]
[-silent_connections [ConnTypel ConnType2 .. ConnTypeN]]
[-styl esheet CSSFil e]
[-cover CoverCfgFil e]
[-event _handl er EvHandl er1l EvHandl er2 .. EvHandl er N|
[-include InclDirl InclDir2 .. InclDirN
[-no_auto_conpil e]

[-repeat N [-force_stop]] |

[-duration HHMVSS [-force_stop]] |

[-until [YYMoMoDD] HHMMSS [-f or ce_st op]]
[-basic_htm]

Run tests using test specification

run_test -spec Test Specl Test Spec2 .. Test SpecN
[-config ConfigFilel ConfigFile2 .. ConfigFileN
[-decrypt _key Key] | [-decrypt_file KeyFile]
[-1ogdir LogDir]
[-al | ow_user _terns]
[-silent_connections [ConnTypel ConnType2 .. ConnTypeN]]
[-styl esheet CSSFil e]
[-cover CoverCfgFil e]
[-event _handl er EvHandl er1l EvHandl er2 .. EvHandl er N|
[-include InclDirl InclDir2 .. InclDirN
[-no_auto_conpil e]

[-repeat N [-force_stop]] |

[-duration HHMVSS [-force_stop]] |

[-until [YYMoMoDD] HHMMSS [-f or ce_st op]]
[-basic_htm]

56 | Ericsson AB. All Rights Reserved.: Common Test

run_test

Run tests in web based GUI

run_test -vts [-browser Browser]
[-config ConfigFilel ConfigFile2 .. ConfigFileN
[-decrypt_key Key] | [-decrypt_file KeyFile]
[-dir TestDirl TestDir2 .. TestDirN |
[-suite Suite [[-group Group] [-case Case]]]

[-include InclDirl InclDir2 .. InclDrN
[-no_auto_conpil €]
[-basic_htn]

Refresh the HTML index files

run_test -refresh_logs [-logdir LogDir] [-basic_htm]

Run CT in interactive mode

run_test -shell
[-config ConfigFilel ConfigFile2 ... ConfigFileN
[-decrypt _key Key] | [-decrypt_file KeyFile]

Start an Erlang node with a given name

run_test -ctnanme NodeNane

Start a Common Test Master node

run_test -ctnaster

See also

Please read the Running Test Suites chapter in the Common Test User's Guide for information about the meaning of

the different start flags.

Ericsson AB. All Rights Reserved.: Common Test | 57

ct

ct

Erlang module

Main user interface for the Common Test framework.

This module implements the command line interface for running tests and some basic functions for common test case
issues such as configuration and logging.

Test Quite Support Macros

The conf i g macro is defined in ct . hr | . This macro should be used to retrieve information from the Conf i g
variable sent to all test cases. It is used with two arguments, where the first is the name of the configuration variable
you wish to retrieve, and the second isthe Conf i g variable supplied to the test case.

Possible configuration variables include:

e data_dir - Datafiledirectory.
e priv_dir - Scratchfiledirectory.
e Whateveraddedbyinit _per _suite/lorinit_per_testcase/2inthetest suite.

DATA TYPES

handl e() = handl e() (see nodule ct_gen_conn) | term)
Theidentity of a specific connection.

target _nanme() = var_nane()
The name of atarget.

var_nane() = atom)

A variable name which is specified when ct : requi re/ 2 is cdled, eg. ct: requi re(nynodenane,
{node, [telnet]})

Exports

abort _current _testcase(Reason) -> ok | {error, no_testcase_running}
Types:
Reason =term()

When calling this function, the currently executing test case will be aborted. It isthe user's responsibility to know for
sure which test caseis currently executing. The function is therefore only safe to call from afunction which has been
called (or synchronously invoked) by the test case.

Reason, the reason for aborting the test case, is printed in the test case log.

comment (Comment) -> voi d()
Types:
Comment =term()
Print the given Conmrent in the comment field of the table on the test suite result page.

If called several times, only the last comment is printed. conment/ 1 is aso overwritten by the return value
{comrent , Conment } or by thefunctionf ai | / 1 (which prints Reason as a comment).

58 | Ericsson AB. All Rights Reserved.: Common Test

ct

decrypt _config_file(EncryptFileNanme, TargetFileName) -> ok | {error, Reason}
Types:

EncryptFileName = string()

TargetFileName = string()

Reason =term()
This function decrypts Encr ypt Fi | eName, previously generated with encrypt _config file/2/3. The

original file contents is saved in the target file. The encryption key, a string, must be available in a text file named
.ct_config. crypt inthe current directory, or the home directory of the user (it is searched for in that order).

decrypt _config_file(EncryptFil eNane, TargetFileNane, KeyOrFile) -> ok |
{error, Reason}

Types:
EncryptFileName = string()
TargetFileName = string()
KeyOrFile={key, string()} | {file, string()}
Reason =term()

This function decrypts Encr ypt Fi | eName, previously generated with encrypt _config fil e/ 2/3. The
original file contentsis saved in the target file. The key must have the the same value as that used for encryption.

encrypt _config file(SrcFileNane, EncryptFileNane) -> ok | {error, Reason}
Types.
SrcFileName = string()
EncryptFileName = string()
Reason = term()
This function encrypts the source config file with DES3 and saves the result in file Encr ypt Fi | eNane. The key,

astring, must be availablein atext filenamed . ct _confi g. crypt inthe current directory, or the home directory
of the user (it is searched for in that order).

See the Common Test User's Guide for information about using encrypted config files when running tests.
Seethecr ypt o application for details on DES3 encryption/decryption.

encrypt _config file(SrcFileNarme, EncryptFileNane, KeyOrFile) -> ok | {error,
Reason}

Types.
SrcFileName = string()
EncryptFileName = string()
KeyOrFile={key, string()} | {file, string()}
Reason = term()

This function encrypts the source config file with DES3 and saves the result in the target file Encr ypt Fi | eNane.
Theencryptionkey to useiseither thevaluein{ key, Key} orthevaluestoredinthefilespecifiedby{fil e, Fi | e}.

See the Common Test User's Guide for information about using encrypted config files when running tests.
Seethecr ypt o application for details on DES3 encryption/decryption.

Ericsson AB. All Rights Reserved.: Common Test | 59

ct

fail (Reason) -> void()
Types:
Reason =term()
Terminate atest case with the given error Reason.

get _config(Required) -> Val ue
Equivalent to get_config(Required, undefined, []).

get _config(Required, Default) -> Val ue
Equivalent to get_config(Required, Default, []).

get _config(Required, Default, Opts) -> Val ueO El enment
Types:

Required = KeyOrName | {K eyOr Name, SubK ey}

KeyOrName = atom()

SubK ey = atom()

Default = term()

Opts=[Opt] [[]

Opt = element | all

ValueOr Element = term() | Default
Read config data values.

This function returns the matching value(s) or config element(s), given a config variable key or its associated name
(if one has been specified with r equi r e/ 2 or arequire statement).

Example, given the following config file:

{uni x, [{tel net, | pAddr},
{user nane, User nane},
{password, Password}]}.

get _config(uni x, Defaul t) -> [{tel net, | pAddr}, {user nane, User nane},
{passwor d, Passwor d}]

get _config({unix,telnet}, Default) -> | pAddr

get _config({unix,ftp}, Default) -> Default

get _confi g(unknownkey, Default) -> Default

If aconfig variable key has been associated with aname (by means of r equi r e/ 2 or arequire statement), the name
may be used instead of the key to read the value:

requi re(myhost, uni x) -> ok
get _config(nyhost, Defaul t) -> [{tel net, | pAddr}, {user nane, User nane},
{ passwor d, Passwor d}]

If a config variable is defined in multiple files and you want to access all possible values, use the al | option. The
valueswill bereturnedin alist and the order of the elements correspondsto the order that the config fileswere specified
at startup.

