
ASN.1
Copyright © 1997-2014 Ericsson AB. All Rights Reserved.

ASN.1 3.0.2
September 16, 2014

Copyright © 1997-2014 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 16, 2014

Ericsson AB. All Rights Reserved.: ASN.1 | 1

1.1 Asn1

2 | Ericsson AB. All Rights Reserved.: ASN.1

1 Asn1 User's Guide

The Asn1 application contains modules with compile-time and run-time support for ASN.1.

1.1 Asn1
1.1.1 Introduction
Features
The Asn1 application provides:

• An ASN.1 compiler for Erlang, which generates encode and decode functions to be used by Erlang programs
sending and receiving ASN.1 specified data.

• Run-time functions used by the generated code.

• Support for the following encoding rules:

• Basic Encoding Rules (BER)

• Distinguished Encoding Rules (DER), a specialized form of BER that is used in security-conscious
applications.

• Packed Encoding Rules (PER); both the aligned and unaligned variant.

Overview
ASN.1 (Abstract Syntax Notation One) is a formal language for describing data structures to be exchanged between
distributed computer systems. The purpose of ASN.1 is to have a platform and programming language independent
notation to express types using a standardized set of rules for the transformation of values of a defined type into a stream
of bytes. This stream of bytes can then be sent on any type of communication channel. This way, two applications
written in different programming languages running on different computers with different internal representation of
data can exchange instances of structured data types.

Prerequisites
It is assumed that the reader is familiar with the ASN.1 notation as documented in the standard definition [] which is
the primary text. It may also be helpful, but not necessary, to read the standard definitions [] [] [] [] [].

A good book explaining those reference texts is [], which is free to download at http://www.oss.com/asn1/
dubuisson.html.

Capabilities
This application covers all features of ASN.1 up to the 1997 edition of the specification. In the 2002 edition of ASN.1
a number of new features were introduced. The following features of the 2002 edition are fully or partly supported
as shown below:

• Decimal notation (e.g., "1.5e3") for REAL values. The NR1, NR2 and NR3 formats as explained in ISO6093
are supported.

• The RELATIVE-OID type for relative object identifiers is fully supported.

• The subtype constraint (CONTAINING/ENCODED BY) to constrain the content of an octet string or a bit string
is parsed when compiling, but no further action is taken. This constraint is not a PER-visible constraint.

href
href

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 3

• The subtype constraint by regular expressions (PATTERN) for character string types is parsed when compiling,
but no further action is taken. This constraint is not a PER-visible constraint.

• Multiple-line comments as in C, /* ... */, are supported.

1.1.2 Getting Started with Asn1
A First Example
The following example demonstrates the basic functionality used to run the Erlang ASN.1 compiler.

Create a file called People.asn containing the following:

People DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 Person ::= SEQUENCE {
 name PrintableString,
 location INTEGER {home(0),field(1),roving(2)},
 age INTEGER OPTIONAL
 }
END

This file (People.asn) must be compiled before it can be used. The ASN.1 compiler checks that the syntax is
correct and that the text represents proper ASN.1 code before generating an abstract syntax tree. The code-generator
then uses the abstract syntax tree in order to generate code.

The generated Erlang files will be placed in the current directory or in the directory specified with the {outdir,Dir}
option. The following shows how the compiler can be called from the Erlang shell:

1> asn1ct:compile("People", [ber]).
ok
2>

The verbose option can be given to have information about the generated files printed:

2> asn1ct:compile("People", [ber,verbose]).
Erlang ASN.1 compiling "People.asn"
--{generated,"People.asn1db"}--
--{generated,"People.hrl"}--
--{generated,"People.erl"}--
ok
3>

The ASN.1 module People is now accepted and the abstract syntax tree is saved in the People.asn1db file; the
generated Erlang code is compiled using the Erlang compiler and loaded into the Erlang run-time system. Now there
is an API for encode/2 and decode/2 in the module People, which is invoked by:
'People':encode(<Type name>, <Value>)
or
'People':decode(<Type name>, <Value>)

Assume there is a network application which receives instances of the ASN.1 defined type Person, modifies and sends
them back again:

1.1 Asn1

4 | Ericsson AB. All Rights Reserved.: ASN.1

receive
 {Port,{data,Bytes}} ->
 case 'People':decode('Person',Bytes) of
 {ok,P} ->
 {ok,Answer} = 'People':encode('Person',mk_answer(P)),
 Port ! {self(),{command,Answer}};
 {error,Reason} ->
 exit({error,Reason})
 end
 end,

In the example above, a series of bytes is received from an external source and the bytes are then decoded
into a valid Erlang term. This was achieved with the call 'People':decode('Person',Bytes) which
returned an Erlang value of the ASN.1 type Person. Then an answer was constructed and encoded using
'People':encode('Person',Answer) which takes an instance of a defined ASN.1 type and transforms it to
a binary according to the BER or PER encoding rules.
The encoder and the decoder can also be run from the shell.

2> Rockstar = {'Person',"Some Name",roving,50}.
{'Person',"Some Name",roving,50}
3> {ok,Bin} = 'People':encode('Person',Rockstar).
{ok,<<243,17,19,9,83,111,109,101,32,78,97,109,101,2,1,2,
 2,1,50>>}
4> {ok,Person} = 'People':decode('Person',Bin).
{ok,{'Person',"Some Name",roving,50}}
5>

Module dependencies
It is common that ASN.1 modules import defined types, values and other entities from another ASN.1 module.

Earlier versions of the ASN.1 compiler required that modules that were imported from had to be compiled before the
module that imported. This caused problems when ASN.1 modules had circular dependencies.

Referenced modules are now parsed when the compiler finds an entity that is imported. There will not be any code
generated for the referenced module. However, the compiled module rely on that the referenced modules also will
be compiled.

1.1.3 The Asn1 Application User Interface
The Asn1 application provides two separate user interfaces:

• The module asn1ct which provides the compile-time functions (including the compiler).

• The module asn1rt_nif which provides the run-time functions for the ASN.1 decoder for the BER back-end.

The reason for the division of the interface into compile-time and run-time is that only run-time modules (asn1rt*)
need to be loaded in an embedded system.

Compile-time Functions
The ASN.1 compiler can be invoked directly from the command-line by means of the erlc program. This is
convenient when compiling many ASN.1 files from the command-line or when using Makefiles. Here are some
examples of how the erlc command can be used to invoke the ASN.1 compiler:

erlc Person.asn
erlc -bper Person.asn
erlc -bber ../Example.asn

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 5

erlc -o ../asnfiles -I ../asnfiles -I /usr/local/standards/asn1 Person.asn

The useful options for the ASN.1 compiler are:

-b[ber | per | uper]

Choice of encoding rules, if omitted ber is the default.

-o OutDirectory

Where to put the generated files, default is the current directory.

-I IncludeDir

Where to search for .asn1db files and ASN.1 source specs in order to resolve references to other modules.
This option can be repeated many times if there are several places to search in. The compiler will always search
the current directory first.

+der

DER encoding rule. Only when using -ber option.

+asn1config

This functionality works together with the ber option. It enables the specialized decodes, see the Specialized
Decode chapter.

+undec_rest

A buffer that holds a message being decoded may also have trailing bytes. If those trailing bytes are important
they can be returned along with the decoded value by compiling the ASN.1 specification with the +undec_rest
option. The return value from the decoder will be {ok,Value,Rest} where Rest is a binary containing the
trailing bytes.

+'Any Erlc Option'

You may add any option to the Erlang compiler when compiling the generated Erlang files. Any option
unrecognized by the ASN.1 compiler will be passed to the Erlang compiler.

For a complete description of erlc see Erts Reference Manual.

The compiler and other compile-time functions can also be invoked from the Erlang shell. Below follows a brief
description of the primary functions, for a complete description of each function see the Asn1 Reference Manual, the
asn1ct module.

The compiler is invoked by using asn1ct:compile/1 with default options, or asn1ct:compile/2 if explicit
options are given. Example:

asn1ct:compile("H323-MESSAGES.asn1").

which equals:

asn1ct:compile("H323-MESSAGES.asn1",[ber]).

If one wants PER encoding:

asn1ct:compile("H323-MESSAGES.asn1",[per]).

1.1 Asn1

6 | Ericsson AB. All Rights Reserved.: ASN.1

The generic encode and decode functions can be invoked like this:

'H323-MESSAGES':encode('SomeChoiceType',{call,"octetstring"}).
'H323-MESSAGES':decode('SomeChoiceType',Bytes).

Run-time Functions
When an ASN.1 specification is compiled with the ber option, the module asn1rt_nif module and the NIF library
in asn1/priv_dir will be needed at run-time.

By invoking the function info/0 in a generated module, one gets information about which compiler options were
used.

Errors
Errors detected at compile time appear on the screen together with a line number indicating where in the source file
the error was detected. If no errors are found, an Erlang ASN.1 module will be created.

The run-time encoders and decoders execute within a catch and returns {ok, Data} or {error, {asn1,
Description}} where Description is an Erlang term describing the error.

1.1.4 Multi-file Compilation
There are various reasons for using multi-file compilation:

• You want to choose the name for the generated module, perhaps because you need to compile the same specs
for different encoding rules.

• You want only one resulting module.

You need to specify which ASN.1 specs you will compile in a module that must have the extension .set.asn. You
chose name of the module and provide the names of the ASN.1 specs. For instance, if you have the specs File1.asn,
File2.asn and File3.asn your module MyModule.set.asn will look like:

File1.asn
File2.asn
File3.asn

If you compile with:

~> erlc MyModule.set.asn

the result will be one merged module MyModule.erl with the generated code from the three ASN.1 specs.

