ERLANG

Parse Tools

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.
Parse Tools 2.3

April 20, 2021

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

April 20, 2021

1 Reference Manual

The Par setools application contains utilitiesfor parsing and scanning. Y eccisan LALR-1 parser generator for Erlang,
similar to yacc. Y ecc takes a BNF grammar definition as input, and produces Erlang code for a parser as output. Leex
isaregular expression based lexical analyzer generator for Erlang, similar to lex or flex.

Ericsson AB. All Rights Reserved.: Parse Tools | 1

yecc

yecc

Erlang module

An LALR-1 parser generator for Erlang, similar to yacc. Takes a BNF grammar definition as input, and produces
Erlang code for a parser.

To understand this text, you also have to look at the yacc documentation in the UNIX(TM) manual. This is most
probably necessary in order to understand the idea of a parser generator, and the principle and problems of LALR
parsing with finite |ook-ahead.

Data Types

error_info() =
{erl_anno:location() | none,
module(),
ErrorDescriptor :: term()}

The standard er r or _i nf o() structure that is returned from all 1/0 modules. Er r or Descri pt or isformattable
by format _error/ 1.

Exports

file(FileName) -> yecc ret()
file(Grammarfile, Options) -> yecc ret()
Types.

Grammarfile = file:filename()

Options = Option | [Option]

Option =
{error_location, column | line} |
{includefile, Includefile :: file:filename()} |

{report_errors, boolean()} |

{report warnings, boolean()} |

{report, boolean()} |

{return_errors, boolean()} |

{return_warnings, boolean()} |

{return, boolean()} |

{parserfile, Parserfile :: file:filename()} |

{verbose, boolean()} |

{warnings as errors, boolean()} |

report errors | report warnings | report | return errors |
return_warnings | return | verbose | warnings as errors

yecc ret() = ok ret() | error_ret()

ok ret() =
{ok, Parserfile :: file:filename()} |
{ok, Parserfile :: file:filename(), warnings()}

error_ret() =

2 | Ericsson AB. All Rights Reserved.: Parse Tools

yecc

error | {error, Errors :: errors(), Warnings :: warnings()}
errors() = [{file:filename(), [error_info()]}]
warnings() = [{file:filename(), [error_info()]1}]

G amar fi | e isthefile of declarations and grammar rules. Returns ok upon success, or er r or if there are errors.
An Erlang file containing the parser is created if there are no errors. The options are:

{includefile, Includefile}.

Indicates a customized prologue file which the user may want to use instead of the default file | i b/
par set ool s/ i ncl ude/ yeccpr e. hrl whichisotherwiseincluded at the beginning of the resulting parser
file. N.B. Thel ncl udefi | e isincluded 'asis in the parser file, so it must not have a module declaration of
its own, and it should not be compiled. It must, however, contain the necessary export declarations. The default
isindicated by " " .

{parserfile, Parserfile}.

Par serfi | e isthe name of the file that will contain the Erlang parser code that is generated. The default (" ")
isto add the extension . er| to G- anmar fi | e stripped of the. yr| extension.

{report_errors, boolean()}.
Causes errors to be printed as they occur. Defaultist r ue.
{report_warni ngs, bool ean()}.
Causes warnings to be printed as they occur. Default ist r ue.
{report, boolean()}.
Thisisashort form for bothr eport _errors andr eport _war ni ngs.
{return_errors, boolean()}.
If thisflagisset,{error, Errors, Warnings} isreturned whenthere are errors. Defaultisf al se.
{return_warni ngs, boolean()}.

If this flag is set, an extra field containing Wr ni ngs is added to the tuple returned upon success. Default is
fal se.

{return, boolean()}.
Thisisashort form for bothr et ur n_errors andr et ur n_war ni ngs.
{verbose, boolean()}.

Determines whether the parser generator should give full information about resolved and unresolved parse action
conflicts(t r ue), or only about those conflictsthat prevent aparser from being generated from the input grammar
(f al se, the default).

