
Parse Tools
Copyright © 1997-2020 Ericsson AB. All Rights Reserved.

Parse Tools 2.2
April 21, 2020

Copyright © 1997-2020 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

April 21, 2020

Ericsson AB. All Rights Reserved.: Parse Tools | 1

2 | Ericsson AB. All Rights Reserved.: Parse Tools

1 Reference Manual

The Parsetools application contains utilities for parsing and scanning. Yecc is an LALR-1 parser generator for Erlang,
similar to yacc. Yecc takes a BNF grammar definition as input, and produces Erlang code for a parser as output. Leex
is a regular expression based lexical analyzer generator for Erlang, similar to lex or flex.

yecc

Ericsson AB. All Rights Reserved.: Parse Tools | 3

yecc
Erlang module

An LALR-1 parser generator for Erlang, similar to yacc. Takes a BNF grammar definition as input, and produces
Erlang code for a parser.

To understand this text, you also have to look at the yacc documentation in the UNIX(TM) manual. This is most
probably necessary in order to understand the idea of a parser generator, and the principle and problems of LALR
parsing with finite look-ahead.

Exports

file(Grammarfile [, Options]) -> YeccRet
Types:

Grammarfile = filename()

Options = Option | [Option]

Option = - see below -

YeccRet = {ok, Parserfile} | {ok, Parserfile, Warnings} | error | {error,
Errors, Warnings}

Parserfile = filename()

Warnings = Errors = [{filename(), [ErrorInfo]}]

ErrorInfo = {ErrorLine, module(), Reason}

ErrorLine = integer()

Reason = - formatable by format_error/1 -

Grammarfile is the file of declarations and grammar rules. Returns ok upon success, or error if there are errors.
An Erlang file containing the parser is created if there are no errors. The options are:

{parserfile, Parserfile}.
Parserfile is the name of the file that will contain the Erlang parser code that is generated. The default
("") is to add the extension .erl to Grammarfile stripped of the .yrl extension.

{includefile, Includefile}.
Indicates a customized prologue file which the user may want to use instead of the default file lib/
parsetools/include/yeccpre.hrl which is otherwise included at the beginning of the resulting
parser file. N.B. The Includefile is included 'as is' in the parser file, so it must not have a module
declaration of its own, and it should not be compiled. It must, however, contain the necessary export
declarations. The default is indicated by "".

{report_errors, bool()}.
Causes errors to be printed as they occur. Default is true.

{report_warnings, bool()}.
Causes warnings to be printed as they occur. Default is true.

{report, bool()}.
This is a short form for both report_errors and report_warnings.

warnings_as_errors

Causes warnings to be treated as errors.

{return_errors, bool()}.
If this flag is set, {error, Errors, Warnings} is returned when there are errors. Default is false.

yecc

4 | Ericsson AB. All Rights Reserved.: Parse Tools

{return_warnings, bool()}.
If this flag is set, an extra field containing Warnings is added to the tuple returned upon success. Default is
false.

{return, bool()}.
This is a short form for both return_errors and return_warnings.

{verbose, bool()}.
Determines whether the parser generator should give full information about resolved and unresolved parse
action conflicts (true), or only about those conflicts that prevent a parser from being generated from the input
grammar (false, the default).

Any of the Boolean options can be set to true by stating the name of the option. For example, verbose is equivalent
to {verbose, true}.

The value of the Parserfile option stripped of the .erl extension is used by Yecc as the module name of the
generated parser file.

Yecc will add the extension .yrl to the Grammarfile name, the extension .hrl to the Includefile name,
and the extension .erl to the Parserfile name, unless the extension is already there.

format_error(Reason) -> Chars
Types:

Reason = - as returned by yecc:file/1,2 -

Chars = [char() | Chars]

Returns a descriptive string in English of an error tuple returned by yecc:file/1,2. This function is mainly used
by the compiler invoking Yecc.