1.1.5 A quick note about tags
Tags used to be important for all users of ASN.1, because it was necessary to manually add tags to certain constructs
in order for the ASN.1 specification to be valid. Here is an example of an old-style specification:

Tags DEFINITIONS ::=
BEGIN
 Afters ::= CHOICE { cheese [0] IA5String,
 dessert [1] IA5String }

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 7

END

Without the tags (the numbers in square brackets) the ASN.1 compiler would refuse to compile the file.

In 1994 the global tagging mode AUTOMATIC TAGS was introduced. By putting AUTOMATIC TAGS in the module
header, the ASN.1 compiler will automatically add tags when needed. Here is the same specification in AUTOMATIC
TAGS mode:

Tags DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 Afters ::= CHOICE { cheese IA5String,
 dessert IA5String }
END

Tags will not be mentioned any more in this manual.

1.1.6 The ASN.1 Types
This section describes the ASN.1 types including their functionality, purpose and how values are assigned in Erlang.

ASN.1 has both primitive and constructed types:

Primitive types Constructed types

BOOLEAN SEQUENCE

INTEGER SET

REAL CHOICE

NULL SET OF and SEQUENCE OF

ENUMERATED ANY

BIT STRING ANY DEFINED BY

OCTET STRING EXTERNAL

Character Strings EMBEDDED PDV

OBJECT IDENTIFIER CHARACTER STRING

Object Descriptor

The TIME types

Table 1.1: The supported ASN.1 types

1.1 Asn1

8 | Ericsson AB. All Rights Reserved.: ASN.1

Note:
Values of each ASN.1 type has its own representation in Erlang described in the following subsections. Users
shall provide these values for encoding according to the representation, as in the example below.

Operational ::= BOOLEAN --ASN.1 definition

In Erlang code it may look like:

Val = true,
{ok,Bytes} = MyModule:encode('Operational', Val),

Below follows a description of how values of each type can be represented in Erlang.

BOOLEAN
Booleans in ASN.1 express values that can be either TRUE or FALSE. The meanings assigned to TRUE or FALSE
is beyond the scope of this text.
In ASN.1 it is possible to have:

Operational ::= BOOLEAN

Assigning a value to the type Operational in Erlang is possible by using the following Erlang code:

Myvar1 = true,

Thus, in Erlang the atoms true and false are used to encode a boolean value.

INTEGER
ASN.1 itself specifies indefinitely large integers, and the Erlang systems with versions 4.3 and higher, support very
large integers, in practice indefinitely large integers.

The concept of sub-typing can be applied to integers as well as to other ASN.1 types. The details of sub-typing are not
explained here, for further info see []. A variety of syntaxes are allowed when defining a type as an integer:

T1 ::= INTEGER
T2 ::= INTEGER (-2..7)
T3 ::= INTEGER (0..MAX)
T4 ::= INTEGER (0<..MAX)
T5 ::= INTEGER (MIN<..-99)
T6 ::= INTEGER {red(0),blue(1),white(2)}

The Erlang representation of an ASN.1 INTEGER is an integer or an atom if a so called Named Number List
(see T6 above) is specified.

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 9

Below is an example of Erlang code which assigns values for the above types:

T1value = 0,
T2value = 6,
T6value1 = blue,
T6value2 = 0,
T6value3 = white

The Erlang variables above are now bound to valid instances of ASN.1 defined types. This style of value can be passed
directly to the encoder for transformation into a series of bytes.

The decoder will return an atom if the value corresponds to a symbol in the Named Number List.

REAL
The following ASN.1 type is used for real numbers:

R1 ::= REAL

It can be assigned a value in Erlang as:

R1value1 = "2.14",
R1value2 = {256,10,-2},

In the last line note that the tuple {256,10,-2} is the real number 2.56 in a special notation, which will encode faster
than simply stating the number as "2.56". The arity three tuple is {Mantissa,Base,Exponent} i.e. Mantissa
* Base^Exponent.

NULL
Null is suitable in cases where supply and recognition of a value is important but the actual value is not.

Notype ::= NULL

The NULL type can be assigned in Erlang:

N1 = 'NULL',

The actual value is the quoted atom 'NULL'.

ENUMERATED
The enumerated type can be used, when the value we wish to describe, may only take one of a set of predefined values.

DaysOfTheWeek ::= ENUMERATED {

1.1 Asn1

10 | Ericsson AB. All Rights Reserved.: ASN.1

 sunday(1),monday(2),tuesday(3),
 wednesday(4),thursday(5),friday(6),saturday(7) }

For example to assign a weekday value in Erlang use the same atom as in the Enumerations of the type definition:

Day1 = saturday,

The enumerated type is very similar to an integer type, when defined with a set of predefined values. An enumerated
type differs from an integer in that it may only have specified values, whereas an integer can also have any other value.

BIT STRING
The BIT STRING type can be used to model information which is made up of arbitrary length series of bits. It is
intended to be used for a selection of flags, not for binary files.
In ASN.1 BIT STRING definitions may look like:

Bits1 ::= BIT STRING
Bits2 ::= BIT STRING {foo(0),bar(1),gnu(2),gnome(3),punk(14)}

There are two notations available for representation of BIT STRING values in Erlang and as input to the encode
functions.

• A bitstring. By default, a BIT STRING with no symbolic names will be decoded to an Erlang bitstring.

• A list of atoms corresponding to atoms in the NamedBitList in the BIT STRING definition. A BIT STRING
with symbolic names will always be decoded to this format.

Example:

Bits1Val1 = <<0:1,1:1,0:1,1:1,1:1>>,
Bits2Val1 = [gnu,punk],
Bits2Val2 = <<2#1110:4>>,
Bits2Val3 = [bar,gnu,gnome],

Bits2Val2 and Bits2Val3 above denote the same value.

Bits2Val1 is assigned symbolic values. The assignment means that the bits corresponding to gnu and punk i.e.
bits 2 and 14 are set to 1 and the rest set to 0. The symbolic values appear as a list of values. If a named value appears,
which is not specified in the type definition, a run-time error will occur.

BIT STRINGS may also be sub-typed with, for example, a SIZE specification:

Bits3 ::= BIT STRING (SIZE(0..31))

This means that no bit higher than 31 can ever be set.

Deprecated representations for BIT STRING
In addition to the representations described above, the following deprecated representations are available if the
specification has been compiled with the legacy_erlang_types option:

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 11

• A list of binary digits (0 or 1). This format is accepted as input to the encode functions, and a BIT STRING will
be decoded to this format if the legacy_bit_string option has been given.

• As {Unused,Binary} where Unused denotes how many trailing zero-bits 0 to 7 that are unused in the least
significant byte in Binary. This format is accepted as input to the encode functions, and a BIT STRING will
be decoded to this format if compact_bit_string has been given.

• A hexadecimal number (or an integer). This format should be avoided, since it is easy to misinterpret a BIT
STRING value in this format.

OCTET STRING
The OCTET STRING is the simplest of all ASN.1 types. The OCTET STRING only moves or transfers e.g. binary files
or other unstructured information complying to two rules. Firstly, the bytes consist of octets and secondly, encoding
is not required.

It is possible to have the following ASN.1 type definitions:

O1 ::= OCTET STRING
O2 ::= OCTET STRING (SIZE(28))

With the following example assignments in Erlang:

O1Val = <<17,13,19,20,0,0,255,254>>,
O2Val = <<"must be exactly 28 chars....">>,

By default, an OCTET STRING is always represented as an Erlang binary. If the specification has been compiled
with the legacy_erlang_types option, the encode functions will accept both lists and binaries, and the decode
functions will decode an OCTET STRING to a list.

Character Strings
ASN.1 supports a wide variety of character sets. The main difference between OCTET STRINGS and the Character
strings is that OCTET STRINGS have no imposed semantics on the bytes delivered.

However, when using for instance the IA5String (which closely resembles ASCII) the byte 65 (in decimal notation)
means the character 'A'.

For example, if a defined type is to be a VideotexString and an octet is received with the unsigned integer value X,
then the octet should be interpreted as specified in the standard ITU-T T.100,T.101.

The ASN.1 to Erlang compiler will not determine the correct interpretation of each BER (Basic Encoding Rules) string
octet value with different Character strings. Interpretation of octets is the responsibility of the application. Therefore,
from the BER string point of view, octets appear to be very similar to character strings and are compiled in the same
way.

It should be noted that when PER (Packed Encoding Rules) is used, there is a significant difference in the encoding
scheme between OCTET STRINGS and other strings. The constraints specified for a type are especially important
for PER, where they affect the encoding.

Here are some examples:

Digs ::= NumericString (SIZE(1..3))
TextFile ::= IA5String (SIZE(0..64000))

1.1 Asn1

12 | Ericsson AB. All Rights Reserved.: ASN.1

with corresponding Erlang assignments:

DigsVal1 = "456",
DigsVal2 = "123",
TextFileVal1 = "abc...xyz...",
TextFileVal2 = [88,76,55,44,99,121 a lot of characters here]

The Erlang representation for "BMPString" and "UniversalString" is either a list of ASCII values or a list of quadruples.
The quadruple representation associates to the Unicode standard representation of characters. The ASCII characters
are all represented by quadruples beginning with three zeros like {0,0,0,65} for the 'A' character. When decoding a
value for these strings the result is a list of quadruples, or integers when the value is an ASCII character.

The following example shows how it works. We have the following specification in the file PrimStrings.asn1.

