ERLANG

IC

Copyright © 1998-2017 Ericsson AB. All Rights Reserved.
ic4.4.2

March 14, 2017

Copyright © 1998-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 14, 2017

Ericsson AB. All Rights Reserved.: ic | 1

1.1 Using the IC Compiler

1 |IC User's Guide

The I C application is an Erlang implementation of an IDL compiler.

1.1 Using the IC Compiler

1.1.1 Introduction

The IC application is an IDL compiler implemented in Erlang. The IDL compiler generates client stubs and server
skeletons. Several back-ends are supported, and they fall into three main groups.

Thefirst group consists of a CORBA back-end:
IDL to Erlang CORBA

This back-end is for CORBA communication and implementation, and the generated code uses the CORBA
specific protocol for communication between clients and servers. See the Orber application User's Guide and
manuals for further details.

The second group consists of a simple Erlang back-end:
IDL to plain Erlang

This back-end provides avery simple Erlang client interface. It can only be used within an Erlang node, and the
communication between client and "server" is therefore in terms of ordinary function calls.

This back-end can be considered a short-circuit version of the IDL to Erlang gen_server back-end (see further
below).

The third group consists of backends for Erlang, C, and Java. The communication between clients and servers is by
the Erlang distribution protocol, facilitated by erl_interface and jinterface for C and Java, respectively.

All back-ends of the third group generate code compatible with the Erlang gen_server behavior protocol. Thus
generated client code correspondsto cal | () or cast () of an Erlang gen_ser ver. Similarly, generated server
code correspondsto handl e_cal | () or handl e_cast () of an Erlang gen_ser ver.

The back-ends of the third group are:
IDL to Erlang gen_server
Client stubs and server skeletons are generated. Data types are mapped according to the IDL to Erlang mapping
described in the Orber User's Guide.
IDL to Cclient
Client stubs are generated. The mapping of data typesis described further on in the C client part of this guide.
IDL to C server
Server skeletons are generated. The mapping of datatypesisdescribed further oninthe C server part of thisguide.
IDL to Java

Client stubs and server skeletons are generated. The mapping of data types is described further on in the Java
part of this guide.

2 | Ericsson AB. All Rights Reserved.: ic

1.2 OMG IDL

1.1.2 Compilation of IDL Files

The IC compiler isinvoked by executing the generic er | ¢ compiler from a shell:
%> erlc +'{be,BackEnd}' File.idl

where BackEnd is according to the table below, and Fi | e. i dl istheIDL fileto be compiled.

Back-end BackEndoption
IDL to CORBA erl _corba
IDL to CORBA template er|l _tenplate
IDL to plain Erlang erl _plain
IDL to Erlang gen_server erl _genserv
IDL to Cclient c_client

IDL to C server c_server

IDL to Java j ava

Table 1.1: Compiler back-ends and options

For more details on IC compiler options consult the ic(3) manual page.

1.2 OMG IDL

1.2.1 OMG IDL - Overview

The purpose of OMG IDL, Interface Definition Language, mapping is to act as trandator between platforms and
languages. An IDL specification is supposed to describe data types, object types etc.

Since the C and Java IC backends only supports a subset of the IDL types supported by the other backends, the
mapping is divided into different parts. For more information about IDL to Erlang mapping, i.e., CORBA, plain Erlang
and generic Erlang Server, seethe Orber User's Guide. How to use the plain Erlang and generic Erlang Server isfound
in this User's Guide.

Reserved Compiler Names and Keywords

The use of some names is strongly discouraged due to ambiguities. However, the use of some names is prohibited
when using the Erlang mapping , as they are strictly reserved for IC.

IC reserves dl identifiers starting with OE_ and oe__ for internal use.

Note also, that an identifier in IDL can contain aphabetic, digits and underscore characters, but the first character
must be alphabetic.

Using underscores in IDL names can lead to ambiguities due to the name mapping described above. It is advisable
to avoid the use of underscores in identifiers.

Ericsson AB. All Rights Reserved.: ic | 3

1.2 OMG IDL

The OMG defines a set of reserved words, shown below, for use as keywords. These may not be used as, for example,

identifiers.

abstract double local raises typedef
any exception long readonly unsigned
attribute enum module sequence union
boolean factory native short VaueBase
case FALSE Object string valuetype
char fixed octet struct void
const float oneway supports wchar
context in out switch wstring
custom inout private TRUE

default interface public truncatable

Table 2.1: OMG IDL keywords

The keywords listed above must be written exactly as shown. Any usage of identifiers that collide with a keyword
isillegal. For example, long is avalid keyword; Long and LONG areillegal as keywords and identifiers. But, since
the OMG must be able to expand the IDL grammar, it is possible to use Escaped | dentifiers. For example, it is not
unlikely that nat i ve have been used in IDL-specifications as identifiers. One option is to change all occurrences
tomyNat i ve. Usually, it is necessary to change programming language code that depends upon that IDL as well.
Since Escaped Identifiers just disable type checking (i.e. if it is a reserved word or not) and leaves everything else
unchanged, it is only necessary to update the I DL-specification. To escape an identifier, simply prefix it with _. The
following IDL-codeisillegal:

typedef string native;
interface i {
void foo(in native Arg);
}
g

With Escaped Identifiers the code will look like:

typedef string native;
interface i {
void foo(in native Arg);
}
I 8

4 | Ericsson AB. All Rights Reserved.: ic

1.3 IC Protocol

1.3 IC Protocol

The purpose of this chapter is to explain the bits and bytes of the IC protocol, which is a composition of the Erlang
distribution protocol and the Erlang/OTP gen_server protocol. If you do not intend to replace the Erlang distribution
protocol, or replace the gen_server protocol, skip over this chapter.

1.3.1 Introduction

The IDL Compiler (IC) transforms Interface Definition Language (IDL) specifications files to interface code for
Erlang, C, and Java. The Erlang language mapping is described in the Orber documentation, while the other mappings
aredescribed inthe | C documentation (they are of coursein accordancewiththe CORBA C and Javalanguage mapping
specifications, with some restrictions).

Themost important partsof an IDL specification are the operation declarations. An operation defineswhat information
a client provides to a server, and what information (if any) the client gets back from the server. We consider IDL
operations and language mappings in section 2.

What we herecall the | C protocol, isthe description of messages exchanged between |1C end-points (client and servers).
It isvalid for all IC back-ends, except the 'erl_plain' and 'erl_corba' back-ends. The IC protocol isin turn embedded
into the Erlang gen_server protocol, which is described below. Finaly, the gen_server protocol is embedded in the
Erlang distribution protocol. Pertinent parts of that protocol is described further below.

1.3.2 Language mappings and IDL operations
IDL Operations

An IDL operation is declared as follows:

[oneway] RetType Op(in ITypel I1, in IType2 I2, ..., in ITypeN IN,
out OTypel 01, out OType2 02, ..., out OTypeM OM)
N, M=0, 1, 2, ... (2.1.1)

"Op' isthe operation name, RetTypeisthe return type, and IType, i =1, 2, ..., N, and OTypgj,j =1, 2, ..., M, are the
“in' types and “out' types, respectively. Thevalues 11, 12, ..., IN are provided by the caller, and the value of RetType,
and the values O1, O2, ..., OM, are provided as results to the caller.

The types can be any basic types or derived types declared in the IDL specification of which the operation declaration
isapart.

If the RetType hasthe special name “void' thereisno return value (but there might still beresult valuesO1, 02, ..., OM).

The "in' and “out' parameters can be declared in any order, but for clarity we have listed all “in' parameters before the
“out' parameters in the declaration above.

If the keyword “oneway' is present, the operation is a cadt, i.e. there is no confirmation of the operation, and
consequently there must be no result values: RetType must be equal to “void', and M = 0 must hold.

Otherwise the operation isacall, i.e. it is confirmed (or else an exception is raised).
Note carefully that an operation declared without “oneway' is always acall, even if RetTypeis "void and M = 0.
Language Mappings

There are severa CORBA Language Mapping specifications. These are about mapping interfaces to various
programming languages. 1C supports the CORBA C and Java mapping specifications, and the Erlang language
mapping specified in the Orber documentation.

Ericsson AB. All Rights Reserved.: ic | 5

1.3 IC Protocol

Excerpt from "6.4 Basic OMG IDL Types' in the Orber User's Guide:
* Functions with return type void will return the atom ok.
Excerpt from "6.13 Invocations of Operations" in the Orber User's Guide:

e A function call will invoke an operation. The first parameter of the function should be the object reference and
then al in and inout parameters follow in the same order as specified in the IDL specification. The result will be
areturn value unless the function has inout or out parameters specified; in which case, atuple of the return value,
followed by the parameters will be returned.

Hence the function that is mapped from an IDL operation to Erlang always have a return value (an Erlang function
always has). That fact has influenced the I C protocal, in that there is always areturn value (which is'ok' if the return
type was declared 'void’).

1.3.3 IC Protocol
Given the operation declaration (2.1.1) the IC protocol maps to messages as follows, defined in terms of Erlang terms.

Call (Request/Reply, i.e. not oneway)

request: Op atom() N=20
{Op, I1, 12, ..., IN} tuple() N >0

(3.1.1)
reply: Ret M=0
{Ret, 01, 02, ..., OM} M>0

(3.1.2)

Notice: Even if the RetType of the operation Op is declared to be 'void', a return value 'ok’ is returned in the reply
message. That return value is of no significance, and is therefore ignored (note however that a C server back-end
returns the atom 'void' instead of 'ok’).

Cast (oneway)

notification: Op atom() N =
{Op, I1, 12, ..., IN} tuple() N >
(

(Thereis of course no return message).

1.3.4 Gen_server Protocol

Most of the IC generated code deals with encoding and decoding the gen_server protocol.

Call

request: {'$gen call', {self(), Ref}, Request} (4.1.1)

reply: {Ref, Reply} (4.1.2)

where Reguest and Reply are the messages defined in the previous chapter.

6 | Ericsson AB. All Rights Reserved.: ic

1.4 Using the Plain Erlang Back-end

Cast

notification: {'$gen cast', Notification} (4.2.1)
where Notification is the message defined in the previous chapter.

1.3.5 Erlang Distribution Protocol

Messages (of interest here) between Erlang nodes are of the form:

Len(4), Type(1l), CtrlBin(N), MsgBin(M) (5.1)

Typeisequal to 112 = PASS THROUGH.

CtrIBin and MsgBin are Erlang termsin binary form (asif created by term_to_binary/1), whence for each of them the
first byteisequal to 131 = VERSION_MAGIC.

