
Dialyzer
Copyright © 2006-2016 Ericsson AB. All Rights Reserved.

Dialyzer 3.0
June 21, 2016

Copyright © 2006-2016 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 21, 2016

Ericsson AB. All Rights Reserved.: Dialyzer | 1

1.1 Dialyzer

2 | Ericsson AB. All Rights Reserved.: Dialyzer

1 Dialyzer User's Guide

Dialyzer is a static analysis tool that identifies software discrepancies such as type errors, unreachable code,
unnecessary tests, etc in single Erlang modules or entire (sets of) applications.

1.1 Dialyzer
1.1.1 Introduction
Dialyzer is a static analysis tool that identifies software discrepancies such as type errors, unreachable code,
unnecessary tests, etc in single Erlang modules or entire (sets of) applications.

1.1.2 Using the Dialyzer from the GUI
Choosing the applications or modules
In the "File" window you will find a listing of the current directory. Click your way to the directories/modules you
want to add or type the correct path in the entry.

Mark the directories/modules you want to analyze for discrepancies and click "Add". You can either add the .beam
and .erl-files directly, or you can add directories that contain these kinds of files. Note that you are only allowed
to add the type of files that can be analyzed in the current mode of operation (see below), and that you cannot mix
.beam and .erl-files.

The analysis modes
Dialyzer has two modes of analysis, "Byte Code" or "Source Code". These are controlled by the buttons in the top-
middle part of the main window, under "Analysis Options".

Controlling the discrepancies reported by the Dialyzer
Under the "Warnings" pull-down menu, there are buttons that control which discrepancies are reported to the user in
the "Warnings" window. By clicking on these buttons, one can enable/disable a whole class of warnings. Information
about the classes of warnings can be found on the "Warnings" item under the "Help" menu (at the rightmost top corner).

If modules are compiled with inlining, spurious warnings may be emitted. In the "Options" menu you can choose
to ignore inline-compiled modules when analyzing byte code. When starting from source code this is not a problem
since the inlining is explicitly turned off by Dialyzer. The option causes Dialyzer to suppress all warnings from inline-
compiled modules, since there is currently no way for Dialyzer to find what parts of the code have been produced
by inlining.

Running the analysis
Once you have chosen the modules or directories you want to analyze, click the "Run" button to start the analysis. If
for some reason you want to stop the analysis while it is running, push the "Stop" button.

The information from the analysis will be displayed in the Log and the Warnings windows.

Include directories and macro definitions
When analyzing from source you might have to supply Dialyzer with a list of include directories and macro definitions
(as you can do with the erlc flags -I and -D). This can be done either by starting Dialyzer with these flags from
the command line as in:

1.1 Dialyzer

Ericsson AB. All Rights Reserved.: Dialyzer | 3

 dialyzer -I my_includes -DDEBUG -Dvsn=42 -I one_more_dir

or by adding these explicitly using the "Manage Macro Definitions" or "Manage Include Directories" sub-menus in
the "Options" menu.

Saving the information on the Log and Warnings windows
In the "File" menu there are options to save the contents of the Log and the Warnings window. Just choose the options
and enter the file to save the contents in.

There are also buttons to clear the contents of each window.

Inspecting the inferred types of the analyzed functions
Dialyzer stores the information of the analyzed functions in a Persistent Lookup Table (PLT). After an analysis you
can inspect this information. In the PLT menu you can choose to either search the PLT or inspect the contents of the
whole PLT. The information is presented in edoc format.

1.1.3 Using the Dialyzer from the command line
See dialyzer(3).

1.1.4 Using the Dialyzer from Erlang
See dialyzer(3).

1.1.5 More on the Persistent Lookup Table (PLT)
The persistent lookup table, or PLT, is used to store the result of an analysis. The PLT can then be used as a starting
point for later analyses. It is recommended to build a PLT with the otp applications that you are using, but also to
include your own applications that you are using frequently.

