
cosTime
Copyright © 2000-2015 Ericsson AB. All Rights Reserved.

cosTime 1.1.14
March 31, 2015

Copyright © 2000-2015 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

March 31, 2015

Ericsson AB. All Rights Reserved.: cosTime | 1

1.1 The cosTime Application

2 | Ericsson AB. All Rights Reserved.: cosTime

1 cosTime User's Guide

The cosTime application is an Erlang implementation of the OMG CORBA Time and TimerEvent Services.

1.1 The cosTime Application
1.1.1 Content Overview
The cosTime documentation is divided into three sections:

• PART ONE - The User's Guide
Description of the cosTime Application including services and a small tutorial demonstrating the development
of a simple service.

• PART TWO - Release Notes
A concise history of cosTime.

• PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in cosTime.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

• cosTime overview

• cosTime installation

• A tutorial example

1.2 Introduction to cosTime
1.2.1 Overview
The cosTime application is Time and TimerEvent Services compliant with the OMG Services CosTime and
CosTimerEvent.

Purpose and Dependencies
This application use calender:now_to_universal_time(Now) to create a UTC. Hence, the underlying OS
must deliver a correct result when calling erlang:now().

cosTime is dependent on Orber, which provides CORBA functionality in an Erlang environment.

cosTimerEvent is dependent on Orber and cosNotification, which provides CORBA functionality and Event handling
in an Erlang environment.

Prerequisites
To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming, CORBA, the Orber and cosNotification applications.

Recommended reading includes CORBA, Fundamentals and Programming - Jon Siegel and Open Telecom Platform
Documentation Set. It is also helpful to have read Concurrent Programming in Erlang.

href

1.3 Installing cosTime

Ericsson AB. All Rights Reserved.: cosTime | 3

1.3 Installing cosTime
1.3.1 Installation Process
This chapter describes how to install cosTime in an Erlang Environment.

Preparation
Before starting the installation process for cosTime, the application Orber must be running.

Configuration
When using both the Time and TimerEvent Services the cosTime application first must be installed using
cosTime:install_time() and cosTime:install_timerevent(), followed by cosTime:start().
Now we can choose which can start the servers by using cosTime:start_time_service(Tdf,
Inaccuracy) and cosTime:start_timerevent_service(TimeService).

1.4 cosTime Examples
1.4.1 A Tutorial on How to Create a Simple Service
Initiate the Application
To use the complete cosTime application Time and Timer Event Services must be installed. The application
is then started by using cosTime:start(). To get access to Time Service or Timer Event Service, use
start_time_service/2 or start_timerevent_service/1.

The Time Service are global, i.e., there may only exist one instance per Orber domain.

The Timer Event Service is locally registered, i.e., there may only exist one instance per node.

Note:
The Time and Timer Event Service use the time base 15 october 1582 00:00. Performing operations using other
time bases will not yield correct result. Furthermore, time and inaccuracy must be expressed in 100 nano seconds.

How to Run Everything
Below is a short transcript on how to run cosTime.

%% Start Mnesia and Orber
mnesia:delete_schema([node()]),
mnesia:create_schema([node()]),
orber:install([node()]),
mnesia:start(),
orber:start(),

%% Install Time Service in the IFR.
cosTime:install_time(),

%% Install Timer Event Service in the IFR. Which, require
%% the Time Service and cosEvent or cosNotification
%% application to be installed.
cosNotification:install(),

1.4 cosTime Examples

4 | Ericsson AB. All Rights Reserved.: cosTime

cosTime:install_timerevent(),

%% Now start the application and necessary services.
cosTime:start(),
%% Tdf == Time displacement factor
%% Inaccuracy measured in 100 nano seconds
TS=cosTime:start_time_service(TDF, Inaccuracy),
TES=cosTime:start_timerevent_service(TS),

%% Access a cosNotification Proxy Push Consumer. How this is
%% done is implementation specific.
ProxyPushConsumer =

%% How we construct the event is also implementation specific.
AnyEvent =

%% Create a new relative universal time.
%% Time measured in 100 nano seconds.
UTO='CosTime_TimeService':
 new_universal_time(TS, Time, Inaccuracy, TDF),
EH='CosTimerEvent_TimerEventService':
 register(TES, ProxyPushConsumer, AnyEvent),

%% If we want to trigger one event Time*10^-7 seconds from now:
'CosTimerEvent_TimerEventHandler':set_timer(EH, 'TTRelative', UTO),

%% If we want to trigger an event every Time*10^-7 seconds, starting
%% Time*10^-7 seconds from now:
'CosTimerEvent_TimerEventHandler':set_timer(EH, 'TTPeriodic', UTO),

%% If we want to use absolute time we must retrieve such an object.
%% One way is to convert the one we got, UTO, by using:
UTO2='CosTime_UTO':absolute_time(UTO),
%% If any other way is used, the correct time base MUST be used, i.e.,
%% 15 october 1582 00:00.
'CosTimerEvent_TimerEventHandler':set_timer(EH, 'TTAbsolute', UTO2),

1.4 cosTime Examples

Ericsson AB. All Rights Reserved.: cosTime | 5

2 Reference Manual

The cosTime application is an Erlang implementation of the OMG CORBA Time and TimerEvent Services.

cosTime

6 | Ericsson AB. All Rights Reserved.: cosTime

cosTime
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTime/include/*.hrl").

