
Programming Efficiently with Binaries and Bit Strings

Per Gustafsson
Department of Information Technology

Uppsala University, Sweden Ericsson AB, Sweden
pergu@it.uu.se

Abstract
A new datatype, thebit string, and a new construct for manipulating
binaries, binary comprehensions, are included in the R12B release
of Erlang/OTP. In addition to this the implementation of binary con-
struction and matching have been altered to make straightforward
programs that operates on binaries or bit strings more efficient.

This paper will describe the new additions to the language and
show how they can be used efficiently given the new optimizations
of binary pattern matching and binary construction. It alsoincludes
some performance numbers to give an idea of the gains that canbe
made with the new optimizations.

1. Introduction
Binaries have received a makeover in the R12B release of Erlang
with the introduction ofbit stringsandextended comprehensions
as well as optimization of both binary construction and pattern
matching.

Binaries have been a part of Erlang for a long time, and there has
been a nice syntax for manipulating binaries since the R7B release
of Erlang/OTP [3]. There has been some complaints about the using
binaries for formats that are bit-oriented rather than byte-oriented
since this tends to lead to complicated and error-prone code[2]. Bit
strings are introduced to solve exactly this problem.

List comprehensions are used a lot in Erlang. They tend to make
programs more compact and readable avoiding boilerplate code. In
2004 Jay Nelson suggested that there could also be binary com-
prehensions, a compact syntax for operating on binaries. The sug-
gestion was formalized at the 2005 Erlang Workshop [1] and with
some syntax changes this proposal was added as an optional feature
in Erlang R11B. It will finally be a supported feature in R12B.The
feature not only allows binary comprehension but also the use of bi-
nary generators in list comprehensions as well as list generators in
binary comprehensions. Togeteher we call these features extended
comprehensions which give users versatile abstractions for convert-
ing data between structured term formats and binary formats.

In addition to this binary comprehensions give the users a sure-
fire way to use the new optimizations of binary construction and
pattern matching. The optimization of construction of binaries
might be the most important of the two as it makes it possible to
build binaries in a piece-wise manner in linear time. This has been
a problem in previous versions of Erlang forcing programmers to
create lists of binaries which are then concatenated at the end to get
efficient algorithms. This pattern tends to make algorithmsmore
complicated than necessary.

The optimization of binary pattern matching is also important as
it decreases the need to do unrolling of code that iterates over binary
or keeping a counter to iterate over a binary. This optimization
tends to make short natural implementations of functions which
iterates over a binary efficient. Which is good as the hand-written
optimizations above can introduce subtle bugs.

In this paper we will describe the new additions to the language
in Section 2 and 3. Then we will give a short introduction to
the implementation of operations on bit strings and binaries in
Section 4 in order to be able to explain the new optimizations
in Section 5 and give the reader some idea of how he should
program to make use of them. Finally we have some performance
measurements in Section 6 and conlusions in Section 7.

2. Bitstrings and binaries
A new datatype thebit string is introduced into Erlang. A bit string
is a sequence of bits of any length this separates it from abinary
which is a sequence of bits where the number of bits is evenly
divisible by eight. These definitions implies that any binary is also
a bit string.

2.1 Manipulating bit strings using the bit syntax

A bit syntax expression:

<<Seg1,...,SegN>>

Evaluates to a bit string. If the sum of the sizes of all segments
in the expression is divisible by eight the result is also a binary.
Previously such expression could only evaluate to binariesand a
runtime error was raised if this was not the case.

With this extension the expressionBin = <<1:9>> which pre-
viously caused a runtime error now creates a 9-bit binary. Tobe
able to use this bit string to build a new bigger bit string we can
write:

<<Bin/bitstring, 0:1>>

Note the use of bitstring as the type. This expands to binary-
unit:1 where as the binary type would have expanded to binary-
unit:8. Since bitstring is a long word to write in a binary pattern
there is an aliasbitswhich is used in the rest of this paper, similarily
for binary there is a new shorthandbytes.

To match out a bit-level binary we also use the bit string typeas
in :

case Bin of
<<1:1,Rest/bits>> -> Rest;
<<0:1,_/bits>> -> 0

end

This allows us to avoid situations were we previously had to
calculate padding.

