

Copyright © 1999-2014 Ericsson AB. All Rights Reserved. crypto 3.4.1 September 16, 2014

Copyright © 1999-2014 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use this file except in compliance with the License. You should have received a copy of the Erlang Public License along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights Reserved..

September 16, 2014

Ericsson AB. All Rights Reserved.: crypto | 1

1 Crypto User's Guide

The *Crypto* application provides functions for computation of message digests, and functions for encryption and decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

1.1 Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1.1 OpenSSL License

/*	
* *	Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
*	Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* * *	notice, this list of conditions and the following disclaimer.
* * * *	notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* * * *	software must display the following acknowledgment: "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
* * * *	endorse or promote products derived from this software without prior written permission. For written permission, please contact openssl-core@openssl.org.
* * *	nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL Project.
* * * *	acknowledgment: "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*	THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * == * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). */

1.1.2 SSLeay License

```
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
     notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in the
     documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
     must display the following acknowledgement:
     "This product includes cryptographic software written by
      Eric Young (eay@cryptsoft.com)
     The word 'cryptographic' can be left out if the rouines from the library
     being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
*
     the apps directory (application code) you must include an acknowledgement:
      "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
```

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */

2 Reference Manual

The Crypto Application provides functions for computation of message digests, and encryption and decryption functions.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

Application

The purpose of the Crypto application is to provide an Erlang API to cryptographic functions, see crypto(3). Note that the API is on a fairly low level and there are some corresponding API functions available in $public_key(3)$, on a higher abstraction level, that uses the crypto application in its implementation.

DEPENDENCIES

The current crypto implementation uses nifs to interface OpenSSLs crypto library and requires *OpenSSL* package version 0.9.8 or higher.

Source releases of OpenSSL can be downloaded from the **OpenSSL** project home page, or mirror sites listed there.

SEE ALSO

application(3)

Erlang module

This module provides a set of cryptographic functions.

- Hash functions Secure Hash Standard, The MD5 Message Digest Algorithm (RFC 1321) and The MD4 Message Digest Algorithm (RFC 1320)
- Hmac functions Keyed-Hashing for Message Authentication (RFC 2104)
- Block ciphers DES and AES in Block Cipher Modes ECB, CBC, CFB, OFB and CTR
- RSA encryption RFC 1321
- Digital signatures Digital Signature Standard (DSS) and Elliptic Curve Digital Signature Algorithm (ECDSA)
- Secure Remote Password Protocol (SRP RFC 2945)

DATA TYPES

```
key_value() = integer() | binary()
```

Always binary() when used as return value

```
rsa_public() = [key_value()] = [E, N]
```

Where E is the public exponent and N is public modulus.

rsa_private() = [key_value()] = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]

Where E is the public exponent, N is public modulus and D is the private exponent. The longer key format contains redundant information that will make the calculation faster. P1,P2 are first and second prime factors. E1,E2 are first and second exponents. C is the CRT coefficient. Terminology is taken from **RFC 3447**.

dss_public() = [key_value()] = [P, Q, G, Y]

Where P, Q and G are the dss parameters and Y is the public key.

dss_private() = [key_value()] = [P, Q, G, X]

Where P, Q and G are the dss parameters and X is the private key.

srp_public() = key_value()

Where is A or B from SRP design

srp_private() = key_value()