CtrIBin (of interest here) containsthe SEND and REG_SEND control messages, which are binary forms of the Erlang
terms

{2, Cookie, ToPid} , (5.2)
and

{6, FromPid, Cookie, ToName} , (5.3)
respectively.

The CtrIBin(N) messageisread and written by erl_interface code (C), j_interface code (Java), or the Erlang distribution
implementation, which are invoked from 1C generated code.

The MsgBin(N) isthe "real" message, i.e. of the form described in the previous section.

1.4 Using the Plain Erlang Back-end

1.4.1 Introduction

The mapping of OMG IDL to the Erlang programming language when Plain Erlang isthe back-end of choiceissimilar
to the one used in pure Erlang IDL mapping. The only difference is on the generated code and the extended use of
pragmas for code generation: IDL functions are translated to Erlang module function calls.

1.4.2 Compiling the Code

In the Erlang shell type:
ic.gen(<fil enanme>, [{be, erl _plain}]).

1.4.3 Writing the Implementation File

For each IDL interface <i nt er f ace name> defined inthe IDL file:

Ericsson AB. All Rights Reserved.: ic | 7

1.4 Using the Plain Erlang Back-end

» Createthe corresponding Erlang file that will hold the Erlang implementation of the IDL definitions.
« Cdl theimplementation file after the scope of the IDL interface, followed by the suffix _i npl .
* Export the implementation functions.

For each function defined in the IDL interface :

e Implement an Erlang function that uses as arguments in the same order, as the input arguments described in the
IDL file, and returns the value described in the interface.

* When using the function, follow the mapping described in chapter 2.

1.4.4 An Example

In this example, afile "random.idl" is generates code for the plain Erlang back-end :
e Mainfile: "plain.idl"

module rmod {
interface random {
double produce();
oneway void init(in long seedl, in long seed2, in long seed3);
b
}i

Compilethefile:

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)

1> ic:gen(random, [{be, erl plain}]).
Erlang IDL compiler version 2.5.1
ok

2>

When the file "random.idl" is compiled it produces five files: two for the top scope, two for the interface scope, and
one for the module scope. The header filesfor top scope and interface are empty and not shown here. In this case only
thefilefor theinterfacer nrod_r andom er | isimportant :.

* Erlangfilefor interface: "rmod_random.erl"

-module(rmod random) .

%% Interface functions
-export([produce/0, init/3]).

o0
A e

8 | Ericsson AB. All Rights Reserved.: ic

1.4 Using the Plain Erlang Back-end

% Operation: produce

Returns: RetVal

© o & of
S o oo o 3

oduce() ->
rmod_random_impl:produce().

o

o°

% Operation: init

Returns: RetVal

o® o o o of

o® o° o°

init(Seedl, Seed2, Seed3) ->
rmod _random impl:init(Seedl, Seed2, Seed3).

The implementation file should be called r rod_r andom i npl . er| and could look like this:
-module('rmod random impl').
-export([produce/0,init/3]).

produce() ->
random:uniform().

init(S1,S2,S3) ->
random:seed(S1,S2,S3).

Compiling the code :

2> make:all().

Recompile: rmod random
Recompile: oe random
Recompile: rmod random impl
up_to date

Running the example:

3> rmod random:init(1,2,3).

ok

4> rmod random:produce().
1.97963e-4

5>

Ericsson AB. All Rights Reserved.: ic | 9

1.5 Using the Erlang Generic Server Back-end

1.5 Using the Erlang Generic Server Back-end

1.5.1 Introduction

The mapping of OMG IDL to the Erlang programming language when Erlang generic server isthe back-end of choice
is similar to the one used in the chapter 'OMG IDL Mapping'. The only difference is in the generated code, a client
stub and server skeleton to an Erlang gen_ser ver . Orber's User's Guide contain amore detailed description of IDL
to Erlang mapping.

1.5.2 Compiling the Code

Thei c: gen/ 2 function can be called from the command line as follows:

shell> erlc "+{be, erl genserv}" MyFile.idl

1.5.3 Writing the Implementation File
For each IDL interface <i nt er f ace nane> defined inthe IDL file:

» Createthe corresponding Erlang file that will hold the Erlang implementation of the IDL definitions.

* Cadl the implementation file after the scope of the IDL interface, followed by the suffix _i npl .

e Export the implementation functions.

For each function defined in the IDL interface :

* Implement an Erlang function that uses as arguments in the same order, as the input arguments described in the
IDL file, and returns the value described in the interface.

e When using the function, follow the mapping described in chapter 2.

1.5.4 An Example

Inthisexample, afiler andom i dl generates code for the Erlang gen_server back-end:

// Filename random.idl
module rmod {

interface random {
// Generate a new random number
double produce();
// Initialize random generator
oneway void init(in long seedl, in long seed2, in long seed3);

i
};

When the file "random.idl" is compiled (e.g., shel | > erlc "+{be, erl _genserv}" randomidl) five
files are produced; two for the top scope, two for the interface scope, and one for the module scope. The header files
for top scope and interface are empty and not shown here. In this case, the stub/skeleton filer nrod_r andom er | is
the most important. This module exports two kinds of operations:

e Administrative - used when, for example, creating and terminating the server.

* |DL dependent - operations defined in the IDL specification. In thiscase, pr oduce andi ni t .

10 | Ericsson AB. All Rights Reserved.: ic

1.5 Using the Erlang Generic Server Back-end

Administrative Operations
To create anew server instance, one of the following functions should be used:

e 0e _create/0/1/2 - create a new instance of the object. Accepts Env and RegNan®, in that order, as parameters.
The former is passed uninterpreted to the initialization operation of the call-back module, while the latter must
beasthegen_ser ver parameter Ser ver Nane. If Env isleft out, an empty list will be passed.

e 0e create link/0/1/2 - similar to oe_cr eat e/ 0/ 1/ 2, but create alinked server.

* typel D/O - returns the scooped id compliant with the OMG standard. In this case the string " | DL: r nod/
random 1.0".

e stop/1 - asynchronously terminate the server. The required argument is the return value from any of the start
functions.

IDL Dependent Operations

Operations can either be synchronous or asynchronous (i.e., oneway). These are, respectively, mapped to
gen_server: call/2/3andgen_server: cast/ 2.Consultthegen_ser ver documentationfor valid return
values.

The IDL dependent operations in this example are listed below. The first argument must be the whatever the create
operation returned.

* init(ServerReference, Seedl, Seed2, Seed3) - initialize the random number generator.
* produce(Server Reference) - generate a new random number.

If the compile optiont i meout isused atimeout must be added (e.g., pr oduce(Ser ver Ref er ence, 5000)).
For more information, seethegen_ser ver documentation.

Implementation Module

The implementation module shall, unless the compile option i nmpl isused, benamed r nod_r andom i npl . er| .
and could look like this:

-module('rmod random impl').

%% Mandatory gen server operations
-export([init/1, terminate/2, code change/3]).
%% Add if 'handle info' compile option used
-export([handle info/2]).

%% API defined in IDL specification
-export([produce/1,init/4]).

%% Mandatory operations
init(Env) ->

{ok, [1}.

terminate(From, Reason) ->
ok.

code change(0ldVsn, State, Extra) ->
{ok, State}.

%% Optional
handle info(Info, State) ->
{noreply, NewState}.

%% IDL specification
produce(State) ->
case catch random:uniform() of
{'EXIT', } ->
{stop, normal, "random:uniform/0@ - EXIT", State};

Ericsson AB. All Rights Reserved.: ic | 11

1.6 IDL to C mapping

RUnif ->
{reply, RUnif, State}
end.

init(State, S1, S2, S3) ->
case catch random:seed(S1, S2, S3) of
{'EXIT', } ->
{stop, normal, State};
->
{noreply, State}
end.

Compile the code and run the example:

1> make:all().

Recompile: rmod random
Recompile: oe random

Recompile: rmod random impl
up_to date

2> {ok,R} = rmod random:oe create().
{0k, <0.30.0>}

3> rmod random:init(R, 1, 2, 3).
ok

4> rmod random:produce(R).
1.97963e-4

5>

1.6 IDL to C mapping

1.6.1 Introduction

The IC C mapping (used by the C client and C server back-ends) follows the OMG C Language Mapping
Specification.

The C mapping supports the following:

e« AllOMG IDL basic typesexcept| ong doubl e and any.

e All OMG IDL constructed types.

« OMGIDL constants.

» Operations with passing of parameters and receiving of results. i nout parameters are not supported.

Thefollowing is not supported:

* Accessto attributes.
e User defined exceptions.

e User defined objects.

1.6.2 C Mapping Characteristics

Reserved Names
The IDL compiler reserves all identifiers starting with OE_ and oe__ for internal use.

12 | Ericsson AB. All Rights Reserved.: ic

1.6 IDL to C mapping

Scoped Names

The C programmer must alwaysusetheglobal namefor atype, constant or operation. The C global name corresponding
toan OMG IDL global name is derived by converting occurrences of "::" to underscore, and eliminating the leading
"::". So, for example, an operation opl defined in interface | 1 which is defined in module ML would be written as

ML: :11::o0pliniDLandasML |1 oplinC.

Warning:

If underscores are used in IDL names it can lead to ambiguities due to the name mapping described above,
thereforeit is advisable to avoid underscores in identifiers.

Generated Files

Two fileswill be generated for each scope. One set of fileswill be generated for each module and each interface scope.
An extraset is generated for those definitions at top level scope. One of thefilesisaheader file(. h), and the other file
isaC source codefile (. ¢). In addition to these files anumber of C source fileswill be generated for type encodings,
they are named according to the following template: oe_code_<t ype>. c.

For example:

// IDL, in the file "spec.idl"
module ml {

typedef sequence<long> lseq;
interface il {

., e

XXX Thisis C client specific. Will producethefilesoe_spec. h andoe_spec. ¢ for thetop scope level. Then the
filesml. h and ni. ¢ for the module ml and filesml_i 1. h and nl_i 1. ¢ for the interface i 1. The typedef will
produceoe_code_ml_| seq. c.

The header file contains type definitions for all st r uct types and sequences and constantsinthe IDL file. Thecfile
contains all operation stubsiif the the scopeis an interface.

In addition to the scope-related files a C source file will be generated for encoding operations of all st ruct and
sequence types.

1.6.3 Basic OMG IDL Types

The mapping of basic typesis asfollows.