PrimStrings DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 BMP ::= BMPString
END

Encoding and decoding some strings:

1> asn1ct:compile('PrimStrings', [ber]).
ok
2> {ok,Bytes1} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,45,56}]).
{ok,<<30,4,53,54,45,56>>}
3> 'PrimStrings':decode('BMP', Bytes1).
{ok,[{0,0,53,53},{0,0,45,56}]}
4> {ok,Bytes2} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,0,65}]).
{ok,<<30,4,53,53,0,65>>}
5> 'PrimStrings':decode('BMP', Bytes2).
{ok,[{0,0,53,53},65]}
6> {ok,Bytes3} = 'PrimStrings':encode('BMP', "BMP string").
{ok,<<30,20,0,66,0,77,0,80,0,32,0,115,0,116,0,114,0,105,0,110,0,103>>}
7> 'PrimStrings':decode('BMP', Bytes3).
{ok,"BMP string"}

The UTF8String type is represented as a UTF-8 encoded binary in Erlang. Such binaries can be
created directly using the binary syntax or by converting from a list of Unicode code points using the
unicode:characters_to_binary/1 function.

Here are some examples showing how UTF-8 encoded binaries can be created and manipulated:

1> Gs = "Мой маленький Гном".
[1052,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
 1081,32,1043,1085,1086,1084]
2> Gbin = unicode:characters_to_binary(Gs).
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
 181,208,189,209,140,208,186,208,184,208,185,32,208,147,
 208,...>>
3> Gbin = <<"Мой маленький Гном"/utf8>>.
<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
 181,208,189,209,140,208,186,208,184,208,185,32,208,147,
 208,...>>
4> Gs = unicode:characters_to_list(Gbin).

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 13

[1052,1086,1081,32,1084,1072,1083,1077,1085,1100,1082,1080,
 1081,32,1043,1085,1086,1084]

See the unicode module for more details.

In the following example we will use this ASN.1 specification:

UTF DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
 UTF ::= UTF8String
END

Encoding and decoding a string with Unicode characters:

5> asn1ct:compile('UTF', [ber]).
ok
6> {ok,Bytes1} = 'UTF':encode('UTF', <<"Гном"/utf8>>).
{ok,<<12,8,208,147,208,189,208,190,208,188>>}
7> {ok,Bin1} = 'UTF':decode('UTF', Bytes1).
{ok,<<208,147,208,189,208,190,208,188>>}
8> io:format("~ts\n", [Bin1]).
Гном
ok
9> unicode:characters_to_list(Bin1).
[1043,1085,1086,1084]

OBJECT IDENTIFIER
The OBJECT IDENTIFIER is used whenever a unique identity is required. An ASN.1 module, a transfer syntax, etc.
is identified with an OBJECT IDENTIFIER. Assume the example below:

Oid ::= OBJECT IDENTIFIER

Therefore, the example below is a valid Erlang instance of the type 'Oid'.

OidVal1 = {1,2,55},

The OBJECT IDENTIFIER value is simply a tuple with the consecutive values which must be integers.

The first value is limited to the values 0, 1 or 2 and the second value must be in the range 0..39 when the first value
is 0 or 1.

The OBJECT IDENTIFIER is a very important type and it is widely used within different standards to uniquely identify
various objects. In [], there is an easy-to-understand description of the usage of OBJECT IDENTIFIER.

Object Descriptor
Values of this type can be assigned a value as an ordinary string like this:

1.1 Asn1

14 | Ericsson AB. All Rights Reserved.: ASN.1

 "This is the value of an Object descriptor"

The TIME Types
Two different time types are defined within ASN.1, Generalized Time and UTC (Universal Time Coordinated), both
are assigned a value as an ordinary string within double quotes i.e. "19820102070533.8".

In case of DER encoding the compiler does not check the validity of the time values. The DER requirements upon
those strings is regarded as a matter for the application to fulfill.

SEQUENCE
The structured types of ASN.1 are constructed from other types in a manner similar to the concepts of array and struct
in C.
A SEQUENCE in ASN.1 is comparable with a struct in C and a record in Erlang. A SEQUENCE may be defined as:

Pdu ::= SEQUENCE {
 a INTEGER,
 b REAL,
 c OBJECT IDENTIFIER,
 d NULL }

This is a 4-component structure called 'Pdu'. The major format for representation of SEQUENCE in Erlang is the
record format. For each SEQUENCE and SET in an ASN.1 module an Erlang record declaration is generated. For
Pdu above, a record like this is defined:

-record('Pdu',{a, b, c, d}).

The record declarations for a module M are placed in a separate M.hrl file.

Values can be assigned in Erlang as shown below:

MyPdu = #'Pdu'{a=22,b=77.99,c={0,1,2,3,4},d='NULL'}.

The decode functions will return a record as result when decoding a SEQUENCE or a SET.

A SEQUENCE and a SET may contain a component with a DEFAULT key word followed by the actual value that is
the default value. The DEFAULT keyword means that the application doing the encoding can omit encoding of the
value, thus resulting in fewer bytes to send to the receiving application.

An application can use the atom asn1_DEFAULT to indicate that the encoding should be omitted for that position
in the SEQUENCE.

Depending on the encoding rules, the encoder may also compare the given value to the default value and automatically
omit the encoding if they are equal. How much effort the encoder makes to to compare the values depends on the
encoding rules. The DER encoding rules forbids encoding a value equal to the default value, so it has a more thorough
and time-consuming comparison than the encoders for the other encoding rules.

In the following example we will use this ASN.1 specification:

File DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 15

Seq1 ::= SEQUENCE {
 a INTEGER DEFAULT 1,
 b Seq2 DEFAULT {aa TRUE, bb 15}
}

Seq2 ::= SEQUENCE {
 aa BOOLEAN,
 bb INTEGER
}

Seq3 ::= SEQUENCE {
 bs BIT STRING {a(0), b(1), c(2)} DEFAULT {a, c}
}
END

Here is an example where the BER encoder is able to omit encoding of the default values:

1> asn1ct:compile('File', [ber]).
ok
2> 'File':encode('Seq1', {'Seq1',asn1_DEFAULT,asn1_DEFAULT}).
{ok,<<48,0>>}
3> 'File':encode('Seq1', {'Seq1',1,{'Seq2',true,15}}).
{ok,<<48,0>>}

And here is an example with a named BIT STRING where the BER encoder will not omit the encoding:

4> 'File':encode('Seq3', {'Seq3',asn1_DEFAULT).
{ok,<<48,0>>}
5> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,4,128,2,5,160>>}

The DER encoder will omit the encoding for the same BIT STRING:

6> asn1ct:compile('File', [ber,der]).
ok
7> 'File':encode('Seq3', {'Seq3',asn1_DEFAULT).
{ok,<<48,0>>}
8> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,0>>}

SET
In Erlang, the SET type is used exactly as SEQUENCE. Note that if the BER or DER encoding rules are used, decoding
a SET is slower than decoding a SEQUENCE because the components must be sorted.

Notes about extensibility for SEQUENCE and SET
When a SEQUENCE or SET contains an extension marker and extension components like this:

SExt ::= SEQUENCE {
 a INTEGER,
 ...,
 b BOOLEAN }

1.1 Asn1

16 | Ericsson AB. All Rights Reserved.: ASN.1

It means that the type may get more components in newer versions of the ASN.1 spec. In this case it has got a new
component b. Thus, incoming messages that will be decoded may have more or fever components than this one.

The component b will be treated as an original component when encoding a message. In this case, as it is not an
optional element, it must be encoded.

During decoding the b field of the record will get the decoded value of the b component if present and otherwise the
value asn1_NOVALUE.

CHOICE
The CHOICE type is a space saver and is similar to the concept of a 'union' in the C language.

Assume:

SomeModuleName DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
T ::= CHOICE {
 x REAL,
 y INTEGER,
 z OBJECT IDENTIFIER }
END

It is then possible to assign values:

TVal1 = {y,17},
TVal2 = {z,{0,1,2}},

A CHOICE value is always represented as the tuple {ChoiceAlternative, Val} where
ChoiceAlternative is an atom denoting the selected choice alternative.

Extensible CHOICE
When a CHOICE contains an extension marker and the decoder detects an unknown alternative of the CHOICE the
value is represented as:

{asn1_ExtAlt, BytesForOpenType}

Where BytesForOpenType is a list of bytes constituting the encoding of the "unknown" CHOICE alternative.

SET OF and SEQUENCE OF
The SET OF and SEQUENCE OF types correspond to the concept of an array found in several programming languages.
The Erlang syntax for both of these types is straight forward. For example:

Arr1 ::= SET SIZE (5) OF INTEGER (4..9)
Arr2 ::= SEQUENCE OF OCTET STRING

We may have the following in Erlang:

Arr1Val = [4,5,6,7,8],

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 17

Arr2Val = ["abc",[14,34,54],"Octets"],

Please note that the definition of the SET OF type implies that the order of the components is undefined, but in practice
there is no difference between SET OF and SEQUENCE OF. The ASN.1 compiler for Erlang does not randomize the
order of the SET OF components before encoding.

However, in case of a value of the type SET OF, the DER encoding format requires the elements to be sent in
ascending order of their encoding, which implies an expensive sorting procedure in run-time. Therefore it is strongly
recommended to use SEQUENCE OF instead of SET OF if it is possible.

ANY and ANY DEFINED BY
The types ANY and ANY DEFINED BY have been removed from the standard since 1994. It is recommended not to
use these types any more. They may, however, exist in some old ASN.1 modules. The idea with this type was to leave
a "hole" in a definition where one could put unspecified data of any kind, even non ASN.1 data.

A value of this type is encoded as an open type.

Instead of ANY/ANY DEFINED BY one should use information object class, table constraints
and parameterization. In particular the construct TYPE-IDENTIFIER.@Type accomplish the same as the
deprecated ANY.

See also Information object

EXTERNAL, EMBEDDED PDV and CHARACTER STRING
These types are used in presentation layer negotiation. They are encoded according to their associated type, see [].

