Configuration Aware Distributed System Design in Erlang

Gabor Batori, Zoltan Theisz, Domonkos Asztalos

Software Engineering Group, Ericsson Hungary Ltd.

H1037 Laborc u. 1. Budapest, Hungary

{Gabor.Batori, Zoltan.Theisz, Domonkos.Asztalos}@ericsson.com

Abstract
In this paper a new system design concept is described and demonstrated which is based on the innovative combination of meta-model assisted explicit component configuration management and its run-time execution on a causally reflective robust reconfigurable Erlang component system called ErlCOM. Rather than provide a monolithic run-time application structure separate areas of functionalities are packaged into self-contained components that can be individually deployed according to the available hardware/software resources where they can be actively managed during the whole lifetime of the application. The infrastructure extends the approach of ordinary code reuse into higher level where in addition of the shared code base the run-time configuration can be effectively reapplied.
1. Introduction
Future networked distributed systems will have to be able to cope with increased complexity originating from the ever increasing demand of newer communication protocols that should be able to operate in a highly distributed telecom environment and still be able to remain compatible with the already established infrastructure or from novel application fields of telecommunications like wireless sensor networks. The aim of our RUNES [1] (Reconfigurable Ubiquitous Network Embedded Systems) project is to provide the application developer with a proper system design model and a corresponding heterogeneous middleware/platform that enable better application production for networked embedded sensors, actuators and for more powerful devices like embedded gateways or full-fledged application servers regarding time, efforts, maintainability and quality. Our efforts have resulted in the development of ErlCOM [2], which is a causally reflective reconfigurable Erlang component system running anywhere Erlang is available, that is, on gateways and application servers in RUNES, and in the invention and demonstration of a meta-model assisted component configuration management. The component configuration management automatically generates component wrapping code for any functionality written in Erlang and it deploys it later onto ErlCOM. The component configuration is managed either locally by the deployed code or remotely via the meta-modeling environment. Since both the source code and the current component configuration of the running application are available in the meta-modeling environment total application reuse (in contrast with only source code reuse) is easily attainable.

In the remainder of the paper, Section 2 overviews ErlCOM then Section 3 introduces the meta-model assisted component management. In Section 4 the implementation details of the enabling technologies, namely the Deployment Tool and the notification pattern, are explained and finally Section 5 concludes the paper.
2. ErlCOM

ErlCOM provides a super-structure on top of the well-established Erlang/OTP environment. The basic entities of ErlCOM are the components, which can be dynamically created, loaded, updated, unloaded and destroyed, and the bindings, which bind or unbind the receptacles - component egresses - to the interfaces - component ingresses - of the communicating components. Components can be embedded into each other hierarchically and both the components and the bindings are managed by a hierarchical caplet structure where the root caplet - also called capsule - represents the Erlang node. Any ErlCOM entity can possess an unlimited amount of metadata that are stored in a fully distributed repository covering all the caplets. Component configurations can be constrained by building a component framework, however, the constraint enforcement policy is left for the programmer. Since also the component configuration is stored in the distributed repository the component system can be easily reconfigured and the reconfiguration changes are easily tracked. The components communicate to each other via message passing – both synchronous and asynchronous – that can be intercepted at the bindings.

ErlCOM’s implementation on top of Erlang is relatively light-weight as components, bindings and caplets are ordinary gen_servers with supervisors, and component communication relies on Erlang message sending. The distributed repository is based on Mnesia, which makes it a little bit heavy-weight, however, it provides a fully distributed robust database solution. ErlCOM’s API is described in details in [2].
Since ErlCOM extends the RUNES component meta-model and the middleware CRTK it has been successfully deployed on Lippert [4] gateways and application server PCs in order to deploy distributed applications for wireless sensor networks.

3. Meta-model assisted component configuration management
ErlCOM’s basic goal is to provide a useful packaging framework that enables programmers to organize their applications written in Erlang in such a way that they could be easily reconfigured either so that they could adapt in a rapidly changing run-time environment (dynamicity in run-time) or they could be reused - already tested source code and run-time configuration - to satisfy newer change requests for redesign (dynamicity in design-time). However, extra packaging burden might intimidate the programmer to use ErlCOM that’s why we have developed a meta-model assisted IDE [2] based on GME [3] that incorporates the ErlCOM meta-model and automatically generates packaging code. More precisely, the IDE contains three models, which are the ErlCOM component meta-model (Figure 1), the componentized application source code inside interconnected RUNES components - according to the logical decomposition of the application - (Figure 2) and the deployed component configuration of the application (Figure 3).
[image: image1.jpg]=81

