| v

ERLANG

OS Mon

Copyright © 1997-2015 Ericsson AB. All Rights Reserved.
OS_Mon 2.4
September 22, 2015

Copyright © 1997-2015 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 22, 2015

Ericsson AB. All Rights Reserved.: OS_Mon | 1

1 Reference Manual

The operating system monitor, OS_Mon, provides services for monitoring CPU load, disk usage, memory usage and
OS messages.

2 | Ericsson AB. All Rights Reserved.: OS_Mon

0S_mon

0S_mon
Application

The operating system monitor, OS_Mon, provides the following services:
e cpu_sup CPU load and utilization supervision (Unix)

e disksup Disk supervision(Unix, Windows)

e memsup Memory supervision (Unix, Windows, VxWorks)

e 0s_sup Interface to OS system messages (Solaris, Windows)

To simplify usage of OS_Mon on distributed Erlang systems, it is not considered an error trying to use aservice at a
node where it is not available (either because OS _Mon is not running, or because the service is not available for that
OS, or because the service is not started). Instead, a warning message isissued viaerr or _| ogger and a dummy
value isreturned, which one is specified in the man pages for the respective services.

Configuration

When OS_Monisstarted, by default all services available for the OS, except os_sup, areautomatically started. This
configuration can be changed using the following application configuration parameters:

start_cpu_sup = bool ()
Specifiesif cpu_sup should be started. Defaultstot r ue.
start _di sksup = bool ()
Specifiesif di sksup should be started. Defaultstot r ue.
start_nenmsup = bool ()
Specifiesif menmsup should be started. Defaultstot r ue.
start_os_sup = bool ()
Specifiesif os_sup should be started. Defaultsto f al se.
Configuration parameters effecting the different OS_Mon services are described in the respective man pages.
See config(4) for information about how to change the value of configuration parameters.

SNMP MIBs
Thefollowing MIBs are defined in OS_Mon:
OTP-OS-MON-MIB
This MIB contains objects for instrumentation of disk, memory and CPU usage of the nodes in the system.

The MIB is stored in the mi bs directory. It is defined in SNMPv2 SMI syntax. An SNMPv1 version of the MIB is
deliveredinthem bs/ v1 directory.

The compiled MIB is located under pri v/ m bs, and the generated . hr | file under thei ncl ude directory. To
compile a MIB that IMPORTS the OTP- OS- MON- M B, givethe option{il, ["os_non/priv/mbs"]} to
the MIB compiler.

If the MIB should be used in asystem, it should beloaded into an agent withacall toos_non_mi b: | oad(Agent),
where Agent isthe pid or registered name of an SNMP agent. Useos_non_ni b: unl oad(Agent) to unload the
MIB. The implementation of this MIB uses Mnesia to store a cache with data needed, which implicates that Mnesia
must be up and running. The MIB a so use functions defined for the OTP- M B, thusthat MI1B must be loaded aswell.

Ericsson AB. All Rights Reserved.: OS_Mon | 3

0S_mon

See Also
cpu_sup(3), disksup(3), memsup(3), os_sup(3), nteventlog(3), snmp(3).

4 | Ericsson AB. All Rights Reserved.: OS_Mon

cpu_sup

Cpu_sup

Erlang module

cpu_sup isaprocess which supervises the CPU load and CPU tilization. It is part of the OS_Mon application, see
os_mon(6). Available for Unix, although CPU utilization values (uti | / 0, 1) are only available for Solaris, Linux
and FreeBSD.

The load values are proportional to how long time a runnable Unix process has to spend in the run queue before it is
scheduled. Accordingly, higher values mean more system load. The returned value divided by 256 producesthefigure
displayed by r up andt op. What isdisplayed as2.00 inr up, is displayed as load up to the second mark in x| oad.

For example, r up displays aload of 128 as 0.50, and 512 as 2.00.

If the user wants to view load values as percentage of machine capacity, then this way of measuring presents a
problem, because the load values are not restricted to afixed interval. In this case, the following simple mathematical
transformation can produce the load value as a percentage:

PercentLoad = 100 * (1 - D/(D + Load))

D determines which load value should be associated with which percentage. Choosing D = 50 means that 128 is 60%
load, 256 is 80%, 512 is 90%, and so on.

