
ic
Copyright © 1998-2017 Ericsson AB. All Rights Reserved.

ic 4.4.2
March 14, 2017

Copyright © 1998-2017 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 14, 2017

Ericsson AB. All Rights Reserved.: ic | 1

1.1 Using the IC Compiler

2 | Ericsson AB. All Rights Reserved.: ic

1 IC User's Guide

The IC application is an Erlang implementation of an IDL compiler.

1.1 Using the IC Compiler
1.1.1 Introduction
The IC application is an IDL compiler implemented in Erlang. The IDL compiler generates client stubs and server
skeletons. Several back-ends are supported, and they fall into three main groups.

The first group consists of a CORBA back-end:

IDL to Erlang CORBA

This back-end is for CORBA communication and implementation, and the generated code uses the CORBA
specific protocol for communication between clients and servers. See the Orber application User's Guide and
manuals for further details.

The second group consists of a simple Erlang back-end:

IDL to plain Erlang

This back-end provides a very simple Erlang client interface. It can only be used within an Erlang node, and the
communication between client and "server" is therefore in terms of ordinary function calls.

This back-end can be considered a short-circuit version of the IDL to Erlang gen_server back-end (see further
below).

The third group consists of backends for Erlang, C, and Java. The communication between clients and servers is by
the Erlang distribution protocol, facilitated by erl_interface and jinterface for C and Java, respectively.

All back-ends of the third group generate code compatible with the Erlang gen_server behavior protocol. Thus
generated client code corresponds to call() or cast() of an Erlang gen_server. Similarly, generated server
code corresponds to handle_call() or handle_cast() of an Erlang gen_server.

The back-ends of the third group are:

IDL to Erlang gen_server

Client stubs and server skeletons are generated. Data types are mapped according to the IDL to Erlang mapping
described in the Orber User's Guide.

IDL to C client

Client stubs are generated. The mapping of data types is described further on in the C client part of this guide.

IDL to C server

Server skeletons are generated. The mapping of data types is described further on in the C server part of this guide.

IDL to Java

Client stubs and server skeletons are generated. The mapping of data types is described further on in the Java
part of this guide.

1.2 OMG IDL

Ericsson AB. All Rights Reserved.: ic | 3

1.1.2 Compilation of IDL Files
The IC compiler is invoked by executing the generic erlc compiler from a shell:

%> erlc +'{be,BackEnd}' File.idl

where BackEnd is according to the table below, and File.idl is the IDL file to be compiled.

Back-end BackEndoption

IDL to CORBA erl_corba

IDL to CORBA template erl_template

IDL to plain Erlang erl_plain

IDL to Erlang gen_server erl_genserv

IDL to C client c_client

IDL to C server c_server

IDL to Java java

Table 1.1: Compiler back-ends and options

For more details on IC compiler options consult the ic(3) manual page.

1.2 OMG IDL
1.2.1 OMG IDL - Overview
The purpose of OMG IDL, Interface Definition Language, mapping is to act as translator between platforms and
languages. An IDL specification is supposed to describe data types, object types etc.

Since the C and Java IC backends only supports a subset of the IDL types supported by the other backends, the
mapping is divided into different parts. For more information about IDL to Erlang mapping, i.e., CORBA, plain Erlang
and generic Erlang Server, see the Orber User's Guide. How to use the plain Erlang and generic Erlang Server is found
in this User's Guide.

Reserved Compiler Names and Keywords
The use of some names is strongly discouraged due to ambiguities. However, the use of some names is prohibited
when using the Erlang mapping , as they are strictly reserved for IC.

IC reserves all identifiers starting with OE_ and oe_ for internal use.

Note also, that an identifier in IDL can contain alphabetic, digits and underscore characters, but the first character
must be alphabetic.

Using underscores in IDL names can lead to ambiguities due to the name mapping described above. It is advisable
to avoid the use of underscores in identifiers.

1.2 OMG IDL

4 | Ericsson AB. All Rights Reserved.: ic

The OMG defines a set of reserved words, shown below, for use as keywords. These may not be used as, for example,
identifiers.

abstract double local raises typedef

any exception long readonly unsigned

attribute enum module sequence union

boolean factory native short ValueBase

case FALSE Object string valuetype

char fixed octet struct void

const float oneway supports wchar

context in out switch wstring

custom inout private TRUE

default interface public truncatable

Table 2.1: OMG IDL keywords

The keywords listed above must be written exactly as shown. Any usage of identifiers that collide with a keyword
is illegal. For example, long is a valid keyword; Long and LONG are illegal as keywords and identifiers. But, since
the OMG must be able to expand the IDL grammar, it is possible to use Escaped Identifiers. For example, it is not
unlikely that native have been used in IDL-specifications as identifiers. One option is to change all occurrences
to myNative. Usually, it is necessary to change programming language code that depends upon that IDL as well.
Since Escaped Identifiers just disable type checking (i.e. if it is a reserved word or not) and leaves everything else
unchanged, it is only necessary to update the IDL-specification. To escape an identifier, simply prefix it with _. The
following IDL-code is illegal:

typedef string native;
interface i {
 void foo(in native Arg);
 };
};

With Escaped Identifiers the code will look like:

typedef string _native;
interface i {
 void foo(in _native Arg);
 };
};

1.3 IC Protocol

Ericsson AB. All Rights Reserved.: ic | 5

1.3 IC Protocol
The purpose of this chapter is to explain the bits and bytes of the IC protocol, which is a composition of the Erlang
distribution protocol and the Erlang/OTP gen_server protocol. If you do not intend to replace the Erlang distribution
protocol, or replace the gen_server protocol, skip over this chapter.

1.3.1 Introduction
The IDL Compiler (IC) transforms Interface Definition Language (IDL) specifications files to interface code for
Erlang, C, and Java. The Erlang language mapping is described in the Orber documentation, while the other mappings
are described in the IC documentation (they are of course in accordance with the CORBA C and Java language mapping
specifications, with some restrictions).

The most important parts of an IDL specification are the operation declarations. An operation defines what information
a client provides to a server, and what information (if any) the client gets back from the server. We consider IDL
operations and language mappings in section 2.

What we here call the IC protocol, is the description of messages exchanged between IC end-points (client and servers).
It is valid for all IC back-ends, except the 'erl_plain' and 'erl_corba' back-ends. The IC protocol is in turn embedded
into the Erlang gen_server protocol, which is described below. Finally, the gen_server protocol is embedded in the
Erlang distribution protocol. Pertinent parts of that protocol is described further below.

1.3.2 Language mappings and IDL operations
IDL Operations
An IDL operation is declared as follows:

 [oneway] RetType Op(in IType1 I1, in IType2 I2, ..., in ITypeN IN,
 out OType1 O1, out OType2 O2, ..., out OTypeM OM)
 N, M = 0, 1, 2, ... (2.1.1)

`Op' is the operation name, RetType is the return type, and ITypei, i = 1, 2, ..., N, and OTypej, j = 1, 2, ..., M, are the
`in' types and `out' types, respectively. The values I1, I2, ..., IN are provided by the caller, and the value of RetType,
and the values O1, O2, ..., OM, are provided as results to the caller.

The types can be any basic types or derived types declared in the IDL specification of which the operation declaration
is a part.

If the RetType has the special name ̀ void' there is no return value (but there might still be result values O1, 02, ..., OM).

The `in' and `out' parameters can be declared in any order, but for clarity we have listed all `in' parameters before the
`out' parameters in the declaration above.

If the keyword `oneway' is present, the operation is a cast, i.e. there is no confirmation of the operation, and
consequently there must be no result values: RetType must be equal to `void', and M = 0 must hold.

Otherwise the operation is a call, i.e. it is confirmed (or else an exception is raised).

Note carefully that an operation declared without `oneway' is always a call, even if RetType is `void' and M = 0.

Language Mappings
There are several CORBA Language Mapping specifications. These are about mapping interfaces to various
programming languages. IC supports the CORBA C and Java mapping specifications, and the Erlang language
mapping specified in the Orber documentation.

1.3 IC Protocol

6 | Ericsson AB. All Rights Reserved.: ic

Excerpt from "6.4 Basic OMG IDL Types" in the Orber User's Guide:

• Functions with return type void will return the atom ok.

Excerpt from "6.13 Invocations of Operations" in the Orber User's Guide:

• A function call will invoke an operation. The first parameter of the function should be the object reference and
then all in and inout parameters follow in the same order as specified in the IDL specification. The result will be
a return value unless the function has inout or out parameters specified; in which case, a tuple of the return value,
followed by the parameters will be returned.

Hence the function that is mapped from an IDL operation to Erlang always have a return value (an Erlang function
always has). That fact has influenced the IC protocol, in that there is always a return value (which is 'ok' if the return
type was declared 'void').

1.3.3 IC Protocol
Given the operation declaration (2.1.1) the IC protocol maps to messages as follows, defined in terms of Erlang terms.

Call (Request/Reply, i.e. not oneway)

 request: Op atom() N = 0
 {Op, I1, I2, ..., IN} tuple() N > 0
 (3.1.1)

 reply: Ret M = 0
 {Ret, O1, O2, ..., OM} M > 0
 (3.1.2)

Notice: Even if the RetType of the operation Op is declared to be 'void', a return value 'ok' is returned in the reply
message. That return value is of no significance, and is therefore ignored (note however that a C server back-end
returns the atom 'void' instead of 'ok').

Cast (oneway)

 notification: Op atom() N = 0
 {Op, I1, I2, ..., IN} tuple() N > 0
 (3.2.1)

(There is of course no return message).

1.3.4 Gen_server Protocol
Most of the IC generated code deals with encoding and decoding the gen_server protocol.

Call

 request: {'$gen_call', {self(), Ref}, Request} (4.1.1)

 reply: {Ref, Reply} (4.1.2)

where Request and Reply are the messages defined in the previous chapter.

1.4 Using the Plain Erlang Back-end

Ericsson AB. All Rights Reserved.: ic | 7

Cast

 notification: {'$gen_cast', Notification} (4.2.1)

where Notification is the message defined in the previous chapter.

1.3.5 Erlang Distribution Protocol
Messages (of interest here) between Erlang nodes are of the form:

 Len(4), Type(1), CtrlBin(N), MsgBin(M) (5.1)

Type is equal to 112 = PASS_THROUGH.