{warni ngs_as_errors, bool ean()}
Causes warnings to be treated as errors.

{error _location, colum | line}.
If the value of thisflagis| i ne, the location of warnings and errorsis aline number. If the valueiscol um,
the location includes a line number and a column number. Default iscol umm.

Any of the Boolean optionscan beset tot r ue by stating the name of the option. For example, ver bose isequivalent
to{verbose, true}.

The value of the Par serfi | e option stripped of the . er| extension is used by Y ecc as the module name of the
generated parser file.

Ericsson AB. All Rights Reserved.: Parse Tools | 3

yecc

Y ecc will add the extension . yr| to the Granmar f i | e name, the extension . hr| tothel ncl udefil e name,
and the extension . er | tothePar ser fi | e name, unlessthe extension is already there.

format_error(ErrorDescriptor) -> io lib:chars()
Types:
ErrorDescriptor = term()

Returns a descriptive string in English of an error reason Er r or Descri pt or returnedby yecc: fil e/ 1, 2. This
function is mainly used by the compiler invoking Y ecc.

Default Yecc Options

The (host operating system) environment variable ERL_COVPI LER_OPTI ONS can be used to give default Yecc
options. Its value must be avalid Erlang term. If thevalueisalist, itisused asis. If itisnot alist, itisput into alist.

Thelist is appended to any options given to file/2.
Thelist can be retrieved with compile:env_compiler_options/0.

Pre-Processing

A scanner to pre-process the text (program, etc.) to be parsed is not provided in the yecc module. The scanner
servesasakind of lexicon look-up routine. It is possible to write agrammar that uses only character tokens asterminal
symboals, thereby eliminating the need for a scanner, but this would make the parser larger and slower.

The user should implement a scanner that segments the input text, and turns it into one or more lists of tokens. Each
token should be a tuple containing information about syntactic category, position in the text (e.g. line number), and
the actual terminal symbol found in thetext: { Cat egory, Li neNunber, Synbol}.

If aterminal symbol is the only member of a category, and the symbol name is identical to the category name, the
token format may be{ Synbol , Li neNumrber}.

A list of tokens produced by the scanner should end with aspecial end_of _i nput tuple which the parser islooking
for. The format of this tuple should be { Endsynbol , Last Li neNunber }, where Endsynbol isan identifier
that is distinguished from all the terminal and non-terminal categories of the syntax rules. The Endsynbol may be
declared in the grammar file (see below).

The simplest case isto segment the input string into alist of identifiers (atoms) and use those atoms both as categories
and values of the tokens. For example, theinput stringaaa bbb 777, X may be scanned (tokenized) as:

[{a@aa, 1}, {bbb, 1}, {777, 1}, {',' , 1}, {'X', 1},
{'$end', 1}].

Thisassumesthat thisisthefirst line of theinput text, andthat ' $end' isthedistinguishedend_of _i nput symbol.

The Erlang scanner in the i 0 module can be used as a starting point when writing a new scanner. Study
yeccscan. er| inorder to see how afilter can be added ontop of i 0: scan_er| _f or nf 3 to provide a scanner
for Y ecc that tokenizes grammar files before parsing them with the Y ecc parser. A more general approach to scanner
implementation is to use a scanner generator. A scanner generator in Erlang called | eex isunder development.

Grammar Definition Format
Erlang stylecomment s, startingwitha' % , are allowed in grammar files.
Eachdecl arati on orrul e endswith adot (the character ' . ').

The grammar starts with an optional header section. The header is put first in the generated file, before the module
declaration. The purpose of the header isto provide ameansto make the documentation generated by EDoc |ook nicer.
Each header line should be enclosed in double quotes, and newlines will be inserted between the lines. For example:

4 | Ericsson AB. All Rights Reserved.: Parse Tools

yecc

Header "%% Copyright (C)
"%% @private"
"%% @Author John".

