| v

ERLANG

SSH

Copyright © 2005-2014 Ericsson AB. All Rights Reserved.
SSH 3.0.3
June 23, 2014

Copyright © 2005-2014 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

June 23, 2014

Ericsson AB. All Rights Reserved.: SSH | 1

1.1 Introduction

1 SSH User's Guide

The SSH application implementsthe SSH (Secure Shell) protocol and providesan SFTP (Secret File Transfer Protocol)
client and server.

1.1 Introduction

1.1.1 Purpose

Secure Shell (SSH) is a protocol for secure remote login and other secure network services over an insecure network.
SSH provides a single, full-duplex, byte-oriented connection between client and server. The protocol aso provides
privacy, integrity, server authentication and man-in-the-middle protection.

The Erlang SSH application is an implementation of the SSH protocol in Erlang which offers API functions to write
customized SSH clients and servers as well as making the Erlang shell available via SSH. Also included in the SSH
application are an SFTP (SSH File Transfer Protocol) client ssh_sftp and server ssh_sftpd.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the concepts of OTP and has a basic understanding of public keys.

1.2 Secure Shell (SSH)

1.2.1 SSH Protocol Overview
Conceptually the SSH protocol can be partitioned into four layers:

SSH Client/Server Applications

Connection Protocol | Authentication Protocol

Transport Protocol

TCP/IP Stack

Figure 2.1: SSH Protocol Architecture

2 | Ericsson AB. All Rights Reserved.: SSH

href

1.2 Secure Shell (SSH)

Transport Protocol

The SSH Transport Protocol is a secure, low level transport. It provides strong encryption, cryptographic host
authentication and integrity protection. Currently, only a minimum of MAC- (message authentication code, a short
piece of information used to authenticate a message) and encryption algorithms are supported see ssh(3)

Authentication Protocol

The SSH authentication protocol isageneral -purpose user authentication protocol run over the SSH transport protocol.
Erlang SSH supports user authentication using public key technology (RSA and DSA, X509-certificates are currently
not supported). It is also possible to use a so caled keyboard interactive authentication. This method is suitable
for interactive authentication methods that do not need any specia software support on the client side. Instead, all
authentication data should be entered viathe keyboard. It is also possible to use a pure password based authentication
scheme, note that in this case the the plain text password will be encrypted before sent over the network. There
are several configuration options for authentication handling available in ssh:connect/[3,4] and ssh:daemon/[2,3]
It is also possible to customize the public key handling by implementing the behaviours ssh _client_key api and
ssh_server_key api

Connection Protocol

The SSH Connection Protocol provides application-support services over the transport pipe, such as channel
multiplexing, flow control, remote program execution, signal propagation, connection forwarding, etc. Functions for
handling the SSH Connection Protocol can be found in the module ssh_connection.

Channels

All terminal sessions, forwarded connections etc., are channels. Multiple channels are multiplexed into a single
connection, and all channels are flow-controlled. Typically an SSH client will open a channel, send data/commands,
receive data/" control information” and when it is done close the channel. The ssh_channel behaviour makes it easy to
write your own SSH client/server processesthat use flow control. It handles generic parts of SSH channel management
and lets you focus on the application logic.

Channels comesin three flavors

e Subsystem - named services that can be run as part of an SSH server such as SFTP ssh_sftpd, that isbuilt into
the SSH daemon (server) by default but may be disabled. The Erlang SSH daemon may be configured to run
any Erlang implemented SSH subsystem.

« Shell - interactive shell. By default the Erlang daemon will run the Erlang shell. It is possible to customize the
shell by providing your own read-eval-print loop. It is also possible, but much more work, to provide your own
CLI (Command Line Interface) implementation.

» Exec - one-time remote execution of commands. See ssh_connection: exec/4
Channelsareflow controlled. No datamay be sent to achannel peer until amessageisreceived to indicate that window

spaceis available. The 'initial window size' specifies how many bytes of channel data that can be sent to the channel
peer without adjusting the window.

For more detailed information about the SSH protocol, see the following RFCs:

e RFC 4250 - Protocol Assigned Numbers.
 RFC 4251 - Protocol Architecture.

* RFC 4252 - Authentication Protocol.

* RFC 4253 - Transport Layer Protocol.

* RFC 4254 - Connection Protocol.

« RFC 4255 - Key Fingerprints.

 RFC 4344 - Transport Layer Encryption Modes.
e RFC 4716 - Public Key File Format.

Ericsson AB. All Rights Reserved.: SSH | 3

href
href
href
href
href
href
href
href

1.3 Getting started

1.3 Getting started

1.3.1 General information

The examplesin the following sections use the utility function ssh:start/O that starts al needed applications (crypto,
public_key and ssh). All examples are run in an Erlang shell, or in a bash shell using openssh to illustrate how the
erlang ssh application can be used. The examples are run as the user otptest on a local network where the user is
authorized to login in over ssh to the host "tarlop”. If nothing elseis stated it is persumed that the otptest user has an
entry in tarlop's authorized _keysfile (may log in via ssh without entering a password). Also tarlop is aknown host in
the user otptest's known_hosts file so that host verification can be done without user interaction.

1.3.2 Using the Erlang SSH Terminal Client

The user otptest, that has bash as default shell, uses the ssh:shell/1 client to connect to the openssh daemon running
on a host called tarlop. Note that currently this client is very simple and you should not be expected to be as fancy
as the openssh client.

1> ssh:start().

ok

2> {ok, S} = ssh:shell("tarlop").
>pwd

/home/otptest

>exit

logout

3>

1.3.3 Running an Erlang SSH Daemon

The option system_dir must be adirectory containing a host key file and it defaults to /etc/ssh. For details see section
Configuration Filesin ssh(6).

Note:
Normally the /etc/ssh directory is only readable by root.

The option user_dir defaults to the users ~/.ssh directory

In the following example we generate new keys and host keys as to be able to run the example without having root
privilages

$bash> ssh-keygen -t rsa -f /tmp/ssh _daemon/ssh host rsa key

[...]
$bash> ssh-keygen -t rsa -f /tmp/otptest user/.ssh/id rsa

local

Create the file /tmp/otptest_user/.ssh/authorized _keys and add the content of /tmp/otptest_user/.ssh/id_rsa.pub Now
we can do

4 | Ericsson AB. All Rights Reserved.: SSH

1.3

Getting started

1> ssh:start().

ok

2> {ok, Sshd} = ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"}1).

{ok,<0.54.0>}

3>

Use the openssh client from a shell to connect to the Erlang ssh daemon.

$bash> ssh tarlop -p 8989 -i /tmp/otptest user/.ssh/id rsa\
-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts
The authenticity of host 'tarlop' can't be established.
RSA key fingerprint is 14:81:80:50:b1:1f:57:dd:93:a8:2d:2f:dd:90:ae:a8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'tarlop' (RSA) to the list of known hosts.
Eshell V5.10 (abort with ~G)
1>

There are two ways of shutting down an SSH daemon
1: Stops the listener, but leaves existing connections started by the listener up and running.

3> ssh:stop listener(Sshd).
ok
4>

2: Stops the listener and all connections started by the listener.

3> ssh:stop daemon(Sshd)
ok
4>

1.3.4 One Time Execution

In the following example the Erlang shell isthe client process that receives the channel replies.

Note:

If you run this example in your environment you may get fewer or more messages back as this depends on the

OS and shell on the machine running the ssh daemon. See also ssh_connection: exec/4

1> ssh:start().

ok

2> {ok, ConnectionRef} = ssh:connect("tarlop", 22, [1).
{ok,<0.57.0>}

3>{ok, Channelld} = ssh connection:session channel(ConnectionRef, infinity).

