
Event Tracer (ET)
Copyright © 2002-2019 Ericsson AB. All Rights Reserved.

Event Tracer (ET) 1.6.4
March 11, 2019

Copyright © 2002-2019 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 11, 2019

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 1

1.1 Introduction

2 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1 Event Tracer (ET) Users Guide

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and graphical
viewing of trace data.

1.1 Introduction
The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and
graphical viewing of trace data.

The viewed trace data is normally collected from Erlang trace ports or files.

1.1.1 Scope and Purpose
This manual describes the Event Tracer (ET) application, as a component of the Erlang/Open Telecom Platform
development environment. It is assumed that the reader is familiar with the Erlang Development Environment, which
is described in a separate User's Guide.

1.1.2 Prerequisites
The following prerequisites is required for understanding the material in the Event Tracer (ET) User's Guide:

• familiarity with the Erlang system and Erlang programming in general and the especially the art of Erlang tracing.

The application requires Erlang/OTP release R13BB or later. If you use the old GS based GUI it does suffice with R7B.

1.1.3 About This Manual
In addition to this introductory chapter, the Event Tracers User's Guide contains the following chapters:

• Chapter 2: "Tutorial" provides a walk-through of the various parts of the application. The tutorial is based
on Jayson Vantuyl's article http://souja.net/2009/04/making-sense-of-erlangs-
event-tracer.html.

• Chapter 3: "Description" describes the architecture and typical usage of the application.

• Chapter 4: "Advanced examples" gives some usage examples

1.1.4 Where to Find More Information
Refer to the following documentation for more information about Event Tracer (ET) and about the Erlang/
OTP development system:

• the Reference Manual of the Event Tracer (ET).

• documentation of basic tracing in erlang:trace/4 and erlang:trace_pattern/3 and then the utilities
derived from these: dbg, observer, invisio and et.

• Programming Erlang: Software for a Concurrent World by Joe Armstrong; ISBN: 978-1-93435-600-5

1.2 Tutorial

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 3

1.2 Tutorial
1.2.1 Visualizing Message Sequence Charts
The easiest way of using ET, is to just use it as a graphical tool for displaying message sequence charts. In order to do
that you need to first start a Viewer (which by default starts a Collector):

 {ok, ViewerPid} = et_viewer:start([{title,"Coffee Order"}]),
 CollectorPid = et_viewer:get_collector_pid(ViewerPid).

Then you send events to the Collector with the function et_collector:report_event/6 like this:

 et_collector:report_event(CollectorPid,85,from,to,message,extra_stuff).

The Viewer will automatically pull events from the Collector and display them on the screen.

The number (in this case 85) is an integer from 1 to 100 that specifies the "detail level" of the message. The higher the
number, the more important it is. This provides a crude form of priority filtering.

The from, to, and message parameters are exactly what they sound like. from and to are visualized in the Viewer
as "lifelines", with the message passing from one to the other. If from and to are the same value, then it is displayed
next to the lifeline as an "action". The extra_stuff value is simply data that you can attach that will be displayed
when someone actually clicks on the action or message in the Viewer window.

The module et/examples/et_display_demo.erl illustrates how it can be used:

-module(et_display_demo).

-export([test/0]).

test() ->
 {ok, Viewer} = et_viewer:start([{title,"Coffee Order"}, {max_actors,10}]),
 Drink = {drink,iced_chai_latte},
 Size = {size,grande},
 Milk = {milk,whole},
 Flavor = {flavor,vanilla},
 C = et_viewer:get_collector_pid(Viewer),
 et_collector:report_event(C,99,customer,barrista1,place_order,[Drink,Size,Milk,Flavor]),
 et_collector:report_event(C,80,barrista1,register,enter_order,[Drink,Size,Flavor]),
 et_collector:report_event(C,80,register,barrista1,give_total,"$5"),
 et_collector:report_event(C,80,barrista1,barrista1,get_cup,[Drink,Size]),
 et_collector:report_event(C,80,barrista1,barrista2,give_cup,[]),
 et_collector:report_event(C,90,barrista1,customer,request_money,"$5"),
 et_collector:report_event(C,90,customer,barrista1,pay_money,"$5"),
 et_collector:report_event(C,80,barrista2,barrista2,get_chai_mix,[]),
 et_collector:report_event(C,80,barrista2,barrista2,add_flavor,[Flavor]),
 et_collector:report_event(C,80,barrista2,barrista2,add_milk,[Milk]),
 et_collector:report_event(C,80,barrista2,barrista2,add_ice,[]),
 et_collector:report_event(C,80,barrista2,barrista2,swirl,[]),
 et_collector:report_event(C,80,barrista2,customer,give_tasty_beverage,[Drink,Size]),
 ok.

When you run the et_display_demo:test(). function in the example above, the Viewer window will look
like this:

1.2 Tutorial

4 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

Figure 2.1: Screenshot of the Viewer window

1.2.2 Four Modules
The event tracer framework is made up of four modules:

• et

• et_collector

• et_viewer

• et_selector

In addition, you'll probably want to familiarize yourself with the dbg module and possibly seq_trace module as
well.

1.2 Tutorial

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 5

1.2.3 The Event Tracer Interface
The et module is not like other modules. It contains a function called et:trace_me/5. Which is a function that does
not do any useful stuff at all. Its sole purpose is to be a function that is easy to trace. A call to it may be something like:

 et:trace_me(85,from,to,message,extra_stuff).

The parameters to et:trace_me/5 are the same as to et_collector:report_event/6 in the previous
chapter. The big difference between the two is in the semantics of the two functions. The second actually reports an
Event to the Collector while the first does nothing, it just returns the atom hopefully_traced. In order to
make the parameters to et:trace_me/5 turn up in the Collector, tracing of that function must be activated and
the Collector must be registered as a Tracer of the Raw Trace Data.

Erlang tracing is a seething pile of pain that involves reasonably complex knowledge of clever ports, tracing
return formats, and specialized tracing MatchSpecs (which are really their own special kind of hell). The tracing
mechanism is very powerful indeed, but it can be hard to grasp.

Luckily there is a simplified way to start tracing of et:trace_me/5 function calls. The idea is that you should
instrument your code with calls to et:trace_me/5 in strategic places where you have interesting information
available in your program. Then you just start the Collector with global tracing enabled:

 et_viewer:start([{trace_global, true}, {trace_pattern, {et,max}}]).

This will start a Collector, a Viewer and also start the tracing of et:trace_me/5 function calls. The Raw
Trace Data is collected by the Collector and a view of it is displayed on the screen by the Viewer. You can
define your own "views" of the data by implementing your own Filter functions and register them in the Viewer.

1.2.4 The Collector and Viewer
These two pieces work in concert. Basically, the Collector receives Raw Trace Data and processes it into
Events in a et specific format (defined in et/include/et.hrl). The Viewer interrogates the Collector
and displays an interactive representation of the data.

You might wonder why these aren't just one module. The Collector is a generic full-fledged framework that allows
processes to "subscribe" to the Events that it collects. One Collector can serve several Viewers. The typical
case is that you have one Viewer that visualizes Events in one flavor and another Viewer that visualizes them in
another flavor. If you for example are tracing a text based protocol like HTML (or Megaco/H.248) it would be useful
to be able to display the Events as plain text as well as the internal representation of the message. The architecture
does also allow you to implement your own Viewer program as long as it complies to the protocol between the
Collector/Viewer protocol. Currently two kinds of Viewers exists. That is the old GS based one and the new
based on wxWidgets. But if you feel for it you may implement your own Viewer, which for example could display
the Events as ASCII art or whatever you feel useful.