Example 2.1A format from the IS 683-PRL protocol which con-
sists of a 5-bit field describing how many 11-bit fields it was fol-
lowed by. Decoding this format required a complicated calculation
of padding to implement in a straightforward manner. The result is
shown in Program 1.

Program 1 Decoding a format in the IS 683-PRL protocol
decode(<<NumChans:5, _Pad:3, _Rest/binary>> = Bin) ->

decode(Bin, NumChans, NumChans, []).

decode(_, _, 0, Acc) ->
Acc;

decode(Bin, NumChans, N, Acc) ->
SkipBef = (N - 1) * 11,
SkipAfter = (NumChans - N) * 11,
Pad = (8 - ((NumChans * 11 + 5) rem 8)) rem 8,
<<_:5, _:SkipBef, Chan:11, _:SkipAfter, _:Pad>> = Bin,
decode(Bin, NumChans, N - 1, [Chan | Acc]).

With the introduction of bit strings it can be implemented with-
out any padding calculations at all as:

decode(<<NumChans:5, Rest/bits>>) ->
decode(NumChans, Rest, []).

decode(0, _, Acc) ->
lists:reverse(Acc);

decode(N, <<Chan:11,Rest/bits>>, Acc) ->
decode(N-1, Rest, [Chan|Acc]).

2.2 BIFs for manipulating bit strings

The current builtin functions for manipulating binaries will still
only be defined for binaries. We will instead introduce four new
BIFs which operate on bit strings .hey are described in Table1.

3. Bit String Comprehensions
Bit string comprehensions are analogous to List Comprehensions.
They are used to generate bit strings efficiently and succintly. Bit
string comprehensions are written with the following syntax:

<< BitString || Qualifier1,...,QualifierN >>

BitString is a bit string expression, and eachQualifier is
either agenerator, abit string generatoror afilter.

generator: Pattern <- ListExpr
WhereListExpr must be an expression which evaluates to a
list of terms.

bit string generator: BitstringPattern <= BitStringExpr
WhereBitStringExpr must be an expression which evaluates
to a bitstring.

filter : Expr
WhereExpr must be an expression which evaluates totrue or
false

The variables in the generator patterns shadow variables inthe
function clause surrounding the bit string comprehensions. A bit
string comprehension returns a bit string, which is createdby con-
catenating the results of evaluatingBitString for each combina-
tion of bit string generator or ordinary generator elementsfor which
all filters are true.

Example 3.1A simple comprehension which changes all lower
case ascii characters in the bit stringBits into upper case char-
acters.

<< <<(to_upper(X))>> || <<X>> <= Bits >>

This has the same semantics as the following expression:

bits_to_upper(Bits)

bits_to_upper(<<X,Rest/bits>>) ->
<<(to_upper(X)), (bits_to_upper(Rest))/bits>>;

bits_to_upper(_) -> <<>>.

The translation to Erlang code is pretty straightforward, but the
runtime for the Erlang program above is quadratic in the sizeof
Bits, whereas the comprehension will be evaluated in linear time.

Since both ordinary list generators and bit string generators are
allowed in bit string comprehensions they can be used to convert a
list of data structures to a bit string representation.

Example 3.2Consider the case where you have a list of three
tuples where the first value in the tuple is one of 6 different atoms,
the second value is a 16-bit integer and the third value is a float.
Than you can turn that into a compact format using the following
code:

<< <<(atom_to_int(Atom)):3,Int:16,Float/float>> ||
{Atom,Int,Float} <- List >>.

Whereatom to int maps the six different atoms to integers
between 0 and 5.

3.1 Bit String Generators in List Comprehensions

In addition to introducing bit string comprehensions we also allow
bit string generators in list comprehensions. This is useful for
turning bit strings into structured data. One example when it is
useful is for the problem described in Example 2.1. Using a bit
string generator in a list comprehension this can be writtenas:

decode(<<N:5,Chans:N/bits-unit:11,_/bits>>) ->
[Chan || <<Chan:11>> <- Chans].

4. Implementation
In order to describe the new optimizations of binary patternmatch-
ing and construction I must first describe how bit strings arerepre-
sented and bit string operations are implemented.