{ok,0}

Ericsson AB. All Rights Reserved.: SSH | 5

1.3 Getting started

4> success = ssh _connection:exec(ConnectionRef, Channelld, "pwd", infinity).
5> flush().

Shell got {ssh cm,<0.57.0>,{data,0,0,<<"/home/otptest\n">>}}

Shell got {ssh cm,<0.57.0>,{eof,0}}

Shell got {ssh cm,<0.57.0>,{exit status,0,0}}

Shell got {ssh cm,<0.57.0>,{closed,0}}

ok

6>

Note only the channel is closed the connection is still up and can handle other channels

6> {ok, NewChannelId} = ssh connection:session channel(ConnectionRef, infinity).
{ok, 1}

1.3.5 SFTP (SSH File Transport Protocol) server

1> ssh:start().
ok
2> ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"},
{subsystems, [ssh sftpd:subsystem spec([{cwd, "/tmp/sftp/example"}]1)1}]).
{ok,<0.54.0>}
3>

Run the openssh sftp client

$bash> sftp -oPort=8989 -o IdentityFile=/tmp/otptest user/.ssh/id rsa\
-0 UserKnownHostsFile=/tmp/otptest user/.ssh/known hosts tarlop

Connecting to tarlop...

sftp> pwd

Remote working directory: /tmp/sftp/example

sftp>

1.3.6 SFTP (SSH File Transport Protocol) client

1> ssh:start().

ok

2> {ok, ChannelPid, Connection} = ssh sftp:start channel("tarlop", []).
{0k,<0.57.0>,<0.51.0>}

3> ssh sftp:read file(ChannelPid, "/home/otptest/test.txt").
{ok,<<"This is a test file\n">>}

1.3.7 Creating a subsystem
A very small SSH subsystem that echos N bytes could be implemented like this. See also ssh_channel (3)

6 | Ericsson AB. All Rights Reserved.: SSH

1.3 Getting started

-module(ssh _echo server).
-behaviour(ssh subsystem).
-record(state, {

n,

id,

cm

3.
-export([init/1, handle msg/2, handle ssh msg/2, terminate/2]).

init([N]) ->
{ok, #state{n = N}}.

handle msg({ssh channel up, Channelld, ConnectionManager}, State) ->
{ok, State#state{id = Channelld,
cm = ConnectionManager}}.

handle ssh msg({ssh cm, CM, {data, Channelld, 0, Data}}, #state{n = N} = State) ->
M =N - size(Data),
case M > 0 of
true ->
ssh_connection:send(CM, Channelld, Data),
{ok, State#state{n = M}};
false ->
<<SendData:N/binary, /binary>> = Data,
ssh_connection:send(CM, Channelld, SendData),
ssh_connection:send eof(CM, Channelld),
{stop, Channelld, State}
end;
handle ssh msg({ssh cm, ConnectionManager,
{data, Channelld, 1, Data}}, State) ->
error _logger:format(standard error, " ~p~n", [binary to list(Data)l]),

{ok, State};
handle ssh msg({ssh cm, ConnectionManager, {eof, Channelld}}, State) ->
{ok, State};
handle ssh msg({ssh cm, , {signal, , }}, State) ->
%% Ignore signals according to RFC 4254 section 6.9.
{ok, State};
handle ssh msg({ssh cm, , {exit signal, Channelld, , Error, }},
State) ->

{stop, Channelld, State};

handle ssh msg({ssh cm, , {exit status, Channelld, Status}}, State) ->
{stop, Channelld, State}.

terminate(Reason, State) ->
ok.

And run like this on the host tarlop with the keys generated in section 3.3

1> ssh:start().

ok

2> ssh:daemon(8989, [{system dir, "/tmp/ssh daemon"},
{user dir, "/tmp/otptest user/.ssh"}

{subsystems, [{"echo n", {ssh echo server, [10]1}}]1}]).
{ok,<0.54.0>}

3>

Ericsson AB. All Rights Reserved.: SSH | 7

1.3 Getting started

1> ssh:start().

ok

2>{ok, ConnectionRef} = ssh:connect("tarlop", 8989, [{user dir, "/tmp/otptest user/.ssh"}]).
{ok,<0.57.0>}

3>{ok, Channelld} = ssh connection:session channel(ConnectionRef, infinity).

4> success = ssh connection:subsystem(ConnectionRef, Channelld, "echo n", infinity).

5> ok = ssh connection:send(ConnectionRef, Channelld, "0123456789", infinity).

6> flush().

{ssh msg, <0.57.0>, {data, 0, 1, "0123456789"}}

{ssh msg, <0.57.0>, {eof, 0}}

{ssh msg, <0.57.0>, {closed, 0}}

7> {error, closed} = ssh connection:send(ConnectionRef, Channelld, "10", infinity).

8 | Ericsson AB. All Rights Reserved.: SSH

1.3 Getting started

2 Reference Manual

The SSH application is an erlang implementation of the secure shell protocol (SSH) as defined by RFC 4250 - 4254

Ericsson AB. All Rights Reserved.: SSH | 9

SSH

SSH

Application

DEPENDENCIES

The ssh application uses the Erlang applications public_key and crypto to handle public keys and encryption, hence
these applications needs to be loaded for the ssh application to work. In an embedded environment that means they
need to be started with application:start/[1,2] before the ssh application is started.

CONFIGURATION

The ssh application does not currently have an application specific configuration file as described in application(3),
however it will by default use the following configuration files from openssh: known_hosts, authorized keys,
authorized keys2, id dsaand id_rsa, ssh_host_dsa key and ssh_host_rsa key. By default Erlang SSH will look for
id_dsa, id_rsa, known_hosts and authorized_keysin ~/.ssh, and the host key filesin /etc/ssh . These locations may be
changed by the options user_dir and system_dir. Public key handling may also be customized by providing a callback
module implementing the behaviors ssh_client_key api and ssh_server_key api.

PUBLIC KEYS

id_dsaandid_rsaarethe users private key files, note that the public key is part of the private key so the ssh application
will not use theid_<*>.pub files. These are for the users convenience when he/she needs to convey their public key.

KNOW HOSTS

Theknown_hostsfile containsalist of approved serversand their public keys. Once aserver islisted, it can be verified
without user interaction.

AUTHORIZED KEYS

The authorized key file keeps track of the user's authorized public keys. The most common use of this fileisto let
users log in without entering their password which is supported by the Erlang SSH daemon.

HOST KEYS

Currently rsa and dsa host keys are supported and are expected to be found in files named ssh_host_rsa key and
ssh_host_dsa key.

SEE ALSO
application(3)

10 | Ericsson AB. All Rights Reserved.: SSH

ssh

ssh

Erlang module

Interface module for the SSH application.

SSH

e SSH requiresthe crypto and public_key applications.

e Supported SSH versionis 2.0

e Supported MAC agorithms: hmac-shal

e Supported encryption algorithms: aes128-cb and 3des-chc

e Supports unicode filenames if the emulator and the underlaying OS supportsit. See the DESCRIPTION section
in file for information about this subject

e Supportsunicodein shell and cli

DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
datatype:

boolean() = true | false

string() = [byte()]

ssh_daenon_ref() - opaque to the user returned by ssh: daenon/[1, 2, 3]
ssh_connection_ref () - opaque to the user returned by ssh:connect/3
i p_address() - inet::ip_address()

subsyst em spec() = {subsyst em nane(), {channel _cal I back(),
channel _init_args()}}

subsystem nane() = string()

channel call back() = atom() - Nane of the erlang nodule inplenenting the
subsystem usi ng the ssh_channel behavi or see ssh channel(3)

channel _init_args() = list()

Exports

close(ConnectionRef) -> ok
Types:

Connecti onRef = ssh_connection_ref()
Closes an SSH connection.

connect(Host, Port, Options) ->

connect(Host, Port, Options, Timeout) -> {ok, ssh connection ref()} | {error,
Reason}

Types.
Host = string()
Port = integer()

Ericsson AB. All Rights Reserved.: SSH | 11

ssh

The default is 22, the assigned well known port number for SSH.