The EXTERNAL type had a slightly different associated type before 1994. [] states that encoding shall follow the older
associate type. Therefore does generated encode/decode functions convert values of the newer format to the older
format before encoding. This implies that it is allowed to use EXTERNAL type values of either format for encoding.
Decoded values are always returned on the newer format.

Embedded Named Types
The structured types previously described may very well have other named types as their components. The
general syntax to assign a value to the component C of a named ASN.1 type T in Erlang is the record syntax
#'T'{'C'=Value}. Where Value may be a value of yet another type T2.

For example:

EmbeddedExample DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
B ::= SEQUENCE {
 a Arr1,
 b T }

Arr1 ::= SET SIZE (5) OF INTEGER (4..9)

T ::= CHOICE {
 x REAL,
 y INTEGER,
 z OBJECT IDENTIFIER }
 END

The SEQUENCE b can be encoded like this in Erlang:

1> 'EmbeddedExample':encode('B', {'B',[4,5,6,7,8],{x,"7.77"}}).

1.1 Asn1

18 | Ericsson AB. All Rights Reserved.: ASN.1

{ok,<<5,56,0,8,3,55,55,55,46,69,45,50>>}

1.1.7 Naming of Records in .hrl Files
When an ASN.1 specification is compiled all defined types of type SET or SEQUENCE will result in a corresponding
record in the generated hrl file. This is because the values for SET/SEQUENCE as mentioned in sections above are
represented as records.

Though there are some special cases of this functionality that are presented below.

Embedded Structured Types
It is also possible in ASN.1 to have components that are themselves structured types. For example, it is possible to have:

Emb ::= SEQUENCE {
 a SEQUENCE OF OCTET STRING,
 b SET {
 a INTEGER,
 b INTEGER DEFAULT 66},
 c CHOICE {
 a INTEGER,
 b FooType } }

FooType ::= [3] VisibleString

The following records are generated because of the type Emb:

-record('Emb,{a, b, c}).
-record('Emb_b',{a, b = asn1_DEFAULT}). % the embedded SET type

Values of the Emb type can be assigned like this:

V = #'Emb'{a=["qqqq",[1,2,255]],
 b = #'Emb_b'{a=99},
 c ={b,"Can you see this"}}.

For an embedded type of type SEQUENCE/SET in a SEQUENCE/SET the record name is extended with an underscore
and the component name. If the embedded structure is deeper with SEQUENCE, SET or CHOICE types in the line,
each component-/alternative-name will be added to the record-name.

For example:

Seq ::= SEQUENCE{
 a CHOICE{
 b SEQUENCE {
 c INTEGER
 }
 }
}

will result in the following record:

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 19

-record('Seq_a_b',{c}).

If the structured type has a component with an embedded SEQUENCE OF/SET OF which embedded type in turn is a
SEQUENCE/SET it will give a record with the SEQOF/SETOF addition as in the following example:

Seq ::= SEQUENCE {
 a SEQUENCE OF SEQUENCE {
 b
 }
 c SET OF SEQUENCE {
 d
 }
}

This results in the records:

-record('Seq_a_SEQOF'{b}).
-record('Seq_c_SETOF'{d}).

A parameterized type should be considered as an embedded type. Each time a such type is referenced an instance of
it is defined. Thus in the following example a record with name 'Seq_b' is generated in the .hrl file and used to
hold values.

Seq ::= SEQUENCE {
 b PType{INTEGER}
}

PType{T} ::= SEQUENCE{
 id T
}

Recursive Types
Types may refer to themselves. Suppose:

Rec ::= CHOICE {
 nothing NULL,
 something SEQUENCE {
 a INTEGER,
 b OCTET STRING,
 c Rec }}

This type is recursive; that is, it refers to itself. This is allowed in ASN.1 and the ASN.1-to-Erlang compiler supports
this recursive type. A value for this type is assigned in Erlang as shown below:

V = {something,#'Rec_something'{a = 77,
 b = "some octets here",
 c = {nothing,'NULL'}}}.

1.1 Asn1

20 | Ericsson AB. All Rights Reserved.: ASN.1

1.1.8 ASN.1 Values
Values can be assigned to ASN.1 type within the ASN.1 code itself, as opposed to the actions taken in the previous
chapter where a value was assigned to an ASN.1 type in Erlang. The full value syntax of ASN.1 is supported and
[X.680] describes in detail how to assign values in ASN.1. Below is a short example:

TT ::= SEQUENCE {
 a INTEGER,
 b SET OF OCTET STRING }

tt TT ::= {a 77,b {"kalle","kula"}}

The value defined here could be used in several ways. Firstly, it could be used as the value in some DEFAULT
component:

SS ::= SET {
 s OBJECT IDENTIFIER,
 val TT DEFAULT tt }

It could also be used from inside an Erlang program. If the above ASN.1 code was defined in ASN.1 module Values,
then the ASN.1 value tt can be reached from Erlang as a function call to 'Values':tt() as in the example below.

1> Val = 'Values':tt().
{'TT',77,["kalle","kula"]}
2> {ok,Bytes} = 'Values':encode('TT',Val).
{ok,<<48,18,128,1,77,161,13,4,5,107,97,108,108,101,4,4,
 107,117,108,97>>}
4> 'Values':decode('TT',Bytes).
{ok,{'TT',77,["kalle","kula"]}}
5>

The above example shows that a function is generated by the compiler that returns a valid Erlang representation of
the value, even though the value is of a complex type.

Furthermore, there is a macro generated for each value in the .hrl file. So, the defined value tt can also be extracted
by ?tt in application code.

1.1.9 Macros
MACRO is not supported as the the type is no longer part of the ASN.1 standard.

1.1.10 ASN.1 Information Objects (X.681)
Information Object Classes, Information Objects and Information Object Sets (in the following called classes, objects
and object sets respectively) are defined in the standard definition []. In the following only a brief explanation is given.

These constructs makes it possible to define open types, i.e. values of that type can be of any ASN.1 type. It is also
possible to define relationships between different types and values, since classes can hold types, values, objects, object
sets and other classes in its fields. An Information Object Class may be defined in ASN.1 as:

GENERAL-PROCEDURE ::= CLASS {

1.1 Asn1

Ericsson AB. All Rights Reserved.: ASN.1 | 21

 &Message,
 &Reply OPTIONAL,
 &Error OPTIONAL,
 &id PrintableString UNIQUE
}
WITH SYNTAX {
 NEW MESSAGE &Message
 [REPLY &Reply]
 [ERROR &Error]
 ADDRESS &id
}

An object is an instance of a class and an object set is a set containing objects of one specified class. A definition
may look like below.

The object object1 is an instance of the CLASS GENERAL-PROCEDURE and has one type field and one fixed
type value field. The object object2 also has an OPTIONAL field ERROR, which is a type field.

object1 GENERAL-PROCEDURE ::= {
 NEW MESSAGE PrintableString
 ADDRESS "home"
}

object2 GENERAL-PROCEDURE ::= {
 NEW MESSAGE INTEGER
 ERROR INTEGER
 ADDRESS "remote"
}

The field ADDRESS is a UNIQUE field. Objects in an object set must have unique values in their UNIQUE field,
as in GENERAL-PROCEDURES:

GENERAL-PROCEDURES GENERAL-PROCEDURE ::= {
 object1 | object2}

One can not encode a class, object or object set, only referring to it when defining other ASN.1 entities. Typically one
refers to a class and to object sets by table constraints and component relation constraints [] in ASN.1 types, as in:

StartMessage ::= SEQUENCE {
 msgId GENERAL-PROCEDURE.&id ({GENERAL-PROCEDURES}),
 content GENERAL-PROCEDURE.&Message ({GENERAL-PROCEDURES}{@msgId}),
 }

In the type StartMessage the constraint following the content field tells that in a value of type StartMessage
the value in the content field must come from the same object that is chosen by the msgId field.

So, the value #'StartMessage'{msgId="home",content="Any Printable String"} is legal to
encode as a StartMessage value, while the value #'StartMessage'{msgId="remote", content="Some
String"} is illegal since the constraint in StartMessage tells that when you have chosen a value from a specific
object in the object set GENERAL-PROCEDURES in the msgId field you have to choose a value from that same
object in the content field too. In this second case it should have been any INTEGER value.

1.2 Specialized Decodes

22 | Ericsson AB. All Rights Reserved.: ASN.1

StartMessage can in the content field be encoded with a value of any type that an object in the GENERAL-
PROCEDURES object set has in its NEW MESSAGE field. This field refers to a type field &Message in the class. The
msgId field is always encoded as a PrintableString, since the field refers to a fixed type in the class.

In practice, object sets are usually declared to be extensible so so that more objects can be added to the set later.
Extensibility is indicated like this:

GENERAL-PROCEDURES GENERAL-PROCEDURE ::= {
 object1 | object2, ...}

When decoding a type that uses an extensible set constraint, there is always the possibility that the value in the UNIQUE
field is unknown (i.e. the type has been encoded with a later version of the ASN.1 specification). When that happens,
the unencoded data will be returned wrapped in a tuple like this:

{asn1_OPENTYPE,Binary}

where Binary is an Erlang binary that contains the encoded data. (If the option legacy_erlang_types has been
given, just the binary will be returned.)

1.1.11 Parameterization (X.683)
Parameterization, which is defined in the standard [], can be used when defining types, values, value sets, information
object classes, information objects or information object sets. A part of a definition can be supplied as a parameter.
For instance, if a Type is used in a definition with certain purpose, one want the type-name to express the intention.
This can be done with parameterization.

When many types (or another ASN.1 entity) only differs in some minor cases, but the structure of the types are similar,
only one general type can be defined and the differences may be supplied through parameters.

One example of use of parameterization is:

General{Type} ::= SEQUENCE
{
 number INTEGER,
 string Type
}

T1 ::= General{PrintableString}

T2 ::= General{BIT STRING}

An example of a value that can be encoded as type T1 is {12,"hello"}.