Pre-Processing
A scanner to pre-process the text (program, etc.) to be parsed is not provided in the yecc module. The scanner
serves as a kind of lexicon look-up routine. It is possible to write a grammar that uses only character tokens as terminal
symbols, thereby eliminating the need for a scanner, but this would make the parser larger and slower.

The user should implement a scanner that segments the input text, and turns it into one or more lists of tokens. Each
token should be a tuple containing information about syntactic category, position in the text (e.g. line number), and
the actual terminal symbol found in the text: {Category, LineNumber, Symbol}.

If a terminal symbol is the only member of a category, and the symbol name is identical to the category name, the
token format may be {Symbol, LineNumber}.

A list of tokens produced by the scanner should end with a special end_of_input tuple which the parser is looking
for. The format of this tuple should be {Endsymbol, LastLineNumber}, where Endsymbol is an identifier
that is distinguished from all the terminal and non-terminal categories of the syntax rules. The Endsymbol may be
declared in the grammar file (see below).

The simplest case is to segment the input string into a list of identifiers (atoms) and use those atoms both as categories
and values of the tokens. For example, the input string aaa bbb 777, X may be scanned (tokenized) as:

[{aaa, 1}, {bbb, 1}, {777, 1}, {',' , 1}, {'X', 1},
 {'$end', 1}].

This assumes that this is the first line of the input text, and that '$end' is the distinguished end_of_input symbol.

The Erlang scanner in the io module can be used as a starting point when writing a new scanner. Study
yeccscan.erl in order to see how a filter can be added on top of io:scan_erl_form/3 to provide a scanner
for Yecc that tokenizes grammar files before parsing them with the Yecc parser. A more general approach to scanner
implementation is to use a scanner generator. A scanner generator in Erlang called leex is under development.

yecc

Ericsson AB. All Rights Reserved.: Parse Tools | 5

Grammar Definition Format
Erlang style comments, starting with a '%', are allowed in grammar files.

Each declaration or rule ends with a dot (the character '.').

The grammar starts with an optional header section. The header is put first in the generated file, before the module
declaration. The purpose of the header is to provide a means to make the documentation generated by EDoc look nicer.
Each header line should be enclosed in double quotes, and newlines will be inserted between the lines. For example:

Header "%% Copyright (C)"
"%% @private"
"%% @Author John".

Next comes a declaration of the nonterminal categories to be used in the rules. For example:

Nonterminals sentence nounphrase verbphrase.

A non-terminal category can be used at the left hand side (= lhs, or head) of a grammar rule. It can also appear
at the right hand side of rules.

Next comes a declaration of the terminal categories, which are the categories of tokens produced by the
scanner. For example:

Terminals article adjective noun verb.

Terminal categories may only appear in the right hand sides (= rhs) of grammar rules.

Next comes a declaration of the rootsymbol, or start category of the grammar. For example:

Rootsymbol sentence.

This symbol should appear in the lhs of at least one grammar rule. This is the most general syntactic category which
the parser ultimately will parse every input string into.

After the rootsymbol declaration comes an optional declaration of the end_of_input symbol that your scanner is
expected to use. For example:

Endsymbol '$end'.

Next comes one or more declarations of operator precedences, if needed. These are used to resolve shift/
reduce conflicts (see yacc documentation).

Examples of operator declarations:

Right 100 '='.
Nonassoc 200 '==' '=/='.
Left 300 '+'.
Left 400 '*'.
Unary 500 '-'.

These declarations mean that '=' is defined as a right associative binary operator with precedence 100,
'==' and '=/=' are operators with no associativity, '+' and '*' are left associative binary
operators, where '*' takes precedence over '+' (the normal case), and '-' is a unary operator of higher precedence
than '*'. The fact that '==' has no associativity means that an expression like a == b == c is considered a
syntax error.

Certain rules are assigned precedence: each rule gets its precedence from the last terminal symbol mentioned in the
right hand side of the rule. It is also possible to declare precedence for non-terminals, "one level up". This is practical
when an operator is overloaded (see also example 3 below).