Options = [{Option, Value}]

Timeout = infinity | integer(mlliseconds)

Negotiation timeout, for connection timeout use the option{ connect _ti neout, ti meout()}.
Connectsto an SSH server. No channel is started. Thisis done by calling ssh_connection;session_channel/[2, 4].
Options are:

{inet, inet | ineté6}
IP version to use.
{user_dir, string()}

Sets the user directory i.e. the directory containing ssh configuration files for the user such asknown_host s,
id rsa, id_dsaandauthorized_key. Defaultstothe directory normally referredtoas~/ . ssh

{dsa_pass_phrase, string()}

If the user dsakey is protected by a passphrase it can be supplied with this option.
{rsa_pass_phrase, string()}

If the user rsakey is protected by a passphrase it can be supplied with this option.
{silently accept _hosts, bool ean()}

When true hosts are added to the file known_host s without asking the user. Defaults to false.
{user _interaction, bool ean()}

If false disables the client to connect to the server if any user interaction is needed such as accepting that the
server will be added totheknown_host s file or supplying a password. Defaultsto true. Even if user interaction
isallowed it can be suppressed by other options such as silently _accept_hosts and password. Do note that it may
not always be desirable to use those options from a security point of view.

{public_key alg, 'ssh-rsa' | 'ssh-dss'}

Setsthe preferred public key algorithm to use for user authentication. If the the preferred algorithm failsfor some
reason, the other algorithm istried. Thedefault istotry ' ssh-rsa' first.

{pref_public_key algs, list()}

List of public key algorithmsto try to use, 'ssh-rsa and 'ssh-dss available. Will override{ publ i c_key_al g,
"ssh-rsa' | 'ssh-dss'}

{connect _tineout, timeout()}
Sets atimeout on the transport layer connection. Defaultstoi nfi nity.
{user, string()}

Provides a user name. If this option is not given, ssh reads from the environment (L OGNAME or USER on unix,
USERNAME on Windows).

{password, string()}

Provide a password for password authentication. If this option is not given, the user will be asked for a password
if the password authentication method is attempted.

{key_cb, atom()}
M odule implementing the behaviour ssh_client_key api. Can be used to customize the handling of public keys.

{qui et _node, aton() = bool ean()}
If true, the client will not print out anything on authorization.

12 | Ericsson AB. All Rights Reserved.: SSH

ssh

{fd, file_descriptor()}

Allow an existing file descriptor to be used (simply passed on to the transport protocoal).
{rekey_limt, integer()}

Provide, in bytes, when rekeying should be initiated, defaults to one time each GB and one time per hour.
{idle_time, integer()}

Sets atimeout on connection when no channels are active, default isinfinity

connection info(ConnectionRef, [Option]) ->[{Option, Value}]

Types:
Option = client_version | server_version | user | peer | sockname
Val ue = [option_val ue()]
option_value() = {{Major::integer(), Mnor::integer()},
VersionString::string()} | User::string() | Peer::{inet:hostname(),
{inet::ip_adress(), inet::port_nunber()}} | Socknane::{inet::ip_adress(),
inet::port_nunber()} ()

Retrieves information about a connection.

daemon(Port) ->
daemon(Port, Options) ->

daemon(HostAddress, Port, Options) -> {ok, ssh daemon ref()} | {error,
atom()}

Types.
Port = integer()
Host Address = i p_address() | any
Options = [{Option, Value}]
Option = aton()
Value = term))

Starts a server listening for SSH connections on the given port.
Options are:

{inet, inet | inet6}
IP version to use when the host addressis specified asany.

{subsystens, [subsystem spec()]
Provides specifications for handling of subsystems. The "sftp" subsystem spec can be retrieved
by calling ssh_sftpd:subsystem_spec/1. If the subsystems option in not present the value of
[ssh_sftpd: subsystem spec([])] will beused. It isof course possible to set the option to the empty
list if you do not want the daemon to run any subsystems at al.

{shell, {Mdule, Function, Args} | fun(string() = User) - > pid() |

fun(string() = User, ip_address() = PeerAddr) -> pid()}
Defines the read-eval-print loop used when a shell is requested by the client. Default is to use the erlang shell:
{shell, start, []}

{ssh_cli, {channel _call back(), channel _init_args()} | no_cli}
Provides your own CLI implementation, i.e. a channel callback module that implements a shell and command
execution. Note that you may customize the shell read-eval-print loop using the option shel | which is much
less work than implementing your own CLI channel. If settono_cl i you will disable CLI channels and only
subsystem channels will be allowed.

Ericsson AB. All Rights Reserved.: SSH | 13

ssh

{user _dir, String}

Sets the user directory i.e. the directory containing ssh configuration files for the user such asknown_host s,
id rsa, id_dsaandauthorized_ key. Defaultstothe directory normally referredtoas~/ . ssh

{systemdir, string()}

Sets the system directory, containing the host key filesthat identifies the host keysfor ssh. The defaultis/ et ¢/
ssh, note that for security reasons this directory is normally only accessible by the root user.

{aut h_net hods, string()}

Comma separated string that determines which authentication methodes that the server should support and in
what order they will be tried. Defaultsto " publ i ckey, keyboar d-i nt eracti ve, passwor d”

{user _passwords, [{string() = User, string() = Password}]}

Provide passwords for password authentication.They will be used when someone tries to connect to the server
and public key user authentication fails. The option provides a list of valid user names and the corresponding
password.

{password, string()}

Provide a global password that will authenticate any user. From a security perspective this option makes the
server very vulnerable.

{pwdfun, fun(User::string(), password::string()) -> bool ean()}

Provide a function for password validation. Thisis called with user and password as strings, and should return
t rue if the password isvalid and f al se otherwise.

{negotiation_tinmeout, integer()}

Max time in milliseconds for the authentication negotiation. The default value is 2 minutes. If the client failsto
login within this time, the connection is closed.

{max_sessi ons, pos_integer()}

The maximum number of simultaneous sessions that are accepted at any time for this daemon. This includes
sessionsthat are being authorized. Soif set to N, and N clients have connected but not started thelogin process, the
N+1 connection attempt will be aborted. If N connections are authenticated and still logged in, no more loggins
will be accepted until one of the existing ones log out.

The counter is per listening port, so if two daemons are started, one with { max_sessi ons, N} and the other
with { max_sessi ons, M therewill bein total N+Mconnections accepted for the whole ssh application.

Notethat if paral | el _| ogi nisf al se, only one client at atime may be in the authentication phase.
Asdefault, the option is not set. This means that the number is not limited.
{paral l el | ogin, boolean()}

If set to false (the default value), only one login is handled atime. If set to true, an unlimited number of login
attempts will be allowed simultanously.

If the max_sessi ons option is set to N and paral | el _I ogi n is set to true, the max number of
simultaneous login attempts at any time is limited to N- K where K is the number of authenticated connections
present at this daemon.

14 | Ericsson AB. All Rights Reserved.: SSH

ssh

Warning:

Do not enable paral | el _| ogi ns without protecting the server by other means, for example the
max_sessi ons option or a firewall configuration. If set to t r ue, there is no protection against DOS
attacks.

{key _cb, atom()}
Module implementing the behaviour ssh_server_key api. Can be used to customize the handling of public keys.

{fd, file_descriptor()}
Allow an existing file-descriptor to be used (simply passed on to the transport protocol).