60 | Ericsson AB. All Rights Reserved.: Common Test

ct

If you want config elements (key-value tuples) returned as result instead of values, use the el emrent option. The
returned elements will then be on the form { KeyOr Nane, Val ue}, or (in case a subkey has been specified)
{{ KeyOr Nane, SubKey}, Val ue}

See also: get_config/l, get_config/2, require/l, require/2.

get _status() -> TestStatus | {error, Reason}
Types.
TestStatus = [StatusElem]

StatusElem = {current, {Suite, TestCase}} | {successful, Successful} | {failed, Failed} | {skipped, Skipped} |
{total, Total}

Suite =atom()

TestCase = atom()

Successful = integer ()

Failed = integer ()

Skipped = {User Skipped, AutoSkipped}
User Skipped = integer ()

AutoSkipped = integer ()

Total = integer()

Reason = term()

Returns status of ongoing test. The returned list contains info about which test caseis currently executing, as well as
counters for successful, failed, skipped, and total test cases so far.

get _target_nane(Handl e) -> {ok, TargetNane} | {error, Reason}
Types:

Handle = handlg()

TargetName = target_name()
Return the name of the target that the given connection belongs to.

install (OQpts) -> ok | {error, Reason}
Types.
Opts=[Opt]
Opt ={config, ConfigFiles} | {event_handler, Modules} | {decrypt, KeyOrFile}
ConfigFiles=[ConfigFile]
ConfigFile = string()
Modules = [atom()]
KeyOrFile={key, Key} | {file, KeyFile}
Key = string()
KeyFile=string()
Install config files and event handlers.
Run this function once before first test.

Example:
install ([{config,["config node.ctc","config user.ctc"]}]).

Note that this function is automatically run by ther un_t est script.

Ericsson AB. All Rights Reserved.: Common Test | 61

ct

listenv(Tel net) -> [Env]
Types:
Telnet = term()
Env ={Key, Value}
Key = string()
Value = string()
Performs the listenv command on the given telnet connection and returns the result as alist of Key-Value pairs.

| og(Format) -> ok
Equivalent to log(default, Format, []).

l og(X1, X2) -> ok
Types:
X1 = Category | Format
X2 =Format | Args

Equivalent to log(Category, Format, Args).

| og(Category, Format, Args) -> ok
Types:
Category = atom()
Format = string()
Args=list()
Printout from a testcase to the log.
Thisfunctionismeant for printing stuff directly from atestcase (i.e. not from within the CT framework) in thetest log.

Default Cat egory isdef aul t and default Args is[] .

pal (Format) -> ok
Equivalent to pal (default, Format, []).

pal (X1, X2) -> ok
Types.
X1 = Category | Format
X2 =Format | Args

Equivalent to pal (Category, Format, Args).

pal (Category, Format, Args) -> ok
Types:
Category = atom()
Format = string()
Args=list()
Print and log from a testcase.
This function is meant for printing stuff from atestcase both in the log and on the console.

62 | Ericsson AB. All Rights Reserved.: Common Test

ct

Default Cat egory isdef aul t and default Args is[] .

parse_tabl e(Data) -> {Headi ng, Tabl e}
Types.
Data = [string()]
Heading = tuple()
Table = [tuple()]
Parse the printout from an SQL table and return alist of tuples.

The printout to parse would typically be the result of asel ect command in SQL. The returned Tabl e isalist of
tuples, where each tupleisarow in thetable.

Headi ng isatuple of strings representing the headings of each column in thetable.

print(Format) -> ok
Equivalent to print(default, Format, []).

print (X1, X2) ->term)
Equivalent to print(Category, Format, Args).

print(Category, Format, Args) -> ok
Types:
Category = atom()
Format = string()
Args=list()
Printout from atestcase to the console.
This function is meant for printing stuff from a testcase on the console.

Default Cat egory isdef aul t and default Args is[] .

requi re(Required) -> ok | {error, Reason}

Types.
Required = Key | {Key, SubK eys}
Key = atom()

SubKeys= SubKey | [SubK ey]
SubKey = atom()

Check if the required configuration is available.

Example: require the variable nyvar :
ok = ct:require(myvar)

In this case the config file must at least contain:

{nyvar, Val ue}.

Example: require the variable nyvar with subvariablesub1:
ok = ct:require({nyvar, subl})

Ericsson AB. All Rights Reserved.: Common Test | 63

ct

In this case the config file must at least contain:

{nyvar, [{subl, Val ue}]}.
See also: get_config/l, get_config/2, get_config/3, require/2.

requi re(Nane, Required) -> ok | {error, Reason}
Types:

Name = atom()

Required = Key | {Key, SubKeys}

Key = atom()

SubKeys = SubKey | [SubK ey]

SubKey = atom()
Check if the required configuration is available, and give it a name.

If the requested datais available, the main entry will be associated with Nane so that the value of the element can be
read withget _confi g/ 1, 2 provided Nane instead of the Key.

Example: Require one node with atelnet connection and an ftp connection. Name the node a:

ok = ct:require(a,{node,[telnet,ftp]}).

All references to this node may then use the node name. E.g. you can fetch afile over ftp like this:
ok = ct:ftp_get(a, RenoteFile, Local File).

For thisto work, the config file must at least contain:

{node, [{tel net, | pAddr},
{ftp, | pAddr}]}.

See also: get_config/l, get_config/2, get_config/3, require/1.

run(TestDirs) -> Result
Types:
TestDirs= TestDir | [TestDir]
Run all testcases in all suitesin the given directories.
See also: run/3.

run(TestDir, Suite) -> Result
Run all testcasesin the given suite.
See also: run/3.

run(TestDir, Suite, Cases) -> Result

Types:
TestDir = string()
Suite = atom()

Cases = atom() | [atom()]

64 | Ericsson AB. All Rights Reserved.: Common Test

ct

Result = [TestResult] | {error, Reason}
Run the given testcase(s).
Requiresthat ct : i nstal | / 1 hasbeenrun first.

Suites (*_SUITE.erl) files must be stored in Test Di r or Test Di r/ t est . All suites will be compiled when test
isrun.

run_test(Opts) -> Result

Types:
Opts=[OptTuples]
OptTuples = {config, CfgFiles} | {dir, TestDirs} | {suite, Suites} | {testcase, Cases} | {group, Groups}
| {'spec’, TestSpecs} | {allow_user_terms, Bool} | {logdir, LogDir} | {silent_connections, Conns} |
{cover, Cover SpecFile} | {step, StepOpts} | {event_handler, EventHandlers} | {include, IncIDirs} |
{auto_compile, Bool} | {repeat, N} | {duration, DurTime} | {until, StopTime} | {force_stop, Bool} |
{decrypt, DecryptKeyOrFile} | {refresh_logs, LogDir} | {basic_html, Bool}

CfgFiles=[string()] | string()

TestDirs=[string()] | string()

Suites = [string()] | string()

Cases = [atom()] | atom()

Groups = [atom()] | atom()

TestSpecs = [string()] | string()

LogDir = string()

Conns=all | [atom()]

Cover SpecFile = string()

StepOpts = [StepOpt] | []

StepOpt = config | keep_inactive

EventHandlers=EH | [EH]

EH =atom() | {atom(), InitArgs} | {[atom()], InitArgs}

InitArgs=[term()]

IncIDirs=[string()] | string()

N = integer ()

DurTime = string(HHM M SS)

StopTime=string(YYMoMoDDHHMMSS) | string(HHMM SS)

DecryptKeyOrFile = {key, DecryptK ey} | {file, DecryptFile}

DecryptKey = string()

DecryptFile = string()

Result = [TestResult] | {error, Reason}
Run tests as specified by the combination of options in Opt s. The options are the same as those used with the
run_t est script. Notethat hereaTest Di r can be used to point out the path to a Sui t e. Note also that the option

t est case corresponds to the - case option inther un_t est script. Configuration files specified in Opt s will
be installed automatically at startup.

run_t estspec(Test Spec) -> Result

Types:
TestSpec = [term()]

Ericsson AB. All Rights Reserved.: Common Test | 65

ct

Run test specified by Test Spec. The terms are the same as those used in test specification files.

start _interactive() -> ok
Start CT in interactive mode.

From this mode all test case support functions can be executed directly from the erlang shell. The interactive mode
can aso be started from the unix command linewithrun_test -shell [-config File...].