The Viewer will by default create a Collector for you. With a few options and some configuration settings you
can start collecting Events.

The Collector API does also allow you to save the collected Events to file and later load them in a later session.

1.2.5 The Selector
This is perhaps the most central module in the entirety of the et suite. The Collector needs "filters" to convert
the Raw Trace Data into "events" that it can display. The et_selector module provides the default Filter
and some API calls to manage the Trace Pattern. The Selector provides various functions that achieve the
following:

• Convert Raw Trace Data into an appropriate Event

• Magically notice traces of the et:trace_me/5 function and make appropriate Events

1.2 Tutorial

6 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

• Carefully prevent translating the Raw Trace Data twice

• Manage a Trace Pattern

The Trace Pattern is basically a tuple of a module and a detail level (either an integer or the atom max
for full detail). In most cases the Trace Pattern {et,max} does suffice. But if you do not want any runtime
dependency of et you can implement your own trace_me/5 function in some module and refer to that module
in the Trace Pattern.

The specified module flows from your instantiation of the Viewer, to the Collector that it automatically creates,
gets stashed in as the Trace Pattern, and eventually goes down into the bowels of the Selector.

The module that you specify gets passed down (eventually) into Selector's default Filter. The format of the
et:trace_me/5 function call is hardcoded in that Filter.

1.2.6 How To Put It Together
The Collector automatically registers itself to listen for trace Events, so all you have to do is enable them.

For those people who want to do general tracing, consult the dbg module on how to trace whatever you're interested
in and let it work its magic. If you just want et:trace_me/5 to work, do the following:

• Create a Collector

• Create a Viewer (this can do step #1 for you)

• Turn on and pare down debugging

The module et/examples/et_trace_demo.erl achieves this.

-module(et_trace_demo).

-export([test/0]).

test() ->
 et_viewer:start([
 {title,"Coffee Order"},
 {trace_global,true},
 {trace_pattern,{et,max}},
 {max_actors,10}
]),
 %% dbg:p(all,call),
 %% dbg:tpl(et, trace_me, 5, []),
 Drink = {drink,iced_chai_latte},
 Size = {size,grande},
 Milk = {milk,whole},
 Flavor = {flavor,vanilla},
 et:trace_me(99,customer,barrista1,place_order,[Drink,Size,Milk,Flavor]),
 et:trace_me(80,barrista1,register,enter_order,[Drink,Size,Flavor]),
 et:trace_me(80,register,barrista1,give_total,"$5"),
 et:trace_me(80,barrista1,barrista1,get_cup,[Drink,Size]),
 et:trace_me(80,barrista1,barrista2,give_cup,[]),
 et:trace_me(90,barrista1,customer,request_money,"$5"),
 et:trace_me(90,customer,barrista1,pay_money,"$5"),
 et:trace_me(80,barrista2,barrista2,get_chai_mix,[]),
 et:trace_me(80,barrista2,barrista2,add_flavor,[Flavor]),
 et:trace_me(80,barrista2,barrista2,add_milk,[Milk]),
 et:trace_me(80,barrista2,barrista2,add_ice,[]),
 et:trace_me(80,barrista2,barrista2,swirl,[]),
 et:trace_me(80,barrista2,customer,give_tasty_beverage,[Drink,Size]),
 ok.

Running through the above, the most important points are:

• Turn on global tracing

1.2 Tutorial

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 7

• Set a Trace Pattern

• Tell dbg to trace function Calls

• Tell it specifically to trace the et:trace_me/5 function

When you run the et_trace_demo:test() function above, the Viewer window will look like this screenshot:

Figure 2.2: Screenshot of the Viewer window

1.3 Description

8 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

1.3 Description
1.3.1 Overview
The two major components of the Event Tracer (ET) tool is a graphical sequence chart viewer (et_viewer)
and its backing storage (et_collector). One Collector may be used as backing storage for several
simultaneous Viewers where each one may display a different view of the same trace data.

The interface between the Collector and its Viewers is public in order to enable other types of Viewers.
However in the following text we will focus on usage of the et_viewer.

The main start function is et_viewer:start/1. By default it will start both an et_collector and an
et_viewer:

% erl -pa et/examples
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
1> {ok, Viewer} = et_viewer:start([]).
{ok,<0.40.0>}

A Viewer gets trace Events from its Collector by polling it regularly for more Events to display. Events
are for example reported to the Collector with et_collector:report_event/6:

2> Collector = et_viewer:get_collector_pid(Viewer).
<0.39.0>
3> et_collector:report_event(Collector, 60, my_shell, mnesia_tm, start_outer,
3> "Start outer transaction"),
3> et_collector:report_event(Collector, 40, mnesia_tm, my_shell, new_tid,
3> "New transaction id is 4711"),
3> et_collector:report_event(Collector, 20, my_shell, mnesia_locker, try_write_lock,
3> "Acquire write lock for {my_tab, key}"),
3> et_collector:report_event(Collector, 10, mnesia_locker, my_shell, granted,
3> "You got the write lock for {my_tab, key}"),
3> et_collector:report_event(Collector, 60, my_shell, do_commit,
3> "Perform transaction commit"),
3> et_collector:report_event(Collector, 40, my_shell, mnesia_locker, release_tid,
3> "Release all locks for transaction 4711"),
3> et_collector:report_event(Collector, 60, my_shell, mnesia_tm, delete_transaction,
3> "End of outer transaction"),
3> et_collector:report_event(Collector, 20, my_shell, end_outer,
3> "Transaction returned {atomic, ok}").
{ok,{table_handle,<0.39.0>,16402,trace_ts,
 #Fun<et_collector.0.62831470>}}

This actually is a simulation of the process Events caused by a Mnesia transaction that writes a record in a local
table:

mnesia:transaction(fun() -> mnesia:write({my_tab, key, val}) end).

At this stage when we have a couple of Events, it is time to show how it looks like in the graphical interface of
et_viewer:

1.3 Description

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 9

Figure 3.1: A simulated Mnesia transaction which writes one record

In the sequence chart, the actors (which symbolically has performed the Event) are shown as named vertical bars.
The order of the actors may be altered by dragging (hold mouse button 1 pressed during the operation) the name tag
of an actor and drop it elsewhere:

1.3 Description

10 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

Figure 3.2: Two actors has switched places

An Event may be an action performed by one single actor (blue text label) or it may involve two actors and is then
depicted as an arrow directed from one actor to another (red text label). Details of an Event can be shown by clicking
(press and release the mouse button 1) on the event label text or on the arrow. When doing that a Contents Viewer
window pops up. It may look like this:

1.3 Description

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 11

Figure 3.3: Details of a write lock message

1.3.2 Filters and dictionary
The Event Tracer (ET) uses named filters in various contexts. An Event Trace filter is an Erlang fun that
takes some trace data as input and returns a possibly modified version of it:

filter(TraceData) -> false | true | {true, NewEvent}

TraceData = Event | erlang_trace_data()
Event = #event{}
NewEvent = #event{}

The interface of the filter function is the same as the the filter functions for the good old lists:filtermap/2.
If the filter returns false it means that the trace data should silently be dropped. true means that the trace data
data already is an Event Record and that it should be kept as it is. true means that the TraceData already
is an Event Record and that it should be kept as it is. {true, NewEvent} means that the original trace data
should be replaced with Event. This provides means to get rid of unwanted Events as well as enabling alternate
views of an Event.