CtrlBin and MsgBin are Erlang terms in binary form (as if created by term_to_binary/1), whence for each of them the
first byte is equal to 131 = VERSION_MAGIC.

CtrlBin (of interest here) contains the SEND and REG_SEND control messages, which are binary forms of the Erlang
terms

 {2, Cookie, ToPid} , (5.2)

and

 {6, FromPid, Cookie, ToName} , (5.3)

respectively.

The CtrlBin(N) message is read and written by erl_interface code (C), j_interface code (Java), or the Erlang distribution
implementation, which are invoked from IC generated code.

The MsgBin(N) is the "real" message, i.e. of the form described in the previous section.

1.4 Using the Plain Erlang Back-end
1.4.1 Introduction
The mapping of OMG IDL to the Erlang programming language when Plain Erlang is the back-end of choice is similar
to the one used in pure Erlang IDL mapping. The only difference is on the generated code and the extended use of
pragmas for code generation: IDL functions are translated to Erlang module function calls.

1.4.2 Compiling the Code
In the Erlang shell type :

ic:gen(<filename>, [{be, erl_plain}]).

1.4.3 Writing the Implementation File
For each IDL interface <interface name> defined in the IDL file:

1.4 Using the Plain Erlang Back-end

8 | Ericsson AB. All Rights Reserved.: ic

• Create the corresponding Erlang file that will hold the Erlang implementation of the IDL definitions.

• Call the implementation file after the scope of the IDL interface, followed by the suffix _impl.

• Export the implementation functions.

For each function defined in the IDL interface :

• Implement an Erlang function that uses as arguments in the same order, as the input arguments described in the
IDL file, and returns the value described in the interface.

• When using the function, follow the mapping described in chapter 2.

1.4.4 An Example
In this example, a file "random.idl" is generates code for the plain Erlang back-end :

• Main file : "plain.idl"

module rmod {

 interface random {

 double produce();

 oneway void init(in long seed1, in long seed2, in long seed3);

 };

};

Compile the file :

 Erlang (BEAM) emulator version 4.9

 Eshell V4.9 (abort with ^G)
 1> ic:gen(random,[{be, erl_plain}]).
 Erlang IDL compiler version 2.5.1
 ok
 2>

When the file "random.idl" is compiled it produces five files: two for the top scope, two for the interface scope, and
one for the module scope. The header files for top scope and interface are empty and not shown here. In this case only
the file for the interface rmod_random.erl is important :.

• Erlang file for interface : "rmod_random.erl"

-module(rmod_random).

%% Interface functions
-export([produce/0, init/3]).

%%--

1.4 Using the Plain Erlang Back-end

Ericsson AB. All Rights Reserved.: ic | 9

%% Operation: produce
%%
%% Returns: RetVal
%%
produce() ->
 rmod_random_impl:produce().

%%--
%% Operation: init
%%
%% Returns: RetVal
%%
init(Seed1, Seed2, Seed3) ->
 rmod_random_impl:init(Seed1, Seed2, Seed3).

The implementation file should be called rmod_random_impl.erl and could look like this:

 -module('rmod_random_impl').

 -export([produce/0,init/3]).

 produce() ->
 random:uniform().

 init(S1,S2,S3) ->
 random:seed(S1,S2,S3).

Compiling the code :

2> make:all().
Recompile: rmod_random
Recompile: oe_random
Recompile: rmod_random_impl
up_to_date

Running the example :

3> rmod_random:init(1,2,3).
ok
4> rmod_random:produce().
1.97963e-4
5>

1.5 Using the Erlang Generic Server Back-end

10 | Ericsson AB. All Rights Reserved.: ic

1.5 Using the Erlang Generic Server Back-end
1.5.1 Introduction
The mapping of OMG IDL to the Erlang programming language when Erlang generic server is the back-end of choice
is similar to the one used in the chapter 'OMG IDL Mapping'. The only difference is in the generated code, a client
stub and server skeleton to an Erlang gen_server. Orber's User's Guide contain a more detailed description of IDL
to Erlang mapping.

1.5.2 Compiling the Code
The ic:gen/2 function can be called from the command line as follows:

shell> erlc "+{be, erl_genserv}" MyFile.idl

1.5.3 Writing the Implementation File
For each IDL interface <interface name> defined in the IDL file :

• Create the corresponding Erlang file that will hold the Erlang implementation of the IDL definitions.

• Call the implementation file after the scope of the IDL interface, followed by the suffix _impl.

• Export the implementation functions.

For each function defined in the IDL interface :

• Implement an Erlang function that uses as arguments in the same order, as the input arguments described in the
IDL file, and returns the value described in the interface.

• When using the function, follow the mapping described in chapter 2.

1.5.4 An Example
In this example, a file random.idl generates code for the Erlang gen_server back-end:

// Filename random.idl
module rmod {

 interface random {
 // Generate a new random number
 double produce();
 // Initialize random generator
 oneway void init(in long seed1, in long seed2, in long seed3);

 };
};

When the file "random.idl" is compiled (e.g., shell> erlc "+{be, erl_genserv}" random.idl) five
files are produced; two for the top scope, two for the interface scope, and one for the module scope. The header files
for top scope and interface are empty and not shown here. In this case, the stub/skeleton file rmod_random.erl is
the most important. This module exports two kinds of operations:

• Administrative - used when, for example, creating and terminating the server.

• IDL dependent - operations defined in the IDL specification. In this case, produce and init.

1.5 Using the Erlang Generic Server Back-end

Ericsson AB. All Rights Reserved.: ic | 11

Administrative Operations
To create a new server instance, one of the following functions should be used:

• oe_create/0/1/2 - create a new instance of the object. Accepts Env and RegName, in that order, as parameters.
The former is passed uninterpreted to the initialization operation of the call-back module, while the latter must
be as the gen_server parameter ServerName. If Env is left out, an empty list will be passed.

• oe_create_link/0/1/2 - similar to oe_create/0/1/2, but create a linked server.

• typeID/0 - returns the scooped id compliant with the OMG standard. In this case the string "IDL:rmod/
random:1.0".

• stop/1 - asynchronously terminate the server. The required argument is the return value from any of the start
functions.

IDL Dependent Operations
Operations can either be synchronous or asynchronous (i.e., oneway). These are, respectively, mapped to
gen_server:call/2/3 and gen_server:cast/2. Consult the gen_server documentation for valid return
values.

The IDL dependent operations in this example are listed below. The first argument must be the whatever the create
operation returned.

• init(ServerReference, Seed1, Seed2, Seed3) - initialize the random number generator.

• produce(ServerReference) - generate a new random number.

If the compile option timeout is used a timeout must be added (e.g., produce(ServerReference, 5000)).
For more information, see the gen_server documentation.

Implementation Module
The implementation module shall, unless the compile option impl is used, be named rmod_random_impl.erl.
and could look like this:

-module('rmod_random_impl').
%% Mandatory gen_server operations
-export([init/1, terminate/2, code_change/3]).
%% Add if 'handle_info' compile option used
-export([handle_info/2]).
%% API defined in IDL specification
-export([produce/1,init/4]).

%% Mandatory operations
init(Env) ->
 {ok, []}.

terminate(From, Reason) ->
 ok.

code_change(OldVsn, State, Extra) ->
 {ok, State}.

%% Optional
handle_info(Info, State) ->
 {noreply, NewState}.

%% IDL specification
produce(State) ->
 case catch random:uniform() of
 {'EXIT',_} ->
 {stop, normal, "random:uniform/0 - EXIT", State};

1.6 IDL to C mapping

12 | Ericsson AB. All Rights Reserved.: ic

 RUnif ->
 {reply, RUnif, State}
 end.

init(State, S1, S2, S3) ->
 case catch random:seed(S1, S2, S3) of
 {'EXIT',_} ->
 {stop, normal, State};
 _ ->
 {noreply, State}
 end.

Compile the code and run the example:

1> make:all().
Recompile: rmod_random
Recompile: oe_random
Recompile: rmod_random_impl
up_to_date
2> {ok,R} = rmod_random:oe_create().
{ok,<0.30.0>}
3> rmod_random:init(R, 1, 2, 3).
ok
4> rmod_random:produce(R).
1.97963e-4
5>

1.6 IDL to C mapping
1.6.1 Introduction
The IC C mapping (used by the C client and C server back-ends) follows the OMG C Language Mapping
Specification.

The C mapping supports the following:

• All OMG IDL basic types except long double and any.

• All OMG IDL constructed types.

• OMG IDL constants.

• Operations with passing of parameters and receiving of results. inout parameters are not supported.

The following is not supported:

• Access to attributes.

• User defined exceptions.

• User defined objects.

1.6.2 C Mapping Characteristics
Reserved Names
The IDL compiler reserves all identifiers starting with OE_ and oe_ for internal use.

1.6 IDL to C mapping

Ericsson AB. All Rights Reserved.: ic | 13

Scoped Names
The C programmer must always use the global name for a type, constant or operation. The C global name corresponding
to an OMG IDL global name is derived by converting occurrences of "::" to underscore, and eliminating the leading
"::". So, for example, an operation op1 defined in interface I1 which is defined in module M1 would be written as
M1::I1::op1 in IDL and as M1_I1_op1 in C.

Warning:
If underscores are used in IDL names it can lead to ambiguities due to the name mapping described above,
therefore it is advisable to avoid underscores in identifiers.

Generated Files
Two files will be generated for each scope. One set of files will be generated for each module and each interface scope.
An extra set is generated for those definitions at top level scope. One of the files is a header file(.h), and the other file
is a C source code file (.c). In addition to these files a number of C source files will be generated for type encodings,
they are named according to the following template: oe_code_<type>.c.

For example:

// IDL, in the file "spec.idl"
module m1 {

 typedef sequence<long> lseq;

 interface i1 {
 ...
 };
 ...
};

XXX This is C client specific. Will produce the files oe_spec.h and oe_spec.c for the top scope level. Then the
files m1.h and m1.c for the module m1 and files m1_i1.h and m1_i1.c for the interface i1. The typedef will
produce oe_code_m1_lseq.c.

The header file contains type definitions for all struct types and sequences and constants in the IDL file. The c file
contains all operation stubs if the the scope is an interface.

In addition to the scope-related files a C source file will be generated for encoding operations of all struct and
sequence types.