The PLT is built using the --build_plt option to dialyzer. The following command builds the recommended minimal
PLT for OTP.

 dialyzer --build_plt -r $ERL_TOP/lib/stdlib/ebin\
 $ERL_TOP/lib/kernel/ebin \
 $ERL_TOP/lib/mnesia/ebin

Dialyzer will look if there is an environment variable called $DIALYZER_PLT and place the PLT at this location.
If no such variable is set, Dialyzer will place the PLT at $HOME/.dialyzer_plt. The placement can also be specified
using the --plt, or --output_plt options.

You can also add information to an existing plt using the --add_to_plt option. Suppose you want to also include the
compiler in the PLT and place it in a new PLT, then give the command

 dialyzer --add_to_plt -r $ERL_TOP/lib/compiler/ebin --output_plt my.plt

Then you would like to add your favorite application my_app to the new plt.

1.1 Dialyzer

4 | Ericsson AB. All Rights Reserved.: Dialyzer

 dialyzer --add_to_plt --plt my.plt -r my_app/ebin

But you realize that it is unnecessary to have compiler in this one.

 dialyzer --remove_from_plt --plt my.plt -r $ERL_TOP/lib/compiler/ebin

Later, when you have fixed a bug in your application my_app, you want to update the plt so that it will be fresh the
next time you run Dialyzer, run the command

 dialyzer --check_plt --plt my.plt

Dialyzer will then reanalyze the files that have been changed, and the files that depend on these files. Note that this
consistency check will be performed automatically the next time you run Dialyzer with this plt. The --check_plt option
is merely for doing so without doing any other analysis.

To get some information about a plt use the option

 dialyzer --plt_info

You can also specify which plt with the --plt option, and get the output printed to a file with --output_file

Note that when manipulating the plt, no warnings are emitted. To turn on warnings during (re)analysis of the plt, use
the option --get_warnings.

1.1.6 Feedback and bug reports
At this point, we very much welcome user feedback (even wish-lists!). If you notice something weird, especially if
the Dialyzer reports any discrepancy that is a false positive, please send an error report describing the symptoms and
how to reproduce them to:

 tobias.lindahl@it.uu.se, kostis@it.uu.se

1.1 Dialyzer

Ericsson AB. All Rights Reserved.: Dialyzer | 5

2 Reference Manual

Dialyzer is a static analysis tool that identifies software discrepancies such as type errors, unreachable code,
unnecessary tests, etc in single Erlang modules or entire (sets of) applications.

dialyzer

6 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer
Erlang module

The Dialyzer is a static analysis tool that identifies software discrepancies such as definite type errors, code which has
become dead or unreachable due to some programming error, unnecessary tests, etc. in single Erlang modules or entire
(sets of) applications. Dialyzer starts its analysis from either debug-compiled BEAM bytecode or from Erlang source
code. The file and line number of a discrepancy is reported along with an indication of what the discrepancy is about.
Dialyzer bases its analysis on the concept of success typings which allows for sound warnings (no false positives).

Read more about Dialyzer and about how to use it from the GUI in Dialyzer User's Guide.

Using the Dialyzer from the command line
Dialyzer also has a command line version for automated use. Below is a brief description of the list of its options. The
same information can be obtained by writing

 dialyzer --help

in a shell. Please refer to the GUI description for more details on the operation of Dialyzer.

The exit status of the command line version is:

 0 - No problems were encountered during the analysis and no
 warnings were emitted.
 1 - Problems were encountered during the analysis.
 2 - No problems were encountered, but warnings were emitted.

Usage:

 dialyzer [--help] [--version] [--shell] [--quiet] [--verbose]
 [-pa dir]* [--plt plt] [--plts plt*] [-Ddefine]*
 [-I include_dir]* [--output_plt file] [-Wwarn]* [--raw]
 [--src] [--gui] [files_or_dirs] [-r dirs]
 [--apps applications] [-o outfile]
 [--build_plt] [--add_to_plt] [--remove_from_plt]
 [--check_plt] [--no_check_plt] [--plt_info] [--get_warnings]
 [--dump_callgraph file] [--no_native] [--fullpath]
 [--statistics] [--no_native_cache]

Options:

files_or_dirs (for backwards compatibility also as: -c files_or_dirs)
Use Dialyzer from the command line to detect defects in the specified files or directories containing .erl or
.beam files, depending on the type of the analysis.