A Fle Edt Vew wndow e _15]x]
/¢ MBax(2alisdEsvda@EOEEE0? s | EEX %
R T Name[Kemel [Paradirheet Aspect]ClsssDisgram ¥] Base: JN/A Zoors[110% 7]
@
s
»
Q
&
[ECOMCompanent Gperation
<<Model=> <<Model>> |-
EriCOMinteractionPoird
— <<Model>>
lo.s o1
Parameter Returmvalue
<<Model>> <<Model>>
I \ Position - field Kind :_field
— . i Kind: field
Capsue ompositeComphiode] BindingMode!
<<Model>> <<Model> je——— |<=ModelProxy>> Interface Receptacle
NodeType enum L <<Model>> <<Model>>
address: _field A E—
o
[CompositeComponent Binding
<<Model>>] <<Connection=>
[ErCOMConstrain] [ComponentFramework]
<cModel> [l <<Model>>
y i
[EDIT [110% etaGHE [02:32 P

Figure 1: ErlCOM component meta-model

[image: image2.jpg]EriCOM

- =18l
=181

Gl Fle Ede Vew window telp

WEEaX(Rali4dadsvEhmMEINEEEM]?

|/ ¢

X T Neme:[55D_AFF [FunctonaModel Aspect]Funcional _¥] Base: JN/A

Zoom[fr_ =]

@
s
»
Q
&

-

- .Y

get_logs| channel

crtilog_channel

L o

ww_Jo_channel

onsole_log_channel

log_console

o et
.

te_log_channel

logger_server

networi_log_channel

node_state_channel

perftional_state_channel

. o

iode_list_supenvisor

—H

defector_config_channe!

resolve_nam_channe|

measurement_channel

TunneiContraMonitr re_detector

fre_dgtect_channel

fre_detectar_channel

-t

decoder

]ﬁi ode_channel

-

udp_receiver resolve_namé_channel_alt

®)

eom at

Componentionitor|

contiki_crtk_channel

-OH

hg_contiki_crti_channel

]

I |

lang_crti_channel

erlang_crtk_listener

-

nf_upd]notifier_channel

comp_conf_upd_channel s

Ready

hg_node_change

fre_detector_channel_alt

Udp_receiver_fast

[
[EDIT [62% [Ercom [oz:10 P

Figure 2: Componentized application source code inside RUNES components

[image: image3.jpg]ErICOM - Root Folder
Fle Edt Vew Window Help

[vildBaXRalst iV i @EEOEEDED]?

pspectlDepioment =] Bases R Zoor [100% | T Nome [Fimay FoaCerlt pspect]Comperent =] Bases R Tl

I |

T Nome [550_Deloymert _ [Deioymentiode]

|8 Pupr

log toc

FH

console_log_channel

log_console

dermo_control

T Nane Fimay FoaCorlt pspect]Comparent =] Bases R

=] ese [V

[FoaColt AspectCorporent

eflang_crik_listener

comp_conf_upd_channel

CornponentGraphbDrawer

IC|
eoIT f30% [Erlcom [0z:07 P

v - comp_cont_upd_nofifier_channel L
i

Ready

Figure 3: Deployed component configuration
The models are in meta relationship to each other, that is, the deployed component configuration instantiates the componentized application code which is an instance of the ErlCOM component meta-model. Since the ErlCOM component meta-model is fixed in the case of a particular ErlCOM version the programmer can concentrate on and produce the application code in his usual way and the IDE ensures that it will be properly put into interconnected ErlCOM components. The packaging Erlang code is automatically generated and it sets up a wrapper around the application code. After the deployable source code base has been produced the programmer should establish the initial component configuration snapshot of the distributed application by instantiating the componentized source code on the available resources. The IDE provides all the necessary facilities to easily distribute the components via its Deployment Tool, which analyzes the initial component configuration snapshot and creates the ErlCOM elements by activating the corresponding ErlCOM’s API operations. It should be emphasized that we talk about only the initial component configuration snapshot since the deployed application can easily reconfigure itself via ErlCOM’s reflective API any time, therefore, the initial configuration plays only a temporal role. After the initial deployment has been set up the application starts running and ErlCOM’ CRTK administers all the changes of the component configuration and it sends notifications about them to any listener which has subscribed to the changes. The IDE is one of the listeners that’s why it is quite straight-forward to show the actual component configuration of the running system. Moreover, the component configurations – including Erlang source code – can be saved from the IDE and later recreated to restore the application to a previous known state.
The novelty of our approach is the way how design-time and run-time software aspects are intertwined. During the software development process the application code is modularized in order to avoid the problems of producing “spaghetti-code”, that is, the application code is put into communicating components. Since ErlCOM is causally reflexive the components can be deployed onto it and their current configuration is continuously available and modifiable. The same software development environment can be used for application development and operation and maintenance purposes, too. (Figure 4) Moreover, the approach eliminates the unnatural separation of the functionality and the management aspects of the application; the management layer is anchored to the deployed functionality layer and reflects it via the identity mapping thanks to the meta-modeling environment where everything – including source code and component configuration – is stored in a model database.
[image: image4.jpg]GME