1.6.3 Basic OMG IDL Types
The mapping of basic types is as follows.

OMG IDL type C type Mapped to C type

float CORBA_float float

double CORBA_double double

1.6 IDL to C mapping

14 | Ericsson AB. All Rights Reserved.: ic

short CORBA_short short

unsigned short CORBA_unsigned_short unsigned short

long CORBA_long long

long long CORBA_long_long long

unsigned long CORBA_unsigned_long unsigned long

unsigned long long CORBA_unsigned_long_long unsigned long

char CORBA_char char

wchar CORBA_wchar unsigned long

boolean CORBA_boolean unsigned char

octet CORBA_octet char

any Not supported

long double Not supported

Object Not supported

void void void

Table 6.1: OMG IDL Basic Types

XXX Note that several mappings are not according to OMG C Language mapping.

1.6.4 Constructed OMG IDL Types
Constructed types have mappings as shown in the following table.

OMG IDL type Mapped to C type

string CORBA_char*

wstring CORBA_wchar*

struct struct

union union

enum enum

sequence struct (see below)

1.6 IDL to C mapping

Ericsson AB. All Rights Reserved.: ic | 15

array array

Table 6.2: OMG IDL Constructed Types

An OMG IDL sequence (an array of variable length),

// IDL
typedef sequence <IDL_TYPE> NAME;

is mapped to a C struct as follows:

/* C */
typedef struct {
 CORBA_unsigned_long _maximum;
 CORBA_unsigned_long _length;
 C_TYPE* _buffer;
} C_NAME;

where C_TYPE is the mapping of IDL_TYPE, and where C_NAME is the scoped name of NAME.

1.6.5 OMG IDL Constants
An IDL constant is mapped to a C constant through a C #define macro, where the name of the macro is scoped.
Example:

// IDL
module M1 {
 const long c1 = 99;
};

results in the following:

/* C */
#define M1_c1 99

1.6.6 OMG IDL Operations
An OMG IDL operation is mapped to C function. Each C operation function has two mandatory parameters: a first
parameter of interface object type, and a last parameter of environment type.

In a C operation function the the in and out parameters are located between the first and last parameters described
above, and they appear in the same order as in the IDL operation declaration.

Notice that inout parameters are not supported.

The return value of an OMG IDL operation is mapped to a corresponding return value of the C operation function.

1.6 IDL to C mapping

16 | Ericsson AB. All Rights Reserved.: ic

Mandatory C operation function parameters:

• CORBA_Object oe_obj - the first parameter of a C operation function. This parameter is required by the
OMG C Language Mapping Specification, but in the current implementation there is no particular use for it.

• CORBA_Environment* oe_env - the last parameter of a C operation function. The parameter is defined in
the C header file ic.h and has the following public fields:

• CORBA_Exception_type _major - indicates if an operation invocation was successful which will be
one of the following:

• CORBA_NO_EXCEPTION

• CORBA_SYSTEM_EXCEPTION

• int _fd - a file descriptor returned from erl_connect function.

• int _inbufsz - size of input buffer.

• char* _inbuf - pointer to a buffer used for input.

• int _outbufsz - size of output buffer.

• char* _outbuf - pointer to a buffer used for output.

• int _memchunk - expansion unit size for the output buffer. This is the size of memory chunks in bytes used
for increasing the output in case of buffer expansion. The value of this field must be always set to >= 32,
should be at least 1024 for performance reasons.

• char regname[256] - a registered name for a process.

• erlang_pid* _to_pid - an Erlang process identifier, is only used if the registered_name parameter is the
empty string.

• erlang_pid* _from_pid - your own process id so the answer can be returned

Beside the public fields, other private fields are internally used but are not mentioned here.

Example:

// IDL
interface i1 {
 long op1(in long a);
 long op2(in string s, out long count);
};

Is mapped to the following C functions

/* C */
CORBA_long i1_op1(i1 oe_obj, CORBA_long a, CORBA_Environment* oe_env)
{
 ...
}
CORBA_long i1_op2(i1 oe_obj, CORBA_char* s, CORBA_long *count,
CORBA_Environment* oe_env)
{
 ...
}

1.6 IDL to C mapping

Ericsson AB. All Rights Reserved.: ic | 17

Operation Implementation
There is no standard CORBA mapping for the C-server side, as it is implementation-dependent but built in a similar
way. The current server side mapping is different from the client side mapping in several ways:

• Argument mappings

• Result values

• Structure

• Usage

• Exception handling

1.6.7 Exceptions
Although exception mapping is not implemented, the stubs will generate CORBA system exceptions in case of
operation failure. Thus, the only exceptions propagated by the system are built in system exceptions.

1.6.8 Access to Attributes
Not Supported

1.6.9 Summary of Argument/Result Passing for the C-client
The user-defined parameters can only be in or out parameters, as inout parameters are not supported.

This table summarize the types a client passes as arguments to a stub, and receives as a result.

OMG IDL type In Out Return

short CORBA_short CORBA_short* CORBA_short

long CORBA_long CORBA_long* CORBA_long

long long CORBA_long_long CORBA_long_long* CORBA_long_long

unsigned short CORBA_unsigned_short CORBA_unsigned_short* CORBA_unsigned_short

unsigned long CORBA_unsigned_long CORBA_unsigned_long* CORBA_unsigned_long

unsigned long long CORBA_unsigned_long_longCORBA_unsigned_long_long*CORBA_unsigned_long_long

float CORBA_float CORBA_float* CORBA_float

double CORBA_double CORBA_double* CORBA_double

boolean CORBA_boolean CORBA_boolean* CORBA_boolean

char CORBA_char CORBA_char* CORBA_char

wchar CORBA_wchar CORBA_wchar* CORBA_wchar

octet CORBA_octet CORBA_octet* CORBA_octet

enum CORBA_enum CORBA_enum* CORBA_enum

1.6 IDL to C mapping

18 | Ericsson AB. All Rights Reserved.: ic

struct, fixed struct* struct* struct

struct, variable struct* struct** struct*

union, fixed union* union* union

union, variable union* union** union*

string CORBA_char* CORBA_char** CORBA_char*

wstring CORBA_wchar* CORBA_wchar** CORBA_wchar*

sequence sequence* sequence** sequence*

array, fixed array array array_slice*

array, variable array array_slice** array_slice*

Table 6.3: Basic Argument and Result passing

A client is responsible for providing storage of all arguments passed as in arguments.

OMG IDL type Out Return

short 1 1

long 1 1

long long 1 1

unsigned short 1 1

unsigned long 1 1

unsigned long long 1 1

float 1 1

double 1 1

boolean 1 1

char 1 1

wchar 1 1

octet 1 1

enum 1 1

struct, fixed 1 1

1.6 IDL to C mapping

Ericsson AB. All Rights Reserved.: ic | 19

struct, variable 2 2

string 2 2

wstring 2 2

sequence 2 2

array, fixed 1 3

array, variable 3 3

Table 6.4: Client argument storage responsibility

Case Description

1
Caller allocates all necessary storage, except that which
may be encapsulated and managed within the parameter
itself.

2

The caller allocates a pointer and passes it by reference
to the callee. The callee sets the pointer to point to a
valid instance of the parameter's type. The caller is
responsible for releasing the returned storage. Following
completion of a request, the caller is not allowed to
modify any values in the returned storage. To do so the
caller must first copy the returned instance into a new
instance, then modify the new instance.

3

The caller allocates a pointer to an array slice which
has all the same dimensions of the original array except
the first, and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of
the array. The caller is responsible for releasing the
returned storage. Following completion of a request,
the caller is not allowed to modify any values in the
returned storage. To do so the caller must first copy the
returned instance into a new instance, then modify the
new instance.

Table 6.5: Argument passing cases

The returned storage in case 2 and 3 is allocated as one block of memory so it is possible to deallocate it with one
call of CORBA_free.

1.6.10 Supported Memory Allocation Functions
• CORBA_Environment can be allocated from the user by calling CORBA_Environment_alloc().

The interface for this function is

CORBA_Environment *CORBA_Environment_alloc(int inbufsz, int outbufsz);

1.6 IDL to C mapping

20 | Ericsson AB. All Rights Reserved.: ic

where :

• inbufsz is the desired size of input buffer

• outbufsz is the desired size of output buffer

• return value is a pointer to an allocated and initialized CORBA_Environment structure

• Strings can be allocated from the user by calling CORBA_string_alloc().

The interface for this function is

CORBA_char *CORBA_string_alloc(CORBA_unsigned_long len);

where :

• len is the length of the string to be allocated.

Thus far, no other type allocation function is supported.

1.6.11 Special Memory Deallocation Functions
• void CORBA_free(void *storage)

This function will free storage allocated by the stub.

• void CORBA_exception_free(CORBA_environment *ev)

This function will free storage allocated under exception propagation.

1.6.12 Exception Access Functions
• CORBA_char *CORBA_exception_id(CORBA_Environment *ev)

This function will return raised exception identity.

• void *CORBA_exception_value(CORBA_Environment *ev)

This function will return the value of a raised exception.

1.6.13 Special Types
• The erlang binary type has some special features.

While the erlang::binary idl type has the same C-definition as a generated sequence of octets :

 module erlang
 {

 // an erlang binary
 typedef sequence<octet> binary;

 };

it provides a way on sending trasparent data between C and Erlang.

The C-definition (ic.h) for an erlang binary is :

 typedef struct {
 CORBA_unsigned_long _maximum;

1.6 IDL to C mapping

Ericsson AB. All Rights Reserved.: ic | 21

 CORBA_unsigned_long _length;
 CORBA_octet* _buffer;
 } erlang_binary; /* ERLANG BINARY */

The differences (between erlang::binary and sequence< octet >) are :

• on the erlang side the user is sending/receiving typical built in erlang binaries, using
term_to_binary() / binary_to_term() to create / extract binary structures.

• no encoding/decoding functions are generated

• the underlying protocol is more efficient than usual sequences of octets

The erlang binary IDL type is defined in erlang.idl, while its C definition is located in the ic.h header file,
both in the IC-< vsn >/include directory. The user will have to include the file erlang.idl in order
to use the erlang::binary type.

1.6.14 A Mapping Example
This is a small example of a simple stack. There are two operations on the stack, push and pop. The example shows
all generated files as well as conceptual usage of the stack.