This module contains the functions for starting and stopping the application.

This application use the time base 15 october 1582 00:00. Performing operations using other time bases will not yield
correct result.

The OMG CosTime specification defines the operation secure_universal_time. As of today we cannot provide
this functionality considering the criteria demanded to fulfill the OMG specification.

When using this application, time and inaccuracy supplied by the user must be given in number of 100 nano seconds.
The Time Displacement Factor is positive east of the meridian, while those to the west are negative.

This application use calender:now_to_universal_time(Now) to create a UTC. Hence, the underlying OS
must deliver a correct result when calling erlang:now().

When determining the inaccuracy of the system, the user should consider the way the time objects will be used.
Communicating with other ORB's, add a substantial overhead and should be taken into consideration.

Exports

install_time() -> Return
Types:

Return = ok | {'EXIT', Reason}

This operation installs the cosTime Time Service part application.

uninstall_time() -> Return
Types:

Return = ok | {'EXIT', Reason}

This operation uninstalls the cosTime Time Service part application.

install_timerevent() -> Return
Types:

Return = ok | {'EXIT', Reason}

This operation installs the cosTime Timer Event Service part application.

Note:
The Timer Event Service part requires Time Service part and cosEvent or the cosNotification application to be
installed first.

uninstall_timerevent() -> Return
Types:

cosTime

Ericsson AB. All Rights Reserved.: cosTime | 7

Return = ok | {'EXIT', Reason}

This operation uninstalls the cosTime Timer Event Service part application.

start() -> Return
Types:

Return = ok | {error, Reason}

This operation starts the cosTime application.

stop() -> Return
Types:

Return = ok | {error, Reason}

This operation stops the cosTime application.

start_time_service(Tdf, Inaccuracy) -> Return
Types:

Tdf = short()

Inaccuracy = ulonglong(), eq. #100 nano seconds

Return = ok | {'EXCEPTION', #'BAD_PARAM'{}}

This operation starts a Time Service server. Please note that there may only be exactly one Time Service active at a
time. The Inaccuracy parameter defines the inaccuracy the underlying OS will introduce. Remember to take into
account latency when passing time object between nodes.

stop_time_service(TimeService) -> ok
Types:

TimeService = #objref

This operation stops the Time Service object.

start_timerevent_service(TimeService) -> ok
Types:

TimeService = #objref

This operation starts a Timer Event Service server. Please note that there may only be exactly one Timer Event Service
per node active at a time. The supplied TimeServcie reference will be the object Timer Event Service contacts to get
access to a new UTC.

stop_timerevent_service(TimerEventService) -> ok
Types:

TimerEventService = #objref

This operation stops the Timer Event Service object.

CosTime_TIO

8 | Ericsson AB. All Rights Reserved.: cosTime

CosTime_TIO
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTime/include/*.hrl").

Exports

'_get_time_interval'(TIO) -> TimeInterval
Types:

TIO = #objref

TimeInterval = #'TimeBase_IntervalT{lower_bound, upper_bound}

lower_bound = upper_bound = ulonglong

This operation returns the interval associated with the target object.

spans(TIO, UTO) -> Reply
Types:

TIO = UTO = OtherTIO = #objref

Reply = {OverlapType, OtherTIO}

OverlapType = 'OTContainer' | 'OTContained' | 'OTOverlap' | 'OTNoOverlap'

This operation returns a OverlapType depending on how the interval in the target object and the timerange represented
by the UTO object overlap. If the OverlapType is 'OTNoOverlap' the out parameter represents the gap between the
two intervals. If OverlapType is one of the others, the out parameter represents the overlap interval. The definitions
of the OverlapType's are:

• 'OTContainer' - target objects lower and upper limits are, respectively, less or equal to and greater or equal to
given object's.

• 'OTContained' - target objects lower and upper limits are, respectively, greater or equal to and less or equal to
given object's.

• 'OTOverlap' - target objects interval overlap given object's.