Where is a or b from SRP design

Where Verifier is v, Generator is g and Prime is N, DerivedKey is X, and Scrambler is u (optional will be generated if not provided) from **SRP design** Version = 3' | 6' | 6a'

```
dh_public() = key_value()
dh_private() = key_value()
dh_params() = [key_value()] = [P, G]
ecdh public() = key value()
ecdh private() = key value()
ecdh_params() = ec_named_curve() | ec_explicit_curve()
ec explicit curve() =
    {ec_field(), Prime :: key_value(), Point :: key_value(), Order :: integer(), CoFactor :: none | integer()}
ec field() = {prime field, Prime :: integer()} |
    {characteristic_two_field, M :: integer(), Basis :: ec_basis()}
ec_basis() = {tpbasis, K :: non_neg_integer()} |
    {ppbasis, K1 :: non_neg_integer(), K2 :: non_neg_integer(), K3 :: non_neg_integer()} |
    onbasis
ec named curve() ->
       sect571r1| sect571k1| sect409r1| sect409k1| secp521r1| secp384r1| secp224r1| secp224k1|
       secp192k1| secp160r2| secp128r2| secp128r1| sect233r1| sect233k1| sect193r2| sect193r1|
      sect131r2| sect131r1| sect283r1| sect283k1| sect163r2| secp256k1| secp160k1| secp160r1|
secp112r2| secp112r1| sect113r2| sect113r1| sect239k1| sect163r1| sect163k1| secp256r1|
       secp192r1
      brainpoolP160r1| brainpoolP160t1| brainpoolP192r1| brainpoolP192t1| brainpoolP224r1| brainpoolP224r1| brainpoolP256r1| brainpoolP256t1| brainpoolP320r1| brainpoolP320t1|
       brainpoolP384r1| brainpoolP384t1| brainpoolP512r1| brainpoolP512t1
```

Note that the *sect* curves are GF2m (characteristic two) curves and are only supported if the underlying OpenSSL has support for them. See also *crypto:supports/0*

stream_key() = aes_key() | rc4_key()

block_key() = aes_key() | blowfish_key() | des_key()| des3_key()

aes_key() = iodata()

Key length is 128, 192 or 256 bits

rc4_key() = iodata()

Variable key length from 8 bits up to 2048 bits (usually between 40 and 256)

blowfish_key() = iodata()

Variable key length from 32 bits up to 448 bits

des_key() = iodata()

Key length is 64 bits (in CBC mode only 8 bits are used)

des3_key() = [binary(), binary(), binary()]

Each key part is 64 bits (in CBC mode only 8 bits are used)

digest_type() = md5 | sha | sha224 | sha256 | sha384 | sha512

hash_algorithms() = md5 | ripemd160 | sha | sha224 | sha256 | sha384 | sha512

md4 is also supported for hash_init/1 and hash/2. Note that both md4 and md5 are recommended only for compatibility with existing applications.

```
cipher_algorithms() = des_cbc | des_cfb | des3_cbc | des3_cbf | des_ede3 |
blowfish_cbc | blowfish_cfb64 | aes_cbc128 | aes_cfb8 | aes_cfb128 | aes_cbc256 | aes_ige256 | rc2_cbc |
```

public_key_algorithms() = rsa |dss | ecdsa | dh | ecdh | ec_gf2m

Note that ec_gf2m is not strictly a public key algorithm, but a restriction on what curves are supported with ecdsa and ecdh.

Exports

```
block_encrypt(Type, Key, Ivec, PlainText) -> CipherText
Types:
   Type = block_cipher()
   Key = block_key()
```

```
PlainText = iodata()
IVec = CipherText = binary()
```

Encrypt PlainTextaccording to Type block cipher. IVec is an arbitrary initializing vector.

May throw exception not sup in case the chosen Type is not supported by the underlying OpenSSL implementation.

```
block_decrypt(Type, Key, Ivec, CipherText) -> PlainText
```

```
Types:
  Type = block_cipher()
  Key = block_key()
  PlainText = iodata()
  IVec = CipherText = binary()
```

Decrypt CipherTextaccording to Type block cipher. IVec is an arbitrary initializing vector.

May throw exception not sup in case the chosen Type is not supported by the underlying OpenSSL implementation.

```
bytes_to_integer(Bin) -> Integer
Types:
```

```
Bin = binary() - as returned by crypto functions
Integer = integer()
```

Convert binary representation, of an integer, to an Erlang integer.

```
compute_key(Type, OthersPublicKey, MyKey, Params) -> SharedSecret
Types:
```

```
Type = dh | ecdh | srp
OthersPublicKey = dh_public() | ecdh_public() | srp_public()
MyKey = dh_private() | ecdh_private() | {srp_public(),srp_private()}
Params = dh_params() | ecdh_params() | SrpUserParams | SrpHostParams
SrpUserParams = {user, [DerivedKey::binary(), Prime::binary(),
Generator::binary(), Version::atom() | [Scrambler:binary()]]}
SrpHostParams = {host, [Verifier::binary(), Prime::binary(),
Version::atom() | [Scrambler::binary]]}
SharedSecret = binary()
```