// The source IDL file: stack.idl

struct s {
 long l;
 string s;
};

interface stack {
 void push(in s val);
 s pop();
};

When this file is compiled it produces four files, two for the top scope and two for the stack interface scope. The
important parts of the generated C code for the stack API is shown below.

stack.c

void push(stack oe_obj, s val, CORBA_Environment* oe_env) {
 ...
}

s* pop(stack oe_obj, CORBA_Environment* oe_env) {
 ...
}

oe_stack.h

#ifndef OE_STACK_H
#define OE_STACK_H

1.7 The C Client Back-end

22 | Ericsson AB. All Rights Reserved.: ic

/*--
 * Struct definition: s
 */
typedef struct {
 long l;
 char *s;
} s;

#endif

stack.h just contains an include statement of oe_stack.h.

oe_code_s.c

int oe_sizecalc_s(CORBA_Environment
 oe_env, int oe_size_count_index, int* oe_size) {
 ...
}

int oe_encode_s(CORBA_Environment *oe_env, s* oe_rec) {
 ...
}

int oe_decode_s(CORBA_Environment *oe_env, char *oe_first,
 int* oe_outindex, s *oe_out) {
 ...
}

The only files that are really important are the .h files and the stack.c file.

1.7 The C Client Back-end
1.7.1 Introduction
With the option {be, c_client} the IDL Compiler generates C client stubs according to the IDL to C mapping,
on top of the Erlang distribution and gen_server protocols.

The developer has to write additional code, that together with the generated C client stubs, form a hidden Erlang node.
That additional code uses erl_interface functions for defining the hidden node, and for establishing connections
to other Erlang nodes.

1.7.2 Generated Stub Files
The generated stub files are:

• For each IDL interface, a C source file, the name of which is <Scoped Interface Name>.c. Each operation
of the IDL interface is mapped to a C function (with scoped name) in that file;

• C source files that contain functions for type conversion, memory allocation, and data encoding/decoding;

• C header files that contain function prototypes and type definitions.

All C functions are exported (i.e. not declared static).

1.7 The C Client Back-end

Ericsson AB. All Rights Reserved.: ic | 23

1.7.3 C Interface Functions
For each IDL operation a C interface function is generated, the prototype of which is:

<Return Value> <Scoped Function Name>(<Interface Object> oe_obj, <Parameters>,
CORBA_Environment *oe_env);

where

• <Return Value> is the value to be returned as defined by the IDL specification;

• <Interface Object> oe_obj is the client interface object;

• <Parameters> is a list of parameters of the operation, defined in the same order as defined by the IDL
specification;

• CORBA_Environment *oe_env is a pointer to the current client environment. It contains the current file
descriptor, the current input and output buffers, etc. For details see CORBA_Environment C Structure.

1.7.4 Generating, Compiling and Linking
To generate the C client stubs type the following in an appropriate shell:

erlc -I ICROOT/include "+{be, c_client}" File.idl,

where ICROOT is the root of the IC application. The -I ICROOT/include is only needed if File.idl refers
to erlang.idl.

When compiling a generated C stub file, the directories ICROOT/include and EICROOT/include, have to be
specified as include directories, where EIROOT is the root directory of the Erl_interface application.

When linking object files the EIROOT/lib and ICROOT/priv/lib directories have to be specified.

1.7.5 An Example
In this example the IDL specification file "random.idl" is used for generating C client stubs (the file is contained in
the IC /examples/c-client directory):

module rmod {

 interface random {

 double produce();

 oneway void init(in long seed1, in long seed2, in long seed3);

 };

};

Generate the C client stubs:

erlc '+{be, c_client}' random.idl
Erlang IDL compiler version X.Y.Z

Six files are generated.

Compile the C client stubs:

Please read the ReadMe file att the examples/c-client directory

1.8 The C Server Back-end

24 | Ericsson AB. All Rights Reserved.: ic

In the same directory you can find all the code for this example.

In particular you will find the client.c file that contains all the additional code that must be written to obtain a
complete client.

In the examples/c-client directory you will also find source code for an Erlang server, which can be used for
testing the C client.

1.8 The C Server Back-end
1.8.1 Introduction
With the option {be, c_server} the IDL Compiler generates C server skeletons according to the IDL to C
mapping, on top of the Erlang distribution and gen_server protocols.

The developer has to write additional code, that together with the generated C server skeletons, form a hidden
Erlang node. That additional code contains implementations of call-back functions that implement the true server
functionality, and also code uses erl_interface functions for defining the hidden node and for establishing
connections to other Erlang nodes.

1.8.2 Generated Stub Files
The generated stub files are:

• For each IDL interface, a C source file, the name of which is <Scoped Interface Name>__s.c. Each
operation of the IDL interface is mapped to a C function (with scoped name) in that file;

• C source files that contain functions for type conversion, memory allocation, and data encoding/decoding;

• C header files that contain function prototypes and type definitions.

All C functions are exported (i.e. not declared static).

1.8.3 C Skeleton Functions
For each IDL operation a C skeleton function is generated, the prototype of which is int <Scoped
Function Name>__exec(<Interface Object> oe_obj, CORBA_Environment *oe_env), where
<Interface Object>, and CORBA_Environment are of the same type as for the generated C client stubs code.

Each <Scoped Function Name>__exec() function calls the call-back function

<Scoped Function Name>_rs* <Scoped Function Name>__cb(<Interface Object> oe_obj,
<Parameters>, CORBA_Environment *oe_env)

where the arguments are of the same type as those generated for C client stubs.

The return value <Scoped Function Name>_rs* is a pointer to a function with the same signature as the
call-back function <Scoped Function Name>_cb, and is called after the call-back function has been evaluated
(provided that the pointer is not equal to NULL).

1.8.4 The Server Loop
The developer has to implement code for establishing connections with other Erlang nodes, code for call-back functions
and restore functions.

In addition, the developer also has to implement code for a server loop, that receives messages and calls the relevant
__exec function. For that purpose the IC library function oe_server_receive() function can be used.

1.9 CORBA_Environment C Structure

Ericsson AB. All Rights Reserved.: ic | 25

1.8.5 Generating, Compiling and Linking
To generate the C server skeletons type the following in an appropriate shell:

erlc -I ICROOT/include "+{be, c_server}" File.idl,

where ICROOT is the root of the IC application. The -I ICROOT/include is only needed if File.idl refers
to erlang.idl.

When compiling a generated C skeleton file, the directories ICROOT/include and EICROOT/include, have to
be specified as include directories, where EIROOT is the root directory of the Erl_interface application.

When linking object files the EIROOT/lib and ICROOT/priv/lib directories have to be specified.

1.8.6 An Example
In this example the IDL specification file "random.idl" is used for generating C server skeletons (the file is contained
in the IC /examples/c-server directory):

module rmod {

 interface random {

 double produce();

 oneway void init(in long seed1, in long seed2, in long seed3);

 };

};

Generate the C server skeletons:

erlc '+{be, c_server}' random.idl
Erlang IDL compiler version X.Y.Z

Six files are generated.

Compile the C server skeletons:

Please read the ReadMe file in the examples/c-server directory.

In the same directory you can find all the code for this example. In particular you will find the server.c file that
contains all the additional code that must be written to obtain a complete server.

In the examples/c-server directory you will also find source code for an Erlang client, which can be used for
testing the C server.

1.9 CORBA_Environment C Structure
This chapter describes the CORBA_Environment C structure.

1.9.1 C Structure
Here is the complete definition of the CORBA_Environment C structure, defined in file "ic.h" :

1.9 CORBA_Environment C Structure

26 | Ericsson AB. All Rights Reserved.: ic

/* Environment definition */
typedef struct {

 /*----- CORBA compatibility part ------------------------*/
 /* Exception tag, initially set to CORBA_NO_EXCEPTION ---*/
 CORBA_exception_type _major;

 /*----- External Implementation part - initiated by the user ---*/
 /* File descriptor */
 int _fd;
 /* Size of input buffer */
 int _inbufsz;
 /* Pointer to always dynamically allocated buffer for input */
 char *_inbuf;
 /* Size of output buffer */
 int _outbufsz;
 /* Pointer to always dynamically allocated buffer for output */
 char *_outbuf;
 /* Size of memory chunks in bytes, used for increasing the output
 buffer, set to >= 32, should be around >= 1024 for performance
 reasons */
 int _memchunk;
 /* Pointer for registered name */
 char _regname[256];
 /* Process identity for caller */
 erlang_pid *_to_pid;
 /* Process identity for callee */
 erlang_pid *_from_pid;

 /*- Internal Implementation part - used by the server/client ---*/
 /* Index for input buffer */
 int _iin;
 /* Index for output buffer */
 int _iout;
 /* Pointer for operation name */
 char _operation[256];
 /* Used to count parameters */
 int _received;
 /* Used to identify the caller */
 erlang_pid _caller;
 /* Used to identify the call */
 erlang_ref _unique;
 /* Exception id field */
 CORBA_char *_exc_id;
 /* Exception value field */
 void *_exc_value;

} CORBA_Environment;

The structure is divided into three parts:

• The CORBA Compatibility part, demanded by the standard OMG IDL mapping v2.0.

• The external implementation part used for generated client/server code.

• The internal part useful for those who wish to define their own functions.

1.9.2 The CORBA Compatibility Part
Contains only one field _major defined as a CORBA_Exception_type. The CORBA_Exception type is an integer
which can be one of:

• CORBA_NO_EXCEPTION, by default equal to 0, can be set by the application programmer to another value.

1.9 CORBA_Environment C Structure

Ericsson AB. All Rights Reserved.: ic | 27

• CORBA_SYSTEM_EXCEPTION, by default equal to -1, can be set by the application programmer to another
value.

The current definition of these values are:

 #define CORBA_NO_EXCEPTION 0
 #define CORBA_SYSTEM_EXCEPTION -1

1.9.3 The External Part
This part contains the following fields:

• int _fd - a file descriptor returned from erl_connect. Used for connection setting.

• char* _inbuf - pointer to a buffer used for input. Buffer size checks are done under runtime that prevent buffer
overflows. This is done by expanding the buffer to fit the input message. In order to allow buffer reallocation,
the output buffer must always be dynamically allocated. The pointer value can change under runtime in case of
buffer reallocation.