Next come the grammar rules. Each rule has the general form

yecc

6 | Ericsson AB. All Rights Reserved.: Parse Tools

Left_hand_side -> Right_hand_side : Associated_code.

The left hand side is a non-terminal category. The right hand side is a sequence of one or more non-terminal or terminal
symbols with spaces between. The associated code is a sequence of zero or more Erlang expressions (with commas
',' as separators). If the associated code is empty, the separating colon ':' is also omitted. A final dot marks the
end of the rule.

Symbols such as '{', '.', etc., have to be enclosed in single quotes when used as terminal or non-terminal symbols
in grammar rules. The use of the symbols '$empty', '$end', and '$undefined' should be avoided.

The last part of the grammar file is an optional section with Erlang code (= function definitions) which is included 'as
is' in the resulting parser file. This section must start with the pseudo declaration, or key words

Erlang code.

No syntax rule definitions or other declarations may follow this section. To avoid conflicts with internal variables, do
not use variable names beginning with two underscore characters ('__') in the Erlang code in this section, or in the
code associated with the individual syntax rules.

The optional expect declaration can be placed anywhere before the last optional section with Erlang code. It is used
for suppressing the warning about conflicts that is ordinarily given if the grammar is ambiguous. An example:

Expect 2.

The warning is given if the number of shift/reduce conflicts differs from 2, or if there are reduce/reduce conflicts.

Examples
A grammar to parse list expressions (with empty associated code):

Nonterminals list elements element.
Terminals atom '(' ')'.
Rootsymbol list.
list -> '(' ')'.
list -> '(' elements ')'.
elements -> element.
elements -> element elements.
element -> atom.
element -> list.

This grammar can be used to generate a parser which parses list expressions, such as (), (a), (peter
charles), (a (b c) d (())), ... provided that your scanner tokenizes, for example, the input (peter
charles) as follows:

[{'(', 1} , {atom, 1, peter}, {atom, 1, charles}, {')', 1},
 {'$end', 1}]

When a grammar rule is used by the parser to parse (part of) the input string as a grammatical phrase, the associated
code is evaluated, and the value of the last expression becomes the value of the parsed phrase. This value may be used
by the parser later to build structures that are values of higher phrases of which the current phrase is a part. The values
initially associated with terminal category phrases, i.e. input tokens, are the token tuples themselves.

Below is an example of the grammar above with structure building code added:

list -> '(' ')' : nil.
list -> '(' elements ')' : '$2'.
elements -> element : {cons, '$1', nil}.
elements -> element elements : {cons, '$1', '$2'}.
element -> atom : '$1'.
element -> list : '$1'.

yecc

Ericsson AB. All Rights Reserved.: Parse Tools | 7

With this code added to the grammar rules, the parser produces the following value (structure) when parsing the input
string (a b c).. This still assumes that this was the first input line that the scanner tokenized:

{cons, {atom, 1, a,} {cons, {atom, 1, b},
 {cons, {atom, 1, c}, nil}}}

The associated code contains pseudo variables '$1', '$2', '$3', etc. which refer to (are bound to) the
values associated previously by the parser with the symbols of the right hand side of the rule. When these symbols are
terminal categories, the values are token tuples of the input string (see above).

The associated code may not only be used to build structures associated with phrases, but may also be used for syntactic
and semantic tests, printout actions (for example for tracing), etc. during the parsing process. Since tokens contain
positional (line number) information, it is possible to produce error messages which contain line numbers. If there is
no associated code after the right hand side of the rule, the value '$undefined' is associated with the phrase.

The right hand side of a grammar rule may be empty. This is indicated by using the special symbol '$empty' as
rhs. Then the list grammar above may be simplified to:

list -> '(' elements ')' : '$2'.
elements -> element elements : {cons, '$1', '$2'}.
elements -> '$empty' : nil.
element -> atom : '$1'.
element -> list : '$1'.

Generating a Parser
To call the parser generator, use the following command:

yecc:file(Grammarfile).