4.1 The bit string datatype

The layout of bitstrings is a little bit complicated. The actual data
in a bit string resides off heap. There is a data structure on the
heap that is called a REFC binary that points to the off heap data.
Bitstrings are so called sub-binaries which also reside on the heap.
They point to REFC binary and they also contain offset and size
fields. They never point directly to the off-heap data. The situation
is described in Figure 4.1.

4.2 Bit String Construction

A bit string construction expression that has the form:
<<ve1:se1/t1,...,ven:sen/tn>> is translated as follows. We
start by evaluating all the value and size expressions so that we end
up with an expression of the form<<v1:s1/t1,...,vn:sn/tn>>
where all thevi:s are values and all thesi:s are non-negative
integers. If anysi is a negative value, a run-time exception is raised.

Then the the resulting size of the binary we are building is
calculated as

∑
n

i=1
si. An appropriate amount of off heap space

is allocated for the data and the REFC binary is created on the
heap. Then each segment is written into the data part. When this
is done the sub binary which becomes the result of the expression
is created.

Signature Definition
bit size/1::bitstring() -> integer() Returns the size of a bit string in bits.

This BIF is allowed in guards.
list to bitstring/1::bitstring list() -> bitstring() Concatenates the bit strings and chars in the bitstring listto

create a bit string. A bitstring list is an io list which can contain
bit strings as well as binaries the chars in the bitstring list are treated
as if they were bit strings consisting of 8 bits.

bitstring to list/1::bitstring() -> [char()|bitstring()] Turns a bit string into a list of characters and if the number of bits
in the bit string is not evenly divisible by eight the last element
in the list is a bit string consisting of the last 1-7 bits of the original
bit string.

is bitstring/1::any() -> bool() Returns true if the argument is a bit string, otherwise it returns false.
This BIF is allowed in guards.

Table 1. New Builtin Functions for manipulating bit strings

Stack

A

B

Heap

REFC Header

Size = 31

Meta

SubBin Header

S = 5

O = 15

SubBin Header

S = 16

O = 8

Off Heap

0 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1

0 1 1 0 0 1 1 1

0 0 0 0 0 0 1 ?

4.3 Binary Pattern Matching

Consider the following expression:

<<8:16, X:32, Bin/bits>> = Bits

This gets compiled into the sequence shown in Figure 1. The
instructioncreate matchstate takes a bit string and creates a
matchstate to be used during the matching. The matchstate contains
the size of the bitstring we are matching against, the offsetwe
are at and a pointer to the data. Theget integer instruction
takes a matchstate and a size and reads that number of bits, turns
it into an integer and updates the offset in the matchstate. The
get bitstring function creates a sub-binary from the matchstate.

A more complicated matching with several patterns is compiled
into a tree of instuctions for exampleif we have:

case Bits of
<<A:8, 1:8, X:8, Bin/bits>> -> cont1;
<<A:8, 2:8, X:16, Bin/bits>> -> cont2;
<<>> -> cont3

end

We end up with the tree of instructions shown in Figure 2.
We have some new instructions:

save matchstate(N,MS) This instruction saves the present off-
set in the matchstate in save slot N.

MS = create_matchstate(Bits)

Temp = get_integer(16,MS)

fail

Temp == 8

X = get_integer(32,MS)

Bin = get_bitstring(all,MS)

cont

Figure 1. Matching graph for<<8:16, X:32, Bin/bits>> =
Bits

MS = create_matchstate(Bits)

save_matchstate(1,MS)

fail

A = get_integer(8,MS)

Temp = get_integer(8,MS) restore_matchstate(1,MS)

Temp == 1

X = get_integer(8,MS) Temp == 2

Bin = get_bitstring(all,MS)

cont1

X = get_integer(16,MS)

Bin = get_bitstring(all,MS)

cont2

end_of_bitstring(MS)

cont3

Figure 2. Matching graph for case statement

restore matchstate(N,MS) This instruction loads the offset
value from slot N and makes it the present offset value.

end of bitstring This instruction checks that the offset in the
matchstate is equal to the size. That is that we have reached the
end of the bit string

5. Optimizations
In R12B both binary construction and binary pattern matching has
been optimized. In this section we will describe these optimizations
and discuss how to write code that best utilizes trhe optimizations.

