| v

ERLANG

ASN.1

Copyright © 1997-2014 Ericsson AB. All Rights Reserved.
ASN.13.0.2
September 16, 2014

Copyright © 1997-2014 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

September 16, 2014

Ericsson AB. All Rights Reserved.: ASN.1 | 1

1.1 Asnl

1 Asnl User's Guide

The Asnl application contains modules with compile-time and run-time support for ASN.1.

1.1 Asnl
1.1.1 Introduction

Features

The Asnl application provides:

« AnASN.1 compiler for Erlang, which generates encode and decode functions to be used by Erlang programs
sending and receiving ASN.1 specified data.

* Run-time functions used by the generated code.

e Support for the following encoding rules:
» Basic Encoding Rules (BER)

» Distinguished Encoding Rules (DER), a specialized form of BER that is used in security-conscious
applications.

» Packed Encoding Rules (PER); both the aligned and unaligned variant.

Overview

ASN.1 (Abstract Syntax Notation One) is aformal language for describing data structures to be exchanged between
distributed computer systems. The purpose of ASN.1 is to have a platform and programming language independent
notation to expresstypesusing astandardized set of rulesfor thetransformation of values of adefined typeinto astream
of bytes. This stream of bytes can then be sent on any type of communication channel. This way, two applications
written in different programming languages running on different computers with different internal representation of
data can exchange instances of structured data types.

Prerequisites

It is assumed that the reader is familiar with the ASN.1 notation as documented in the standard definition [] which is
the primary text. It may also be helpful, but not necessary, to read the standard definitions[] [] [] [] []-

A good book explaining those reference texts is [], which is free to download at http://www.oss.com/asnl/
dubuisson.html.

Capabilities

This application covers al features of ASN.1 up to the 1997 edition of the specification. In the 2002 edition of ASN.1
a number of new features were introduced. The following features of the 2002 edition are fully or partly supported
as shown below:

* Decimal notation (e.g., "1.5e3") for REAL vaues. The NR1, NR2 and NR3 formats as explained in 1SO6093
are supported.
e« TheRELATIVE-OID typefor relative object identifiersis fully supported.

* Thesubtype constraint (CONTAINING/ENCODED BY) to constrain the content of an octet string or a bit string
is parsed when compiling, but no further action istaken. This constraint is not a PER-visible constraint.

2 | Ericsson AB. All Rights Reserved.: ASN.1

href
href

1.1 Asnl

e The subtype constraint by regular expressions (PATTERN) for character string types is parsed when compiling,
but no further action is taken. This constraint is not a PER-visible constraint.

e Multiple-linecommentsasinC,/* ... */,aresupported.

1.1.2 Getting Started with Asnl
A First Example

The following example demonstrates the basic functionality used to run the Erlang ASN.1 compiler.
Create afile called Peopl e. asn containing the following:

People DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
Person ::= SEQUENCE {
name PrintableString,
location INTEGER {home(0),field(1l),roving(2)},
age INTEGER OPTIONAL

}
END

This file (Peopl e. asn) must be compiled before it can be used. The ASN.1 compiler checks that the syntax is
correct and that the text represents proper ASN.1 code before generating an abstract syntax tree. The code-generator
then uses the abstract syntax tree in order to generate code.

Thegenerated Erlang fileswill be placed inthe current directory or inthedirectory specifiedwiththe{ out di r, Di r }
option. The following shows how the compiler can be called from the Erlang shell:

1> asnlct:compile("People", [berl]).
ok
2>

Thever bose option can be given to have information about the generated files printed:

2> asnlct:compile("People", [ber,verbose]).
Erlang ASN.1 compiling "People.asn"
--{generated, "People.asnldb"}- -
--{generated, "People.hrl"}--

--{generated, "People.erl"}--

ok

3>

The ASN.1 module Peopl e isnow accepted and the abstract syntax treeis saved in the Peopl e. asnldb file the
generated Erlang code is compiled using the Erlang compiler and loaded into the Erlang run-time system. Now there
isan APl for encode/ 2 and decode/ 2 in the module Peopl e, whichisinvoked by:

' Peopl e' : encode(<Type nane>, <Val ue>)

or

' Peopl e' : decode(<Type nanme>, <Val ue>)

Assumethereis anetwork application which receivesinstances of the ASN.1 defined type Person, modifies and sends
them back again:

Ericsson AB. All Rights Reserved.: ASN.1 | 3

1.1 Asnl

receive
{Port, {data,Bytes}} ->
case 'People':decode('Person',Bytes) of
{ok,P} ->
{ok,Answer} = 'People':encode('Person',mk answer(P)),
Port ! {self(),{command,Answer}};
{error,Reason} ->
exit({error,Reason})
end
end,

In the example above, a series of bytes is received from an external source and the bytes are then decoded
into a valid Erlang term. This was achieved with the call ' Peopl e' : decode(' Per son', Byt es) which
returned an Erlang value of the ASN.1 type Per son. Then an answer was constructed and encoded using
' Peopl e' : encode(' Person', Answer) which takes an instance of adefined ASN.1 type and transformsiit to
abinary according to the BER or PER encoding rules.

The encoder and the decoder can also be run from the shell.

2> Rockstar = {'Person',"Some Name", roving,50}.

{'Person',"Some Name", roving,50}

3> {ok,Bin} = 'People':encode('Person',Rockstar).

{ok,<<243,17,19,9,83,111,109,101,32,78,97,109,101,2,1,2,
2,1,50>>}

4> {ok,Person} = 'People':decode('Person',Bin).

{ok,{'Person', "Some Name",roving,50}}

5>

Module dependencies
It is common that ASN.1 modulesimport defined types, values and other entities from another ASN.1 module.

Earlier versions of the ASN.1 compiler required that modules that were imported from had to be compiled before the
module that imported. This caused problems when ASN.1 modules had circular dependencies.

Referenced modules are now parsed when the compiler finds an entity that is imported. There will not be any code
generated for the referenced module. However, the compiled module rely on that the referenced modules also will
be compiled.

1.1.3 The Asnl Application User Interface
The Asnl application provides two separate user interfaces:

e« Themoduleasnlct which providesthe compile-time functions (including the compiler).
e Themoduleasnlrt ni f which providesthe run-time functionsfor the ASN.1 decoder for the BER back-end.

The reason for the division of the interface into compile-time and run-time is that only run-time modules (asnlrt *)
need to be loaded in an embedded system.

Compile-time Functions

The ASN.1 compiler can be invoked directly from the command-line by means of the er| ¢ program. This is
convenient when compiling many ASN.1 files from the command-line or when using Makefiles. Here are some
examples of how the er | ¢ command can be used to invoke the ASN.1 compiler:

erlc Person.asn
erlc -bper Person.asn
erlc -bber ../Example.asn

4 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

erlc -o ../asnfiles -I ../asnfiles -I /usr/local/standards/asnl Person.asn

The useful options for the ASN.1 compiler are:
-b[ber | per | uper]
Choice of encoding rules, if omitted ber isthe default.
-0 QutDirectory
Where to put the generated files, default is the current directory.
-1 IncludebDir

Where to search for . asnldb files and ASN.1 source specs in order to resolve references to other modules.
This option can be repeated many times if there are several placesto search in. The compiler will always search
the current directory first.

+der
DER encoding rule. Only when using - ber option.
+asnlconfig

This functionality works together with the ber option. It enables the specialized decodes, see the Specialized
Decode chapter.

+undec_r est

A buffer that holds a message being decoded may also have trailing bytes. If those trailing bytes are important
they can bereturned al ong with the decoded value by compiling the ASN.1 specificationwiththe+undec_r est
option. The return value from the decoder will be{ ok, Val ue, Rest } where Rest isabinary containing the
trailing bytes.

+ Any Erlc Option'

You may add any option to the Erlang compiler when compiling the generated Erlang files. Any option
unrecognized by the ASN.1 compiler will be passed to the Erlang compiler.

For a complete description of er | ¢ see Erts Reference Manual.

The compiler and other compile-time functions can also be invoked from the Erlang shell. Below follows a brief
description of the primary functions, for a complete description of each function see the Asnl Reference Manual, the
asnlct module.

The compiler isinvoked by usingasnlct : conpi | e/ 1 with default options, or asnilct : conpi | e/ 2 if explicit
options are given. Example:

asnlct:compile("H323-MESSAGES.asnl").

which equals:

asnlct:compile("H323-MESSAGES.asnl", [ber]).

If one wants PER encoding:

asnlct:compile("H323-MESSAGES.asnl", [per]).

Ericsson AB. All Rights Reserved.: ASN.1 | 5

1.1 Asnl

The generic encode and decode functions can be invoked like this:

'H323-MESSAGES ' :encode (' SomeChoiceType', {call, "octetstring"}).
'H323-MESSAGES ' :decode('SomeChoiceType',Bytes).

Run-time Functions

When an ASN.1 specification iscompiled with theber option, themoduleasnlrt ni f moduleandtheNIF library
inasnl/ priv_dir will beneeded at run-time.

By invoking the function i nf o/ O in a generated module, one gets information about which compiler options were
used.

Errors

Errors detected at compile time appear on the screen together with a line number indicating where in the source file
the error was detected. If no errors are found, an Erlang ASN.1 module will be created.

The run-time encoders and decoders execute within a catch and returns { ok, Data} or {error, {asnil,
Descri ption}} whereDescri pti on isan Erlang term describing the error.

1.1.4 Multi-file Compilation

There are various reasons for using multi-file compilation:

* You want to choose the name for the generated module, perhaps because you need to compile the same specs
for different encoding rules.

e Youwant only one resulting module.

Y ou need to specify which ASN.1 specs you will compilein a module that must have the extension. set . asn. You
chose name of the module and provide the names of the ASN. 1 specs. For instance, if you havethe specsFi | el. asn,
File2.asnandFi | e3. asn your module MyModul e. set . asn will look like:

Filel.asn
File2.asn
File3.asn

If you compile with:

~> erlc MyModule.set.asn

the result will be one merged module MyModul e. er | with the generated code from the three ASN.1 specs.