The first filter that the trace data is exposed for is the Collector Filter. When a trace Event is reported
with et_collector:report/2 (or et_collector:report_event/5,6) the first thing that happens, is
that a message is sent to the Collector process to fetch a handle that contains some useful stuff, such as the
Collector Filter Fun and an Ets table identifier. Then the Collector Filter Fun is applied and if it
returns true (or {true, NewEvent}), the Event will be stored in an Ets table. As an optimization, subsequent
calls to et_collector:report-functions can use the handle directly instead of the Collector Pid.

All filters (registered in a Collector or in a Viewer) must be able to handle an Event record as input. The
Collector Filter (that is the filter named all) is a little bit special, as its input also may be raw Erlang
Trace Data

The Collector manages a key/value based dictionary, where the filters are stored. Updates of the dictionary is
propagated to all subscribing processes. When a Viewer is started it is registered as a subscriber of dictionary updates.

In each Viewer there is only one filter that is active and all trace Events that the Viewer gets from the
Collector will pass thru that filter. By writing clever filters it is possible to customize how the Events looks like

1.3 Description

12 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

in the viewer. The following filter in et/examples/et_demo.erl replaces the actor names mnesia_tm and
mnesia_locker and leaves everything else in the record as it was:

mgr_actors(E) when is_record(E, event) ->
 Actor = fun(A) ->
 case A of
 mnesia_tm -> trans_mgr;
 mnesia_locker -> lock_mgr;
 _ -> A
 end
 end,
 {true, E#event{from = Actor(E#event.from),
 to = Actor(E#event.to),
 contents = [{orig_from, E#event.from},
 {orig_to, E#event.to},
 {orig_contents, E#event.contents}]}}.

If we now add the filter to the running Collector:

4> Fun = fun(E) -> et_demo:mgr_actors(E) end.
#Fun<erl_eval.6.13229925>
5> et_collector:dict_insert(Collector, {filter, mgr_actors}, Fun).
ok

you will see that the Filter menu in all viewers have got a new entry called mgr_actors. Select it, and a new
Viewer window will pop up:

1.3 Description

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 13

Figure 3.4: The same trace data in a different view

In order to see the nitty gritty details of an Event you may click on the Event in order to start a Contents Viewer
for that Event. In the Contents Viewer there also is a filter menu that enables inspection of the Event from
other views than the one selected in the viewer. A click on the new_tid Event will cause a Contents Viewer
window to pop up, showing the Event in the mgr_actors view:

1.3 Description

14 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

Figure 3.5: The trace Event in the mgr_actors view

Select the all entry in the Filters menu and a new Contents Viewer window will pop up showing the
same trace Event in the collectors view:

Figure 3.6: The same trace Event in the collectors view

1.3.3 Trace clients
As you have seen, it is possible to use the et_collector:report_event/5,6 functions explicitly. By using
those functions you can write your own trace client that reads trace data from any source stored in any format and

1.3 Description

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 15

just feed the Collector with it. You may replace the default Collector Filter with a filter that converts new
exciting trace data formats to Event Records or you may convert it to an Event Record before you invoke
et_collector:report/2 and then rely on the default Collector Filter to handle the new format.

There are also existing functions in the API that reads from various sources and calls et_collector:report/2:

• The trace Events that are hosted by the Collector may be stored to file and later be loaded by selecting save
and load entries in the Viewers File menu or via the et_collector API.

• It is also possible to perform live tracing of a running system by making use of the built-in trace support in
the Erlang emulator. These Erlang traces can be directed to files or to ports. See the reference manual for
erlang:trace/4, erlang:trace_pattern/3, dbg and ttb for more info.

There are also corresponding trace client types that can read the Erlang trace data format from such files or
ports. The et_collector:start_trace_client/3 function makes use of these Erlang trace clients and
redirects the trace data to the Collector.

The default Collector Filter converts the raw Erlang trace data format into Event Records. If you
want to perform this differently you can of course write your own Collector Filter from scratch. But it
may probably save you some efforts if you first apply the default filter in et_selector:parse_event/2
before you apply your own conversions of its output.

1.3.4 Global tracing
Setting up an Erlang tracer on a set of nodes and connecting trace clients to the ports of these tracers is not intuitive.
In order to make this it easier the Event Tracer has a notion of global tracing. When used, the et_collector
process will monitor Erlang nodes and when one connects, an Erlang tracer will automatically be started on the newly
connected node. A corresponding trace client will also be started on the Collector node in order to automatically
forward the trace Events to the Collector. Set the boolean parameter trace_global to true for either
the et_collector or et_viewer in order to activate the global tracing. There is no restriction on how many
concurrent (anonymous) collectors you can have, but you can only have one global Collector as its name is
registered in global.

In order to further simplify the tracing, you can make use of the et:trace_me/4,5 functions. These functions are
intended to be invoked from other applications when there are interesting Events, in your application that needs to
be highlighted. The functions are extremely light weight as they do nothing besides returning an atom. These functions
are specifically designed to be traced for. As the caller explicitly provides the values for the Event Record fields,
the default Collector Filter is able to automatically provide a customized Event Record without any user
defined filter functions.

In normal operation, the et:trace_me/4,5 calls are almost for free. When tracing is needed, you can either
activate tracing on these functions explicitly. Or you can combine the usage of trace_global with the usage of
trace_pattern. When set, the trace_pattern will automatically be activated on all connected nodes.

One nice thing with the trace_pattern is that it provides a very simple way of minimizing the amount of generated
trace data by allowing you to explicitly control the detail level of the tracing. As you may have seen the et_viewer
have a slider called "Detail Level" that allows you to control the detail level of the trace Events displayed in
the Viewer. On the other hand if you set a low detail level in the trace_pattern, lots of the trace data will never
be generated and thus not sent over the socket to the trace client and stored in the Collector.

1.3.5 Viewer window
Almost all functionality available in the et_viewer is also available via shortcuts. Which key that has the same
effect as selecting a menu entry is shown enclosed in parentheses. For example pressing the key r is equivalent to
selecting the menu entry Viewer->Refresh.

File menu:

1.3 Description

16 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

• Clear all events in the Collector - Deletes all Events stored in the Collector and notifies
all connected Viewers about this.

• Load events to the Collector from file - Loads the Collector with Events from a file
and notifies all connected Viewers about this.

• Save all events in the Collector to file - Saves all Events stored in the Collector to file.

• Print setup - Enables editing of printer setting, such as paper and layout.

• Print current page - Prints the events on the current page. The page size is dependent of the selected
paper type.

• Print all pages - Prints all events. The page size is dependent of the selected paper type.

• Close this Viewer - Closes this Viewer window, but keeps all other Viewers windows and the
Collector process.

• Close other Viewers, but this - Keeps this Viewer window and its Collector process, but closes
all other Viewers windowsconnected to the same Collector.

• Close all Viewers and the Collector - Closes the Collector and all Viewers connected to it.

Viewer menu:

• First - Scrolls this viewer to the first Event in the Collector.

• Last - Scrolls this viewer to the last Event in the Collector.