Another way of measuring system load isto divide the number of busy CPU cycles by the total number of CPU cycles.
This produces valuesin the 0-100 range immediately. However, this method hides the fact that a machine can be more
or less saturated. CPU tilization is therefore a better name than system load for this measure.

A server which receives just enough requests to never become idle will score a CPU utilization of 100%. If the server
receives 50% more requests, it will still scores 100%. When the system load is cal culated with the percentage formula
shown previously, the load will increase from 80% to 87%.

Theavgl/ 0,avg5/ 0,and avgl15/ 0 functions can be used for retrieving system load values, and theut i | / 0 and
uti |/ 1 functions can be used for retrieving CPU utilization values.

When run on Linux, cpu_sup assumes that the / pr oc file system is present and accessible by cpu_sup. If itis
not, cpu_sup will terminate.

Exports

nprocs() -> UnixProcesses | {error, Reason}
Types.

Uni xProcesses = int()

Reason = term()

Returns the number of UNIX processes running on this machine. Thisis a crude way of measuring the system load,
but it may be of interest in some cases.

Returns 0 if cpu_sup isnot available.
avgl() -> SystemLoad | {error, Reason}

Types:
SystemnmLoad = int()

Ericsson AB. All Rights Reserved.: OS_Mon | 5

Cpu_sup

Reason = term()

Returns the average system load in the last minute, as described above. O represents no load, 256 represents the load
reported as 1.00 by r up.

Returns 0 if cpu_sup isnot available.

avg5() -> SystemLoad | {error, Reason}
Types:

SystemLoad = int()

Reason = term()

Returns the average system load in the last five minutes, as described above. O represents no load, 256 represents the
load reported as 1.00 by r up.

Returns 0 if cpu_sup isnot available.

avgl5() -> SystemLoad | {error, Reason}
Types.

SystenLoad = int()

Reason = term()

Returns the average system load in the last 15 minutes, as described above. O represents no load, 256 represents the
load reported as 1.00 by r up.

Returns 0 if cpu_sup isnot available.

util() -> CpuUtil | {error, Reason}
Types:

Cpultil = float()

Reason = term()

Returns CPU utilization sincethelast call touti | /0 oruti | / 1 by the calling process.

Note:

Thereturned valueof thefirstcall tout i | / O orut i | / 1 by aprocesswill on most systemsbethe CPU utilization
since system boot, but this is not guaranteed and the value should therefore be regarded as garbage. This also
appliesto thefirst call after arestart of cpu_sup.

The CPU utilization is defined as the sum of the percentage shares of the CPU cycles spent in all busy processor states
(seeutil /1 below) inaverage onall CPUs.

Returns O if cpu_sup isnot available.

util(Opts) -> UtilSpec | {error, Reason}
Types.
Opts = [detailed | per_cpu]
Uil Spec = UilDesc | [Util Desc]
Uil Desc = {Cpus, Busy, NonBusy, M sc}
Cpus = all | int() | [int()]()

6 | Ericsson AB. All Rights Reserved.: OS_Mon

cpu_sup

Busy = NonBusy = {State, Share} | Share
State = user | nice_user | kernel
| wait | idle | atom()
Share = float ()
M sc [1
Reason term))

Returns CPU utilization sincethelastcall tout i | / O oruti | / 1 by thecalling process, in moredetail thanut i | / 0.

Note:

Thereturned valueof thefirstcall tout i | / O orut i | / 1 by aprocesswill on most systemsbethe CPU utilization
since system boot, but this is not guaranteed and the value should therefore be regarded as garbage. This also
appliesto thefirst call after arestart of cpu_sup.

Currently recognized options:
detail ed

Thereturned Ut i | Desc(s) will be even more detailed.
per_cpu

Each CPU will be specified separately (assuming this information can be retrieved from the operating system),
that is, alist with one Ut i | Desc per CPU will be returned.

Descriptionof Ut i | Desc = {Cpus, Busy, NonBusy, M sc}:
Cpus
If thedet ai | ed and/or per _cpu option is given, thisisthe CPU number, or alist of the CPU numbers.
If not, thisistheatom al | which impliesthat the Ut i | Desc contains information about all CPUs.
Busy

If the det ai | ed option is given, thisis alist of { State, Share} tuples, where each tuple contains
information about a processor state that has been identified as a busy processor state (see below). The atom
St at e isthe name of the state, and the float Shar e represents the percentage share of the CPU cycles spent in
thisstatesincethelast call touti | /O orutil/ 1.