OMG IDL type C type Mapped to C type
float CORBA float float
double CORBA_double double

Ericsson AB. All Rights Reserved.: ic | 13

1.6 IDL to C mapping

short CORBA _short short
unsigned short CORBA _unsigned_short unsigned short
long CORBA _long long

long long CORBA _long_long long

unsigned long CORBA _unsigned_long unsigned long
unsigned long long CORBA _unsigned long_long unsigned long
char CORBA _char char

wchar CORBA_wchar unsigned long
boolean CORBA _hoolean unsigned char
octet CORBA _octet char

any Not supported

long double Not supported

Object Not supported

void void void

Table 6.1: OMG IDL Basic Types

XXX Note that several mappings are not according to OMG C Language mapping.

1.6.4 Constructed OMG IDL Types

Constructed types have mappings as shown in the following table.

OMG IDL type Mapped to C type
string CORBA _char*
wstring CORBA_wchar*
struct struct

union union

enum enum

sequence struct (see below)

14 | Ericsson AB. All Rights Reserved.: ic

1.6 IDL to C mapping

array array

Table 6.2: OMG IDL Constructed Types

An OMG IDL sequence (an array of variable length),

// IDL
typedef sequence <IDL TYPE> NAME;

is mapped to a C struct as follows:

/* C *x/

typedef struct {
CORBA unsigned long maximum;
CORBA unsigned long length;
C TYPE* buffer;

} C_NAME;

where C_TYPE isthe mapping of | DL_ TYPE, and where C_NANE is the scoped name of NAMVE.

1.6.5 OMG IDL Constants

An IDL constant is mapped to a C constant through a C #def i ne macro, where the name of the macro is scoped.
Example:

// IDL
module M1 {

const long cl = 99;
};

resultsin the following:

/* C */
#define M1 cl1 99

1.6.6 OMG IDL Operations

An OMG IDL operation is mapped to C function. Each C operation function has two mandatory parameters: a first
parameter of interface object type, and alast parameter of environment type.

In a C operation function the thei n and out parameters are located between the first and last parameters described
above, and they appear in the same order asin the IDL operation declaration.

Noticethat i nout parameters are not supported.

Thereturn value of an OMG IDL operation is mapped to a corresponding return value of the C operation function.

Ericsson AB. All Rights Reserved.: ic | 15

1.6

IDL to C mapping

Mandatory C operation function parameters:

e CORBA (bj ect oe_obj -thefirst parameter of a C operation function. This parameter is required by the
OMG C Language M apping Specification, but in the current implementation there is no particular use for it.

e CORBA Environnment* oe_env - thelast parameter of a C operation function. The parameter is defined in
the C header filei c. h and has the following public fields:

CORBA Exception_type _mgjor -indicatesif an operation invocation was successful which will be
one of the following:

« CORBA_NO_EXCEPTION

e CORBA_SYSTEM_EXCEPTION

int _fd - afile descriptor returned from erl_connect function.

int _inbufsz - size of input buffer.

char* _inbuf - pointer to a buffer used for input.

int _outbufsz - size of output buffer.

char* _outbuf - pointer to a buffer used for output.

int _memchunk - expansion unit size for the output buffer. Thisis the size of memory chunksin bytes used
for increasing the output in case of buffer expansion. The value of this field must be always set to >= 32,
should be at least 1024 for performance reasons.

char regname[256] - aregistered name for a process.

erlang_pid* _to pid - an Erlang process identifier, isonly used if the registered_name parameter is the
empty string.

erlang_pid* _from_pid - your own process id so the answer can be returned

Beside the public fields, other private fields are internally used but are not mentioned here.

Example:

// IDL

interface il {

long opl(in long a);
long op2(in string s, out long count);

Is mapped to the following C functions

/* C */
CORBA long il opl(il oe obj, CORBA long a, CORBA Environment* oe env)

{

}
CORBA long il op2(il oe obj, CORBA char* s, CORBA long *count,
CORBA Environment* oe env)

{
}

16 | Ericsson AB. All Rights Reserved.: ic

1.6

IDL to C mapping

Operation Implementation

There is no standard CORBA mapping for the C-server side, asit is implementation-dependent but built in asimilar
way. The current server side mapping is different from the client side mapping in several ways.

e Argument mappings
* Result values

» Structure

e Usage

e Exception handling

1.6.7 Exceptions

Although exception mapping is not implemented, the stubs will generate CORBA system exceptions in case of

operation failure. Thus, the only exceptions propagated by the system are built in system exceptions.

1.6.8 Access to Attributes

Not Supported

1.6.9 Summary of Argument/Result Passing for the C-client

The user-defined parameters can only bei n or out parameters, asi nout parameters are not supported.

This table summarize the types a client passes as arguments to a stub, and receives as a result.

ng

OMG IDL type In Out Return

short CORBA _short CORBA _short* CORBA _short

long CORBA _long CORBA_long* CORBA _long

long long CORBA _long_long CORBA_long_long* CORBA _long_long
unsigned short CORBA _unsigned short | CORBA_unsigned short* | CORBA_unsigned short
unsigned long CORBA _unsigned long CORBA _unsigned_long* [CORBA_unsigned long
unsigned long long CORBA _unsigned long_lon@ORBA _unsigned long |on@ORBA _unsigned long_lo
float CORBA _float CORBA_float* CORBA _float

double CORBA _double CORBA _double* CORBA _double
boolean CORBA _boolean CORBA _hoolean* CORBA _boolean

char CORBA _char CORBA _char* CORBA _char

wchar CORBA_wchar CORBA_wchar* CORBA_wchar

octet CORBA_octet CORBA _octet* CORBA_octet

enum CORBA_enum CORBA_enum* CORBA_enum

Ericsson AB. All Rights Reserved.: ic | 17

1.6 IDL to C mapping

struct, fixed struct* struct* struct

struct, variable struct* struct** struct*

union, fixed union* union* union

union, variable union* union** union*

string CORBA _char* CORBA _char** CORBA _char*
wstring CORBA_wchar* CORBA_wchar** CORBA_wchar*
sequence sequence* sequence* * sequence*

array, fixed array array array_dlice*
array, variable array array_slice** array_dlice*

Table 6.3: Basic Argument and Result passing

A client isresponsible for providing storage of all arguments passed as in arguments.

OMG IDL type Out Return
short 1 1
long 1 1
long long 1 1
unsigned short 1 1
unsigned long 1 1
unsigned long long 1 1
float 1 1
double 1 1
boolean 1 1
char 1 1
wchar 1 1
octet 1 1
enum 1 1
struct, fixed 1 1

18 | Ericsson AB. All Rights Reserved.: ic

1.6 IDL to C mapping

struct, variable 2 2
string 2 2
wstring 2 2
sequence 2 2
array, fixed 1 3
array, variable 3 3

Table 6.4: Client argument storage responsibility

Case Description

Caller alocates al necessary storage, except that which
1 may be encapsulated and managed within the parameter
itself.

The caller allocates a pointer and passes it by reference
to the callee. The callee sets the pointer to point to a
valid instance of the parameter's type. The caler is
responsible for releasing the returned storage. Following
completion of arequest, the caller is not allowed to
modify any values in the returned storage. To do so the
caller must first copy the returned instance into a new
instance, then modify the new instance.

The caller allocates a pointer to an array slice which
has all the same dimensions of the original array except
the first, and passesit by reference to the callee. The
callee sets the pointer to point to a valid instance of

the array. The caller isresponsible for releasing the
returned storage. Following completion of arequest,
the caller is not allowed to modify any valuesin the
returned storage. To do so the caller must first copy the
returned instance into a new instance, then modify the
new instance.

Table 6.5: Argument passing cases

The returned storage in case 2 and 3 is allocated as one block of memory so it is possible to deallocate it with one
call of CORBA _free.

1.6.10 Supported Memory Allocation Functions

e« CORBA_Environment can be allocated from the user by calling CORBA_Environment_alloc().
Theinterface for thisfunction is
CORBA _Envi ronnent *CORBA Environnent _all oc(int inbufsz, int outbufsz);

Ericsson AB. All Rights Reserved.: ic | 19

1.6 IDL to C mapping

where:

* inbufszisthe desired size of input buffer

* outbufszisthe desired size of output buffer

e returnvaueisapointer to an allocated and initialized CORBA_Environment structure
» Strings can be allocated from the user by calling CORBA_string_alloc().

Theinterface for this function is

CORBA char *CORBA string_all oc(CORBA unsigned |ong |en);

where:

* lenisthelength of the string to be allocated.
Thus far, no other type alocation function is supported.

1.6.11 Special Memory Deallocation Functions
e void CORBA free(void *storage)

This function will free storage allocated by the stub.
« void CORBA exception_free(CORBA environment *ev)

This function will free storage allocated under exception propagation.

1.6.12 Exception Access Functions

* CORBA char *CORBA exception_i d(CORBA_Envi ronnent *ev)
This function will return raised exception identity.

+ void *CORBA exception_val ue(CORBA_Envi ronment *ev)

This function will return the value of araised exception.

1.6.13 Special Types

e Theerlang binary type has some special features.

Whiletheer | ang: : bi nary idl type has the same C-definition as a generated sequence of octets :

module erlang

{

// an erlang binary
typedef sequence<octet> binary;

i

it provides away on sending trasparent data between C and Erlang.
The C-definition (ic.h) for an erlang binary is:

typedef struct {
CORBA unsigned long maximum;

20 | Ericsson AB. All Rights Reserved.: ic

1.6 IDL to C mapping

CORBA unsigned long length;
CORBA_octet* buffer;
} erlang binary; /* ERLANG BINARY */

The differences (between er | ang: : bi nary and sequence< octet >)are:

e on the elang side the user is sending/receiving typical built in erlang binaries, using
termto_binary() / binary_to_tern{() tocreate/ extract binary structures.

* no encoding/decoding functions are generated

« theunderlying protocol is more efficient than usual sequences of octets

Theerlang binary IDL typeisdefinediner | ang. i dl , whileitsC definitionislocatedinthei c. h header file,
bothinthel C-< vsn >/incl ude directory. The user will have to include the file er | ang. i dl in order
tousetheer| ang: : bi nary type.

1.6.14 A Mapping Example

Thisis asmall example of a simple stack. There are two operations on the stack, push and pop. The example shows
all generated files as well as conceptual usage of the stack.