• Prev - Scrolls this viewer one page backwards.

• Next - Scrolls this viewer one page forward.

• Refresh - Clears this viewer and re-read its Events from the Collector.

• Up - Scrolls a few Events backwards.

• Down - Scrolls a few Events forward.

• Display all actors. - Reset the settings for hidden and/or highlighted actors.

Collector menu:

• First - Scrollsall viewers to the first Event in the Collector.

• Last - Scrolls all viewers to the last Event in the Collector.

• Prev - Scrolls all viewers one page backwards.

• Next - Scrolls all viewers one page forward.

• Refresh - Clears all viewers and re-read their Events from the Collector.

Filters and scaling menu:

• ActiveFilter (=) - Starts a new Viewer window with the same active filter and scale as the current one.

• ActiveFilter (+) - Starts a new Viewer window with the same active filter but a larger scale than the
current one.

• ActiveFilter (-) - Starts a new Viewer window with the same active filter but a smaller scale than the
current one.

• all (0) - Starts a new Viewer with the Collector Filter as active filter. It will cause all events in
the collector to be viewed.

• AnotherFilter (2) - If more filters are inserted into the dictionary, these will turn up here as entries in the
Filters menu. The second filter will get the shortcut number 2, the next one number 3 etc. The names are sorted.

Slider and radio buttons:

• Hide From=To - When true, this means that the Viewer will hide all Events where the from-actor equals
to its to-actor. These events are sometimes called actions.

1.3 Description

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 17

• Hide (excluded actors) - When true, this means that the Viewer will hide all Events whose actors
are marked as excluded. Excluded actors are normally enclosed in round brackets when they are displayed inthe
Viewer.

• Detail level - This slider controls the resolution of the Viewer. Only Events with a detail level smaller
than the selected one (default=100=max) are displayed.

Other features:

• Vertical scroll - Use mouse wheel and up/down arrows to scroll little. Use page up/down and home/end
buttons to scroll more.

• Display details of an event - Left mouse click on the event label or the arrowand a new Contents
Viewer window will pop up, displaying the contents of an Event.

• Highlight actor (toggle) - Left mouse click on the actor name tag. The actor name will be enclosed in
square brackets []. When one or more actors are highlighted, only events related to those actors are displayed.
All others are hidden.

• Exclude actor (toggle) - Right mouse click on the actor name tag. The actor name will be enclosed in
round brackets (). When an actor is excluded, all events related to this actor is hidden. If the checkbox Hide
(excluded actors) is checked, even the name tags and corresponding vertical line of excluded actors will
be hidden.

• Move actor - Left mouse button drag and drop on actor name tag. Move the actor by first clicking on the
actor name, keeping the button pressed while moving the cursor to a new location and release the button where
the actor should be moved to.

• Display all actors - Press the 'a' button. Reset the settings for hidden and/or highlighted actors.

1.3.6 Configuration
The Event Records in the Ets table are ordered by their timestamp. Which timestamp that should be used is
controlled via the event_order parameter. Default is trace_ts which means the time when the trace data was
generated. event_ts means the time when the trace data was parsed (transformed into an Event Record).

1.3.7 Contents viewer window
File menu:

• Close - Close this window.

• Save - Save the contents of this window to file.

Filters menu:

• ActiveFilter - Start a new Contents Viewer window with the same active filter.

• AnotherFilter (2) - If more filters are inserted into the dictionary, these will turn up here as entries in the
Filters menu. The second filter will be number 2, the next one number 3 etc. The names are sorted.

Hide menu:

• Hide actor in viewer - Known actors are shown as a named vertical bars in the Viewer window. By
hiding the actor, its vertical bar will be removed and the Viewer will be refreshed.

Hiding the actor is only useful if the max_actors threshold has been reached, as it then will imply
that the "hidden" actor will be displayed as if it were "UNKNOWN". If the max_actors threshold not have been
reached, the actor will re-appear as a vertical bar in the Viewer.

• Show actor in viewer - This implies that the actor will be added as a known actor in the Viewer with
its own vertical bar.

Search menu:

1.4 Advanced examples

18 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

• Forward from this event - Set this event to be the first event in the viewer and change its display mode to
be enter forward search mode. The actor of this event (from, to or both) will be added to the list of selected actors.

• Reverse from this event - Set this event to be the first Event in the Viewer and change its display
mode to be enter reverse search mode. The actor of this Event (from, to or both) will be added to the list of
selected actors. Observe, that the Events will be shown in reverse order.

• Abort search. Display all - Switch the display mode of the Viewer to show all Events regardless
of any ongoing searches. Abort the searches.

1.4 Advanced examples
1.4.1 A simulated Mnesia transaction
The Erlang code for running the simulated Mnesia transaction example in the previous chapter is included in the
et/examples/et_demo.erl file:

sim_trans() ->
 sim_trans([]).

sim_trans(ExtraOptions) ->
 Options = [{dict_insert, {filter, mgr_actors}, fun mgr_actors/1}],
 {ok, Viewer} = et_viewer:start_link(Options ++ ExtraOptions),
 Collector = et_viewer:get_collector_pid(Viewer),
 et_collector:report_event(Collector, 60, my_shell, mnesia_tm, start_outer,
 "Start outer transaction"),
 et_collector:report_event(Collector, 40, mnesia_tm, my_shell, new_tid,
 "New transaction id is 4711"),
 et_collector:report_event(Collector, 20, my_shell, mnesia_locker, try_write_lock,
 "Acquire write lock for {my_tab, key}"),
 et_collector:report_event(Collector, 10, mnesia_locker, my_shell, granted,
 "You got the write lock for {my_tab, key}"),
 et_collector:report_event(Collector, 60, my_shell, do_commit,
 "Perform transaction commit"),
 et_collector:report_event(Collector, 40, my_shell, mnesia_locker, release_tid,
 "Release all locks for transaction 4711"),
 et_collector:report_event(Collector, 60, my_shell, mnesia_tm, delete_transaction,
 "End of outer transaction"),
 et_collector:report_event(Collector, 20, my_shell, end_outer,
 "Transaction returned {atomic, ok}"),
 {collector, Collector}.

mgr_actors(E) when is_record(E, event) ->
 Actor = fun(A) ->
 case A of
 mnesia_tm -> trans_mgr;
 mnesia_locker -> lock_mgr;
 _ -> A
 end
 end,
 {true, E#event{from = Actor(E#event.from),
 to = Actor(E#event.to),
 contents = [{orig_from, E#event.from},
 {orig_to, E#event.to},
 {orig_contents, E#event.contents}]}}.

If you invoke the et_demo:sim_trans() function, a Viewer window will pop up and the sequence trace will
be almost the same as if the following Mnesia transaction would have been run:

mnesia:transaction(fun() -> mnesia:write({my_tab, key, val}) end).

