| v

ERLANG

wxErlang

Copyright © 2009-7 2010 Ericsson AB. All Rights Reserved.
wxErlang 0.98.8
December 7 2010

Copyright © 2009-7 2010 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

December 7 2010

Ericsson AB. All Rights Reserved.: wxErlang | 1

1.1 wx the erlang binding of wxWidgets

1 User's Guide

The wxErlang application is an api for writing graphical user interfaces with wxWidgets.

1.1 wx the erlang binding of wxWidgets

The wx application is an erlang binding of wxWidgets. This document describes the erlang mapping to wxWidgets
and it's implementation. It is not a complete users guide to wxWidgets. If you need that, you will have to read the
wxWidgets documentation instead. wx tries to keep a one-to-one mapping with the original api so that the original
documentation and examples shall be as easy as possible to use.

wxErlang examples and test suite can be found in the erlang src release. They can also provide some help on how
to use the api.

Thisiscurrently avery brief introduction to wx. The application is still under development, which meansthe interface
may change, and the test suite currently have a poor coverage ratio.

1.1.1 Contents

* Introduction

e Multiple processes and memory handling
» Event Handling

e Acknowledgments

1.1.2 Introduction

The original wxWidgetsis an object-oriented (C++) api and that is reflected in the erlang mapping. In most cases each
classin wxWidgets is represented as a module in erlang. This gives the wx application a huge interface, spread over
several modules, and it all starts with the wx module. The wx module contains functions to create and destroy the gui,
i.e.wx: new 0,wx: dest r oy/ 0, and some other useful functions.

Objects or object references in wx should be seen as erlang processes rather then erlang terms. When you operate on
them they can change state, e.g. they are not functional objects as erlang terms are. Each object has a type or rather
aclass, which is manipulated with the corresponding module or by sub-classes of that object. Type checking is done
so that amodule only operates on it's objects or inherited classes.

An object is created with new and destroyed with destroy. Most functions in the classes are named the same as their
C++ counterpart, except that for convenience, in erlang they start with alowercase letter and the first argument isthe
object reference. Optional arguments are last and expressed as tagged tuplesin any order.

For example the wxWindow C++ class is implemented in the wxWindow erlang module and the member
wxWindow: : Center OnParent is thus wxWindow: center OnParent. The following C++ code:

wxW ndow MYW n = new wxW ndo() ;
M/W n. Cent er OnPar ent (WxVERTI CAL) ;
del ete MyW n;

would in erlang look like:

2 | Ericsson AB. All Rights Reserved.: wxErlang

1.1 wx the erlang binding of wxWidgets

MW n = wxW ndow. new(),
wxW ndow: cent er OnPar ent (MW n, [{dir, 2wxVERTI CAL}]),

wxW ndow: dest r oy(MyW n) ,

When you are reading wxWidgets documentation or the examples, you will notice that some of the most basic classes
are missing in wx, they are directly mapped to corresponding erlang terms:

wxPoint is represented by { Xcoord,Y coord}

wxSize is represented by { Width,Height}

wxRect is represented by { X coord,Y coord,Width,Height}
wxColour isrepresented by { Red,Green,Blue[,Alphal}
wxPoint is represented by { Xcoord,Y coord}

wxString is represented by unicode: charlist()
wxGBPosition is represented by { Row,Column}
wXxGBSpan is represented by { RowSpan,ColumnSPan}
wxGridCellCoordsis represented by { Row,Column}

In the places where the erlang api differs from the original one it should be obvious from the erlang documentation
which representation has been used. E.g. the C++ arrays and/or lists are sometimes represented as erlang lists and
sometimes as tuples.

Colours are represented with { Red,Green,Blue[,Alphal}, the Alpha value is optional when used as an argument to
functions, but it will always be returned from wx functions.

Defines, enumerations and global variables existsinwx. hr | as defines. Most of these defines are constants but not
all. Some are platform dependent and therefore the global variables must be instantiated during runtime. These will be
acquired from the driver with a call, so not al defines can be used in matching statements. Class local enumerations
will be prefixed with the class name and aunderscoreasin C assNanme_Enum

Additionally some global functions, i.e. non-class functions, exist in thewx_mi sc module.

wxErlang isimplemented as a (threaded) driver and arather direct interface to the C++ api, with the drawback that if
the erlang programmer does an error, it might crash the emulator.

Since the driver is threaded it requires a smp enabled emulator, that provides athread safe interface to the driver.