Note that the compiler does not generate encode/decode functions for parameterized types, but only for the instances of
the parameterized types. Therefore, if a file contains the types General{}, T1 and T2 above, encode/decode functions
will only be generated for T1 and T2.

1.2 Specialized Decodes
When performance is of highest priority and one is interested in a limited part of the ASN.1 encoded message, before
one decide what to do with the rest of it, one may want to decode only this small part. The situation may be a server
that has to decide to which addressee it will send a message. The addressee may be interested in the entire message, but

1.2 Specialized Decodes

Ericsson AB. All Rights Reserved.: ASN.1 | 23

the server may be a bottleneck that one want to spare any unnecessary load. Instead of making two complete decodes
(the normal case of decode), one in the server and one in the addressee, it is only necessary to make one specialized
decode(in the server) and another complete decode(in the addressee). The following specialized decodes exclusive
decode and selected decode support to solve this and similar problems.

So far this functionality is only provided when using the optimized BER_BIN version, that is when compiling with the
options ber_bin and optimize. It does also work using the nif option. We have no intent to make this available
on the default BER version, but maybe in the PER_BIN version (per_bin).

1.2.1 Exclusive Decode
The basic idea with exclusive decode is that you specify which parts of the message you want to exclude from being
decoded. These parts remain encoded and are returned in the value structure as binaries. They may be decoded in turn
by passing them to a certain decode_part/2 function. The performance gain is high when the message is large
and you can do an exclusive decode and later on one or several decodes of the parts or a second complete decode
instead of two or more complete decodes.

How To Make It Work
In order to make exclusive decode work you have to do the following:

• First,decide the name of the function for the exclusive decode.

• Second, write instructions that must consist of the name of the exclusive decode function, the name of the
ASN.1 specification and a notation that tells which parts of the message structure will be excluded from decode.
These instructions shall be included in a configuration file.

• Third, compile with the additional option asn1config. The compiler searches for a configuration file with
the same name as the ASN.1 spec but with the extension .asn1config. This configuration file is not the same as
used for compilation of a set of files. See section Writing an Exclusive Decode Instruction.

User Interface
The run-time user interface for exclusive decode consists of two different functions. First, the function for an exclusive
decode, whose name the user decides in the configuration file. Second, the compiler generates a decode_part/2
function when exclusive decode is chosen. This function decodes the parts that were left undecoded during the
exclusive decode. Both functions are described below.

If the exclusive decode function has for example got the name decode_exclusive and an ASN.1 encoded message
Bin shall be exclusive decoded, the call is:

{ok,Excl_Message} = 'MyModule':decode_exclusive(Bin)

The result Excl_Message has the same structure as an complete decode would have, except for the parts of
the top-type that were not decoded. The undecoded parts will be on their place in the structure on the format
{Type_Key,Undecoded_Value}.

Each undecoded part that shall be decoded must be fed into the decode_part/2 function,like:

{ok,Part_Message} = 'MyModule':decode_part(Type_Key,Undecoded_Value)

Writing an Exclusive Decode Instruction
This instruction is written in the configuration file on the format:

1.2 Specialized Decodes

24 | Ericsson AB. All Rights Reserved.: ASN.1

Exclusive_Decode_Instruction = {exclusive_decode,{Module_Name,Decode_Instructions}}.

Module_Name = atom()

Decode_Instructions = [Decode_Instruction]+

Decode_Instruction = {Exclusive_Decode_Function_Name,Type_List}

Exclusive_Decode_Function_Name = atom()

Type_List = [Top_Type,Element_List]

Element_List = [Element]+

Element = {Name,parts} |
 {Name,undecoded} |
 {Name,Element_List}

Top_Type = atom()

Name = atom()

Observe that the instruction must be a valid Erlang term ended by a dot.

In the Type_List the "path" from the top type to each undecoded sub-components is described. The top type of
the path is an atom, the name of it. The action on each component/type that follows will be described by one of
{Name,parts}, {Name,undecoded}, {Name,Element_List}

The use and effect of the actions are:

• {Name,undecoded} Tells that the element will be left undecoded during the exclusive decode. The type of
Name may be any ASN.1 type. The value of element Name will be returned as a tuple,as mentioned above, in
the value structure of the top type.

• {Name,parts} The type of Name may be one of SEQUENCE OF or SET OF. The action implies that the
different components of Name will be left undecoded. The value of Name will be returned as a tuple, as above
, where the second element is a list of binaries. That is because the representation of a SEQUENCE OF/ SET
OF in Erlang is a list of its internal type. Any of the elements of this list or the entire list can be decoded by the
decode_part function.

• {Name,Element_List}This action is used when one or more of the sub-types of Name will be exclusive
decoded.

Name in the actions above may be a component name of a SEQUENCE or a SET or a name of an alternative in a
CHOICE.

Example
In the examples below we use the definitions from the following ASN.1 spec:

GUI DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

Action ::= SEQUENCE
 {
 number INTEGER DEFAULT 15,
 handle [0] Handle DEFAULT {number 12, on TRUE}
 }

1.2 Specialized Decodes

Ericsson AB. All Rights Reserved.: ASN.1 | 25

Key ::= [11] EXPLICIT Button
Handle ::= [12] Key
Button ::= SEQUENCE
 {
 number INTEGER,
 on BOOLEAN
 }

Window ::= CHOICE
 {
 vsn INTEGER,
 status E
 }

Status ::= SEQUENCE
 {
 state INTEGER,
 buttonList SEQUENCE OF Button,
 enabled BOOLEAN OPTIONAL,
 actions CHOICE {
 possibleActions SEQUENCE OF Action,
 noOfActions INTEGER
 }
 }

END

If Button is a top type and we want to exclude component number from decode the Type_List in the
instruction in the configuration file will be ['Button',[{number,undecoded}]]. If we call the decode
function decode_Button_exclusive the Decode_Instruction will be {decode_Button_exclusive,
['Button',[{number,undecoded}]]}.

We also have another top type Window whose sub component actions in type Status and the parts of component
buttonList shall be left undecoded. For this type we name the function decode__Window_exclusive. The
whole Exclusive_Decode_Instruction configuration is as follows:

{exclusive_decode,{'GUI',
 [{decode_Window_exclusive,['Window',[{status,[{buttonList,parts},{actions,undecoded}]}]]},
 {decode_Button_exclusive,['Button',[{number,undecoded}]]}]}}.

Figure 2.1: Figure symbolizes the bytes of a Window:status message. The components buttonList and actions are
excluded from decode. Only state and enabled are decoded when decode__Window_exclusive is called.

Compiling GUI.asn including the configuration file is done like:

unix> erlc -bber_bin +optimize +asn1config GUI.asn

1.2 Specialized Decodes

26 | Ericsson AB. All Rights Reserved.: ASN.1

erlang> asn1ct:compile('GUI',[ber_bin,optimize,asn1config]).

The module can be used like:

1> Button_Msg = {'Button',123,true}.
{'Button',123,true}
2> {ok,Button_Bytes} = 'GUI':encode('Button',Button_Msg).
{ok,[<<48>>,
 [6],
 [<<128>>,
 [1],
 123],
 [<<129>>,
 [1],
 255]]}
3> {ok,Exclusive_Msg_Button} = 'GUI':decode_Button_exclusive(list_to_binary(Button_Bytes)).
{ok,{'Button',{'Button_number',<<28,1,123>>},
 true}}
4> 'GUI':decode_part('Button_number',<<128,1,123>>).
{ok,123}
5> Window_Msg =
{'Window',{status,{'Status',35,
 [{'Button',3,true},
 {'Button',4,false},
 {'Button',5,true},
 {'Button',6,true},
 {'Button',7,false},
 {'Button',8,true},
 {'Button',9,true},
 {'Button',10,false},
 {'Button',11,true},
 {'Button',12,true},
 {'Button',13,false},
 {'Button',14,true}],
 false,
 {possibleActions,[{'Action',16,{'Button',17,true}}]}}}}.
{'Window',{status,{'Status',35,
 [{'Button',3,true},
 {'Button',4,false},
 {'Button',5,true},
 {'Button',6,true},
 {'Button',7,false},
 {'Button',8,true},
 {'Button',9,true},
 {'Button',10,false},
 {'Button',11,true},
 {'Button',12,true},
 {'Button',13,false},
 {'Button',14,true}],
 false,
 {possibleActions,[{'Action',16,{'Button',17,true}}]}}}}
6> {ok,Window_Bytes}='GUI':encode('Window',Window_Msg).
{ok,[<<161>>,
 [127],
 [<<128>>, ...

