
WebTool
Copyright © 2001-2010 Ericsson AB. All Rights Reserved.

WebTool 0.8.7
June 15 2010



Copyright © 2001-2010 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

June 15 2010



Ericsson AB. All Rights Reserved.: WebTool | 1



1.1  WebTool User Guide

2 | Ericsson AB. All Rights Reserved.: WebTool

1    User's Guide

WebTool provides a easy way to use web based tools with Erlang/OTP. It configures and starts a webserver as well
as all available tools.

1.1  WebTool User Guide

1.1.1  Introduction
WebTool provides an easy and efficient way to implement web based tools with Erlang/OTP. WebTool configures
and starts the webserver and the various web based tools.

All tools that shall run under WebTool must have a *.tool file in the code path or in its priv directory. When WebTool
starts it searches the code path for such files. For each ebin directory in the path, the priv directory is also searched.
The *.tool files contain the configuration data for each web based tool.

1.1.2  Starting WebTool
Start WebTool by calling the function webtool:start/0 or webtool:start/2. If webtool:start/0 is
used the start page of WebTool is available at http://localhost:8888/ or http://127.0.0.1:8888/, and the directory
containing the root directory for the webserver, is assumed to be webtool-<vsn>/priv.

Use webtool:start/2 if the default path for the root directory, port, ip-number or server name can not be used.
See the Reference Manual for webtool for more information.

WebTool, with the default configuration as in start/0, can also be started with the start_webtool script which
is available in the priv directory of the WebTool application. See the Reference Manual for start_webtool for further
information about this script. For Windows users, the batch file start_webtool.bat can be used for the same
purpose.

1.1.3  Using WebTool
Start WebTool and point the browser to the corresponding URL. At the top of the page there is a frame with a link
named WebTool. Click that link and a page where it is possible to start the available tools will appear in the main frame.

1.1.4  Start a web based tool
Click on the link labeled WebTool in the topmost frame, select the checkbox for each tool to start and click on the
button labeled Start. A link to each tool that WebTool succeeded to start will appear in the topmost frame.

1.1.5  Stop a web based tool
Click on the link labeled WebTool in the topmost frame. Select Stop Tools in the left frame. Select the checkbox for
each tool to stop and click on the button labeled Stop.

1.1.6  Develop new web based tools
WebTool can be used as a framework when developing new web based tools.

A web based tool running under WebTool will typically consist of three parts.

• A *.tool file which defines how WebTool can find the tool's configuration data



1.1  WebTool User Guide

Ericsson AB. All Rights Reserved.: WebTool | 3

• The Erlang code generating the web interface to the tool (HTML code)

• The tool itself.

In most cases it is a good idea to separate the code for creation of the html-pages and the code for the logic. This
increases the readability of the code and the logic might be possible to reuse.

The *.tool file

When WebTool starts it searches the current path for *.tool files to find all available tools. The *.tool file contains
a version identifier and a list of tuples which is the configuration data. The version identifier specifies the *.tool file
version, i.e. not the version of webtool. Currently the only valid version is "1.2" and the only valid configuration tag
is config_func. config_func specifies which function WebTool must call to get further configuration data for
the tool. This means that a *.tool file generally must look like this:

   {version,"1.2"}.
   [{config_func,{Module,Function,Arguments}}].      

Module is the name of the module where the callback function is defined. Function is the name of the callback
function, and Arguments is the list of arguments to the callback function.

The configuration function

The *.tool file points out a configuration function. This function must return a list of configuration parameters (see
the Reference Manual for webtool).

The web_data parameter is mandatory and it specifies the name of the tool and the link to the tool's start page. All
other parameters are optional.

If the tool requires any processes to run, the start parameter specifies the function that WebTool must call in order
to start the process(es).

The alias parameters are passed directly on to the webserver (INETS). The webserver has three ways to create
dynamic web pages CGI, Eval Scheme and Erl Scheme. All tools running under WebTool must use Erl Scheme.

Erl Scheme tries to resemble plain CGI. The big difference is that Erl Scheme can only execute Erlang code. The code
will furthermore be executed on the same instance as the webserver.

An URL which calls an Erlang function with Erl Scheme can have the following syntax:

http://Servername:Port/ErlScriptAlias/Mod/Func<?QueryString>      

An alias parameter in the configuration function can be an ErlScriptAlias as used in the above URL. The definition
of an ErlScripAlias shall be like this:

{alias,{erl_alias,Path,[Modules]}}, e.g.

