
crypto
Copyright © 1999-2015 Ericsson AB. All Rights Reserved.

crypto 3.5
March 31, 2015

Copyright © 1999-2015 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 31, 2015

Ericsson AB. All Rights Reserved.: crypto | 1

1.1 Licenses

2 | Ericsson AB. All Rights Reserved.: crypto

1 Crypto User's Guide

The Crypto application provides functions for computation of message digests, and functions for encryption and
decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

1.1 Licenses
This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1.1 OpenSSL License

/* ==
 * Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 * software must display the following acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 * endorse or promote products derived from this software without
 * prior written permission. For written permission, please contact
 * openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 * nor may "OpenSSL" appear in their names without prior written
 * permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 * acknowledgment:
 * "This product includes software developed by the OpenSSL Project
 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY

1.1 Licenses

Ericsson AB. All Rights Reserved.: crypto | 3

 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ==
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com). This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */

1.1.2 SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to. The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * "This product includes cryptographic software written by
 * Eric Young (eay@cryptsoft.com)"
 * The word 'cryptographic' can be left out if the rouines from the library
 * being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 * the apps directory (application code) you must include an acknowledgement:
 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

1.1 Licenses

4 | Ericsson AB. All Rights Reserved.: crypto

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

1.1 Licenses

Ericsson AB. All Rights Reserved.: crypto | 5

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption
functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

crypto

6 | Ericsson AB. All Rights Reserved.: crypto

crypto
Application

The purpose of the Crypto application is to provide an Erlang API to cryptographic functions, see crypto(3). Note that
the API is on a fairly low level and there are some corresponding API functions available in public_key(3), on a higher
abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES
The current crypto implementation uses nifs to interface OpenSSLs crypto library and requires OpenSSL package
version 0.9.8 or higher.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

SEE ALSO
application(3)

href

crypto

Ericsson AB. All Rights Reserved.: crypto | 7

crypto
Erlang module

This module provides a set of cryptographic functions.

• Hash functions - Secure Hash Standard, The MD5 Message Digest Algorithm (RFC 1321) and The MD4
Message Digest Algorithm (RFC 1320)

• Hmac functions - Keyed-Hashing for Message Authentication (RFC 2104)

• Block ciphers - DES and AES in Block Cipher Modes - ECB, CBC, CFB, OFB and CTR

• RSA encryption RFC 1321

• Digital signatures Digital Signature Standard (DSS) and Elliptic Curve Digital Signature Algorithm
(ECDSA)

• Secure Remote Password Protocol (SRP - RFC 2945)

DATA TYPES

key_value() = integer() | binary()

Always binary() when used as return value

rsa_public() = [key_value()] = [E, N]

Where E is the public exponent and N is public modulus.

rsa_private() = [key_value()] = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

Where E is the public exponent, N is public modulus and D is the private exponent.The longer key format contains
redundant information that will make the calculation faster. P1,P2 are first and second prime factors. E1,E2 are first
and second exponents. C is the CRT coefficient. Terminology is taken from RFC 3447.

dss_public() = [key_value()] = [P, Q, G, Y]

Where P, Q and G are the dss parameters and Y is the public key.

dss_private() = [key_value()] = [P, Q, G, X]

Where P, Q and G are the dss parameters and X is the private key.

srp_public() = key_value()

Where is A or B from SRP design

srp_private() = key_value()

Where is a or b from SRP design

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

crypto

8 | Ericsson AB. All Rights Reserved.: crypto

Where Verifier is v, Generator is g and Prime is N, DerivedKey is X, and Scrambler is u (optional will be generated
if not provided) from SRP design Version = '3' | '6' | '6a'

dh_public() = key_value()

dh_private() = key_value()

dh_params() = [key_value()] = [P, G]

ecdh_public() = key_value()

ecdh_private() = key_value()

ecdh_params() = ec_named_curve() | ec_explicit_curve()

ec_explicit_curve() =
 {ec_field(), Prime :: key_value(), Point :: key_value(), Order :: integer(), CoFactor :: none | integer()}

ec_field() = {prime_field, Prime :: integer()} |
 {characteristic_two_field, M :: integer(), Basis :: ec_basis()}