Metamodel
o o .
Tral?slztnr szlnymmt_‘
E —
(B Nodel Node2

Figure 4: Meta-model assisted component configuration management
The component management has three types of operation:

· Re-active component reconfiguration: The application’s control logic decides how to reconfigure the currently deployed component configuration to adapt to dynamically changing environmental factors. The IDE only tracks the changes; the control intelligence lies on the side of the application code. The decision-making is based both on the component configuration graph of the application and the current execution state.
· Pro-active component configuration: The IDE continuously evaluates the actual component configuration of the deployed application and decides when and how changes should be carried out. The intelligence emanates either from one of the plug-ins of the IDE or from any legacy tool connected to the IDE via a versatile XML importer facility. The decision-making is only based on the component configuration graph of the application.
· Component behavior change: The previous two reconfiguration types take effect only on the component configuration, however, the functionality of the component remains the same. The IDE has access to the model database, therefore, the programmer or any intelligent plug-in can modify the Erlang code of any of the components and via the automatic wrapper generation and deployment the functionality of the relevant parts of the application can be changed on the fly without even touching the current component configuration graph. Both the intelligence and the decision-making lie on the IDE side.
Obviously, any of the three operation types can be used separately, however, in most of the cases the pristine cases are combined seamlessly to match the environmental changes.
4. Component frameworks and the Deployment Tool
The main organization concept of the ErlCOM architecture focuses on the provision of system robustness. Therefore, the system is structured hierarchically. The configuration of the deployed components is represented by a graph whose branches are supervisors and whose leaves are gen_servers (communicating entities) or processes (component behaviors). Table 1 summarizes the mappings applied in ErlCOM.
	ErlCOM
	Erlang

	Capsule, Caplet, Component
	Supervisor

	Interface, Receptacle
	gen_server

	Component behavior, Notification listener,

Pre/post action
	process

Table 1 ErlCOM concepts mapping to Erlang
However, the static configuration of the supervisors does not seem to be sufficient to describe the reconfiguration demands corresponding to the changing environment. Furthermore, reconfiguration scenarios may involve ErlCOM entities from different levels of the hierarchy, in which case the supervisor cannot be used. To be able to categorize the reconfiguration scenarios the Component Framework (CF) concept has been introduced into ErlCOM. A Component Framework is the container and manager of logically coherent entities which can be deployed onto different parts of the system. An example of the Component Framework can be seen on Figure 5. The solid lines represent supervisor relationships, the dashed lines mean communication relationships and the dotted lines represent relationships to a CF. A Component Framework always contains two unit of functionality. The Notification Listener part is notified by the CRTK when a reconfiguration action on the entities related to the actual CF has been executed. The reconfiguration scenario which has to be executed in response to the CRTK action is placed in the Reconfiguration Engine. The Reconfiguration Engine part depends heavily on the actual function of the CF and it can apply very complex reconfiguration actions which affect the whole deployment of the configuration graph. On the contrary, the Notification Listener part depends on the CRTK commands so it can be templatized.
[image: image5.jpg]Component Framework
Capsulet Capsulet
SlaveCaplet1 SlaveCaplet2
Compt Comp2 Binding | Comp3
// X
Comp \ Comp
IF Behaviour Rec IF Rec |l gehaviour

Figure 5 Structure of the Component Framework
The following actions are valid CRTK reconfiguration commands:

· Load component

· Unload component

· Destroy component

· Migrate component to an other caplet

· Bind components

· Unbind components

· Migrate binding to an other caplet

· Add pre/post actions

· Remove pre/post actions

· Add metadata to an ErlCOM entity

· Remove metadata from an ErlCOM entity

· Add a caplet

· Remove a caplet

· Add a new capsule to the ErlCOM system

· Remove a node from the ErlCOM system

Since only these 15 commands can happen on CRTK level a simple template code for notification listeners can be defined. The template code enumerates the valid CRTK commands and their corresponding parameters. The notification listener template code is the following:
-module(notification_template).