If not, thisisthe sum of the percentage shares of the CPU cycles spent in al statesidentified as busy.
If the per _cpu isnot given, the value(s) presented are the average of all CPUs.
NonBusy
Similar to Busy, but for processor states that have been identified as non-busy (see below).
M sc
Currently unused; reserved for future use.
Currently these processor states are identified as busy:
user
Executing code in user mode.
ni ce_user
Executing code in low priority (nice) user mode. This state is currently only identified on Linux.

Ericsson AB. All Rights Reserved.: OS_Mon | 7

Cpu_sup

ker nel

Executing code in kernel mode.
Currently these processor states are identified as non-busy:
wai t

Waiting. This state is currently only identified on Solaris.
ide

Idle.

Note:

Identified processor states may be different on different operating systems and may change between different
versions of cpu_sup on the same operating system. The sum of the percentage shares of the CPU cycles spent
in al busy and al non-busy processor states will always add up to 100%, though.

Returns{al | , 0, 0,[]} if cpu_sup isnot available.

See Also

os_mon(3)

8 | Ericsson AB. All Rights Reserved.: OS_Mon

disksup

disksup

Erlang module

di sksup isaprocess which supervises the available disk space in the system. It is part of the OS_Mon application,
see 0s_mon(6). Available for Unix and Windows.

Periodically checksthe disks. For each disk or partition which uses more than a certain amount of the available space,
thealaam{{di sk_al most _full, MuntedOn}, []} isset.

On Unix

All (locally) mounted disks are checked, including the swap disk if it is present.
On WIN32

All logical drives of type"FIXED_DISK" are checked.

Alarms are reported to the SASL adam handler, see alarm handler(3). To set an dam,
al arm handl er: set _al arn{ Al arn) iscaled where Al ar misthe alarm specified above.

The alarms are cleared automatically when the alarm cause is no longer valid.

Configuration
The following configuration parameters can be used to change the default values for time interval and threshold:
di sk_space_check_interval = int()>0
Thetime interval, in minutes, for the periodic disk space check. The default is 30 minutes.
di sk_alnost_full _threshold = float()

The threshold, as percentage of total disk space, for how much disk can be utilized before the
di sk_al nost _ful | alarmisset. The default is 0.80 (80%).

di sksup_posi x_only = bool ()

Specifies whether the di sksup helper process should only use POSIX conformant commands (t r ue) or not.
The default is f al se. Setting this parameter to t r ue can be necessary on embedded systems with stripped-
down versions of Unix tools like df . The returned disk data and aarms can be different when using this option.

The parameter isignored on platforms that are known to not be posix compatible (Windows and SunOS).

See config(4) for information about how to change the value of configuration parameters.

Exports

get disk data() -> [DiskData]
Types.

D skData = {lId, KByte, Capacity}

Id = string()

KByte = int()

Capacity = int()
Returnsthe result of the latest disk check. | d isastring that identifies the disk or partition. KByt e isthetotal size of
the disk or partition in kbytes. Capaci t y isthe percentage of disk space used.

The function is asynchronousin the sense that it does not invoke a disk check, but returns the latest available value.

Ericsson AB. All Rights Reserved.: OS_Mon | 9

disksup

Returns[{" none", 0, 0}] if di sksup isnot available.

get check interval() -> MS
Types:
M5 = int()
Returns the time interval, in milliseconds, for the periodic disk space check.

set check interval(Minutes) -> ok
Types:
M nutes = int()>=1
Changes the time interval, given in minutes, for the periodic disk space check.

The change will take effect after the next disk space check and is non-persist. That is, in case of a process restart, this
value is forgotten and the default value will be used. See Configuration above.

get almost full threshold() -> Percent
Types:

Percent = int()
Returns the threshold, in percent, for disk space utilization.

set almost full threshold(Float) -> ok
Types:

Float = float(), O0=<Float=<1
Changes the threshold, given as afloat, for disk space utilization.

The change will take effect during the next disk space check and is non-persist. That is, in case of a process restart,
this value is forgotten and the default value will be used. See Configuration above.