// The source IDL file: stack.idl

struct s {
long 1;
string s;
I

interface stack {
void push(in s val);
s pop();

When this file is compiled it produces four files, two for the top scope and two for the stack interface scope. The
important parts of the generated C code for the stack API is shown below.

stack.c

void push(stack oe obj, s val, CORBA Environment* oe env) {

.

s* pop(stack oe obj, CORBA Environment* oe env) {

.
oe_stack.h

#ifndef OE_STACK H
#define OE_STACK_H

Ericsson AB. All Rights Reserved.: ic | 21

1.7 The C Client Back-end

* Struct definition: s
*/
typedef struct {
long 1;
char *s;

} s

#endif

stack.h just contains an include statement of oe_st ack. h.
oe _code s.c

int oe sizecalc s(CORBA Environment
oe env, int oe size count index, int* oe size) {

! .

int oe encode s(CORBA Environment *oe env, s* oe rec) {

! .

int oe decode s(CORBA Environment *oe env, char *oe first,
int* oe outindex, s *oe out) {

The only filesthat are really important arethe . h files and the stack.c file.

1.7 The C Client Back-end

1.7.1 Introduction

With theoption{ be, c¢_cl i ent} thelDL Compiler generates C client stubs according to the IDL to C mapping,
on top of the Erlang distribution and gen_server protocols.

The devel oper hasto write additional code, that together with the generated C client stubs, form a hidden Erlang node.
That additional codeuseser | _i nt er f ace functionsfor defining the hidden node, and for establishing connections
to other Erlang nodes.

1.7.2 Generated Stub Files

The generated stub files are:

» ForeachIDL interface, aC sourcefile, thename of whichis<Scoped | nt er f ace Nanme>. c. Each operation
of the IDL interface is mapped to a C function (with scoped name) in that file;

» Csourcefilesthat contain functions for type conversion, memory allocation, and data encoding/decoding;
» Cheader files that contain function prototypes and type definitions.

All C functions are exported (i.e. not declared static).

22 | Ericsson AB. All Rights Reserved.: ic

1.7 The C Client Back-end

1.7.3 C Interface Functions
For each IDL operation a C interface function is generated, the prototype of which is:

<Return Val ue> <Scoped Function Name>(<lnterface (bject> oe_obj, <Paraneters>,
CORBA_Envi ronment *oe_env);

where

e <Return Val ue>isthevalueto be returned as defined by the IDL specification;

e <Interface Object> oe_obj istheclient interface object;

e <Paraneters> isalist of parameters of the operation, defined in the same order as defined by the IDL
specification;

« CORBA _Environment *oe_env isapointer to the current client environment. It contains the current file
descriptor, the current input and output buffers, etc. For details see CORBA_Environment C Structure.

1.7.4 Generating, Compiling and Linking
To generate the C client stubs type the following in an appropriate shell:
erlc -1 ICROOT/include "+{be, c client}" File.idl,

where | CROOT is the root of the IC application. The- 1 | CROOT/ i ncl ude isonly needed if Fi | e. i dl refers
toerlang.idl.

When compiling a generated C stub file, the directories | CROOT/ i ncl ude and EI CROOT/ i ncl ude, have to be
specified asinclude directories, where EI ROOT isthe root directory of the Erl_interface application.

When linking object filesthe El ROOT/ | i b and | CROOT/ pri v/ | i b directories have to be specified.

1.7.5 An Example

In this example the IDL specification file "random.idl" is used for generating C client stubs (the file is contained in
thelC/ exanpl es/ c-cl i ent directory):

module rmod {
interface random {
double produce();
oneway void init(in long seedl, in long seed2, in long seed3);
b
3

Generate the C client stubs:

erlc '+{be, c client}' random.idl
Erlang IDL compiler version X.Y.Z

Six files are generated.
Compile the C client stubs:
Please read the ReadMe file att the exanpl es/ c- cl i ent directory

Ericsson AB. All Rights Reserved.: ic | 23

1.8 The C Server Back-end

In the same directory you can find all the code for this example.

In particular you will find the cl i ent . ¢ file that contains all the additional code that must be written to obtain a
complete client.

Intheexanpl es/ c- cl i ent directory you will also find source code for an Erlang server, which can be used for
testing the C client.

1.8 The C Server Back-end

1.8.1 Introduction

With the option { be, c_server} the IDL Compiler generates C server skeletons according to the IDL to C
mapping, on top of the Erlang distribution and gen_server protocols.

The developer has to write additional code, that together with the generated C server skeletons, form a hidden
Erlang node. That additional code contains implementations of call-back functions that implement the true server
functionality, and also code uses er | _i nt er f ace functions for defining the hidden node and for establishing
connections to other Erlang nodes.

1.8.2 Generated Stub Files

The generated stub files are:

* For each IDL interface, a C source file, the name of which is<Scoped | nterface Nane>__s. c. Each
operation of the IDL interface is mapped to a C function (with scoped name) in that file;

e Csourcefilesthat contain functions for type conversion, memory allocation, and data encoding/decoding;
* Cheader filesthat contain function prototypes and type definitions.

All C functions are exported (i.e. not declared static).

1.8.3 C Skeleton Functions

For each IDL operation a C skeleton function is generated, the prototype of which is int <Scoped
Functi on Nane>__exec(<lnterface Obj ect> oe_obj, CORBA Environnent *oe_env),where
<Interface hject > and CORBA Envi r onnent areof thesametypeasfor the generated C client stubs code.

Each<Scoped Function Nane>__exec() function calsthe call-back function

<Scoped Function Nane> rs* <Scoped Functi on Name>__cb(<Interface Object> oe_obj,
<Par anmet er s>, CORBA_Envi ronnent *oe_env)

where the arguments are of the same type as those generated for C client stubs.

The return value <Scoped Functi on Name> rs* isapointer to afunction with the same signature as the
call-back function <Scoped Functi on Nane>_cb, andiscalled after the call-back function has been evaluated
(provided that the pointer is not equal to NULL).

1.8.4 The Server Loop

Thedeveloper hasto implement codefor establishing connectionswith other Erlang nodes, codefor call-back functions
and restore functions.

In addition, the devel oper also has to implement code for a server loop, that receives messages and calls the relevant
___exec function. For that purpose the IC library function oe_server _recei ve() function can be used.

24 | Ericsson AB. All Rights Reserved.: ic

1.9 CORBA _Environment C Structure

1.8.5 Generating, Compiling and Linking
To generate the C server skeletons type the following in an appropriate shell:
erlc -1 1 CROOI/include "+{be, c_server}" File.idl,

where | CROOT is the root of the IC application. The- 1 |1 CROOT/ i ncl ude isonly needed if Fi | e. i dl refers
toerl ang.idl.

When compiling a generated C skeleton file, the directories| CROOT/ i ncl ude and EI CROOT/ i ncl ude, haveto
be specified as include directories, where EI ROOT isthe root directory of the Erl_interface application.

When linking object filesthe El ROOT/ | i b and | CROOT/ pri v/ | i b directories have to be specified.

1.8.6 An Example

In this example the IDL specification file "random.idl" is used for generating C server skeletons (thefile is contained
inthe IC/ exanpl es/ c- server directory):

module rmod {
interface random {
double produce();
oneway void init(in long seedl, in long seed2, in long seed3);
b
}i

Generate the C server skeletons:

erlc '+{be, c_server}' random.idl

Erlang IDL compiler version X.Y.Z

Six files are generated.

Compile the C server skeletons:

Please read the ReadMe fileinthe exanpl es/ c- ser ver directory.

In the same directory you can find all the code for this example. In particular you will find the ser ver . ¢ file that
contains al the additional code that must be written to obtain a complete server.

Inthe exanpl es/ c- ser ver directory you will also find source code for an Erlang client, which can be used for
testing the C server.

1.9 CORBA _Environment C Structure

This chapter describes the CORBA_Environment C structure.

1.9.1 C Structure
Here is the complete definition of the CORBA_Environment C structure, defined in file "ic.h" :

Ericsson AB. All Rights Reserved.: ic | 25

1.9 CORBA _Environment C Structure

/* Environment definition */
typedef struct {

[¥----- CORBA compatibility part ------------------------ */
/* Exception tag, initially set to CORBA NO EXCEPTION ---*/
CORBA exception type major;

[¥----- External Implementation part - initiated by the user ---*/
/* File descriptor =/
int _fd;

/* Size of input buffer =/
int _inbufsz;

/* Pointer to always dynamically allocated buffer for input =/
char * inbuf;

/* Size of output buffer =/
int _outbufsz;

/* Pointer to always dynamically allocated buffer for output =/
char * outbuf;

/* Size of memory chunks in bytes, used for increasing the output
buffer, set to >= 32, should be around >= 1024 for performance

reasons &4
int _memchunk;
/* Pointer for registered name =/
char __regname[256] ;
/* Process identity for caller =/
erlang pid * to pid;
/* Process identity for callee =/
erlang pid * _from_pid;
/*- Internal Implementation part - used by the server/client ---*/
/* Index for input buffer =/
int _iin;
/* Index for output buffer =/
int _iout;
/* Pointer for operation name =/
char _operation[256];
/* Used to count parameters =/
int _received;
/* Used to identify the caller =/
erlang pid _caller;
/* Used to identify the call x/
erlang_ref _unique;
/* Exception id field &4
CORBA _char * exc_id;
/* Exception value field &4
void * exc_value;

} CORBA Environment;

The structureis divided into three parts:

e The CORBA Compatihility part, demanded by the standard OMG IDL mapping v2.0.
* Theexterna implementation part used for generated client/server code.
e Theinterna part useful for those who wish to define their own functions.

1.9.2 The CORBA Compatibility Part

Contains only one field _maj or defined as a CORBA_Exception_type. The CORBA_Exception type is an integer
which can be one of:

e CORBA_NO_EXCEPTION, by default equal to 0, can be set by the application programmer to another value.

26 | Ericsson AB. All Rights Reserved.: ic

1.9 CORBA _Environment C Structure

CORBA_SYSTEM_EXCEPTION, by default equal to -1, can be set by the application programmer to another
value.

The current definition of these values are:

#define CORBA_NO_EXCEPTION 0
#define CORBA_SYSTEM EXCEPTION -1

1.9.3 The External Part

This part contains the following fields:

int_fd - afile descriptor returned from erl_connect. Used for connection setting.

char* _inbuf - pointer to a buffer used for input. Buffer size checks are done under runtime that prevent buffer
overflows. This is done by expanding the buffer to fit the input message. In order to allow buffer reallocation,
the output buffer must always be dynamically allocated. The pointer value can change under runtime in case of
buffer reallocation.

int_inbufsz - start size of input buffer. Used for setting theinput buffer size under initialization of the Erl_Interface
functionei_receive_encoded/5. Thevalue of thisfield can change under runtimein case of input buffer expansion
to fit larger messages

int _outbufsz - start size of output buffer. The value of thisfield can change under runtime in case of input buffer
expansion to fit larger messages

char* _outbuf - pointer to a buffer used for output. Buffer size checks prevent buffer overflows under runtime,
by expanding the buffer to fit the output message in cases of lack of space in buffer. In order to allow buffer
reallocation, the output buffer must always be dynamically alocated. The pointer value can change under runtime
in case of buffer reallocation.

int_memchunk - expansion unit size for the output buffer. Thisis the size of memory chunks in bytes used for
increasing the output in case of buffer expansion. The value of this field must be always set to >= 32, should be
at least 1024 for performance reasons.

char regname[256] - aregistered name for a process.

erlang_pid* _to_pid - an Erlang process identifier, is only used if the registered_name parameter is the empty
string.

erlang_pid* _from_pid - your own process id so the answer can be returned.