Next comes adeclaration of thenont er mi nal cat egori es to beused in therules. For example:
Nonterminals sentence nounphrase verbphrase.

A non-terminal category can be used at the left hand side (= | hs, or head) of a grammar rule. It can also appear
at the right hand side of rules.

Next comes a declaration of thet er mi nal cat egori es, which are the categories of tokens produced by the
scanner. For example:

Terminals article adjective noun verb.

Terminal categories may only appear in the right hand sides (= r hs) of grammar rules.
Next comes a declaration of ther oot synbol , or start category of the grammar. For example:

Rootsymbol sentence.

This symbol should appear in the |hs of at least one grammar rule. Thisisthe most general syntactic category which
the parser ultimately will parse every input string into.

After the rootsymbol declaration comes an optional declaration of theend_of _i nput symbol that your scanner is
expected to use. For example:

Endsymbol '$end'.

Next comes one or more declarations of oper at or precedences, if needed. These are used to resolve shift/
reduce conflicts (see yacc documentation).

Examples of operator declarations:

Right 100 '='.
Nonassoc 200 '==' '=/='.
Left 300 '+'.
Left 400 '*',
Unary 500 '-'.

These declarationsmeanthat ' ="' isdefined asari ght associ ati ve bi nary operator with precedence 100,
'=='" and' =/ =' areoperatorswithno associativity,'+ and'*' arel eft associative binary
operators, where' *' takesprecedenceover' +' (thenormal case),and' - ' isaunary operator of higher precedence
than ' *' . The fact that '==" has no associativity means that an expression likea == b == c isconsidered a
syntax error.

Certain rules are assigned precedence: each rule gets its precedence from the last terminal symbol mentioned in the
right hand side of therule. It is also possible to declare precedence for non-terminals, "one level up". Thisis practical
when an operator is overloaded (see also example 3 below).

Next comethegr ammar rul es. Each rule hasthe general form
Left hand side -> Right hand side : Associated code.

Theleft hand sideisanon-terminal category. Theright hand sideis asequence of one or more non-terminal or terminal
symbols with spaces between. The associated code is a sequence of zero or more Erlang expressions (with commas
', "' asseparators). If the associated code is empty, the separating colon ' : ' is aso omitted. A final dot marks the
end of therule.

Ericsson AB. All Rights Reserved.: Parse Tools | 5

yecc

Symbolssuchas' {','.", etc., haveto be enclosed in single quotes when used asterminal or non-terminal symbols
in grammar rules. The use of the symbols' $enpty' ,' $end' , and' $undefi ned' should be avoided.

Thelast part of the grammar fileis an optional section with Erlang code (= function definitions) which isincluded ‘as
is inthe resulting parser file. This section must start with the pseudo declaration, or key words

Erlang code.

No syntax rule definitions or other declarations may follow this section. To avoid conflicts with internal variables, do
not use variable names beginning with two underscore characters ('__") in the Erlang code in this section, or in the
code associated with the individual syntax rules.

The optional expect declaration can be placed anywhere before the last optional section with Erlang code. It isused
for suppressing the warning about conflicts that is ordinarily given if the grammar is ambiguous. An example:

Expect 2.

The warning is given if the number of shift/reduce conflicts differsfrom 2, or if there are reduce/reduce conflicts.

Examples

A grammar to parse list expressions (with empty associated code):

Nonterminals list elements element.
Terminals atom '(' ')'.

Rootsymbol list.

list -> (' ")".

list -> '(' elements ')'.

elements -> element.

elements -> element elements.
element -> atom.

element -> list.

This grammar can be used to generate a parser which parses list expressions, such as (), (a), (peter
charles), (a (b c) d (())), ... providedthat your scanner tokenizes, for example, theinput (pet er
charl es) asfollows:

[{'(, 1}y , {atom, 1, peter}, {atom, 1, charles}, {')', 1},
{'$end', 1}]

When agrammar rule is used by the parser to parse (part of) the input string as a grammatical phrase, the associated
codeisevaluated, and the value of the last expression becomes the value of the parsed phrase. Thisvalue may be used
by the parser later to build structures that are values of higher phrases of which the current phraseisapart. The values
initially associated with terminal category phrases, i.e. input tokens, are the token tuples themselves.