An error message from Yecc will be shown if the grammar is not of the LALR type (for example too ambiguous).
Shift/reduce conflicts are resolved in favor of shifting if there are no operator precedence declarations. Refer to the
yacc documentation on the use of operator precedence.

The output file contains Erlang source code for a parser module with module name equal to the Parserfile
parameter. After compilation, the parser can be called as follows (the module name is assumed to be myparser):

myparser:parse(myscanner:scan(Inport))

The call format may be different if a customized prologue file has been included when generating the parser instead
of the default file lib/parsetools/include/yeccpre.hrl.

With the standard prologue, this call will return either {ok, Result}, where Result is a structure that the Erlang
code of the grammar file has built, or {error, {Line_number, Module, Message}} if there was a syntax
error in the input.

Message is something which may be converted into a string by calling Module:format_error(Message)
and printed with io:format/3.

Note:

By default, the parser that was generated will not print out error messages to the screen. The user will have to do
this either by printing the returned error messages, or by inserting tests and print instructions in the Erlang code
associated with the syntax rules of the grammar file.

It is also possible to make the parser ask for more input tokens when needed if the following call format is used:

yecc

8 | Ericsson AB. All Rights Reserved.: Parse Tools

myparser:parse_and_scan({Function, Args})
myparser:parse_and_scan({Mod, Tokenizer, Args})

The tokenizer Function is either a fun or a tuple {Mod, Tokenizer}. The call apply(Function, Args)
or apply({Mod, Tokenizer}, Args) is executed whenever a new token is needed. This, for example, makes
it possible to parse from a file, token by token.

The tokenizer used above has to be implemented so as to return one of the following:

{ok, Tokens, Endline}
{eof, Endline}
{error, Error_description, Endline}

This conforms to the format used by the scanner in the Erlang io library module.

If {eof, Endline} is returned immediately, the call to parse_and_scan/1 returns {ok, eof}. If {eof,
Endline} is returned before the parser expects end of input, parse_and_scan/1 will, of course, return an error
message (see above). Otherwise {ok, Result} is returned.

More Examples
1. A grammar for parsing infix arithmetic expressions into prefix notation, without operator precedence:

Nonterminals E T F.
Terminals '+' '*' '(' ')' number.
Rootsymbol E.
E -> E '+' T: {'$2', '$1', '$3'}.
E -> T : '$1'.
T -> T '*' F: {'$2', '$1', '$3'}.
T -> F : '$1'.
F -> '(' E ')' : '$2'.
F -> number : '$1'.

2. The same with operator precedence becomes simpler:

Nonterminals E.
Terminals '+' '*' '(' ')' number.
Rootsymbol E.
Left 100 '+'.
Left 200 '*'.
E -> E '+' E : {'$2', '$1', '$3'}.
E -> E '*' E : {'$2', '$1', '$3'}.
E -> '(' E ')' : '$2'.
E -> number : '$1'.

3. An overloaded minus operator:

Nonterminals E uminus.
Terminals '*' '-' number.
Rootsymbol E.

Left 100 '-'.
Left 200 '*'.
Unary 300 uminus.

E -> E '-' E.
E -> E '*' E.
E -> uminus.
E -> number.

uminus -> '-' E.

