Refactoring Module Structure

L4szI6 Lovei Csaba Hoch Hanna Koll6 Tamas Nagy
Aniké Vig Ddniel Horpacsi Rébert Kitlei Roland Kiraly

Department of Programming Languages and Compilers
Eotvos Lorand University, Budapest

ACM SIGPLAN Erlang Workshop, 2008

Lovei, Hoch, Kolls, Nagy, Vig, Horpacsi, Kitlei, Kiraly Refactoring Module Structure

Outline

@ Introduction
@ The Module Structuring Problem
@ RefactorErl

© Module Restructuring
@ Restructuring Workflow
@ Implemented Steps
@ Experiences

Lovei, Hoch, Kollé, Nagy, Vig, Horpacsi, Kitlei, Kirdly Refactoring Module Structure

Introduction The Module Structuring Problem

RefactorErl

Motivation

@ We have a complex Erlang software
e Consists of modules and functions

@ Over time, it has grown to be even more complex
e Maintenance became nearly impossible

@ The modules should be grouped into blocks that are small
enough to be maintained effectively

L FERER

Lovei, Hoch, Kolls, Nagy, Vig, Horpdcsi, Kitlei, Kiraly Refactoring Module Structure

Introduction The Module Structuring Problem

RefactorErl

RefactorErl, an Erlang Refactoring Tool

@ Refactoring is meaning-preserving source code transformation
@ RefactorErl is a tool that refactors Erlang source code
@ Refactoring needs static semantical analysis . ..

@ ...and module restructuring needs the same!

Lovei, Hoch, Kolls, Nagy, Vig, Horpacsi, Kitlei, Kiraly Refactoring Module Structure

Introduction The Module Structuring Problem

RefactorErl

RefactorErl, an Erlang Refactoring Tool

Refactoring is meaning-preserving source code transformation
RefactorErl is a tool that refactors Erlang source code

°
°
@ Refactoring needs static semantical analysis . ..
°

...and module restructuring needs the same!

Use the infrastructure of RefactorErl for module restructuring

Lovei, Hoch, Kolls, Nagy, Vig, Horpacsi, Kitlei, Kiraly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Module Restructuring Steps

@ Required information:

. e Function call graph
O Analysis o Record usage

@ Clustering @ Provided by RefactorErl
© Result selection

@ Splitting files

© Transformation

Lovei, Hoch, Kollé, Nagy, Vig, Horpacsi, Kitlei, Kirdly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Module Restructuring Steps

@ Group related modules

o Call each others functions
o Use the same record

Q Analysis @ Many results with different
@ Clustering number of groups
© Result selection @ Many possible parametrization
@ Splitting files 2
© Transformation o
o >0 >0<—0

Lovei, Hoch, Kolls, Nagy, Vig, Horpacsi, Kitlei, Kiraly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Module Restructuring Steps

@ Analysis @ Measure which is the best

@ Clustering clustering

© Result selection @ Automatic selection from a big
@ Splitting files result set

© Transformation @ Uses the same analysis results

Lovei, Hoch, Kollé, Nagy, Vig, Horpacsi, Kitlei, Kirdly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Module Restructuring Steps

@ Library modules: many
incoming calls

o Filtered before clustering
o Used from more clusters

Q Analysis

@ Clustering

© Result selection
@ Splitting files

@ Transformation

e Parts used from only one cluster
are selected

@ The same is done for header files

>0 >0

Lovei, Hoch, Kolls, Nagy, Vig, Horpdcsi, Kitlei, Kiraly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Module Restructuring Steps

@ The physical splitting of files is
a refactoring
o Needed refactoring steps:

Analysis X .
° y) e Move function definition
© Clustering e Move record definition
© Result selection e Move macro definition

@ Splitting files

© Transformation

Lovei, Hoch, Kollé, Nagy, Vig, Horpacsi, Kitlei, Kirdly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Clustering

@ Modules are sorted into clusters

@ Hierarchical clustering algorithm

[]

/m3 1| m33| ms2| m3a| mas|| m3e| msz|| mss]

@ The clustering algorithm can be parametrized with functions
e e.g. how to compute the “distance” of two clusters

Lovei, Hoch, Kolls, Nagy, Vig, Horpdcsi, Kitlei, Kiraly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Fitness function

o Different clusterings are rated by a fitness function

@ We used the MQ fitness function: the more internal and less
external connection a clustering has, the better it is

oS W

Figure: Clustering with better Figure: Clustering with worse
fitness value fitness value

Lovei, Hoch, Kollé, Nagy, Vig, Horpacsi, Kitlei, Kirdly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Splitting

@ After a clustering is chosen, we have:

o Clusters of modules
e Stand-alone library modules

@ Goal: splitting the library modules into smaller parts

e Functions, records, and macros are assigned to clusters based
on exclusive usage
e Simple graph algorithm

>0 >0

Lovei, Hoch, Kolls, Nagy, Vig, Horpdcsi, Kitlei, Kiraly Refactoring Module Structure

Restructuring Workflow
Module Restructuring Implemented Steps
Experiences

Results with Industrial Software

@ 188K lines of code, 6104 functions in 106 modules

@ Clustering takes about 2 minutes — lots of parameters have
been possible to try

@ The resulting 4 clusters needed small manual corrections

@ Module and header splitting, dead code elimination

15

10

1 2 3 45 6 7 8 9

Figure: MQ fitness values for cluster numbers

Lovei, Hoch, Kollé, Nagy, Vig, Horpacsi, Kitlei, Kirdly Refactoring Module Structure

Summary

@ Developed a module restructuring method based on
RefactorErl

@ Successfully applied it on industrial software

Plans:
@ Tool support for applying the results

@ Clustering functions of one module

Lovei, Hoch, Kolls, Nagy, Vig, Horpdcsi, Kitlei, Kiraly Refactoring Module Structure