Below is an example of the grammar above with structure building code added:

list -> '(* ')' : nil.

list -> '(' elements ')' : '$2'.

elements -> element : {cons, '$1', nil}.

elements -> element elements : {cons, '$1', '$2'}.
element -> atom : '$1'.

element -> list : '$1'.

With this code added to the grammar rules, the parser produces the following value (structure) when parsing the input
string (a b c) .. Thisstill assumesthat this was the first input line that the scanner tokenized:

{cons, {atom, 1, a,} {cons, {atom, 1, b},
{cons, {atom, 1, c}, nil}}}

6 | Ericsson AB. All Rights Reserved.: Parse Tools

yecc

The associated code contains pseudo vari abl es ' $1',' $2',' $3', etc. which refer to (are bound to) the
values associated previously by the parser with the symbols of the right hand side of the rule. When these symbols are
terminal categories, the values are token tuples of the input string (see above).

The associated code may not only be used to build structures associated with phrases, but may al so be used for syntactic
and semantic tests, printout actions (for example for tracing), etc. during the parsing process. Since tokens contain
positional (line number) information, it is possible to produce error messages which contain line numbers. If thereis
no associated code after the right hand side of therule, the value' $undefi ned' isassociated with the phrase.

The right hand side of a grammar rule may be empty. Thisisindicated by using the special symbol * $enmpty' as
rhs. Then the list grammar above may be smplified to:

list -> '(' elements ')' : '$2'.

elements -> element elements : {cons, '$1', '$2'}.
elements -> '$empty' : nil.

element -> atom : '$1'.

element -> list : '$1'.

Generating a Parser

To call the parser generator, use the following command:
yecc:file(Grammarfile).

An error message from Y ecc will be shown if the grammar is not of the LALR type (for example too ambiguous).
Shift/reduce conflicts are resolved in favor of shifting if there are no operator precedence declarations. Refer to the
yacc documentation on the use of operator precedence.

The output file contains Erlang source code for a parser module with module name equal to the Par serfil e
parameter. After compilation, the parser can be called as follows (the module name is assumed to be nmypar ser):

myparser:parse(myscanner:scan(Inport))

The call format may be different if a customized prologue file has been included when generating the parser instead
of thedefault filel i b/ par set ool s/i ncl ude/ yeccpre. hrl.

With the standard prologue, this call will return either { ok, Resul t } ,where Resul t isastructurethat the Erlang
code of the grammar file hasbuilt, or { error, {Li ne_nunber, Mdul e, Message}} if therewasasyntax
error in the input.

Message is something which may be converted into a string by calling Modul e: f or mat _err or (Message)
and printed withi o: f or mat / 3.

By default, the parser that was generated will not print out error messages to the screen. The user will have to do
this either by printing the returned error messages, or by inserting tests and print instructions in the Erlang code
associated with the syntax rules of the grammar file.

It is also possible to make the parser ask for more input tokens when needed if the following call format is used:

myparser:parse_and scan({Function, Args})
myparser:parse_and scan({Mod, Tokenizer, Args})

Thetokenizer Funct i on iseither afun or atuple{ Mod, Tokeni zer}.Thecal appl y(Functi on, Args)
orappl y({Mdd, Tokenizer}, Args) isexecuted whenever anew tokenisneeded. This, for example, makes
it possible to parse from afile, token by token.

The tokenizer used above has to be implemented so as to return one of the following:

Ericsson AB. All Rights Reserved.: Parse Tools | 7

yecc

{ok, Tokens, Endline}
{eof, Endline}
{error, Error description, Endline}

This conforms to the format used by the scanner in the Erlang i o library module.