yecc

Ericsson AB. All Rights Reserved.: Parse Tools | 9

4. The Yecc grammar that is used for parsing grammar files, including itself:

Nonterminals
grammar declaration rule head symbol symbols attached_code
token tokens.
Terminals
atom float integer reserved_symbol reserved_word string char var
'->' ':' dot.
Rootsymbol grammar.
Endsymbol '$end'.
grammar -> declaration : '$1'.
grammar -> rule : '$1'.
declaration -> symbol symbols dot: {'$1', '$2'}.
rule -> head '->' symbols attached_code dot: {rule, ['$1' | '$3'],
 '$4'}.
head -> symbol : '$1'.
symbols -> symbol : ['$1'].
symbols -> symbol symbols : ['$1' | '$2'].
attached_code -> ':' tokens : {erlang_code, '$2'}.
attached_code -> '$empty' : {erlang_code,
 [{atom, 0, '$undefined'}]}.
tokens -> token : ['$1'].
tokens -> token tokens : ['$1' | '$2'].
symbol -> var : value_of('$1').
symbol -> atom : value_of('$1').
symbol -> integer : value_of('$1').
symbol -> reserved_word : value_of('$1').
token -> var : '$1'.
token -> atom : '$1'.
token -> float : '$1'.
token -> integer : '$1'.
token -> string : '$1'.
token -> char : '$1'.
token -> reserved_symbol : {value_of('$1'), line_of('$1')}.
token -> reserved_word : {value_of('$1'), line_of('$1')}.
token -> '->' : {'->', line_of('$1')}.
token -> ':' : {':', line_of('$1')}.
Erlang code.
value_of(Token) ->
 element(3, Token).
line_of(Token) ->
 element(2, Token).

Note:

The symbols '->', and ':' have to be treated in a special way, as they are meta symbols of the grammar notation,
as well as terminal symbols of the Yecc grammar.

5. The file erl_parse.yrl in the lib/stdlib/src directory contains the grammar for Erlang.

Note:

Syntactic tests are used in the code associated with some rules, and an error is thrown (and caught by the
generated parser to produce an error message) when a test fails. The same effect can be achieved with a call
to return_error(Error_line, Message_string), which is defined in the yeccpre.hrl default
header file.

yecc

10 | Ericsson AB. All Rights Reserved.: Parse Tools

Files
lib/parsetools/include/yeccpre.hrl

See Also
Aho & Johnson: 'LR Parsing', ACM Computing Surveys, vol. 6:2, 1974.

leex

Ericsson AB. All Rights Reserved.: Parse Tools | 11

leex
Erlang module

A regular expression based lexical analyzer generator for Erlang, similar to lex or flex.

Note:

The Leex module should be considered experimental as it will be subject to changes in future releases.

DATA TYPES
ErrorInfo = {ErrorLine,module(),error_descriptor()}
ErrorLine = integer()
Token = tuple()

Exports

file(FileName) -> LeexRet
file(FileName, Options) -> LeexRet
Types:

FileName = filename()

Options = Option | [Option]

Option = - see below -

LeexRet = {ok, Scannerfile} | {ok, Scannerfile, Warnings} | error |
{error, Errors, Warnings}

Scannerfile = filename()

Warnings = Errors = [{filename(), [ErrorInfo]}]

ErrorInfo = {ErrorLine, module(), Reason}

ErrorLine = integer()

Reason = - formatable by format_error/1 -

Generates a lexical analyzer from the definition in the input file. The input file has the extension .xrl. This is added
to the filename if it is not given. The resulting module is the Xrl filename without the .xrl extension.

The current options are:

dfa_graph

Generates a .dot file which contains a description of the DFA in a format which can be viewed with Graphviz,
www.graphviz.com.

{includefile,Includefile}

Uses a specific or customised prologue file instead of default lib/parsetools/include/leexinc.hrl
which is otherwise included.

{report_errors, bool()}

Causes errors to be printed as they occur. Default is true.

{report_warnings, bool()}

Causes warnings to be printed as they occur. Default is true.

leex

12 | Ericsson AB. All Rights Reserved.: Parse Tools

warnings_as_errors

Causes warnings to be treated as errors.

{report, bool()}

This is a short form for both report_errors and report_warnings.

{return_errors, bool()}

If this flag is set, {error, Errors, Warnings} is returned when there are errors. Default is false.

{return_warnings, bool()}

If this flag is set, an extra field containing Warnings is added to the tuple returned upon success. Default is
false.

{return, bool()}

This is a short form for both return_errors and return_warnings.

{scannerfile, Scannerfile}

Scannerfile is the name of the file that will contain the Erlang scanner code that is generated. The default
("") is to add the extension .erl to FileName stripped of the .xrl extension.