• int _inbufsz - start size of input buffer. Used for setting the input buffer size under initialization of the Erl_Interface
function ei_receive_encoded/5. The value of this field can change under runtime in case of input buffer expansion
to fit larger messages

• int _outbufsz - start size of output buffer. The value of this field can change under runtime in case of input buffer
expansion to fit larger messages

• char* _outbuf - pointer to a buffer used for output. Buffer size checks prevent buffer overflows under runtime,
by expanding the buffer to fit the output message in cases of lack of space in buffer. In order to allow buffer
reallocation, the output buffer must always be dynamically allocated. The pointer value can change under runtime
in case of buffer reallocation.

• int _memchunk - expansion unit size for the output buffer. This is the size of memory chunks in bytes used for
increasing the output in case of buffer expansion. The value of this field must be always set to >= 32, should be
at least 1024 for performance reasons.

• char regname[256] - a registered name for a process.

• erlang_pid* _to_pid - an Erlang process identifier, is only used if the registered_name parameter is the empty
string.

• erlang_pid* _from_pid - your own process id so the answer can be returned.

1.9.4 The Internal Part
This part contains the following fields:

• int _iin - Index for input buffer. Initially set to zero. Updated to agree with the length of the received encoded
message.

• int _iout - Index for output buffer Initially set to zero. Updated to agree with the length of the message encoded
to the communication counterpart.

• char _operation[256] - Pointer for operation name. Set to the operation to be called.

• int _received - Used to count parameters. Initially set to zero.

• erlang_pid _caller - Used to identify the caller. Initiated to a value that identifies the caller.

• erlang_ref _unique - Used to identify the call. Set to a default value in the case of generated functions.

• CORBA_char* _exc_id - Exception id field. Initially set to NULL to agree with the initial value of _major
(CORBA_NO_EXCEPTION).

1.9 CORBA_Environment C Structure

28 | Ericsson AB. All Rights Reserved.: ic

• void* _exc_value - Exception value field Initially set to NULL to agree with the initial value of _major
(CORBA_NO_EXCEPTION).

The advanced user who defines his own functions has to update/support these values in a way similar to how they
are updated in the generated code.

1.9.5 Creating and Initiating the CORBA_Environment Structure
There are two ways to set the CORBA_Environment structure:

• Manually

The following default values must be set to the CORBA_Environment *ev fields, when buffers for input/output
should have the size inbufsz/ outbufsz:

• ev->_inbufsz = inbufsz;

The value for this field can be between 0 and maximum size of a signed integer.

• ev->_inbuf = malloc(inbufsz);

The size of the allocated buffer must be equal to the value of its corresponding index, _inbufsz.

• ev->_outbufsz = outbufsz;

The value for this field can be between 0 and maximum size of a signed integer.

• ev->_outbuf = malloc(outbufsz);

The size of the allocated buffer must be equal to the value of its corresponding index, _outbufsz.

• ev->_memchunk = __OE_MEMCHUNK__;

Please note that __OE_MEMCHUNK__ is equal to 1024, you can set this value to a value bigger than 32
yourself.

• ev->_to_pid = NULL;

• ev->_from_pid = NULL;

• By using the CORBA_Environment_alloc/2 function.

The CORBA_Environment_alloc function is defined as:

 CORBA_Environment *CORBA_Environment_alloc(int inbufsz,
 int outbufsz);

where:

• inbufsz is the desired size of input buffer

• outbufsz is the desired size of output buffer

• return value is a pointer to an allocated and initialized CORBA_Environment structure.

This function will set all needed default values and allocate buffers equal to the values passed, but will not allocate
space for the _to_pid and _from_pid fields.

To free the space allocated by CORBA_Environment_alloc/2:

• First call CORBA_free for the input and output buffers.

• After freeing the buffer space, call CORBA_free for the CORBA_Environment space.

1.9 CORBA_Environment C Structure

Ericsson AB. All Rights Reserved.: ic | 29

Note:
Remember to set the fields _fd, _regname, *_to_pid and/or *_from_pid to the appropriate application values.
These are not automatically set by the stubs.

Warning:
Never assign static buffers to the buffer pointers. Never set the _memchunk field to a value less than 32.

1.9.6 Setting System Exceptions
If the user wishes to set own system exceptions at critical positions on the code, it is strongly recommended to use
one of the current values:

• CORBA_NO_EXCEPTION upon success. The value of the _exc_id field should be then set to NULL. The value
of the _exc_value field should be then set to NULL.

• CORBA_SYSTEM_EXCEPTION upon system failure. The value of the _exc_id field should be then set to one
of the values defined in "ic.h" :

 #define UNKNOWN "UNKNOWN"
 #define BAD_PARAM "BAD_PARAM"
 #define NO_MEMORY "NO_MEMORY"
 #define IMPL_LIMIT "IMP_LIMIT"
 #define COMM_FAILURE "COMM_FAILURE"
 #define INV_OBJREF "INV_OBJREF"
 #define NO_PERMISSION "NO_PERMISSION"
 #define INTERNAL "INTERNAL"
 #define MARSHAL "MARSHAL"
 #define INITIALIZE "INITIALIZE"
 #define NO_IMPLEMENT "NO_IMPLEMENT"
 #define BAD_TYPECODE "BAD_TYPECODE"
 #define BAD_OPERATION "BAD_OPERATION"
 #define NO_RESOURCES "NO_RESOURCES"
 #define NO_RESPONSE "NO_RESPONSE"
 #define PERSIST_STORE "PERSIST_STORE"
 #define BAD_INV_ORDER "BAD_INV_ORDER"
 #define TRANSIENT "TRANSIENT"
 #define FREE_MEM "FREE_MEM"
 #define INV_IDENT "INV_IDENT"
 #define INV_FLAG "INV_FLAG"
 #define INTF_REPOS "INTF_REPOS"
 #define BAD_CONTEXT "BAD_CONTEXT"
 #define OBJ_ADAPTER "OBJ_ADAPTER"
 #define DATA_CONVERSION "DATA_CONVERSION"
 #define OBJ_NOT_EXIST "OBJECT_NOT_EXIST"

The value of the _exc_value field should be then set to a string that explains the problem in an informative way. The
user should use the functions CORBA_exc_set/4 and CORBA_exception_free/1 to free the exception. The user has
to use CORBA_exception_id/1 and CORBA_exception_value/1 to access exception information. Prototypes for these
functions are declared in "ic.h"

1.10 IDL to Java language Mapping

30 | Ericsson AB. All Rights Reserved.: ic

1.10 IDL to Java language Mapping
1.10.1 Introduction
This chapter describes the mapping of OMG IDL constructs to the Java programming language for the generation of
native Java - Erlang communication.

This language mapping defines the following:

• All OMG IDL basic types

• All OMG IDL constructed types

• References to constants defined in OMG IDL

• Invocations of operations, including passing of parameters and receiving of result

• Access to attributes

1.10.2 Specialties in the Mapping
Names Reserved by the Compiler
The IDL compiler reserves all identifiers starting with OE_ and oe_ for internal use.

1.10.3 Basic OMG IDL Types
The mapping of basic types are according to the standard. All basic types have a special Holder class.

OMG IDL type Java type

float float

double double

short short

unsigned short short

long int

long long long

unsigned long long

unsigned long long long

char char

wchar char

boolean boolean

octet octet

string java.lang.String

wstring java.lang.String

1.10 IDL to Java language Mapping

Ericsson AB. All Rights Reserved.: ic | 31

any Any

long double Not supported

Object Not supported

void void

Table 10.1: OMG IDL basic types

1.10.4 Constructed OMG IDL Types
All constructed types are according to the standard with three (3) major exceptions.

• The IDL Exceptions are not implemented in this Java mapping.

• The functions used for read/write to streams, defined in Helper functions are named unmarshal (instead for
read) and marshal (instead for write).

• The streams used in Helper functions are OtpInputStream for input and OtpOutputStream for output.

1.10.5 Mapping for Constants
Constants are mapped according to the standard.

1.10.6 Invocations of Operations
Operation invocation is implemented according to the standard. The implementation is in the class
_<nterfacename>Stub.java which implements the interface in <nterfacename>.java.

test._iStub client;

client.op(10);

Operation Implementation
The server is implemented through extension of the class _<nterfacename>ImplBase.java and
implementation of all the methods in the interface.

public class server extends test._iImplBase {

 public void op(int i) throws java.lang.Exception {
 System.out.println("Received call op()");
 o.value = i;
 return i;
 }

}

1.10 IDL to Java language Mapping

32 | Ericsson AB. All Rights Reserved.: ic

1.10.7 Exceptions
While exception mapping is not implemented, the stubs will generate some Java exceptions in case of operation failure.
No exceptions are propagated through the communication.

1.10.8 Access to Attributes
Attributes are supported according to the standard.

1.10.9 Summary of Argument/Result Passing for Java
All types (in, out or inout) of user defined parameters are supported in the Java mapping. This is also the case in
the Erlang mappings but not in the C mapping. inout parameters are not supported in the C mapping so if you are
going to do calls to or from a C program inout cannot be used in the IDL specifications.

out and inout parameters must be of Holder types. There is a jar file (ic.jar) with Holder classes for the basic
types in the ic application. This library is in the directory $OTPROOT/lib/ic_<version number>/priv.

1.10.10 Communication Toolbox
The generated client and server stubs use the classes defined in the jinterface package to communicate with other
nodes. The most important classes are :

• OtpInputStream which is the stream class used for incoming message storage

• OtpOutputStream which is the stream class used for outgoing message storage

• OtpErlangPid which is the process identification class used to identify processes inside a java node.

The recommended constructor function for the OtpErlangPid is OtpErlangPid(String node, int id,
int serial, int creation) where :

• String node, is the name of the node where this process runs.

• int id, is the identification number for this identity.

• int serial, internal information, must be an 18-bit integer.

• int creation, internal information, must have value in range 0..3.

• OtpConnection which is used to define a connection between nodes.

While the connection object is stub side constructed in client stubs, it is returned after calling the accept function
from an OtpErlangServer object in server stubs. The following methods used for node connection :

• OtpInputStream receiveBuf(), which returns the incoming streams that contain the message
arrived.

• void sendBuf(OtpErlangPid client, OtpOutputStream reply), which sends a reply
message (in an OtpOutputStream form) to the client node.

• void close(), which closes a connection.

• OtpServer which is used to define a server node.

The recommended constructor function for the OtpServer is :

• OtpServer(String node, String cookie). where :

• node is the requested name for the new java node, represented as a String object.