1.1.3 Multiple processes and memory handling

Theintention isthat each erlang application calls wx:new() once to setup it's gui which creates an environment and a
memory mapping. To be able to use wx from several processesin your application, you must share the environment.
You can get the active environment with wx: get _env/ 0 and set it in the new processes with wx: set _env/ 1.
Two processes or applications which have both called wx:new() will not be able use each others objects.

wx: new(),
MW n = wxFrane: new(wx: nul | (), 42, "Exanple", []),
Env = wx: get _env(),
spawn(fun() ->
wx: set _env(Env),
%%b Here you can do wx calls from your hel per process.

endj .

When wx: dest r oy/ 0 isinvoked or when all processes in the application have died, the memory is deleted and all
windows created by that application are closed.

Ericsson AB. All Rights Reserved.: wxErlang | 3

1.1 wx the erlang binding of wxWidgets

Thewx application never cleans or garbage collects memory aslong asthe user applicationisalive. Most of the objects
are deleted when awindow is closed, or at least all the objects which have a parent argument that is non null. By using
WX CLASS: dest r oy/ 1 when possibleyou can avoid an increasing memory usage. Thisisespecially important when
wxWidgets assumes or recommends that you (or rather the C++ programmer) have allocated the object on the stack
since that will never be done in the erlang binding. For example wx DC class or its sub-classesor wxSi zer Fl ags.

Currently the dialogs show modal function freezes wxWidgets until the dialog is closed. That isintended but in erlang
where you can have severa gui applications running at the same time it causes trouble. This will hopefully be fixed
in future wxWidgets rel eases.

1.1.4 Event Handling

Event handling in wx differs most the from the original api. You must specify every event you want to handle in
wxWidgets, that is the same in the erlang binding but can you choose to receive the events as messages or handle
them with callback funs.

Otherwise the event subscription is handled as wxWidgets dynamic event-handler connection. Y ou subscribe to events
of a certain type from objects with an ID or within a range of 1D:s. The callback fun is optional, if not supplied the
event will be sent to the processthat called connect/2. Thus, ahandler is acallback fun or a process which will receive
an event message.

Eventsare handled in order from bottom to top, in the widgets hierarchy, by thelast subscribed handler first. Depending
onif wcEvent : ski p() iscaled the event will be handled by the other handler(s) afterwards. Most of the events
have default event handler(s) installed.

Message events looks like #wx{id=integer(), obj=wx:wxObject(), userData=term(), event=Rec }. The id is the
identifier of the object that received the event. The obj field contains the object that you used connect on. The user Data
field contains a user supplied term, thisis an option to connect. And the event field contains a record with event type
dependent information. The first element in the event record is always the type you subscribed to. For exampleif you
subscribed to key_up events you will receive the #wx{ event =Event } where Event will be a wxKey event record
where Event #wxKey. t ype = key_up.

In wxWidgets the developer haveto call wxEvent : ski p() if hewantsthe event to be processed by other handlers.
Y ou can do the samein wx if you use callbacks. If you want the event as messages you just don't supply acallback and
you can set the skip option in connect call to true or false, the default it is false. True means that you get the message
but let the subsequent handlers also handle the event. If you want to change this behavior dynamically you must use
callbacks and call wxEvent : ski p() .

Callback event handling is done by using the optional callback fun/2 when attaching the handler. The
fun(#wx{} ,wxObject() must take two arguments where thefirst isthe same as with message events described above and
the second is an object reference to the actual event object. With the event object you can call wxEvent : ski p()
and access al the data. When using callbacks you must call wxEvent : ski p() by yourself if you want any of the
events to be forwarded to the following handlers. The actual event objects are deleted after the fun returns.

The callbacks are aways invoked by another process and have exclusive usage of the gui when invoked. This means
that a callback fun can not use the process dictionary and should not make calls to other processes. Calls to another
processinside a callback fun may cause adeadlock if the other processis waiting on completion of his call to the gui.

1.1.5 Acknowledgments

Mats-Ola Persson wrote the initial wxWidgets binding as part of his master thesis. The current version is a total re-
write but many ideas have been reused. The reason for the re-write was mostly due to the limited requirements he
had been given by us.

Also thanks to the wxWidgets team that devel ops and supportsit so we have something to use.

4 | Ericsson AB. All Rights Reserved.: wxErlang

1.1 wx the erlang binding of wxWidgets

2 Reference Manual

The wxErlang application is an api for writing graphical user interfaces with wxWidgets.

Ericsson AB. All Rights Reserved.: wxErlang | 5

WX

WX

Erlang module

A port of wxWidgets.

This is the base api of wxWidgets. This module contains functions for starting and stopping the wx-server, as well
as other utility functions.

wxWidgetsis object oriented, and not functional. Thus, in wxErlang amodul e represents aclass, and the object created
by this class has an own type, wxCLASS(). This module represents the base class, and all other wxMODULE's are
sub-classes of this class.