{verbose, bool()}

Outputs information from parsing the input file and generating the internal tables.

Any of the Boolean options can be set to true by stating the name of the option. For example, verbose is equivalent
to {verbose, true}.

Leex will add the extension .hrl to the Includefile name and the extension .erl to the Scannerfile name,
unless the extension is already there.

format_error(ErrorInfo) -> Chars
Types:

Chars = [char() | Chars]

Returns a string which describes the error ErrorInfo returned when there is an error in a regular expression.

The following functions are exported by the generated scanner.

Exports

Module:string(String) -> StringRet
Module:string(String, StartLine) -> StringRet
Types:

String = string()

StringRet = {ok,Tokens,EndLine} | ErrorInfo

Tokens = [Token]

EndLine = StartLine = integer()

Scans String and returns all the tokens in it, or an error.

Note:

It is an error if not all of the characters in String are consumed.

leex

Ericsson AB. All Rights Reserved.: Parse Tools | 13

Module:token(Cont, Chars) -> {more,Cont1} | {done,TokenRet,RestChars}
Module:token(Cont, Chars, StartLine) -> {more,Cont1} |
{done,TokenRet,RestChars}
Types:

Cont = [] | Cont1

Cont1 = tuple()

Chars = RestChars = string() | eof

TokenRet = {ok, Token, EndLine} | {eof, EndLine} | ErrorInfo

StartLine = EndLine = integer()

This is a re-entrant call to try and scan one token from Chars. If there are enough characters in Chars to either scan
a token or detect an error then this will be returned with {done,...}. Otherwise {cont,Cont} will be returned
where Cont is used in the next call to token() with more characters to try an scan the token. This is continued until
a token has been scanned. Cont is initially [].

It is not designed to be called directly by an application but used through the i/o system where it can typically be
called in an application by:

io:request(InFile, {get_until,unicode,Prompt,Module,token,[Line]})
 -> TokenRet

Module:tokens(Cont, Chars) -> {more,Cont1} | {done,TokensRet,RestChars}
Module:tokens(Cont, Chars, StartLine) -> {more,Cont1} |
{done,TokensRet,RestChars}
Types:

Cont = [] | Cont1

Cont1 = tuple()

Chars = RestChars = string() | eof

TokensRet = {ok, Tokens, EndLine} | {eof, EndLine} | ErrorInfo

Tokens = [Token]

StartLine = EndLine = integer()

This is a re-entrant call to try and scan tokens from Chars. If there are enough characters in Chars to either scan
tokens or detect an error then this will be returned with {done,...}. Otherwise {cont,Cont} will be returned
where Cont is used in the next call to tokens() with more characters to try an scan the tokens. This is continued
until all tokens have been scanned. Cont is initially [].

This functions differs from token in that it will continue to scan tokens upto and including an
{end_token,Token} has been scanned (see next section). It will then return all the tokens. This is typically used
for scanning grammars like Erlang where there is an explicit end token, '.'. If no end token is found then the whole file
will be scanned and returned. If an error occurs then all tokens upto and including the next end token will be skipped.

It is not designed to be called directly by an application but used through the i/o system where it can typically be
called in an application by:

io:request(InFile, {get_until,unicode,Prompt,Module,tokens,[Line]})
 -> TokensRet

Input File Format
Erlang style comments starting with a % are allowed in scanner files. A definition file has the following format:

leex

14 | Ericsson AB. All Rights Reserved.: Parse Tools

<Header>

Definitions.

<Macro Definitions>

Rules.

<Token Rules>

Erlang code.

<Erlang code>

The "Definitions.", "Rules." and "Erlang code." headings are mandatory and must occur at the beginning of a source
line. The <Header>, <Macro Definitions> and <Erlang code> sections may be empty but there must be at least one rule.

Macro definitions have the following format:

NAME = VALUE

and there must be spaces around =. Macros can be used in the regular expressions of rules by writing {NAME}.