Computes the shared secret from the private key and the other party's public key. See also public_key:compute_key/2

```
exor(Data1, Data2) -> Result
Types:
    Data1, Data2 = iodata()
    Result = binary()
```

Performs bit-wise XOR (exclusive or) on the data supplied.

```
generate_key(Type, Params) -> {PublicKey, PrivKeyOut}
generate_key(Type, Params, PrivKeyIn) -> {PublicKey, PrivKeyOut}
Types:
    Type = dh | ecdh | srp
```

```
crypto
```

```
Params = dh_params() | ecdh_params() | SrpUserParams | SrpHostParams
SrpUserParams = {user, [Generator::binary(), Prime::binary(),
Version::atom()]}
SrpHostParams = {host, [Verifier::binary(), Generator::binary(),
Prime::binary(), Version::atom()]}
PublicKey = dh_public() | ecdh_public() | srp_public()
PrivKeyIn = undefined | dh_private() | srp_private()
PrivKeyOut = dh_private() | ecdh_private() | srp_private()
```

Generates public keys of type Type. See also public_key:generate_key/1

```
hash(Type, Data) -> Digest
Types:
   Type = md4 | hash_algorithms()
   Data = iodata()
```

Digest = binary()

Computes a message digest of type ${\tt Type}$ from ${\tt Data}.$

May throw exception not sup in case the chosen Type is not supported by the underlying OpenSSL implementation.

```
hash_init(Type) -> Context
```

Types:

```
Type = md4 | hash_algorithms()
```

Initializes the context for streaming hash operations. Type determines which digest to use. The returned context should be used as argument to *hash_update*.

May throw exception not sup in case the chosen Type is not supported by the underlying OpenSSL implementation.

```
hash_update(Context, Data) -> NewContext
T
```

Types:

```
Data = iodata()
```

Updates the digest represented by Context using the given Data. Context must have been generated using *hash_init* or a previous call to this function. Data can be any length. NewContext must be passed into the next call to hash_update or *hash_final*.

```
hash_final(Context) -> Digest
Types:
    Digest = bineme()
```

Digest = binary()

Finalizes the hash operation referenced by Context returned from a previous call to *hash_update*. The size of Digest is determined by the type of hash function used to generate it.

```
hmac(Type, Key, Data) -> Mac
hmac(Type, Key, Data, MacLength) -> Mac
Types:
    Type = hash_algorithms() - except ripemd160
    Key = iodata()
    Data = iodata()
```

```
MacLength = integer()
Mac = binary()
```

Computes a HMAC of type Type from Data using Key as the authentication key.

MacLength will limit the size of the resultant Mac.

```
hmac_init(Type, Key) -> Context
Types:
   Type = hash_algorithms() - except ripemd160
   Key = iodata()
   Context = binary()
```

Initializes the context for streaming HMAC operations. Type determines which hash function to use in the HMAC operation. Key is the authentication key. The key can be any length.

```
hmac_update(Context, Data) -> NewContext
```

Types:

```
Context = NewContext = binary()
Data = iodata()
```

Updates the HMAC represented by Context using the given Data. Context must have been generated using an HMAC init function (such as *hmac_init*). Data can be any length. NewContext must be passed into the next call to hmac_update or to one of the functions *hmac_final* and *hmac_final_n*

Warning:

Do not use a Context as argument in more than one call to hmac_update or hmac_final. The semantics of reusing old contexts in any way is undefined and could even crash the VM in earlier releases. The reason for this limitation is a lack of support in the underlying OpenSSL API.

hmac_final(Context) -> Mac
Types:

```
Context = Mac = binary()
```

Finalizes the HMAC operation referenced by Context. The size of the resultant MAC is determined by the type of hash function used to generate it.

```
hmac_final_n(Context, HashLen) -> Mac
Types:
    Context = Mac = binary()
```

HashLen = non_neg_integer()

Finalizes the HMAC operation referenced by Context. HashLen must be greater than zero. Mac will be a binary with at most HashLen bytes. Note that if HashLen is greater than the actual number of bytes returned from the underlying hash, the returned hash will have fewer than HashLen bytes.

```
info_lib() -> [{Name,VerNum,VerStr}]
Types:
```

```
Name = binary()
VerNum = integer()
VerStr = binary()
```

Provides the name and version of the libraries used by crypto.