Objects of aclass are created with wxCLASS:new(...) and destroyed with wxCLA SS:destroy(). Member functions are
called with wxCLASS:member(Object, ...) instead of asin C++ Object.member(...).

Sub class modules inherit (non static) functions from their parents. The inherited functions are not documented in
the sub-classes.

This erlang port of wxWidgets tries to be a one-to-one mapping with the original wxWidgets library. Some things are
different though, as the optional arguments use property lists and can be in any order. The main differenceisthe event
handling which is different from the original library. See wxEvtHandler.

The following classes are implemented directly as erlang types:
wxPoint={ x,y} ,wxSize={ w,h} ,wxRect={ x,y,w,h} ,wxColour={r,g,b [,a}, wxString=unicode: charlist(),
wxGBPosition={r,c} ,wxGBSpan={ rs,cs} ,wxGridCell Coords={r,c} .

wxWidgets uses a process specific environment, which is created by wx: new/0. To be able to use the environment from
other processes, call get_env/0to retrieve the environment and set_env/1 to assign the environment in the other process.

Global (classless) functions are located in the wx_misc module.

DATA TYPES
col our ()

A 3or 4tuple: {R,G,B,A} or as argument { R,G,B} is also accepted where each colour channel is a an integer
between 0-255.

datetinme()
{{Year,Month,Day}, { Hour,Minute,Second}} in loca timezone.
nmousesSt at e()
See #wxMouseState{} defined in wx.hrl
wxCbj ect ()
Opaque object
wx_env()
Wx process environment
wx_nen()

Wx memory area

6 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

WX

Exports

new() -> wxQbject()
Startsawx server.

new(Options::[Option]) -> wxObject()
Starts awx server. Option may be { debug, Level}, see debug/1.

destroy() -> ok
Stops awx server.

get _env() -> wx_env()

Gets this process's current wx environment. Can be sent to other processes to allow them use this process wx
environment.

Seealso: set_env/1.

set _env(Wk_env::wx_env()) -> ok

Sets the process wx environment, allows this process to use another process wx environment.

null () -> wxObject()
Returns the null object

is_null (W _ref::wxObject()) -> bool ean()
Returnstrueif object is null, false otherwise

get Obj ect Type(W_ref::wxCbject()) -> atom)
Returns the object type

typeCast (O d: : wxObj ect (), NewType::aton()) -> wxObject ()

Casts the object to class NewType. It is needed when using functions like wxWindow:findWindow/2, which returns
ageneric wxObject type.

bat ch(Fun: :function()) -> term)

Batches all wx commands used in the fun. Improves performance of the command processing by grabbing the
wxWidgets thread so that no event processing will be done before the compl ete batch of commandsis invoked.

See also: foldl/3, foldr/3, foreach/2, map/2.

foreach(Fun::function(), List::list()) -> ok
Behaves like lists:foreach/2 but batches wx commands. See batch/1.

map(Fun:: function(), List::list()) -> list()
Behaves like lists:map/2 but batches wx commands. See batch/1.

Ericsson AB. All Rights Reserved.: wxErlang | 7

WX

foldl (Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldl/3 but batches wx commands. See batch/1.

foldr(Fun::function(), Acc::term(), List::list()) ->term()
Behaveslike lists:foldr/3 but batches wx commands. See batch/1.

create_nenory(Size::integer()) -> wx_nenory()

Createsamemory area (of Size in bytes) which can be used by an external library (i.e. opengl). It isup to the client to
keep areference to this object so it does not get garbage collected by erlang while still in use by the external library.

Thisisfar from erlang's intentional usage and can crash the erlang emulator. Use it carefully.

get _nmenory_bi n(Wk_mem :wx_nenory()) -> binary()
Returns the memory area as a binary.

retai n_nermory(W_nmem :wx_nenory()) -> ok

Saves the memory from deletion until release_ memory/1iscalled. If release_memory/1is not called the memory will
not be garbage collected.

rel ease_menory(W_nen) -> term)

debug(Level ::term()) -> ok
Types:
Level = none | verbose | trace| driver | [Level]

Sets debug level. If debug level is verbose or trace each call is printed on console. If Level is driver each allocated
object and deletion is printed on the console.

deno() -> ok

Starts awxErlang demo if examples directory exists and is compiled

8| Ericsson AB. All Rights Reserved.: wxErlang

wx_object

wx_object

Erlang module

wx_object - Generic wx object behaviour

Thisis abehaviour module that can be used for "sub classing” wx objects. It works like aregular gen_server module
and creates a server per object.

