
Erlang structs

Joe Armstrong
SICS

joe@sics.se

11 - December 2001

Abstract

This note describes a new data type (thestruct) and how it could be added to
Erlang.

Structs are designed to be fully backwards compatible with the current and all
previous versions of Erlang.

To test some of these ideas a trial implementation of structs has been made.

1 Structs

We propose a new internal Erlang data structure calledstructs. Structs are similar
to Erlang records, but have the important difference that the fields in the structs are
dynamic and do not have to be declared in advance, as is the case for records. There
are two types of structs, named structs and anonymous structs, here are some examples
of both types of structs:

˜person{name="Claire", age=11}
˜{width=80, height=10}

The˜ character introduces the struct. The general syntax of a named struct is:

˜Name{Key1 = E1, Key2 = E2, ..., KeyN = EN}

WhereNameandKey1 ... KeyN are Erlang atoms andE1 ... EN are Er-
lang expressions. An anonymous struct has the same syntax, only the name of the
structure is missing. The following build-in function are defined on the structS.

• erlang:arity(S) -> [Key1, Key2, ... KeyN] returns the keys in
S.

• erlang:name(S) -> {name, Name} | anon can be used to find if the
structS is a named or anonymous structure.

• erlang:fetch_key(S, K) -> Value | EXIT extracts the value of the
keyK, if the key is not present an exception is generated.

• erlang:find_key(S, K) -> {ok, Value} | error searches for the
keyK. It returns the value associated with the key or an error.

1



• erlang:delete_key(S, K) -> S1 deletes the keyK from a struct re-
turning a new structS1.

In all cases ifS is not a struct an exception is generated. One additional primitive
is defined to test if an expression is a struct:

• erlang:is_struct(X) -> true | false is true if X is a struct oth-
erwisefalse

We extend Erlang pattern matching to include structs. We say that the struct pattern
P matches the structS if the following conditions are true:

• If S is a named struct andP is a named struct then both structs must have the
same name, and all the keys given inP must match.

• If S is a named struct andP is a anonymous struct then all the keys given inP
must match.

• Forall keysK in P the keyK must exist inS and the associated value inS must
match the pattern for this key given inP.

Structs can be thought of as “anonymous records”. For reasons of backwards com-
patibility structs are introduced by the˜ character.

Structs are inspired by records in Oz[1] and by previous work on the Erlang 5.0
standard[?].

1.1 Examples of structs

Here are some examples1 of code which uses structs:

1 -module(small).
2 -include("structs").
3 -compile(export_all).
4

5 test() ->
6 V = ˜ {age=11, name="Claire" },
7 V1 = give_birthday_present(V, "cat"),
8 ˜ {present="cat", name="Claire", age=12 } == V1,
9 erlang:arity(V1).

10

11 give_birthday_present(V=˜ {age=A}, Thing) ->
12 V˜ {age=A+1, present=Thing }.

The statementV = ˜{age=11, name="Claire"} creates an anonymous struct,
with two fields calledage andname. In line 11 the value of theage field in the input
struct is bound to the variableA and the entire struct itself is bound to the variableV.
Line 12 creates a new struct fromV overwriting theage field with a new value, and
dynamically adding a new field calledpresent whose value isThing .

Line 8 is a pattern matching operation to verify that all the resultant structure is cor-
rect. Finally the statementerlang:arity(V1) returns the field names contained
in the structV1.

We can compile and run this in the usual way:
1This example assume the prototype implementation of structs described later in this chapter.

2



1> c(small).
{ok,small}
2> small:test().
[present,age,name]

The next example shows makes use of a named struct and shows how to access the
fields of the struct.

-module(demo).

-include("structs").
-compile(export_all).
-import(lists, [foreach/2]).

test() ->
X = ˜person{name=claire, age=12},
pp(X).

pp(S) ->
Name = erlang:name(S),
io:format("<˜s>˜n",[Name]),
Arity = erlang:arity(S),
foreach(fun(Key) ->

io:format("<˜s>",[Key]),
io:format("˜p",

[erlang:fetch_field(S,Key)]),
io:format("</˜s>˜n",[Key])

end, Arity),
io:format("</˜s>˜n",[Name]).