If any functions using "required config data (e.g. telnet or ftp functions) are to be called from the erlang shell, config
data must first be required with ct : requi r e/ 2.

Example:

> ct:require(unix_telnet, unix).

ok

> ct_telnet:open(unix_tel net).

{ ok, <0. 105. 0>}

> ct_telnet:cnd(unix_telnet, "lIs .").
{ok,["Is","filel ...",...]}

step(TestDir, Suite, Case) -> Result
Types:

Case=atom()
Step through atest case with the debugger.

See also: run/3.

step(TestDir, Suite, Case, Opts) -> Result
Types:

Case = atom()

Opts=[Opt] |[]

Opt = config | keep_inactive

Step through atest case with the debugger. If the conf i g option has been given, breakpoints will be set also on the
configuration functionsin Sui t e.

See also: run/3.

stop_interactive() -> ok
Exit the interactive mode.
See also: start_interactive/O.

testcases(TestDir, Suite) -> Testcases | {error, Reason}

Types:
TestDir = string()
Suite = atom()

Testcases = list()
Reason = term()
Returns all testcases in the specified suite.

66 | Ericsson AB. All Rights Reserved.: Common Test

ct

userdata(TestDir, Suite) -> SuiteUserData | {error, Reason}
Types:

TestDir = string()

Suite = atom()

SuiteUser Data = [term()]

Reason =term()

Returns any data specified with thetag user dat a in thelist of tuples returned from Sui t e: sui t e/ 0.

userdata(TestDir, Suite, Case) -> TCUserData | {error, Reason}
Types.

TestDir = string()

Suite = atom()

Case=atom()

TCUserData = [term()]

Reason =term()

Returns any data specified with thetag user dat a in thelist of tuples returned from Sui t e: Case/ 0.

Ericsson AB. All Rights Reserved.: Common Test | 67

ct_master

ct_master

Erlang module

Distributed test execution control for Common Test.
This module exports functions for running Common Test nodes on multiple hostsin parallel.

Exports

abort () -> ok
Stops al running tests.

abort (Nodes) -> ok
Types:

Nodes = atom() | [atom()]
Stops tests on specified nodes.

progress() -> [{Node, Status}]

Types:
Node = atom()
Status = finished_ok | ongoing | aborted | {error, Reason}
Reason = term()

Returnstest progress. If St at us isongoi ng, tests are running on the node and have not yet finished.

run(Test Specs) -> ok
Types:

TestSpecs = string() | [SeparateOr M er ged]
Equivalent to run(TestSpecs, false, [], [1).

run(Test Specs, Incl Nodes, Excl Nodes) -> ok
Types:
TestSpecs = string() | [SeparateOr M er ged|]
SeparateOrMerged = string() | [string()]
InclNodes = [atom()]
ExclNodes = [atom()]

Equivalent to run(TestSpecs, false, IncINodes, ExclNodes).

run(Test Specs, Al |l owlUser Terns, |ncl Nodes, Excl Nodes) -> ok
Types.

TestSpecs = string() | [SeparateOr M er ged]

SeparateOrMerged = string() | [string()]

AllowUser Terms = bool()

InclNodes = [atom()]

68 | Ericsson AB. All Rights Reserved.: Common Test

ct_master

ExclNodes = [atom()]

Testsare spawned onthenodesas specifiedin Test Specs. Each specificationin TestSpec will be handled separately.
Itishowever possibleto a so specify alist of specificationsthat should be merged into one beforethetests are executed.
Any test without a particular node specification will also be executed on the nodes in | ncl Nodes. Nodes in the
Excl Nodes list will be excluded from the test.

run_on_node(Test Specs, Node) -> ok
Types.
TestSpecs = string() | [SeparateOr M er ged]
SeparateOrMerged = string() | [string()]
Node = atom()

Equivalent to run_on_node(TestSpecs, false, Node).

run_on_node(Test Specs, All owlJser Terns, Node) -> ok
Types.

TestSpecs = string() | [Separ ateOr M er ged]

SeparateOrMerged = string() | [string()]

AllowUser Terms = bool()

Node = atom()

Tests are spawned on Node according to Test Specs.

run_test (Node, Opts) -> ok

Types:
Node = atom()
Opts=[OptTuples]
OptTuples ={config, CfgFiles} | {dir, TestDirs} | {suite, Suites} | {testcase, Cases} | {'spec', TestSpecs}
| {allow_user_terms, Bool} | {logdir, LogDir} | {event_handler, EventHandlers} | {silent_connections,
Conns} | {cover, Cover SpecFile}

CfgFiles=string() | [string()]
TestDirs=string() | [string()]
Suites = atom() | [atom()]
Cases = atom() | [atom()]
TestSpecs=string() | [string()]
LogDir = string()
EventHandlers=EH | [EH]
EH =atom() | {atom(), InitArgs} | {[atom()], InitArgs}
InitArgs=[term()]
Conns=all | [atom()]
Tests are spawned on Node usingct : run_t est/ 1.

Ericsson AB. All Rights Reserved.: Common Test | 69

ct_cover

ct_cover

Erlang module

Common Test Framework code coverage support module.
This module exports help functions for performing code coverage analysis.

Exports

add_nodes(Nodes) -> term()

remove_nodes(Nodes) -> ok | {error, Reason}
Types:

Nodes = [atom()]

Reason = cover_not_running | not_main_node

Remove nodes from current cover test. Call this function to stop cover test on nodes previously added with
add_nodes/1. Results on the remote node are transferred to the Common Test node.

70 | Ericsson AB. All Rights Reserved.: Common Test

ct_ftp

ct_ftp

Erlang module

FTP client module (based on the FTP support of the INETS application).

DATA TYPES

connection() = handle() | target_nane() (see nodul e ct)
handl e() = handl e() (see nodul e ct_gen_conn)

Handle for a specific ftp connection.

Exports

cd(Connection, Dir) -> ok | {error, Reason}

Types:
Connection = connection()
Dir = string()

Change directory on remote host.

cl ose(Connection) -> ok | {error, Reason}
Types:
Connection = connection()

Close the FTP connection.

del et e(Connection, File) -> ok | {error, Reason}
Types:

Connection = connection()

File=string()
Delete afile on remote host

get (KeyOr Nanme, RenoteFile, LocalFile) -> ok | {error, Reason}

Types:
KeyOrName = Key | Name
Key = atom()

Name = target_name() (see module ct)
RemoteFile = string()
LocalFile= string()

Open aftp connection and fetch a file from the remote host.
Renot eFi | e and Local Fi | e must be absolute paths.
The config file must be as for put/3.

See also: put/3.

Ericsson AB. All Rights Reserved.: Common Test | 71

ct_ftp

| s(Connection, Dir) -> {ok, Listing} | {error, Reason}

Types:
Connection = connection()
Dir =string()

Listing = string()
List the directory Dir.

open(KeyOr Nane) -> {ok, Handle} | {error, Reason}

Types:
KeyOrName = Key | Name
Key = atom()

Name = target_name() (see module ct)
Handle = handlg()
Open an FTP connection to the specified node.

Y ou can open one connection for aparticular Nane and use the same name as reference for all subsequent operations.
If you want the connection to be associated with Handl e instead (in case you need to open multiple connectionsto a
host for example), simply use Key, the configuration variable name, to specify the target. Note that a connection that
has no associated target name can only be closed with the handle value.

put (KeyOr Nane, Local File, RenoteFile) -> ok | {error, Reason}
Types.

KeyOrName = Key | Name

Key = atom()

Name = target_name() (see module ct)

LocalFile= string()

RemoteFile = string()

Open aftp connection and send a file to the remote host.
Local Fi | e and Renot eFi | e must be absolute paths.

If the target host is a"special" node, the ftp address must be specified in the config file like this:

{node, [{ftp, | pAddr}]}.

If the target host is something else, e.g. a unix host, the config file must also include the username and password
(both strings):

{unix, [{ftp, | pAddr},
{user nane, User nane},
{password, Password}]}.

recv(Connection, RenoteFile) -> ok | {error, Reason}

Fetch afile over FTP.
Thefilewill get the same name on the local host.