1.10 IDL to Java language Mapping

Ericsson AB. All Rights Reserved.: ic | 33

• cookie is the requested cookie name for the new java node, represented as a String object.

The following methods used for node registration and connection acceptance :

• boolean publishPort(), which registers the server node to epmd daemon.

• OtpConnection accept(), which waits for a connection and returns the OtpConnection object which
is unique for each client node.

1.10.11 The Package com.ericsson.otp.ic
The package com.ericsson.otp.ic contains a number of java classes specially designed for the IC generated java-back-
ends :

• Standard java classes defined through OMG-IDL java mapping :

• BooleanHolder

• ByteHolder

• CharHolder

• ShortHolder

• IntHolder

• LongHolder

• FloatHolder

• DoubleHolder

• StringHolder

• Any, AnyHelper, AnyHolder

• TypeCode

• TCKind

• Implementation-dependant classes :

• Environment

• Holder

• Erlang compatibility classes :

• Pid, PidHelper, PidHolder

The Pid class originates from OtpErlangPid and is used to represent the Erlang built-in pid type, a
process's identity. PidHelper and PidHolder are helper respectively holder classes for Pid.

• Ref, RefHelper, RefHolder

The Ref class originates from OtpErlangRef and is used to represent the Erlang built-in ref type, an
Erlang reference. RefHelper and RefHolder are helper respectively holder classes for Ref.

• Port, PortHelper, PortHolder

The Port class originates from OtpErlangPort and is used to represent the Erlang built-in port type, an
Erlang port. PortHelper and PortHolder are helper respectively holder classes for Port.

• Term, TermHelper, TermHolder

The Term class originates from Any and is used to represent the Erlang built-in term type, an Erlang term.
TermHelper and TermHolder are helper respectively holder classes for Term.

1.10 IDL to Java language Mapping

34 | Ericsson AB. All Rights Reserved.: ic

To use the Erlang build-in classes, you will have to include the file erlang.idl located under $OTPROOT/
lib/ic/include.

1.10.12 The Term Class
The Term class is intended to represent the Erlang term generic type. It extends the Any class and it is basically used
in the same way as in the Any type.

The big difference between Term and Any is the use of guard methods instead of TypeCode to determine the data
included in the Term. This is especially true when the Term's value class cannot be determined at compilation time.
The guard methods found in Term :

• boolean isAtom() returns true if the Term is an OtpErlangAtom, false otherwise

• boolean isConstant() returns true if the Term is neither an OtpErlangList nor an OtpErlangTuple,
false otherwise

• boolean isFloat() returns true if the Term is an OtpErlangFloat, false otherwise

• boolean isInteger() returns true if the Term is an OtpErlangInt, false otherwise

• boolean isList() returns true if the Term is an OtpErlangList, false otherwise

• boolean isString() returns true if the Term is an OtpErlangString, false otherwise

• boolean isNumber() returns true if the Term is an OtpErlangInteger or an OtpErlangFloat, false
otherwise

• boolean isPid() returns true if the Term is an OtpErlangPid or Pid, false otherwise

• boolean isPort() returns true if the Term is an OtpErlangPort or Port, false otherwise

• boolean isReference() returns true if the Term is an OtpErlangRef, false otherwise

• boolean isTuple() returns true if the Term is an OtpErlangTuple, false otherwise

• boolean isBinary() returns true if the Term is an OtpErlangBinary, false otherwise

1.10.13 Stub File Types
For each interface, three (3) stub/skeleton files are generated :

• A java interface file, named after the idl interface.

• A client stub file, named after the convention _< interface name >Stub which implements the java
interface. Example : _stackStub.java

• A server stub file, named after the convention _< interface name >ImplBase which implements the
java interface. Example : _stackImplBase.java

1.10.14 Client Stub Initialization, Methods Exported
The recommended constructor function for client stubs accepts four (4) parameters :

• String selfNode, the node identification name to be used in the new client node.

• String peerNode, the node identification name where the client process is running.

• String cookie, the cookie to be used.

1.10 IDL to Java language Mapping

Ericsson AB. All Rights Reserved.: ic | 35

• Object server, where the java Object can be one of:

• OtpErlangPid, the server's process identity under the node where the server process is running.

• String, the server's registered name under the node where the server process is running.

The methods exported from the generated client stub are :

• void __disconnect(), which disconnects the server connection.

• void __reconnect(), which disconnects the server connection if open, and then connects to the same peer.

• void __stop(), which sends the standard stop termination call. When connected to an Erlang server, the
server will be terminated. When connected to a java server, this will set a stop flag that denotes that the server
must be terminated.

• com.ericsson.otp.erlang.OtpErlangRef __getRef(), will return the message reference received
from a server that denotes which call it is referring to. This is useful when building asynchronous clients.

• java.lang.Object __server(), which returns the server for the current connection.

1.10.15 Server Skeleton Initialization, Server Stub Implementation,
Methods Exported
The constructor function for server skeleton accepts no parameters.

The server skeleton file contains a server switch which decodes messages from the input stream and calls
implementation (callback) functions. As the server skeleton is declared abstract, the application programmer
will have to create a stub class that extends the skeleton file. In this class, all operations defined in the interface
class, generated under compiling the idl file, are implemented.

The server skeleton file exports the following methods:

• OtpOutputStrem invoke(OtpInputStream request), where the input stream request is
unmarshalled, the implementation function is called and a reply stream is marshalled.

• boolean __isStopped(), which returns true if a stop message is received. The implementation of the stub
should always check if such a message is received and terminate if so.

• boolean __isStopped(com.ericsson.otp.ic.Environment), which returns true if a stop
message is received for a certain Environment and Connection. The implementation of the stub should always
check if such a message is received and terminate if so.

• OtpErlangPid __getCallerPid(), which returns the caller identity for the latest call.

• OtpErlangPid __getCallerPid(com.ericsson.otp.ic.Environment), which returns the
caller identity for the latest call on a certain Environment.

• java.util.Dictionary __operations(), which returns the operation dictionary which holds all
operations supported by the server skeleton.

1.10.16 A Mapping Example
This is a small example of a simple stack. There are two operations on the stack, push and pop. The example shows
some of the generated files.

1.10 IDL to Java language Mapping

36 | Ericsson AB. All Rights Reserved.: ic

// The source IDL file: stack.idl

struct s {
 long l;
 string s;
};

interface stack {
 void push(in s val);
 s pop();
};

When this file is compiled it produces eight files. Three important files are shown below.

The public interface is in stack.java.

public interface stack {

/****
 * Operation "stack::push" interface functions
 *
 */

 void push(s val) throws java.lang.Exception;

/****
 * Operation "stack::pop" interface functions
 *
 */

 s pop() throws java.lang.Exception;

}

For the IDL struct s three files are generated, a public class in s.java.

final public class s {
 // instance variables
 public int l;
 public java.lang.String s;

 // constructors
 public s() {};
 public s(int _l, java.lang.String _s) {
 l = _l;
 s = _s;
 };

};

A holder class in sHolder.java and a helper class in sHelper.java. The helper class is used for marshalling.

1.10 IDL to Java language Mapping

Ericsson AB. All Rights Reserved.: ic | 37

public class sHelper {

 // constructors
 private sHelper() {};

 // methods
 public static s unmarshal(OtpInputStream in)
 throws java.lang.Exception {
 :
 :
 };

 public static void marshal(OtpOutputStream out, s value)
 throws java.lang.Exception {
 :
 :
 };

};

1.10.17 Running the Compiled Code
When using the generated java code you must have added $OTPROOT/lib/ic_<version number>/priv and
$OTPROOT/lib/jinterface_<version number>/priv to your CLASSPATH variable to get basic Holder
types and the communication classes.

1.10 IDL to Java language Mapping

38 | Ericsson AB. All Rights Reserved.: ic

2 Reference Manual

The IC application is an Erlang implementation of an IDL compiler.

ic

Ericsson AB. All Rights Reserved.: ic | 39

ic
Erlang module

The ic module is an Erlang implementation of an OMG IDL compiler. Depending on the choice of back-end the code
will map to Erlang, C, or Java. The compiler generates client stubs and server skeletons.

Two kinds of files are generated for each scope: Ordinary code files and header files. The latter are used for defining
record definitions, while the ordinary files contain the object interface functions.

Exports

ic:gen(FileName) -> Result
ic:gen(FileName, [Option]) -> Result
Types:

Result = ok | error | {ok, [Warning]} | {error, [Warning], [Error]}
Option = [GeneralOption | CodeOption | WarningOption | BackendOption]
GeneralOption =

{outdir, String()} | {cfgfile, String()} | {use_preproc, bool()} |

{preproc_cmd, String()} | {preproc_flags, String()}
CodeOption =

{gen_hrl, bool()} | {serv_last_call, exception | exit} | {{impl,
String()}, String()} | {light_ifr, bool()}

this | {this, String()} | {{this, String()}, bool()} |

from | {from, String()} | {{from, String()}, bool()} |

handle_info | {handle_info, String()} | {{handle_info, String()}, bool()}
|

timeout | {timeout, String()} | {{timeout, String()}, bool()} |

{scoped_op_calls, bool()} | {scl, bool()} |

{user_protocol, Prefix} |

{c_timeout, {SendTimeout, RecvTimeout}} |

{c_report, bool()} |

{precond, {atom(), atom()}} | {{precond, String()} {atom(), atom()}} |

{postcond, {atom(), atom()}} | {{postcond, String()} {atom(), atom()}}
WarningOption =

{'Wall', bool()} | {maxerrs, int() | infinity} |

{maxwarns, int() | infinity} | {nowarn, bool()} |

{warn_name_shadow, bool()} | {pedantic, bool()} |

{silent, bool()}
BackendOption = {be, Backend}
Backend = erl_corba | erl_template | erl_plain | erl_genserv | c_client |
c_server | java
DirNAme = string() | atom()

FileName = string() | atom()

The tuple {Option, true} can be replaced by Option for boolean values.

ic

40 | Ericsson AB. All Rights Reserved.: ic

The ic:gen/2 function can be called from the command line as follows:

erlc "+Option" ... File.idl

Example:

erlc "+{be,c_client}" '+{outdir, "../out"}' File.idl

General options
outdir

Places all output files in the directory given by the option. The directory will be created if it does not already exist.