Running this yields:

b> c(demo).
{ok,demo}
> demo:test().
<person>
<name>claire</name>
<age>12</age>
</person>

This example nicely illustrates the correspondance between Erlang structs and XML
terms - indeed we observe in passing that translating XML terms into Erlang structs and
manipulating them through function calls involving compiled stuct patterns provides us
with an extemely efficient “XML processor”.

1.2 Advantages and Disadvantages of structs

Structs are fully dynamic declarative data structures - that fit in very nicely with eh
Erlang programming model. This type of data structure is “self-describing” to the

3



extent that the field names of the different elements in the struct are often sufficient to
provide adequate documentation of the meaning of the element in question.

For small fixed data structures, Erlang tuples are adequate - but as the number of
elements in a tuple increases it becomes increasingly more difficult to remember which
element means what, and modifications to the program which require the addition of
subtraction pf elements in the tuple is a tedious and error-prone task.

Structures are very similar to Erlang records - the difference being that the file
names are dynamic - new fields can be added or removed at run-time. Use of structs is
slightly less efficient than that of records, but more flexible - the efficiency of pattern
matching on structs should be the same as the efficiency of matching regular function
head clauses.

The advantages of struct (compared to the current implementation) are:

• No include (.hrl) files.

• No record definitions.

• Can write generic methods on structs.

• Structs are ”self-describing”

Disadvantages
These are disadvantages compared to the current record implementation.

• Mis-spelling of field names can cause problems.

• Size overhead.

• CPU overhead.

• You cannot have default fields

• No way of cross checking consistency between modules (using the typed prop-
erty of records)

2 Prototyping structs

A simple2 prototype implementation was made using a single parse transform. The
transformation necessary are described below:

Firstly, observe that struct patterns occur in three different contexts:

• In function heads.

• In case alternatives.

• In equalities

We give examples of how each of these can be transformed:

2not that simple :-)

4



2.0.1 Structs in function heads

The schema used for translating structs pattern matching in function heads is illustrated
in the following example:

1 foo(˜person{name=N, arg=12}, {g,a,12}) -> Rhs1
2 foo(xxx, yyy) -> Rhs2

Is translated into:

1 foo(F1, F2= {g,a,12 }) ->
2 case match_struct(F1, person, [name, arg]) of
3 {ok, [N, 12] } -> Rhs1;
4 _ -> foo_1(F1, F2)
5 end;
6 foo(F1, F2) -> foo_1(F1, F2).
7

8 foo_1(xxx, yyy) -> Rhs2.

In this, and all subsequent examples, variables of the formFn are assumed to be
new variables, which are not mentioned elsewhere in the body of the function.

In line 1 the new struct in argument one is replaced by a free variableF1 and a copy
of the the tuple in argument two is kept in the variableF2, this is to avoid re-building
the term{g,a,12} in the call to the added functionfoo_1/2 if the struct match
fails. Here is a second example:

bar({cat, B} , ˜{age=N, arg={a,B}}, {dog,N}) ->
bar(...)

Is transformed into:

bar(F1={cat, B}, F2, F3={dog, N}) ->
case match_struct(F2, [age, arg]) of

{ok, [N, {a,B}]} ->
Rhs;

_ ->
bar_1(F1, F2, F3)

end;
bar(F1, F2, F3) ->

bar_1(F1, F2, F3).

bar_1(F1, F2, F3) ->
%% the second clause (possibly transformed)
%% of bar/3

Nested structs, and guard tests are also illustrated:

boo({a,C}, ˜{a=1,b=B,c=˜{d=B,e=1}}) when integer(B)->

5



Is transformed into

boo(F1={a,C}, F2) ->
case match_struct(F2, [a,b,c]) of

{ok, [1,B,F3]} ->
case match_struct(F3, [d,e]) of

{ok, } ->
%% Rhs guard
if integer(B) ->

Rhs;
true ->

fail
end;

->
... etc ...