1.1.5 A quick note about tags

Tags used to be important for all users of ASN.1, because it was necessary to manually add tags to certain constructs
in order for the ASN.1 specification to be valid. Here is an example of an old-style specification:

Tags DEFINITIONS ::=
BEGIN
Afters ::= CHOICE { cheese [0] IA5String,
dessert [1] IA5String }

6 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

END

Without the tags (the numbers in square brackets) the ASN.1 compiler would refuse to compile thefile.

In 1994 the global tagging mode AUTOMATIC TAGSwasintroduced. By putting AUTOMATIC TAGSinthemodule
header, the ASN.1 compiler will automatically add tags when needed. Here isthe same specificationin AUTOMATIC
TAGS mode;

Tags DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
Afters ::= CHOICE { cheese IA5String,
dessert IA5String }
END

Tags will not be mentioned any more in this manual.

1.1.6 The ASN.1 Types

This section describes the ASN.1 types including their functionality, purpose and how values are assigned in Erlang.
ASN.1 has both primitive and constructed types:

Primitive types Constructed types

BOOLEAN SEQUENCE

INTEGER SET

REAL CHOICE

NULL SET OF and SEQUENCE OF
ENUMERATED ANY

BIT STRING ANY DEFINED BY

OCTET STRING EXTERNAL

Character Srings

EMBEDDED PDV

OBJECT IDENTIFIER

CHARACTER STRING

Object Descriptor

The TIME types

Table 1.1: The supported ASN.1 types

Ericsson AB. All Rights Reserved.: ASN.1 | 7

1.1 Asnl

Note:

Vaues of each ASN.1 type has its own representation in Erlang described in the following subsections. Users
shall provide these values for encoding according to the representation, asin the example below.

Operational ::= BOOLEAN --ASN.1 definition

In Erlang code it may look like:

Val = true,
{ok,Bytes} = MyModule:encode('Operational', Val),

Below follows a description of how values of each type can be represented in Erlang.

BOOLEAN

Booleans in ASN.1 express values that can be either TRUE or FALSE. The meanings assigned to TRUE or FALSE
is beyond the scope of this text.
In ASN.1itis possible to have:

Operational ::= BOOLEAN

Assigning a value to the type Operational in Erlang is possible by using the following Erlang code:

Myvarl = true,

Thus, in Erlang the atomst r ue and f al se are used to encode a boolean value.

INTEGER

ASN.1 itself specifies indefinitely large integers, and the Erlang systems with versions 4.3 and higher, support very
large integers, in practice indefinitely large integers.

The concept of sub-typing can be applied to integers aswell asto other ASN.1 types. The details of sub-typing are not
explained here, for further info see[]. A variety of syntaxes are allowed when defining a type as an integer:

T1 ::= INTEGER

T2 ::= INTEGER (-2..7)

T3 ::= INTEGER (0..MAX)

T4 = INTEGER (0<..MAX)

T5 ::= INTEGER (MIN<..-99)

T6 ::= INTEGER {red(0),blue(l),white(2)}

The Erlang representation of an ASN.1 INTEGER is an integer or an atom if aso called Nanmed Nunber Li st
(see T6 above) is specified.

8 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

Below is an example of Erlang code which assigns values for the above types:

Tlvalue
T2value
Tévaluel
Tévalue2
Tévalue3

0I

6!
blue,
0!
white

The Erlang variables above are now bound to valid instances of ASN.1 defined types. This style of value can be passed
directly to the encoder for transformation into a series of bytes.

The decoder will return an atom if the value corresponds to a symbol in the Named Number List.

REAL
Thefollowing ASN.1 type is used for real numbers:

R1 ::= REAL

It can be assigned avalue in Erlang as:

Rlvaluel
Rlvalue2

"2.14",
{256,10, -2},

In the last line note that the tuple { 256,10,-2} isthe real number 2.56 in a special notation, which will encode faster
than simply stating the number as" 2. 56" . The arity threetupleis{ Mant i ssa, Base, Exponent } i.e. Mantissa
* BaseExponent.

NULL

Null is suitable in cases where supply and recognition of avalue isimportant but the actual valueis not.

Notype ::= NULL

The NULL type can be assigned in Erlang:

N1 = 'NULL',

The actual valueisthe quoted atom 'NULL".

ENUMERATED
The enumerated type can be used, when the value we wish to describe, may only take one of aset of predefined values.

DaysOfTheWeek ::= ENUMERATED {

Ericsson AB. All Rights Reserved.: ASN.1 | 9

1.1 Asnl

sunday(1),monday(2), tuesday(3),
wednesday (4),thursday(5),friday(6),saturday(7) }

For example to assign aweekday value in Erlang use the same atom asin the Enuner at i ons of the type definition:

Dayl = saturday,

The enumerated type is very similar to an integer type, when defined with a set of predefined values. An enumerated
typediffersfrom aninteger in that it may only have specified values, whereas an integer can also have any other value.

BIT STRING

The BIT STRING type can be used to model information which is made up of arbitrary length series of bits. It is
intended to be used for a selection of flags, not for binary files.
In ASN.1 BIT STRING definitions may look like:

Bitsl ::
Bits2 ::

BIT STRING
BIT STRING {foo(0),bar(1),gnu(2),gnome(3),punk(14)}

There are two notations available for representation of BIT STRING values in Erlang and as input to the encode
functions.
» A bitstring. By default, aBIT STRING with no symbolic names will be decoded to an Erlang bitstring.

« Alisgt of atoms corresponding to atomsin the NanedBi t Li st inthe BIT STRING definition. A BIT STRING
with symbolic names will always be decoded to this format.

Example:

BitslVall = <<0:1,1:1,0:1,1:1,1:1>>,
Bits2Vall = [gnu,punk],

Bits2Val2 = <<2#1110:4>>,

Bits2Val3 = [bar,gnu,gnome],

Bi t s2Val 2 and Bi t s2Val 3 above denote the same value.

Bi t s2Val 1 isassigned symbolic values. The assignment means that the bits corresponding to gnu and punk i.e.
bits 2 and 14 are set to 1 and the rest set to 0. The symbolic values appear asalist of values. If anamed value appears,
which is not specified in the type definition, a run-time error will occur.

BIT STRINGS may also be sub-typed with, for example, a SIZE specification:

Bits3 ::= BIT STRING (SIZE(0..31))

This means that no bit higher than 31 can ever be set.
Deprecated representations for BIT STRING

In addition to the representations described above, the following deprecated representations are available if the
specification has been compiled with thel egacy_er | ang_t ypes option:

10 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

e Alist of binary digits (0 or 1). Thisformat is accepted as input to the encode functions, and aBIT STRING will
be decoded to this format if the legacy _bit_string option has been given.

e As{Unused, Bi nary} where Unused denotes how many trailing zero-bits O to 7 that are unused in the least
significant bytein Bi nary. Thisformat is accepted as input to the encode functions, and aBlI T STRI NGwill
be decoded to thisformat if compact_bit_string has been given.

« A hexadecima number (or an integer). Thisformat should be avoided, since it is easy to misinterpret aBIT
STRING valuein this format.

OCTET STRING

The OCTET STRING isthesimplest of all ASN.1types. The OCTET STRING only movesor transferse.g. binary files
or other unstructured information complying to two rules. Firstly, the bytes consist of octets and secondly, encoding
isnot required.

It is possible to have the following ASN.1 type definitions:

01 ::
02 ::

OCTET STRING
OCTET STRING (SIZE(28))

With the following example assignments in Erlang:

01val
02Val

<<17,13,19,20,0,0,255,254>>,
<<"must be exactly 28 chars....">>,

By default, an OCTET STRING is always represented as an Erlang binary. If the specification has been compiled
withthel egacy_er| ang_t ypes option, the encode functions will accept both lists and binaries, and the decode
functions will decode an OCTET STRING to alist.

Character Strings

ASN.1 supports awide variety of character sets. The main difference between OCTET STRINGS and the Character
strings isthat OCTET STRINGS have no imposed semantics on the bytes delivered.

However, when using for instance the IA5String (which closely resembles ASCII) the byte 65 (in decimal notation)
means the character 'A'.

For example, if a defined type is to be a VideotexString and an octet is received with the unsigned integer value X,
then the octet should be interpreted as specified in the standard ITU-T T.100,T.101.

The ASN.1to Erlang compiler will not determinethe correct interpretation of each BER (Basic Encoding Rules) string
octet value with different Character strings. Interpretation of octets is the responsibility of the application. Therefore,
from the BER string point of view, octets appear to be very similar to character strings and are compiled in the same
way.

It should be noted that when PER (Packed Encoding Rules) is used, there is a significant difference in the encoding
scheme between OCTET STRINGS and other strings. The constraints specified for a type are especially important
for PER, where they affect the encoding.

Here are some examples:

Digs ::= NumericString (SIZE(1..3))
TextFile ::= IA5String (SIZE(0..64000))

Ericsson AB. All Rights Reserved.: ASN.1 | 11

1.1 Asnl

with corresponding Erlang assignments:

DigsVall = "456",

DigsvVal2 = "123",

TextFileVall = "abc...xyz...",

TextFileVal2 = [88,76,55,44,99,121 a lot of characters here]

TheErlang representation for "BMPString" and "Universal String” iseither alist of ASCII valuesor alist of quadruples.
The quadruple representation associates to the Unicode standard representation of characters. The ASCII characters
are al represented by quadruples beginning with three zeros like {0,0,0,65} for the ‘A’ character. When decoding a
value for these strings the result is alist of quadruples, or integers when the value is an ASCII character.

The following example shows how it works. We have the following specification in thefilePri nSt ri ngs. asnl.

PrimStrings DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

BMP ::= BMPString
END

Encoding and decoding some strings:

1> asnlct:compile('PrimStrings', [ber]).

ok

2> {ok,Bytesl} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,45,56}1).
{ok,<<30,4,53,54,45,56>>}

3> 'PrimStrings':decode('BMP', Bytesl).

{ok,[{0,0,53,53},{0,0,45,56}]1}

4> {ok,Bytes2} = 'PrimStrings':encode('BMP', [{0,0,53,53},{0,0,0,65}1).
{ok,<<30,4,53,53,0,65>>}

5> 'PrimStrings':decode('BMP', Bytes2).