ec_basis() = {tpbasis, K :: non_neg_integer()} |
 {ppbasis, K1 :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()} |
 onbasis

ec_named_curve() ->
 sect571r1| sect571k1| sect409r1| sect409k1| secp521r1| secp384r1| secp224r1| secp224k1|
 secp192k1| secp160r2| secp128r2| secp128r1| sect233r1| sect233k1| sect193r2| sect193r1|
 sect131r2| sect131r1| sect283r1| sect283k1| sect163r2| secp256k1| secp160k1| secp160r1|
 secp112r2| secp112r1| sect113r2| sect113r1| sect239k1| sect163r1| sect163k1| secp256r1|
 secp192r1|
 brainpoolP160r1| brainpoolP160t1| brainpoolP192r1| brainpoolP192t1| brainpoolP224r1|
 brainpoolP224t1| brainpoolP256r1| brainpoolP256t1| brainpoolP320r1| brainpoolP320t1|
 brainpoolP384r1| brainpoolP384t1| brainpoolP512r1| brainpoolP512t1

Note that the sect curves are GF2m (characteristic two) curves and are only supported if the underlying OpenSSL has
support for them. See also crypto:supports/0

stream_cipher() = rc4 | aes_ctr

block_cipher() = aes_cbc128 | aes_cfb8 | aes_cfb128 | aes_ige256 | blowfish_cbc |
 blowfish_cfb64 | des_cbc | des_cfb | des3_cbc | des3_cbf
 | des_ede3 | rc2_cbc

href

crypto

Ericsson AB. All Rights Reserved.: crypto | 9

stream_key() = aes_key() | rc4_key()

block_key() = aes_key() | blowfish_key() | des_key()| des3_key()

aes_key() = iodata()

Key length is 128, 192 or 256 bits

rc4_key() = iodata()

Variable key length from 8 bits up to 2048 bits (usually between 40 and 256)

blowfish_key() = iodata()

Variable key length from 32 bits up to 448 bits

des_key() = iodata()

Key length is 64 bits (in CBC mode only 8 bits are used)

des3_key() = [binary(), binary(), binary()]

Each key part is 64 bits (in CBC mode only 8 bits are used)

digest_type() = md5 | sha | sha224 | sha256 | sha384 | sha512

 hash_algorithms() = md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512

md4 is also supported for hash_init/1 and hash/2. Note that both md4 and md5 are recommended only for compatibility
with existing applications.

 cipher_algorithms() = des_cbc | des_cfb | des3_cbc | des3_cbf | des_ede3 |
 blowfish_cbc | blowfish_cfb64 | aes_cbc128 | aes_cfb8 | aes_cfb128| aes_cbc256 | aes_ige256 | rc2_cbc | aes_ctr| rc4

 public_key_algorithms() = rsa |dss | ecdsa | dh | ecdh | ec_gf2m

Note that ec_gf2m is not strictly a public key algorithm, but a restriction on what curves are supported with ecdsa
and ecdh.

Exports

block_encrypt(Type, Key, Ivec, PlainText) -> CipherText
Types:

Type = block_cipher()

Key = block_key()

crypto

10 | Ericsson AB. All Rights Reserved.: crypto

PlainText = iodata()

IVec = CipherText = binary()

Encrypt PlainTextaccording to Type block cipher. IVec is an arbitrary initializing vector.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

block_decrypt(Type, Key, Ivec, CipherText) -> PlainText
Types:

Type = block_cipher()

Key = block_key()

PlainText = iodata()

IVec = CipherText = binary()

Decrypt CipherTextaccording to Type block cipher. IVec is an arbitrary initializing vector.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

bytes_to_integer(Bin) -> Integer
Types:

Bin = binary() - as returned by crypto functions

Integer = integer()

Convert binary representation, of an integer, to an Erlang integer.

compute_key(Type, OthersPublicKey, MyKey, Params) -> SharedSecret
Types:

Type = dh | ecdh | srp

OthersPublicKey = dh_public() | ecdh_public() | srp_public()