1.4 Advanced examples

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 19

And the viewer window will look like:

Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
1> {ok, Viewer} = et_viewer:start([]).
{ok,<0.40.0>;}
2> et_demo:sim_trans().
{ok,{table_handle,<0.45.0>,24596,trace_ts,
 #Fun<et_collector.0.62831470>}}

Figure 4.1: A simulated Mnesia transaction which writes one record

1.4.2 Some convenient functions used in the Mnesia transaction
example
The module_as_actor filter converts the Event Records so the module names becomes actors and the invoked
functions becomes labels. If the information about who the caller was it will be displayed as an arrow directed from

1.4 Advanced examples

20 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

the caller to the callee. The [{message, {caller}}, {return_trace}] options to dbg:tpl/2 function
will imply the necessary information in the Erlang traces. Here follows the module_as_actor filter:

module_as_actor(E) when is_record(E, event) ->
 case lists:keysearch(mfa, 1, E#event.contents) of
 {value, {mfa, {M, F, _A}}} ->
 case lists:keysearch(pam_result, 1, E#event.contents) of
 {value, {pam_result, {M2, _F2, _A2}}} ->
 {true, E#event{label = F, from = M2, to = M}};
 _ ->
 {true, E#event{label = F, from = M, to = M}}
 end;
 _ ->
 false
 end.

The plain_process_info filter does not alter the Event Records. It merely ensures that the event not related
to processes are skipped:

plain_process_info(E) when is_record(E, event) ->
 case E#event.label of
 send -> true;
 send_to_non_existing_process -> true;
 'receive' -> true;
 spawn -> true;
 exit -> true;
 link -> true;
 unlink -> true;
 getting_linked -> true;
 {seq_send, _Label} -> true;
 {seq_receive, _Label} -> true;
 {seq_print, _Label} -> true;
 {drop, _N} -> true;
 _ -> false
 end.

The plain_process_info_nolink filter does not alter the Event Records. It do makes use of the
plain_process_info , but do also ensure that the process info related to linking and unlinking is skipped:

plain_process_info_nolink(E) when is_record(E, event) ->
 (E#event.label /= link) and
 (E#event.label /= unlink) and
 (E#event.label /= getting_linked) and
 plain_process_info(E).

In order to simplify the startup of an et_viewer process with the filters mentioned above, plus some others (that
also are found in et/examples/et_demo.erl src/et_collector.erl the et_demo:start/0,1 functions can
be used:

start() ->
 start([]).

start(ExtraOptions) ->
 Options = [{trace_global, true},
 {parent_pid, undefined},
 {max_actors, infinity},
 {max_events, 1000},
 {active_filter, module_as_actor}],
 et_viewer:start_link(filters() ++ Options ++ ExtraOptions).

A simple one-liner starts the tool:

1.4 Advanced examples

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 21

 erl -pa ../examples -s et_demo

The filters are included by the following parameters:

filters() ->
 [{dict_insert, {filter, module_as_actor},
 fun module_as_actor/1},
 {dict_insert, {filter, plain_process_info},
 fun plain_process_info/1},
 {dict_insert, {filter, plain_process_info_nolink},
 fun plain_process_info_nolink/1},
 {dict_insert, {filter, named_process_info},
 fun named_process_info/1},
 {dict_insert, {filter, named_process_info_nolink},
 fun named_process_info_nolink/1},
 {dict_insert, {filter, node_process_info},
 fun node_process_info/1},
 {dict_insert, {filter, node_process_info_nolink},
 fun node_process_info_nolink/1},
 {dict_insert, {filter, application_as_actor},
 fun application_as_actor/1}
].

1.4.3 Erlang trace of a real Mnesia transaction
The following piece of code et_demo:trace_mnesia/0 activates call tracing of both local and external function
calls for all modules in the Mnesia application. The call traces are configured cover all processes (both existing and
those that are spawned in the future) and include timestamps for trace data. It do also activate tracing of process related
events for Mnesia's static processes plus the calling process (that is your shell). Please, observe that the whereis/1
call in the following code requires that both the traced Mnesia application and the et_viewer is running on the
same node:

trace_mnesia() ->
 Modules = mnesia:ms(),
 Spec = [{message, {caller}}, {return_trace}],
 Flags = [send, 'receive', procs, timestamp],
 dbg:p(all, [call, timestamp]),
 [dbg:tpl(M, [{'_', [], Spec}]) || M <- Modules],
 LocallyRunningServers = [M || M <- Modules, whereis(M) /= undefined],
 [dbg:p(whereis(RS), Flags) || RS <- LocallyRunningServers],
 dbg:p(self(), Flags),
 LocallyRunningServers.

The et_demo:live_trans/0 function starts the global Collector, starts a Viewer, starts Mnesia, creates
a local table, activates tracing (as described above) and registers the shell process is as 'my_shell' for clarity. Finally
a simple Mnesia transaction that writes a single record is run:

1.4 Advanced examples

22 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

live_trans() ->
 live_trans([]).

live_trans(ExtraOptions) ->
 Options = [{title, "Mnesia tracer"},
 {hide_actions, true},
 {active_filter, named_process_info_nolink}],
 et_demo:start(Options ++ ExtraOptions),
 mnesia:start(),
 mnesia:create_table(my_tab, [{ram_copies, [node()]}]),
 et_demo:trace_mnesia(),
 register(my_shell, self()),

 mnesia:transaction(fun() -> mnesia:write({my_tab, key, val}) end).

Now we run the et_demo:live_trans/0 function:

erl -pa ../examples
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4]
 [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
1> et_demo:live_trans().
{atomic,ok}

Please, explore the different filters in order to see how the traced transaction can be seen from different point of views:

1.4 Advanced examples

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 23

Figure 4.2: A real Mnesia transaction which writes one record

1.4.4 Erlang trace of Megaco startup
The Event Tracer (ET) tool was initially written in order to demonstrate how messages where sent over the
Megaco protocol. This were back in the old days before the standard bodies of IETF and ITU had approved Megaco
(also called H.248) as an international standard.

In the Megaco application of Erlang/OTP, the code is carefully instrumented with calls to et:trace_me/5. For
each call a detail level is given in order to enable dynamic control of the trace level in a simple manner.

The megaco_filter module implements a customized filter for Megaco messages. It does also make use of
trace_global combined with usage of the trace_pattern:

1.4 Advanced examples

24 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

-module(megaco_filter).
-export([start/0]).

start() ->
 Options =
 [{event_order, event_ts},
 {scale, 3},
 {max_actors, infinity},
 {trace_pattern, {megaco, max}},
 {trace_global, true},
 {dict_insert, {filter, megaco_filter}, fun filter/1},
 {active_filter, megaco_filter},
 {title, "Megaco tracer - Erlang/OTP"}],
 et_viewer:start(Options).

First we start an Erlang node with a global Collector and its Viewer.

erl -sname observer
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
(observer@falco)1> megaco_filter:start().
{ok,<0.48.0>}

Secondly we start another Erlang node which we connect the observer node, before we start the application that we
want to trace. In this case we start a Media Gateway Controller that listens for both TCP and UDP on the text and
binary ports for Megaco:

erl -sname mgc -pa ../../megaco/examples/simple
Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
(mgc@falco)1> net:ping(observer@falco).
pong
(mgc@falco)2> megaco:start().
ok
(mgc@falco)3> megaco_simple_mgc:start().
{ok,[{ok,2944,
 {megaco_receive_handle,{deviceName,"controller"},
 megaco_pretty_text_encoder,[],megaco_tcp,dynamic}},
 {ok,2944,
 {megaco_receive_handle,{deviceName,"controller"},
 megaco_pretty_text_encoder,[],megaco_udp,dynamic}},
 {ok,2945,
 {megaco_receive_handle,{deviceName,"controller"},
 megaco_binary_encoder,[],megaco_tcp,dynamic}},
 {ok,2945,
 {megaco_receive_handle,{deviceName,"controller"},
 megaco_binary_encoder,[],megaco_udp,dynamic}}]}