{ok,[{0,0,53,53},65]}

6> {ok,Bytes3} = 'PrimStrings':encode('BMP', "BMP string").
{ok,<<30,20,0,66,0,77,0,80,0,32,0,115,0,116,0,114,0,105,0,110,0,1603>>}
7> 'PrimStrings':decode('BMP', Bytes3).

{ok,"BMP string"}

The UTF8String type is represented as a UTF-8 encoded binary in Erlang. Such binaries can be
created directly using the binary syntax or by converting from a list of Unicode code points using the
uni code: characters_t o_bi nary/ 1 function.

Here are some examples showing how UTF-8 encoded binaries can be created and manipul ated:

1> Gs = "Mo# ManeHbkuin [HOM".

[1652,16086,1681,32,1084,1072,1083,1077,1085,1100,1082,1080,
1081,32,1043,1085,1086,1084]

2> Gbin = unicode:characters to binary(Gs).

<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
181,208,189,209,140,208,186,208,184,208,185,32,208,147,
208, ...>>

3> Gbin = <<"Moi ManeHbkuii FHOM"/utf8>>.

<<208,156,208,190,208,185,32,208,188,208,176,208,187,208,
181,208,189,209,140,208,186,208,184,208,185,32,208,147,
208, ...>>

4> Gs = unicode:characters to list(Gbin).

12 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

[1652,10686,1681,32,1084,1072,10683,1077,1085,1100,1082,1080,
1081,32,1043,1085,1086,1084]

See the unicode module for more details.
In the following example we will use this ASN.1 specification:

UTF DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

UTF ::= UTF8String
END

Encoding and decoding a string with Unicode characters:

5> asnlct:compile('UTF', [ber]).

ok

6> {ok,Bytesl} = 'UTF':encode('UTF', <<"T'HoM"/utf8>>).
{ok,<<12,8,208,147,208,189,208,190,208,188>>}
7> {ok,Binl} = 'UTF':decode('UTF', Bytesl).
{ok,<<208,147,208,189,208,190,208,188>>}

8> io:format("~ts\n", [Binl]).

HOM

ok

9> unicode:characters to list(Binl).
[1043,1085,1086,1084]

OBJECT IDENTIFIER

The OBJECT IDENTIFIER is used whenever a unique identity is required. An ASN.1 module, atransfer syntax, etc.
isidentified with an OBJECT IDENTIFIER. Assume the example below:

0id ::= OBJECT IDENTIFIER

Therefore, the example below is avalid Erlang instance of the type 'Oid'.

0idvall = {1,2,55},

The OBJECT IDENTIFIER vaueis simply atuple with the consecutive values which must be integers.

Thefirst value is limited to the values O, 1 or 2 and the second value must be in the range 0..39 when the first value
isOor 1.

The OBJECT IDENTIFIER isavery important typeand it iswidely used within different standardsto uniquely identify
various objects. In [], there is an easy-to-understand description of the usage of OBJECT IDENTIFIER.

Object Descriptor

Values of thistype can be assigned a value as an ordinary string like this:

Ericsson AB. All Rights Reserved.: ASN.1 | 13

1.1 Asnl

"This is the value of an Object descriptor"

The TIME Types

Two different time types are defined within ASN.1, Generalized Time and UTC (Universal Time Coordinated), both
are assigned avalue as an ordinary string within double quotesi.e. "19820102070533.8".

In case of DER encoding the compiler does not check the validity of the time values. The DER requirements upon
those strings is regarded as a matter for the application to fulfill.

SEQUENCE

The structured types of ASN.1 are constructed from other typesin amanner similar to the concepts of array and struct
inC.

A SEQUENCE in ASN.1 is comparable with a struct in C and arecord in Erlang. A SEQUENCE may be defined as:

Pdu ::= SEQUENCE {
a INTEGER,
b REAL,
c OBJECT IDENTIFIER,
d NULL }

This is a 4-component structure called 'Pdu’. The major format for representation of SEQUENCE in Erlang is the
record format. For each SEQUENCE and SET in an ASN.1 module an Erlang record declaration is generated. For
Pdu above, arecord like thisis defined:

-record('Pdu',{a, b, c, d}).

The record declarations for amodule Mare placed in aseparate M hr | file.
Values can be assigned in Erlang as shown below:

MyPdu = #'Pdu'{a=22,b=77.99,c={0,1,2,3,4},d="NULL"}.

The decode functions will return arecord as result when decoding a SEQUENCE or a SET.

A SEQUENCE and a SET may contain a component with a DEFAULT key word followed by the actual value that is
the default value. The DEFAULT keyword means that the application doing the encoding can omit encoding of the
value, thus resulting in fewer bytes to send to the receiving application.

An application can use the atom asnl_DEFAULT to indicate that the encoding should be omitted for that position
in the SEQUENCE.

Depending on the encoding rules, the encoder may al so compare the given value to the default value and automatically
omit the encoding if they are equal. How much effort the encoder makes to to compare the values depends on the
encoding rules. The DER encoding rules forbids encoding avalue equal to the default value, so it has amore thorough
and time-consuming comparison than the encoders for the other encoding rules.

In the following example we will use this ASN.1 specification:

File DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

14 | Ericsson AB. All Rights Reserved.: ASN.1

1.1

Asnl

Seql ::= SEQUENCE {

a INTEGER DEFAULT 1,

b Seq2 DEFAULT {aa TRUE, bb 15}
}

Seq2 ::= SEQUENCE {
aa BOOLEAN,
bb INTEGER

}

Seq3 ::= SEQUENCE {
bs BIT STRING {a(0), b(1l), c(2)} DEFAULT {a, c}
}

END

Hereis an example where the BER encoder is able to omit encoding of the default values:

1> asnlct:compile('File', [ber]).

ok

2> 'File':encode('Seql', {'Seql',asnl DEFAULT,asnl DEFAULT}).
{ok,<<48,0>>}

3> 'File':encode('Seql', {'Seql',1,{'Seq2',true,15}}).
{ok,<<48,0>>}

And hereis an example with anamed BIT STRING where the BER encoder will not omit the encoding:

4> 'File':encode('Seq3', {'Seq3',asnl DEFAULT).
{ok,<<48,0>>}

5> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,4,128,2,5,160>>}

The DER encoder will omit the encoding for the same BIT STRING:

6> asnlct:compile('File', [ber,der]).

ok

7> 'File':encode('Seq3', {'Seq3',asnl DEFAULT).
{ok,<<48,0>>}

8> 'File':encode('Seq3', {'Seq3',<<16#101:3>>).
{ok,<<48,0>>}

SET

In Erlang, the SET typeisused exactly as SEQUENCE. Notethat if the BER or DER encoding rulesare used, decoding

a SET is dower than decoding a SEQUENCE because the components must be sorted.
Notes about extensibility for SEQUENCE and SET

When a SEQUENCE or SET contains an extension marker and extension components like this:

SExt ::= SEQUENCE {
a INTEGER,

b BOOLEAN }

Ericsson AB. All Rights Reserved.: ASN.1 | 15

1.1 Asnl

It means that the type may get more components in newer versions of the ASN.1 spec. In this case it has got a new
component b. Thus, incoming messages that will be decoded may have more or fever components than this one.

The component b will be treated as an original component when encoding a message. In this case, as it is not an
optional element, it must be encoded.

During decoding the b field of the record will get the decoded value of the b component if present and otherwise the
valueasnl_NOVALUE.

CHOICE
The CHOICE typeis aspace saver and is similar to the concept of a'union’ in the C language.

Assume:

SomeModuleName DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
T ::= CHOICE {

X REAL,

y INTEGER,

z OBJECT IDENTIFIER }
END

It isthen possible to assign values:

TVall = {y, 17},
Tval2 = {z,{0,1,2}},
A CHOICE vdue is adways represented as the tuple {ChoiceAlternative, Val } where

Choi ceAl t er nat i ve isan atom denoting the selected choice aternative.
Extensible CHOICE

When a CHOICE contains an extension marker and the decoder detects an unknown alternative of the CHOICE the
valueisrepresented as:

{asnl ExtAlt, BytesForOpenType}

Where Byt esFor OpenType isalist of bytes congtituting the encoding of the "unknown" CHOICE alternative.

SET OF and SEQUENCE OF

The SET OF and SEQUENCE OF types correspond to the concept of anarray found in several programming languages.
The Erlang syntax for both of these types is straight forward. For example:

Arrl ::
Arr2 ::

SET SIZE (5) OF INTEGER (4..9)
SEQUENCE OF OCTET STRING

We may have the following in Erlang:

Arrlval = [4,5,6,7,8],

16 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

Arr2Val = ["abc",[14,34,54],"0ctets"],

Please note that the definition of the SET OF typeimpliesthat the order of the componentsisundefined, but in practice
there is no difference between SET OF and SEQUENCE OF. The ASN.1 compiler for Erlang does not randomize the
order of the SET OF components before encoding.

However, in case of a value of the type SET OF, the DER encoding format requires the elements to be sent in
ascending order of their encoding, which implies an expensive sorting procedure in run-time. Therefore it is strongly
recommended to use SEQUENCE OF instead of SET OF if itis possible.

ANY and ANY DEFINED BY

The types ANY and ANY DEFI NED BY have been removed from the standard since 1994. It is recommended not to
use these types any more. They may, however, exist in some old ASN.1 modules. Theideawith thistype wasto leave
a"hole" in a definition where one could put unspecified data of any kind, even non ASN.1 data.

A value of thistypeisencoded asan open t ype.

Instead of ANY/ANY DEFI NED BY one should usei nf or mati on obj ect class,table constraints
and par amet eri zat i on. In particular the construct TYPE- | DENTI FI ER. @ype accomplish the same as the
deprecated ANY.

See also Information object

EXTERNAL, EMBEDDED PDV and CHARACTER STRING

These types are used in presentation layer negotiation. They are encoded according to their associated type, see[].