If {eof, Endline} isreturnedimmediately, thecall to par se_and_scan/ 1 returns{ ok, eof}.If{eof,
Endl i ne} isreturned before the parser expects end of input, par se_and_scan/ 1 will, of course, return an error
message (see above). Otherwise { ok, Resul t} isreturned.

More Examples

1. A grammar for parsing infix arithmetic expressions into prefix notation, without operator precedence:

Nonterminals E T F.
Terminals '+' '*' '(' ')' number.
Rootsymbol E.

E _>E I+I T: {I$2I’ I$1I, I$3I}.
E ->T: "$1'.

T->T "*" F: {'$2', '$1', '$3'}.
T->F : '"$1'.

F _> I(I E I)I : I$2I.

F -> number : '$1°'.

2. The same with operator precedence becomes simpler:

Nonterminals E.

Terminals '+' '*' '(' ')' number.
Rootsymbol E.

Left 100 '+'.

Left 200 '*'.

E ->E '+'" E : {'$2', '$1', '$3'}.
E->E "*" E: {'$2", "$1', '$3'}.
E->"'("E ") : '$2"'.

E -> number : '$1°'.

3. An overloaded minus operator:

Nonterminals E uminus.
00

Terminals '*' '-' number.
Rootsymbol E.

Left 100 '-'.
Left 200 '*',
Unary 300 uminus.
E->E '-'E.
E ->E '*' E.
E -> uminus.
E -> number.
uminus -> '-' E.

4. The Y ecc grammar that is used for parsing grammar files, including itself:

8 | Ericsson AB. All Rights Reserved.: Parse Tools

yecc

Nonterminals

grammar declaration rule head symbol symbols attached code

token tokens.

Terminals

atom float integer reserved symbol reserved word string char var
'->' ':' dot.

Rootsymbol grammar.

Endsymbol '$end'.

grammar -> declaration : '$1'.
grammar -> rule : '$1°'.
declaration -> symbol symbols dot: {'$1', '$2'}.

rule -> head '->
'$4'}.
head -> symbol : '$1'.
symbols -> symbol : ['$1'].
symbols -> symbol symbols : ['$1' | '$2'].
attached code -> ':' tokens : {erlang code, '$2'}.
attached code -> '$empty' : {erlang code,
[{atom, O, '$undefined'}]}.

tokens -> token : ['$1'].
tokens -> token tokens : ['$1' | '$2'].
symbol -> var : value of('$1').
symbol -> atom : value of('$1').
symbol -> integer : value of('$1').
symbol -> reserved word : value of('$1').
token -> var : '$1°'.
token -> atom : '$1'.
token -> float : '$1°'.
token -> integer : '$1'.
token -> string : '$1°'.
token -> char : '$1'.
token -> reserved symbol : {value of('$1'), line of('$1')}.
token -> reserved word : {value of('$1l'), line of('$1')}.
token -> '->' : {'->', line of('$1')}.
token -> ":' : {':', line of('$1')}.
Erlang code.
value of(Token) ->

element (3, Token).
line of(Token) ->

element (2, Token).

' symbols attached code dot: {rule, ['$1' | '$3'],

Note:

Thesymbols' - >' ,and' : ' haveto betreated in aspecial way, asthey are meta symbols of the grammar notation,

aswell asterminal symbols of the Y ecc grammar.

5. Thefileer| _parse. yrl intheli b/ stdli b/ src directory containsthe grammar for Erlang.

Note:

Syntactic tests are used in the code associated with some rules, and an error is thrown (and caught by the
generated parser to produce an error message) when a test fails. The same effect can be achieved with a call
toreturn_error(Error_line, Message_string), whichisdefinedintheyeccpre. hrl default

header file.

Files

lib/parsetools/include/yeccpre.hrl

Ericsson AB. All Rights Reserved.: Parse Tools | 9

yecc

See Also
Aho & Johnson: ‘LR Parsing’, ACM Computing Surveys, val. 6:2, 1974.