• 'OTNoOverlap' - target objects interval do not overlap given object's.

overlaps(TIO, OtherTIO) -> Reply
Types:

TIO = OtherTIO = AnotherTIO = #objref

Reply = {OverlapType, AnotherTIO}

OverlapType = 'OTContainer' | 'OTContained' | 'OTOverlap' | 'OTNoOverlap'

This operation returns a OverlapType depending on how the interval in the target object and the timerange represented
by the TIO object overlap. The OverlapType's are described under spans/2.

time(TIO) -> UTO
Types:

TIO = UTO = #objref

CosTime_TIO

Ericsson AB. All Rights Reserved.: cosTime | 9

This operation returns a UTO in which the interval equals the time interval in the target object and time value is the
midpoint of the interval.

CosTime_TimeService

10 | Ericsson AB. All Rights Reserved.: cosTime

CosTime_TimeService
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTime/include/*.hrl").

Exports

universal_time(TimeService) -> Reply
Types:

TimeService = #objref

Reply = UTO | {'EXCEPTION", #'TimerService_TimeUnavailable'{}}

UTO = #objref

This operation returns the current time and the Inaccuracy given when starting this application in a UTO. The time base
is 15 october 1582 00:00. Comparing two time objects which use different time base is, by obvious reasons, pointless.

new_universal_time(TimeService, Time, Inaccuracy, Tdf) -> UTO
Types:

TimeService = UTO = #objref

Time = Inaccuracy = ulonglong()

Tdf = short()

This operation creates a new UTO object representing the time parameters given. This is the only way to create a UTO
with an arbitrary time from its components. This is useful when using the Timer Event Service.

uto_from_utc(TimeService, Utc) -> UTO
Types:

TimeService = UTO = #objref

Utc = #'TimeBase_UtcT'{time, inacclo, inacchi, tdf}

time = ulonglong()

inacclo = ulong()

inacchi = ushort()

tdf = short()

This operation is used to create a UTO given a time in the Utc form.

new_interval(TimeService, Lower, Upper) -> TIO
Types:

TimeService = TIO = #objref

Lower = Upper = ulonglong()

This operation is used to create a new TIO object, representing the input parameters. If Lower is greater than Upper
BAD_PARAM is raised.

CosTime_UTO

Ericsson AB. All Rights Reserved.: cosTime | 11

CosTime_UTO
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTime/include/*.hrl").

Exports

'_get_time'(UTO) -> ulonglong()
Types:

UTO = #objref

This operation returns the time associated with the target object.

'_get_inaccuracy'(UTO) -> ulonglong()
Types:

UTO = #objref

This operation returns the inaccuracy associated with the target object.

'_get_tdf'(UTO) -> short()
Types:

UTO = #objref

This operation returns the time displacement factor associated with the target object.

'_get_utc_time'(UTO) -> UtcT
Types:

UTO = #objref

Utc = #'TimeBase_UtcT'{time, inacclo, inacchi, tdf}

time = ulonglong()

inacclo = ulong()

inacchi = ushort()

tdf = short()

This operation returns the data associated with the target object in Utc form.

absolute_time(UTO) -> OtherUTO
Types:

UTO = OtherUTO = #objref

This operation create a new UTO object representing the time in the target object added to current time (UTC). The
time base is 15 october 1582 00:00. Comparing two time objects which use different time base is, by obvious reasons,
pointless. Raises DATA_CONVERSION if causes an overflow. This operation is only useful if the target object
represents a relative time.

compare_time(UTO, ComparisonType, OtherUTO) -> Reply
Types:

CosTime_UTO

12 | Ericsson AB. All Rights Reserved.: cosTime

UTO = OtherUTO = #objref

ComparisonType = 'IntervalC' | 'MidC'

Reply = 'TCEqualTo' | 'TCLessThan' | 'TCGreaterThan' | 'TCIndeterminate'

This operation compares the time associated with the target object and the given UTO object. The different
ComparisonType are:

• 'MidC' - only compare the time represented by each object. Furthermore, the target object is always used as the
first parameter in the comparison, i.e., if the target object's time is larger 'TCGreaterThan' will be returned.

• 'IntervalC' - also takes the inaccuracy into consideration, i.e., if the two objects interval overlaps
'TCIndeterminate' is returned, otherwise the as for 'MidC'.

time_to_interval(UTO, OtherUTO) -> TIO
Types:

UTO = OtherUTO = TIO = #objref

This operation returns a TIO representing the interval between the target object and the given UTO midpoint times.
The inaccuracy in the objects are not taken into consideration.

interval(UTO) -> TIO
Types:

UTO = TIO = #objref

This operation creates a TIO object representing the error interval around the time value represented by the target
object, i.e., TIO.upper_bound = UTO.time+UTO.inaccuracy and TIO.lower_bound = UTO.time-
UTO.inaccuracy.