72 | Ericsson AB. All Rights Reserved.: Common Test

ct_ftp

See also: recv/3.

recv(Connection, RenoteFile, LocalFile) -> ok | {error,
Types.

Connection = connection()

RemoteFile = string()

LocalFile= string()
Fetch afile over FTP.

Thefilewill be named Local Fi | e ontheloca host.

send(Connection, LocalFile) -> ok | {error, Reason}
Send afile over FTP.

Thefile will get the same name on the remote host.

See also: send/3.

send(Connection, Local File, RenoteFile) -> ok | {error,
Types.

Connection = connection()

LocalFile= string()

RemoteFile = string()
Send afile over FTP.

Thefilewill be named Renot eFi | e on the remote host.

type(Connection, Type) -> ok | {error, Reason}
Types:

Connection = connection()

Type=ascii | binary
Changefile transfer type

Reason}

Reason}

Ericsson AB. All Rights Reserved.: Common Test | 73

ct_ssh

ct_ssh

Erlang module

SSH/SFTP client module.

ct_ssh usesthe OTP ssh application and more detail ed i nformation about e.g. functions, types and options can be found
in the documentation for this application.

TheSer ver argument inthe SFTP functions should only be used for SFTP sessionsthat have been started on existing
SSH connections (i.e. when the original connection typeisssh). Whenever the connection typeissf t p, usethe SSH
connection reference only.

The following options are valid for specifying an SSH/SFTP connection (i.e. may be used as config elements):

[{ConnType, Addr},
{port, Port},
{user, User Nane}
{password, Pwd}
{user_dir, String}
{public_key_al g, PubKeyAl g}
{connect _ti meout, Ti meout}
{key_ch, KeyCal | backMbod}]

ConnType = ssh | sftp.
Please see ssh(3) for other types.
All timeout parametersin ct_ssh functions are values in milliseconds.

DATA TYPES

connection() = handle() | target_nane() (see nodule ct)
handl e() = handl e() (see nodul e ct_gen_conn)

Handle for a specific SSH/SFTP connection.
ssh_sftp_return() = term))
A return value from an ssh_sftp function.

Exports

apread(SSH, Handle, Position, Length) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).

74 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

apread(SSH, Server, Handle, Position, Length) -> term)

apwrite(SSH, Handle, Position, Data) -> Result
Types.

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason =term()

For info and other types, see ssh_sftp(3).
apwrite(SSH, Server, Handle, Position, Data) -> tern()

aread(SSH, Handl e, Len) -> Result
Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
aread(SSH, Server, Handle, Len) -> term)

awite(SSH, Handle, Data) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).
awite(SSH, Server, Handle, Data) -> term))

cl ose(SSH, Handle) -> Result

Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
cl ose(SSH, Server, Handle) -> term)

connect (KeyOr Nanme) -> {ok, Handle} | {error, Reason}
Equivalent to connect(KeyOrName, host, []).

connect (KeyOr Nanme, ConnType) -> {ok, Handle} | {error, Reason}
Equivalent to connect(KeyOrName, ConnType, []).

Ericsson AB. All Rights Reserved.: Common Test | 75

ct_ssh

connect (KeyOr Nanme, ConnType, ExtraQpts) -> {ok, Handle} | {error, Reason}

Types:
KeyOrName = Key | Name
Key = atom()

Name = target_name() (see module ct)
ConnType = ssh | sftp | host
ExtraOpts = ssh_connect_options()
Handle = handle()
Reason = term()
Open an SSH or SFTP connection using the information associated with Key Or Narre.

If Nanme (an alias name for Key), is used to identify the connection, this name may be used as connection reference
for subsequent calls. It's only possible to have one open connection at atime associated with Name. If Key is used,
the returned handle must be used for subsequent calls (multiple connections may be opened using the config data
specified by Key).

ConnTy pe will dwaysoverridethe type specified in the addresstuplein the configuration data (and in Ext r aOpt s).
Soitispossibleto for example open an sftp connection directly using data originally specifying an ssh connection. The
valuehost meansthe connection type specified by the host option (either in the configuration dataor in Ext r aQpt s)
will be used.

Ext raOpt s (optional) are extra SSH options to be added to the config data for KeyOr Nane. The extra options
will override any existing options with the same key in the config data. For details on valid SSH options, see the
documentation for the OTP ssh application.

del _dir(SSH, Nanme) -> Result

Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
del _dir(SSH, Server, Nanme) -> term)

del ete(SSH, Nane) -> Result

Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

del ete(SSH, Server, Nane) -> term))

di sconnect (SSH) -> ok | {error, Reason}
Types:

SSH = connection()
Reason =term()

76 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

Close an SSH/SFTP connection.

exec(SSH, Conmand) -> {ok, Data} | {error, Reason}
Equivalent to exec(SSH, Command, DefaultTimeout).

exec(SSH, Conmand, Tinmeout) -> {ok, Data} | {error, Reason}
Types:

SSH = connection()

Command = string()

Timeout = integer ()

Data = list()

Reason = term()

Requests server to perform Command. A session channel is opened automatically for the request. Dat a is received
from the server as aresult of the command.

exec(SSH, Channelld, Conmand, Tinmeout) -> {ok, Data} | {error, Reason}
Types:

SSH = connection()

Channelld = integer ()

Command = string()

Timeout = integer ()

Data =list()

Reason =term()

Requests server to perform Command. A previously opened session channel is used for the request. Dat a isreceived
from the server as aresult of the command.

get file_info(SSH, Handle) -> Result
Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
get _file_info(SSH, Server, Handle) -> term)

list dir(SSH, Path) -> Result

Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).

Ericsson AB. All Rights Reserved.: Common Test | 77

ct_ssh

list_dir(SSH, Server, Path) -> tern()

make dir(SSH, Name) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
make dir(SSH, Server, Nanme) -> tern()

make_sym i nk(SSH, Nane, Target) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason =term()

For info and other types, see ssh_sftp(3).
make_sym i nk(SSH, Server, Nane, Target) -> term)

open(SSH, File, Mde) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).
open(SSH, Server, File, Mde) -> tern()

opendi r (SSH, Path) -> Result

Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
opendi r (SSH, Server, Path) -> term)

position(SSH, Handle, Location) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

78 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

For info and other types, see ssh_sftp(3).
position(SSH, Server, Handle, Location) -> term))

pread(SSH, Handl e, Position, Length) -> Result
Types:

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason =term()

For info and other types, see ssh_sftp(3).
pread(SSH, Server, Handle, Position, Length) -> term()

pwite(SSH, Handle, Position, Data) -> Result
Types.

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason = term()

For info and other types, see ssh_sftp(3).
pwite(SSH, Server, Handle, Position, Data) -> term)

read(SSH, Handl e, Len) -> Result
Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
read(SSH, Server, Handle, Len) -> term)

read file(SSH, File) -> Result
Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).
read_file(SSH, Server, File) -> term)

read_file_info(SSH Nanme) -> Result
Types.

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Ericsson AB. All Rights Reserved.: Common Test | 79

ct_ssh

Reason = term()
For info and other types, see ssh_sftp(3).

read file info(SSH, Server, Nanme) -> term)

read_I| i nk(SSH, Nane) -> Result
Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).
read_I| i nk(SSH, Server, Nane) -> term))

read_l i nk_i nfo(SSH, Nane) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
read_|ink _ info(SSH, Server, Name) -> term)

receive_response(SSH, Channelld) -> {ok, Data} | {error, Reason}

Equivalent to receive _response(SSH, Channelld, close).

recei ve_response(SSH, Channelld, End) -> {ok, Data} | {error, Reason}
Equivalent to receive_response(SSH, Channelld, End, DefaultTimeout).

recei ve_response(SSH, Channelld, End, Tineout) -> {ok, Data} | {tineout,
Data} | {error, Reason}

Types.
SSH = connection()
Channelld = integer()
End = Fun | close | timeout
Timeout = integer ()
Data = list()
Reason = term()
Receives expected data from server on the specified session channel.