{failfun, fun(User::string(), PeerAddress::ip_address(), Reason::term()) ->
_}

Provide afun to implement your own logging when a user fails to authenticate.
{connectfun, fun(User::string(), PeerAddress::ip_address(), Method::string())

- >_}
Provide afun to implement your own logging when a user authenticates to the server.
{di sconnectfun, fun(Reason:tern()) -> _}

Provide a fun to implement your own logging when a user disconnects from the server.

shell(Host) ->
shell(Host, Option) ->
shell(Host, Port, Option) ->

Types:
Host = string()
Port = integer()

Options - see ssh:connect/3

Starts an interactive shell viaan SSH server on the given Host . The function waits for user input, and will not return
until the remote shell is ended (i.e. exit from the shell).

start() ->
start(Type) -> ok | {error, Reason}
Types:

Type = permanent | transient | tenporary
Reason = term()

Utility functionthat startscrypto, public_key and the SSH application. Defult typeistemporary. Seea so application(3)

stop() -> ok | {error, Reason}
Types:

Reason = term()
Stops the SSH application. See also application(3)

Ericsson AB. All Rights Reserved.: SSH | 15

ssh

stop _daemon(DaemonRef) ->
stop _daemon(Address, Port) -> ok
Types.
DaenonRef = ssh_daenon_ref ()
Address = i p_address()
Port = integer()
Stops the listener and all connections started by the listener.

stop listener(DaemonRef) ->
stop listener(Address, Port) -> ok
Types:
DaenonRef = ssh_daenon_ref ()
Address = i p_address()
Port = integer()

Stops the listener, but leaves existing connections started by the listener up and running.

16 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

ssh_channel

Erlang module

SSH services (clients and servers) are implemented as channels that are multiplexed over an SSH connection and
communicates viathe SSH Connection Protocol. This module provides a callback API that takes care of generic
channel aspects such as flow control and close messages and lets the callback functions take care of the service
(application) specific parts. Thisbehavior a so ensuresthat the channel process honorsthe principal of an OTP-process
so that it can be part of a supervisor tree. Thisis arequirement of channel processes implementing a subsystem that
will be added to the SSH applications supervisor tree.

Note:

When implementing a SSH subsystem use the - behavi our (ssh_daenon_channel). instead of
- behavi our (ssh_channel). as the only relevant callback functions for subsystems are init/1,
handle_ssh msg/2, handle_msg/2 and terminate/2, so the ssh_daemon_channel behaviour is limited version of
the ssh_channel behaviour.

DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
datatype:

bool ean() = true | false
string() = list of ASCII characters
timeout () = infinity | integer() - in mlliseconds.

ssh_connection_ref () - opaque to the user returned by ssh:connect/3 or sent to
an SSH channel process

ssh_channel _id() = integer()

ssh_data_type_code() = 1 ("stderr") | O ("normal") are currently valid val ues
see RFC 4254 section 5. 2.

Exports

call(ChannelRef, Msg) ->
call(ChannelRef, Msg, Timeout) -> Reply | {error, Reason}
Types:

Channel Ref = pid()

Asreturned by start_link/4

Msg = term)

Ti meout = timeout ()

Reply = term()

Reason = closed | timeout

Ericsson AB. All Rights Reserved.: SSH | 17

href
href

ssh_channel

Makes a synchronous call to the channel process by sending a message and waiting until areply arrives or a timeout
occurs. The channel will call Module:handle call/3 to handle the message. If the channel process does not exist
{error, closed} isreturned.

cast(ChannelRef, Msg) -> ok
Types.
Channel Ref = pid()
Asreturned by start_link/4
Msg = term)
Sends an asynchronous message to the channel process and returns ok immediately, ignoring if the destination node
or channel process does not exist. The channel will call Module:handle_cast/2 to handle the message.

enter loop(State) ->
Types:
State = tern() - as returned by ssh_channel :init/1
Makes an existing process an ssh_channel process. Does not return, instead the calling process will enter the
ssh_channel processreceiveloopandbecomeanssh_channel process. Theprocessmust have been started

using one of the start functionsin proc_lib, see proc_lib(3). The user isresponsible for any initialization of the process
and needs to call ssh_channel:init/1

init(Options) -> {ok, State} | {ok, State, Timeout} | {stop, Reason}
Types.

Options = [{Option, Val ue}]

State = term))

Ti meout = timeout ()

Reason = term()

The following options must be present:

{channel _cb, atom()}

The module that implements the channel behaviour.
{init_args(), list()}

The list of arguments to the callback modul€e's init function.
{cm connection_ref()}

Reference to the ssh connection as returned by ssh:connect/3
{channel _id, channel _id()}

Id of the SSH channel.

Note:

This function is normally not called by the user. The user only needs to cal if for some reason the
channel process needs to be started with help of proc_| i b instead of calling ssh_channel : start/ 4 or
ssh_channel : start _I|ink/ 4

reply(Client, Reply) ->
Types:
Cient - opaque to the user, see explanation bel ow

18 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

Reply = term()
This function can be used by achannel to explicitly send areply to aclient that called cal | / [2, 3] when thereply
cannot be defined in the return value of Module:handle call/3.

C i ent must be the Fr omargument provided to the callback function handl e_cal | / 3. Repl y is an arbitrary
term, which will be given back to the client as the return value of ssh_channel:call/[2,3] .>

start(SshConnection, Channelld, ChannelCb, CbInitArgs) ->

start _link(SshConnection, Channelld, ChannelCb, CbInitArgs) -> {ok,
ChannelRef} | {error, Reason}

Types.
SshConnection = ssh_connection_ref ()
Channel Id = ssh_channel _id()
Asreturned by cannot be defined in the return value of ssh_connection: session_channel/[2,4]
Channel Cb = aton()
The name of the module implementing the service specific parts of the channel.
ColnitArgs = [term)]
Argument list for theinit function in the callback module.
Channel Ref = pid()

Starts a processes that handles an SSH channel. It will be called internally by the SSH daemon or explicitly by the
SSH client implementations. The behavior will set thet r ap_exi t flagtotrue.

CALLBACK TIMEOUTS

The timeout values that may be returned by the callback functions has the same semantics asin a gen_server If the
timeout occurs handle_msg/2 will be called ashandl e_nsg(ti meout, State).

Exports

Module:code change(OldVsn, State, Extra) -> {ok, NewState}
Types:
A dvsn = tern()

In the case of an upgrade, O dVsn isVsn, and in the case of adowngrade, d dVsn is{ down, Vsn}.Vsn
is defined by the vsn attribute(s) of the old version of the callback module Mbdul e. If no such attributeis
defined, the version is the checksum of the BEAM file.

State = term))

Theinternal state of the channel.

Extra = tern()

Passed as-isfromthe{ advanced, Ext r a} part of the update instruction.
Converts process state when code is changed.

This function is called by a client side channel when it should update its internal state during a release upgrade/
downgrade, i.e. whentheinstruction{ updat e, Modul e, Change, . . . } whereChange={ advanced, Extr a}
isgivenintheappup file. See OTP Design Principles for more information.

Ericsson AB. All Rights Reserved.: SSH | 19

ssh_channel

Note:

Soft upgrade according to the OTP release concept is not straight forward for the server side, as subsystem channel
processes are spawned by the SSH application and hence added to its supervisor tree. It could be possible to
upgrade the subsystem channels, when upgrading the user application, if the callback functions can handle two
versions of the state, but this function can not be used in the normal way.

Module:init(Args) -> {ok, State} | {ok, State, timeout()} | {stop, Reason}
Types:

Args = term)

Last argument to ssh_channel:start_link/4.