5.1 Binary Construction Optimization

The basis of this optimization is that it the emulator can create bit
strings with extra uninitialized space, so if a bit string isbuilt by
continously appending to a binary the data does not need to be
copied if there is enough uninitialized data at the end of thebit
string.

Bits contains a bit string of 1000 bits followed by 600 bits of
uninitialized data.

In the expression

NewBits = <<Bits/bits, 12:32>>

NewBits gets bound to a bit string of 1032 bits followed by 568
bits of uninitialized data,Bits on the other hand can no longer be
appended to.

On the other hand if we have this expression:

NewBits = <<Bits/bits, 12:640>>

Since there is not enough uninitalized dataNewBits becomes
a new bit string consisting of 1640 bits followed by 1640 bitsof
uninitialized data.Bits remains the same a bit string of 1000 bits
with 600 bits uninitialized data.

What does this mean in practice when your programming?

• It means you can build bit strings piecewise in linear time
• It means that when your building a bit string from a list or from

an other bit string and you want to have the same order of your
pieces you should use tail calls and an acumulator

• It means that you can reverse a bit string efficiently without
turning it into a list

Let us see some examples of efficient programs for building bit
strings:

Example 5.1This function reverses a bit string consisting of 32 bit
integers:

reverse_32bit(<<X:32,Rest/bits>>) ->
<<(reverse_32bit(Rest))/bits,X:32>>;

reverse_32bit(<<>>) ->
<<>>.

Not that when we are constructing the answer the first element
of the new bit string is the growing bit string.

Note that we use direct recursion in order to get the reverse order
in the result in the following example we want to perserve theorder
of the input.

Example 5.2This simple function stores a double in 32-bits if it is
prefaced by a zero if it is prefaced by a one it uses 64-bits.

save_floats(Bits) ->
save_floats(Bits, <<>>).

MS = create_matchstate(Bits)

save_matchstate(1,MS)

X = get_integer(8,MS) restore_matchstate(1,MS)

Acc = Acc + X end_of_bitstring(MS)

return(Acc)

Figure 4. Optimized code forsum1/2

save_floats(<<0:1,F:64/float,Rest/bits>>, Acc) ->
save_floats(Rest, <<Acc/bits,0:1,F:32/float>>);

save_floats(<<1:1,F:64/float,Rest/bits>>, Acc) ->
save_floats(Rest, <<Acc/bits,1:1,F:64/float>>);

save_floats(<<>>,Acc) ->
Acc.

5.2 Binary Pattern Matching Optimization

To describe the new optimization of binary pattern matchingcon-
sider these two functions which calculates the sum of the bytes in a
bit string:

sum1(Bits) ->
sum1(Bits, 0).

sum1(<<X,Rest/bits>>, Acc) ->
sum1(Rest, Acc+X);

sum1(<<>>, Acc) -> Acc.

sum2(Bits) ->
sum2(Bits,0,0).

sum2(Bits,N,Acc) ->
case Bits of

<<_:N,X,Rest/bits>> ->
sum2(Bits,N+8,Acc+X);

<<_/bits>> ->
Acc

end.

The generated code forsum1/2 is shown in Figure 3(a). In each
iteration of the loop a sub-binary is created from the match sate only
to promptly be turned in to a new match state in the next iteration.

Forsum2/3 we avoid creating this sub-binary, but we still have
to create the match state in each iteration.

The new optimization of binary pattern matching follows from
the observation that it is unnecessary to convert a match state
into sub-binary only to immediatly convert it back to a match
state. Instead we can keep the match state in the loop. Using this
optimization the code forsum1/2 is shown in Figure 4.

How should we write code to make it possible to apply this
optimization? The most important thing is to make sure that the
binary we are matching against is not used for anything else in the
function. In addition to this we need to make sure that the sub-
binary we are creating is only used in a self recursive call.

MS = create_matchstate(Bits)

save_matchstate(1,MS)

X = get_integer(8,MS) restore_matchstate(1,MS)

Rest = get_bitstring(all,MS)

Acc = Acc + X

end_of_bitstring(MS)

return(Acc)

(a) Generated code forsum1/2

MS = create_matchstate(Bits)

save_matchstate(1,MS)

skip_bits(N,MS)

X = get_integer(8,MS)

restore_matchstate(1,MS)skip_bitstring(all,MS)

N = N + 8

Acc = Acc + X

skip_bits(all,MS)

return(Acc)

(b) Generated code forsum2/3

Figure 3. Code generated for two different functions calculating thebyte sum of a bit string

f(<<Pattern1,...,Rest/bits>>,...) ->
... % Rest is not used here
f(Rest,...);

f(<<Pattern2,...,Rest/bits>>,...) ->
... % Rest is not used here
f(Rest,...);

...

f(<<>>, ...) ->
ReturnValue

Figure 5. Function skeleton that will be optimized

A good model for functions that want to make sure they use this
optimization is shown in figure 5.