1.9.4 The Internal Part

This part contains the following fields:

int _iin - Index for input buffer. Initially set to zero. Updated to agree with the length of the received encoded
message.

int _iout - Index for output buffer Initially set to zero. Updated to agree with the length of the message encoded
to the communication counterpart.

char _operation[256] - Pointer for operation name. Set to the operation to be called.

int _received - Used to count parameters. Initially set to zero.

erlang_pid _caller - Used to identify the caller. Initiated to avalue that identifies the caller.

erlang_ref _unique - Used to identify the call. Set to a default value in the case of generated functions.

CORBA_char* _exc_id - Exception id field. Initially set to NULL to agree with the initial value of _major
(CORBA_NO_EXCEPTION).

Ericsson AB. All Rights Reserved.: ic | 27

1.9 CORBA _Environment C Structure

void* _exc value - Exception value field Initially set to NULL to agree with the initial value of _major
(CORBA_NO_EXCEPTION).

The advanced user who defines his own functions has to update/support these values in a way similar to how they
are updated in the generated code.

1.9.5 Creating and Initiating the CORBA_Environment Structure

There are two ways to set the CORBA_Environment structure;

Manually

The following default values must be set to the CORBA_Environment *ev fields, when buffers for input/output
should have the size inbufsz/ outbufsz:

e ev-> inbufsz =inbufsz;

The value for thisfield can be between 0 and maximum size of a signed integer.
e ev->_inbuf = malloc(inbufsz);

The size of the allocated buffer must be equal to the value of its corresponding index, _inbufsz.
e ev-> outbufsz = outbufsz;

The value for thisfield can be between 0 and maximum size of a signed integer.
e ev->_outbuf = malloc(outbufsz);

The size of the allocated buffer must be equal to the value of its corresponding index, _outbufsz.
e ev-> memchunk =_ OE_MEMCHUNK__;

Please note that _ OE_ MEMCHUNK ___is equal to 1024, you can set this value to a value bigger than 32
yourself.

e ev-> to pid=NULL;

e ev-> from_pid = NULL;

By using the CORBA_Environment_alloc/2 function.
The CORBA_Environment_alloc function is defined as:

CORBA Environment *CORBA Environment alloc(int inbufsz,
int outbufsz);

where:

» inbufszisthe desired size of input buffer
e outbufszisthe desired size of output buffer
e returnvaueisapointer to an allocated and initialized CORBA_Environment structure.

Thisfunction will set all needed default values and all ocate buffers equal to the values passed, but will not allocate
space for the _to pidand _from pid fields.
To free the space alocated by CORBA_Environment_alloc/2:

» First call CORBA _freefor the input and output buffers.
« After freeing the buffer space, call CORBA _free for the CORBA_Environment space.

28 | Ericsson AB. All Rights Reserved.: ic

1.9 CORBA _Environment C Structure

Note:

Remember to set the fields _fd, _regname, *_to pid and/or *_from_pid to the appropriate application values.
These are not automatically set by the stubs.

Warning:

Never assign static buffers to the buffer pointers. Never set the_memchunk field to a value less than 32.

1.9.6 Setting System Exceptions

If the user wishes to set own system exceptions at critical positions on the code, it is strongly recommended to use
one of the current values:

e CORBA_NO_EXCEPTION upon success. Thevalue of the_exc id field should be then set to NULL. The value
of the _exc_valuefield should be then set to NULL.

e CORBA_SYSTEM_EXCEPTION upon system failure. The value of the _exc_id field should be then set to one
of the values defined in "ic.h" :

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

UNKNOWN
BAD PARAM

NO MEMORY
IMPL LIMIT
COMM_FAILURE
INV OBJREF

NO PERMISSION
INTERNAL
MARSHAL
INITIALIZE
NO_IMPLEMENT
BAD TYPECODE
BAD_OPERATION
NO RESOURCES
NO_RESPONSE
PERSIST STORE
BAD INV ORDER
TRANSIENT
FREE_MEM

INV IDENT

INV FLAG
INTF_REPOS
BAD_CONTEXT
0BJ_ADAPTER
DATA_CONVERSION
0BJ NOT EXIST

"UNKNOWN"
"BAD_PARAM"
“NO_MEMORY"
“IMP_LIMIT"
"COMM_FAILURE"
"INV_OBJREF"
“NO_PERMISSION"
"INTERNAL"
"MARSHAL"
"INITIALIZE"
“NO_IMPLEMENT"
"BAD_TYPECODE"
"BAD_OPERATION"
“NO_RESOURCES"
“NO_RESPONSE"
"PERSIST_STORE"
"BAD_INV_ORDER"
"TRANSIENT"
"FREE_MEM"
“INV_IDENT"
"INV_FLAG"
"INTF_REPOS"
"BAD_CONTEXT"
"0BJ_ADAPTER"
"DATA_CONVERSION"
"OBJECT_NOT_EXIST"

The value of the _exc_value field should be then set to a string that explains the problem in an informative way. The
user should use the functions CORBA _exc_set/4 and CORBA _exception_free/1 to free the exception. The user has
touse CORBA _exception_id/1 and CORBA_exception_value/1 to access exception information. Prototypesfor these
functions are declared in "ic.h"

Ericsson AB. All Rights Reserved.: ic | 29

1.10 IDL to Java language Mapping

1.10 IDL to Java language Mapping

1.10.1 Introduction

This chapter describes the mapping of OMG IDL constructs to the Java programming language for the generation of
native Java - Erlang communication.

This language mapping defines the following:

e All OMG IDL basic types

e All OMG IDL constructed types

» Referencesto constants defined in OMG IDL

e Invocations of operations, including passing of parameters and receiving of result
» Accessto attributes

1.10.2 Specialties in the Mapping

Names Reserved by the Compiler

The IDL compiler reserves all identifiers starting with OE_ and oe__ for internal use.

1.10.3 Basic OMG IDL Types

The mapping of basic types are according to the standard. All basic types have a special Holder class.

OMG IDL type Javatype

float float

double double

short short

unsigned short short

long int

long long long

unsigned long long

unsigned long long long

char char

wchar char

boolean boolean

octet octet

string javalang.String
wstring javalang.String

30 | Ericsson AB. All Rights Reserved.: ic

1.10 IDL to Java language Mapping

any Any
long double Not supported
Object Not supported
void void

Table 10.1: OMG IDL basic types

1.10.4 Constructed OMG IDL Types

All constructed types are according to the standard with three (3) major exceptions.

e ThelDL Exceptions are not implemented in this Java mapping.

e The functions used for read/write to streams, defined in Hel per functions are named unmarshal (instead for
read) and marshal (instead for write).

* Thestreamsusedin Hel per functionsare & pl nput St r eamfor input and Gt pQut put St r eamfor output.

1.10.5 Mapping for Constants
Constants are mapped according to the standard.

1.10.6 Invocations of Operations

Operation invocation is implemented according to the standard. The implementation is in the class
_<nt er facenane>St ub. j ava which implementsthe interfacein <nt er f acenane>. j ava.

test. iStub client;

client.op(10);

Operation Implementation

The server is implemented through extension of the class _<nt erfacenane>l npl Base. j ava and
implementation of all the methods in the interface.

public class server extends test. iImplBase {

public void op(int i) throws java.lang.Exception {
System.out.println("Received call op()");
o.value = i;
return i;

}

Ericsson AB. All Rights Reserved.: ic | 31

1.10 IDL to Java language Mapping

1.10.7 Exceptions

While exception mapping isnot implemented, the stubswill generate some Javaexceptionsin case of operation failure.
No exceptions are propagated through the communication.

1.10.8 Access to Attributes

Attributes are supported according to the standard.

1.10.9 Summary of Argument/Result Passing for Java

All types (i n, out ori nout) of user defined parameters are supported in the Java mapping. Thisis also the casein
the Erlang mappings but not in the C mapping. i nout parameters are not supported in the C mapping so if you are
going to do callsto or from a C program i nout cannot be used in the IDL specifications.

out andi nout parameters must be of Holder types. Thereisajar file (i c. j ar) with Holder classes for the basic
typesinthei c application. Thislibrary isin the directory $OTPROOT/ | i b/ i c_<ver si on nunber>/priv.

1.10.10 Communication Toolbox

The generated client and server stubs usethe classesdefinedinthej i nt er f ace package to communicate with other
nodes. The most important classes are :

* O pl nput St r eamwhich isthe stream class used for incoming message storage
O pCQut put St r eamwhich isthe stream class used for outgoing message storage

e O pErl angPi d which isthe process identification class used to identify processesinside ajavanode.

The recommended constructor function for the OtpErlangPidisQ pEr | angPi d(String node, int id,
int serial, int creation) where:

e String node, isthe name of the node where this process runs.

e int id,istheidentification number for thisidentity.

e int serial,interna information, must be an 18-hit integer.

e int creation,internal information, must have valuein range0..3.

e O pConnecti on whichis used to define a connection between nodes.

Whilethe connection object isstub side constructed in client stubs, it isreturned after callingtheaccept function
from an OtpErlangServer object in server stubs. The following methods used for node connection :

e OplnputStream receiveBuf (), which returns the incoming streams that contain the message
arrived.

e void sendBuf (G pErlangPid client, O pQutputStream reply), which sends areply
message (in an OtpOutputStream form) to the client node.

« void cl ose(),which closesaconnection.

e O pServer whichisused to define a server node.
The recommended constructor function for the OtpServer is:

e O pServer(String node, String cookie).where:

« node istherequested name for the new java node, represented as a String object.

32 | Ericsson AB. All Rights Reserved.: ic

1.10 IDL to Java language Mapping

* cooki e istherequested cookie name for the new javanode, represented as a String object.
The following methods used for node registration and connection acceptance :

* bool ean publ i shPort (), which registersthe server nodeto epnd daemon.

e O pConnection accept (), whichwaitsfor aconnection and returns the OtpConnection object which
isunique for each client node.