State = term)

Reason = term()

Makes necessary initializations and returns the initial channel stateif the initializations succeed.
For more detailed information on timeouts see the section CALLBACK TIMEOUTS

Module:handle call(Msg, From, State) -> Result

Types:
Msg = term)
From = opaque to the user should be used as argunent to
ssh_channel : reply/ 2

State = term)

Result = {reply, Reply, NewState} | {reply, Reply, NewState, tineout()}
| {noreply, NewState} | {noreply , NewState, tineout()} | {stop, Reason,
Reply, NewState} | {stop, Reason, NewStat e}

Reply = ternm() - will be the return value of ssh _channel:call/[2, 3]
NewState = term()
Reason = term()

Handles messages sent by calling ssh_channel:call/[2,3]

For more detailed information on timeouts see the section CALLBACK TIMEOUTS.

Module:handle cast(Msg, State) -> Result
Types.

Meg = term)

State = term))

Result = {noreply, NewState} | {noreply, NewState, tineout()} | {stop,
Reason, NewSt at e}

NewState = term()
Reason = term()

Handles messages sent by calling ssh_channel : cast/ 2
For more detailed information on timeouts see the section CALLBACK TIMEOUTS.

20 | Ericsson AB. All Rights Reserved.: SSH

ssh_channel

Module:handle msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types:

Msg = tineout | term()

Channel I1d = ssh_channel _i d()

State = term)

Handle other messages than ssh connection protocol, call or cast messages sent to the channel.

Possible erlang 'EXIT'-messages should be handled by this function and al channels should handle the following

message.

{ssh_channel _up, ssh_channel _id(), ssh_connection_ref()}
Thisisthe first messages that will be received by the channel, it is sent just before the ssh_channel:init/1
function returns successfully. Thisis especialy useful if the server wants to send a message to the client
without first receiving a message from it. If the message is not useful for your particular scenario just ignore it
by immediately returning { ok, State}.

Module:handle ssh msg(Msg, State) -> {ok, State} | {stop, Channelld, State}
Types.

Msg = ssh_connection: event ()

Channel Id = ssh_channel _i d()

State = term))

Handles SSH connection protocol messages that may need service specific attention.
The following message is completely taken care of by the SSH channel behavior

{cl osed, ssh_channel _id()}
The channel behavior will send a close message to the other side if such a message has not already been sent
and then terminate the channel with reason normal.

Module:terminate(Reason, State) ->
Types:
Reason = term()
State = term)
This function is called by a channel process when it is about to terminate. Before this function is called

ssh_connection:close/2 will be called if it has not been called earlier. This function should do any necessary cleaning
up. When it returns, the channel process terminates with reason Reason. The return value isignored.

Ericsson AB. All Rights Reserved.: SSH | 21

ssh_connection

ssh_connection

Erlang module

The SSH Connection Protocol is used by clients and servers (i.e. SSH channels) to communicate over the SSH
connection. The API functionsin this module sends SSH Connection Protocol eventsthat are received as messages by
the remote channel. In the case that the receiving channel is an Erlang process the message will be on the following
format { ssh_cm ssh_connection_ref(), ssh_event mnsg()}.If thessh channel behavior isused to
implement the channel process these will be handled by handle ssh msg/2 .

DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

bool ean() = true | false
string() =1list of ASCII characters
timeout () = infinity | integer() - in mlliseconds.

ssh_connection_ref () - opaque to the user returned by ssh:connect/3 or sent to
an SSH channel processes

ssh_channel _id() = integer()

ssh_data type code() = 1 ("stderr") | O ("normal") are currently valid val ues
see RFC 4254 section 5.2.

ssh_request _status() = success | failure
event () = {ssh_cm ssh_connection_ref(), ssh_event_nsg()}
ssh_event _neg() = data_events() | status_events() | termi nal _events()

data_events()

{data, ssh_channel _id(), ssh_data_ type_code(), binary() = Data}
Data has arrived on the channel. This event is sent asresult of calling ssh_connection: send/[3,4,5]

{eof , ssh_channel _id()}
Indicates that the other side will not send any more data. This event is sent as result of calling
ssh_connection:send_eof/2

status_events()

{signal, ssh_channel _id(), ssh_signal ()}
A signal can be delivered to the remote process/service using the following message. Some systems
will not support signals, in which case they should ignore this message. Thereis currently no funtion to
generate this event as the signals refered to are on OS-level and not something generated by an Erlang
program.

{exit_signal, ssh_channel _id(), string() = ExitSignal, string() =

ErrorMsg, string() = LanguageStri ng}
A remote execution may terminate violently due to asignal then this message may be received. For details
on valid string values see RFC 4254 section 6.10. Special case of the signals mentioned above.

{exit_status, ssh_channel _id(), integer() = ExitStatus}
When the command running at the other end terminates, the following message can be sent to return the
exit status of the command. A zero 'exit_status usually means that the command terminated successfully.
Thisevent is sent asresult of calling ssh_connection:exit_status/3

22 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh_connection

{cl osed, ssh _channel _id()}
Thisevent is sent as result of calling ssh_connection: close/2 Both the handling of this event and sending
of it will be taken care of by the ssh_channel behavior.

terminal_events()

Channelsimplementing a shell and command execution on the server side should handle the foll owing messages
that may be sent by client channel processes.

Note:

Events that includes a Want Reply expects the event handling process to call
ssh_connection:reply_request/4 with the boolean value of Want Repl y as the second argument.

{env, ssh_channel _id(), boolean() = WantReply, string() = Var, string() =
Val ue}
Environment variables may be passed to the shell/command to be started later. This event is sent as result
of calling ssh_connection: setenv/5
{pty, ssh_channel _id(), boolean() = WantReply, {string() = Terminal,
integer() = CharWdth, integer() = RowHei ght, integer() = Pixel Wdth,
integer() = PixelH ght, [{atom() | integer() = Opcode, integer() = Val ue}]
= Term nal Modes}}
A pseudo-terminal has been requested for the session. Terminal is the value of the TERM environment
variable value (e.g., vt100). Zero dimension parameters must be ignored. The character/row dimensions
override the pixel dimensions (when nonzero). Pixel dimensions refer to the drawable area of the window.
The Opcode inthe Ter mi nal Modes list isthe mnemonic name, represented as an lowercase erlang
atom, defined in RFC 4254 section 8, or the opcode if the mnemonic name is not listed in the RFC.
Example OP code: 53, menoni ¢ nane ECHO erl ang atom echo. Thereiscurrently no
API function to generate this event.
{shell, bool ean() = Want Repl y}
This message will request that the user's default shell be started at the other end. Thisevent is sent as
result of calling ssh_connection:shell/2
{wi ndow _change, ssh_channel _id(), integer() = CharWdth, integer() =
RowHei ght, integer() = PixWdth, integer() = PixHeight}
When the window (terminal) size changes on the client side, it MAY send a message to the server side to
inform it of the new dimensions. Thereis currently no API function to generate this event.
{exec, ssh_channel _id(), boolean() = WantReply, string() = Crd}
This message will request that the server starts execution of the given command. This event is sent as
result of calling ssh_connection: exec/4

Exports

adjust window(ConnectionRef, ChannelId, NumOfBytes) -> ok
Types:

Connecti onRef = ssh_connection_ref()

Channel I1d = ssh_channel _i d()

NumOF Byt es = integer()

Adjusts the SSH flowcontrol window. This shall be done by both client and server side channel processes.

Ericsson AB. All Rights Reserved.: SSH | 23

href

ssh_connection

Note:

Channelsimplemented with the ssh_channel behavior will normaly not need to call thisfunction asflow control
will be handled by the behavior. The behavior will adjust the window every time the callback handle ssh msg/2
has returned after processing channel data

close(ConnectionRef, Channelld) -> ok
Types:
Connecti onRef = ssh_connection_ref()
Channel 1d = ssh_channel _i d()

A server or client channel process can choose to close their session by sending a close event.