If End == cl ose, datais returned to the caller when the channel is closed by the server. If a timeout occurs
before this happens, the function returns{ t i meout , Dat a} (where Dat a isthe datareceived so far). If End
ti meout , atimeout is expected and { ok, Dat a} isreturned both in the case of atimeout and when the channel is
closed. If End isafun, thisfun will be called with one argument - the data value in areceived ssh_cmmessage (see
ssh_connection(3)). The fun should return t r ue to end the receiving operation (and have the so far collected data

80 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

returned), or f al se to wait for more data from the server. (Note that even if afun is supplied, the function returns
immediately if the server closes the channel).

renane(SSH, O dNane, NewNane) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
renane(SSH, Server, O dNane, NewNanme) -> tern()

send(SSH, Channelld, Data) -> ok | {error, Reason}
Equivalent to send(SSH, Channelld, 0, Data, DefaultTimeout).

send(SSH, Channelld, Data, Tineout) -> ok | {error, Reason}
Equivalent to send(SSH, Channelld, 0, Data, Timeout).

send(SSH, Channelld, Type, Data, Tineout) -> ok | {error, Reason}
Types:

SSH = connection()

Channelld = integer ()

Type = integer()

Data = list()

Timeout = integer ()

Reason =term()
Send data to server on specified session channel.

send_and_recei ve(SSH, Channelld, Data) -> {ok, Data} | {error, Reason}
Equivalent to send_and _receive(SSH, Channelld, Data, close).

send_and_recei ve(SSH, Channelld, Data, End) -> {ok, Data} | {error, Reason}
Equivalent to send_and_receive(SSH, Channelld, 0, Data, End, DefaultTimeout).

send_and_recei ve(SSH, Channel ld, Data, End, Tineout) -> {ok, Data} | {error,
Reason}

Equivalent to send_and_receive(SSH, Channelld, O, Data, End, Timeout).

send_and_r ecei ve(SSH, Channel Id, Type, Data, End, Tinmeout) -> {ok, Data} |
{error, Reason}

Types:
SSH = connection()
Channelld = integer()
Type =integer()

Ericsson AB. All Rights Reserved.: Common Test | 81

ct_ssh

Data = list()
End = Fun | close | timeout
Timeout = integer ()
Reason =term()
Send data to server on specified session channel and wait to receive the server response.

Seer ecei ve_response/ 4 for details on the End argument.

sessi on_cl ose(SSH, Channelld) -> ok | {error, Reason}
Types.

SSH = connection()

Channelld = integer()

Reason =term()

Closes an SSH session channel.

session_open(SSH) -> {ok, Channelld} | {error, Reason}
Equivalent to session_open(SSH, DefaultTimeout).

session_open(SSH, Tinmeout) -> {ok, Channelld} | {error, Reason}
Types:

SSH = connection()

Timeout = integer ()

Channelld = integer()

Reason =term()
Opens a channel for an SSH session.

sftp_connect (SSH) -> {ok, Server} | {error, Reason}

Types:
SSH = connection()
Server = pid()

Reason =term()

Starts an SFTP session on an aready existing SSH connection. Ser ver identifies the new session and must be
specified whenever SFTP requests are to be sent.

subsysten(SSH, Channel I d, Subsystem) -> Status | {error, Reason}
Equivalent to subsystem(SSH, Channelld, Subsystem, DefaultTimeout).

subsystenm(SSH, Channel I d, Subsystem Tineout) -> Status | {error, Reason}
Types:

SSH = connection()

Channelld = integer ()

Subsystem = string()

Timeout = integer ()

Status = success | failure

82 | Ericsson AB. All Rights Reserved.: Common Test

ct_ssh

Reason = term()
Sends a request to execute a predefined subsystem.

wite(SSH, Handle, Data) -> Result
Types.
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason =term()

For info and other types, see ssh_sftp(3).
write(SSH, Server, Handle, Data) -> term))

wite file(SSH, File, lolist) -> Result
Types:
SSH = connection()
Result = ssh_sftp_return() | {error, Reason}
Reason = term()

For info and other types, see ssh_sftp(3).
wite file(SSH, Server, File, lolist) -> term)

wite file_ info(SSH, Nanme, Info) -> Result
Types.

SSH = connection()

Result = ssh_sftp_return() | {error, Reason}

Reason =term()

For info and other types, see ssh_sftp(3).

wite file_ info(SSH, Server, Nane, Info) -> tern()

Ericsson AB. All Rights Reserved.: Common Test | 83

ct_rpc

ct_rpc

Erlang module

Common Test specific layer on Erlang/OTP rpc.

Exports

app_node(App, Candi dates) -> NodeNane
Types.
App =atom()
Candidates = [NodeName]
NodeName = atom()
From a set of candidate nodes determines which of them is running the application App. If none of the candidate nodes

is running the application the function will make the test case calling this function fail. This function is the same as
cdlingapp_node(App, Candi dates, true).

app_node(App, Candi dates, Fail OnBadRPC) -> NodeNane
Types.

App = atom()

Candidates = [NodeName]

NodeName = atom()

FailOnBadRPC =true| false

Sameasapp_node/ 2 only the Fai | OnBadRPC argument will determineif the search for a candidate node should
stop or not if badr pc isreceived at some point.

app_node(App, Candi dates, Fail OnBadRPC, Cookie) -> NodeNane
Types:

App = atom()

Candidates = [NodeName]

NodeName = atom()

FailOnBadRPC =true| false

Cookie = atom()

Sameasapp_node/ 2 only the Fai | OnBadRPC argument will determineif the search for a candidate node should
stop or not if badr pc isreceived at some point. The cookie on the client node will be set to Cooki e for this rpc
operation (use to match the server node cookie).

cal | (Node, Mbodul e, Function, Args) -> term() | {badrpc, Reason}
Same as call(Node, Module, Function, Args, infinity)

cal |l (Node, Mbdul e, Function, Args, TimeQut) -> term() | {badrpc, Reason}

Types:
Node = NodeName | {Fun, FunArgs}
Fun = fun()

84 | Ericsson AB. All Rights Reserved.: Common Test

ct_rpc

FunArgs=term()
NodeName = atom()
Module = atom()
Function = atom()
Args=[term()]

Reason = timeout | term()

Evaluates apply(Module, Function, Args) on the node Node. Returns whatever Function returns or { badrpc, Reason}
if the remote procedure call fails. If Node is{ Fun, FunArgs} applying Fun to FunArgs should return a node name.

cal | (Node, Mbdul e, Function, Args, TinmeQut, Cookie) -> term() | {badrpc,
Reason}

Types:
Node = NodeName | {Fun, FunArgs}
Fun =fun()

FunArgs=term()
NodeName = atom()
Module = atom()
Function = atom()
Args=[term()]
Reason = timeout | term()
Cookie = atom()
Evaluates apply(Module, Function, Args) on the node Node. Returns whatever Function returns or { badrpc, Reason}

if the remote procedure call fails. If Node is { Fun, FunArgs} applying Fun to FunArgs should return a node name.
The cookie on the client node will be set to Cooki e for this rpc operation (use to match the server node cookie).

cast (Node, Mbdul e, Function, Args) -> ok

Types:
Node = NodeName | {Fun, FunArgs}
Fun =fun()

FunArgs=term()
NodeName = atom()
Module = atom()
Function = atom()
Args=[term()]
Reason = timeout | term()
Evaluates apply(Module, Function, Args) on the node Node. No response is delivered and the process which makes

the call is not suspended until the evaluation is compleated as in the case of cal/[3,4]. If Node is { Fun, FunArgs}
applying Fun to FunArgs should return a node name.

cast (Node, Mbdul e, Function, Args, Cookie) -> ok

Types:
Node = NodeName | {Fun, FunArgs}
Fun = fun()

FunArgs=term()

Ericsson AB. All Rights Reserved.: Common Test | 85

ct_rpc

NodeName = atom()
Module = atom()
Function = atom()
Args=[term()]

Reason = timeout | term()
Cookie = atom()

Evaluates apply(Module, Function, Args) on the node Node. No response is delivered and the process which makes
the call is not suspended until the evaluation is compleated as in the case of call/[3,4]. If Node is { Fun, FunArgs}
applying Fun to FunArgs should return a node name. The cookie on the client node will be set to Cooki e for this
rpc operation (use to match the server node cookie).