Example option: {outdir, "output/generated"}.

cfgfile

Uses FileName as configuration file. Options will override compiler defaults but can be overridden by command
line options. Default value is ".ic_config".

Example option: {cfgfile, "special.cfg"}.

use_preproc

Uses a preprocessor. Default value is true.

preproc_cmd

Command string to invoke the preprocessor. The actual command will be built as preproc_cmd+
+preproc_flags++FileName

Example option: {preproc_cmd, "erl"}).

Example option: {preproc_cmd, "gcc -x c++ -E"}.

preproc_flags

Flags given to the preprocessor.

Example option: {preproc_flags, "-I../include"}.

Code options
light_ifr

Currently, the default setting is false. To be able to use this option Orber must be configured to use Light IFR
(see Orber's User's Guide). When this options is used, the size of the generated files used to register the API in
the IFR DB are minimized.

Example option: {light_ifr, true}.

gen_hrl

Generate header files. Default is true.

serv_last_call

Makes the last gen_server handle_call either raise a CORBA exception or just exit plainly. Default is
the exception.

{{impl, IntfName}, ModName}

Assumes that the interface with name IntfName is implemented by the module with name ModName and will
generate calls to the ModName module in the server behavior. Note that the IntfName must be a fully scoped
name as in "M1::I1".

ic

Ericsson AB. All Rights Reserved.: ic | 41

this

Adds the object reference as the first parameter to the object implementation functions. This makes the
implementation aware of its own object reference.
The option comes in three varieties: this which activates the parameter for all interfaces in the source file,
{this, IntfName} which activates the parameter for a specified interface and {{this, IntfName},
false} which deactivates the parameter for a specified interface.

Example option: this) activates the parameter for all interfaces.

Example option: {this, "M1::I1"} activates the parameter for all functions of M1::I1.

Example options: [this, {{this, "M1::I2"}, false}] activates the parameter for all interfaces
except M1::I2.

from

Adds the invokers reference as the first parameter to the object implementation two-way functions. If both
from and this options are used the invokers reference parameter will be passed as the second parameter. This
makes it possible for the implementation to respond to a request and continue executing afterwards. Consult the
gen_server and Orber documentation how this option may be used.
The option comes in three varieties: from which activates the parameter for all interfaces in the source file,
{from, IntfName} which activates the parameter for a specified interface and {{from, IntfName},
false} which deactivates the parameter for a specified interface.

Example option: from) activates the parameter for all interfaces.

Example options: [{from, "M1::I1"}] activates the parameter for all functions of M1::I1.

Example options: [from, {{from, "M1::I2"}, false}] activates the parameter for all interfaces
except M1::I2.

handle_info

Makes the object server call a function handle_info in the object implementation module on all unexpected
messages. Useful if the object implementation need to trap exits.

Example option: handle_info will activates module implementation handle_info for all interfaces in the
source file.

Example option: {{handle_info, "M1::I1"}, true} will activates module implementation
handle_info for the specified interface.

Example options: [handle_info, {{handle_info, "M1::I1"}, false}] will generate the
handle_info call for all interfaces except M1::I1.

timeout

Used to allow a server response time limit to be set by the user. This should be a string that represents the scope
for the interface which should have an extra variable for wait time initialization.

Example option: {timeout,"M::I"}) produces server stub which will has an extra timeout parameter in the
initialization function for that interface.

Example option: timeout produces server stub which will has an extra timeout parameter in the initialization
function for all interfaces in the source file.

Example options: [timeout, {{timeout,"M::I"}, false}] produces server stub which will has an
extra timeout parameter in the initialization function for all interfaces except M1::I1.

scoped_op_calls

Used to produce more refined request calls to server. When this option is set to true, the operation name which
was mentioned in the call is scoped. This is essential to avoid name clashes when communicating with c-servers.

ic

42 | Ericsson AB. All Rights Reserved.: ic

This option is available for the c-client, c-server and the Erlang gen_server back ends. All of the parts generated
by ic have to agree in the use of this option. Default is false.

Example options: [{be,c_genserv},{scoped_op_calls,true}]) produces client stubs which sends
"scoped" requests to a gen_server or a c-server.

user_protocol

Used to define a own protocol different from the default Erlang distribution + gen_server protocol. Currently
only valid for C back-ends. For further details see IC C protocol.

Example options: [{be,c_client},{user_protocol, "my_special"}]) produces client stubs
which use C protocol functions with the prefix "my_special".

c_timeout

Makes sends and receives to have timeouts (C back-ends only). These timeouts are specified in milliseconds.

Example options: [{be,c_client},{c_timeout, {10000, 20000}}]) produces client stubs which
use a 10 seconds send timeout, and a 20 seconds receive timeout.

c_report

Generates code for writing encode/decode errors to stderr (C back-ends only). timeouts are specified in
milliseconds.

Example options: [{be,c_client}, c_report]).

scl

Used for compatibility with previous compiler versions up to 3.3. Due to better semantic checks on enumerants,
the compiler discovers name clashes between user defined types and enumerant values in the same name space. By
enabling this option the compiler turns off the extended semantic check on enumerant values. Default is false.

Example option: {scl,true}

precond

Adds a precondition call before the call to the operation implementation on the server side.

The option comes in three varieties: {precond, {M, F}} which activates the call for operations in all
interfaces in the source file, {{precond, IntfName}, {M, F}} which activates the call for all operations
in a specific interface and {{precond, OpName}, {M, F}} which activates the call for a specific operation.

The precondition function has the following signature m:f(Module, Function, Args).

Example option: {precond, {mod, fun}} adds the call of m:f for all operations in the idl file.

Example options: [{{precond, "M1::I"}, {mod, fun}}] adds the call of m:f for all operations in
the interface M1::I1.

Example options: [{{precond, "M1::I::Op"}, {mod, fun}}] adds the call of m:f for the operation
M1::I::Op.

postcond

Adds a postcondition call after the call to the operation implementation on the server side.

The option comes in three varieties: {postcond, {M, F}} which activates the call for operations in all
interfaces in the source file, {{postcond, IntfName}, {M, F}} which activates the call for all operations
in a specific interface and {{postcond, OpName}, {M, F}} which activates the call for a specific
operation.

The postcondition function has the following signature m:f(Module, Function, Args, Result).

Example option: {postcond, {mod, fun}} adds the call of m:f for all operations in the idl file.

ic

Ericsson AB. All Rights Reserved.: ic | 43

Example options: [{{postcond, "M1::I"}, {mod, fun}}] adds the call of m:f for all operations
in the interface M1::I1.

Example options: [{{postcond, "M1::I::Op"}, {mod, fun}}] adds the call of m:f for the operation
M1::I::Op.

Warning options
'Wall'

The option activates all reasonable warning messages in analogy with the gcc -Wall option. Default value is true.

maxerrs

The maximum numbers of errors that can be detected before the compiler gives up. The option can either have
an integer value or the atom infinity. Default number is 10.

maxwarns

The maximum numbers of warnings that can be detected before the compiler gives up. The option can either have
an integer value or the atom infinity. Default value is infinity.

nowarn

Suppresses all warnings. Default value is false.

warn_name_shadow

Warning appears whenever names are shadowed due to inheritance; for example, if a type name is redefined
from a base interface. Note that it is illegal to overload operation and attribute names as this causes an error to
be produced. Default value is true.

pedantic

Activates all warning options. Default value is false.

silent

Suppresses compiler printed output. Default value is false.

Back-End options
Which back-end IC will generate code for is determined by the supplied {be,atom()} option. If left out,
erl_corba is used. Currently, IC support the following back-ends:

erl_corba

This option switches to the IDL generation for CORBA.

erl_template

Generate CORBA call-back module templates for each interface in the target IDL file. Note, will overwrite
existing files.

erl_plain

Will produce plain Erlang modules which contain functions that map to the corresponding interface functions
on the input file.

erl_genserv

This is an IDL to Erlang generic server generation option.

c_client

Will produce a C client to the generic Erlang server.

ic

44 | Ericsson AB. All Rights Reserved.: ic

c_server

Will produce a C server switch with functionality of a generic Erlang server.

java

Will produce Java client stubs and server skeletons with functionality of a generic Erlang server.

c_genserv

Deprecated. Use c_client instead.

Preprocessor
The IDL compiler allows several preprocessors to be used, the Erlang IDL preprocessor or other standard C
preprocessors. Options can be used to provide extra flags such as include directories to the preprocessor. The build in
the Erlang IDL preprocessor is used by default, but any standard C preprocessor such as gcc is adequate.

The preprocessor command is formed by appending the prepoc_cmd to the preproc_flags option and then appending
the input IDL file name.

Configuration
The compiler can be configured in two ways:

• Configuration file

• Command line options

The configuration file is optional and overrides the compiler defaults and is in turn overridden by the command line
options. The configuration file shall contain options in the form of Erlang terms. The configuration file is read using
file:consult.

An example of a configuration file, note the "." after each line.

{outdir, gen_dir}.
{{impl, "M1::M2::object"}, "obj"}.

Output files
The compiler will produce output in several files depending on scope declarations found in the IDL file. At most three
file types will be generated for each scope (including the top scope), depending on the compiler back-end and the
compiled interface. Generally, the output per interface will be a header file (.hrl/ .h) and one or more Erlang/C files
(.erl/.c). Please look at the language mapping for each back-end for details.

There will be at least one set of files for an IDL file, for the file level scope. Modules and interfaces also have their
own set of generated files.

ic_clib

Ericsson AB. All Rights Reserved.: ic | 45

ic_clib
C Library

This manual page lists some of the functions in the IC C runtime library.

Allocation and Deallocation Functions
The following functions are used for allocating and deallocating a CORBA_Environment structure.

Exports

CORBA_Environment *CORBA_Environment_alloc(int inbufsz, int outbufsz)
This function is used to allocate and initiate the CORBA_Environment structure. In particular, it is used to
dynamically allocate a CORBA_Environment structure and set the default values for the structure's fields.

inbufsize is the initial size of the input buffer.

outbufsize is the initial size of the output buffer.

CORBA_Environment is the CORBA 2.0 state structure used by the generated stub.

This function will set all needed default values and allocate buffers the lengths of which are equal to the values passed,
but will not allocate space for the _to_pid and _from_pid fields.

To free the space allocated by CORBA_Environment_alloc() do as follows.

• First call CORBA_free for the input and output buffers.