And finally we start an Erlang node for the Media Gateways and connect to the observer node. Each Media Gateway
connects to the controller and sends an initial Service Change message. The controller accepts the gateways and sends
a reply to each one using the same transport mechanism and message encoding according to the preference of each
gateway. That is all combinations of TCP/IP transport, UDP/IP transport, text encoding and ASN.1 BER encoding:

1.4 Advanced examples

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 25

Erlang R13B03 (erts-5.7.4) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.7.4 (abort with ^G)
(mg@falco)1> net:ping(observer@falco).
pong
(mg@falco)2> megaco_simple_mg:start().
[{{deviceName,"gateway_tt"},
 {error,{start_user,megaco_not_started}}},
 {{deviceName,"gateway_tb"},
 {error,{start_user,megaco_not_started}}},
 {{deviceName,"gateway_ut"},
 {error,{start_user,megaco_not_started}}},
 {{deviceName,"gateway_ub"},
 {error,{start_user,megaco_not_started}}}]
(mg@falco)3> megaco:start().
ok
(mg@falco)4> megaco_simple_mg:start().
[{{deviceName,"gateway_tt"},
 {1,
 {ok,[{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{serviceChangeReply,
 {'ServiceChangeReply',
 [{megaco_term_id,false,["root"]}],
 {serviceChangeResParms,
 {'ServiceChangeResParm',
 {deviceName,"controller"},
 asn1_NOVALUE,asn1_NOVALUE,asn1_NOVALUE,
 asn1_NOVALUE}}}}]}]}}},
 {{deviceName,"gateway_tb"},
 {1,
 {ok,[{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{serviceChangeReply,
 {'ServiceChangeReply',
 [{megaco_term_id,false,["root"]}],
 {serviceChangeResParms,
 {'ServiceChangeResParm',
 {deviceName,"controller"},
 asn1_NOVALUE,asn1_NOVALUE,asn1_NOVALUE,
 asn1_NOVALUE}}}}]}]}}},
 {{deviceName,"gateway_ut"},
 {1,
 {ok,[{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{serviceChangeReply,
 {'ServiceChangeReply',
 [{megaco_term_id,false,["root"]}],
 {serviceChangeResParms,
 {'ServiceChangeResParm',
 {deviceName,"controller"},
 asn1_NOVALUE,asn1_NOVALUE,asn1_NOVALUE,
 asn1_NOVALUE}}}}]}]}}},
 {{deviceName,"gateway_ub"},
 {1,
 {ok,[{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{serviceChangeReply,
 {'ServiceChangeReply',
 [{megaco_term_id,false,["root"]}],
 {serviceChangeResParms,
 {'ServiceChangeResParm',
 {deviceName,"controller"},
 asn1_NOVALUE,asn1_NOVALUE,
 asn1_NOVALUE,...}}}}]}]}}}]

The Megaco adopted viewer looks like this, when we have clicked on the [gateway_tt] actor name in order to only
display the events regarding that actor:

1.4 Advanced examples

26 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

Figure 4.3: The viewer adopted for Megaco

1.4 Advanced examples

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 27

A pretty printed Megaco message looks like this:

Figure 4.4: A textual Megaco message

And the corresponding internal form for the same Megaco message looks like this:

1.4 Advanced examples

28 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

Figure 4.5: The internal form of a Megaco message

1.4 Advanced examples

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 29

2 Reference Manual

The Event Tracer (ET) uses the built-in trace mechanism in Erlang and provides tools for collection and graphical
viewing of trace data.

et

30 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

et
Erlang module

Interface module for the Event Trace (ET) application

Exports

trace_me(DetailLevel, From, To, Label, Contents) -> hopefully_traced
Types:

DetailLevel = integer(X) when X =< 0, X >= 100

From = actor()

To = actor()

Label = atom() | string() | term()

Contents = [{Key, Value}] | term()

actor() = term()

A function that is intended to be traced.

This function is intended to be invoked at strategic places in user applications in order to enable simplified tracing.
The functions are extremely light weight as they do nothing besides returning an atom. The functions are designed for
being traced. The global tracing mechanism in et_collector defaults to set its trace pattern to these functions.

The label is intended to provide a brief summary of the event. It is preferred to use an atom but a string would also do.

The contents can be any term but in order to simplify post processing of the traced events, a plain list of {Key, Value}
tuples is preferred.

Some events, such as messages, are directed from some actor to another. Other events (termed actions) may be
undirected and only have one actor.

trace_me(DetailLevel, FromTo, Label, Contents) -> hopefully_traced
Invokes et:trace_me/5 with both From and To set to FromTo.

phone_home(DetailLevel, FromTo, Label, Contents) -> hopefully_traced
phone_home(DetailLevel, From, To, Label, Contents) -> hopefully_traced
These functions sends a signal to the outer space and the caller hopes that someone is listening. In other words, they
invoke et:trace_me/4 and et:trace_me/5 respectively.

report_event(DetailLevel, FromTo, Label, Contents) -> hopefully_traced
report_event(DetailLevel, From, To, Label, Contents) -> hopefully_traced
Deprecated functions which for the time being are kept for backwards compatibility. Invokes et:trace_me/4 and
et:trace_me/5 respectively.

et_collector

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 31

et_collector
Erlang module

Interface module for the Event Trace (ET) application

Exports

start_link(Options) -> {ok, CollectorPid} | {error, Reason}
Types:

Options = [option()]

option() = {parent_pid, pid()} | {event_order, event_order()} |
{dict_insert, {filter, collector}, collector_fun()} | {dict_insert,
{filter, event_filter_name()}, event_filter_fun()} | {dict_insert,
{subscriber, pid()}, dict_val()} | {dict_insert, dict_key(), dict_val()}
| {dict_delete, dict_key()} | {trace_client, trace_client()} |
{trace_global, boolean()} | {trace_pattern, trace_pattern()} |
{trace_port, integer()} | {trace_max_queue, integer()}

event_order() = trace_ts | event_ts

trace_pattern() = {report_module(), extended_dbg_match_spec()} | undefined

report_module() = atom() | undefined

extended_dbg_match_spec() = detail_level() | dbg_match_spec()

detail_level() = min | max | integer(X) when X =< 0, X >= 100

trace_client() = {event_file, file_name()} | {dbg_trace_type(),
dbg_trace_parameters()}

file_name() = string()

collector_fun() = trace_filter_fun() | event_filter_fun()

trace_filter_fun() = fun(TraceData) -> false | true | {true, NewEvent}

event_filter_fun() = fun(Event) -> false | true | {true, NewEvent}

event_filter_name() = atom()

TraceData = erlang_trace_data()

Event = NewEvent = record(event)

dict_key() = term()

dict_val() = term()

CollectorPid = pid()

Reason = term()

Start a collector process.

The collector collects trace events and keeps them ordered by their timestamp. The timestamp may either reflect the
time when the actual trace data was generated (trace_ts) or when the trace data was transformed into an event record
(event_ts). If the time stamp is missing in the trace data (missing timestamp option to erlang:trace/4) the trace_ts will
be set to the event_ts.