NOTE: Currently no form of inheritance isimplemented.
The user module should export:

init(Args) should return
{wxObject, State} | { wxObject, State, Timeout} | ignore | { stop, Reason}

handle_call(Msg, { From, Tag}, State) should return
{reply, Reply, State} | {reply, Reply, State, Timeout} | {noreply, State} | { noreply, State, Timeout} | { stop, Reason,
Reply, State}

Asynchronous window event handling:
handle_event(#wx{}, State) should return
{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

Infois message e.g. {'EXIT', P, R}, { nodedown, N}, ...
handle_info(Info, State) should return, ...
{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

When stop is returned in one of the functions above with Reason = normal | shutdown | Term, terminate(State) is
caled. It lets the user module clean up, it is always called when server terminates or when wxObject() in the driver is
deleted. If the Parent process terminates the Module:terminate/2 function is called.

terminate(Reason, State)

Example:

- modul e(nyDi al og) .
-export ([new 2, show 1, destroy/1]). %% API
-export([init/1, handle_call/3, handle_event/2,
handl e_i nfo/ 2, code_change/3, term nate/2]).
new 2, showiwdal /1, destroy/1]). %% Cal |l backs

%6 Client API
new(Parent, Msg) ->
wx_obj ect: start (?MODULE, [Parent,Id], []).

show(D al og) ->
wx_obj ect: cal | (Di al og, show_nodal).

destroy(Di al og) ->
wx_obj ect: cal | (Di al og, destroy).

%6 Server | npl enentation ala gen_server
init([Parent, Str]) ->
Di al og = wxDi al og: new(Parent, 42, "Testing", []),

wxDi al og: connect (Di al og, conmand_button_cl i cked),
{Di al og, M/State}.

handl e_cal | (show, _From State) ->

wxDi al og: show(St at e#st at e. wi n),
{reply, ok, State};

Ericsson AB. All Rights Reserved.: wxErlang | 9

wx_object

handl e_event (#wx{}, State) ->
io:format("Users clicked button~n",[]),
{noreply, State};

Exports

start (Mod, Args, Options) -> wWndow() (see nodul e wxW ndow)

Types:
Mod = atom()
Args=term()

Options = [{timeout, Timeout} | {debug, [Flag]}]
Flag =trace|log | {lodfile, File} | statistics | debug
Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start (Nanme, Mod, Args, Options) -> wxWndow() (see nodul e wxW ndow)
Types:

Name = {local, atom()}

Mod = atom()

Args=term()

Options = [{timeout, Timeout} | {debug, [Flag]}]

Flag =trace|log | {lodfile, File} | statistics | debug
Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start _|ink(Md, Args, Options) -> wWndow() (see nodul e wxW ndow)

Types:
Mod = atom()
Args=term()

Options = [{timeout, Timeout} | {debug, [Flag]}]
Flag =trace|log | {lodfile, File} | statistics | debug
Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start _|ink(Nanme, Md, Args, Options) -> wxWndow() (see nodul e wxW ndow)
Types.

Name = {local, atom()}

Mod = atom()

Args=term()

Options = [{timeout, Timeout} | {debug, [Flag]}]

Flag =trace|log | {lodfile, File} | statistics | debug
Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

10 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

call (Ref::wxObject() | atom) | pid(), Request::ternm()) -> term()

Make a call to awx_object server. The call waits until it gets a result. Invokes handle_call(Reguest, From, State) in
the server

call (Ref::wxObject() | atom() | pid(), Request::tern(), Timeout::integer()) -
> term)

Make a call to awx_object server with atimeout. Invokes handle_call(Request, From, State) in server

cast (Ref::wxObject() | atonm() | pid(), Request::tern()) -> ok
Make a cast to awx_object server. Invokes handle_cast(Request, State) in the server

get _pid(Ref::wxObject()) -> pid()
Get the pid of the object handle.

reply(From:tuple(), Reply::tern()) -> pid()
Get the pid of the object handle.

Ericsson AB. All Rights Reserved.: wxErlang | 11

wxAcceleratorEntry

wxAcceleratorEntry

Erlang module

See external documentation: wxAccelerator Entry.