10 | Ericsson AB. All Rights Reserved.: Parse Tools

leex

leex

Erlang module

A regular expression based lexical analyzer generator for Erlang, similar to lex or flex.

| The Leex module should be considered experimental as it will be subject to changesin future releases. |

Data Types

error_info() =
{erl _anno:1line() | none, module(), ErrorDescriptor :: term()}

The standard er r or _i nf o() structure that is returned from all 1/0 modules. Er r or Descri pt or isformattable
by format _error/1.

Exports

file(FileName) -> leex ret()
file(FileName, Options) -> leex ret()
Types:

FileName = file:filename()

Options = Option | [Option]

Option =
{dfa_graph, boolean()} |
{includefile, Includefile :: file:filename()} |

{report_errors, boolean()} |

{report _warnings, boolean()} |

{report, boolean()} |

{return_errors, boolean()} |

{return _warnings, boolean()} |

{return, boolean()} |

{scannerfile, Scannerfile :: file:filename()} |
{verbose, boolean()} |

{warnings as errors, boolean()} |

dfa graph | report errors | report warnings | report |
return errors | return warnings | return | verbose |
warnings as errors

leex ret() = ok ret() | error_ret()

ok ret() =
{ok, Scannerfile :: file:filename()} |
{ok, Scannerfile :: file:filename(), warnings()}

error_ret() =

Ericsson AB. All Rights Reserved.: Parse Tools | 11

leex

error | {error, Errors :: errors(), Warnings :: warnings()}
errors() = [{file:filename(), [error_info()]}]
warnings() = [{file:filename(), [error_info()]1}]

Generates alexical analyzer from the definition in the input file. Theinput file hasthe extension . xr | . Thisis added
to the filenameiif it is not given. The resulting module is the Xrl filename without the . xr | extension.

The current options are:
df a_graph

Generatesa. dot file which contains a description of the DFA in aformat which can be viewed with Graphviz,
www. gr aphvi z. com

{includefile,Includefile}

Uses aspecific or customised prologue fileinstead of default | i b/ par set ool s/ i ncl ude/ | eexi nc. hrl
which is otherwise included.

{report_errors, bool ean()}
Causes errors to be printed as they occur. Defaultist r ue.
{report _warni ngs, bool ean()}
Causes warnings to be printed as they occur. Default ist r ue.
{report, boolean()}
Thisisashort form for bothr eport _errors andr eport _war ni ngs.
{return_errors, bool ean()}
If thisflagisset,{error, Errors, Warni ngs} isreturned whenthereare errors. Defaultisf al se.
{return_warni ngs, bool ean()}

If this flag is set, an extra field containing War ni ngs is added to the tuple returned upon success. Default is
fal se.

{return, bool ean()}
Thisisashort form for bothr et ur n_errors andr et ur n_war ni ngs.
{scannerfile, Scannerfile}

Scanner f i | e isthe name of the file that will contain the Erlang scanner code that is generated. The default
("")istoadd theextension. er| toFi | eNane stripped of the. xr | extension.

{verbose, bool ean()}

Outputs information from parsing the input file and generating the internal tables.
{warni ngs_as_errors, bool ean()}

Causes warnings to be treated as errors.

Any of the Boolean optionscanbeset tot r ue by stating the name of the option. For example, ver bose isequivalent
to{verbose, true}.

Leex will add theextension. hr | tothel ncl udefi | e nameand theextension. er| totheScanner fi | e name,
unless the extension is already there.

format error(ErrorDescriptor) -> io lib:chars()
Types.

12 | Ericsson AB. All Rights Reserved.: Parse Tools

leex

ErrorDescriptor = term()

Returns a descriptive string in English of an error reason Er r or Descr i pt or returnedby | eex: fil e/ 1, 2 when
thereisan error in aregular expression.

The following functions are exported by the generated scanner.

Exports

Module:string(String) -> StringRet
Module:string(String, StartLine) -> StringRet
Types:

String = string()

StringRet = {ok, Tokens, EndLine} | Errorinfo

Tokens = [Token]

EndLine = StartLine = erl_anno:line()

Scans St ri ng and returns all thetokensin it, or an error.