86 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

ct_snmp

Erlang module

Common Test user interface module for the OTP snmp application

The purpose of thismoduleisto make snmp configuration easier for thetest casewriter. Many test cases can use default
valuesfor common operations and then no snmp configuration files need to be supplied. When it is necessary to change
particular configuration parameters, a subset of the relevant snmp configuration files may be passedto ct _snnp by
means of Common Test configuration files. For more specialized configuration parameters, it is possible to place a
"simple snmp configuration file" in the test suite data directory. To simplify the test suite, Common Test keeps track
of some of the snmp manager information. Thisway the test suite doesn't have to handle as many input parameters as
it would if it had to interface the OTP snmp manager directly.

The following snmp manager and agent parameters are configurable;

{snnp,
%86 Manager config
[{start_manager, bool ean()} % Optional - default is true
{users, [{user_nane(), [call_back_nodul e(), user_data()]}]}, %% Optional
{usm users, [{usm user_nanme(), usmconfig()}]}, %o Optional - snnp v3 only

% managed_agents i s optional
{managed_agent s, [{agent _nanme(), [user_nane(), agent_ip(), agent_port(), [agent_config()]]}]1},

{max_msg_si ze, integer()}, % Optional - default is 484
{mgr_port, integer()}, % Optional - default is 5000
{engine _id, string()}, % Optional - default is "ngrEngi ne"
%86 Agent config

{start_agent, bool ean()}, % Optional - default is false

{agent _sysnane, string()}, % Optional - default is "ct_test”
{agent _nmanager _i p, manager _ip()}, % Optional - default is |ocal host
{agent _vsns, list()}, % Optional - default is [v2]

{agent _trap_udp, integer()}, % Optional - default is 5000

{agent _udp, integer()}, % Optional - default is 4000

{agent _notify_type, atom()}, % Optional - default is trap

{agent _sec_type, sec_type()}, % Optional - default is none

{agent _passwd, string()}, % Optional - default is ""

{agent _engine_id, string()}, % Optional - default is "agent Engi ne"
{agent _max_nsg_si ze, string()}, % Optional - default is 484

9%%b The foll ow ng paranmeters represents the snnp configuration files
%% cont ext . conf, standard.conf, comunity.conf, vacm conf,

9%b usm conf, notify.conf, target_addr.conf and target_parans. conf.
%o Note all values in agent.conf can be altered by the paranetes
9%%b above. Al these configuration files have default val ues set

%6 up by the snnp application. These val ues can be overridden by
%6 suppling a list of valid configuration values or a file |ocated
9%Woin the test suites data dir that can produce a |ist

%0 of valid configuration values if you apply file:consult/1 to the
Wofile.

{agent _contexts, [term()] | {data_dir_file, rel_path()}}, % Optional
{agent _community, [term()] | {data_dir_file, rel_path()}}, % Opti onal
{agent _sysinfo, [term()] | {data_dir_file, rel_path()}}, % Optional
{agent _vacm [term()] | {data_dir_file, rel_path()}}, % Opt i onal

{agent _usm [term()] | {data_dir_file, rel_path()}}, % Opt i onal

{agent _notify_def, [term()] | {data_dir_file, rel_path()}}, % Opti onal

{agent _target _address_def, [term()] | {data_dir_file, rel_path()}}, % Opti onal
{agent _target _paramdef, [term()] | {data_dir_file, rel_path()}}, % Opti onal
1}

Ericsson AB. All Rights Reserved.: Common Test | 87

ct_snmp

The Mgr Agent Conf Name parameter in the functions should be a name you allocate in your test suite using a
requi r e statement. Example (where Mgr Agent Conf Name = snnp_ngr _agent):

suite() -> [{require, snnp_ngr_agent, snnp}].
or
ct:require(snnp_ngr_agent, snnp).

Note that Usm users are needed for snmp v3 configuration and are not to be confused with users.

Snmp traps, inform and report messages are handled by the user callback module. For more information about this
see the snmp application.

Note: It isrecommended to use the .hrl-files created by the Erlang/OTP mib-compiler to define the oids. Example for
the getting the erlang node name from the erlNodeTable in the OTP-MIB:

QG d = ?erl NodeEntry ++ [?er| NodeNane, 1]

It isalso possible to set values for snmp application configuration parameters, such asconfi g, server,net _i f,
etc (see the "Configuring the application” chapter in the OTP snmp User's Guide for alist of valid parameters and
types). Thisis done by defining a configuration data variable on the following form:

{snnp_app, [{manager, [snnp_app_manager_parans()]},
{agent, [snnp_app_agent_parans()]}]}.

A name for the data needs to be allocated in the suite using r equi r e (see example above), and this name passed
as the SnnmpAppConf Nane argument to st art/ 3. ct _snnp specifies default values for some snmp application
configuration parameters (such as{ ver bosi ty, t race} for the conf i g parameter). This set of defaults will be
merged with the parameters specified by the user, and user values override ct _snnp defaults.

DATA TYPES

agent _config() = {Item Val ue}

agent _ip() = ip()
agent _nane() = atom()

agent _port() = integer()
call _back_nodul e() = atom()
error_index() = integer()

error_status() = noError | atom()

ip() =string() | {integer(), integer(), integer(), integer()}
manager _i p() = ip()

oid() = [byte()]

oids() = [oid()]

rel _path() = string()

sec_type() = none | mnimm]| sem

snnp_app_agent _parans() = term)

snnp_app_nanager _parans() = term)

snnpreply() = {error_status(), error_index(), varbinds()}

88 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

user _data() term))

user _nane() atom)

usmconfig() = string()

usm user _nane() = string()

val ue_type() = o(' OBJECT IDENTIFIER) | i('"INTEGER) | u('Unsigned32') |
g(' Unsigned32') | s('CCTET STRI NG)

var_and val () = {oid(), value_type(), value()}

varbind() = term)

varbi nds() = [varbind()]

varsandval s() = [var_and_val ()]

Exports

get _next val ues(Agent, Q ds, MrAgent Conf Nane) -> SnnpReply

Types.
Agent = agent_name()
Oids=oids()

M gr AgentConfName = atom()
SnmpReply = snmpreply()
I ssues a synchronous snmp get next request.

get _val ues(Agent, O ds, MrAgent Conf Nane) -> SnnpReply

Types:
Agent = agent_name()
Oids=oids()

MgrAgentConfName = atom()
SnmpReply = snmpreply()
I ssues a synchronous snmp get request.

| oad_nibs(Mbs) -> ok | {error, Reason}
Types.

Mibs =[MibName]

MibName = string()

Reason =term()

Load the mibs into the agent 'snmp_master_agent'.

regi st er _agent s(Myr Agent Conf Name, ManagedAgents) -> ok | {error, Reason}
Types.