8> {ok,{status,{'Status',Int,{Type_Key_SeqOf,Val_SEQOF},
BoolOpt,{Type_Key_Choice,Val_Choice}}}}=
'GUI':decode_Window_status_exclusive(list_to_binary(Window_Bytes)).
{ok,{status,{'Status',35,

1.2 Specialized Decodes

Ericsson AB. All Rights Reserved.: ASN.1 | 27

 {'Status_buttonList',[<<48,6,128,1,3,129,1,255>>,
 <<48,6,128,1,4,129,1,0>>,
 <<48,6,128,1,5,129,1,255>>,
 <<48,6,128,1,6,129,1,255>>,
 <<48,6,128,1,7,129,1,0>>,
 <<48,6,128,1,8,129,1,255>>,
 <<48,6,128,1,9,129,1,255>>,
 <<48,6,128,1,10,129,1,0>>,
 <<48,6,128,1,11,129,1,255>>,
 <<48,6,128,1,12,129,1,255>>,
 <<48,6,128,1,13,129,1,0>>,
 <<48,6,128,1,14,129,1,255>>]},
 false,
 {'Status_actions',
<<163,21,160,19,48,17,2,1,16,160,12,172,10,171,8,48,6,128,1,...>>}}}}
10> 'GUI':decode_part(Type_Key_SeqOf,Val_SEQOF).
{ok,[{'Button',3,true},
 {'Button',4,false},
 {'Button',5,true},
 {'Button',6,true},
 {'Button',7,false},
 {'Button',8,true},
 {'Button',9,true},
 {'Button',10,false},
 {'Button',11,true},
 {'Button',12,true},
 {'Button',13,false},
 {'Button',14,true}]}
11> 'GUI':decode_part(Type_Key_SeqOf,hd(Val_SEQOF)).
{ok,{'Button',3,true}}
12> 'GUI':decode_part(Type_Key_Choice,Val_Choice).
{ok,{possibleActions,[{'Action',16,{'Button',17,true}}]}}

1.2.2 Selective Decode
This specialized decode decodes one single subtype of a constructed value. It is the fastest method to extract one sub
value. The typical use of this decode is when one want to inspect, for instance a version number,to be able to decide
what to do with the entire value. The result is returned as {ok,Value} or {error,Reason}.

How To Make It Work
The following steps are necessary:

• Write instructions in the configuration file. Including the name of a user function, the name of the ASN.1
specification and a notation that tells which part of the type will be decoded.

• Compile with the additional option asn1config. The compiler searches for a configuration file with the same
name as the ASN.1 spec but with the extension .asn1config. In the same file you can provide configuration
specs for exclusive decode as well. The generated Erlang module has the usual functionality for encode/decode
preserved and the specialized decode functionality added.

User Interface
The only new user interface function is the one provided by the user in the configuration file. You can invoke that
function by the ModuleName:FunctionName notation.

So, if you have the following spec {selective_decode,{'ModuleName',
[{selected_decode_Window,TypeList}]}} in the con-fig file, you do the selective decode by
{ok,Result}='ModuleName':selected_decode_Window(EncodedBinary).

1.2 Specialized Decodes

28 | Ericsson AB. All Rights Reserved.: ASN.1

Writing a Selective Decode Instruction
It is possible to describe one or many selective decode functions in a configuration file, you have to use the following
notation:

Selective_Decode_Instruction = {selective_decode,{Module_Name,Decode_Instructions}}.

Module_Name = atom()

Decode_Instructions = [Decode_Instruction]+

Decode_Instruction = {Selective_Decode_Function_Name,Type_List}

Selective_Decode_Function_Name = atom()

Type_List = [Top_Type|Element_List]

Element_List = Name|List_Selector

Name = atom()

List_Selector = [integer()]

Observe that the instruction must be a valid Erlang term ended by a dot.

The Module_Name is the same as the name of the ASN.1 spec, but without the extension. A
Decode_Instruction is a tuple with your chosen function name and the components from the top type that leads
to the single type you want to decode. Notice that you have to choose a name of your function that will not be the same
as any of the generated functions. The first element of the Type_List is the top type of the encoded message. In the
Element_List it is followed by each of the component names that leads to selected type. Each of the names in the
Element_List must be constructed types except the last name, which can be any type.

The List_Selector makes it possible to choose one of the encoded components in a SEQUENCE OF/ SET OF. It
is also possible to go further in that component and pick a sub type of that to decode. So in the Type_List:
['Window',status,buttonList,[1],number] the component buttonList has to be a SEQUENCE OF
or SET OF type. In this example component number of the first of the encoded elements in the SEQUENCE OF
buttonList is selected. This apply on the ASN.1 spec above.

Another Example
In this example we use the same ASN.1 spec as above. A valid selective decode instruction is:

{selective_decode,
 {'GUI',
 [{selected_decode_Window1,
 ['Window',status,buttonList,
 [1],
 number]},
 {selected_decode_Action,
 ['Action',handle,number]},
 {selected_decode_Window2,
 ['Window',
 status,
 actions,
 possibleActions,
 [1],
 handle,number]}]}}.

1.2 Specialized Decodes

Ericsson AB. All Rights Reserved.: ASN.1 | 29

The first Decode_Instruction, {selected_decode_Window1,['Window',status,buttonList,
[1],number]} is commented in the previous section. The instruction {selected_decode_Action,
['Action',handle,number]} picks the component number in the handle component of the type Action.
If we have the value ValAction = {'Action',17,{'Button',4711,false}} the internal value 4711
should be picked by selected_decode_Action. In an Erlang terminal it looks like:

ValAction = {'Action',17,{'Button',4711,false}}.
{'Action',17,{'Button',4711,false}}
7> {ok,Bytes}='GUI':encode('Action',ValAction).
...
8> BinBytes = list_to_binary(Bytes).
<<48,18,2,1,17,160,13,172,11,171,9,48,7,128,2,18,103,129,1,0>>
9> 'GUI':selected_decode_Action(BinBytes).
{ok,4711}
10>

The third instruction, ['Window',status,actions,possibleActions,[1],handle,number], which
is a little more complicated,

• starts with type Window.

• Picks component status of Window that is of type Status.

• Then takes component actions of type Status.

• Then possibleActions of the internal defined CHOICE type.

• Thereafter it goes into the first component of the SEQUENCE OF by [1]. That component is of type Action.

• The instruction next picks component handle.

• And finally component number of the type Button.

The following figures shows which components are in the TypeList
['Window',status,actions,possibleActions,[1],handle,number]. And which part of a
message that will be decoded by selected_decode_Window2.

1.2 Specialized Decodes

30 | Ericsson AB. All Rights Reserved.: ASN.1

Figure 2.2: The elements specified in the config file for selective decode of a sub-value in a Window message

1.2 Specialized Decodes

Ericsson AB. All Rights Reserved.: ASN.1 | 31

Figure 2.3: Figure symbolizes the bytes of a Window:status message. Only the marked element is decoded when
selected_decode_Window2 is called.

With the following example you can examine that both selected_decode_Window2 and
selected_decode_Window1 decodes the intended sub-value of the value Val

1> Val = {'Window',{status,{'Status',12,
 [{'Button',13,true},
 {'Button',14,false},
 {'Button',15,true},
 {'Button',16,false}],
 true,
 {possibleActions,[{'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}}]}}}}
2> {ok,Bytes}='GUI':encode('Window',Val).
...
3> Bin = list_to_binary(Bytes).
<<161,101,128,1,12,161,32,48,6,128,1,13,129,1,255,48,6,128,1,14,129,1,0,48,6,128,1,15,129,...>>
4> 'GUI':selected_decode_Window1(Bin).
{ok,13}
5> 'GUI':selected_decode_Window2(Bin).
{ok,18}

Observe that the value feed into the selective decode functions must be a binary.

1.2.3 Performance
To give an indication on the possible performance gain using the specialized decodes, some measures have been
performed. The relative figures in the outcome between selective, exclusive and complete decode (the normal case)
depends on the structure of the type, the size of the message and on what level the selective and exclusive decodes
are specified.

1.2 Specialized Decodes

32 | Ericsson AB. All Rights Reserved.: ASN.1

ASN.1 Specifications, Messages and Configuration
The specs GUI and MEDIA-GATEWAY-CONTROL was used in the test.

For the GUI spec the configuration looked like:

{selective_decode,
 {'GUI',
 [{selected_decode_Window1,
 ['Window',
 status,buttonList,
 [1],
 number]},
 {selected_decode_Window2,
 ['Window',
 status,
 actions,
 possibleActions,
 [1],
 handle,number]}]}}.
 {exclusive_decode,
 {'GUI',
 [{decode_Window_status_exclusive,
 ['Window',
 [{status,
 [{buttonList,parts},
 {actions,undecoded}]}]]}]}}.

The MEDIA-GATEWAY-CONTROL configuration was:

{exclusive_decode,
 {'MEDIA-GATEWAY-CONTROL',
 [{decode_MegacoMessage_exclusive,
 ['MegacoMessage',
 [{authHeader,undecoded},
 {mess,
 [{mId,undecoded},
 {messageBody,undecoded}]}]]}]}}.
{selective_decode,
 {'MEDIA-GATEWAY-CONTROL',
 [{decode_MegacoMessage_selective,
 ['MegacoMessage',mess,version]}]}}.

The corresponding values were:

{'Window',{status,{'Status',12,
 [{'Button',13,true},
 {'Button',14,false},
 {'Button',15,true},
 {'Button',16,false},
 {'Button',13,true},
 {'Button',14,false},
 {'Button',15,true},
 {'Button',16,false},
 {'Button',13,true},
 {'Button',14,false},

href

1.2 Specialized Decodes

Ericsson AB. All Rights Reserved.: ASN.1 | 33

 {'Button',15,true},
 {'Button',16,false}],
 true,
 {possibleActions,
 [{'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}},
 {'Action',17,{'Button',18,false}},
 {'Action',19,{'Button',20,true}},
 {'Action',21,{'Button',22,false}}]}}}}

{'MegacoMessage',asn1_NOVALUE,
 {'Message',1,
 {ip4Address,
 {'IP4Address',[125,125,125,111],55555}},
 {transactions,
 [{transactionReply,
 {'TransactionReply',50007,asn1_NOVALUE,
 {actionReplies,
 [{'ActionReply',0,asn1_NOVALUE,asn1_NOVALUE,
 [{auditValueReply,{auditResult,{'AuditResult',
 {'TerminationID',[],[255,255,255]},
 [{mediaDescriptor,
 {'MediaDescriptor',asn1_NOVALUE,
 {multiStream,
 [{'StreamDescriptor',1,
 {'StreamParms',
 {'LocalControlDescriptor',
 sendRecv,
 asn1_NOVALUE,
 asn1_NOVALUE,
 [{'PropertyParm',
 [0,11,0,7],
 [[52,48]],
 asn1_NOVALUE}]},
 {'LocalRemoteDescriptor',
 [[{'PropertyParm',
 [0,0,176,1],
 [[48]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,8],
 [[73,78,32,73,80,52,32,49,50,53,46,49,
 50,53,46,49,50,53,46,49,49,49]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,15],
 [[97,117,100,105,111,32,49,49,49,49,32,
 82,84,80,47,65,86,80,32,32,52]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,12],

