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Introduction The Module Structuring Problem

RefactorErl

Motivation

@ We have a complex Erlang software
e Consists of modules and functions

@ Over time, it has grown to be even more complex
e Maintenance became nearly impossible

@ The modules should be grouped into blocks that are small
enough to be maintained effectively
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Introduction The Module Structuring Problem

RefactorErl

RefactorErl, an Erlang Refactoring Tool

@ Refactoring is meaning-preserving source code transformation
@ RefactorErl is a tool that refactors Erlang source code
@ Refactoring needs static semantical analysis . ..

@ ...and module restructuring needs the same!
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Introduction The Module Structuring Problem

RefactorErl

RefactorErl, an Erlang Refactoring Tool

Refactoring is meaning-preserving source code transformation
RefactorErl is a tool that refactors Erlang source code

°
°
@ Refactoring needs static semantical analysis . ..
°

...and module restructuring needs the same!

Use the infrastructure of RefactorErl for module restructuring

Lovei, Hoch, Kolls, Nagy, Vig, Horpacsi, Kitlei, Kiraly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Module Restructuring Steps

@ Required information:

. e Function call graph
O Analysis o Record usage

@ Clustering @ Provided by RefactorErl
© Result selection

@ Splitting files

© Transformation
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Experiences

Module Restructuring Steps

@ Group related modules

o Call each others functions
o Use the same record

Q Analysis @ Many results with different
@ Clustering number of groups
© Result selection @ Many possible parametrization
@ Splitting files 2
© Transformation o
o >0 >0<—0
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Module Restructuring Steps

@ Analysis @ Measure which is the best

@ Clustering clustering

© Result selection @ Automatic selection from a big
@ Splitting files result set

© Transformation @ Uses the same analysis results
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Module Restructuring Steps

@ Library modules: many
incoming calls

o Filtered before clustering
o Used from more clusters

Q Analysis

@ Clustering

© Result selection
@ Splitting files

@ Transformation

e Parts used from only one cluster
are selected

@ The same is done for header files

>0 >0
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Module Restructuring Steps

@ The physical splitting of files is
a refactoring
o Needed refactoring steps:

Analysis X .
° y ) e Move function definition
© Clustering e Move record definition
© Result selection e Move macro definition

@ Splitting files

© Transformation
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Clustering

@ Modules are sorted into clusters

@ Hierarchical clustering algorithm
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@ The clustering algorithm can be parametrized with functions
e e.g. how to compute the “distance” of two clusters
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Fitness function

o Different clusterings are rated by a fitness function

@ We used the MQ fitness function: the more internal and less
external connection a clustering has, the better it is

oS W

Figure: Clustering with better Figure: Clustering with worse
fitness value fitness value

Lovei, Hoch, Kollé, Nagy, Vig, Horpacsi, Kitlei, Kirdly Refactoring Module Structure




Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Splitting

@ After a clustering is chosen, we have:

o Clusters of modules
e Stand-alone library modules

@ Goal: splitting the library modules into smaller parts

e Functions, records, and macros are assigned to clusters based
on exclusive usage
e Simple graph algorithm

>0 >0
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Results with Industrial Software

@ 188K lines of code, 6104 functions in 106 modules

@ Clustering takes about 2 minutes — lots of parameters have
been possible to try

@ The resulting 4 clusters needed small manual corrections

@ Module and header splitting, dead code elimination
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Figure: MQ fitness values for cluster numbers
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Summary

@ Developed a module restructuring method based on
RefactorErl

@ Successfully applied it on industrial software

Plans:
@ Tool support for applying the results

@ Clustering functions of one module
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