DATA TYPES
wxAccel eratorEntry()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

new() -> wxAccel eratorEntry()
Equivalent to new([]).

new(X::tern() | wxAcceleratorEntry()) -> wxAccel eratorEntry()

See exter nal documentation.
Alternatives:

new([Option]) -> wxAccel eratorEntry()
Option = {flags, integer()} | {keyCode, integer()} | {cmd, integer()} | {item, wxMenultem:wxMenultem()}

new Entry: :wxAccel eratorEntry()) -> wxAccel eratorEntry()

get Command(Thi s:: wxAccel eratorEntry()) -> integer()
See external documentation.

get Fl ags(Thi s:: wxAccel eratorEntry()) -> integer()
See external documentation.

get KeyCode(Thi s:: wxAccel eratorEntry()) -> integer()
See external documentation.

set (Thi s::wxAccel eratorEntry(), Flags::integer(), KeyCode::integer(),
Cmd: :integer()) -> ok

Equivalent to set(This, Flags, KeyCode, Cmd, []).

set (Thi s::wxAcceleratorEntry(), Flags::integer(), KeyCode::integer(),
Crd: :integer(), Options::[Option]) -> ok
Types:

Option = {item, wxM enultem() (see module wxM enultem)}

See exter nal documentation.

12 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href

wxAcceleratorEntry

destroy(This::wxAccel eratorEntry()) -> ok

Destroys this object, do not use object again

Ericsson AB. All Rights Reserved.: wxErlang | 13

wxAcceleratorTable

wxAcceleratorTable

Erlang module

See external documentation: wxAcceler ator T able.

DATA TYPES
wxAccel er at or Tabl e()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

new() -> wxAccel eratorTabl e()
See external documentation.

new(N::integer(), Entries::[wxAcceleratorEntry() (see nodul e
wxAccel eratorEntry)]) -> wxAccel erat or Tabl e()

See exter nal documentation.

ok(Thi s::wxAccel eratorTabl e()) -> bool ()
See exter nal documentation.

destroy(This::wxAccel eratorTable()) -> ok
Destroys this object, do not use object again

14 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

wxArtProvider

wxArtProvider

Erlang module

See external documentation: wxArtProvider.

DATA TYPES
WXAr t Provi der ()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

getBitmap(ld::string()) -> wxBitmap() (see nodul e wxBi t nap)
Equivalent to getBitmap(ld, []).

getBitmap(ld::string(), Options::[Option]) -> wxBi tmap() (see nodul e
wxBi t map)

Types:
Option = {client, string()} | {size, {W::integer (), H::integer)}}
See exter nal documentation.

getlcon(ld::string()) -> wlcon() (see nodul e wxlcon)
Equivalent to getlcon(ld, []).

getlcon(ld::string(), Options::[Option]) -> wxlcon() (see nodul e wxlcon)
Types.
Option ={client, string()} | {size, {W::integer (), H::integer ()}}

See exter nal documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 15

href
href
href

wxAuiDockArt

wxAuiDockArt

Erlang module

See external documentation: wxAuiDockArt.

DATA TYPES
wxAui DockArt ()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

16 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAuiManager

wxAuiManager

Erlang module

See external documentation: wxAuiM anager .

This classis derived (and can use functions) from:
wxEvtHandler

DATA TYPES

wxAui Manager ()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

new() -> wxAui Manager ()
Equivalent to new([]).

new(Options::[Option]) -> wxAui Manager ()
Types:

Option = {managed_wnd, wxWindow() (see module wxWindow)} | {flags, integer ()}
See external documentation.

addPane(Thi s: : wxAui Manager (), W ndow. : wxW ndow() (see nodul e wxW ndow)) ->
bool ()

Equivalent to addPane(This, Window, []).

addPane(Thi s: : wxAui Manager (), W ndow: : wx\W ndow() (see nodul e wxW ndow),
X::term()) -> bool ()

See exter nal documentation.
Alternatives:

addPane(Thi s: : wxAui Manager (), W ndow. : wxW ndow. wxW ndow(), [Qption]) -> bool ()
Option = {direction, integer()} |{caption, string()}

addPane(Thi s: : wxAui Manager (), W ndow: : wxW ndow. wxW ndow() ,
Pane_i nf o: : wxAui Panel nf o: wxAui Panel nfo()) -> bool ()

addPane(Thi s: : wxAui Manager (), W ndow: : wxW ndow() (see nodul e wxW ndow),
Pane_i nf o: : wxAui Panel nfo() (see nodul e wxAui Panel nfo), Drop_pos::
{X::integer(), Y::integer()}) -> bool ()

See exter nal documentation.

det achPane(Thi s: : wxAui Manager (), W ndow: : wxW ndow() (see nodul e wxW ndow)) ->
bool ()

See external documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 17

href
href
href
href
href

wxAuiManager

get Al | Panes(Thi s: : wxAui Manager ()) -> wxAui Panel nfoArray() (see nodul e
wxAui Panel nf oAr r ay)

See exter nal documentation.

get Art Provi der (Thi s: : wxAui Manager ()) -> wxAui DockArt () (see nodul e
wWxAui DockArt)

See exter nal documentation.

get DockSi zeConstrai nt (Thi s: : wxAui Manager()) -> {Wdth_pct::float(),
Hei ght _pct::float()}