1.2 Specialized Decodes

34 | Ericsson AB. All Rights Reserved.: ASN.1

 [[112,116,105,109,101,58,51,48]],
 asn1_NOVALUE}]]},
 {'LocalRemoteDescriptor',
 [[{'PropertyParm',
 [0,0,176,1],
 [[48]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,8],
 [[73,78,32,73,80,52,32,49,50,52,46,49,50,
 52,46,49,50,52,46,50,50,50]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,15],
 [[97,117,100,105,111,32,50,50,50,50,32,82,
 84,80,47,65,86,80,32,32,52]],
 asn1_NOVALUE},
 {'PropertyParm',
 [0,0,176,12],
 [[112,116,105,109,101,58,51,48]],
 asn1_NOVALUE}]]}}}]}}},
 {packagesDescriptor,
 [{'PackagesItem',[0,11],1},
 {'PackagesItem',[0,11],1}]},
 {statisticsDescriptor,
 [{'StatisticsParameter',[0,12,0,4],[[49,50,48,48]]},
 {'StatisticsParameter',[0,11,0,2],[[54,50,51,48,48]]},
 {'StatisticsParameter',[0,12,0,5],[[55,48,48]]},
 {'StatisticsParameter',[0,11,0,3],[[52,53,49,48,48]]},
 {'StatisticsParameter',[0,12,0,6],[[48,46,50]]},
 {'StatisticsParameter',[0,12,0,7],[[50,48]]},
 {'StatisticsParameter',[0,12,0,8],[[52,48]]}]}]}}}]}]}}}]}}}

The size of the encoded values was 458 bytes for GUI and 464 bytes for MEDIA-GATEWAY-CONTROL.

Results
The ASN.1 specs in the test are compiled with the options ber_bin, optimize, driver and asn1config. If
the driver option had been omitted there should have been higher values for decode and decode_part. These
tests have not been re-run using nifs, but are expected to perform about 5% better than the linked-in driver.

The test program runs 10000 decodes on the value, resulting in a printout with the elapsed time in microseconds for
the total number of decodes.

Function Time(microseconds) Kind of Decode ASN.1 spec % of time vs.
complete decode

decode_MegacoMessage_selective/1374045 selective
MEDIA-GATEWAY-
CONTROL

8.3

decode_MegacoMessage_exclusive/1621107 exclusive
MEDIA-GATEWAY-
CONTROL

13.8

decode/2 4507457 complete
MEDIA-GATEWAY-
CONTROL

100

selected_decode_Window1/1449585 selective GUI 7.6

1.2 Specialized Decodes

Ericsson AB. All Rights Reserved.: ASN.1 | 35

selected_decode_Window2/1890666 selective GUI 15.1

decode_Window_status_exclusive/11251878 exclusive GUI 21.3

decode/2 5889197 complete GUI 100

Table 2.1: Results of complete, exclusive and selective decode

Another interesting question is what the relation is between a complete decode, an exclusive decode followed by
decode_part of the excluded parts and a selective decode followed by a complete decode. Some situations may be
compared to this simulation, e.g. inspect a sub-value and later on look at the entire value. The following table shows
figures from this test. The number of loops and time unit is the same as in the previous test.

Actions Function Time(microseconds) ASN.1 spec % of time vs.
complete decode

complete decode/2 4507457
MEDIA-GATEWAY-
CONTROL

100

selective and
complete

decode_-
MegacoMessage_-
selective/1

4881502
MEDIA-GATEWAY-
CONTROL

108.3

exclusive and
decode_part

decode_-
MegacoMessage_-
exclusive/1

5481034
MEDIA-GATEWAY-
CONTROL

112.3

complete decode/2 5889197 GUI 100

selective and
complete

selected_-
decode_-
Window1/1

6337636 GUI 107.6

selective and
complete

selected_-
decode_-
Window2/1

6795319 GUI 115.4

exclusive and
decode_part

decode_-
Window_-
status_-
exclusive/1

6249200 GUI 106.1

Table 2.2: Results of complete, exclusive + decode_part and selective + complete decodes

Other ASN.1 types and values can differ much from these figures. Therefore it is important that you, in every case
where you intend to use either of these decodes, perform some tests that shows if you will benefit your purpose.

1.2 Specialized Decodes

36 | Ericsson AB. All Rights Reserved.: ASN.1

Comments
Generally speaking the gain of selective and exclusive decode in advance of complete decode is greater the bigger
value and the less deep in the structure you have to decode. One should also prefer selective decode instead of exclusive
decode if you are interested in just one single sub-value.

Another observation is that the exclusive decode followed by decode_part decodes is very attractive if the parts will
be sent to different servers for decoding or if one in some cases not is interested in all parts.

The fastest selective decode are when the decoded type is a primitive type and not so deep in the structure of the top
type. The selected_decode_Window2 decodes a big constructed value, which explains why this operation is
relatively slow.

It may vary from case to case which combination of selective/complete decode or exclusive/part decode is the fastest.

1.2 Specialized Decodes

Ericsson AB. All Rights Reserved.: ASN.1 | 37

2 Reference Manual

The Asn1 application contains modules with compile-time and run-time support for ASN.1.

asn1ct

38 | Ericsson AB. All Rights Reserved.: ASN.1

asn1ct
Erlang module

The ASN.1 compiler takes an ASN.1 module as input and generates a corresponding Erlang module which can encode
and decode the data-types specified. Alternatively the compiler takes a specification module (se below) specifying all
input modules and generates one module with encode/decode functions. There are also some generic functions which
can be used in during development of applications which handles ASN.1 data (encoded as BER or PER).

Note:
By default in OTP 17, the representation of the BIT STRING and OCTET STRING types as Erlang terms have
changed. BIT STRING values are now Erlang bitstrings and OCTET STRING values are binaries. Also, an
undecoded open type will now be wrapped in a asn1_OPENTYPE tuple. For details see BIT STRING, OCTET
STRING, and ASN.1 Information Objects in User's Guide.

To revert to the old representation of the types, use the legacy_erlang_types option.

Note:
In R16, the options have been simplified. The back-end is chosen using one of the options ber, per, or uper.
The options optimize, nif, and driver options are no longer necessary (and the ASN.1 compiler will print
a warning if they are used). The options ber_bin, per_bin, and uper_bin options will still work, but will
print a warning.

Another change in R16 is that the generated encode/2 function always returns a binary. The encode/2
function for the BER back-end used to return an iolist.

Exports

compile(Asn1module) -> ok | {error, Reason}
compile(Asn1module, Options) -> ok | {error, Reason}
Types:

Asn1module = atom() | string()

Options = [Option| OldOption]

Option = ber | per | uper | der | compact_bit_string | legacy_bit_string
| legacy_erlang_types | noobj | {n2n, EnumTypeName} |{outdir,
Dir} | {i, IncludeDir} | asn1config | undec_rest | no_ok_wrapper |
{macro_name_prefix, Prefix} | {record_name_prefix, Prefix} | verbose |
warnings_as_errors

OldOption = ber | per

Reason = term()

Prefix = string()

Compiles the ASN.1 module Asn1module and generates an Erlang module Asn1module.erl with encode and
decode functions for the types defined in Asn1module. For each ASN.1 value defined in the module an Erlang
function which returns the value in Erlang representation is generated.

asn1ct

Ericsson AB. All Rights Reserved.: ASN.1 | 39

If Asn1module is a filename without extension first ".asn1" is assumed, then ".asn" and finally ".py" (to
be compatible with the old ASN.1 compiler). Of course Asn1module can be a full pathname (relative or absolute)
including filename with (or without) extension.

If one wishes to compile a set of Asn1 modules into one Erlang file with encode/decode functions one has to list
all involved files in a configuration file. This configuration file must have a double extension ".set.asn", (".asn" can
alternatively be ".asn1" or ".py"). The input files' names must be listed, within quotation marks (""), one at each row
in the file. If the input files are File1.asn, File2.asn and File3.asn the configuration file shall look like:

File1.asn
File2.asn
File3.asn

The output files will in this case get their names from the configuration file. If the configuration file has the name
SetOfFiles.set.asn the name of the output files will be SetOfFiles.hrl, SetOfFiles.erl and
SetOfFiles.asn1db.

Sometimes in a system of ASN.1 modules there are different default tag modes, e.g. AUTOMATIC, IMPLICIT or
EXPLICIT. The multi file compilation resolves the default tagging as if the modules were compiled separately.

Another unwanted effect that may occur in multi file compilation is name collisions. The compiler solves this problem
in two ways: If the definitions are identical then the output module keeps only one definition with the original name.
But if definitions only have same name and differs in the definition, then they will be renamed. The new names will
be the definition name and the original module name concatenated.

If any name collision have occurred the compiler reports a "NOTICE: ..." message that tells if a definition was renamed,
and the new name that must be used to encode/decode data.

Options is a list with options specific for the asn1 compiler and options that are applied to the Erlang compiler. The
latter are those that not is recognized as asn1 specific. Available options are:

ber | per | uper

The encoding rule to be used. The supported encoding rules are BER (Basic Encoding Rules), PER aligned
(Packed Encoding Rules) and PER unaligned. If the encoding rule option is omitted ber is the default.