Note:

This function will be called by the ssh_channel behavior when the channel is terminated see ssh_channel(3) so
channels implemented with the behavior should not call this function explicitly.

exec(ConnectionRef, ChannelIld, Command, TimeOut) -> ssh request status()
Types:

Connecti onRef = ssh_connection_ref()

Channel I1d = ssh_channel _i d()

Conmmand = string()

Ti meout = timeout ()

Should be called by a client channel process to request that the server starts execution of the given command, the
result will be several messages according to the following pattern. Note that the last message will be a channel close
message, as the exec request is a one time execution that closes the channel when it is done.

N x {ssh_cm ssh_connection_ref(), {data, ssh_channel _id(),
ssh_data type code(), binary() = Data}}
The result of executing the command may be only one line or thousands of lines depending on the command.
0 or 1 x {ssh_cm ssh _connection_ref(), {eof, ssh _channel _id()}}
Indicates that no more data will be sent.
0 or 1 x {ssh_cm ssh _connection_ref(), {exit_signal, ssh _channel _id(),
string() = ExitSignal, string() = ErrorMsg, string() = LanguageString}}
Not al systems send signals. For details on valid string values see RFC 4254 section 6.10
0 or 1 x {ssh_cm ssh _connection_ref(), {exit_status, ssh_channel _id(),
integer() = ExitStatus}}
It isrecommended by thessh connecti on protocol that this message shall be sent, but that may not
aways be the case.
1 x {ssh_cm ssh _connection_ref(), {closed, ssh _channel _id()}}
Indicates that the ssh channel started for the execution of the command has now been shutdown.

exit status(ConnectionRef, Channelld, Status) -> ok

Types:
Connecti onRef = ssh_connection_ref()

24 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection

Channel Id = ssh_channel _i d()
Status = integer()

Should be called by a server channel process to sends the exit status of a command to the client.

reply request(ConnectionRef, WantReply, Status, Channelld) -> ok
Types.
Connecti onRef = ssh_connection_ref()
Want Reply = bool ean()
Status = ssh_request _status()
Channel Id = ssh_channel _id()
Sends statusrepliesto requestswheretherequester has stated that they want astatusreport ei . Vant Repl y = tr ue,

if Want Repl y isfalse calling this function will be a"noop". Should be called while handling an ssh connection
protocol message containing a\Want Repl y boolean value.

send(ConnectionRef, Channelld, Data) ->
send(ConnectionRef, Channelld, Data, Timeout) ->
send(ConnectionRef, Channelld, Type, Data) ->

send(ConnectionRef, Channelld, Type, Data, TimeOut) -> ok | {error, timeout}
| {error, closed}

Types.
Connecti onRef = ssh_connection_ref ()
Channel Id = ssh_channel _id()
Data = binary()
Type = ssh_data_type_code()
Ti meout = timeout ()

Should be called by client- and server channel processes to send data to each other.

send eof(ConnectionRef, Channelld) -> ok | {error, closed}
Types:

Connecti onRef = ssh_connection_ref()

Channel Id = ssh_channel _id()

Sends eof on the channel Channel | d.

session channel(ConnectionRef, Timeout) ->

session_channel(ConnectionRef, InitialWindowSize, MaxPacketSize, Timeout) ->
{ok, ssh channel id()} | {error, Reason}

Types:
Connecti onRef = ssh_connection_ref()
Initial WndowSi ze = integer()
MaxPacket Si ze = integer()
Ti meout = timeout ()
Reason = term()

Opens a channel for an SSH session. The channel id returned from this function is the id used as input to the other
funtions in this module.

Ericsson AB. All Rights Reserved.: SSH | 25

ssh_connection

setenv(ConnectionRef, Channelld, Var, Value, TimeOut) -> ssh request status()
Types:

Connecti onRef = ssh_connection_ref()

Channel Id = ssh_channel _i d()

Var = string()

Val ue = string()

Ti meout = timeout ()

Environment variables may be passed before starting the shell/command. Should be called by a client channel
processes.

shell(ConnectionRef, Channelld) -> ssh request status()
Types:

Connecti onRef = ssh_connection_ref()

Channel 1d = ssh_channel _i d()

Should be called by a client channel process to request that the user's default shell (typically defined in /etc/passwd
in UNIX systems) shall be executed at the server end.

subsystem(ConnectionRef, Channelld, Subsystem, Timeout) ->
ssh_request status()

Types.
Connecti onRef = ssh_connection_ref()
Channel Id = ssh_channel _id()
Subsystem = string()
Ti meout = timeout ()

Should be called by a client channel process for requesting to execute a predefined subsystem on the server.

26 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_key_api

ssh_client key api

Erlang module

Behavior describing the API for an SSH client's public key handling. By implementing the callbacks defined. in this
behavior it is possible to customize the SSH client's public key handling. By default the SSH application implements
this behavior with help of the standard openssh files, see ssh(6).

DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type. For more details on public key data types see the public_key user's guide.

boolean() = true | false

string() = [byte()]

public_key() = #RSAPublicKey'{}|{integer(), #Dss-Parms{}}| term()
private_key() = #RSAPrivateKey'{} | #DSAPrivateKey'{} | term()
public_key algorithm() = 'ssh-rsa 'ssh-dss' | atom()

Exports

Module:add host key(HostNames, Key, ConnectOptions) -> ok | {error, Reason}
Types:

Host Names = string()

Description of the host that ownsthe Publ i cKey

Key = public_key()

Normally an RSA or DSA public key but handling of other public keys can be added

Connect Options = proplists:proplist()

Options provided to ssh:connect/[3,4]

Reason = term()

Adds a host key to the set of trusted host keys

Module:is host key(Key, Host, Algorithm, ConnectOptions) -> Result
Types:

Key = public_key()

Normally an RSA or DSA public key but handling of other public keys can be added

Host = string()

Description of the host

Al gorithm = public_key al gorithm)

Host key algorithm. Should support 'ssh-rsa| 'ssh-dss' but additional algorithms can be handled.

Connect Options = proplists:proplist()

Options provided to ssh: connect/[3,4]

Result = bool ean()

Checksif ahost key istrusted

Ericsson AB. All Rights Reserved.: SSH | 27

ssh_client_key_api

Module:user key(Algorithm, ConnectOptions) -> {ok, PrivateKey} | {error,
Reason}

Types:
Al gorithm = public_key_ algorithm)
Host key algorithm. Should support 'ssh-rsa| 'ssh-dss' but additional algorithms can be handled.
Connect Options = proplists:proplist()
Options provided to ssh: connect/[3,4]
PrivateKey = private_key()
The private key of the user matching the Al gori t hm
Reason = term()

Fetches the users "public key" matching the Al gori t hm

Note:
The private key contains the public key

28 | Ericsson AB. All Rights Reserved.: SSH

ssh_server_key api

ssh_server _key api

Erlang module

Behaviour describing the API for an SSH server's public key handling. By implementing the callbacks defined in this
behavior it is possible to customize the SSH server's public key handling. By default the SSH application implements
this behavior with help of the standard openssh files, see ssh(6).

DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type. For more details on public key data types see the public_key user's guide.

boolean() = true | false

string() = [byte()]

public_key() = #RSAPublicKey'{} | {integer(), #Dss-Parms{}} | term()
private_key() = #RSAPrivateKey'{} | #DSAPrivateKey'{} | term()
public_key algorithm() = 'ssh-rsa’ | 'ssh-dss' | atom()

Exports

Module:host key(Algorithm, DaemonOptions) -> {ok, Key} | {error, Reason}
Types:

Al gorithm = public_key_al gorithm)

Host key algorithm. Should support 'ssh-rsa’ | 'ssh-dss' but additional algorithms can be handled.