See Also

alarm_handler(3), os_mon(3)

10 | Ericsson AB. All Rights Reserved.: OS_Mon

memsup

memsup

Erlang module

mensup is aprocess which supervises the memory usage for the system and for individual processes. It is part of the
OS Mon application, see os_ mon(6). Available for Unix, Windows and VxWorks.

Periodically performs a memory check:

» If more than a certain amount of available system memory is alocated, as reported by the underlying operating
system, theadarm { syst em nenory_hi gh_waterrmark, []} isset.

e If any Erlang process Pi d in the system has allocated more than a certain amount of total system memory, the
darm{process_nenory_hi gh_wat ermark, Pi d} isset.

Alarms are reported to the SASL adam handler, see alarm handler(3). To set an dam,
al arm handl er: set _al arn{ Al ar n) iscaled where Al ar mis either of the alarms specified above.

The alarms are cleared automatically when the alarm cause is no longer valid.
The function get_memory_data() can be used to retrieve the result of the latest periodic memory check.

Thereisalso ainterfaceto system dependent memory data, get_system memory_data(). The result ishighly dependent
on the underlying operating system and the interface is targeted primarily for systems without virtual memory (e.g.
VxWorks). The output on other systemsis however still valid, although sparse.

Acaltoget _system nenory_dat a/ 0Oismorecostly thanacall toget _nenory_dat a/ 0 asdataiscollected
synchronously when this function is called.

The total system memory reported under UNIX is the number of physical pages of memory times the page size, and
the available memory is the number of available physical pages times the page size. Thisis a reasonable measure as
swapping should be avoided anyway, but the task of defining total memory and available memory is difficult because
of virtual memory and swapping.

Configuration
The following configuration parameters can be used to change the default values for time intervals and thresholds:
nmenory_check_interval = int()>0
Thetimeinterval, in minutes, for the periodic memory check. The default is one minute.
system nmenory_hi gh_watermark = float ()

The threshold, as percentage of system memory, for how much system memory can be allocated before the
corresponding alarm is set. The default is 0.80 (80%).

process_nenory_hi gh_ watermark = fl oat ()

The threshold, as percentage of system memory, for how much system memory can be allocated by one Erlang
process before the corresponding alarm is set. The default is 0.05 (5%).
nmenmsup_hel per _timeout = int()>0

A timeout, in seconds, for how long the menmsup process should wait for a result from a memory check. If
the timeout expires, a warning message " OS_MON (rensup) timeout" isissued viaerror | ogger
and any pending, synchronous client calls will return adummy value. Normally, this situation should not occur.
There have been cases on Linux, however, where the pseudo file from which system data is read is temporarily
unavailable when the system is heavily loaded.

The default is 30 seconds.

Ericsson AB. All Rights Reserved.: OS_Mon | 11

memsup

mensup_systemonly = bool ()

Specifies whether the mensup process should only check system memory usage (t r ue) or not. The default is
f al se, meaning that information regarding both system memory usage and Erlang process memory usage is
collected.

It is recommended to set this parameter to f al se on systems with many concurrent processes, as each process
memory check makes atraversal of the entire list of processes.

See config(4) for information about how to change the value of configuration parameters.

Exports

get memory data() -> {Total,Allocated,Worst}
Types:
Total = Allocated = int()
Wrst = {Pid, PidAllocated} | undefined
Pid = pid()
Pi dAl | ocated = int()
Returns the result of the latest memory check, where Tot al isthe total memory sizeand Al | ocat ed the allocated
memory size, in bytes.

Wor st is the pid and number of allocated bytes of the largest Erlang process on the node. If nensup should not
collect process data, that is if the configuration parameter nensup_system onl y was set tot r ue, Wor st is
undef i ned.

The function is normally asynchronous in the sense that it does not invoke a memory check, but returns the latest
available value. The one exception if is the function is called before a first memory check is finished, in which case
it does not return avalue until the memory check is finished.

Returns{ 0, 0, {pi d(), 0}} or{0, O, undefi ned} if mensup isnot available, or if al memory checks so far
have timed out.

get system memory data() -> MemDatalist

Types.
MenmDat aLi st = [{Tag, Size}]
Tag = aton()
Size = int()

Invokes a memory check and returns the resulting, system dependent, data as a list of tagged tuples, where Tag can
be one of the following:

total nenory
Thetotal amount of memory available to the Erlang emulator, allocated and free. May or may not be equal to
the amount of memory configured in the system.

free_menory
The amount of free memory available to the Erlang emulator for allocation.

systemtotal nenory
The amount of memory available to the whole operating system. Thismay well beequal tot ot al _nenory
but not necessarily.

| argest _free
The size of the largest contiguous free memory block available to the Erlang emulator.