The EXTERNAL type had aslightly different associated type before 1994. [] statesthat encoding shall follow the older
associate type. Therefore does generated encode/decode functions convert values of the newer format to the older
format before encoding. Thisimpliesthat it is allowed to use EXTERNAL type values of either format for encoding.
Decoded values are always returned on the newer format.

Embedded Named Types

The structured types previously described may very well have other named types as their components. The
general syntax to assign a value to the component C of a named ASN.1 type T in Erlang is the record syntax
T {' C =Val ue}.WhereVal ue may be avalue of yet another type T2.

For example:

EmbeddedExample DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
B ::= SEQUENCE {

a Arrl,

bT?}

Arrl ::= SET SIZE (5) OF INTEGER (4..9)
T ::= CHOICE {

x REAL,

y INTEGER,

z OBJECT IDENTIFIER }
END

The SEQUENCE b can be encoded like thisin Erlang:

1> 'EmbeddedExample':encode('B', {'B',[4,5,6,7,8],{x,"7.77"}}).

Ericsson AB. All Rights Reserved.: ASN.1 | 17

1.1 Asnl

{ok,<<5,56,0,8,3,55,55,55,46,69,45,50>>}

1.1.7 Naming of Records in .hrl Files

When an ASN.1 specification is compiled all defined types of type SET or SEQUENCE will result in acorresponding
record in the generated hrl file. Thisis because the values for SET/SEQUENCE as mentioned in sections above are
represented as records.

Though there are some special cases of this functionality that are presented below.

Embedded Structured Types

Itisalso possiblein ASN.1to have componentsthat are themsel ves structured types. For example, it ispossibleto have:

Emb ::
a
b

SEQUENCE {
EQUENCE OF OCTET STRING,
ET {
a INTEGER,
b INTEGER DEFAULT 66},
c CHOICE {
a INTEGER,
b FooType } }

wn il

FooType ::= [3] VisibleString

The following records are generated because of the type Enb:

-record('Emb,{a, b, c}).
-record('Emb_b',{a, b = asnl DEFAULT}). % the embedded SET type

Values of the Enb type can be assigned like this:

V = #'Emb'{a=["qqqq",[1,2,255]],
b = #'Emb _b'{a=99},
c ={b,"Can you see this"}}.

For an embedded type of type SEQUENCE/SET inaSEQUENCE/SET therecord nameisextended with an underscore
and the component name. If the embedded structure is deeper with SEQUENCE, SET or CHOICE typesin the line,
each component-/alternative-name will be added to the record-name.

For example:

Seq ::= SEQUENCE{
a CHOICE{
b SEQUENCE {
c INTEGER
}

will result in the following record:

18 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

-record('Seq a b',{c}).

If the structured type has a component with an embedded SEQUENCE OF/SET OF which embedded typeinturnisa
SEQUENCE/SET it will give arecord with the SEQOF/SETOF addition asin the following example:

Seq ::= SEQUENCE {
a SEQUENCE OF SEQUENCE {
b
}
c SET OF SEQUENCE {
d
}
}

Thisresults in the records:

-record('Seq _a SEQOF'{b}).
-record('Seq _c SETOF'{d}).

A parameterized type should be considered as an embedded type. Each time a such type is referenced an instance of
it is defined. Thus in the following example a record with name ' Seq_b' is generated in the .hrl file and used to
hold values.

Seq ::= SEQUENCE {
b PType{INTEGER}

PType{T} ::= SEQUENCE{
idT
I

Recursive Types
Types may refer to themselves. Suppose:

Rec ::= CHOICE {
nothing NULL,
something SEQUENCE {
a INTEGER,
b OCTET STRING,
c Rec }}

Thistypeisrecursive; that is, it refersto itself. Thisisallowed in ASN.1 and the ASN.1-to-Erlang compiler supports
thisrecursive type. A value for thistypeis assigned in Erlang as shown below:

V = {something,#'Rec_something'{a = 77,
"some octets here",

{nothing, 'NULL'}}}.

C

Ericsson AB. All Rights Reserved.: ASN.1 | 19

1.1 Asnl

1.1.8 ASN.1 Values

Values can be assigned to ASN.1 type within the ASN.1 code itself, as opposed to the actions taken in the previous
chapter where a value was assigned to an ASN.1 type in Erlang. The full value syntax of ASN.1 is supported and
[X.680] describesin detail how to assign valuesin ASN.1. Below is a short example:

TT ::= SEQUENCE {
a INTEGER,
b SET OF OCTET STRING }

tt TT ::= {a 77,b {"kalle","kula"}}

The value defined here could be used in several ways. Firdtly, it could be used as the value in some DEFAULT
component:

SS ::= SET {
s OBJECT IDENTIFIER,
val TT DEFAULT tt }

It could also be used from inside an Erlang program. If the above ASN.1 code was defined in ASN.1 module Val ues,
thenthe ASN.1valuet t canbereached from Erlang asafunctioncall to' Val ues' : tt () asintheexamplebelow.

1> Val = 'Values':tt().

{'TT',77,["kalle", "kula"]}

2> {ok,Bytes} = 'Values':encode('TT',Val).

{ok,<<48,18,128,1,77,161,13,4,5,1067,97,168,168,101,4,4,
107,117,108,97>>}

4> 'Values':decode('TT',Bytes).

{ok,{'TT',77,["kalle","kula"1}}

5>

The above example shows that a function is generated by the compiler that returns a valid Erlang representation of
the value, even though the value is of a complex type.

Furthermore, there is a macro generated for each value in the .hrl file. So, the defined valuet t can aso be extracted
by ?t t in application code.

1.1.9 Macros
MACRO is not supported as the the type is no longer part of the ASN.1 standard.

1.1.10 ASN.1 Information Objects (X.681)

Information Object Classes, Information Objects and Information Object Sets (in the following called classes, objects
and object setsrespectively) are defined in the standard definition []. In the following only abrief explanationis given.

These constructs makes it possible to define open types, i.e. values of that type can be of any ASN.1 type. It isalso
possibleto define rel ationshi ps between different types and values, since classes can hold types, val ues, objects, object
sets and other classesinitsfields. An Information Object Class may be defined in ASN.1 as:

GENERAL -PROCEDURE ::= CLASS {

20 | Ericsson AB. All Rights Reserved.: ASN.1

1.1 Asnl

&Message,

&Reply OPTIONAL,

&Error OPTIONAL,

&id PrintableString UNIQUE
}
WITH SYNTAX {

NEW MESSAGE &Message

[REPLY &Reply]

[ERROR &Error]

ADDRESS &id

An object is an instance of a class and an object set is a set containing objects of one specified class. A definition
may look like below.

The object obj ect 1 is an instance of the CLASS GENERAL-PROCEDURE and has one type field and one fixed
type value field. The object obj ect 2 also hasan OPTIONAL field ERROR, which isatype field.

objectl GENERAL-PROCEDURE ::= {
NEW MESSAGE PrintableString
ADDRESS "home"

}

object2 GENERAL-PROCEDURE ::= {

NEW MESSAGE INTEGER
ERROR INTEGER
ADDRESS "remote"

The field ADDRESS is a UNIQUE field. Objects in an object set must have unique values in their UNIQUE field,
asin GENERAL-PROCEDURES:

GENERAL -PROCEDURES GENERAL-PROCEDURE ::= {
objectl | object2}

One can not encode a class, object or object set, only referring to it when defining other ASN.1 entities. Typically one
refersto aclass and to object sets by table constraints and component relation constraints[] in ASN.1 types, asin:

StartMessage ::= SEQUENCE {
msgId GENERAL-PROCEDURE.&id ({GENERAL-PROCEDURES}),
content GENERAL-PROCEDURE.&Message ({GENERAL-PROCEDURES}{@msgId}),

}

Inthetype St ar t Message the constraint followingthecont ent fieldtellsthatinavalueof type St ar t Message
thevalueinthe cont ent field must come from the same object that is chosen by the ns gl d field.

So, the value #' St art Message' { nsgl d="home", content="Any Printable String"} islega to
encode as a StartMessage value, whilethe value #' St art Message' { nsgl d="renot e", content ="Sone
String"} isillegal since the constraint in StartMessage tells that when you have chosen a value from a specific
object in the object set GENERAL-PROCEDURES in the msgld field you have to choose a value from that same
object in the content field too. In this second case it should have been any INTEGER value.

Ericsson AB. All Rights Reserved.: ASN.1 | 21

1.2 Specialized Decodes

St art Message caninthe cont ent field be encoded with a value of any type that an object in the GENERAL -
PROCEDURES object set hasin its NEW MESSACGE field. Thisfield refersto atypefield &vessage intheclass. The
nsgl d field is always encoded as a PrintableString, since the field refers to afixed typein the class.

In practice, object sets are usually declared to be extensible so so that more objects can be added to the set later.
Extensibility isindicated like this:

GENERAL - PROCEDURES GENERAL-PROCEDURE ::= {
objectl | object2, ...}

When decoding atypethat usesan extensible set constraint, thereisawaysthe possibility that thevalueinthe UNIQUE
field isunknown (i.e. the type has been encoded with alater version of the ASN.1 specification). When that happens,
the unencoded data will be returned wrapped in atuple like this:

{asnl OPENTYPE,Binary}

whereBi nar y isan Erlang binary that containsthe encoded data. (If theoption| egacy_er | ang_t ypes hasbeen
given, just the binary will be returned.)

1.1.11 Parameterization (X.683)

Parameterization, which is defined in the standard [], can be used when defining types, values, value sets, information
object classes, information objects or information object sets. A part of a definition can be supplied as a parameter.
For instance, if a Typeis used in a definition with certain purpose, one want the type-name to express the intention.
This can be done with parameterization.

When many types (or another ASN. 1 entity) only differsin some minor cases, but the structure of the typesare similar,
only one general type can be defined and the differences may be supplied through parameters.

One example of use of parameterization is:

General{Type} ::= SEQUENCE
{
number INTEGER,
string Type
}
Tl ::= General{PrintableString}

T2 ::= General{BIT STRING}

An example of avalue that can be encoded astype T1is{12,"hello"}.