DaenonOptions = proplists:proplist()

Options provided to ssh:daemon/[2,3]

Key = private_key()

The private key of the host matching the Al gori t hm

Reason = term()

Fetches the hosts private key

Module:is auth key(Key, User, DaemonOptions) -> Result
Types:
Key = public_key()
Normally an RSA or DSA public key but handling of other public keys can be added
User = string()
The user owning the public key
DaenonQpti ons = proplists:proplist()
Options provided to ssh:daemon/[2,3]
Result = bool ean()

Checksif the user key is authorized

Ericsson AB. All Rights Reserved.: SSH | 29

ssh_sftp

ssh_sftp

Erlang module

Thismoduleimplementsan SFTP (SSH FTP) client. SFTPisasecure, encrypted filetransfer service availablefor SSH.

DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to indicate the intended use of the
data type:

ssh_connection_ref() - opaque to the user returned by ssh:connect/3

timeout () = infinity | integer() - in mlliseconds.

TIMEOUTS

If the request functions for the SFTP channel return {error, timeout} it does not guarantee that the request did not
reach the server and was not performed, it only means that we did not receive an answer from the server within the
time that was expected.

Exports

start _channel(ConnectionRef) ->
start channel(ConnectionRef, Options) ->
start _channel(Host, Options) ->

start channel(Host, Port, Options) -> {ok, Pid} | {ok, Pid, ConnectionRef} |
{error, Reason}

Types.
Host = string()
Connecti onRef = ssh_connection_ref()
Port = integer()
Options = [{Option, Value}]
Reason = term()

If no connection reference is provided, a connection is set up and the new connection is returned. An SSH channel
process is started to handle the communication with the SFTP server. The returned pid for this process should be used
asinput to all other API functionsin this module.

Options are:
{tinmeout, timeout()}
Thetimeout is passed to the ssh_channel start function, and defaultsto infinity.
All other options are directly passed to ssh:connect/3 or ignored if a connection is already provided.

stop channel(ChannelPid) -> ok
Types:
Channel Pid = pid()
Stops an SFTP channel. Does not close the SSH connetion. Use ssh:close/1 to closeit.

30 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

read file(ChannelPid, File) ->
read file(ChannelPid, File, Timeout) -> {ok, Data} | {error, Reason}
Types.

Channel Pid = pid()

File = string()

Data = binary()

Ti meout = timeout ()

Reason = term()

Reads afile from the server, and returns the datain abinary, likefi l e: read fil e/ 1.

write file(ChannelPid, File, Iolist) ->
write file(ChannelPid, File, Iolist, Timeout) -> ok | {error, Reason}
Types.

Channel Pid = pid()

File = string()

lolist iolist()

Ti reout = tinmeout ()

Reason = term()

Writes a file to the server, likefile:wite fil el 2. Thefileiscreated if it does not exist or is owerwritten if
it does.

list dir(ChannelPid, Path) ->
list dir(ChannelPid, Path, Timeout) -> {ok, Filenames} | {error, Reason}
Types:

Channel Pid = pid()

Path = string()

Fil enames = [Fil enane]

Fil ename = string()

Ti meout = timeout ()

Reason = term()

Lists the given directory on the server, returning the filenames as alist of strings.

open(ChannelPid, File, Mode) ->
open(ChannelPid, File, Mode, Timeout) -> {ok, Handle} | {error, Reason}
Types.

Channel Pid = pid()

File = string()

Mode = [Mbdefl ag]

Modeflag = read | wite | creat | trunc | append | binary

Ti meout = tinmeout ()

Handle = term)

Reason = term()

Opens afile on the server, and returns a handle that can be used for reading or writing.

Ericsson AB. All Rights Reserved.: SSH | 31

ssh_sftp

opendir(ChannelPid, Path) ->
opendir(ChannelPid, Path, Timeout) -> {ok, Handle} | {error, Reason}
Types.

Channel Pid = pid()

Path = string()

Ti meout = tinmeout ()

Reason = term()

Opens a handle to a directory on the server, the handle can be used for reading directory contents.

close(ChannelPid, Handle) ->
close(ChannelPid, Handle, Timeout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Handl e = term)

Ti meout = tinmeout ()

Reason = term()

Closes ahandle to an open file or directory on the server.

read(ChannelPid, Handle, Len) ->
read(ChannelPid, Handle, Len, Timeout) -> {ok, Data} | eof | {error, Error}
pread(ChannelPid, Handle, Position, Len) ->

pread(ChannelPid, Handle, Position, Len, Timeout) -> {ok, Data} | eof |
{error, Error}

Types:
Channel Pid = pid()
Handl e = term)
Position = integer()
Len = integer()
Ti meout = timeout ()
Data = string() | binary()
Reason = term()

Reads Len bytesfrom thefile referenced by Handl e. Returns{ ok, Dat a},eof ,or{error, Reason}.Ifthe
fileis opened with bi nar y, Dat a isabinary, otherwiseit isastring.

If thefileisread past eof, only the remaining bytes will be read and returned. If no bytes are read, eof isreturned.
The pr ead function reads from a specified position, combining the posi t i on and r ead functions.

aread(ChannelPid, Handle, Len) -> {async, N} | {error, Error}
apread(ChannelPid, Handle, Position, Len) -> {async, N} | {error, Error}
Types.

Channel Pid = pid()

Handl e = term()

Position = integer()

Len = integer()

32 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

N=term)

Reason = term()
Reads from an open file, without waiting for the result. If the handle is valid, the function returns { async, N},
where N isaterm guaranteed to be unique between calls of ar ead. The actual datais sent as amessage to the calling
process. This message hastheform {async_reply, N, Result},whereResul t istheresult from the read,
either { ok, Data},oreof,or{error, Error}.

The apr ead function reads from a specified position, combining the posi t i on and ar ead functions.

write(ChannelPid, Handle, Data) ->
write(ChannelPid, Handle, Data, Timeout) -> ok | {error, Error}
pwrite(ChannelPid, Handle, Position, Data) -> ok
pwrite(ChannelPid, Handle, Position, Data, Timeout) -> ok | {error, Error}
Types:

Channel Pid = pid()

Handl e = term)

Position = integer()

Data = iolist()

Ti meout = timeout ()

Reason = term()

Writesdat a to the file referenced by Handl e. Thefile should be opened withwr i t e or append flag. Returns ok
if successful or S{error, Reason} otherwise.

Typical error reasons are:
ebadf

Thefileis not opened for writing.
enospc

There is ano space |eft on the device.

awrite(ChannelPid, Handle, Data) -> ok | {error, Reason}
apwrite(ChannelPid, Handle, Position, Data) -> ok | {error, Reason}
Types.
Channel Pid = pid()
Handle = term)
Position = integer()
Len = integer()
Data = binary()
Ti meout = tinmeout ()
Reason = term()
Writes to an open file, without waiting for the result. If the handleisvalid, the function returns{ async, N}, where
N isaterm guaranteed to be unique between callsof awr i t e. Theresult of thewr i t e operation is sent as a message

to the calling process. This message hasthe form { async_reply, N, Result}, where Resul t isthe result
from the write, either ok, or{error, Error}.

Theapw i t e writes on a specified position, combining the posi t i on and awr i t e operations.