Embedded structs must also be handled, thus:

foo(abc, {a,b,˜joe{a=K}}) -> Rhs1
foo(def, ho) -> Rhs2

Is transformed into

foo(F1 = abc, F2={a,b,F3}) ->
case match_struct(F3, joe, [a]) of

{ok, [K]} ->
Rhs1;

_ ->
foo_1(F1, F2)

end;
foo(F1, F2) ->

foo_1(F1, F2)

2.0.2 Structs in case alternatives

Structs that occur in case alternative are trnasfored as in the following example:

case Var of
˜{name=joe, age=A} ->

Rhs1;
Lhs2 ->

Rhs2
end

becomes

case match_struct(Var, anon, [name,age]) of
{ok, [joe,A]} ->

Rhs1;

6



_ ->
case Var of

Lhs2 ->
Rhs2

end
end.

When the subject of thecase statement involves a function call the translation is
as in the following example:

case f(X) of
˜{name=joe, age=A} ->

Rhs1;
Lhs2 ->

Rhs2
end

becomes

case match_struct(Var = f(X), anon, [name,age]) of
{ok, [joe,A]} ->

Rhs1;
_ ->

case Var of
Lhs2 ->

Rhs2
end

end.

Where theVar introduced in is a new variable.

2.0.3 Structs in equality

Structs in equality are transformed as in the following example:

˜{name=N, age=A} = Y

becomes

{ok, [N,A]} = match:struct(Y, [name, age])

2.1 Constructing a struct

X = person˜{name=joe, age=12}.

becomes

mk_struct(person, [..]).

7



I 2

A person

T

I

S

11

I 2

A age

A name

R

"Claire"

Figure 1: An example struct.

3 Compiling Structs

We assume the internal representation of struct as shown in Figure 1.
TheR tag is a new tag field which points to a struct data type on the heap.
The heap representation of a struct starts with an atom containing the name of the

struct, and is followed by an alternating sequence of atom-value pairs of words.
We also define the constructor˜{Tag=...} which creates an ”anonymous” struct

whose struct name is[] .
Assuming a simple JAM like instruction set the operations on struct can be com-

piled as follows:

3.0.1 Pattern matching

foo(˜person{age=A, name=N}) ->
...

tryMeElse, Label
getStruct Arg1, person
getKey age,A
getKey name,N

foo(˜{age=A, name=N}) ->
...

tryMeElse, Label
getAnonStruct, Arg1
getKey age,A
getKey name, N

8



3.0.2 Struct creation

We create a struct as follows:

X = ˜person{name="Claire", age=11}

pushAtom, name
pushString, "Claire"
pushAtom, age
pushInt, 11
pushAtom, person
mkStruct,2

Here we just push all the arguments of the struct onto the stack and callmkStruct,2
the second argument is the number of fields in the struct.

3.0.3 Struct update

X1 = X˜{age=12}

pushAtom, age
pushInt, 12
updateStruct X, 1

X1 = X˜person{age=12}

pushAtom, age
pushInt, 12
pushAtom, person
updateNamedStruct X, 1

3.1 Primitives

• arity(X) -> [Key1, Key2, ..] - return the key set of the structX.

• name(X) -> Atom - return the name of the current struct.

3.2 Implementation

An implementation of the struct type described above needs the following changes to
the system.

• Parser ...

• Compiler. Change compiler for structs. While the current document describes
structs in terms of an old (Jam Like :-) instruction set I’m not sure how this
would look in the current compiler. I assuming some kind of PJ pattern matching
optimization is in order.

9



• Emulator. Seems like adding a new type is easy if there are any unused tag bits,
otherwise (ouch ...) - Are their any unused tag bits??

• GC. Easy (I think) they are just like tuples.

3.2.1 PJ like optimizations

The following optimization applies:

foo(˜person{name=N, age=A, married=B}) ->
...

foo(˜person{name=N, age=A, job=J}) ->
...

tryMeElse, Label1
getStruct Arg1, person
getKey name, N
getkey age, A
tryMeElse, L2

getKey married, B
...

L2: getKey job, J

This is presumably the same optimization as for compiling lists with common pre-
fixes, for example:

foo([a,b,c|T]) ->
...

foo([a,b,d|T]) ->
...

References

[1] Mozart Consortium. The Mozart Programming System, January 1999. Available
athttp://www.mozart-oz.org/ .

10