12 | Ericsson AB. All Rights Reserved.: OS_Mon

memsup

nunber _of free
The number of free blocks available to the Erlang runtime system. This gives afair indication of how
fragmented the memory is.
buf fered_nenory
The amount of memory the system uses for temporary storing raw disk blocks.
cached_nenory
The amount of memory the system uses for cached files read from disk.
total _swap
The amount of total amount of memory the system has available for disk swap.
free_swap
The amount of memory the system has available for disk swap.

All memory sizes are presented as number of bytes.
Thel argest _free andnunber _of _f r ee tagsare currently only returned on a VxWorks system.
Returns the empty list [] if mensup isnot available, or if the memory check times out.

Note:

On linux the memory available to the emulator iscached_nmenory and buf f er ed_nenory in addition to
free nenory.

get os wordsize() -> Wordsize
Types:

Wrdsize = 32 | 64 | unsupported_os
Returns the wordsize of the current running operating system.

get check interval() -> MS
Types:
MBS = int()
Returnsthe timeinterval, in milliseconds, for the periodic memory check.

set check interval(Minutes) -> ok
Types:
Mnutes = int()>0
Changes the time interval, given in minutes, for the periodic memory check.

The change will take effect after the next memory check and is non-persistent. That is, in case of aprocessrestart, this
valueisforgotten and the default value will be used. See Configuration above.

get procmem _high watermark() -> int()
Returns the threshold, in percent, for process memory allocation.

set procmem high watermark(Float) -> ok
Changes the threshold, given as afloat, for process memory allocation.

Ericsson AB. All Rights Reserved.: OS_Mon | 13

memsup

The change will take effect during the next periodic memory check and is non-persistent. That is, in case of a process
restart, this value is forgotten and the default value will be used. See Configuration above.

get sysmem high watermark() -> int()
Returns the threshold, in percent, for system memory allocation.

set sysmem high watermark(Float) -> ok
Changes the threshold, given as afloat, for system memory allocation.

The change will take effect during the next periodic memory check and is non-persistent. That is, in case of a process
restart, this value is forgotten and the default value will be used. See Configuration above.

get helper timeout() -> Seconds
Types:
Seconds = int()
Returns the timeout value, in seconds, for memory checks.

set helper timeout(Seconds) -> ok
Types:
Seconds = int() (>= 1)
Changes the timeout value, given in seconds, for memory checks.

The change will take effect for the next memory check and is non-persistent. That is, in the case of a process restart,
this value is forgotten and the default value will be used. See Configuration above.

See Also

alarm_handler(3), os_mon(3)

14 | Ericsson AB. All Rights Reserved.: OS_Mon

0s_mon_mib

0s_mon_mib

Erlang module

Functions for loading and unloading the OTP-OS-MON-MIB into/from an SNMP agent. The instrumentation of the
OTP-OS-MON-MIB uses Mnesia, hence Mnesiamust be started prior to loading the OTP-OS-MON-MIB.

Exports

load(Agent) -> ok | {error, Reason}
Types.

Agent = pid() | aton()

Reason = term()
Loads the OTP-OS-MON-MIB.

unload(Agent) -> ok | {error, Reason}
Types:

Agent = pid() | atonm()

Reason = term)
Unloads the OTP-OS-MON-MIB.

See Also

0s_mon(6), snmp(3)

Ericsson AB. All Rights Reserved.: OS_Mon | 15

0S_sup

0S_sup

Erlang module

0S_sup isaprocess providing a message passing service from the operating system to the error logger in the Erlang
runtime system. It is part of the OS_Mon application, see os_mon(6). Available for Solaris and Windows.

Messages received from the operating system resultsin an user defined callback function being called. This function
can do whatever filtering and formatting is necessary and then deploy any type of logging suitable for the user's
application.

Solaris Operation
The Solaris (SUnOS 5.x) messages are retrieved from the syslog-daemon, sysl ogd.