1.10.11 The Package com.ericsson.otp.ic

The package com.ericsson.otp.ic contains a number of java classes specially designed for the | C generated java-back-
ends:

» Standard java classes defined through OMG-IDL javamapping :
* BooleanHolder

e ByteHolder
e CharHolder
e ShortHolder
e IntHolder

e LongHolder

e FloatHolder
* DoubleHolder
e SringHolder
e Any, AnyHelper, AnyHolder
e TypeCode
e TCKind
e Implementation-dependant classes :
e Environment
e Holder
* Erlang compatibility classes:
» Pid, PidHelper, PidHolder

The Pid class originates from Ot pEr | angPi d and is used to represent the Erlang built-in pi d type, a
processsidentity. PidHelper and PidHol der are hel per respectively holder classes for Pid.

* Ref, RefHelper, RefHolder

The Ref class originates from Ot pEr | angRef and is used to represent the Erlang built-in r ef type, an
Erlang reference. RefHelper and RefHolder are helper respectively holder classes for Ref.

e Port, PortHelper, PortHolder

The Port class originatesfrom Qt pEr | angPor t and is used to represent the Erlang built-in por t type, an
Erlang port. PortHel per and PortHolder are helper respectively holder classes for Port.

e Term, TermHelper, TermHolder

The Term class originates from Any and is used to represent the Erlang built-int er mtype, an Erlang term.
TermHelper and TermHolder are helper respectively holder classes for Term.

Ericsson AB. All Rights Reserved.: ic | 33

1.10 IDL to Java language Mapping

To use the Erlang build-in classes, you will have to include the fileer | ang. i dl located under $OTPROOT/
l'ib/iclinclude.

1.10.12 The Term Class

The Ter mclassisintended to represent the Erlang term generic type. It extendsthe Any classand it isbasically used
in the same way asin the Any type.

The big difference between Term and Any isthe use of guar d methods instead of TypeCode to determine the data
included in the Term. This is especially true when the Term's value class cannot be determined at compilation time.
The guard methods found in Term :

* bool ean i sAtom() returnst r ue if the Term isan OtpErlangAtom, f al se otherwise

 bool ean isConstant () retunstrue if the Term is neither an OtpErlangList nor an OtpErlangTuple,
f al se otherwise

* bool ean i sFl oat () returnst r ue if the Term is an OtpErlangFloat, f al se otherwise

* bool ean i sl nteger() returnst r ue if the Term isan OtpErlangint, f al se otherwise
 bool ean isList() returnstrue if the Termisan OtpErlangList, f al se otherwise

e bool ean isString() retunst r ue if the Termisan OtpErlangString, f al se otherwise

 bool ean isNunber () returnstrue if the Term is an OtpErlanginteger or an OtpErlangFloat, f al se
otherwise

 bool ean isPid() returnst r ue if the Termis an OtpErlangPid or Pid, f al se otherwise
 bool ean isPort () returnstr ue if the Term isan OtpErlangPort or Port, f al se otherwise
e bool ean i sReference() returnst r ue if the Term is an OtpErlangRef, f al se otherwise
* bool ean isTupl e() returnst r ue if the Term isan OtpErlangTuple, f al se otherwise

* bool ean isBinary() returnstrue if the Termisan OtpErlangBinary, f al se otherwise

1.10.13 Stub File Types

For each interface, three (3) stub/skeleton files are generated :
« Ajavainterfacefile, named after theidl interface.

* A client stub file, named after the convention _< i nterface name >Stub which implements the java
interface. Example: _st ackSt ub.java

* A server stub file, named after the convention _< i nterface name >Inpl Base which implements the
javainterface. Example: _st ackl npl Base .java

1.10.14 Client Stub Initialization, Methods Exported

The recommended constructor function for client stubs accepts four (4) parameters :

« String sel f Node, the nodeidentification name to be used in the new client node.
e String peer Node, the node identification name where the client process is running.

e String cooki e, the cookieto be used.

34 | Ericsson AB. All Rights Reserved.: ic

1.10 IDL to Java language Mapping

e (bj ect server, wherethejava Object can be one of:

e O pErlangPi d, the server's process identity under the node where the server processis running.

* Stri ng, the server'sregistered name under the node where the server processis running.
The methods exported from the generated client stub are :

e wvoid __disconnect (), which disconnects the server connection.
e wvoid _ reconnect (), which disconnectsthe server connection if open, and then connects to the same peer.

e wvoid __stop(), which sends the standard stop termination call. When connected to an Erlang server, the
server will be terminated. When connected to a java server, this will set a stop flag that denotes that the server
must be terminated.

e comericsson.otp.erlang. O pErlangRef _ get Ref (), will returnthe messagereferencereceived
from a server that denotes which call it isreferring to. Thisis useful when building asynchronous clients.

e java.lang. Qvject _ server (), whichreturnsthe server for the current connection.

1.10.15 Server Skeleton Initialization, Server Stub Implementation,
Methods Exported
The constructor function for server skeleton accepts no parameters.

The server skeleton file contains a server swi t ch which decodes messages from the input stream and calls
implementation (cal | back) functions. Asthe server skeleton is declared abst r act , the application programmer
will have to create a stub class that ext ends the skeleton file. In this class, all operations defined in the interface
class, generated under compiling the idl file, are implemented.

The server skeleton file exports the following methods:

e OpQutputStrem invoke(Q plnputStream request), where the input stream r equest is
unmarshalled, the implementation function is called and areply stream is marshalled.

« bool ean __isStopped(),whichreturnstrueif a stop messageis received. The implementation of the stub
should always check if such amessage is received and terminate if so.

e boolean __isStopped(comericsson.otp.ic.Environnment), which returns true if a stop
message is received for a certain Environment and Connection. The implementation of the stub should always
check if such amessage is received and terminate if so.

e« OpErlangPid _ getCallerPid(),whichreturnsthe caller identity for the latest call.

e OpErlangPid _ getCallerPid(comericsson.otp.ic.Environnent), which returns the
caller identity for the latest call on a certain Environment.

e java.util.Di ctionary _ operations(), which returns the operation dictionary which holds all
operations supported by the server skeleton.

1.10.16 A Mapping Example

Thisis asmall example of asimple stack. There are two operations on the stack, push and pop. The example shows
some of the generated files.

Ericsson AB. All Rights Reserved.: ic | 35

1.10 IDL to Java language Mapping

// The source IDL file: stack.idl

struct s {
long 1;
string s;
1

interface stack {
void push(in s val);
s pop();

1

When thisfileis compiled it produces eight files. Three important files are shown below.
The public interface isin stack.java.

public interface stack {

/****

* Operation "stack::push" interface functions
*

=
void push(s val) throws java.lang.Exception;

/****

* Operation "stack::pop" interface functions
*

*/

s pop() throws java.lang.Exception;

For the IDL struct sthree files are generated, a public classin sjava.

final public class s {
// instance variables
public int 1;
public java.lang.String s;

// constructors

public s() {};

public s(int 1, java.lang.String s) {
1= 1;
s = _s;

o

A holder classin sHolder .java and a helper classin sHelper .java. The helper classis used for marshalling.

36 | Ericsson AB. All Rights Reserved.: ic

1.10 IDL to Java language Mapping

public class sHelper {

// constructors
private sHelper() {};

// methods

public static s unmarshal(OtpInputStream in)
throws java.lang.Exception {

i

public static void marshal(OtpOutputStream out, s value)
throws java.lang.Exception {

1.10.17 Running the Compiled Code

When using the generated java code you must have added $OTPROOT/ | i b/ i c_<ver si on nunber >/ pri v and
$OTPROOT/ i b/ jinterface_<version nurnber >/ pri v toyour CLASSPATH variableto get basic Holder
types and the communication classes.

Ericsson AB. All Rights Reserved.: ic | 37

1.10 IDL to Java language Mapping

2 Reference Manual

The I C application is an Erlang implementation of an IDL compiler.

38 | Ericsson AB. All Rights Reserved.: ic

iC

Erlang module

Theic moduleis an Erlang implementation of an OMG IDL compiler. Depending on the choice of back-end the code
will map to Erlang, C, or Java. The compiler generates client stubs and server skeletons.

Two kinds of files are generated for each scope: Ordinary code files and header files. The latter are used for defining
record definitions, while the ordinary files contain the object interface functions.

Exports

ic:gen(FileName) -> Result
ic:gen(FileName, [Option]) -> Result

Types:
Result = ok | error | {ok, [Warning]} | {error, [Warning], [Error]}
Option = [Ceneral Option | CodeOption | Warni ngOption | BackendOpti on]

Ceneral Option =

{outdir, String()} | {cfgfile, String()} | {use_preproc, bool ()} |
{preproc_cnd, String()} | {preproc_flags, String()}

CodeOption =

{gen_hrl, bool ()} | {serv_last _call, exception | exit} | {{inpl,
String()}, String()} | {light_ifr, bool ()}

this | {this, String()} | {{this, String()}, bool ()} |

from| {from String()} | {{from String()}, bool ()} |
handle_info | {handle_info, String()} | {{handle_info, String()}, bool ()}
|

timeout | {timeout, String()} | {{tinmeout, String()}, bool ()} |

{scoped _op calls, bool ()} | {scl, bool ()} |

{user_protocol, Prefix} |

{c_timeout, {SendTineout, RecvTineout}} |

{c_report, bool ()} |

{precond, {aton(), atom()}} | {{precond, String()} {atom(), atom()}} |

{postcond, {atom(), atom()}} | {{postcond, String()} {atom(), atom()}}
War ni ngOption =

{*vall', bool ()} | {maxerrs, int() | infinity} |
{maxwarns, int() | infinity} | {nowarn, bool ()} |
{war n_nanme_shadow, bool ()} | {pedantic, bool ()} |

{silent, bool ()}

BackendOpti on = {be, Backend}

Backend = erl _corba | erl _tenplate | erl _plain | erl_genserv | c_client |
c_server | java

DirNAme = string() | atom()

FileName = string() | atom)
Thetuple{ Opti on, true} canbereplaced by Opti on for boolean values.

Ericsson AB. All Rights Reserved.: ic | 39

Thei c: gen/ 2 function can be caled from the command line as follows:

erlc "+Option" ... File.idl
Example:
erlc "+{be,c_client}" "+{outdir, "../out"}' File.idl

General options

outdir
Placesall output filesin the directory given by the option. The directory will be created if it does not already exist.
Example option: {out di r, "out put/generated"}.

cfofile

Uses FileName as configuration file. Optionswill override compiler defaults but can be overridden by command
line options. Default valueis" . i ¢_confi g".