Itisan error if not all of the charactersin St ri ng are consumed.

Module:token(Cont, Chars) -> {more,Contl} | {done,TokenRet,RestChars}

Module:token(Cont, Chars, StartLine) -> {more,Contl} |
{done, TokenRet,RestChars}

Types.

Cont =[] | Contl

Contl = tuple()

Chars = RestChars = string() | eof

TokenRet = {ok, Token, EndLine} | {eof, EndLine} | Errorlnfo

StartLine = EndLine = erl _anno:line()
Thisisare-entrant call to try and scan one token from Char s. If there are enough charactersin Char s to either scan
atoken or detect an error then thiswill be returned with { done, . . . } . Otherwise { cont , Cont } will be returned

where Cont isusedinthenext cal tot oken() with more charactersto try an scan the token. Thisis continued until
atoken has been scanned. Cont isinitialy [] .

It is not designed to be called directly by an application but used through the i/o system where it can typically be
called in an application by:

io:request(InFile, {get until,unicode,Prompt,Module,token,[Line]})
-> TokenRet

Module:tokens(Cont, Chars) -> {more,Contl} | {done,TokensRet,RestChars}

Module:tokens(Cont, Chars, StartLine) -> {more,Contl} |
{done, TokensRet,RestChars}

Types:
Cont =[] | Cont1l
Cont1l = tuple()

Ericsson AB. All Rights Reserved.: Parse Tools | 13

leex

Chars = RestChars = string() | eof

TokensRet = {ok, Tokens, EndLine} | {eof, EndLine} | Errorinfo
Tokens = [Token]

StartLine = EndLine = erl _anno:line()

Thisis are-entrant cal to try and scan tokens from Char s. If there are enough charactersin Char s to either scan
tokens or detect an error then this will be returned with { done, . . . } . Otherwise{ cont , Cont } will be returned
where Cont isused in the next call tot okens() with more characters to try an scan the tokens. Thisis continued
until all tokens have been scanned. Cont isinitialy[] .

This functions differs from token in that it will continue to scan tokens upto and including an
{end_t oken, Token} hasbeen scanned (see next section). It will then return all the tokens. Thisistypically used
for scanning grammarslike Erlangwherethereisanexplicitendtoken,’ . * . If no end token isfound thenthewholefile
will be scanned and returned. If an error occurs then all tokens upto and including the next end token will be skipped.

It is not designed to be called directly by an application but used through the i/o system where it can typically be
called in an application by:

io:request(InFile, {get until,unicode,Prompt,Module,tokens,[Line]})
-> TokensRet

Default Leex Options

The (host operating system) environment variable ERL_COVPI LER_OPTI ONS can be used to give default Leex
options. Its value must be avalid Erlang term. If thevalueisalist, itisused asis. If itisnot alist, itisputinto alist.

Thelist is appended to any options given to file/2.
Thelist can be retrieved with compile:env_compiler_options/0.

Input File Format
Erlang style comments starting with a %are allowed in scanner files. A definition file has the following format:
<Header>
Definitions.
<Macro Definitions>
Rules.
<Token Rules>
Erlang code.
<Erlang code>

The "Definitions.", "Rules." and "Erlang code." headings are mandatory and must occur at the beginning of a source
line. The<Header>, <Macro Definitions> and <Erlang code> sections may be empty but there must be at |east onerule.

Macro definitions have the following format:
NAME = VALUE

and there must be spaces around =. Macros can be used in the regular expressions of rules by writing { NAVE} .

14 | Ericsson AB. All Rights Reserved.: Parse Tools

leex

When macros are expanded in expressions the macro calls are replaced by the macro value without any form of
guoting or enclosing in parentheses.

Rules have the following format:
<Regexp> : <Erlang code>.