M gr AgentConfName = atom()

ManagedAgents = [agent()]

Reason =term()
Explicitly instruct the manager to handle this agent. Corresponds to making an entry in agents.conf

regi ster _users(MrAgent Conf Nanme, Users) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Common Test | 89

ct_snmp

MgrAgentConfName = atom()
Users=[user()]
Reason =term()

Register the manager entity (=user) responsible for specific agent(s). Corresponds to making an entry in users.conf

regi ster_usm user s(Myr Agent Conf Nane, UsniJsers) -> ok | {error, Reason}
Types:

M gr AgentConfName = atom()

UsmUsers=[usm_user ()]

Reason =term()

Explicitly instruct the manager to handle this USM user. Corresponds to making an entry in usm.conf

set _info(Config) -> [{Agent, O dVarsAndVals, NewvarsAndVal s}]
Types:
Config = [{Key, Value}]
Agent = agent_name()
OldVarsAndVals = varsandvals()
NewVarsAndVals = varsandvals()
Returnsalist of all successful set requests performed inthetest casein reverse order. Thelist containstheinvolved user

and agent, the value prior to the set and the new value. Thisisintended to facilitate the clean upintheend_per_testcase
function i.e. the undoing of the set requests and its possible side-effects.

set _val ues(Agent, VarsAndVal s, MrAgent Conf Nanme, Config) -> SnnpReply

Types:
Agent = agent_name()
Oids=oids()

MgrAgentConfName = atom()
Config = [{Key, Value}]
SnmpReply = snmpreply()

I ssues a synchronous snmp set request.

start (Config, MrAgentConfNane) -> ok
Equivalent to start(Config, MgrAgentConfName, undefined).

start (Config, MrAgent ConfNanme, SnnpAppConf Nane) -> ok
Types:

Config = [{Key, Value}]

Key = atom()

Value=term()

MgrAgentConfName = atom()

SnmpConfName = atom()

Starts an snmp manager and/or agent. In the manager case, registrations of users and agents as specified by
the configuration Mgr Agent Conf Nare will be performed. When using snmp v3 aso so caled usm users

90 | Ericsson AB. All Rights Reserved.: Common Test

ct_snmp

will be registered. Note that users, usm_users and managed agents may also be registered at a later time using
ct_snmp:register_users/2, ct_snmp:register_agents/2, and ct_snmp:register_usm_users/2. The agent started will be
caled snnp_nast er _agent . Use ct_snmp:load_mibs/1 to load mibs into the agent. With SnnpAppConf Nane
it's possible to configure the snmp application with parameterssuchasconf i g, m bs,net _i f, etc. Thevalueswill
be merged with (and possibly override) default values set by ct _snnp.

stop(Config) -> ok
Types.
Config = [{Key, Value}]
Key = atom()
Value=term()
Stops the snmp manager and/or agent removes all files created.

unr egi st er _agent s(Mgr Agent Conf Nane) -> ok | {error, Reason}
Types.

MgrAgentConfName = atom()

Reason =term()

Removes information added when calling register_agents/2.

unr egi st er _users(Mr Agent Conf Nane) -> ok | {error, Reason}
Types:

MgrAgentConfName = atom()

Reason = term()

Removes information added when calling register_users/2.

updat e_usm user s(Mgr Agent Conf Nane, UsmlJsers) -> ok | {error, Reason}
Types:

MgrAgentConfName = atom()

UsmUsers = usm_users()

Reason = term()

Alters information added when calling register_usm_users/2.

Ericsson AB. All Rights Reserved.: Common Test | 91

ct_telnet

ct_telnet

Erlang module

Common Test specific layer on top of telnet client ct_telnet_client.erl

Use this module to set up telnet connections, send commands and perform string matching on the result. (See the
uni x_t el net manual page for information about how ct_telnet may be used specifically with unix hosts.)

The following default values are defined in ct_telnet:

Connection timeout = 10 sec (tinme to wait for connection)

Command timeout = 10 sec (time to wait for a command to return)

Max no of reconnection attenpts = 3

Reconnection interval = 5 sek (tine to wait in between reconnection attenpts)

These parameters can be altered by the user with the following configuration term:

{tel net _settings, [{connect _tinmeout,MIlisec},
{command_ti meout, M| | i sec},
{reconnection_attenpts, N},
{reconnection_interval ,MIlisec}]}.

MIllisec = integer(), N = integer()

Enter the t el net _settings term in a configuration file included in the test and ct_telnet will retrieve the
information automatically.

DATA TYPES

connection() = handle() | {target_name() (see nodule ct), connection_type()}
| target _name() (see nodule ct)

connection_type() =telnet | tsl | ts2

handl e() = handl e() (see nodul e ct_gen_conn)

Handle for a specific telnet connection.
prompt _regexp() = string()

A regular expression which matches all possible prompts for a specific type of target. The regexp must not have
any groupsi.e. when matching, re:run/3 shall return alist with one single element.

Exports

cl ose(Connection) -> ok | {error, Reason}
Types:

Connection = connection() (see module ct_telnet)
Close the telnet connection and stop the process managing it.

A connection may be associated with atarget name and/or ahandle. If Connect i on has no associated target name,
it may only be closed with the handle value (see the open/ 4 function).

92 | Ericsson AB. All Rights Reserved.: Common Test

ct_telnet

cnd(Connection, Cnd) -> {ok, Data} | {error, Reason}
Equivalent to cmd(Connection, Cmd, DefaultTimeout).

cmd(Connection, Cmd, Tineout) -> term)

cmdf (Connecti on, CrdFormat, Args) -> {ok, Data} | {error, Reason}
Equivalent to cmdf(Connection, CmdFormat, Args, DefaultTimeout).

cmdf (Connecti on, CndFormat, Args, Tinmeout) -> term)
cont _log(Str, Args) ->term)
end_log() -> term)

expect (Connection, Patterns) -> term))
Equivalent to expect(Connections, Patterns, []).

expect (Connection, Patterns, Opts) -> {ok, Match} | {ok, MatchList,
Hal t Reason} | {error, Reason}

Types:
Connection = connection() (see module ct_telnet)
Patterns = Pattern | [Pattern]
Pattern = string() | {Tag, string()} | prompt | {prompt, Prompt}
Prompt = string()
Tag=term()
Opts=[Opt]
Opt = {timeout, Timeout} | repeat | {repeat, N} | sequence | {halt, HaltPatterns} | ignore_prompt
Timeout = integer ()
N = integer()
HaltPatter ns = Patterns
MatchList = [Match]
Match = RxMatch | {Tag, RxMatch} | {prompt, Prompt}
RxMatch = [string()]
HaltReason = done | Match
Reason = timeout | {prompt, Prompt}

Get data from telnet and wait for the expected pattern.

Pat t er n can be a POSIX regular expression. If more than one pattern is given, the function returns when the first
match is found.

RxMat ch is alist of matched strings. It looks like this: [Ful | Mat ch, SubMat chl, SubMatch2, ...]
where Ful | Mat ch isthe string matched by the whole regular expression and SubMat chNisthe string that matched
subexpression no N. Subexpressions are denoted with '(" *)" in the regular expression

If aTag isgiven, thereturned Mat ch will also include the matched Tag. Else, only RxMat ch isreturned.
The function will always return when a prompt is found, unlessthei gnor e_pr onpt optionsis used.

Ericsson AB. All Rights Reserved.: Common Test | 93

ct_telnet

Thet i meout option indicates that the function shall return if the telnet client isidle (i.e. if no datais received) for
more than Ti meout milliseconds. Default timeout is 10 seconds.

Ther epeat option indicates that the pattern(s) shall be matched multiple times. If Nis given, the pattern(s) will be
matched N times, and the function will return with Hal t Reason = done.

Thesequence option indicatesthat all patterns shall be matched in a sequence. A match will not be concluded untill
all patterns are matched.

Both r epeat and sequence can be interrupted by one or more Hal t Pat t er ns. When sequence or r epeat
isused, there will alwaysbeaMat chLi st returned, i.e. alist of Mat ch instead of only one Mat ch. There will also
beaHal t Reason returned.

Examples:

expect (Connecti on, [{abc, "ABC'}, {xyz, "XYZ"}], [sequence,{halt,[{nnn,"NNN'}]1}]).
will try to match "ABC" first and then "XYZ", but if "NNN" appears the function will return {error, { nnn,
["NNN']}}. If both"ABC" and "XYZ" are matched, the function will return { ok, [AbcMat ch, XyzMat ch] }.

expect (Connection, [{abc, "ABC'}, {xyz, "XYZ"}], [{repeat, 2},{halt,
[{nnn, "NNN"}]}]).

will try to match "ABC" or "XYZ" twice. If "NNN" appears the function will return with Hal t Reason = {nnn,
["NNN']}.

Ther epeat and sequence options can be combined in order to match a sequence multiple times.

get _data(Connection) -> {ok, Data} | {error, Reason}
Types.

Connection = connection() (see module ct_telnet)

Data = [string()]

Get all datawhich has been received by the telnet client since last command was sent.

open(Nane) -> {ok, Handle} | {error, Reason}
Equivalent to open(Name, telnet).

open(Nane, ConnType) -> {ok, Handle} | {error, Reason}
Types.