MyKey = dh_private() | ecdh_private() | {srp_public(),srp_private()}

Params = dh_params() | ecdh_params() | SrpUserParams | SrpHostParams

SrpUserParams = {user, [DerivedKey::binary(), Prime::binary(),
Generator::binary(), Version::atom() | [Scrambler:binary()]]}

SrpHostParams = {host, [Verifier::binary(), Prime::binary(),
Version::atom() | [Scrambler::binary]]}

SharedSecret = binary()

Computes the shared secret from the private key and the other party's public key. See also public_key:compute_key/2

exor(Data1, Data2) -> Result
Types:

Data1, Data2 = iodata()

Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.

generate_key(Type, Params) -> {PublicKey, PrivKeyOut}
generate_key(Type, Params, PrivKeyIn) -> {PublicKey, PrivKeyOut}
Types:

Type = dh | ecdh | srp

crypto

Ericsson AB. All Rights Reserved.: crypto | 11

Params = dh_params() | ecdh_params() | SrpUserParams | SrpHostParams

SrpUserParams = {user, [Generator::binary(), Prime::binary(),
Version::atom()]}

SrpHostParams = {host, [Verifier::binary(), Generator::binary(),
Prime::binary(), Version::atom()]}

PublicKey = dh_public() | ecdh_public() | srp_public()

PrivKeyIn = undefined | dh_private() | srp_private()

PrivKeyOut = dh_private() | ecdh_private() | srp_private()

Generates public keys of type Type. See also public_key:generate_key/1

hash(Type, Data) -> Digest
Types:

Type = md4 | hash_algorithms()

Data = iodata()

Digest = binary()

Computes a message digest of type Type from Data.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

hash_init(Type) -> Context
Types:

Type = md4 | hash_algorithms()

Initializes the context for streaming hash operations. Type determines which digest to use. The returned context should
be used as argument to hash_update.

May throw exception notsup in case the chosen Type is not supported by the underlying OpenSSL implementation.

hash_update(Context, Data) -> NewContext
Types:

Data = iodata()

Updates the digest represented by Context using the given Data. Context must have been generated using
hash_init or a previous call to this function. Data can be any length. NewContext must be passed into the next
call to hash_update or hash_final.

hash_final(Context) -> Digest
Types:

Digest = binary()

Finalizes the hash operation referenced by Context returned from a previous call to hash_update. The size of
Digest is determined by the type of hash function used to generate it.

hmac(Type, Key, Data) -> Mac
hmac(Type, Key, Data, MacLength) -> Mac
Types:

Type = hash_algorithms() - except ripemd160

Key = iodata()

Data = iodata()

crypto

12 | Ericsson AB. All Rights Reserved.: crypto

MacLength = integer()

Mac = binary()

Computes a HMAC of type Type from Data using Key as the authentication key.

MacLength will limit the size of the resultant Mac.

hmac_init(Type, Key) -> Context
Types:

Type = hash_algorithms() - except ripemd160

Key = iodata()

Context = binary()

Initializes the context for streaming HMAC operations. Type determines which hash function to use in the HMAC
operation. Key is the authentication key. The key can be any length.

hmac_update(Context, Data) -> NewContext
Types:

Context = NewContext = binary()

Data = iodata()

Updates the HMAC represented by Context using the given Data. Context must have been generated using an
HMAC init function (such as hmac_init). Data can be any length. NewContext must be passed into the next call
to hmac_update or to one of the functions hmac_final and hmac_final_n

Warning:
Do not use a Context as argument in more than one call to hmac_update or hmac_final. The semantics of
reusing old contexts in any way is undefined and could even crash the VM in earlier releases. The reason for this
limitation is a lack of support in the underlying OpenSSL API.

hmac_final(Context) -> Mac
Types:

Context = Mac = binary()

Finalizes the HMAC operation referenced by Context. The size of the resultant MAC is determined by the type of
hash function used to generate it.

hmac_final_n(Context, HashLen) -> Mac
Types:

Context = Mac = binary()

HashLen = non_neg_integer()

Finalizes the HMAC operation referenced by Context. HashLen must be greater than zero. Mac will be a binary
with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the
underlying hash, the returned hash will have fewer than HashLen bytes.

info_lib() -> [{Name,VerNum,VerStr}]
Types:

crypto

Ericsson AB. All Rights Reserved.: crypto | 13

Name = binary()

VerNum = integer()

VerStr = binary()

Provides the name and version of the libraries used by crypto.