Name is the name of the library. VerNum is the numeric version according to the library's own versioning scheme. VerStr contains a text variant of the version.

```
> info_lib().
[{<<"OpenSSL">>,9469983,<<"OpenSSL 0.9.8a 11 Oct 2005">>}]
```

Note:

From OTP R16 the *numeric version* represents the version of the OpenSSL *header files* (openssl/opensslv.h) used when crypto was compiled. The text variant represents the OpenSSL library used at runtime. In earlier OTP versions both numeric and text was taken from the library.

```
mod_pow(N, P, M) -> Result
```

Types:

```
N, P, M = binary() | integer()
Result = binary() | error
```

Computes the function $N^P \mod M$.

```
next_iv(Type, Data) -> NextIVec
next_iv(Type, Data, IVec) -> NextIVec
Types:
  Type = des_cbc | des3_cbc | aes_cbc | des_cfb
  Data = iodata()
  IVec = NextIVec = binary()
```

Returns the initialization vector to be used in the next iteration of encrypt/decrypt of type Type. Data is the encrypted data from the previous iteration step. The IVec argument is only needed for des_cfb as the vector used in the previous iteration step.

```
private_decrypt(Type, CipherText, PrivateKey, Padding) -> PlainText
```

Types:

```
Type = rsa
CipherText = binary()
PrivateKey = rsa_private()
Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding
PlainText = binary()
```

Decrypts the CipherText, encrypted with *public_encrypt/4* (or equivalent function) using the PrivateKey, and returns the plaintext (message digest). This is a low level signature verification operation used for instance by older versions of the SSL protocol. See also *public_key:decrypt_private/[2,3]*

private_encrypt(Type, PlainText, PrivateKey, Padding) -> CipherText
Types:

```
Type = rsa
PlainText = binary()
The size of the PlainText must be less than byte_size(N)-11 if rsa_pkcs1_padding is used, and
byte_size(N) if rsa_no_padding is used, where N is public modulus of the RSA key.
PrivateKey = rsa_private()
Padding = rsa_pkcs1_padding | rsa_no_padding
```

CipherText = binary()

Encrypts the PlainText using the PrivateKey and returns the ciphertext. This is a low level signature operation used for instance by older versions of the SSL protocol. See also *public_key:encrypt_private/[2,3]*

```
public_decrypt(Type, CipherText, PublicKey, Padding) -> PlainText
```

Types:

```
Type = rsa
CipherText = binary()
PublicKey = rsa_public()
Padding = rsa_pkcs1_padding | rsa_no_padding
PlainText = binary()
```

Decrypts the CipherText, encrypted with *private_encrypt/4*(or equivalent function) using the PrivateKey, and returns the plaintext (message digest). This is a low level signature verification operation used for instance by older versions of the SSL protocol. See also *public_key:decrypt_public/[2,3]*

```
public_encrypt(Type, PlainText, PublicKey, Padding) -> CipherText
Types:
```

```
Type = rsa
PlainText = binary()
```

The size of the PlainText must be less than $byte_size(N)-11$ if $rsa_pkcsl_padding$ is used, and $byte_size(N)$ if $rsa_no_padding$ is used, where N is public modulus of the RSA key.

```
PublicKey = rsa_public()
Padding = rsa_pkcs1_padding | rsa_pkcs1_oaep_padding | rsa_no_padding
CipherText = binary()
```

Encrypts the PlainText (message digest) using the PublicKey and returns the CipherText. This is a low level signature operation used for instance by older versions of the SSL protocol. See also *public_key:encrypt_public/[2,3]*

```
rand_bytes(N) -> binary()
Types:
```

N = integer()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses the crypto library pseudo-random number generator.

```
rand_seed(Seed) -> ok
Types:
```

```
Seed = binary()
```