6. Performance
In this section we will give some performance figures and com-
pare some different approaches to write programs operatingon bit
strings as well as comparing handling of bit strings in R11B-5 and
R12B. All of the benchmarks in this section have been run on a
unicore 2.4 GHz Pentium 4 with 1 GB of memory, running Ubuntu
7.10.

6.1 IP-packet checksum

This program exists in four different flavors. Two which creates
sub-binaries like the program in Figure 3(a) the differencebe-
tween these programs is that one of them unrolls the loop eight
times whereas the other program does no unrolling. The programs
are calledSubandSubUnrolled. The other two programs use the
same type of iteration as the program in Figure 3(b), one of these
progams is also unrolled. They are calledIter and IterUnrolled.
They each calculate the checksum for a 658 kB file one hundred
times. The runtimes can be found in Table 2. The four different
functions can be found in Program [?] in the appendix.

Program BEAM R12B-0 HiPE R12B-0
Bit String Comprehension 10.43 2.69
Bit String Recursion 14.49 3.41
List Comprehension 10.22 6.21

Table 3. Runtimes in seconds for making 65.8 MB of data all
upper case

The results suggest that performance of binary pattern matching
in general is better in R12B, but paritcularily when using sub-
binaries. The effect of doing unrolling decrease from a factor four
in R11B to less than approximatly a factor 1.5, which suggests that
good performance can be had without adding ugly unrolling.

6.2 Upper Case

In the second experiment binaries are both constructed and pattern
matched on, but it is a pretty simple program. It simply turns
a binary string into an all upper case binary string. There are
three different versions of the function all of them are shown in
Program 2 in the appendix.

It was not really relevant to run this benchmark on R11B-5 since
the bit string recursion function had a quadratic cost and bit string
comprehensions were very inefficient. They were thus only run on
R12B. The input was the same as in the IP-checksum case, a 658
kB file that was turned into an all upper case file one hundred times.
The results are shown in Table 3.

The results seem to suggest that with BEAM bit string compre-
hensions are competitive with operating on a list while it becomes
superior when native compilation is used. It is also superior to ex-
plicit recursion. This is the case since it is easier to analyze a bit
string comprehension and thus construction and matching ofbit
strings can be optimized further.

The implementation of bit string comprehensions can be im-
proved further. In many cases the size of the resulting bit string can
be computed beforehand. This is not done yet, but we expect to
implement this in future releses of Erlang/OTP.

Program BEAM R11B-5 HiPE R11B-5 BEAM R12B-0 HiPE R12B-0
Sub 10.18 3.69 2.66 0.62
SubUnrolled 2.17 0.90 1.13 0.38
Iter 8.31 2.90 5.09 2.15
IterUnrolled 2.16 0.78 1.54 0.58

Table 2. Runtimes in seconds for calculating checksums of 65.8 MB of data

7. Conclusions
This is not a comprehensive description of how to use binaries
and bit strings efficiently in your programs. It is simply a short
description of how binaries have been extended into bit strings and
how various operations on bit strings are implemented. We also
try to describe how we optimize these operations. Hopefullythis
description will help you write shorter and easier and more efficient
programs in the future. What we want you to take away from this
paper is summarized in the following bullet points.

• Bit strings makes it much easier to deal with bit-oriented data
in Erlang

• When you are building new bit strings make sure you append
new data to the end of an old bit string

• When you iterate over a bit string use a direct style matching
similar to what you would do for lists

• If you are doing a map operation over bit strings use bit string
comprehensions to get efficient and concise code

• Write simple straight-forward code first to see if the optimiza-
tions makes it fast enough. Then you can try various approaches
to make it faster.