Notethat the compiler does not generate encode/decode functionsfor parameterized types, but only for theinstances of
the parameterized types. Therefore, if afile contains the types General{}, T1 and T2 above, encode/decode functions
will only be generated for T1 and T2.

1.2 Specialized Decodes

When performanceis of highest priority and oneisinterested in alimited part of the ASN.1 encoded message, before
one decide what to do with the rest of it, one may want to decode only this small part. The situation may be a server
that hasto decide to which addresseeit will send amessage. The addressee may be interested in the entire message, but

22 | Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

the server may be a bottleneck that one want to spare any unnecessary load. Instead of making two complete decodes
(the normal case of decode), one in the server and one in the addressee, it is only necessary to make one specialized
decode(in the server) and another complete decode(in the addressee). The following specialized decodes exclusive
decode and selected decode support to solve this and similar problems.

So far thisfunctionality isonly provided when using the optimized BER_BIN version, that is when compiling with the
optionsber _bi nandopti m ze. It doesaso work using the ni f option. We have no intent to make this available
on the default BER version, but maybein the PER_BIN version (per _bi n).

1.2.1 Exclusive Decode

The basic idea with exclusive decode is that you specify which parts of the message you want to exclude from being
decoded. These parts remain encoded and are returned in the value structure as binaries. They may be decoded in turn
by passing them to a certain decode_part/ 2 function. The performance gain is high when the message is large
and you can do an exclusive decode and later on one or several decodes of the parts or a second complete decode
instead of two or more complete decodes.

How To Make It Work
In order to make exclusive decode work you have to do the following:

» First,decide the name of the function for the exclusive decode.

e Second, write instructions that must consist of the name of the exclusive decode function, the name of the
ASN.1 specification and a notation that tells which parts of the message structure will be excluded from decode.
These instructions shall be included in a configuration file.

e Third, compile with the additional option asnlconfi g. The compiler searchesfor a configuration file with
the same name as the ASN.1 spec but with the extension .asnlconfig. This configuration file is not the same as
used for compilation of a set of files. See section Writing an Exclusive Decode Instruction.

User Interface

The run-time user interface for exclusive decode consists of two different functions. First, the function for an exclusive
decode, whose name the user decides in the configuration file. Second, the compiler generatesadecode_part/ 2
function when exclusive decode is chosen. This function decodes the parts that were left undecoded during the
exclusive decode. Both functions are described below.

If the exclusive decode function hasfor examplegot thenamedecode_excl usi ve andan ASN.1 encoded message
Bi n shall be exclusive decoded, the call is:

{ok,Excl Message} = 'MyModule':decode exclusive(Bin)

The result Excl _Message has the same structure as an complete decode would have, except for the parts of
the top-type that were not decoded. The undecoded parts will be on their place in the structure on the format
{Type_Key, Undecoded_Val ue}.

Each undecoded part that shall be decoded must be fed into thedecode_par t / 2 function,like:

{ok,Part Message} = 'MyModule':decode part(Type Key,Undecoded Value)

Writing an Exclusive Decode Instruction

Thisinstruction iswritten in the configuration file on the format:

Ericsson AB. All Rights Reserved.: ASN.1 | 23

1.2 Specialized Decodes

Exclusive Decode Instruction = {exclusive decode, {Module Name,Decode Instructions}}.
Module Name = atom()

Decode Instructions = [Decode Instruction]+

Decode Instruction = {Exclusive Decode Function Name,Type List}
Exclusive Decode Function Name = atom()

Type List = [Top Type,Element List]

Element List = [Element]+

Element = {Name,parts} |
{Name, undecoded} |
{Name, Element List}

Top_Type = atom()

Name = atom()

Observe that the instruction must be avalid Erlang term ended by a dot.

In the Type_Li st the "path" from the top type to each undecoded sub-components is described. The top type of
the path is an atom, the name of it. The action on each component/type that follows will be described by one of
{Nane, part s}, {Nanme, undecoded}, {Nane, El ement Li st}

The use and effect of the actions are:

« {Nane, undecoded} Tellsthat the element will be left undecoded during the exclusive decode. The type of
Name may be any ASN.1 type. The value of element Name will be returned as a tuple,as mentioned above, in
the value structure of the top type.

 {Nane, part s} Thetype of Name may be one of SEQUENCE OF or SET OF. The action implies that the
different components of Name will be left undecoded. The value of Name will be returned as a tuple, as above
, Where the second element is alist of binaries. That is because the representation of a SEQUENCE OF/ SET
OF in Erlang isalist of itsinternal type. Any of the elements of thislist or the entire list can be decoded by the
decode_part function.

e« {Nane, El enent _Li st} Thisaction isused when one or more of the sub-types of Name will be exclusive
decoded.

Name in the actions above may be a component name of a SEQUENCE or a SET or a nhame of an aternative in a
CHOICE.

Example

In the examples below we use the definitions from the following ASN.1 spec:

GUI DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

Action ::= SEQUENCE
{
number INTEGER DEFAULT 15,
handle [0] Handle DEFAULT {number 12, on TRUE}
}

24 | Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

Key ::= [11] EXPLICIT Button

Handle ::= [12] Key

Button ::= SEQUENCE

{
number INTEGER,
on BOOLEAN

}

Window ::= CHOICE
vsn INTEGER,
status E

}
Status ::= SEQUENCE
{

state INTEGER,

buttonList SEQUENCE OF Button,

enabled BOOLEAN OPTIONAL,

actions CHOICE {
possibleActions SEQUENCE OF Action,
noOfActions INTEGER

}

}

END

If Button is a top type and we want to exclude component nunber from decode the Type List in the
instruction in the configuration file will be [' Butt on' , [{nunber, undecoded}]] . If we cal the decode
function decode_Butt on_excl usi ve the Decode |nstruction will be { decode_Butt on_excl usi ve,
['Button',[{nunmber, undecoded}]]}.

We aso have another top type W ndow whose sub component actions in type St at us and the parts of component
but t onLi st shall be left undecoded. For this type we name the function decode__ W ndow_excl usi ve. The
whole Exclusive_Decode_Instruction configuration is as follows:

{exclusive decode,{'GUI"',
[{decode Window exclusive,['Window', [{status, [{buttonList,parts},{actions,undecoded}]1}11},

{decode Button exclusive,['Button', [{number,undecoded}]1]}1}}.

slate buttonlist ehabled actions: pussibleAclions

Figure 2.1: Figure symbolizes the bytes of a Window:status message. The components buttonList and actions are
excluded from decode. Only state and enabled are decoded when decode__Window_exclusive is called.

Compiling GUI.asn including the configuration file is done like:

unix> erlc -bber bin +optimize +asnlconfig GUI.asn

Ericsson AB. All Rights Reserved.: ASN.1 | 25

1.2 Specialized Decodes

erlang> asnlct:compile('GUI"', [ber bin,optimize,asnlconfig]).

The module can be used like:

1> Button Msg = {'Button',123,true}.
{'Button', 123, true}
2> {ok,Button Bytes} = 'GUI':encode('Button',Button Msg).
{ok, [<<48>>,

[6],

[<<128>>,

[1],

123],

[<<129>>,

[1],

25511}
3> {ok,Exclusive Msg Button} = 'GUI':decode Button exclusive(list to binary(Button Bytes)).
{ok,{'Button',{'Button number',<<28,1,123>>},

true}}

4> 'GUI':decode part('Button number',<<128,1,123>>).
{ok,123}
5> Window Msg =
{'Window', {status, {'Status', 35,

[{'Button',3,true},

{'Button',4, false},
{'Button',5,true},
{'Button',6,true},
{'Button',7, false},
{'Button',8,true},
{'Button',9,true},
{'Button', 10, false},
{'Button', 11, true},
{'Button',12,true},
{'Button', 13, false},
{'Button',14,true}],

false,

{possibleActions, [{'Action',16,{'Button',17,true}}13}}}}.
{'Window', {status, {'Status', 35,

[{'Button',3,true},

{'Button',4, false},
{'Button',5,true},
{'Button',6,true},
{'Button',7, false},
{'Button',8,true},
{'Button',9,true},
{'Button', 10, false},
{'Button', 11, true},
{'Button',12,true},
{'Button', 13, false},
{'Button',14,true}],

false,

{possibleActions, [{'Action',16,{'Button',17,true}}1}}}}
6> {ok,Window Bytes}='GUI':encode('Window',Window Msg).
{ok, [<<161>>,

[127],
[<<128>>,

8> {ok,{status,{'Status',Int,{Type Key SeqO0f,Val SEQOF},

BoolOpt, {Type Key Choice,Val Choice}}}}=

'GUI' :decode Window status exclusive(list to binary(Window Bytes)).
{ok, {status, {'Status', 35,

26 | Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

{'Status buttonList', [<<48,6,128,1,3,129,1,255>>,
<<48,6,128,1,4,129,1,0>>,
<<48,6,128,1,5,129,1,255>>,
<<48,6,128,1,6,129,1,255>>,
<<48,6,128,1,7,129,1,0>>,
<<48,6,128,1,8,129,1,255>>,
<<48,6,128,1,9,129,1,255>>,
<<48,6,128,1,10,129,1,0>>,
<<48,6,128,1,11,129,1,255>>,
<<48,6,128,1,12,129,1,255>>,
<<48,6,128,1,13,129,1,0>>,
<<48,6,128,1,14,129,1,255>>]},

false,

{'Status_actions',
<<163,21,160,19,48,17,2,1,16,160,12,172,10,171,8,48,6,128,1,...>>}}}}
10> 'GUI':decode part(Type Key SeqOf,Val SEQOF).

{ok, [{'Button', 3, true},

{'Button',4,false},

{'Button',5,true},

{'Button',6,true},

{'Button',7,false},

{'Button',8,true},

{'Button',9, true},

{'Button', 10, false},

{'Button',11,true},

{'Button',12,true},

{'Button', 13, false},

{'Button',14,true}]}
11> 'GUI':decode part(Type Key SeqOf,hd(Val SEQOF)).
{ok,{'Button',3,true}}
12> 'GUI':decode part(Type Key Choice,Val Choice).
{ok, {possibleActions, [{'Action',16,{'Button',17,true}}1}}

1.2.2 Selective Decode

This specialized decode decodes one single subtype of a constructed value. It is the fastest method to extract one sub
value. The typical use of this decode is when one want to inspect, for instance a version number,to be able to decide
what to do with the entire value. Theresult isreturned as{ ok, Val ue} or{error, Reason}.