Exampleoption: { cfgfil e, "special.cfg"}.
use_preproc

Uses a preprocessor. Default valueis true.
preproc_cmd

Command string to invoke the preprocessor. The actual command will be built as preproc_cnd+
+preproc_flags++Fi | eNane

Example option: { preproc_cnd, "erl"}).

Example option: { preproc_cnd, "gcc -x c++ -E"}.
preproc_flags

Flags given to the preprocessor.

Example option: { preproc_flags, "-1../include"}.

Code options
light_ifr

Currently, the default setting isf al se. To be able to use this option Orber must be configured to use Light IFR
(see Orber's User's Guide). When this options is used, the size of the generated files used to register the API in
the IFR DB are minimized.

Example option: {1 i ght _ifr, true}.
gen_hrl

Generate header files. Default istrue.
serv_last_call

Makesthelast gen_server handl e_cal | either raise a CORBA exception or just exit plainly. Default is
the exception.

{{impl, IntfName}, ModName}

Assumes that the interface with name I ntfName is implemented by the module with name M odName and will
generate calls to the M odName module in the server behavior. Note that the I ntfName must be a fully scoped
nameasin" ML: : | 1".

40 | Ericsson AB. All Rights Reserved.: ic

this

Adds the object reference as the first parameter to the object implementation functions. This makes the
implementation aware of its own object reference.

The option comes in three varieties: t hi s which activates the parameter for all interfaces in the source file,
{this, |ntfNane} which activates the parameter for a specified interfaceand { {t hi s, | ntf Name},
f al se} which deactivates the parameter for a specified interface.

Example option: t hi s) activates the parameter for al interfaces.
Exampleoption: {t hi s, "ML:: 11"} activatesthe parameter for all functionsof ML: : | 1.

Example options: [this, {{this, "M.:12"}, false}] activatesthe parameter for al interfaces
except ML: : | 2.

from

Adds the invokers reference as the first parameter to the object implementation two-way functions. If both
fromandt hi s options are used the invokers reference parameter will be passed as the second parameter. This
makes it possible for the implementation to respond to a request and continue executing afterwards. Consult the
gen_server and O ber documentation how this option may be used.

The option comes in three varieties: f r omwhich activates the parameter for al interfaces in the source file,
{from | ntfNane} which activates the parameter for a specified interfaceand { { f rom | nt f Nane},
f al se} which deactivates the parameter for a specified interface.

Example option: f r o) activates the parameter for all interfaces.
Exampleoptions: [{from " ML: : 1 1"}] activatesthe parameter for all functionsof ML: : | 1.

Example options: [from {{from "M.::12"}, false}] activatesthe parameter for al interfaces
except ML: : | 2.

handle _info

Makes the object server call afunction handl e_i nf o in the object implementation module on all unexpected
messages. Useful if the object implementation need to trap exits.

Example option: handl e_i nf o will activates module implementation handl e_i nf o for all interfacesin the
sourcefile.

Example option: {{handl e_i nf o, ML 11"}, true} will activates module implementation
handl e_i nf o for the specified interface.

Example options: [handl e_i nfo, {{handle_info, "ML :11"}, false}] will generate the
handl e_i nf o call for all interfaces except ML: : | 1.

timeout

Used to allow a server response time limit to be set by the user. This should be a string that represents the scope
for the interface which should have an extra variable for wait time initialization.

Exampleoption: {ti meout , "M : 1 "}) produces server stub which will has an extratimeout parameter in the
initialization function for that interface.

Example option: t i meout produces server stub which will has an extra timeout parameter in the initialization
function for al interfaces in the source file.

Exampleoptions: [t i nmeout, {{timeout,"M:1"}, false}] producesserver stub which will hasan
extratimeout parameter in the initialization function for all interfaces except ML: : | 1.

scoped_op_calls

Used to produce more refined request calls to server. When this option is set to true, the operation name which
was mentioned in the call is scoped. Thisis essential to avoid name clashes when communicating with c-servers.

Ericsson AB. All Rights Reserved.: ic | 41

Thisoptionisavailablefor the c-client, c-server and the Erlang gen_server back ends. Al | of the parts generated
by ic have to agree in the use of this option. Default isf al se.

Exampleoptions: [{ be, c_genser v}, {scoped_op_cal I s, true}]) producesclient stubswhich sends
"scoped"” requeststo agen_server or ac-server.

user_protocol

Used to define a own protocol different from the default Erlang distribution + gen_server protocol. Currently
only valid for C back-ends. For further details see IC C protocol.

Example options: [{be, c_client},{user_protocol, "ny special"}]) produces client stubs
which use C protocol functions with the prefix "my_special".

c_timeout
Makes sends and receives to have timeouts (C back-ends only). These timeouts are specified in milliseconds.

Exampleoptions: [{ be, c_client},{c_timeout, {10000, 20000}}]) producesclient stubswhich
use a 10 seconds send timeout, and a 20 seconds receive timeout.

c_report

Generates code for writing encode/decode errors to st derr (C back-ends only). timeouts are specified in
milliseconds.

Example options: [{be, c_client}, c_report]).

el
Used for compatibility with previous compiler versionsup to 3. 3. Due to better semantic checks on enumerants,
the compiler discovers name clashes between user defined types and enumerant val uesin the same name space. By
enabling this option the compiler turns off the extended semantic check on enumerant values. Default isf al se.
Example option: { scl , t rue}

precond
Adds a precondition call before the call to the operation implementation on the server side.
The option comes in three varieties. { precond, {M F}} which activates the call for operations in all
interfacesinthe sourcefile, { { precond, I ntfNanme}, {M F}} whichactivatesthecall for al operations
inaspecificinterfaceand{ { pr econd, QpNane}, {M F}} whichactivatesthecall for aspecific operation.
The precondition function has the following signaturem f (Modul e, Function, Args).
Example option: { pr econd, {nod, fun}} addsthecal of m:f for al operationsin theidl file.
Example options: [{ {precond, "ML::1"}, {nod, fun}}] addsthecall of m f for al operationsin
theinterface ML: : | 1.
Exampleoptions: [{ { precond, "ML::1::Op"}, {npd, fun}}] addsthecall of m f for the operation
ML::1:: Op.

postcond

Adds a postcondition call after the call to the operation implementation on the server side.

The option comes in three varieties: { post cond, {M F}} which activates the call for operations in all
interfacesinthe sourcefile, { { post cond, | ntfNane}, {M F}} whichactivatesthecall for all operations
in a specific interface and { { post cond, COpNane}, {M F}} which activates the call for a specific
operation.

The postcondition function has the following signaturem f (Modul e, Function, Args, Result).
Example option: { post cond, {nod, fun}} addsthecal of m:f for all operationsin theidl file.

42 | Ericsson AB. All Rights Reserved.: ic

Example options: [{{ post cond, "ML:: 1"}, {nod, fun}}] addsthecal of mf for al operations
intheinterface ML: : | 1.

Exampleoptions: [{ { post cond, "ML::1:: "}, {nod, fun}}] addsthecall of m f fortheoperation
ML: - 1:: Op.
Warning options
'Wall'
The option activates all reasonable warning messages in analogy with the gcc -Wall option. Default valueistrue.
maxerrs

The maximum numbers of errors that can be detected before the compiler gives up. The option can either have
an integer value or the atom i nf i ni t y. Default number is 10.

maxwarns

The maximum numbers of warningsthat can be detected before the compiler gives up. The option can either have
an integer value or theatom i nf i ni ty. Default valueisinfinity.

nowarn
Suppresses all warnings. Default value is false.
warn_name_shadow

Warning appears whenever names are shadowed due to inheritance; for example, if a type name is redefined
from a base interface. Note that it isillegal to overload operation and attribute names as this causes an error to
be produced. Default value istrue.

pedantic

Activates all warning options. Default value is false.
silent

Suppresses compiler printed output. Default value is false.

Back-End options

Which back-end IC will generate code for is determined by the supplied { be, at on{)} option. If left out,
er| _cor ba isused. Currently, IC support the following back-ends:

erl_corba
This option switches to the IDL generation for CORBA.

erl_template
Generate CORBA call-back module templates for each interface in the target IDL file. Note, will overwrite
existing files.

erl_plain

Will produce plain Erlang modules which contain functions that map to the corresponding interface functions
ontheinput file.

erl_genserv

Thisisan IDL to Erlang generic server generation option.
c_client

Will produce a C client to the generic Erlang server.

Ericsson AB. All Rights Reserved.: ic | 43

C_server
Will produce a C server switch with functionality of a generic Erlang server.
java
Will produce Java client stubs and server skeletons with functionality of a generic Erlang server.
C_genserv
Deprecated. Usec_cl i ent instead.

Preprocessor

The IDL compiler allows several preprocessorsto beused, theEr | ang | DL prepr ocessor or other standard C
preprocessors. Options can be used to provide extra flags such as include directoriesto the preprocessor. The build in
the Erlang IDL preprocessor is used by default, but any standard C preprocessor such asgcc is adequate.

The preprocessor command is formed by appending the prepoc_cmd to the preproc_flags option and then appending
theinput IDL file name.

Configuration
The compiler can be configured in two ways:

» Configuration file
e Command line options

The configuration file is optional and overrides the compiler defaults and isin turn overridden by the command line
options. The configuration file shall contain options in the form of Erlang terms. The configuration file is read using
file:consult.

An example of aconfiguration file, note the"." after each line.

{outdir, gen dir}.
{{impl, "M1::M2::object"}, "obj"}.

Output files

The compiler will produce output in severa files depending on scope declarations found in the IDL file. At most three
file types will be generated for each scope (including the top scope), depending on the compiler back-end and the
compiled interface. Generally, the output per interface will be aheader file (. hr 1 /. h) and one or more Erlang/C files
(. erl /. c). Pleaselook at the language mapping for each back-end for details.

There will be at least one set of filesfor an IDL file, for the file level scope. Modules and interfaces also have their
own set of generated files.

44 | Ericsson AB. All Rights Reserved.: ic

ic_clib

ic_clib
CLibrary

This manual page lists some of the functionsin the IC C runtime library.

Allocation and Deallocation Functions
The following functions are used for alocating and deallocating a CORBA_Environment structure.

Exports

CORBA_Environment *CORBA Environment alloc(int inbufsz, int outbufsz)

This function is used to alocate and initiate the CORBA_Envi r onment structure. In particular, it is used to
dynamically allocate a CORBA_Environment structure and set the default values for the structure's fields.

inbufsizeistheinitial size of the input buffer.
outbufsizeistheinitial size of the output buffer.
CORBA_Environment isthe CORBA 2.0 state structure used by the generated stub.