Enabling the service includes actions which require root privileges, such as change of ownership and file privileges
of an executable binary file, and creating a modified copy of the configuration file for sysl ogd. When os_sup is
terminated, the service must be disabled, meaning the original configuration must be restored. Enabling/disabling can
be done either outside or inside 0s_sup, see Configuration below.

Warning:

This process cannot run in multipleinstances on the same hardware. OS_Mon must be configuredto start os_sup
on one node only if two or more Erlang nodes execute on the same machine.

The format of received eventsis not defined.

Windows Operation
The Windows messages are retrieved from the eventlog file.

The nt event | og module is used to implement os_sup. See nteventlog(3). Note that the start functions of
nt event | og does not need to be used, in this case the process is started automatically as part of the OS _Mon
supervision tree.

OS messages are formatted asatuple{ Ti me, Category, Facility, Severity, Message}:
Time = { MegaSecs, Secs, M croSecs}

A time stamp as returned by the BIF now() .
Category = string()

Usualy oneof " Syst ent' ," Appl i cation” or" Security".Notethat theNT eventlog viewer has another
notion of category, which in most cases is totally meaningless and therefore not imported into Erlang. What is
called a category here is one of the main three types of events occurring in anormal NT system.

Facility = string()

The source of the message, usually the name of the application that generated it. This could be ailmost any
string. When matching messages from certain applications, the version number of the application may haveto be
accounted for. Thisiswhat the NT event viewer calls "source".

Severity = string()

Oneof "Error", "Warni ng","Informational ", "Audit_Success", "Audit_Faul ure" or, in
case of a currently unknown Windows NT version" Severity_Unknown".

16 | Ericsson AB. All Rights Reserved.: OS_Mon

0S_sup

Message = string()
Formatted exactly asit would bein the NT eventlog viewer. Binary datais not imported into Erlang.

Configuration
os_sup_nfa = {Mdul e, Function, Args}

The callback function to use. Mbdul e and Funct i on are atoms and Ar gs is alist of terms. When an OS
message Ms g isreceived, thisfunction iscalled asappl y(Modul e, Function, [Msg | Args]).

Default is {os_sup, error_report, [Tag]} which will send the event to the error logger using
error_logger:error_report(Tag, Msg). Tag isthevalue of os_sup_er rort ag, see below.

0S_sup_errortag = atom()

This parameter definesthe error report type used when messages are sent to error logger using the default callback
function. Defaultisst d_er r or , which means the events are handled by the standard event handler.

os_sup_enabl e = bool ()

Solarisonly. Definesif the service should be enabled (and disabled) inside (t r ue) or outside (f al se) os_sup.
For backwards compatibility reasons, the default ist r ue. The recommended value is f al se, as the Erlang
emulator should normally not be run with r oot privileges, asisrequired for enabling the service.

os_sup_own = string()

Solarisonly. Defines the directory which contains the backup copy and the Erlang specific configuration filesfor
sysl ogd, and a named pipe to receive the messages from sysl| ogd. Defaultis"/ et c".

os_sup_sysl ogconf = string()
Solarisonly. Defines the full name of the configuration filefor sysl ogd. Defaultis" / et ¢/ sysl og. conf".

Exports

enable() -> ok | {error, Res}
enable(Dir, Conf) -> ok | {error, Error}
Types:

Dir = Conf = Res = string()
Enablesthe os_sup service. Needed on Solaris only.

If the configuration parameter os_sup_enabl e isf al se, thisfunction is called automatically by os_sup, using
thevaluesof os_sup_own and os_sup_sysl ogconf asarguments.

If os_sup_enabl e istrue, this function must be called before OS Mon/os_sup is started. Di r defines the
directory which contains the backup copy and the Erlang specific configuration filesfor sysl ogd, and anamed pipe
to receive the messages from sysl ogd. Defaultsto "/ et ¢" . Conf defines the full name of the configuration file
for sysl ogd. Defaultis”/ et ¢/ sysl og. conf ".

Resultsin a OS call to:
<PRIVDIR>/bin/mod syslog otp Dir Conf

where <PRI VDI R> isthepri v directory of OS Mon, code: pri v_dir(0os_non).
Returns ok if thisyields the expected result " 0" , and { er r or , Res} if it yields anything else.

Ericsson AB. All Rights Reserved.: OS_Mon | 17

0S_sup

Note:

This function requires root privileges to succeed.

disable() -> ok | {error, Res}
disable(Dir, Conf) -> ok | {error, Error}
Types:

Dir = Conf = Res = string()
Disablesthe os_sup service. Needed on Solaris only.