How To Make It Work

The following steps are necessary:

* Writeinstructionsin the configuration file. Including the name of a user function, the name of the ASN.1
specification and a notation that tells which part of the type will be decoded.

« Compilewith the additional option asnlconf i g. The compiler searches for a configuration file with the same
name as the ASN.1 spec but with the extension .asnlconfig. In the same file you can provide configuration
specs for exclusive decode as well. The generated Erlang module has the usual functionality for encode/decode
preserved and the specialized decode functionality added.

User Interface

The only new user interface function is the one provided by the user in the configuration file. You can invoke that
function by the Mbdul eNane: Funct i onNane notation.

o, if you have the following spec {sel ective_decode, {' Modul eNane',
[{sel ect ed_decode_W ndow, TypeList}]}} in the con-fig file, you do the selective decode by
{ok, Resul t } =" Mbdul eNane' : sel ect ed_decode_W ndow EncodedBi nary).

Ericsson AB. All Rights Reserved.: ASN.1 | 27

1.2 Specialized Decodes

Writing a Selective Decode Instruction

It is possible to describe one or many selective decode functionsin a configuration file, you have to use the following
notation:

Selective Decode Instruction = {selective decode, {Module Name,Decode Instructions}}.
Module Name = atom()

Decode Instructions = [Decode Instruction]+

Decode Instruction = {Selective Decode Function Name,Type List}
Selective Decode Function Name = atom()

Type List = [Top Type|Element List]

Element List = Name|List Selector

Name = atom()

List Selector = [integer()]

Observe that the instruction must be avalid Erlang term ended by a dot.

The Modul e_Nane is the same as the name of the ASN.1 spec, but without the extension. A
Decode_I nstruct i on isatuplewith your chosen function name and the components from the top type that leads
to the single type you want to decode. Notice that you have to choose aname of your function that will not be the same
as any of the generated functions. Thefirst element of the Type_Li st isthetop type of the encoded message. In the
El enent _Li st itisfollowed by each of the component names that leads to sel ected type. Each of the namesin the
El ement _Li st must be constructed types except the last name, which can be any type.

The List_Selector makes it possible to choose one of the encoded components in a SEQUENCE OF/ SET OF. It
is also possible to go further in that component and pick a sub type of that to decode. So in the Type_Li st:
[Wndow , st atus, buttonList,[1], nunber] thecomponentbut t onLi st hastobeaSEQUENCE OF
or SET OF type. In this example component nurrber of the first of the encoded elements in the SEQUENCE OF
but t onLi st isselected. This apply on the ASN.1 spec above.

Another Example

In this example we use the same ASN. 1 spec as above. A valid selective decode instruction is:

{selective decode,
{'GUI',
[{selected decode Windowl,
['Window',6 status,buttonList,
[1],
number]},
{selected decode Action,
['Action',handle,number]},
{selected decode Window2,
['Window',
status,
actions,
possibleActions,
[1],
handle,number]}1}}.

28 | Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

Thefirst Decode_| nstruction,{sel ected _decode_ W ndowl, [' W ndow , st at us, buttonLi st,
[1], nunber]} is commented in the previous section. The instruction {sel ect ed_decode_Acti on,
["Action', handl e, nunber]} picksthecomponent nunber inthehandl e component of thetypeAct i on.
If we have thevalue Val Action = {'Action',17,{' Button', 4711, fal se}} theinterna value 4711
should be picked by sel ect ed_decode_Act i on. Inan Erlang terminal it looks like;

ValAction = {'Action',17,{'Button',4711,false}}.
{'Action',17,{'Button',4711, false}}
7> {ok,Bytes}='GUI':encode('Action',ValAction).

8> BinBytes = list to binary(Bytes).
<<48,18,2,1,17,160,13,172,11,171,9,48,7,128,2,18,103,129, 1, 0>>
9> 'GUI':selected decode Action(BinBytes).

{ok,4711}

10>

Thethirdinstruction,[' W ndow , st at us, acti ons, possi bl eActi ons, [1], handl e, nunber] ,which
isalittle more complicated,

e startswith type Window.

* Picks component status of W ndowthat is of type St at us.

e Then takes component actions of type St at us.

* Then possibleActions of theinternal defined CHOICE type.

e Thereafter it goesinto the first component of the SEQUENCE OF by [1]. That component is of type Act i on.

* Theinstruction next picks component handle.

* Andfinally component number of the type But t on.

The following figures shows which components are in the TypeList

[" Wndow , st atus, acti ons, possi bl eActions, [1], handl e, nunber]. And which pat of a
message that will be decoded by selected decode Window?.

Ericsson AB. All Rights Reserved.: ASN.1 | 29

1.2 Specialized Decodes

Buolloh = SEQUEN

|
humober INTEGER,
oh BODLEAM

]

Window . =CHOICE

| 4
vsh INTEGER,
status g

]

Satos = SEQUENCE

2 |

slale INTEGER,

boltonList SEQUENCEAE Buticn,

ehabled EOOLEAN OPTIOMAL,

actions CHOLCE

3 (q-.. possibleActions SEQUENCE OF Actich
hoDfActions INTEGER
]
]

Figure 2.2: The elements specified in the config file for selective decode of a sub-value in a Window message

30 | Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

W indow stat os inessage [

i
(21 T

state buttanList enabiéd acliohs: pussibleAdtions

hmobet hand

humbet @h

Figure 2.3: Figure symbolizes the bytes of a Window:status message. Only the marked element is decoded when
selected_decode_Window?2 is called.

With the following example you can examine that both sel ected_decode W ndow2 and
sel ect ed_decode_W ndowl decodes the intended sub-value of the value Val

1> Val = {'Window', {status,{'Status',12,
[{'Button',13,true},
{'Button', 14, false},
{'Button', 15, true},
{'Button', 16, false}],

true,

{possibleActions, [{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}}1}}}}

2> {ok,Bytes}='GUI':encode('Window',Val).

3> Bin = list to binary(Bytes).
<<161,101,128,1,12,161,32,48,6,128,1,13,129,1,255,48,6,128,1,14,129,1,0,48,6,128,1,15,129, ...>>
4> 'GUI':selected decode Windowl(Bin).

{ok,13}

5> 'GUI':selected decode Window2(Bin).

{ok,18}

Observe that the value feed into the selective decode functions must be a binary.

1.2.3 Performance

To give an indication on the possible performance gain using the specialized decodes, some measures have been
performed. The relative figures in the outcome between selective, exclusive and complete decode (the normal case)
depends on the structure of the type, the size of the message and on what level the selective and exclusive decodes
are specified.

Ericsson AB. All Rights Reserved.: ASN.1 | 31

1.2 Specialized Decodes

ASN.1 Specifications, Messages and Configuration
The specs GUI and MEDIA-GATEWAY-CONTROL was used in the test.
For the GUI spec the configuration looked like:

{selective decode,
{'GUI',

[{selected decode Windowl,
['Window',
status,buttonList,
[11,
number]},

{selected decode Window2,
['Window',
status,
actions,
possibleActions,
[11,
handle,number]}1}}.

{exclusive decode,

{'GUT"',
[{decode Window status exclusive,
['Window',
[{status,

[{buttonList,parts},
{actions,undecoded}]1}11}13}}.

The MEDIA-GATEWAY -CONTROL configuration was:

{exclusive decode,
{'MEDIA-GATEWAY-CONTROL",
[{decode MegacoMessage exclusive,
['MegacoMessage',
[{authHeader,undecoded},
{mess,
[{mId,undecoded},
{messageBody,undecoded}]1}11}1}}.
{selective decode,
{'MEDIA-GATEWAY-CONTROL",
[{decode MegacoMessage selective,
['MegacoMessage',mess,version]}]1}}.

The corresponding values were;

{'Window', {status,{'Status', 12,
[{'Button', 13, true},
{'Button', 14, false},
{'Button', 15, true},
{'Button',16, false},
{'Button', 13, true},
{'Button', 14, false},
{'Button', 15, true},
{'Button',16, false},
{'Button', 13, true},
{'Button', 14, false},

32 | Ericsson AB. All Rights Reserved.: ASN.1

href

1.2 Specialized Decodes

{'Button', 15, true},
{'Button', 16, false}],
true,
{possibleActions,
[{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}},
{'Action',17,{'Button', 18, false}},
{'Action',19,{'Button',20,true}},
{'Action',21,{'Button',22,false}}]1}}}}

{'MegacoMessage',asnl NOVALUE,

{'Message',1,
{ip4Address,
{'IP4Address',[125,125,125,111],55555}},
{transactions,
[{transactionReply,
{'TransactionReply',50007,asnl NOVALUE,
{actionReplies,

[{'ActionReply',0,asnl NOVALUE,asnl NOVALUE,
[{auditValueReply, {auditResult, { 'AuditResult"',
{'TerminationID',[],[255,255,255]},
[{mediaDescriptor,
{'MediaDescriptor',asnl NOVALUE,
{multiStreanm,
[{'StreamDescriptor',1,
{'StreamParms',
{'LocalControlDescriptor',
sendRecv,
asnl NOVALUE,
asnl NOVALUE,
[{'PropertyParm',
[0,11,0,7],
[[52,48]1,
asnl NOVALUE}1},
{'LocalRemoteDescriptor’,
[[{'PropertyParm',
[0,0,176,1],
[[4811,
asnl NOVALUE},
{'PropertyParm',
[0,0,176,8],
[[73,78,32,73,80,52,32,49,50,53,46,49,
50,53,46,49,50,53,46,49,49,49]1,
asnl NOVALUE},
{'PropertyParm',
[0,0,176,15],
[[97,117,100,1605,111,32,49,49,49,49,32,
82,84,80,47,65,86,80,32,32,52]11,
asnl NOVALUE},
{'PropertyParm',
[0,0,176,12],

