Hello Everyone,<br><br>Quick update: I've recently convinced Springer to provide a discount. They are offering 20% discount, with the discount code embedded in the following link, good until 12/31: <a href="http://www.springer.com/computer/swe/book/978-1-4614-4462-6?token=DWw53HF6DtywP8y" target="_blank">http://www.springer.com/computer/swe/book/978-1-4614-4462-6?token=DWw53HF6DtywP8y</a><br>



<br>Also, if you have a University nearby, you can get a copy for just 25$, since Springer primarily deals with Universities and their Libraries, your library and SpringerLink might already have access to the eBook. If you have access to SpringerLink, you can alternatively order a "MyCopy", a soft-cover version (black & white, rather than color) for $24.95.<br>


<br>Best regards,<br>-Gene<br><br><div class="gmail_quote">On Sun, Nov 11, 2012 at 12:02 AM, Gene Sher <span dir="ltr"><<a href="mailto:corticalcomputer@gmail.com" target="_blank">corticalcomputer@gmail.com</a>></span> wrote:<br>


<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Hello Erlangers,<br><br>The eBook version of my the Handbook of Neuroevolution Through Erlang, is now in print: <a href="http://www.springer.com/computer/swe/book/978-1-4614-4462-6" target="_blank">http://www.springer.com/computer/swe/book/978-1-4614-4462-6</a><br>






The Hardcover book will be available within the next 2-3 weeks from Amazon, Barnes & Noble, and Springer directly.<br><br>Book overview:<br><ul><li>
                                        Provides a friendly step-by-step guide on the construction of 
Topology and Weight Evolving Artificial Neural Network systems from 
start to finish 
                                </li><li>
                                        Covers novel material for using Erlang in the construction of TWEANN systems 
                                </li><li>
                                        Explains why Neural Network based Computational Intelligence 
systems map perfectly to Erlang’s architecture, and the importance of 
this programming language to the future of computational intelligence 
                                </li><li>
                                        Introduces new TWEANN algorithms, with the final result being a 
concurrent, cutting edge, direct and indirect encoded, plasticity 
enabled, TWEANN platform
                                </li></ul>
            

                
                <div><i>Handbook of Neuroevolution Through Erlang</i>
 presents both the theory behind, and the methodology of, developing a 
neuroevolutionary-based computational intelligence system using 
Erlang. With a foreword written by Joe Armstrong, this handbook 
offers an extensive tutorial for creating a state of the art Topology 
and Weight Evolving Artificial Neural Network (TWEANN) platform. In a 
step-by-step format, the reader is guided from a single simulated neuron
 to a complete system. By following these steps, the reader will be able
 to use novel technology to build a TWEANN system, which can be applied 
to Artificial Life simulation, and Forex trading. Because of Erlang’s 
architecture, it perfectly matches that of evolutionary and 
neurocomptational systems. As a programming language, it is a 
concurrent, message passing paradigm which allows the developers to make
 full use of the multi-core & multi-cpu systems. <i>Handbook of Neuroevolution Through Erlang</i>
 explains how to leverage Erlang’s features in the field of machine 
learning, and the system’s real world applications, ranging from 
algorithmic financial trading to artificial life and robotics.<br><br>It covers in detail the subject of Neuroevolution, its applications, why Erlang is the quintessential neural network programming language, and the construction of DXNN2: <a href="https://github.com/CorticalComputer/DXNN2" target="_blank">https://github.com/CorticalComputer/DXNN2</a><br>






A robust, purely Erlang, Topology and Weight Evolving Artificial Neural Network platform, capable of evolving direct and indirect systems, with and without plasticity, and a hierarchical structure that yields easily to allow one to develop self-repairing intelligent agents.<br>






</div><br>Best regards,<br>-Gene<br>
</blockquote></div><br>