{alias,{erl_alias,"/testtool",[helloworld]}}

The following URL will then cause a call to the function helloworld:helloworld/2 (if WebTool is started with default
settings i.e. servername "localhost" and port 8888):

http://localhost:8888/testtool/helloworld/helloworld

Note that the module helloworld must be in the code path of the node running WebTool.

Functions that are called via the Erl Scheme must take two arguments, Environment and Input.

• Environment is a list of key/value tuples.



1.1  WebTool User Guide

4 | Ericsson AB. All Rights Reserved.: WebTool

• Input is the part of the URL after the "?", i.e. the part of the URL containing name-value pairs. If the page
was called with the URL:
http://localhost:8888/testtool/helloworld/helloworld?
input1=one&amp;input2=two
Input will be the string "input1=one&amp;input2=two". In the module httpd in the INETS
application there is a function parse_query which will parse such a string and return a list of key-value
tuples.

An alias parameter in the configuration function can also be a normal path alias. This can e.g. be used to point out a
directory where HTML files are stored. The following definition states that the URL http://localhost:8888/
mytool_home/ really points to the directory /usr/local/otp/lib/myapp-1.0/priv:

{alias,{"/mytool_home","/usr/local/otp/lib/myapp-1.0/priv"}}

See the INETS documentation, especially the module mod_esi, for a more in depht coverage of Erl Scheme.

A small example

A Hello World example that uses Erl Scheme would look like this. Note that this example does not have a process
running and thus does not need a start parameter in the configuration function.

helloworld.erl:

        -module(helloworld).
        -export([config_data/0]).
        -export([helloworld/2]).
        
        config_data()->
            {testtool,
             [{web_data,{"TestTool","/testtool/helloworld/helloworld"}},
              {alias,{erl_alias,"/testtool",[helloworld]}}]}.
        
        helloworld(_Env,_Input)->
            [header(),html_header(),helloworld_body(),html_end()].

        header() ->
            header("text/html").

        header(MimeType) ->
            "Content-type: " ++ MimeType ++ "\r\n\r\n".

        html_header() ->    
            "<HTML>
               <HEAD>
                  <TITLE>Hello world Example </TITLE>
               </HEAD>\n".

        helloworld_body()->
            "<BODY>Hello World</BODY>".

        html_end()->
            "</HTML>".
      

To use this example with WebTool a *.tool file must be created and added to a directory in the current path, e.g. the
same directory as the compiled helloworld.beam.

testtool.tool:



1.1  WebTool User Guide

Ericsson AB. All Rights Reserved.: WebTool | 5

        {version,"1.2"}.
        [{config_func, {helloworld,config_data,[]}}].
      

When helloworld.erl is compiled, start WebTool by calling the function webtool:start() and point your
browser to http://localhost:8888/. Select WebTool in the topmost frame and start TestTool from the web page. Click
on the link labeled TestTool in the topmost frame.



1.1  WebTool User Guide

6 | Ericsson AB. All Rights Reserved.: WebTool

2    Reference Manual

WebTool provides an easy way to use web based tools with Erlang/OTP. It configures and starts a webserver as well
as all available tools.



webtool

Ericsson AB. All Rights Reserved.: WebTool | 7

webtool
Erlang module

WebTool makes it easy to use web based tools with Erlang/OTP. WebTool configures and starts the webserver httpd.

Exports

start()-> {ok,Pid}| {stop,Reason}

Start WebTool with default data, i.e. port 8888, ip-number 127.0.0.1, and server-name localhost. If port 8888 is
in use, port 8889 is tried instead. If 8889 is also in use, 8890 is tried and so on. Max number of ports tried is 256.

The mime.types file and WebTool's own HTML files are assumed to be in the directory webtool-<vsn>/
priv/root/conf.

start(Path,Data)->{ok,Pid}|{stop,Reason}

Types:

Path = string() | standard_path

Data = [Port,Address,Name] | PortNumber | standard_data

Port = {port,PortNumber}

Address = {bind_address,IpNumber}

Name = {server_name,ServerName}

PortNumber = integer()

IpNumber = tuple(), e.g. {127,0,0,1}

ServerName = string()

Pid = pid()

Use this function to start WebTool if the default port, ip-number,servername or path can not be used.