-r dirs
Same as the previous but the specified directories are searched recursively for subdirectories containing .erl
or .beam files in them, depending on the type of analysis.

--apps applications
Option typically used when building or modifying a plt as in:

dialyzer

Ericsson AB. All Rights Reserved.: Dialyzer | 7

 dialyzer --build_plt --apps erts kernel stdlib mnesia ...

to conveniently refer to library applications corresponding to the Erlang/OTP installation. However, the option
is general and can also be used during analysis in order to refer to Erlang/OTP applications. In addition, file or
directory names can also be included, as in:

 dialyzer --apps inets ssl ./ebin ../other_lib/ebin/my_module.beam

-o outfile (or --output outfile)
When using Dialyzer from the command line, send the analysis results to the specified outfile rather than to
stdout.

--raw
When using Dialyzer from the command line, output the raw analysis results (Erlang terms) instead of the
formatted result. The raw format is easier to post-process (for instance, to filter warnings or to output HTML
pages).

--src
Override the default, which is to analyze BEAM files, and analyze starting from Erlang source code instead.

-Dname (or -Dname=value)
When analyzing from source, pass the define to Dialyzer. (**)

-I include_dir
When analyzing from source, pass the include_dir to Dialyzer. (**)

-pa dir
Include dir in the path for Erlang (useful when analyzing files that have '-include_lib()' directives).

--output_plt file
Store the plt at the specified file after building it.

--plt plt
Use the specified plt as the initial plt (if the plt was built during setup the files will be checked for consistency).

--plts plt*
Merge the specified plts to create the initial plt -- requires that the plts are disjoint (i.e., do not have any module
appearing in more than one plt). The plts are created in the usual way:

 dialyzer --build_plt --output_plt plt_1 files_to_include
 ...
 dialyzer --build_plt --output_plt plt_n files_to_include

and then can be used in either of the following ways:

 dialyzer files_to_analyze --plts plt_1 ... plt_n

or:

 dialyzer --plts plt_1 ... plt_n -- files_to_analyze

(Note the -- delimiter in the second case)

dialyzer

8 | Ericsson AB. All Rights Reserved.: Dialyzer

-Wwarn
A family of options which selectively turn on/off warnings (for help on the names of warnings use dialyzer
-Whelp). Note that the options can also be given in the file with a -dialyzer() attribute. See Requesting
or Suppressing Warnings in Source Files below for details.

--shell
Do not disable the Erlang shell while running the GUI.

--version (or -v)
Print the Dialyzer version and some more information and exit.

--help (or -h)
Print this message and exit.

--quiet (or -q)
Make Dialyzer a bit more quiet.

--verbose
Make Dialyzer a bit more verbose.

--statistics
Prints information about the progress of execution (analysis phases, time spent in each and size of the relative
input).

--build_plt
The analysis starts from an empty plt and creates a new one from the files specified with -c and -r. Only
works for beam files. Use --plt or --output_plt to override the default plt location.

--add_to_plt
The plt is extended to also include the files specified with -c and -r. Use --plt to specify which plt to start
from, and --output_plt to specify where to put the plt. Note that the analysis might include files from the
plt if they depend on the new files. This option only works with beam files.

--remove_from_plt
The information from the files specified with -c and -r is removed from the plt. Note that this may cause a re-
analysis of the remaining dependent files.

--check_plt
Check the plt for consistency and rebuild it if it is not up-to-date.

--no_check_plt
Skip the plt check when running Dialyzer. Useful when working with installed plts that never change.

--plt_info
Make Dialyzer print information about the plt and then quit. The plt can be specified with --plt(s).