See exter nal documentation.

get Fl ags(Thi s: : wxAui Manager ()) -> integer()
See external documentation.

get ManagedW ndow(Thi s: : wxAui Manager ()) -> wxW ndow() (see nodul e wxW ndow)
See external documentation.

get Manager (W ndow. : wxW ndow() (see nodul e wxW ndow)) -> wxAui Manager ()
See external documentation.

get Pane(Thi s: : wxAui Manager (), X :string() | term()) -> wxAui Panelnfo() (see
nmodul e wxAui Panel nf o)

See exter nal documentation.
Alternatives:

get Pane(Thi s: : wxAui Manager (), Name::string()) -> wxAui Panel nf o: wxAui Panel nf o()

get Pane(Thi s: : wxAui Manager (), W ndow: : wxW ndow. wxW ndow()) ->
wxAui Panel nf o: wxAui Panel nf o()

hi deHi nt (Thi s: : wxAui Manager ()) -> ok
See external documentation.

i nsert Pane(Thi s: : wxAui Manager (), W ndow. : wxW ndow() (see nodul e wxW ndow),
I nsert _| ocation::wxAui Panel nfo() (see nodul e wxAui Panel nfo)) -> bool ()

Equivalent to insertPane(This, Window, Insert_location, []).

i nsert Pane(Thi s: : wxAui Manager (), W ndow. : wxW ndow() (see nodul e wxW ndow) ,
I nsert | ocation::wxAui Panel nfo() (see nodul e wxAui Panel nfo), Options::

[Option]) -> bool ()
Types.
Option ={insert_level, integer ()}

See exter nal documentation.

18 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href
href
href
href

wxAuiManager

| oadPanel nf o(Thi s: : wxAui Manager (), Pane_part::string(), Pane::wxAui Panel nfo()
(see nodul e wxAui Panel nfo)) -> ok

See external documentation.

| oadPer specti ve(Thi s: : wxAui Manager (), Perspective::string()) -> bool ()
Equivalent to loadPer spective(This, Perspective, []).

| oadPer specti ve(This:: wxAui Manager (), Perspective::string(), Options::
[Option]) -> bool ()
Types:

Option = {update, bool()}

See exter nal documentation.

savePanel nf o(Thi s: : wxAui Manager (), Pane::wxAui Panel nfo() (see nodul e
wxAui Panel nfo)) -> string()

See external documentation.

savePer spective(This::wxAui Manager()) -> string()
See external documentation.

set Art Provi der (Thi s: : wxAui Manager (), Art_provider:: wxAui DockArt () (see nodul e
wWxAui DockArt)) -> ok

See exter nal documentation.

set DockSi zeConst rai nt (Thi s: : wxAui Manager (), Wdth_pct::float(),
Hei ght _pct::float()) -> ok

See external documentation.

set Fl ags(Thi s: : wxAui Manager (), Flags::integer()) -> ok
See external documentation.

set ManagedW ndow(Thi s: : wxAui Manager (), Managed_wnd:: wxW ndow() (see nodul e
wxW ndow)) -> ok

See external documentation.
showHi nt (Thi s: : wxAui Manager (), Rect::{X :integer(), Y::integer(),
W:integer(), H:integer()}) -> ok

See external documentation.

unl ni t (This:: wxAui Manager ()) -> ok
See external documentation.

updat e(Thi s: : wxAui Manager()) -> ok

See exter nal documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 19

href
href
href
href
href
href
href
href
href
href
href

wxAuiManager

destroy(Thi s::wxAui Manager()) -> ok
Destroys this object, do not use object again

20 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManagerEvent

wxAuiManagerEvent

Erlang module

See external documentation: wxAuiM anager Event.
Use wxEvtHandler: connect/3 with EventType:

aui_pane button, aui_pane close, aui_pane maximize, aui_pane restore, aui_render, aui_find_manager
See al so the message variant #wxAuiManager{} event record type.

This classis derived (and can use functions) from:
WxEvent

DATA TYPES
wxAui Manager Event ()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

set Manager (Thi s: : wxAui Manager Event (), Mr:: wxAui Manager () (see nodul e
wxAui Manager)) -> ok

See exter nal documentation.

get Manager (Thi s: : wxAui Manager Event ()) -> wxAui Manager () (see nodul e
wxAui Manager)

See exter nal documentation.

set Pane(Thi s: : wxAui Manager Event (), P::wxAui Panelnfo() (see nodul e
wxAui Panel nfo)) -> ok

See external documentation.

get Pane(Thi s: : wxAui Manager Event ()) -> wxAui Panel nfo() (see nodul e
wxAui Panel nf o)

See exter nal documentation.

set But t on(Thi s: : wxAui Manager Event (), B::integer()) -> ok
See external documentation.

get Butt on(Thi s: : wxAui Manager Event ()) -> integer()
See external documentation.

set DC(Thi s: : wxAui Manager Event (), Pdc::wxDC() (see nmodul e wxDC)) -> ok
See external documentation.