References
[1] P. Gustafsson and K. Sagonas. Bit-level binaries and generalized

comprehensions in Erlang. InProceedings of the Fourth ACM
SIGPLAN Erlang Workshop, pages 1–8. ACM Press, Sept. 2005.

[2] M. Läng. Erlang in the corelatus mtp2 signalling gateway, Oct. 2001.
Available athttp://www.erlang.se/euc/01/.

[3] P. Nyblom. The bit syntax - the released version. InProceedings of the
Sixth International Erlang/OTP User Conference, Oct. 2000. Available
athttp://www.erlang.se/euc/00/.

8. Appendix

Program 2 Three ways to make a binary all upper case
bit_string_comp(Bin) ->

<< <<(to_upper(X))>> || <<X>> <= Bin >>.

bit_string_recursion(Bin) ->
bit_string_recursion(Bin, <<>>).

bit_string_rec(<<X,Rest/binary>>, Acc) ->
bit_string_rec(Rest,<<Acc/binary,(to_upper(X))>>);

bit_string_rec(<<>>, Acc) -> Acc.

list_comprehension(Bin) ->
list_to_binary([to_upper(X) ||

X <- binary_to_list(Bin)]).

to_upper(X) when X >= $a, X =< $z ->
X + ($A-$a);

to_upper(X) ->
X.

Program 3 Four ways to calculate an IP checksum
-define(INT16MAX, 65535).

sub(<<N1:16, Rem/binary>>,Csum) ->
sub(Rem, do_trunc(Csum+N1));

sub(<<N1:8>>,Csum) ->
sub(<<>>,do_trunc(Csum+(N1 bsl 8)));

sub(<<>>,Csum) when Csum > ?INT16MAX ->
Val=(Csum band ?INT16MAX) + (Csum bsr 16),
sub(<<>>,Val);

sub(<<>>,Csum) -> (bnot Csum) band ?INT16MAX.

sub_unrolled(<<N1:16,N2:16,N3:16,N4:16,N5:16,N6:16,
N7:16,N8:16,Rem/binary>>, Csum) ->

sub_unrolled(Rem,do_trunc(Csum+N1+N2+N3+N4+N5+N6+N7+N8));
sub_unrolled(<<N1:16, Rem/binary>>,Csum) ->
sub_unrolled(Rem, do_trunc(Csum+N1));

sub_unrolled(<<N1:8>>,Csum) ->
sub_unrolled(<<>>,Csum+(N1 bsl 8));

sub_unrolled(<<>>,Csum) when Csum > ?INT16MAX ->
Val=(Csum band ?INT16MAX) + (Csum bsr 16),
sub_unrolled(<<>>,Val);

sub_unrolled(<<>>,Csum) ->
(bnot Csum) band ?INT16MAX.

iter(N,Bin,Csum) ->
case Bin of

<<_:N/binary, N1:16,_/binary>> ->
iter(N+2,Bin,do_trunc(Csum+N1));

<<_:N/binary, Num:8>> ->
iter(N+1,Bin,do_trunc(Csum+(Num bsl 8)));

_ when Csum > ?INT16MAX ->
Val = (Csum band ?INT16MAX + (Csum bsr 16)),

iter(N,Bin,Val);
_ ->
(bnot Csum) band ?INT16MAX

end.

iter_unrolled(N,Bin,Csum) ->
case Bin of

<<_:N/binary, N1:16,N2:16,N3:16,
N4:16,N5:16,N6:16,N7:16,N8:16,
_/binary>> ->
iter_unrolled(N+16,Bin,

do_trunc(Csum+N1+N2+N3+N4+N5+N6+N7+N8));
<<_:N/binary, N1:16,_/binary>> ->
iter_unrolled(N+2,Bin,do_trunc(Csum+N1));

<<_:N/binary, Num:8>> ->
iter_unrolled(N+1,Bin,Csum+(Num bsl 8));

_ when Csum > ?INT16MAX ->
Val = (Csum band ?INT16MAX + (Csum bsr 16)),

iter_unrolled(N,Bin,Val);
_ ->
(bnot Csum) band ?INT16MAX

end.

do_trunc(Csum) when Csum > 16#6ffffff, Csum < 16#7ffffff ->
Csum band ?INT16MAX + (Csum bsr 16);

do_trunc(Csum) -> Csum.