Ericsson AB. All Rights Reserved.: ASN.1 | 33

1.2 Specialized Decodes

{'StatisticsParameter',[0,12,0,8],[[52,48]11}1}1}}}1}1333}1}}}

[[112,116,105,109,101,58,51,48]],

asnl NOVALUE}11},
{'LocalRemoteDescriptor',

[[{'PropertyParm'
[0,0,176,1],
[[4811,
asnl NOVALUE}

{'PropertyParm'
[0,0,176,8],

’

’

[[73,78,32,73,80,52,32,49,50,52,46,49,50,

52,46,49,50,52,46,50,50,50]1,

asnl NOVALUE}
{'PropertyParm'
[0,0,176,15],

’

’

[[97,117,100,105,111,32,50,50,50,50,32,82,

84,80,47,65,86,80,32,32,52]1,

asnl NOVALUE}
{'PropertyParm'
[0,0,176,12],

[[112,116,105,109,101,58,51,48]],

’

’

asnl NOVALUE}]113}}}133}},

{packagesDescriptor,
[{'PackagesItem',[0,11],1},
{'PackagesItem',[0,11],1}1},

{statisticsDescriptor,
[{'StatisticsParameter',[0,12,0,4],[[49,50,48,48]11},
{'StatisticsParameter',[0,11,0,2],[[54,50,51,48,48]]},
{'StatisticsParameter',[0,12,0,5],[[55,48,48]]1},
{'StatisticsParameter',[0,11,0,3],[[52,53,49,48,48]]},
{'StatisticsParameter',[0,12,0,6],[[48,46,50]]1},
{'StatisticsParameter',[0,12,0,7],[[50,48]1},

The size of the encoded values was 458 bytes for GUI and 464 bytes for MEDIA-GATEWAY-CONTROL.

Results

The ASN.1 specsinthetest are compiled with the optionsber _bi n, opti m ze, driver andasnlconfi g.If
thedri ver option had been omitted there should have been higher valuesfor decode and decode_part . These

tests have not been re-run using nifs, but are expected to perform about 5% better than the linked-in driver.

The test program runs 10000 decodes on the value, resulting in a printout with the elapsed time in microseconds for

the total number of decodes.

Function

Time(microseconds)

Kind of Decode

ASN.1 spec

% of time vs.
complete decode

MEDI A- GATEWAY-

decode_MegacoMesiatiSel ectivel|sel ective CONTROL 8.3
. . VEDI A- GATEVWAY-
decode_MegacoMesgH) &xcl usi ve/|gxcl usi ve CONTROL 13.8
VEDI A- GATEWAY-
decode/ 2 4507457 conpl ete CONTROL 100
sel ect ed_decode A49BRABVL/ 1 sel ective aul 7.6

34 | Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

sel ect ed_decode 8806RG2/ 1 sel ective caul 151
decode W ndow_sftE25E3#Xcl usi ve/|gxcl usi ve caul 21.3
decode/ 2 5889197 conpl ete au 100

Table 2.1: Results of complete, exclusive and selective decode

Another interesting question is what the relation is between a complete decode, an exclusive decode followed by
decode_part of the excluded parts and a selective decode followed by a complete decode. Some situations may be
compared to this simulation, e.g. inspect a sub-value and later on look at the entire value. The following table shows
figures from this test. The number of loops and time unit is the same asin the previous test.

Actions Function Time(microseconds) | ASN.1 spec % of time vs.
complete decode

MEDI A- GATEWAY-
conpl ete decode/ 2 4507457 CONTROL 100

decode_-

- MEDI A- GATEVWAY-
I\/Egaco!\/bssage_— 4881502 CONTROL 108.3
sel ectivel/l

sel ective and
conpl ete

decode_-

- MEDI A- GATEWAY-
Nbgaco!\/bssage_- 5481034 CONTROL 112.3
exclusivel/ 1l

excl usi ve and
decode_part

conpl ete decode/ 2 5889197 - —
sel ective and sel ected_-
conpl ete decode_- 6337636 aul 076
" W ndowl/ 1
sel ective and sel ected_-
compl et e decode_- 6795319 GUl 115.4
" W ndow2/ 1
decode_-
excl usive and |W ndow_- 6249200 eV 106.1
decode part status_-

excl usivel/ 1

Table 2.2: Results of complete, exclusive + decode_part and selective + complete decodes

Other ASN.1 types and values can differ much from these figures. Therefore it is important that you, in every case
where you intend to use either of these decodes, perform some tests that shows if you will benefit your purpose.

Ericsson AB. All Rights Reserved.: ASN.1 | 35

1.2 Specialized Decodes

Comments

Generally speaking the gain of selective and exclusive decode in advance of complete decode is greater the bigger
value and theless deep in the structure you have to decode. One should al so prefer sel ective decodeinstead of exclusive
decodeif you areinterested in just one single sub-value.

Another observation is that the exclusive decode followed by decode_part decodes is very attractive if the parts will
be sent to different serversfor decoding or if onein some cases not isinterested in all parts.

The fastest selective decode are when the decoded type is a primitive type and not so deep in the structure of the top
type. The sel ect ed_decode_ W ndow2 decodes a big constructed value, which explains why this operation is
relatively slow.

It may vary from case to case which combination of selective/complete decode or exclusive/part decode is the fastest.

36 | Ericsson AB. All Rights Reserved.: ASN.1

1.2 Specialized Decodes

2 Reference Manual

The Asnl application contains modules with compile-time and run-time support for ASN.1.

Ericsson AB. All Rights Reserved.: ASN.1 | 37

asnlct

asnlct

Erlang module

The ASN.1 compiler takesan ASN.1 module asinput and generates a corresponding Erlang module which can encode
and decode the data-types specified. Alternatively the compiler takes a specification module (se below) specifying all
input modules and generates one module with encode/decode functions. There are also some generic functions which
can be used in during development of applications which handles ASN.1 data (encoded as BER or PER).

Note:

By default in OTP 17, the representation of the BIT STRING and OCTET STRING types as Erlang terms have
changed. BIT STRING values are now Erlang bitstrings and OCTET STRING values are binaries. Also, an
undecoded open type will now be wrapped in aasnl_OPENTYPE tuple. For details see BIT STRING, OCTET
STRING, and ASN.1 Information Objectsin User's Guide.

To revert to the old representation of the types, usethel egacy_er | ang_t ypes option.

Note:

In R16, the options have been simplified. The back-end is chosen using one of the options ber , per, or uper .
The optionsopt i ni ze, ni f,anddri ver optionsare no longer necessary (and the ASN.1 compiler will print
awarning if they are used). The optionsber _bi n, per _bi n, and uper _bi n optionswill still work, but will
print awarning.

Another change in R16 is that the generated encode/ 2 function always returns a binary. The encode/ 2
function for the BER back-end used to return aniolist.

Exports

compile(Asnlmodule) -> ok | {error, Reason}
compile(Asnlmodule, Options) -> ok | {error, Reason}
Types:
Asnlnmodul e = atom() | string()
Options = [Option| A dOption]
Option = ber | per | uper | der | conpact _bit_string | legacy bit _string
| legacy_erlang types | noobj | {n2n, EnumlypeNane} |{outdir,
Dir} | {i, IncludeDir} | asnlconfig | undec_rest | no_ok_ w apper
{macro_nane_prefix, Prefix} | {record_nane_prefix, Prefix} | verbose
war ni ngs_as_errors

A dOption = ber | per
Reason = term()
Prefix = string()
Compiles the ASN.1 module Asnlnmodul e and generates an Erlang module Asn1nodul e. er | with encode and

decode functions for the types defined in Asnlnmodul e. For each ASN.1 value defined in the module an Erlang
function which returns the value in Erlang representation is generated.

38 | Ericsson AB. All Rights Reserved.: ASN.1

asnlct

If Asnlnodul e is afilename without extension first " . asnl" isassumed, then". asn" and finaly " . py" (to
be compatible with the old ASN.1 compiler). Of course Asnlnodul e can be afull pathname (relative or absolute)
including filename with (or without) extension.

If one wishes to compile a set of Asnl modules into one Erlang file with encode/decode functions one has to list
al involved files in a configuration file. This configuration file must have a double extension ".set.asn”, (".asn" can
aternatively be ".asn1" or ".py"). Theinput files names must be listed, within quotation marks ("), one at each row
inthefile. If theinput filesareFi | el. asn, Fi | e2. asn and Fi | e3. asn the configuration file shall look like:

Filel.asn
File2.asn
File3.asn

The output files will in this case get their names from the configuration file. If the configuration file has the name
Set O Fi | es. set. asn the name of the output fileswill be Set Of Fil es. hrl, SetOFiles.erl and
Set O Fi | es. asnldb.

Sometimes in a system of ASN.1 modules there are different default tag modes, e.g. AUTOMATIC, IMPLICIT or
EXPLICIT. The multi file compilation resolves the default tagging as if the modules were compiled separately.

Another unwanted effect that may occur in multi file compilation is name collisions. The compiler solvesthis problem
in two ways: If the definitions are identical then the output module keeps only one definition with the original name.
But if definitions only have same name and differs in the definition, then they will be renamed. The new names will
be the definition name and the original module name concatenated.

If any name collision have occurred the compiler reportsa"NOTICE: ..." messagethat tellsif adefinition wasrenamed,
and the new name that must be used to encode/decode data.

Opt i ons isalist with options specific for the asnl compiler and options that are applied to the Erlang compiler. The
latter are those that not is recognized as asnl specific. Available options are:

ber | per | uper

The encoding rule to be used. The supported encoding rules are BER (Basic Encoding Rules), PER aligned
(Packed Encoding Rules) and PER unaligned. If the encoding rule option is omitted ber isthe default.