Thisfunctionwill set all needed default values and allocate buffers the lengths of which are equal to the values passed,
but will not alocate space for the _to pid and _from_pid fields.

To free the space alocated by CORBA_Environment_alloc() do as follows.

* First call CORBA _freefor the input and output buffers.
« After freeing the buffer space, call CORBA _free for the CORBA_Environment space.

void CORBA free(void *p)
Frees allocated space pointed to by p.

CORBA char *CORBA string alloc(CORBA unsigned long len)
Allocates a (simple) CORBA character string of lengthl en + 1.

CORBA wchar *CORBA wstring alloc(CORBA unsigned long len)
Allocates a CORBA wide string of lengthl en + 1.

Exception Functions

Functions for retrieving exception ids and values, and for setting exceptions.

Exports

CORBA char *CORBA exception id(CORBA Environment *env)
Returns the exception identity if an exception is set, otherwise it returns NULL.

void *CORBA exception value(CORBA_Environment *env)
Returns the exception value, if an exception is set, otherwise it returns NULL.

Ericsson AB. All Rights Reserved.: ic | 45

ic_clib

void CORBA exc set(CORBA Environment *env, CORBA exception type Major,
CORBA char *Id, CORBA char *Value)

Sets the exception type, exception identity, and exception value in the environment pointed to by env.

Server Reception

The following function is provided for convenience.

Exports

int oe server receive(CORBA Environment *env, oe map_t *map)

int oe server receive tmo(CORBA Environment *env, oe map t *map, unsigned int
send ms, unsigned int recv ms)

Provides a loop that receives one message, executes the operation in question, and in case of a two-way operation
sendsareply.

send_ns and r ecv_ns specify timeout values in milliseconds for send and receive, respectively.

Generic Execution Switch and Map Merging
Function for searching for server operation function, and for calling it if found. Function for merging maps (see the
includefilei c. h for definitions).

Exports

int oe exec switch(CORBA Object obj, CORBA Environment *env, oe map t *map)
Search for server operation and execute it.

oe map t *oe merge maps(oe map t *maps, int size)
Merge an array of server maps to one single map.

The CORBA_Environment structure
Here is the complete definition of the CORBA_Environment structure, defined in fileic.h:

/* Environment definition */
typedef struct {

[*----- CORBA compatibility part ------------------------ */
/* Exception tag, initially set to CORBA NO EXCEPTION ---*/
CORBA exception type major;

VAR External Implementation part - initiated by the user ---*/
/* File descriptor */
int _fd;

/* Size of input buffer */
int _inbufsz;

/* Pointer to always dynamically allocated buffer for input */
char * inbuf;

/* Size of output buffer */
int _outbufsz;

/* Pointer to always dynamically allocated buffer for output */
char * outbuf;

46 | Ericsson AB. All Rights Reserved.: ic

ic_clib

/* Size of memory chunks in bytes, used for increasing the output
buffer, set to >= 32, should be around >= 1024 for performance

reasons */
int _memchunk;

/* Pointer for registered name */
char _regname[256];

/* Process identity for caller */
erlang pid * to_pid;

/* Process identity for callee */
erlang pid * from pid;

/*- Internal Implementation part - used by the server/client ---*/
/* Index for input buffer */
int _iin;

/* Index for output buffer */
int _iout;

/* Pointer for operation name */
char _operation[256];

/* Used to count parameters */
int _received;

/* Used to identify the caller */
erlang pid _caller;

/* Used to identify the call */
erlang_ ref _unique;

/* Exception id field */
CORBA char * exc_id;

/* Exception value field */

void * exc _value;

} CORBA_Environment;

Note:

Always set thefield values_fd, regname, to pid and/or *_from_pid to appropriate application values. These

are not automatically set by the stubs.

Warning:

Never assign static buffersto the buffer pointers, and never set the _memchunk field to avalue less than 32.

SEE ALSO
ic(3), ic_c_protocol(3)

Ericsson AB. All Rights Reserved.: ic | 47

ic_c_protocol

ic_c_protocol
C Library

This manual page lists some of the functions of the IC C runtime library that are used internally for the IC protocol.

The listed functions are used internally by generated C client and server code. They are documented here for the
advanced user that want to replace the default protocol (Erlang distribution + gen_server) by his own protocol, For
each set of client or sever functions below with prefix oe, the user has to implement his own set of functions, the
names of which are obtained by replacing the oe prefix by Prefi x. The Pref i x has to be set with the option
{user_protocol, Prefix} a compiletime.

The following terminology is used (reflected in names of functions): a notification is a message send from client to
server, without any reply back (i.e. aoneway operation); arequest isamessage sent from client to server, and where
areply messageis sent back from the server to the client.

In order to understand how the functions work and what they do the user must study their implementation in the IC
C library (sourcefileisi c. c), and also consider how they are used in the C code of ordinary generated client stubs
or server skeletons.

Client Protocol Functions

The following functions are used internally by generated C client code.

Exports

int oe prepare notification encoding(CORBA Environment *env)

Theresult of thisfunction isthe beginning of abinary of in external format of thetuple{' $gen_cast', X} where
Xisnot yet filled in.

In generated client code this function is the first to be called in the encoding function for each oneway operation.

int oe send notification(CORBA Environment *env)
int oe _send notification tmo(CORBA Environment *env, unsigned int send ms)

Sends a client notification to a server according to the Erlang distribution + gen_server protocol.

Thesend_ns parameter specified atimeout in milliseconds.

int oe prepare request encoding(CORBA Environment *env)

The result of thisfunction is the beginning of abinary in the external format of thetuple{' $gen_cal | ', {Pid,
Ref}, X} where Xisnot yet filled in.

In generated client code this function is the first to be called in the encoding function for each twoway operation.

int oe send request and receive reply(CORBA Environment *env)

int oe send request and receive reply tmo(CORBA Environment *env, unsigned
int send ms, unsigned int recv_ms)

Sends a client request and receives the reply according to the Erlang distribution + gen_server protocol. Thisfunction
calstheoe_prepare_repl y_decodi ng function in order to obtain the gen_server reply.

send_ns andr ecv_ns specify timeouts for send and receive, respectively, in milliseconds.

48 | Ericsson AB. All Rights Reserved.: ic

ic_c_protocol

int oe prepare reply decoding(CORBA Environment *env)

Decodes the binary version of the tuple { Ref, X}, where X is to be decoded later by the specific client decoding
function.

Server Protocol Functions

The following functions are used internally by generated C server code.

Exports

int oe prepare_request decoding(CORBA Environment *env)

Decodesthebinary version of thetuple{ "' $gen_cast', Op} (Op anatom), orthetuple{' $gen_cast', {Op,
X} } , where Op isthe operation name, and where Xisto be decoded | ater by the specific operation decoding function; or

decodes the binary version of the tuple {' $gen_cal | ', {Pid, Ref}, Op} (Op an atom), or the tuple
{"$gen_call', {Pid, Ref}, {Op, X}},whereOp> isthe operation name, and X isto be decode later by
the specific operation decoding function.

int oe prepare reply encoding(CORBA Environment *env)

Encodes the beginning of the binary version of the tuple { { Ref , X} , where X isto befilled in by the specific server
encoding function.

SEE ALSO
ic(3), ic_clib(3), IC Protocol

Ericsson AB. All Rights Reserved.: ic | 49

	ic
	IC User's Guide
	Using the IC Compiler
	Introduction
	Compilation of IDL Files

	OMG IDL
	OMG IDL - Overview
	Reserved Compiler Names and Keywords

	IC Protocol
	Introduction
	Language mappings and IDL operations
	IDL Operations
	Language Mappings

	IC Protocol
	Call (Request/Reply, i.e. not oneway)
	Cast (oneway)

	Gen_server Protocol
	Call
	Cast

	Erlang Distribution Protocol

	Using the Plain Erlang Back-end
	Introduction
	Compiling the Code
	Writing the Implementation File
	An Example

	Using the Erlang Generic Server Back-end
	Introduction
	Compiling the Code
	Writing the Implementation File
	An Example
	Administrative Operations
	IDL Dependent Operations
	Implementation Module

	IDL to C mapping
	Introduction
	C Mapping Characteristics
	Reserved Names
	Scoped Names
	Generated Files

	Basic OMG IDL Types
	Constructed OMG IDL Types
	OMG IDL Constants
	OMG IDL Operations
	Operation Implementation

	Exceptions
	Access to Attributes
	Summary of Argument/Result Passing for the C-client
	Supported Memory Allocation Functions
	Special Memory Deallocation Functions
	Exception Access Functions
	Special Types
	A Mapping Example

	The C Client Back-end
	Introduction
	Generated Stub Files
	C Interface Functions
	Generating, Compiling and Linking
	An Example

	The C Server Back-end
	Introduction
	Generated Stub Files
	C Skeleton Functions
	The Server Loop
	Generating, Compiling and Linking
	An Example

	CORBA_Environment C Structure
	C Structure
	The CORBA Compatibility Part
	The External Part
	The Internal Part
	Creating and Initiating the CORBA_Environment Structure
	Setting System Exceptions

	IDL to Java language Mapping
	Introduction
	Specialties in the Mapping
	Names Reserved by the Compiler

	Basic OMG IDL Types
	Constructed OMG IDL Types
	Mapping for Constants
	Invocations of Operations
	Operation Implementation

	Exceptions
	Access to Attributes
	Summary of Argument/Result Passing for Java
	Communication Toolbox
	The Package com.ericsson.otp.ic
	The Term Class
	Stub File Types
	Client Stub Initialization, Methods Exported
	Server Skeleton Initialization, Server Stub Implementation, Methods Exported
	A Mapping Example
	Running the Compiled Code

	Reference Manual
	ic
	ic:gen/1
	ic:gen/2

	ic_clib
	CORBA_Environment_alloc()

	CORBA_free()

	CORBA_string_alloc()

	CORBA_wstring_alloc()

	CORBA_exception_id()

	CORBA_exception_value()

	CORBA_exc_set()

	oe_server_receive()

	oe_server_receive_tmo()

	oe_exec_switch()

	oe_merge_maps()

	ic_c_protocol
	oe_prepare_notification_encoding()

	oe_send_notification()

	oe_send_notification_tmo()

	oe_prepare_request_encoding()

	oe_send_request_and_receive_reply()

	oe_send_request_and_receive_reply_tmo()

	oe_prepare_reply_decoding()

	oe_prepare_request_decoding()

	oe_prepare_reply_encoding()