Name is the name of the library. VerNum is the numeric version according to the library's own versioning scheme.
VerStr contains a text variant of the version.

> info_lib().
[{<<"OpenSSL">>,9469983,<<"OpenSSL 0.9.8a 11 Oct 2005">>}]

Note:
From OTP R16 the numeric version represents the version of the OpenSSL header files (openssl/
opensslv.h) used when crypto was compiled. The text variant represents the OpenSSL library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.

mod_pow(N, P, M) -> Result
Types:

N, P, M = binary() | integer()

Result = binary() | error

Computes the function N^P mod M.

next_iv(Type, Data) -> NextIVec
next_iv(Type, Data, IVec) -> NextIVec
Types:

Type = des_cbc | des3_cbc | aes_cbc | des_cfb

Data = iodata()

IVec = NextIVec = binary()

Returns the initialization vector to be used in the next iteration of encrypt/decrypt of type Type. Data is the encrypted
data from the previous iteration step. The IVec argument is only needed for des_cfb as the vector used in the
previous iteration step.

private_decrypt(Type, CipherText, PrivateKey, Padding) -> PlainText
Types:

Type = rsa

CipherText = binary()

PrivateKey = rsa_private()

Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding

PlainText = binary()

Decrypts the CipherText, encrypted with public_encrypt/4 (or equivalent function) using the PrivateKey, and
returns the plaintext (message digest). This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_private/[2,3]

crypto

14 | Ericsson AB. All Rights Reserved.: crypto

private_encrypt(Type, PlainText, PrivateKey, Padding) -> CipherText
Types:

Type = rsa

PlainText = binary()

The size of the PlainText must be less than byte_size(N)-11 if rsa_pkcs1_padding is used, and
byte_size(N) if rsa_no_padding is used, where N is public modulus of the RSA key.

PrivateKey = rsa_private()

Padding = rsa_pkcs1_padding | rsa_no_padding

CipherText = binary()

Encrypts the PlainText using the PrivateKey and returns the ciphertext. This is a low level signature operation
used for instance by older versions of the SSL protocol. See also public_key:encrypt_private/[2,3]

public_decrypt(Type, CipherText, PublicKey, Padding) -> PlainText
Types:

Type = rsa

CipherText = binary()

PublicKey = rsa_public()

Padding = rsa_pkcs1_padding | rsa_no_padding

PlainText = binary()

Decrypts the CipherText, encrypted with private_encrypt/4(or equivalent function) using the PrivateKey, and
returns the plaintext (message digest). This is a low level signature verification operation used for instance by older
versions of the SSL protocol. See also public_key:decrypt_public/[2,3]

public_encrypt(Type, PlainText, PublicKey, Padding) -> CipherText
Types:

Type = rsa

PlainText = binary()

The size of the PlainText must be less than byte_size(N)-11 if rsa_pkcs1_padding is used, and
byte_size(N) if rsa_no_padding is used, where N is public modulus of the RSA key.

PublicKey = rsa_public()

Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding

CipherText = binary()

Encrypts the PlainText (message digest) using the PublicKey and returns the CipherText. This is a low level
signature operation used for instance by older versions of the SSL protocol. See also public_key:encrypt_public/[2,3]

rand_bytes(N) -> binary()
Types:

N = integer()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses the crypto library pseudo-
random number generator.

rand_seed(Seed) -> ok
Types:

Seed = binary()

crypto

Ericsson AB. All Rights Reserved.: crypto | 15

Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the
system you are running on does not have enough "randomness" built in. Normally this is when stong_rand_bytes/1
returns low_entropy

rand_uniform(Lo, Hi) -> N
Types:

Lo, Hi, N = integer()

Generate a random number N, Lo =< N < Hi. Uses the crypto library pseudo-random number generator.
Hi must be larger than Lo.

sign(Algorithm, DigestType, Msg, Key) -> binary()
Types:

Algorithm = rsa | dss | ecdsa

Msg = binary() | {digest,binary()}

The msg is either the binary "cleartext" data to be signed or it is the hashed value of "cleartext" i.e. the digest
(plaintext).