Ericsson AB. All Rights Reserved.: SSH | 33

ssh_sftp

position(ChannelPid, Handle, Location) ->

position(ChannelPid, Handle, Location, Timeout) -> {ok, NewPosition | {error,
Error}

Types:
Channel Pid = pid()
Handle = term)

Location = Ofset | {bof, Ofset} | {cur, Ofset} | {eof, Ofset} | bof |
cur | eof

O fset = integer()

Ti meout = tinmeout ()
NewPosi tion = integer()
Reason = term()

Sets the file position of the file referenced by Handl e. Returns { ok, NewPosi ti on} (asan absolute offset) if
successful, otherwise{ error, Reason}.Locati on isone of thefollowing:

O f set

Thesameas{bof, O fset}.
{bof, Ofset}

Absolute offset.
{cur, Ofset}

Offset from the current position.
{eof, Ofset}

Offset from the end of file.
bof | cur | eof

The same as above with Of f set 0.

read file info(ChannelPid, Name) ->
read file info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Handl e = term)

Ti meout = tinmeout ()

Filelnfo = record()

Reason = term()

Returnsaf i | e_i nf o record from the file specified by Nare or Handl e, likefil e:read_fil e_i nfo/ 2.

read link info(ChannelPid, Name) -> {ok, FileInfo} | {error, Reason}
read link info(ChannelPid, Name, Timeout) -> {ok, FileInfo} | {error, Reason}
Types.

Channel Pid = pid()

Name = string()

Handl e = term)

34 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

Ti meout = tinmeout ()
Filelnfo = record()
Reason = term()

Retuns a file_info record from the symbolic link specified by Name or Handle, like
file:read_link_info/?2.

write file info(ChannelPid, Name, Info) ->
write file info(ChannelPid, Name, Info, Timeout) -> ok | {error, Reason}
Types.

Channel Pid = pid()

Name = string()

Info = record()

Ti meout = tinmeout ()

Reason = term()

Writesfileinformation from af i | e_i nf o record to the file specified by Nane, likefil e:wite file_info.

read link(ChannelPid, Name) ->
read link(ChannelPid, Name, Timeout) -> {ok, Target} | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Tar get string()

Reason = term()

Reads the link target from the symbolic link specified by nane, likefi |l e: read_I i nk/ 1.

make symlink(ChannelPid, Name, Target) ->
make symlink(ChannelPid, Name, Target, Timeout) -> ok | {error, Reason}
Types.

Channel Pid = pid()

Name = string()

Tar get string()

Reason = term()

Creates asymbolic link pointing to Tar get with the name Nane, likefi | e: make_symi i nk/ 2.

rename(ChannelPid, OldName, NewName) ->
rename (ChannelPid, OldName, NewName, Timeout) -> ok | {error, Reason}
Types.

Channel Pid = pid()

A dNane = string()
NewNane = string()
Ti meout = tinmeout ()

Reason = term()

Renames afile named O dNane, and givesit the name NewNane, likefi | e: renane/ 2

Ericsson AB. All Rights Reserved.: SSH | 35

ssh_sftp

delete(ChannelPid, Name) ->
delete(ChannelPid, Name, Timeout) -> ok | {error, Reason}
Types.

Channel Pid = pid()

Name = string()

Ti meout = tinmeout ()

Reason = term()

Deletes the file specified by Nane, likefi |l e: del ete/ 1

make dir(ChannelPid, Name) ->
make dir(ChannelPid, Name, Timeout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Ti meout = tinmeout ()

Reason = term()

Creates a directory specified by Nane. Nare should be a full path to a new directory. The directory can only be
created in an existing directory.

del dir(ChannelPid, Name) ->
del dir(ChannelPid, Name, Timeout) -> ok | {error, Reason}
Types:

Channel Pid = pid()

Name = string()

Ti reout = tinmeout ()

Reason = term()

Deletes a directory specified by Nane. Note that the directory must be empty before it can be successfully deleted

36 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftpd

ssh_sftpd

Erlang module

Specifies a channel process to handle a sftp subsystem.

DATA TYPES

subsyst em spec() = {subsyst em nane(), {channel _cal I back(),
channel _init_args()}}

subsystem nane() = "sftp"

channel _cal l back() = aton() - Name of the erlang module implementing the subsystem using the
ssh_channel behavior see ssh_channel(3)

channel _init_args() = list() - The one given as argunent to function

subsyst em spec/ 1.

Exports

subsystem spec(Options) -> subsystem spec()
Types:

Options = [{Option, Val ue}]
Should be used together with ssh:daemon/[1,2,3]
Options are:
{cwd, String}

Setstheinitial current working directory for the server.
{file_handl er, CallbackMdul e}

Determines which moduleto call for accessing the file server. The default valueisssh_sft pd_fi | e that uses
the file and filelib API:s to access the standard OTP file server. This option may be used to plug in other file
servers.

{max_files, Integer}

The default value is 0, which means that there is no upper limit. If supplied, the number of filenames returned to
the sftp client per READDI R request islimited to at most the given value.

{root, String}

Setsthe sftp root directory. The user will then not be able to see any filesabovethisroot. If for instancetheroot is
setto/ t nmp the user will seethisdirectory as/ and if the user doescd/ et ¢ theuser will endupin/t np/ et c.

{sftpd_vsn, integer()}

Sets the sftp version to use, defaultsto 5. Version 6 is under development and limited.

Ericsson AB. All Rights Reserved.: SSH | 37

	SSH
	SSH User's Guide
	Introduction
	Purpose
	Prerequisites

	Secure Shell (SSH)
	SSH Protocol Overview
	Transport Protocol
	Authentication Protocol
	Connection Protocol
	Channels

	Getting started
	 General information
	Using the Erlang SSH Terminal Client
	Running an Erlang SSH Daemon
	One Time Execution
	SFTP (SSH File Transport Protocol) server
	SFTP (SSH File Transport Protocol) client
	Creating a subsystem

	Reference Manual
	SSH
	ssh
	close/1
	connect/3
	connect/4
	connection_info/2
	daemon/1
	daemon/2
	daemon/3
	shell/1
	shell/2
	shell/3
	start/0
	start/1
	stop/0
	stop_daemon/1
	stop_daemon/2
	stop_listener/1
	stop_listener/2

	ssh_channel
	call/2
	call/3
	cast/2
	enter_loop/1
	init/1
	reply/2
	start/4
	start_link/4
	Module:code_change/3
	Module:init/1
	Module:handle_call/3
	Module:handle_cast/2
	Module:handle_msg/2
	Module:handle_ssh_msg/2
	Module:terminate/2

	ssh_connection
	adjust_window/3
	close/2
	exec/4
	exit_status/3
	reply_request/4
	send/3
	send/4
	send/4
	send/5
	send_eof/2
	session_channel/2
	session_channel/4
	setenv/5
	shell/2
	subsystem/4

	ssh_client_key_api
	Module:add_host_key/3
	Module:is_host_key/4
	Module:user_key/2

	ssh_server_key_api
	Module:host_key/2
	Module:is_auth_key/3

	ssh_sftp
	start_channel/1
	start_channel/2
	start_channel/2
	start_channel/3
	stop_channel/1
	read_file/2
	read_file/3
	write_file/3
	write_file/4
	list_dir/2
	list_dir/3
	open/3
	open/4
	opendir/2
	opendir/3
	close/2
	close/3
	read/3
	read/4
	pread/4
	pread/5
	aread/3
	apread/4
	write/3
	write/4
	pwrite/4
	pwrite/5
	awrite/3
	apwrite/4
	position/3
	position/4
	read_file_info/2
	read_file_info/3
	read_link_info/2
	read_link_info/3
	write_file_info/3
	write_file_info/4
	read_link/2
	read_link/3
	make_symlink/3
	make_symlink/4
	rename/3
	rename/4
	delete/2
	delete/3
	make_dir/2
	make_dir/3
	del_dir/2
	del_dir/3

	ssh_sftpd
	subsystem_spec/1