The <Regexp> must occur at the start of a line and not include any blanks; use\t and \ s to include TAB and
SPACE charactersin the regular expression. If <Regexp> matches then the corresponding <Erlang code> is eval uated
to generate atoken. With the Erlang code the following predefined variables are avail able:

TokenChar s
A list of the characters in the matched token.
TokenLen
The number of charactersin the matched token.
TokenLi ne
The line number where the token occurred.
The code must return:
{t oken, Token}
Return Token to the caller.
{end_t oken, Token}
Return Token and islast token in atokens call.
ski p_t oken
Skip this token completely.
{error,ErrString}
Anerror inthetoken, Er r St r i ng isastring describing the error.
It isalso possible to push back characters into the input characters with the following returns:

 {token, Token, PushBackLi st}

« {end_t oken, Token, PushBackLi st}

e {skip_token, PushBackLi st}

These have the same meanings as the normal returns but the charactersin PushBackLi st will be prepended to the

input characters and scanned for the next token. Note that pushing back a newline will mean the line numbering will
no longer be correct.

| Pushing back characters gives you unexpected possibilities to cause the scanner to loop!

The following example would match a simple Erlang integer or float and return a token which could be sent to the
Erlang parser:

Ericsson AB. All Rights Reserved.: Parse Tools | 15

leex

D = [0-9]

{D}+ :
{token, {integer,TokenLine,list to integer(TokenChars)}}.

{D}+\.{D}+((E|e) (\+|\-)?{D}+)? :
{token, {float,TokenLine,list to float(TokenChars)}}.

The Erlang code in the "Erlang code." section is written into the output file directly after the module declaration and
predefined exports declaration so it is possible to add extra exports, define imports and other attributes which are then
visiblein the wholefile.

Regular Expressions

The regular expressions allowed here is a subset of the set found in egr ep and in the AWK programming language,
as defined in the book, The AWK Programming Language, by A. V. Aho, B. W. Kernighan, P. J. Weinberger. They
are composed of the following characters:

c
Matches the non-metacharacter c.
\c

Matches the escape sequence or literal character c.
Matches any character.
Matches the beginning of a string.

Matches the end of a string.
[abc. . .]

Character class, which matches any of the characters abc. . . . Character ranges are specified by a pair of
characters separated by a - .

[~abc. . .]

Negated character class, which matches any character except abce. . . .
ri| r2

Alternation. It matches eitherr 1 or r 2.
rir2

Concatenation. It matchesr 1 and thenr 2.
r+

Matches one or morer s.
r*

Matches zero or morer s.
r?

Matches zero or oner s.

16 | Ericsson AB. All Rights Reserved.: Parse Tools

leex

(r)
Grouping. It matchesr .
The escape sequences allowed are the same as for Erlang strings:
\b
Backspace.
\ f
Form feed.
\n
Newline (line feed).
\r
Carriage return.
\'t
Tab.
\e
Escape.
\v
Vertica tab.
\'s
Space.
\d
Delete.
\ ddd
The octal value ddd.
\ xhh
The hexadecimal value hh.
\x{h...}
The hexadecimal valueh. . . .
\c
Any other character literally, for example\ \ for backslash,\ " for" .
The following examples define smplified versions of afew Erlang data types:

Atoms [a-z][0-9a-zA-Z]*
Variables [A-Z]1[0-9a-zA-Z]*

Floats (\+]|-)?[0-9]+\.[0-9]+((E|e) (\+|-)?[0-9]+)7?

Ericsson AB. All Rights Reserved.: Parse Tools | 17

leex

Anchoring aregular expression with” and $ is not implemented in the current version of Leex and just generates
aparse error.

18 | Ericsson AB. All Rights Reserved.: Parse Tools

	Parse Tools
	Reference Manual
	yecc
	file/1
	file/2
	format_error/1

	leex
	file/1
	file/2
	format_error/1
	Module:string/1
	Module:string/2
	Module:token/2
	Module:token/3
	Module:tokens/2
	Module:tokens/3