Ericsson AB. All Rights Reserved.: wxErlang | 21

href
href
href
href
href
href
href
href

wxAuiManagerEvent

get DC(Thi s: : wxAui Manager Event ()) -> wxDC() (see nodul e wxDC)

See exter nal documentation.

vet o(Thi s: : wxAui Manager Event ()) -> ok
Equivaent to veto(This, []).

vet o(Thi s: : wxAui Manager Event (), Options::[Option])

Types:
Option = {veto, bool ()}

See exter nal documentation.

get Vet o(Thi s: : wxAui Manager Event ()) -> bool ()
See external documentation.

set CanVet o(Thi s: : wxAui Manager Event (), Can_veto
See exter nal documentation.

canVet o(Thi s: : wxAui Manager Event ()) -> bool ()

See exter nal documentation.

22 | Ericsson AB. All Rights Reserved.: wxErlang

::bool ())

-> ok

-> ok

href
href
href
href
href

wxAuiNotebook

wxAuiNotebook

Erlang module

See external documentation: wxAuiNotebook.

This classis derived (and can use functions) from:
wxControl

wxWindow

wxEvtHandler

DATA TYPES
wxAui Not ebook()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

new() -> wxAui Not ebook()

See exter nal documentation.

new(Parent:: wxW ndow() (see nodul e wxW ndow)) -> wxAui Not ebook()
Equivalent to new(Parent, []).

new(Parent: : wxW ndow() (see nodul e wxW ndow), Options::[Option]) ->
wxAui Not ebook()

Types:

Option ={id, integer ()} | {pos, {X::integer(), Y::integer ()}} | {size, {W::integer (), H::integer ()}} | {style,
integer ()}
See external documentation.

addPage(Thi s: : wxAui Not ebook(), Page::wxW ndow() (see nodul e wxW ndow),
Caption::string()) -> bool ()

Equivalent to addPage(This, Page, Caption, []).

addPage(Thi s: : wxAui Not ebook(), Page::wxW ndow() (see nodul e wxW ndow),
Caption::string(), Options::[Option]) -> bool ()
Types:

Option = {select, bool()} | {bitmap, wxBitmap() (see module wxBitmap)}

See external documentation.

creat e(Thi s: : wxAui Not ebook(), Parent::wxWndow() (see nodul e wxW ndow)) ->
bool ()

Equivalent to create(This, Parent, []).

Ericsson AB. All Rights Reserved.: wxErlang | 23

href
href
href
href

wxAuiNotebook

creat e(Thi s: : wxAui Not ebook(), Parent::wxW ndow() (see nodul e wxW ndow) ,
Options::[Option]) -> bool ()
Types:
Option ={id, integer)} | {pos, {X::integer (), Y::integer ()}} | {size, {W::integer (), H::integer ()}} | {style,
integer ()}

See exter nal documentation.

del et ePage(Thi s: : wxAui Not ebook(), Page::integer()) -> bool ()
See exter nal documentation.

get Art Provi der (Thi s: : wxAui Not ebook()) -> wxAui TabArt () (see nodul e
WXAUi TabArt)

See exter nal documentation.

get Page(Thi s: : wxAui Not ebook(), Page_idx::integer()) -> wWndow() (see nodul e
wxW ndow)

See exter nal documentation.

get PageBi t map(Thi s: : wxAui Not ebook(), Page_idx::integer()) -> wxBitmap() (see
nmodul e wxBi t map)

See exter nal documentation.

get PageCount (Thi s: : wxAui Not ebook()) -> integer()

See exter nal documentation.

get Pagel ndex(Thi s: : wxAui Not ebook(), Page_wnd:: wxW ndow() (see nodul e
wxW ndow)) -> integer()

See exter nal documentation.

get PageText (Thi s: : wxAui Not ebook(), Page_idx::integer()) -> string()
See external documentation.

get Sel ecti on(Thi s: : wxAui Not ebook()) -> integer()

See exter nal documentation.

i nsert Page(Thi s: : wxAui Not ebook(), Page_ idx::integer(), Page::wWndow) (see
nmodul e wxW ndow), Caption::string()) -> bool ()

Equivalent to insertPage(This, Page idx, Page, Caption, []).

i nsert Page(Thi s:: wxAui Not ebook(), Page_idx::integer(), Page::wWndow) (see
nmodul e wxW ndow), Caption::string(), Options::[Option]) -> bool ()
Types:
Option = {select, bool()} | {bitmap, wxBitmap() (see module wxBitmap)}
See external documentation.