The generated Erlang module always gets the same name as the ASN.1 modul e and as a consegquence of thisonly
one encoding rule per ASN.1 module can be used at runtime.

der

By this option the Distinguished Encoding Rules (DER) is chosen. DER is regarded as a specialized variant of
the BER encoding rule, therefore the der option only makes sense together with the ber option. This option
sometimes adds sorting and val ue checks when encoding, which impliesaslower encoding. The decoding routines
arethe same asfor ber .

conpact _bit_string
TheBIT STRING type will be decoded to the "compact notation”. This option is not recommended for new code.
For details see BIT STRING type section in the Users Guide .
Thisoptionimpliesthel egacy_er | ang_t ypes option.

| egacy _bit_string

The BIT STRING type will be decoded to the legacy format, i.e. alist of zeroes and ones. This option is not
recommended for new code.

For details see BIT STRING type section in the Users Guide .
Thisoptionimpliesthel egacy_er | ang_t ypes option.

Ericsson AB. All Rights Reserved.: ASN.1 | 39

asnlct

| egacy_erl ang_types

Usethe same Erlang typesto represent BIT STRING and OCTET STRING asin R16. For detailssee BIT STRING
and OCTET STRING in User's Guide.

This option is not recommended for new code.
{n2n, EnunirypeNane}

Tellsthe compiler to generate functions for conversion between names (as atoms) and numbers and vice versafor
the EnumTypeName specified. There can be multiple occurrences of this option in order to specify several type
names. The type names must be declared as ENUMERATIONS in the ASN.1 spec. If the EnumTypeName does
not exist in the ASN.1 spec the compilation will stop with an error code. The generated conversion functions are
named nane2num _EnunTypeNane/ 1 and nun2nane_EnunilypeNane/ 1.

noobj

Do not compile (i.e do not produce object code) the generated . er | file. If this option is omitted the generated
Erlang module will be compiled.

{i, IncludeDir}

Adds | ncl udeDi r to the search-path for . asnldb and asnl source files. The compiler tries to open a
. asnldb filewhen amodule imports definitions from another ASN.1 module. If no. asnl1db fileisfound the
asnl source fileisparsed. Severa {i, | ncl udebDi r} canbegiven.

{outdir, Dir}

Specifiesthe directory Di r where all generated files shall be placed. If omitted the files are placed in the current
directory.

asnlconfig

When one of the specialized decodes, exclusive or selective decode, is wanted one has to give instructionsin a
configuration file. Theoptionasnlconf i g enables specialized decodes and takes the configuration file, which
has the same name as the ASN. 1 spec but with extension . asnlconfi g, in concern.

Theinstructions for exclusive decode must follow the instruction and grammar in the User's Guide.
Y ou can aso find the instructions for selective decode in the User's Guide.
undec_rest

A buffer that holds amessage, being decoded may also have somefollowing bytes. Now it is possible to get those
following bytes returned together with the decoded value. If an asnl spec is compiled with this option a tuple
{ok, Value, Rest} isreturned. Rest may bealist or abinary. Earlier versions of the compiler ignored
those following bytes.

no_ok_wr apper

If this option is given, the generated encode/ 2 and decode/ 2 functions will not wrap a successful return
valueinan{ ok, . ..} tuple. If any error occurs, there will be an exception.

{macro_nane_prefix, Prefix}

All macro names generated by the compiler are prefixed with Pr ef i x. Thisis useful when multiple protocols
that contains macros with identical names are included in a single module.

{record_nane_prefix, Prefix}

All record names generated by the compiler are prefixed with Pr ef i x. Thisis useful when multiple protocols
that contains records with identical names are included in a single module.

ver bose

Causes more verbose information from the compiler describing what it is doing.

40 | Ericsson AB. All Rights Reserved.: ASN.1

asnlct

war ni ngs_as_errors

Causes warnings to be treated as errors.
Any additional option that is applied will be passed to the final step when the generated .erl file is compiled.
The compiler generates the following files:

e Asnlnodul e. hrl (if any SET or SEQUENCE is defined)
e Asnlnodul e. er| the Erlang module with encode, decode and value functions.

« Asnlnodul e. asnldb intermediate format used by the compiler when modules IMPORTS definitions from
each other.

encode(Module, Type, Value)-> {ok, Bytes} | {error, Reason}
Types.
Modul e = Type = aton()
Value = term))
Byt es = binary()
Reason = term()
Encodes Val ue of Type defined in the ASN.1 module Modul e. To get as fast execution as possible the encode

function only performs rudimentary tests that the input Val ue isacorrect instance of Type. The length of stringsis
for example not always checked. Returns{ ok, Byt es} if successful or{ error, Reason} if anerror occurred.

This function is deprecated. Use Mbdul e: encode(Type, Val ue) instead.

decode(Module, Type, Bytes) -> {ok, Value} | {error, Reason}
Types:

Modul e = Type = atom()

Val ue = Reason = term()

Bytes = binary()
Decodes Type from Mbdul e from the binary Byt es. Returns{ ok, Val ue} if successful.
Thisfunction is deprecated. Use Mbdul e: decode(Type, Byt es) instead.

value(Module, Type) -> {ok, Value} | {error, Reason}
Types.

Modul e = Type = aton()

Value = term))

Reason = term()

Returns an Erlang term which is an example of avalid Erlang representation of avalue of the ASN.1 type Type. The
value isarandom value and subsequent calls to this function will for most types return different values.

test(Module) -> ok | {error, Reason}
test(Module, Type | Options) -> ok | {error, Reason}
test(Module, Type, Value | Options) -> ok | {error, Reason}
Types.

Modul e = Type = aton()

Value = term))

Options = [{i, IncludeDir}]

Ericsson AB. All Rights Reserved.: ASN.1 | 41

asnlct

Reason = term()

Performs a test of encode and decode of typesin Modul e. The generated functions are called by this function. This
function isuseful during test to secure that the generated encode and decode functions and the general runtime support
work as expected.

o test/1iteratesover al typesin Modul e.

e test/2teststype Type with arandom value.

* test/3teststype Type with Val ue.

Schematically the following happens for each type in the module:

{ok, Value} = asnlct:value(Module, Type),
{ok, Bytes} = asnlct:encode(Module, Type, Value),
{ok, Value} = asnlct:decode(Module, Type, Bytes).

Thet est functions utilizesthe*. asnildb filesfor al included modules. If they are located in a different directory
than the current working directory, use the include option to add paths. This is only needed when automatically
generating values. For static values using Val ue no options are needed.

42 | Ericsson AB. All Rights Reserved.: ASN.1

asnlrt

asnlrt

Erlang module

Warning:

All functionsin this module are deprecated and will be removed in afuture release.

Exports

decode(Module, Type,Bytes) -> {ok,Value}|{error,Reason}
Types:
Modul e = Type = aton()
Val ue = Reason = term)
Bytes = binary
Decodes Type from Modul e from the binary Byt es. Returns{ ok, Val ue} if successful.
Use Modul e: decode(Type, Byt es) instead of thisfunction.

encode (Module, Type,Value)-> {ok,Bytes} | {error,Reason}
Types:
Modul e = Type = aton()
Value = term))
Bytes = binary
Reason = term()
Encodes Val ue of Type defined in the ASN.1 module Modul e. Returns a binary if successful. To get as fast

execution as possible the encode function only performs rudimentary tests that the input Val ue is acorrect instance
of Type. Thelength of stringsis, for example, not always checked.

Use Modul e: encode(Type, Val ue) instead of thisfunction.

info(Module) -> {ok,Info} | {error,Reason}
Types:
Modul e = atom()
Info = list()
Reason = term()
i nf o/ 1 returns the version of the asnl compiler that was used to compile the module. It also returns the compiler
options that was used.

Use Modul e: i nf o() instead of this function.
utf8 binary to list(UTF8Binary) -> {ok,UnicodelList} | {error,Reason}

Types:
UTF8Bi nary = binary()

Ericsson AB. All Rights Reserved.: ASN.1 | 43

asnlrt

Uni codeLi st = [integer()]
Reason = term)

utf8 binary to_I|ist/1TransformsaUTF8 encoded binary to alist of integers, where each integer represents
one character asits unicode value. The function failsif the binary is not a properly encoded UTF8 string.

Use unicode: characters to list/1 instead of this function.

utf8 list to binary(UnicodelList) -> {ok,UTF8Binary} | {error,Reason}
Types.

Uni codeLi st = [integer()]

UTF8Bi nary = binary()

Reason = term)

utf8 |ist _to_binary/1Transformsalist of integers, where eachinteger representsone character asitsunicode
value, to a UTF8 encoded binary.

Use unicode: characters to_binary/1 instead of this function.

44 | Ericsson AB. All Rights Reserved.: ASN.1

	ASN.1
	Asn1 User's Guide
	Asn1
	Introduction
	Features
	Overview
	Prerequisites
	Capabilities

	Getting Started with Asn1
	A First Example
	Module dependencies

	The Asn1 Application User Interface
	Compile-time Functions
	Run-time Functions
	Errors

	Multi-file Compilation
	A quick note about tags
	The ASN.1 Types
	BOOLEAN
	INTEGER
	REAL
	NULL
	ENUMERATED
	BIT STRING
	Deprecated representations for BIT STRING

	OCTET STRING
	Character Strings
	OBJECT IDENTIFIER
	Object Descriptor
	The TIME Types
	SEQUENCE
	SET
	Notes about extensibility for SEQUENCE and SET
	CHOICE
	Extensible CHOICE

	SET OF and SEQUENCE OF
	ANY and ANY DEFINED BY
	EXTERNAL, EMBEDDED PDV and CHARACTER STRING
	Embedded Named Types

	Naming of Records in .hrl Files
	Embedded Structured Types
	Recursive Types

	ASN.1 Values
	Macros
	ASN.1 Information Objects (X.681)
	Parameterization (X.683)

	Specialized Decodes
	Exclusive Decode
	How To Make It Work
	User Interface
	Writing an Exclusive Decode Instruction
	Example

	Selective Decode
	How To Make It Work
	User Interface
	Writing a Selective Decode Instruction
	Another Example

	Performance
	ASN.1 Specifications, Messages and Configuration
	Results
	Comments

	Reference Manual
	asn1ct
	compile/1
	compile/2
	encode/3
	decode/3
	value/2
	test/1
	test/2
	test/3

	asn1rt
	decode/3
	encode/3
	info/1
	utf8_binary_to_list/1
	utf8_list_to_binary/1