-export([start/0,loop/0]).

start()->

Pid=spawn(?MODULE,loop,[]),

register(notify_gme,Pid),

Pid.

loop()->

receive

stop->true;

{Command,Parameters}->

prepare_command(Command,Parameters),

loop()

end.

prepare_command(load,Parameters)->

[CapletID,LoaderID,ModuleName,CompID,IFIDs,RecIDs]=Parameters;

prepare_command(unload,Parameters)->

[ComponentID]=Parameters;
prepare_command(migrate_component,Parameters)->

[OrigCapletID,OrigLoaderID,DestCapletID,DestLoaderID,CompID]=Parameters;

prepare_command(bind,Parameters)->

[CapletID,BinderID,IFID,RecID,ModuleName,BindingID]=Parameters;

prepare_command(unbind,Parameters)->

[IFID,RecID,BindingID]=Parameters;
prepare_command(migrate_binding,Parameters)->

[OrigCapletID,OrigBinderID,DestCapletID,DestBinderID,BindingID]=Params;

prepare_command(addPreActionFirst,Parameters)->

[BindingID,ModuleName] = Parameters;
prepare_command(addPreActionLast,Parameters)->

[BindingID,ModuleName] = Parameters;
prepare_command(addPreActionBefore,Parameters)->

[BindingID,ModuleName,NextModuleName]=Parameters;
prepare_command(addPreActionAfter,Parameters)->

[BindingID,ModuleName,PreviousModuleName]=Parameters;

prepare_command(deletePreAction,Parameters)->

[BindingID,PreActionName]=Parameters;
prepare_command(addPostActionFirst,Parameters)->

[BindingID,ModuleName] = Parameters;
prepare_command(addPostActionLast,Parameters)->

[BindingID,ModuleName] = Parameters;
prepare_command(addPostActionBefore,Parameters)->

[BindingID,ModuleName,NextModuleName]=Parameters;
prepare_command(addPostActionAfter,Parameters)->

[BindingID,ModuleName,PreviousModuleName]=Parameters;

prepare_command(deletePostAction,Parameters)->

[BindingID,PostActionName]=Parameters;

prepare_command(putprop,Parameters)->

[MetaDataID,EntityID,PropName,PropType,Value]=Parameters;

prepare_command(deleteprop,Parameters)->

[MetaDataID,EntityID,PropName]=Parameters;

prepare_command(create_caplet,Parameters)->

[CapletID,CapletName]=Parameters;

prepare_command(delete_caplet,Parameters)->

[CapletID]=Parameters;

prepare_command(create_capsule,Parameters)->

[CapsuleID,CapsuleName]=Parameters;

prepare_command(delete_capsule,Parameters)->

[CapsuleID]=Parameters;

prepare_command(_,_)->

 unknown_command_error.

The earlier mentioned Deployment Tool is an aggregation of a specialized Notification Listener and a CRTK actuator. The notification listener’s main tasks are listening to all CRTK events and sending them to the IDE in appropriate format. The CRTK and the IDE have different identifiers for the ErlCOM entities, therefore, the listener manage the IDE-to-CRTK identifier mapping. The actuator receives the commands from the IDE and evaluates them so that it could execute the correct sequence of CRTK commands.
5. Conclusion
The robust reconfigurability of ErlCOM and the versatile component configuration enabled by the Deployment Tool and the notification architecture coupled with the meta-modeling IDE realize the ideas behind our configuration aware distributed system design approach. The approach enables the programmer to concentrate on the application logic and the deployment adaptation logic separately and the infrastructure automatically generates the “intelligent glue” in the form of a dynamically reconfigurable component configuration which contains the application logic and behaves according to the deployment adaptation logic. In the framework of the ongoing RUNES IST project we have successfully used our approach and we hope that other Erlang projects will find the technique valuable both inside and outside Ericsson.
References

[1] RUNES IST Project, http://www.ist-runes.org/
[2] G. Batori, Z. Theisz, D. Asztalos: Robust Reconfigurable Erlang Component System, Erlang User Conference 2005, Stockholm, Sweden
[3] GME Documentation, http://www.isis.vanderbilt.edu/Projects/gme/
[4] Runes Hardware platform definition, http://www.ist-runes.org/docs/deliverables/ D3_04.pdf