--get_warnings
Make Dialyzer emit warnings even when manipulating the plt. Warnings are only emitted for files that are
actually analyzed.

--dump_callgraph file
Dump the call graph into the specified file whose format is determined by the file name extension. Supported
extensions are: raw, dot, and ps. If something else is used as file name extension, default format '.raw' will be
used.

--no_native (or -nn)
Bypass the native code compilation of some key files that Dialyzer heuristically performs when dialyzing many
files; this avoids the compilation time but it may result in (much) longer analysis time.

--no_native_cache
By default, Dialyzer caches the results of native compilation in the $XDG_CACHE_HOME/erlang/
dialyzer_hipe_cache directory. XDG_CACHE_HOME defaults to $HOME/.cache. Use this option to
disable caching.

--fullpath
Display the full path names of files for which warnings are emitted.

--gui
Use the GUI.

dialyzer

Ericsson AB. All Rights Reserved.: Dialyzer | 9

Note:
* denotes that multiple occurrences of these options are possible.

** options -D and -I work both from command-line and in the Dialyzer GUI; the syntax of defines and includes
is the same as that used by erlc.

Warning options:

-Wno_return
Suppress warnings for functions that will never return a value.

-Wno_unused
Suppress warnings for unused functions.

-Wno_improper_lists
Suppress warnings for construction of improper lists.

-Wno_fun_app
Suppress warnings for fun applications that will fail.

-Wno_match
Suppress warnings for patterns that are unused or cannot match.

-Wno_opaque
Suppress warnings for violations of opaqueness of data types.

-Wno_fail_call
Suppress warnings for failing calls.

-Wno_contracts
Suppress warnings about invalid contracts.

-Wno_behaviours
Suppress warnings about behaviour callbacks which drift from the published recommended interfaces.

-Wno_missing_calls
Suppress warnings about calls to missing functions.

-Wno_undefined_callbacks
Suppress warnings about behaviours that have no -callback attributes for their callbacks.

-Wunmatched_returns***
Include warnings for function calls which ignore a structured return value or do not match against one of many
possible return value(s).

-Werror_handling***
Include warnings for functions that only return by means of an exception.

-Wrace_conditions***
Include warnings for possible race conditions. Note that the analysis that finds data races performs intra-
procedural data flow analysis and can sometimes explode in time. Enable it at your own risk.

-Wunderspecs***
Warn about underspecified functions (the -spec is strictly more allowing than the success typing).

-Wunknown***
Let warnings about unknown functions and types affect the exit status of the command line version. The default
is to ignore warnings about unknown functions and types when setting the exit status. When using the Dialyzer
from Erlang, warnings about unknown functions and types are returned; the default is not to return these
warnings.

The following options are also available but their use is not recommended: (they are mostly for Dialyzer developers
and internal debugging)

-Woverspecs***
Warn about overspecified functions (the -spec is strictly less allowing than the success typing).

dialyzer

10 | Ericsson AB. All Rights Reserved.: Dialyzer

-Wspecdiffs***
Warn when the -spec is different than the success typing.

Note:
*** Identifies options that turn on warnings rather than turning them off.

Using the Dialyzer from Erlang
You can also use Dialyzer directly from Erlang. Both the GUI and the command line versions are available. The options
are similar to the ones given from the command line, so please refer to the sections above for a description of these.

Requesting or Suppressing Warnings in Source Files
The -dialyzer() attribute can be used for turning off warnings in a module by specifying functions or warning
options. For example, to turn off all warnings for the function f/0, include the following line:

-dialyzer({nowarn_function, f/0}).

To turn off warnings for improper lists, add the following line to the source file:

-dialyzer(no_improper_lists).

The -dialyzer() attribute is allowed after function declarations. Lists of warning options or functions are allowed:

-dialyzer([{nowarn_function, [f/0]}, no_improper_lists]).

Warning options can be restricted to functions:

-dialyzer({no_improper_lists, g/0}).