• After freeing the buffer space, call CORBA_free for the CORBA_Environment space.

void CORBA_free(void *p)
Frees allocated space pointed to by p.

CORBA_char *CORBA_string_alloc(CORBA_unsigned_long len)
Allocates a (simple) CORBA character string of length len + 1.

CORBA_wchar *CORBA_wstring_alloc(CORBA_unsigned_long len)
Allocates a CORBA wide string of length len + 1.

Exception Functions
Functions for retrieving exception ids and values, and for setting exceptions.

Exports

CORBA_char *CORBA_exception_id(CORBA_Environment *env)
Returns the exception identity if an exception is set, otherwise it returns NULL.

void *CORBA_exception_value(CORBA_Environment *env)
Returns the exception value, if an exception is set, otherwise it returns NULL.

ic_clib

46 | Ericsson AB. All Rights Reserved.: ic

void CORBA_exc_set(CORBA_Environment *env, CORBA_exception_type Major,
CORBA_char *Id, CORBA_char *Value)
Sets the exception type, exception identity, and exception value in the environment pointed to by env.

Server Reception
The following function is provided for convenience.

Exports

int oe_server_receive(CORBA_Environment *env, oe_map_t *map)
int oe_server_receive_tmo(CORBA_Environment *env, oe_map_t *map, unsigned int
send_ms, unsigned int recv_ms)
Provides a loop that receives one message, executes the operation in question, and in case of a two-way operation
sends a reply.

send_ms and recv_ms specify timeout values in milliseconds for send and receive, respectively.

Generic Execution Switch and Map Merging
Function for searching for server operation function, and for calling it if found. Function for merging maps (see the
include file ic.h for definitions).

Exports

int oe_exec_switch(CORBA_Object obj, CORBA_Environment *env, oe_map_t *map)
Search for server operation and execute it.

oe_map_t *oe_merge_maps(oe_map_t *maps, int size)
Merge an array of server maps to one single map.

The CORBA_Environment structure
Here is the complete definition of the CORBA_Environment structure, defined in file ic.h:

 /* Environment definition */
 typedef struct {

 /*----- CORBA compatibility part ------------------------*/
 /* Exception tag, initially set to CORBA_NO_EXCEPTION ---*/
 CORBA_exception_type _major;

 /*----- External Implementation part - initiated by the user ---*/
 /* File descriptor */
 int _fd;
 /* Size of input buffer */
 int _inbufsz;
 /* Pointer to always dynamically allocated buffer for input */
 char *_inbuf;
 /* Size of output buffer */
 int _outbufsz;
 /* Pointer to always dynamically allocated buffer for output */
 char *_outbuf;

ic_clib

Ericsson AB. All Rights Reserved.: ic | 47

 /* Size of memory chunks in bytes, used for increasing the output
 buffer, set to >= 32, should be around >= 1024 for performance
 reasons */
 int _memchunk;
 /* Pointer for registered name */
 char _regname[256];
 /* Process identity for caller */
 erlang_pid *_to_pid;
 /* Process identity for callee */
 erlang_pid *_from_pid;

 /*- Internal Implementation part - used by the server/client ---*/
 /* Index for input buffer */
 int _iin;
 /* Index for output buffer */
 int _iout;
 /* Pointer for operation name */
 char _operation[256];
 /* Used to count parameters */
 int _received;
 /* Used to identify the caller */
 erlang_pid _caller;
 /* Used to identify the call */
 erlang_ref _unique;
 /* Exception id field */
 CORBA_char *_exc_id;
 /* Exception value field */
 void *_exc_value;

 } CORBA_Environment;

Note:
Always set the field values _fd, _regname, _to_pid and/or *_from_pid to appropriate application values. These
are not automatically set by the stubs.

Warning:
Never assign static buffers to the buffer pointers, and never set the _memchunk field to a value less than 32.

SEE ALSO
ic(3), ic_c_protocol(3)

ic_c_protocol

48 | Ericsson AB. All Rights Reserved.: ic

ic_c_protocol
C Library

This manual page lists some of the functions of the IC C runtime library that are used internally for the IC protocol.

The listed functions are used internally by generated C client and server code. They are documented here for the
advanced user that want to replace the default protocol (Erlang distribution + gen_server) by his own protocol, For
each set of client or sever functions below with prefix oe, the user has to implement his own set of functions, the
names of which are obtained by replacing the oe prefix by Prefix. The Prefix has to be set with the option
{user_protocol, Prefix} at compile time.

The following terminology is used (reflected in names of functions): a notification is a message send from client to
server, without any reply back (i.e. a oneway operation); a request is a message sent from client to server, and where
a reply message is sent back from the server to the client.

In order to understand how the functions work and what they do the user must study their implementation in the IC
C library (source file is ic.c), and also consider how they are used in the C code of ordinary generated client stubs
or server skeletons.

Client Protocol Functions
The following functions are used internally by generated C client code.

Exports

int oe_prepare_notification_encoding(CORBA_Environment *env)
The result of this function is the beginning of a binary of in external format of the tuple {'$gen_cast', X} where
X is not yet filled in.

In generated client code this function is the first to be called in the encoding function for each oneway operation.

int oe_send_notification(CORBA_Environment *env)
int oe_send_notification_tmo(CORBA_Environment *env, unsigned int send_ms)
Sends a client notification to a server according to the Erlang distribution + gen_server protocol.

The send_ms parameter specified a timeout in milliseconds.

int oe_prepare_request_encoding(CORBA_Environment *env)
The result of this function is the beginning of a binary in the external format of the tuple {'$gen_call', {Pid,
Ref}, X} where X is not yet filled in.

In generated client code this function is the first to be called in the encoding function for each twoway operation.

int oe_send_request_and_receive_reply(CORBA_Environment *env)
int oe_send_request_and_receive_reply_tmo(CORBA_Environment *env, unsigned
int send_ms, unsigned int recv_ms)
Sends a client request and receives the reply according to the Erlang distribution + gen_server protocol. This function
calls the oe_prepare_reply_decoding function in order to obtain the gen_server reply.

send_ms and recv_ms specify timeouts for send and receive, respectively, in milliseconds.

ic_c_protocol

Ericsson AB. All Rights Reserved.: ic | 49

int oe_prepare_reply_decoding(CORBA_Environment *env)
Decodes the binary version of the tuple {Ref, X}, where X is to be decoded later by the specific client decoding
function.

Server Protocol Functions
The following functions are used internally by generated C server code.

Exports

int oe_prepare_request_decoding(CORBA_Environment *env)
Decodes the binary version of the tuple {'$gen_cast', Op} (Op an atom), or the tuple {'$gen_cast', {Op,
X}}, where Op is the operation name, and where X is to be decoded later by the specific operation decoding function; or

decodes the binary version of the tuple {'$gen_call', {Pid, Ref}, Op} (Op an atom), or the tuple
{'$gen_call', {Pid, Ref}, {Op, X}}, where Op> is the operation name, and X is to be decode later by
the specific operation decoding function.

int oe_prepare_reply_encoding(CORBA_Environment *env)
Encodes the beginning of the binary version of the tuple {{Ref,X}, where X is to be filled in by the specific server
encoding function.

SEE ALSO
ic(3), ic_clib(3), IC Protocol

	ic
	IC User's Guide
	Using the IC Compiler
	Introduction
	Compilation of IDL Files

	OMG IDL
	OMG IDL - Overview
	Reserved Compiler Names and Keywords

	IC Protocol
	Introduction
	Language mappings and IDL operations
	IDL Operations
	Language Mappings

	IC Protocol
	Call (Request/Reply, i.e. not oneway)
	Cast (oneway)

	Gen_server Protocol
	Call
	Cast

	Erlang Distribution Protocol

	Using the Plain Erlang Back-end
	Introduction
	Compiling the Code
	Writing the Implementation File
	An Example

	Using the Erlang Generic Server Back-end
	Introduction
	Compiling the Code
	Writing the Implementation File
	An Example
	Administrative Operations
	IDL Dependent Operations
	Implementation Module

	IDL to C mapping
	Introduction
	C Mapping Characteristics
	Reserved Names
	Scoped Names
	Generated Files

	Basic OMG IDL Types
	Constructed OMG IDL Types
	OMG IDL Constants
	OMG IDL Operations
	Operation Implementation

	Exceptions
	Access to Attributes
	Summary of Argument/Result Passing for the C-client
	Supported Memory Allocation Functions
	Special Memory Deallocation Functions
	Exception Access Functions
	Special Types
	A Mapping Example

	The C Client Back-end
	Introduction
	Generated Stub Files
	C Interface Functions
	Generating, Compiling and Linking
	An Example

	The C Server Back-end
	Introduction
	Generated Stub Files
	C Skeleton Functions
	The Server Loop
	Generating, Compiling and Linking
	An Example

	CORBA_Environment C Structure
	C Structure
	The CORBA Compatibility Part
	The External Part
	The Internal Part
	Creating and Initiating the CORBA_Environment Structure
	Setting System Exceptions

	IDL to Java language Mapping
	Introduction
	Specialties in the Mapping
	Names Reserved by the Compiler

	Basic OMG IDL Types
	Constructed OMG IDL Types
	Mapping for Constants
	Invocations of Operations
	Operation Implementation

	Exceptions
	Access to Attributes
	Summary of Argument/Result Passing for Java
	Communication Toolbox
	The Package com.ericsson.otp.ic
	The Term Class
	Stub File Types
	Client Stub Initialization, Methods Exported
	Server Skeleton Initialization, Server Stub Implementation, Methods Exported
	A Mapping Example
	Running the Compiled Code

	Reference Manual
	ic
	ic:gen/1
	ic:gen/2

	ic_clib
	CORBA_Environment_alloc()

	CORBA_free()

	CORBA_string_alloc()

	CORBA_wstring_alloc()

	CORBA_exception_id()

	CORBA_exception_value()

	CORBA_exc_set()

	oe_server_receive()

	oe_server_receive_tmo()

	oe_exec_switch()

	oe_merge_maps()

	ic_c_protocol
	oe_prepare_notification_encoding()

	oe_send_notification()

	oe_send_notification_tmo()

	oe_prepare_request_encoding()

	oe_send_request_and_receive_reply()

	oe_send_request_and_receive_reply_tmo()

	oe_prepare_reply_decoding()

	oe_prepare_request_decoding()

	oe_prepare_reply_encoding()