Name = target_name()

ConnType = connection_type() (see module ct_telnet)

Handle = handlg() (see module ct_telnet)

Open atelnet connection to the specified target host.

open(KeyOr Nane, ConnType, TargetMd) -> {ok, Handle} | {error, Reason}
Equivalent to open(KeyOrName, ConnType, TargetMod, []).

open(KeyOr Nane, ConnType, TargetMd, Extra) -> {ok, Handle} | {error, Reason}

Types:
KeyOrName = Key | Name
Key = atom()

Name = target_name() (see module ct)
ConnType = connection_type()

94 | Ericsson AB. All Rights Reserved.: Common Test

ct_telnet

TargetMod = atom()
Extra=term()
Handle = handlg()

Open atelnet connection to the specified target host.

The target data must exist in a configuration file. The connection may be associated with either Nane and/or the
returned Handl e. To allocate aname for thetarget, usect : r equi r e/ 2 inatest case, or usear equi r e statement
in the suite info function (sui t e/ 0), or in atest case info function. If you want the connection to be associated with
Handl e only (in caseyou need to open multiple connectionsto ahost for example), simply useKey, the configuration
variable name, to specify the target. Note that a connection that has no associated target name can only be closed with
the handle value.

TargetMbd is a module which exports the functions connect(Ip,Port,Extra) and
get _pronpt _regexp() forthegiven Tar get Type (e.g. uni x_t el net).

send(Connection, Crd) -> ok | {error, Reason}

Types:
Connection = connection() (see module ct_telnet)
Cmd = string()

Send atelnet command and return immediately.
The resulting output from the command can be read with get _dat a/ 1 or expect/ 2/ 3.

sendf (Connection, CndFormat, Args) -> ok | {error, Reason}
Types.
Connection = connection() (see module ct_telnet)
CmdFormat = string()
Args=list()
Send atelnet command and return immediately (uses aformat string and alist of arguments to build the command).

See also
unix_telnet

Ericsson AB. All Rights Reserved.: Common Test | 95

unix_telnet

unix_telnet

Erlang module

Callback module for ct_telnet for talking telnet to a unix host.
It requires the following entry in the config file:

{uni x, [{tel net, Host NameCOr | pAddr ess},
{port, Port Nunt,
{user nane, User Nane},
{password, Password}]}.

To talk telnet to the host specified by Host NaneOr | pAddr ess, use the interface functions in ct, eg.
open(Nane), cnd(Name, Cd),

Nane isthe name you allocated to the unix host in your r equi r e statement. E.g.
suite() -> [{require, Nane, {uni x, [tel net, usernane, password] }}].
or
ct:require(Nane, {uni x, [tel net, usernane, password] }).
Note that the{ por t , Port Nun} tupleisoptional and if omitted, default telnet port 23 will be used.

See also
ct, ct_telnet

96 | Ericsson AB. All Rights Reserved.: Common Test

	Common Test
	User's Guide
	Common Test Basics
	Introduction
	Test Suite Organisation
	Support Libraries
	Suites and Test Cases
	External Interfaces

	Installation
	General information
	Unix/Linux
	Windows

	Writing Test Suites
	Support for test suite authors
	Test suites
	Init and end per suite
	Init and end per test case
	Test cases
	Test case info function
	Test suite info function
	Test case groups
	The parallel property and nested groups
	Repeated groups
	Shuffled test case order
	Data and Private Directories
	Execution environment
	Illegal dependencies

	Test Structure
	Test structure
	Skipping test cases
	Definition of terms

	Examples and Templates
	Test suite example
	Test suite templates

	Running Test Suites
	Using the Common Test Framework
	Automatic compilation of test suites and help modules
	Running tests from the UNIX command line
	Running tests from the Web based GUI
	Running tests from the Erlang shell or from an Erlang program
	Running the interactive shell mode
	Step by step execution of test cases with the Erlang Debugger
	Using test specifications
	Log files
	HTML Style Sheets
	Repeating tests
	Silent Connections

	Config Files
	General
	Syntax
	Requiring and reading configuration data
	Using configuration variables defined in multiple files
	Encrypted configuration files
	Opening connections by using configuration data
	Examples

	Code Coverage Analysis
	General
	Usage
	The cover specification file
	Logging

	Using Common Test for Large Scale Testing
	General
	Usage
	Test Specifications

	Event Handling
	General
	Usage

	Dependencies between Test Cases and Suites
	General
	Saving configuration data
	Sequences

	Some thoughts about testing
	Goals
	What to test?

	Reference Manual
	common_test
	Module:all/0
	Module:groups/0
	Module:suite/0
	Module:init_per_suite/1
	Module:end_per_suite/1
	Module:init_per_group/2
	Module:end_per_group/2
	Module:init_per_testcase/2
	Module:end_per_testcase/2
	Module:testcase/0
	Module:testcase/1

	run_test
	ct
	abort_current_testcase/1
	comment/1
	decrypt_config_file/2
	decrypt_config_file/3
	encrypt_config_file/2
	encrypt_config_file/3
	fail/1
	get_config/1
	get_config/2
	get_config/3
	get_status/0
	get_target_name/1
	install/1
	listenv/1
	log/1
	log/2
	log/3
	pal/1
	pal/2
	pal/3
	parse_table/1
	print/1
	print/2
	print/3
	require/1
	require/2
	run/1
	run/2
	run/3
	run_test/1
	run_testspec/1
	start_interactive/0
	step/3
	step/4
	stop_interactive/0
	testcases/2
	userdata/2
	userdata/3

	ct_master
	abort/0
	abort/1
	progress/0
	run/1
	run/3
	run/4
	run_on_node/2
	run_on_node/3
	run_test/2

	ct_cover
	add_nodes/1
	remove_nodes/1

	ct_ftp
	cd/2
	close/1
	delete/2
	get/3
	ls/2
	open/1
	put/3
	recv/2
	recv/3
	send/2
	send/3
	type/2

	ct_ssh
	apread/4
	apread/5
	apwrite/4
	apwrite/5
	aread/3
	aread/4
	awrite/3
	awrite/4
	close/2
	close/3
	connect/1
	connect/2
	connect/3
	del_dir/2
	del_dir/3
	delete/2
	delete/3
	disconnect/1
	exec/2
	exec/3
	exec/4
	get_file_info/2
	get_file_info/3
	list_dir/2
	list_dir/3
	make_dir/2
	make_dir/3
	make_symlink/3
	make_symlink/4
	open/3
	open/4
	opendir/2
	opendir/3
	position/3
	position/4
	pread/4
	pread/5
	pwrite/4
	pwrite/5
	read/3
	read/4
	read_file/2
	read_file/3
	read_file_info/2
	read_file_info/3
	read_link/2
	read_link/3
	read_link_info/2
	read_link_info/3
	receive_response/2
	receive_response/3
	receive_response/4
	rename/3
	rename/4
	send/3
	send/4
	send/5
	send_and_receive/3
	send_and_receive/4
	send_and_receive/5
	send_and_receive/6
	session_close/2
	session_open/1
	session_open/2
	sftp_connect/1
	subsystem/3
	subsystem/4
	write/3
	write/4
	write_file/3
	write_file/4
	write_file_info/3
	write_file_info/4

	ct_rpc
	app_node/2
	app_node/3
	app_node/4
	call/4
	call/5
	call/6
	cast/4
	cast/5

	ct_snmp
	get_next_values/3
	get_values/3
	load_mibs/1
	register_agents/2
	register_users/2
	register_usm_users/2
	set_info/1
	set_values/4
	start/2
	start/3
	stop/1
	unregister_agents/1
	unregister_users/1
	update_usm_users/2

	ct_telnet
	close/1
	cmd/2
	cmd/3
	cmdf/3
	cmdf/4
	cont_log/2
	end_log/0
	expect/2
	expect/3
	get_data/1
	open/1
	open/2
	open/3
	open/4
	send/2
	sendf/3

	unix_telnet