If the configuration parameter os_sup_enabl e isf al se, thisfunction is called automatically by os_sup, using
the same arguments as when enabl e/ 2 was called.

If os_sup_enabl e istrue, this function must be caled after OS Mon/os_sup is stopped. Di r defines the
directory which contains the backup copy and the Erlang specific configuration filesfor sysl ogd, and anamed pipe
to receive the messages from sys| ogd. Defaultsto "/ et ¢" . Conf defines the full name of the configuration file
for sysl ogd. Defaultis”/ et ¢/ sysl og. conf .

Resultsin aOS call to:

<PRIVDIR>/bin/mod syslog nootp Dir Conf

where<PRI VDI R> isthepri v directory of OS_Mon, code: pri v_dir (os_non).
Returns ok if thisyields the expected result " 0" , and { er r or , Res} if it yields anything else.

Note:

This function requires root privileges to succeed.
See also

error_logger(3), os_mon(3)
sysl ogd(1M, sysl og. conf (4) inthe Solaris documentation.

18 | Ericsson AB. All Rights Reserved.: OS_Mon

nteventlog

nteventlog

Erlang module

nt event | og provides a generic interface to the Windows event log. It is part of the OS Mon application, see
os_mon(6). Available for Windows versions where the event log is available. That is, not for Windows 98 and some
other older Windows versions, but for most (all?) newer Windows versions.

Thismoduleis used as the Windows backend for os_sup, see os_sup(3).

To retain backwards compatibility, this module can also be used to start a standalone nt event | og process which
is not part of the OS_Mon supervision tree. When starting such a process, the user has to supply an identifier as well
as a callback function to handle the messages.

Theidentifier, an arbitrary string, should be reused whenever the same application (or node) wantsto start the process.
nt event | og isinformed about all events that have arrived to the eventlog since the last accepted message for the
current identifier. Aslong as the same identifier is used, the same eventlog record will not be sent to nt event | og
more than once (with the exception of when graved system failures arise, in which case the last records written before
the failure may be sent to Erlang again after reboot).

If the event log is configured to wrap around automatically, records that have arrived to the log and been overwritten
whennt event | og wasnot running arelost. It however detectsthis state and |oses no recordsthat are not overwritten.

The callback function works as described in os_sup(3) .

Exports

start(Identifier, MFA) -> Result
start_link(Identifier, MFA) -> Result
Types:
Identifier = string() | atom()
MFA = {Mbd, Func, Args}
Mod = Func = aton()
Args = [tern()]
Result = {ok, Pid} | {error, {already_started, Pid}}
Pid = pid()
This function starts the standalone nt event | og processand, if st art | i nk/ 2 isused, linksto it.
I denti fi er isanidentifier as described above.

MFA isthe supplied callback function. When nt event | og receivesinformation about anew event, thisfunction will
becaled asappl y(Md, Func, [Event]|Args]) whereEvent isatuple

stop() -> stopped
Types:
Result = stopped

Stops nt event | og. Usually only used during development. The server does not have to be shut down gracefully
to maintain its state.

See Also

0s_mon(6), os_sup(3)

Ericsson AB. All Rights Reserved.: OS_Mon | 19

nteventlog

Windows NT documentation

20 | Ericsson AB. All Rights Reserved.: OS_Mon

	OS_Mon
	Reference Manual
	os_mon
	cpu_sup
	nprocs/0
	avg1/0
	avg5/0
	avg15/0
	util/0
	util/1

	disksup
	get_disk_data/0
	get_check_interval/0
	set_check_interval/1
	get_almost_full_threshold/0
	set_almost_full_threshold/1

	memsup
	get_memory_data/0
	get_system_memory_data/0
	get_os_wordsize/0
	get_check_interval/0
	set_check_interval/1
	get_procmem_high_watermark/0
	set_procmem_high_watermark/1
	get_sysmem_high_watermark/0
	set_sysmem_high_watermark/1
	get_helper_timeout/0
	set_helper_timeout/1

	os_mon_mib
	load/1
	unload/1

	os_sup
	enable/0
	enable/2
	disable/0
	disable/2

	nteventlog
	start/2
	start_link/2
	stop/0