Events are reported to the collector directly with the report function or indirectly via one or more trace clients. All
reported events are first filtered thru the collector filter before they are stored by the collector. By replacing the default
collector filter with a customized dito it is possible to allow any trace data as input. The collector filter is a dictionary

et_collector

32 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

entry with the predefined key {filter, collector} and the value is a fun of arity 1. See et_selector:make_event/1 for
interface details, such as which erlang:trace/1 tuples that are accepted.

The collector has a built-in dictionary service. Any term may be stored as value in the dictionary and bound to a unique
key. When new values are inserted with an existing key, the new values will overwrite the existing ones. Processes
may subscribe on dictionary updates by using {subscriber, pid()} as dictionary key. All dictionary updates will be
propagated to the subscriber processes matching the pattern {{subscriber, '_'}, '_'} where the first '_' is interpreted
as a pid().

In global trace mode, the collector will automatically start tracing on all connected Erlang nodes. When a node
connects, a port tracer will be started on that node and a corresponding trace client on the collector node.

Default values:

• parent_pid - self().

• event_order - trace_ts.

• trace_global - false.

• trace_pattern - undefined.

• trace_port - 4711.

• trace_max_queue - 50.

stop(CollectorPid) -> ok
Types:

CollectorPid = pid()

Stop a collector process.

save_event_file(CollectorPid, FileName, Options) -> ok | {error, Reason}
Types:

CollectorPid = pid()

FileName = string()

Options = [option()]

Reason = term()

option() = event_option() | file_option() | table_option()

event_option() = existing

file_option() = write | append

table_option() = keep | clear

Save the events to a file.

By default the currently stored events (existing) are written to a brand new file (write) and the events are kept (keep)
after they have been written to the file.

Instead of keeping the events after writing them to file, it is possible to remove all stored events after they have
successfully written to file (clear).

The options defaults to existing, write and keep.

load_event_file(CollectorPid, FileName) -> {ok, BadBytes} | exit(Reason)
Types:

CollectorPid = pid()

FileName = string()

et_collector

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 33

BadBytes = integer(X) where X >= 0

Reason = term()

Load the event table from a file.

report(Handle, TraceOrEvent) -> {ok, Continuation} | exit(Reason)
report_event(Handle, DetailLevel, FromTo, Label, Contents) -> {ok,
Continuation} | exit(Reason)
report_event(Handle, DetailLevel, From, To, Label, Contents) -> {ok,
Continuation} | exit(Reason)
Types:

Handle = Initial | Continuation

Initial = collector_pid()

collector_pid() = pid()

Continuation = record(table_handle)

TraceOrEvent = record(event) | dbg_trace_tuple() | end_of_trace

Reason = term()

DetailLevel = integer(X) when X =< 0, X >= 100

From = actor()

To = actor()

FromTo = actor()

Label = atom() | string() | term()

Contents = [{Key, Value}] | term()

actor() = term()

Report an event to the collector.

All events are filtered thru the collector filter, which optionally may transform or discard the event. The first call should
use the pid of the collector process as report handle, while subsequent calls should use the table handle.

make_key(Type, Stuff) -> Key
Types:

Type = record(table_handle) | trace_ts | event_ts

Stuff = record(event) | Key

Key = record(event_ts) | record(trace_ts)

Make a key out of an event record or an old key.

get_table_handle(CollectorPid) -> Handle
Types:

CollectorPid = pid()

Handle = record(table_handle)

Return a table handle.

get_global_pid() -> CollectorPid | exit(Reason)
Types:

CollectorPid = pid()

et_collector

34 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

Reason = term()

Return a the identity of the globally registered collector if there is any.

change_pattern(CollectorPid, RawPattern) -> {old_pattern, TracePattern}
Types:

CollectorPid = pid()

RawPattern = {report_module(), extended_dbg_match_spec()}

report_module() = atom() | undefined

extended_dbg_match_spec() = detail_level() | dbg_match_spec()

RawPattern = detail_level()

detail_level() = min | max | integer(X) when X =< 0, X >= 100

TracePattern = {report_module(), dbg_match_spec_match_spec()}

Change active trace pattern globally on all trace nodes.

dict_insert(CollectorPid, {filter, collector}, FilterFun) -> ok
dict_insert(CollectorPid, {subscriber, SubscriberPid}, Void) -> ok
dict_insert(CollectorPid, Key, Val) -> ok
Types:

CollectorPid = pid()

FilterFun = filter_fun()

SubscriberPid = pid()

Void = term()

Key = term()

Val = term()

Insert a dictionary entry and send a {et, {dict_insert, Key, Val}} tuple to all registered subscribers.

If the entry is a new subscriber, it will imply that the new subscriber process first will get one message for each already
stored dictionary entry, before it and all old subscribers will get this particular entry. The collector process links to
and then supervises the subscriber process. If the subscriber process dies it will imply that it gets unregistered as with
a normal dict_delete/2.

dict_lookup(CollectorPid, Key) -> [Val]
Types:

CollectorPid = pid()

FilterFun = filter_fun()

CollectorPid = pid()

Key = term()

Val = term()

Lookup a dictionary entry and return zero or one value.

dict_delete(CollectorPid, Key) -> ok
Types:

CollectorPid = pid()

SubscriberPid = pid()

et_collector

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 35

Key = {subscriber, SubscriberPid} | term()

Delete a dictionary entry and send a {et, {dict_delete, Key}} tuple to all registered subscribers.

If the deleted entry is a registered subscriber, it will imply that the subscriber process gets is unregistered as subscriber
as well as it gets it final message.

dict_match(CollectorPid, Pattern) -> [Match]
Types:

CollectorPid = pid()

Pattern = '_' | {key_pattern(), val_pattern()}

key_pattern() = ets_match_object_pattern()

val_pattern() = ets_match_object_pattern()

Match = {key(), val()}

key() = term()

val() = term()

Match some dictionary entries

multicast(_CollectorPid, Msg) -> ok
Types:

CollectorPid = pid()

CollectorPid = pid()

Msg = term()

Sends a message to all registered subscribers.

start_trace_client(CollectorPid, Type, Parameters) -> file_loaded |
{trace_client_pid, pid()} | exit(Reason)
Types:

Type = dbg_trace_client_type()

Parameters = dbg_trace_client_parameters()

Pid = dbg_trace_client_pid()

Load raw Erlang trace from a file, port or process.

iterate(Handle, Prev, Limit) -> NewAcc
Short for iterate(Handle, Prev, Limit, undefined, Prev) -> NewAcc

iterate(Handle, Prev, Limit, Fun, Acc) -> NewAcc
Types:

Handle = collector_pid() | table_handle()

Prev = first | last | event_key()

Limit = done() | forward() | backward()

collector_pid() = pid()

table_handle() = record(table_handle)

event_key() = record(event) | record(event_ts) | record(trace_ts)

done() = 0

et_collector

36 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

forward() = infinity | integer(X) where X > 0

backward() = '-infinity' | integer(X) where X < 0

Fun = fun(Event, Acc) -> NewAcc

Acc = NewAcc = term()

Iterate over the currently stored events.