Note:

When macros are expanded in expressions the macro calls are replaced by the macro value without any form of
quoting or enclosing in parentheses.

Rules have the following format:

<Regexp> : <Erlang code>.

The <Regexp> must occur at the start of a line and not include any blanks; use \t and \s to include TAB and
SPACE characters in the regular expression. If <Regexp> matches then the corresponding <Erlang code> is evaluated
to generate a token. With the Erlang code the following predefined variables are available:

TokenChars

A list of the characters in the matched token.

TokenLen

The number of characters in the matched token.

TokenLine

The line number where the token occurred.

The code must return:

{token,Token}

Return Token to the caller.

{end_token,Token}

Return Token and is last token in a tokens call.

skip_token

Skip this token completely.

{error,ErrString}

An error in the token, ErrString is a string describing the error.

leex

Ericsson AB. All Rights Reserved.: Parse Tools | 15

It is also possible to push back characters into the input characters with the following returns:

• {token,Token,PushBackList}

• {end_token,Token,PushBackList}

• {skip_token,PushBackList}

These have the same meanings as the normal returns but the characters in PushBackList will be prepended to the
input characters and scanned for the next token. Note that pushing back a newline will mean the line numbering will
no longer be correct.

Note:

Pushing back characters gives you unexpected possibilities to cause the scanner to loop!

The following example would match a simple Erlang integer or float and return a token which could be sent to the
Erlang parser:

D = [0-9]

{D}+ :
 {token,{integer,TokenLine,list_to_integer(TokenChars)}}.

{D}+\.{D}+((E|e)(\+|\-)?{D}+)? :
 {token,{float,TokenLine,list_to_float(TokenChars)}}.

The Erlang code in the "Erlang code." section is written into the output file directly after the module declaration and
predefined exports declaration so it is possible to add extra exports, define imports and other attributes which are then
visible in the whole file.

Regular Expressions
The regular expressions allowed here is a subset of the set found in egrep and in the AWK programming language,
as defined in the book, The AWK Programming Language, by A. V. Aho, B. W. Kernighan, P. J. Weinberger. They
are composed of the following characters:

c

Matches the non-metacharacter c.

\c

Matches the escape sequence or literal character c.

.

Matches any character.

^

Matches the beginning of a string.

$

Matches the end of a string.

[abc...]

Character class, which matches any of the characters abc.... Character ranges are specified by a pair of
characters separated by a -.

[^abc...]

Negated character class, which matches any character except abc....

leex

16 | Ericsson AB. All Rights Reserved.: Parse Tools

r1 | r2

Alternation. It matches either r1 or r2.

r1r2

Concatenation. It matches r1 and then r2.

r+

Matches one or more rs.

r*

Matches zero or more rs.

r?

Matches zero or one rs.

(r)

Grouping. It matches r.

The escape sequences allowed are the same as for Erlang strings:

\b

Backspace.

\f

Form feed.

\n

Newline (line feed).

\r

Carriage return.

\t

Tab.

\e

Escape.

\v

Vertical tab.

\s

Space.

\d

Delete.

\ddd

The octal value ddd.

\xhh

The hexadecimal value hh.

\x{h...}

The hexadecimal value h....

leex

Ericsson AB. All Rights Reserved.: Parse Tools | 17

\c

Any other character literally, for example \\ for backslash, \" for ".

The following examples define simplified versions of a few Erlang data types:

Atoms [a-z][0-9a-zA-Z_]*

Variables [A-Z_][0-9a-zA-Z_]*

Floats (\+|-)?[0-9]+\.[0-9]+((E|e)(\+|-)?[0-9]+)?

Note:

Anchoring a regular expression with ^ and $ is not implemented in the current version of Leex and just generates
a parse error.

	Parse Tools
	Reference Manual
	yecc
	file/1
	format_error/1

	leex
	file/1
	file/2
	format_error/1
	Module:string/1
	Module:string/2
	Module:token/2
	Module:token/3
	Module:tokens/2
	Module:tokens/3