24 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href
href
href
href
href

wxAuiNotebook

renovePage(Thi s: : wxAui Not ebook(), Page::integer()) -> bool ()
See external documentation.

set Art Provi der (Thi s: : wxAui Not ebook(), Art::wxAui TabArt() (see nodul e
WxAui TabArt)) -> ok

See exter nal documentation.

set Font (Thi s: : wxAui Not ebook(), Font::wxFont() (see nodul e wxFont)) -> bool ()

See exter nal documentation.

set PageBi t map(Thi s: : wxAui Not ebook(), Page::integer(), Bitmap::wBitmap() (see
nmodul e wxBi t map)) -> bool ()

See external documentation.

set PageText (Thi s: : wxAui Not ebook(), Page::integer(), Text::string()) -> bool ()
See external documentation.

set Sel ecti on(Thi s:: wxAui Not ebook(), New _page::integer()) -> integer()
See external documentation.

set TabCt r| Hei ght (Thi s: : wxAui Not ebook(), Height::integer()) -> ok
See external documentation.

set Uni f or nBi t mapSi ze(Thi s: : wxAui Not ebook(), Size::{W:integer(),
H :integer()}) -> ok

See exter nal documentation.

destroy(Thi s:: wxAui Not ebook()) -> ok
Destroys this object, do not use object again

Ericsson AB. All Rights Reserved.: wxErlang | 25

href
href
href
href
href
href
href
href

wxAuiNotebookEvent

wxAuiNotebookEvent

Erlang module

See external documentation: wxAuiNotebook Event.
Use wxEvtHandler: connect/3 with EventType:

command_auinotebook page close, command_auinotebook page changed,
command_auinotebook page changing, command_auinotebook button, command_auinotebook begin_drag,
command_auinotebook end drag, command_auinotebook drag motion, command_auinotebook allow_dnd,
command_auinotebook tab middle_down, command_auinotebook tab middle up,
command_auinotebook tab right_down, command_auinotebook tab right_up,
command_auinotebook page closed, command_auinotebook drag_done, command_auinotebook bg_dclick

See also the message variant #wxAuiNotebook{} event record type.

This classis derived (and can use functions) from:
wxNotifyEvent

wxCommandEvent

wxEvent

DATA TYPES
wxAui Not ebookEvent ()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

set Sel ecti on(Thi s: : wxAui Not ebookEvent (), S::integer()) -> ok
See external documentation.

get Sel ecti on(Thi s: : wxAui Not ebookEvent ()) -> integer()
See external documentation.

set O dSel ecti on(Thi s:: wxAui Not ebookEvent (), S::integer()) -> ok
See external documentation.

get A dSel ecti on(Thi s:: wxAui Not ebookEvent ()) -> integer()
See external documentation.

set DragSour ce(Thi s: : wxAui Not ebookEvent (), S::wxAui Not ebook() (see nodul e
wxAui Not ebook)) -> ok

See exter nal documentation.

get DragSour ce(Thi s: : wxAui Not ebookEvent ()) -> wxAui Not ebook() (see nodul e
wxAui Not ebook)

See external documentation.

26 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href
href
href
href

wxAuiPanelnfo

wxAuiPanelnfo

Erlang module

See external documentation: wxAuiPanel nfo.

DATA TYPES
wxAui Panel nf o()

An object reference, The representation is internal and can be changed without notice. It can't be used for
comparsion stored on disc or distributed for use on other nodes.

Exports

new() -> wxAui Panel nfo()
See external documentation.

new(C. : wxAui Panel nfo()) -> wxAui Panel nfo()

See exter nal documentation.

best Si ze(Thi s: : wxAui Panel nfo(), Size::{W:integer(), H:integer()}) ->
wxAui Panel nf o()

See exter nal documentation.

best Si ze(Thi s: : wxAui Panel nfo(), X :integer(), Y::integer()) ->
wxAui Panel nfo()

See external documentation.

bott on(Thi s: : wxAui Panel nfo()) -> wxAui Panel nfo()
See external documentation.

bot t omDockabl e(Thi s: : wxAui Panel nfo()) -> wxAui Panel nfo()
Equivalent to bottomDockable(This, []).

bot t onDockabl e(Thi s: : wxAui Panel nfo(), Options::[Option]) -> wxAui Panel nfo()
Types:

Option ={b, bool ()}
See external documentation.

caption(This::wxAui Panelnfo(), C :string()) -> wxAui Panel nfo()
See external