Iterates over the currently stored events and applies a function for each event. The iteration may be performed forwards
or backwards and may be limited to a maximum number of events (abs(Limit)).

clear_table(Handle) -> ok
Types:

Handle = collector_pid() | table_handle()

collector_pid() = pid()

table_handle() = record(table_handle)

Clear the event table.

et_selector

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 37

et_selector
Erlang module

Exports

make_pattern(RawPattern) -> TracePattern
Types:

RawPattern = detail_level()

TracePattern = erlang_trace_pattern_match_spec()

detail_level() = min | max | integer(X) when X >= 0, X =< 100

Makes a trace pattern suitable to feed change_pattern/1

Min detail level deactivates tracing of calls to et:trace_me/4,5

Max detail level activates tracing of all calls to et:trace_me/4,5

integer(X) detail level activates tracing of all calls to et:trace_me/4,5 whose detail level argument is lesser than
X.

See also erlang:trace_pattern/2 for more info about its match_spec()

change_pattern(Pattern) -> ok
Types:

Pattern = detail_level() | empty_match_spec() |
erlang_trace_pattern_match_spec()

detail_level() = min | max | integer(X) when X >= 0, X =< 100

empty_match_spec() = []

Activates/deactivates tracing by changing the current trace pattern.

min detail level deactivates tracing of calls to et:trace_me/4,5

max detail level activates tracing of all calls to et:trace_me/4,5

integer(X) detail level activates tracing of all calls to et:trace_me/4,5 whose detail level argument is lesser
than X.

An empty match spec deactivates tracing of calls to et:trace_me/4,5

Other match specs activates tracing of calls to et:trace_me/4,5 accordingly with
erlang:trace_pattern/2.

parse_event(Mod, ValidTraceData) -> false | true | {true, Event}
Types:

Mod = module_name() | undefined

module_name() = atom()

ValidTraceData = erlang_trace_data() | record(event)

erlang_trace_data() = {trace, Pid, Label, Info} | {trace, Pid, Label,
Info, Extra} | {trace_ts, Pid, Label, Info, ReportedTS} | {trace_ts, Pid,
Label, Info, Extra, ReportedTS} | {seq_trace, Label, Info} | {seq_trace,
Label, Info, ReportedTS} | {drop, NumberOfDroppedItems}

et_selector

38 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

Transforms trace data and makes an event record out of it.

See erlang:trace/3 for more info about the semantics of the trace data.

An event record consists of the following fields:

detail_level

Noise has a high level as opposed to essentials.

trace_ts

Time when the trace was generated. Same as event_ts if omitted in trace data.

event_ts

Time when the event record was created.

from

From actor, such as sender of a message.

to

To actor, such as receiver of message.

label

Label intended to provide a brief event summary.

contents

All nitty gritty details of the event.

See et:trace_me/4and et:trace_me/5 for details.

Returns:

{true, Event}

where Event is an #event{} record representing the trace data

true

means that the trace data already is an event record and that it is valid as it is. No transformation is needed.

false

means that the trace data is uninteresting and should be dropped

et_viewer

Ericsson AB. All Rights Reserved.: Event Tracer (ET) | 39

et_viewer
Erlang module

Exports

file(FileName) -> {ok, ViewerPid} | {error, Reason}
Types:

FileName() = string()

ViewerPid = pid()

Reason = term()

Start a new event viewer and a corresponding collector and load them with trace events from a trace file.

start() -> ok
Simplified start of a sequence chart viewer with global tracing activated.

Convenient to be used from the command line (erl -s et_viewer).

start(Options) -> ok
Start of a sequence chart viewer without linking to the parent process.

start_link(Options) -> {ok, ViewerPid} | {error, Reason}
Types:

Options = [option() | collector_option()]

option() = {parent_pid, extended_pid()} | {title, term()} | {detail_level,
detail_level()} | {is_suspended, boolean()} | {scale, integer()}
| {width, integer()} | {height, integer()} | {collector_pid,
extended_pid()} | {event_order, event_order()} | {active_filter,
atom()} | {max_actors, extended_integer()} | {trace_pattern,
et_collector_trace_pattern()} | {trace_port, et_collector_trace_port()}
| {trace_global, et_collector_trace_global()} | {trace_client,
et_collector_trace_client()} | {dict_insert, {filter, filter_name()},
event_filter_fun()} | {dict_insert, et_collector_dict_key(),
et_collector_dict_val()} | {dict_delete, {filter, filter_name()}}
| {dict_delete, et_collector_dict_key()} | {actors, actors()} |
{first_event, first_key()} | {hide_unknown, boolean()} | {hide_actions,
boolean()} | {display_mode, display_mode()}

extended_pid() = pid() | undefined

detail_level() = min | max | integer(X) when X >=0, X =< 100

event_order() = trace_ts | event_ts

extended_integer() = integer() | infinity

display_mode() = all | {search_actors, direction(), first_key(), actors()}

direction() = forward | reverse

first_key() = event_key()

actors() = [term()]

et_viewer

40 | Ericsson AB. All Rights Reserved.: Event Tracer (ET)

filter_name() = atom()

filter_fun() = fun(Event) -> false | true | {true, NewEvent}

Event = NewEvent = record(event)

ViewerPid = pid()

Reason = term()

Start a sequence chart viewer for trace events (messages/actions)

A filter_fun() takes an event record as sole argument and returns false | true | {true, NewEvent}.

If the collector_pid is undefined a new et_collector will be started with the following
parameter settings: parent_pid, event_order, trace_global, trace_pattern, trace_port,
trace_max_queue, trace_client, dict_insert and dict_delete. The new et_viewer will register
itself as an et_collector subscriber.

Default values:

• parent_pid - self().

• title - "et_viewer".

• detail_level - max.

• is_suspended - false.

• scale - 2.

• width - 800.

• height - 600.

• collector_pid - undefined.

• event_order - trace_ts.

• active_filter - collector.

• max_actors - 5.

• actors - ["UNKNOWN"].

• first_event - first.

• hide_unknown - false.

• hide_actions - false.

• display_mode - all.

get_collector_pid(ViewerPid) -> CollectorPid
Types:

ViewerPid = pid()

CollectorPid = pid()

Returns the identifier of the collector process.

stop(ViewerPid) -> ok
Types:

ViewerPid = pid()

Stops a viewer process.

	Event Tracer (ET)
	Event Tracer (ET) Users Guide
	Introduction
	Scope and Purpose
	Prerequisites
	About This Manual
	Where to Find More Information

	Tutorial
	Visualizing Message Sequence Charts
	Four Modules
	The Event Tracer Interface
	The Collector and Viewer
	The Selector
	How To Put It Together

	Description
	Overview
	Filters and dictionary
	Trace clients
	Global tracing
	Viewer window
	Configuration
	Contents viewer window

	Advanced examples
	A simulated Mnesia transaction
	Some convenient functions used in the Mnesia transaction
 example
	Erlang trace of a real Mnesia transaction
	Erlang trace of Megaco startup

	Reference Manual
	et
	trace_me/5
	trace_me/4
	phone_home/4
	phone_home/5
	report_event/4
	report_event/5

	et_collector
	start_link/1
	stop/1
	save_event_file/3
	load_event_file/2
	report/2
	report_event/5
	report_event/6
	make_key/2
	get_table_handle/1
	get_global_pid/0
	change_pattern/2
	dict_insert/3
	dict_insert/3
	dict_insert/3
	dict_lookup/2
	dict_delete/2
	dict_match/2
	multicast/2
	start_trace_client/3
	iterate/3
	iterate/5
	clear_table/1

	et_selector
	make_pattern/1
	change_pattern/1
	parse_event/2

	et_viewer
	file/1
	start/0
	start/1
	start_link/1
	get_collector_pid/1
	stop/1