Path is the directory where the mime.types file and WebTool's own HTML files are located. By default this is
webtool-<vsn>/priv, and in most cases there is no need to change this. If Path is set to standard_path
the default will be used.

If Data is set to PortNumber, the default data will be used for ip-number (127.0.0.1) and server name
(localhost).

stop()->void

Stop WebTool and the tools started by WebTool.

debug_app(Module)->void

Types:

Module = atom()

Debug a WebTool application by tracing all functions in the given module which are called from WebTool.

stop_debug()->void

Stop the tracing started by debug_app/1, and format the trace log.



webtool

8 | Ericsson AB. All Rights Reserved.: WebTool

CALLBACK FUNCTIONS
The following callback function must be implemented by each web based tool that will be used via WebTool. When
started, WebTool searches the Erlang code path for *.tool files to locate all web based tools and their callback functions.
See the WebTool User's Guide for more information about the *.tool files.

Exports

Module:Func(Data)-> {Name,WebData}|error

Types:

Data = term()

Name = atom()

WebData = [WebOptions]

WebOptions = LinkData | Alias | Start

LinkData = {web_data,{ToolName,Url}}

Alias = {alias,{VirtualPath,RealPath}} | {alias,{erl_alias,Path,[Modules]}

Start = {start,StartData}

ToolName = Url = VirtualPath = RealPath = Path = string()

Modules = atom()

StartData = AppData | ChildSpec | Func

AppData = {app,AppName}

ChildSpec = {child,child_spec()}

See the Reference Manual for the module supervisor in the STDLIB application for details about child_spec().

Func = {func,{StartMod,StartFunc,StartArg}, {StopMod,StopFunc,StopArg}}

AppName = StartMod = StartFunc = StopMod = StopFunc =atom()

StartArg = StopArg = [term()]

This is the configuration function (config_func) which must be stated in the *.tool file.

The function is called by WebTool at startup to retrieve the data needed to start and configure the tool. LinkData is
used by WebTool to create the link to the tool. Alias is used to create the aliases needed by the webserver. Start
is used to start and stop the tool.

See Also
start_webtool(1), WebTool User's Guide



start_webtool

Ericsson AB. All Rights Reserved.: WebTool | 9

start_webtool
Command

The start_webtool script starts WebTool, a WebTool application and a web browser pointing to this application.

Exports

start_webtool application [ browser ]

Starts WebTool, the given WebTool Application and a web browser pointing to this application.

If no argument is given, a list of available applications is displayed, e.g.

>start_webtool
Starting webtool...
WebTool is available at http://localhost:8888/
Or  http://127.0.0.1:8888/

Usage: start_webtool application [ browser ]

Available applications are: [orber,appmon,crashdump_viewer,webcover]
Default browser is 'iexplore' (Internet Explorer) on Windows or else 'firefox'        

To start any of the listed applications, give the application name as the first argument, e.g.

>start_webtool webcover
Starting webtool...
WebTool is available at http://localhost:8888/
Or  http://127.0.0.1:8888/
Starting webcover...
Sending URL to netscape...done        

The WebTool application WebCover is then started and the default browser is used. The default browser is Internet
Explorer on Windows or else Firefox.

To use another browser, give the browser's start command as the second argument, e.g.

>start_webtool webcover mozilla
Starting webtool...
WebTool is available at http://localhost:8888/
Or  http://127.0.0.1:8888/
Starting webcover...
Sending URL to mozilla...done        

If the given browser name is not known to WebTool, WebTool will run it as a command with the start URL as the
only argument, e.g.

>start_webtool webcover mybrowser
Starting webtool...
WebTool is available at http://localhost:8888/
Or  http://127.0.0.1:8888/



start_webtool

10 | Ericsson AB. All Rights Reserved.: WebTool

Starting webcover...
Starting mybrowser...        

Here the command "mybrowser http://localhost:8888/webcover" is executed.

See Also
webtool(3)


	WebTool
	User's Guide
	WebTool User Guide
	Introduction 
	Starting WebTool
	Using WebTool
	Start a web based tool
	Stop a web based tool
	Develop new web based tools
	The *.tool file
	The configuration function
	A small example



	Reference Manual
	webtool
	start/0
	start/2
	stop/0
	debug_app/1
	stop_debug/0
	Module:Func/1

	start_webtool