CosTimerEvent_TimerEventHandler

Ericsson AB. All Rights Reserved.: cosTime | 13

CosTimerEvent_TimerEventHandler
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTime/include/*.hrl").

Exports

'_get_status'(TimerEventHandler) -> Reply
Types:

TimerEventHandler = #objref

Reply = 'ESTimeSet' | 'ESTimeCleared' | 'ESTriggered' | 'ESFailedTrigger'

This operation returns the status of the target object.

• 'ESTimeSet' - timer is set to trigger event(s).

• 'ESTimeCleared' - no time set or the timer have been reset.

• 'ESTriggered' - event has already been sent.

• 'ESFailedTrigger' - tried to, but failed, sending the event.

If the target object is of type 'TTPeriodic' the status value 'ESTriggered' is not valid.

time_set(TimerEventHandler) -> Reply
Types:

TimerEventHandler = #objref

Reply = {boolean(), UTO}

UTO = #objref

This operation returns true if the time has been set for an event that is yet to be triggered, false otherwise. The
outparameter represents the current time value of the target object.

set_timer(TimerEventHandler, TimeType, TriggerTime) -> void()
Types:

TimerEventHandler = #objref

TimeType = 'TTAbsolute' | 'TTRelative' | 'TTPeriodic'

TriggerTime = UTO

UTO = #objref

This operation terminates any previous set trigger, and set a new trigger specified by the TimeType and UTO objects.

The relation between the UTO object and the TimeTypes are:

• 'TTAbsolute' - the UTO object must represent absolute time, i.e., number of 100 nanoseconds passed since 15
october 1582 00:00.

• 'TTRelative' - the UTO object must represent the from now until when the event should be triggered, e.g.,
within 30*10^7 nanoseconds.

• 'TTPeriodic' - the same as for 'TTRelative', but this option will trigger an event periodically until timer
cancelled.

CosTimerEvent_TimerEventHandler

14 | Ericsson AB. All Rights Reserved.: cosTime

cancel_timer(TimerEventHandler) -> boolean()
Types:

TimerEventHandler = #objref

This operation cancel, if possible, the triggering of event(s). Returns true if an event is actually cancelled, false
otherwise.

set_data(TimerEventHandler, EventData) -> ok
Types:

TimerEventHandler = #objref

EventData = #any

This operation changes the event data sent when triggered.

CosTimerEvent_TimerEventService

Ericsson AB. All Rights Reserved.: cosTime | 15

CosTimerEvent_TimerEventService
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTime/include/*.hrl").

Exports

register(TimerEventService, CosEventCommPushConsumer, Data) ->
TimerEventHandler
Types:

TimerEventService = CosEventCommPushConsumer = TimerEventHandler = #objref

Data = #any

This operation will create a new TimerEventHandler object which will push given Data to given
CosEventCommPushConsumer after the timer have been set.

unregister(TimerEventService, TimerEventHandler) -> ok
Types:

TimerEventService = TimerEventHandler = #objref

This operation will terminate the given TimerEventHandler.

event_time(TimerEventService, TimerEvent) -> UTO
Types:

TimerEventService = #objref

TimerEvent = #'CosTimerEvent_TimerEvent'{utc, event_data}

utc =

event_data = #any}

UTO = #objref

This operation returns a UTO containing the time at which the associated event was triggered.

	cosTime
	cosTime User's Guide
	The cosTime Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosTime
	Overview
	Purpose and Dependencies
	Prerequisites

	Installing cosTime
	Installation Process
	Preparation
	Configuration

	cosTime Examples
	A Tutorial on How to Create a Simple Service
	Initiate the Application
	How to Run Everything

	Reference Manual
	cosTime
	install_time/0
	uninstall_time/0
	install_timerevent/0
	uninstall_timerevent/0
	start/0
	stop/0
	start_time_service/2
	stop_time_service/1
	start_timerevent_service/1
	stop_timerevent_service/1

	CosTime_TIO
	'_get_time_interval'/1
	spans/2
	overlaps/2
	time/1

	CosTime_TimeService
	universal_time/1
	new_universal_time/4
	uto_from_utc/2
	new_interval/3

	CosTime_UTO
	'_get_time'/1
	'_get_inaccuracy'/1
	'_get_tdf'/1
	'_get_utc_time'/1
	absolute_time/1
	compare_time/3
	time_to_interval/2
	interval/1

	CosTimerEvent_TimerEventHandler
	'_get_status'/1
	time_set/1
	set_timer/3
	cancel_timer/1
	set_data/2

	CosTimerEvent_TimerEventService
	register/3
	unregister/2
	event_time/2