Set the seed for PRNG to the given binary. This calls the RAND_seed function from openssl. Only use this if the system you are running on does not have enough "randomness" built in. Normally this is when *stong_rand_bytes/l* returns low_entropy

rand_uniform(Lo, Hi) -> N
Types:

```
Lo, Hi, N = integer()
```

Generate a random number N, Lo =< N < Hi. Uses the crypto library pseudo-random number generator. Hi must be larger than Lo.

```
sign(Algorithm, DigestType, Msg, Key) -> binary()
Types:
```

```
Algorithm = rsa | dss | ecdsa
Msg = binary() | {digest,binary()}
The msg is either the binary "cleartext" data to be signed or it is the hashed value of "cleartext" i.e. the digest
(plaintext).
DigestType = digest_type()
Key = rsa_private() | dss_private() | [ecdh_private(),ecdh_params()]
```

Creates a digital signature.

Algorithm dss can only be used together with digest type sha.

See also *public_key:sign/3*

start() -> ok
Equivalent to application:start(crypto).

stop() -> ok

Equivalent to application:stop(crypto).

```
strong_rand_bytes(N) -> binary()
```

Types:

```
N = integer()
```

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses a cryptographically secure prng seeded and periodically mixed with operating system provided entropy. By default this is the RAND_bytes method from OpenSSL.

May throw exception low_entropy in case the random generator failed due to lack of secure "randomness".

```
stream_init(Type, Key) -> State
Types:
   Type = rc4
   State = opaque()
   Key = iodata()
```

Initializes the state for use in RC4 stream encryption stream_encrypt and stream_decrypt

```
stream_init(Type, Key, IVec) -> State
Types:
   Type = aes_ctr
   State = opaque()
   Key = iodata()
   IVec = binary()
```

Initializes the state for use in streaming AES encryption using Counter mode (CTR). Key is the AES key and must be either 128, 192, or 256 bts long. IVec is an arbitrary initializing vector of 128 bits (16 bytes). This state is for use with *stream_encrypt* and *stream_decrypt*.

```
stream_encrypt(State, PlainText) -> { NewState, CipherText}
Types:
```

```
Text = iodata()
CipherText = binary()
```

Encrypts PlainText according to the stream cipher Type specified in stream_init/3. Text can be any number of bytes. The initial State is created using *stream_init*. NewState must be passed into the next call to stream_encrypt.

```
stream_decrypt(State, CipherText) -> { NewState, PlainText }
Types:
    CipherText = iodata()
```

PlainText = binary()

Decrypts CipherText according to the stream cipher Type specified in stream_init/3. PlainText can be any number of bytes. The initial State is created using *stream_init*. NewState must be passed into the next call to stream_encrypt.

```
supports() -> AlgorithmList
```

Types:

```
AlgorithmList = [{hashs, [hash_algorithms()]}, {ciphers,
[cipher_algorithms()]}, {public_keys, [public_key_algorithms()]}
```

Can be used to determine which crypto algorithms that are supported by the underlying OpenSSL library

```
ec_curves() -> EllipticCurveList
Turneu
```

Types:

```
EllipticCurveList = [ec_named_curve()]
```

Can be used to determine which named elliptic curves are supported.

ec_curve(NamedCurve) -> EllipticCurve

Types:

```
NamedCurve = ec_named_curve()
EllipticCurve = ec_explicit_curve()
```

Return the defining parameters of a elliptic curve.

16 | Ericsson AB. All Rights Reserved .: crypto

```
verify(Algorithm, DigestType, Msg, Signature, Key) -> boolean()
Types:
    Algorithm = rsa | dss | ecdsa
    Msg = binary() | {digest,binary()}
    The msg is either the binary "cleartext" data or it is the hashed value of "cleartext" i.e. the digest (plaintext).
    DigestType = digest_type()
    Signature = binary()
    Key = rsa_public() | dss_public() | [ecdh_public(),ecdh_params()]
Varifies a digital signature
```

Verifies a digital signature

Algorithm dss can only be used together with digest type sha.

See also *public_key:verify/4*