The generated Erlang module always gets the same name as the ASN.1 module and as a consequence of this only
one encoding rule per ASN.1 module can be used at runtime.

der

By this option the Distinguished Encoding Rules (DER) is chosen. DER is regarded as a specialized variant of
the BER encoding rule, therefore the der option only makes sense together with the ber option. This option
sometimes adds sorting and value checks when encoding, which implies a slower encoding. The decoding routines
are the same as for ber.

compact_bit_string

The BIT STRING type will be decoded to the "compact notation". This option is not recommended for new code.

For details see BIT STRING type section in the Users Guide .

This option implies the legacy_erlang_types option.

legacy_bit_string

The BIT STRING type will be decoded to the legacy format, i.e. a list of zeroes and ones. This option is not
recommended for new code.

For details see BIT STRING type section in the Users Guide .

This option implies the legacy_erlang_types option.

asn1ct

40 | Ericsson AB. All Rights Reserved.: ASN.1

legacy_erlang_types

Use the same Erlang types to represent BIT STRING and OCTET STRING as in R16. For details see BIT STRING
and OCTET STRING in User's Guide.

This option is not recommended for new code.

{n2n, EnumTypeName}

Tells the compiler to generate functions for conversion between names (as atoms) and numbers and vice versa for
the EnumTypeName specified. There can be multiple occurrences of this option in order to specify several type
names. The type names must be declared as ENUMERATIONS in the ASN.1 spec. If the EnumTypeName does
not exist in the ASN.1 spec the compilation will stop with an error code. The generated conversion functions are
named name2num_EnumTypeName/1 and num2name_EnumTypeName/1.

noobj

Do not compile (i.e do not produce object code) the generated .erl file. If this option is omitted the generated
Erlang module will be compiled.

{i, IncludeDir}

Adds IncludeDir to the search-path for .asn1db and asn1 source files. The compiler tries to open a
.asn1db file when a module imports definitions from another ASN.1 module. If no .asn1db file is found the
asn1 source file is parsed. Several {i, IncludeDir} can be given.

{outdir, Dir}

Specifies the directory Dir where all generated files shall be placed. If omitted the files are placed in the current
directory.

asn1config

When one of the specialized decodes, exclusive or selective decode, is wanted one has to give instructions in a
configuration file. The option asn1config enables specialized decodes and takes the configuration file, which
has the same name as the ASN.1 spec but with extension .asn1config, in concern.

The instructions for exclusive decode must follow the instruction and grammar in the User's Guide.

You can also find the instructions for selective decode in the User's Guide.

undec_rest

A buffer that holds a message, being decoded may also have some following bytes. Now it is possible to get those
following bytes returned together with the decoded value. If an asn1 spec is compiled with this option a tuple
{ok, Value, Rest} is returned. Rest may be a list or a binary. Earlier versions of the compiler ignored
those following bytes.

no_ok_wrapper

If this option is given, the generated encode/2 and decode/2 functions will not wrap a successful return
value in an {ok,...} tuple. If any error occurs, there will be an exception.

{macro_name_prefix, Prefix}

All macro names generated by the compiler are prefixed with Prefix. This is useful when multiple protocols
that contains macros with identical names are included in a single module.

{record_name_prefix, Prefix}

All record names generated by the compiler are prefixed with Prefix. This is useful when multiple protocols
that contains records with identical names are included in a single module.

verbose

Causes more verbose information from the compiler describing what it is doing.

asn1ct

Ericsson AB. All Rights Reserved.: ASN.1 | 41

warnings_as_errors

Causes warnings to be treated as errors.

Any additional option that is applied will be passed to the final step when the generated .erl file is compiled.

The compiler generates the following files:

• Asn1module.hrl (if any SET or SEQUENCE is defined)

• Asn1module.erl the Erlang module with encode, decode and value functions.

• Asn1module.asn1db intermediate format used by the compiler when modules IMPORTS definitions from
each other.

encode(Module, Type, Value)-> {ok, Bytes} | {error, Reason}
Types:

Module = Type = atom()

Value = term()

Bytes = binary()

Reason = term()

Encodes Value of Type defined in the ASN.1 module Module. To get as fast execution as possible the encode
function only performs rudimentary tests that the input Value is a correct instance of Type. The length of strings is
for example not always checked. Returns {ok, Bytes} if successful or {error, Reason} if an error occurred.

This function is deprecated. Use Module:encode(Type, Value) instead.

decode(Module, Type, Bytes) -> {ok, Value} | {error, Reason}
Types:

Module = Type = atom()

Value = Reason = term()

Bytes = binary()

Decodes Type from Module from the binary Bytes. Returns {ok, Value} if successful.

This function is deprecated. Use Module:decode(Type, Bytes) instead.

value(Module, Type) -> {ok, Value} | {error, Reason}
Types:

Module = Type = atom()

Value = term()

Reason = term()

Returns an Erlang term which is an example of a valid Erlang representation of a value of the ASN.1 type Type. The
value is a random value and subsequent calls to this function will for most types return different values.

test(Module) -> ok | {error, Reason}
test(Module, Type | Options) -> ok | {error, Reason}
test(Module, Type, Value | Options) -> ok | {error, Reason}
Types:

Module = Type = atom()

Value = term()

Options = [{i, IncludeDir}]

asn1ct

42 | Ericsson AB. All Rights Reserved.: ASN.1

Reason = term()

Performs a test of encode and decode of types in Module. The generated functions are called by this function. This
function is useful during test to secure that the generated encode and decode functions and the general runtime support
work as expected.

• test/1 iterates over all types in Module.

• test/2 tests type Type with a random value.

• test/3 tests type Type with Value.

Schematically the following happens for each type in the module:

{ok, Value} = asn1ct:value(Module, Type),
{ok, Bytes} = asn1ct:encode(Module, Type, Value),
{ok, Value} = asn1ct:decode(Module, Type, Bytes).

The test functions utilizes the *.asn1db files for all included modules. If they are located in a different directory
than the current working directory, use the include option to add paths. This is only needed when automatically
generating values. For static values using Value no options are needed.

asn1rt

Ericsson AB. All Rights Reserved.: ASN.1 | 43

asn1rt
Erlang module

Warning:
All functions in this module are deprecated and will be removed in a future release.

Exports

decode(Module,Type,Bytes) -> {ok,Value}|{error,Reason}
Types:

Module = Type = atom()

Value = Reason = term()

Bytes = binary

Decodes Type from Module from the binary Bytes. Returns {ok,Value} if successful.

Use Module:decode(Type, Bytes) instead of this function.

encode(Module,Type,Value)-> {ok,Bytes} | {error,Reason}
Types:

Module = Type = atom()

Value = term()

Bytes = binary

Reason = term()

Encodes Value of Type defined in the ASN.1 module Module. Returns a binary if successful. To get as fast
execution as possible the encode function only performs rudimentary tests that the input Value is a correct instance
of Type. The length of strings is, for example, not always checked.

Use Module:encode(Type, Value) instead of this function.

info(Module) -> {ok,Info} | {error,Reason}
Types:

Module = atom()

Info = list()

Reason = term()

info/1 returns the version of the asn1 compiler that was used to compile the module. It also returns the compiler
options that was used.

Use Module:info() instead of this function.

utf8_binary_to_list(UTF8Binary) -> {ok,UnicodeList} | {error,Reason}
Types:

UTF8Binary = binary()

asn1rt

44 | Ericsson AB. All Rights Reserved.: ASN.1

UnicodeList = [integer()]

Reason = term()

utf8_binary_to_list/1 Transforms a UTF8 encoded binary to a list of integers, where each integer represents
one character as its unicode value. The function fails if the binary is not a properly encoded UTF8 string.

Use unicode:characters_to_list/1 instead of this function.

utf8_list_to_binary(UnicodeList) -> {ok,UTF8Binary} | {error,Reason}
Types:

UnicodeList = [integer()]

UTF8Binary = binary()

Reason = term()

utf8_list_to_binary/1 Transforms a list of integers, where each integer represents one character as its unicode
value, to a UTF8 encoded binary.

Use unicode:characters_to_binary/1 instead of this function.

	ASN.1
	Asn1 User's Guide
	Asn1
	Introduction
	Features
	Overview
	Prerequisites
	Capabilities

	Getting Started with Asn1
	A First Example
	Module dependencies

	The Asn1 Application User Interface
	Compile-time Functions
	Run-time Functions
	Errors

	Multi-file Compilation
	A quick note about tags
	The ASN.1 Types
	BOOLEAN
	INTEGER
	REAL
	NULL
	ENUMERATED
	BIT STRING
	Deprecated representations for BIT STRING

	OCTET STRING
	Character Strings
	OBJECT IDENTIFIER
	Object Descriptor
	The TIME Types
	SEQUENCE
	SET
	Notes about extensibility for SEQUENCE and SET
	CHOICE
	Extensible CHOICE

	SET OF and SEQUENCE OF
	ANY and ANY DEFINED BY
	EXTERNAL, EMBEDDED PDV and CHARACTER STRING
	Embedded Named Types

	Naming of Records in .hrl Files
	Embedded Structured Types
	Recursive Types

	ASN.1 Values
	Macros
	ASN.1 Information Objects (X.681)
	Parameterization (X.683)

	Specialized Decodes
	Exclusive Decode
	How To Make It Work
	User Interface
	Writing an Exclusive Decode Instruction
	Example

	Selective Decode
	How To Make It Work
	User Interface
	Writing a Selective Decode Instruction
	Another Example

	Performance
	ASN.1 Specifications, Messages and Configuration
	Results
	Comments

	Reference Manual
	asn1ct
	compile/1
	compile/2
	encode/3
	decode/3
	value/2
	test/1
	test/2
	test/3

	asn1rt
	decode/3
	encode/3
	info/1
	utf8_binary_to_list/1
	utf8_list_to_binary/1