DigestType = digest_type()

Key = rsa_private() | dss_private() | [ecdh_private(),ecdh_params()]

Creates a digital signature.

Algorithm dss can only be used together with digest type sha.

See also public_key:sign/3

start() -> ok
Equivalent to application:start(crypto).

stop() -> ok
Equivalent to application:stop(crypto).

strong_rand_bytes(N) -> binary()
Types:

N = integer()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng
seeded and periodically mixed with operating system provided entropy. By default this is the RAND_bytes method
from OpenSSL.

May throw exception low_entropy in case the random generator failed due to lack of secure "randomness".

stream_init(Type, Key) -> State
Types:

Type = rc4

State = opaque()

Key = iodata()

Initializes the state for use in RC4 stream encryption stream_encrypt and stream_decrypt

crypto

16 | Ericsson AB. All Rights Reserved.: crypto

stream_init(Type, Key, IVec) -> State
Types:

Type = aes_ctr

State = opaque()

Key = iodata()

IVec = binary()

Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key is the AES key and must
be either 128, 192, or 256 bts long. IVec is an arbitrary initializing vector of 128 bits (16 bytes). This state is for use
with stream_encrypt and stream_decrypt.

stream_encrypt(State, PlainText) -> { NewState, CipherText}
Types:

Text = iodata()

CipherText = binary()

Encrypts PlainText according to the stream cipher Type specified in stream_init/3. Text can be any number
of bytes. The initial State is created using stream_init. NewState must be passed into the next call to
stream_encrypt.

stream_decrypt(State, CipherText) -> { NewState, PlainText }
Types:

CipherText = iodata()

PlainText = binary()

Decrypts CipherText according to the stream cipher Type specified in stream_init/3. PlainText can be any
number of bytes. The initial State is created using stream_init. NewState must be passed into the next call to
stream_decrypt.

supports() -> AlgorithmList
Types:

AlgorithmList = [{hashs, [hash_algorithms()]}, {ciphers,
[cipher_algorithms()]}, {public_keys, [public_key_algorithms()]}

Can be used to determine which crypto algorithms that are supported by the underlying OpenSSL library

ec_curves() -> EllipticCurveList
Types:

EllipticCurveList = [ec_named_curve()]

Can be used to determine which named elliptic curves are supported.

ec_curve(NamedCurve) -> EllipticCurve
Types:

NamedCurve = ec_named_curve()

EllipticCurve = ec_explicit_curve()

Return the defining parameters of a elliptic curve.

crypto

Ericsson AB. All Rights Reserved.: crypto | 17

verify(Algorithm, DigestType, Msg, Signature, Key) -> boolean()
Types:

Algorithm = rsa | dss | ecdsa

Msg = binary() | {digest,binary()}

The msg is either the binary "cleartext" data or it is the hashed value of "cleartext" i.e. the digest (plaintext).

DigestType = digest_type()

Signature = binary()

Key = rsa_public() | dss_public() | [ecdh_public(),ecdh_params()]

Verifies a digital signature

Algorithm dss can only be used together with digest type sha.

See also public_key:verify/4

	crypto
	Crypto User's Guide
	Licenses
	OpenSSL License
	SSLeay License

	Reference Manual
	crypto
	crypto
	block_encrypt/4
	block_decrypt/4
	bytes_to_integer/1
	compute_key/4
	exor/2
	generate_key/2
	generate_key/3
	hash/2
	hash_init/1
	hash_update/2
	hash_final/1
	hmac/3
	hmac/4
	hmac_init/2
	hmac_update/2
	hmac_final/1
	hmac_final_n/2
	info_lib/0
	mod_pow/3
	next_iv/2
	next_iv/3
	private_decrypt/4
	private_encrypt/4
	public_decrypt/4
	public_encrypt/4
	rand_bytes/1
	rand_seed/1
	rand_uniform/2
	sign/4
	start/0
	stop/0
	strong_rand_bytes/1
	stream_init/2
	stream_init/3
	stream_encrypt/2
	stream_decrypt/2
	supports/0
	ec_curves/0
	ec_curve/1
	verify/5