-dialyzer({[no_return, no_match], [g/0, h/0]}).

For help on the warning options use dialyzer -Whelp. The options are also enumerated below (WarnOpts).

Note:
The -dialyzer() attribute is not checked by the Erlang Compiler, but by the Dialyzer itself.

dialyzer

Ericsson AB. All Rights Reserved.: Dialyzer | 11

Note:
The warning option -Wrace_conditions has no effect when set in source files.

The -dialyzer() attribute can also be used for turning on warnings. For instance, if a module has been fixed
regarding unmatched returns, adding the line

-dialyzer(unmatched_returns).

can help in assuring that no new unmatched return warnings are introduced.

Exports

gui() -> ok | {error, Msg}
gui(OptList) -> ok | {error, Msg}
Types:

OptList -- see below

Dialyzer GUI version.

OptList :: [Option]
Option :: {files, [Filename :: string()]}
 | {files_rec, [DirName :: string()]}
 | {defines, [{Macro :: atom(), Value :: term()}]}
 | {from, src_code | byte_code} %% Defaults to byte_code
 | {init_plt, FileName :: string()} %% If changed from default
 | {plts, [FileName :: string()]} %% If changed from default
 | {include_dirs, [DirName :: string()]}
 | {output_file, FileName :: string()}
 | {output_plt, FileName :: string()}
 | {check_plt, boolean()},
 | {analysis_type, 'succ_typings' |
 'plt_add' |
 'plt_build' |
 'plt_check' |
 'plt_remove'}
 | {warnings, [WarnOpts]}
 | {get_warnings, bool()}

WarnOpts :: no_return
 | no_unused
 | no_improper_lists
 | no_fun_app
 | no_match
 | no_opaque
 | no_fail_call
 | no_contracts
 | no_behaviours
 | no_undefined_callbacks
 | unmatched_returns
 | error_handling
 | race_conditions
 | overspecs
 | underspecs
 | specdiffs

dialyzer

12 | Ericsson AB. All Rights Reserved.: Dialyzer

 | unknown

run(OptList) -> Warnings
Types:

OptList -- see gui/0,1

Warnings -- see below

Dialyzer command line version.

Warnings :: [{Tag, Id, Msg}]
Tag :: 'warn_behaviour'
 | 'warn_bin_construction'
 | 'warn_callgraph'
 | 'warn_contract_not_equal'
 | 'warn_contract_range'
 | 'warn_contract_subtype'
 | 'warn_contract_supertype'
 | 'warn_contract_syntax'
 | 'warn_contract_types'
 | 'warn_failing_call'
 | 'warn_fun_app'
 | 'warn_matching'
 | 'warn_non_proper_list'
 | 'warn_not_called'
 | 'warn_opaque'
 | 'warn_race_condition'
 | 'warn_return_no_exit'
 | 'warn_return_only_exit'
 | 'warn_umatched_return'
 | 'warn_undefined_callbacks'
 | 'warn_unknown'
Id = {File :: string(), Line :: integer()}
Msg = msg() -- Undefined

format_warning(Msg) -> string()
Types:

Msg = {Tag, Id, msg()} -- See run/1

Get a string from warnings as returned by dialyzer:run/1.

plt_info(string()) -> {'ok', [{atom(), any()}]} | {'error', atom()}
Returns information about the specified plt.

	Dialyzer
	Dialyzer User's Guide
	Dialyzer
	Introduction
	Using the Dialyzer from the GUI
	Choosing the applications or modules
	The analysis modes
	Controlling the discrepancies reported by the Dialyzer
	Running the analysis
	Include directories and macro definitions
	Saving the information on the Log and Warnings windows
	Inspecting the inferred types of the analyzed functions

	Using the Dialyzer from the command line
	Using the Dialyzer from Erlang
	More on the Persistent Lookup Table (PLT)
	Feedback and bug reports

	Reference Manual
	dialyzer
	gui/0
	gui/1
	run/1
	format_warning/1
	plt_info/1

