Kernel Application (KERNEL)

version 2.13
Contents

1 Kernel Reference Manual

1.1 kernel ... 22
1.2 application .. 26
1.3 auth ... 35
1.4 code ... 37
1.5 disk_log ... 48
1.6 erl_boot_server 62
1.7 erl_ddl ... 64
1.8 erl_prm_loader 79
1.9 erlang .. 80
1.10 error_handler 81
1.11 error_logger 83
1.12 file .. 90
1.13 gen_sctp ... 114
1.14 gen_tcp ... 128
1.15 gen_udp ... 135
1.16 global ... 138
1.17 global_group 143
1.18 heart ... 147
1.19 inet ... 149
1.20 init .. 161
1.21 net_adm ... 162
1.22 net_kernel 165
1.23 os ... 169
1.24 packages ... 172
1.25 pg2 ... 175
1.26 rpc ... 178
1.27 seq_trace ... 185
1.28 user ... 193
1.29 wrap_log_reader 194
1.30 zlib .. 196
1.31 app .. 197
1.32 config .. 200
Kernel Reference Manual

Short Summaries

- Application **kernel** [page 22] – The Kernel Application
- Erlang Module **application** [page 26] – Generic OTP application functions
- Erlang Module **auth** [page 35] – Erlang Network Authentication Server
- Erlang Module **code** [page 37] – Erlang Code Server
- Erlang Module **disk_log** [page 48] – A disk based term logging facility
- Erlang Module **erl_boot_server** [page 62] – Boot Server for Other Erlang Machines
- Erlang Module **erl_dll** [page 64] – Dynamic Driver Loader and Linker
- Erlang Module **erl_prim_loader** [page 79] – Low Level Erlang Loader
- Erlang Module **erlang** [page 80] – The Erlang BIFs
- Erlang Module **error_handler** [page 81] – Default System Error Handler
- Erlang Module **error_logger** [page 83] – Erlang Error Logger
- Erlang Module **file** [page 90] – File Interface Module
- Erlang Module **gen_scotp** [page 114] – The gen_scotp module provides functions for communicating with sockets using the SCTP protocol.
- Erlang Module **gen_tcp** [page 128] – Interface to TCP/IP sockets
- Erlang Module **gen_udp** [page 135] – Interface to UDP sockets
- Erlang Module **global** [page 138] – A Global Name Registration Facility
- Erlang Module **global_group** [page 143] – Grouping Nodes to Global Name Registration Groups
- Erlang Module **heart** [page 147] – Heartbeat Monitoring of an Erlang Runtime System
- Erlang Module **inet** [page 149] – Access to TCP/IP Protocols
- Erlang Module **init** [page 161] – Coordination of System Startup
- Erlang Module **net_adm** [page 162] – Various Erlang Net Administration Routines
- Erlang Module **net_kernel** [page 165] – Erlang Networking Kernel
- Erlang Module **os** [page 169] – Operating System Specific Functions
- Erlang Module **packages** [page 172] – Packages in Erlang
- Erlang Module **pg2** [page 175] – Distributed Named Process Groups
- Erlang Module **rpc** [page 178] – Remote Procedure Call Services
- Erlang Module **seq_trace** [page 185] – Sequential Tracing of Messages
Erlang Module user [page 193] – Standard I/O Server
Erlang Module wrap_log_reader [page 194] – A function to read internally formatted wrap disk logs

kernel

No functions are exported.

application

The following functions are exported:

- get_all_env() -> Env
 [page 26] Get the configuration parameters for an application
- get_all_env(Application) -> Env
 [page 26] Get the configuration parameters for an application
- get_all_key() -> {ok, Keys} | []
 [page 26] Get the application specification keys
- get_all_key(Application) -> {ok, Keys} | undefined
 [page 26] Get the application specification keys
- get_application() -> {ok, Application} | undefined
 [page 27] Get the name of an application containing a certain process or module
- get_application(Pid | Module) -> {ok, Application} | undefined
 [page 27] Get the name of an application containing a certain process or module
- get_env(Par) -> {ok, Val} | undefined
 [page 27] Get the value of a configuration parameter
- get_env(Application, Par) -> {ok, Val} | undefined
 [page 27] Get the value of a configuration parameter
- get_key(Key) -> {ok, Val} | undefined
 [page 27] Get the value of an application specification key
- get_key(Application, Key) -> {ok, Val} | undefined
 [page 27] Get the value of an application specification key
- load(AppDescr) -> ok | {error, Reason}
 [page 27] Load an application
- load(AppDescr, Distributed) -> ok | {error, Reason}
 [page 27] Load an application
- loaded_applications() -> [{Application, Description, Vsn}]
 [page 28] Get the currently loaded applications
- permit(Application, Bool) -> ok | {error, Reason}
 [page 28] Change an application’s permission to run on a node.
- set_env(Application, Par, Val) -> ok
 [page 29] Set the value of a configuration parameter
- set_env(Application, Par, Val, Timeout) -> ok
 [page 29] Set the value of a configuration parameter
- start(Application) -> ok | {error, Reason}
 [page 29] Load and start an application
- start(Application, Type) -> ok | {error, Reason}
 [page 29] Load and start an application
- start_type() -> StartType | local | undefined
 [page 30] Get the start type of an ongoing application startup.
- stop(Application) -> ok | {error, Reason}
 [page 30] Stop an application
- takeover(Application, Type) -> ok | {error, Reason}
 [page 31] Take over a distributed application
- unload(Application) -> ok | {error, Reason}
 [page 31] Unload an application
- unset_env(Application, Par) -> ok
 [page 31] Unset the value of a configuration parameter
- unset_env(Application, Par, Timeout) -> ok
 [page 31] Unset the value of a configuration parameter
- which_applications() -> [{Application, Description, Vsn}]
 [page 32] Get the currently running applications
- which_applications(Timeout) -> [{Application, Description, Vsn}]
 [page 32] Get the currently running applications
- Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error, Reason}
 [page 32] Start an application
- Module:start_phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
 [page 33] Extended start of an application
- Module:prep_stop(State) -> NewState
 [page 33] Prepare an application for termination
- Module:stop(State)
 [page 34] Clean up after termination of an application
- Module:config_change(Changed, New, Removed) -> ok
 [page 34] Update the configuration parameters for an application.

auth

The following functions are exported:
- is_auth(Node) -> yes | no
 [page 35] Status of communication authorization (deprecated)
- cookie() -> Cookie
 [page 35] Magic cookie for local node (deprecated)
- cookie(TheCookie) -> true
 [page 35] Set the magic for the local node (deprecated)
- node_cookie([Node, Cookie]) -> yes | no
 [page 35] Set the magic cookie for a node and verify authorization (deprecated)
- node_cookie(Node, Cookie) -> yes | no
 [page 35] Set the magic cookie for a node and verify authorization (deprecated)
The following functions are exported:

- `set_path(Path) -> true | {error, What}`
 - [page 41] Set the code server search path

- `get_path() -> Path`
 - [page 41] Return the code server search path

- `add_path(Dir) -> true | {error, What}`
 - [page 41] Add a directory to the end of the code path

- `add_pathz(Dir) -> true | {error, What}`
 - [page 41] Add a directory to the end of the code path

- `add_patha(Dir) -> true | {error, What}`
 - [page 41] Add a directory to the beginning of the code path

- `add_paths(Dirs) -> ok`
 - [page 41] Add directories to the end of the code path

- `add_pathsz(Dirs) -> ok`
 - [page 41] Add directories to the end of the code path

- `add_pathsa(Dirs) -> ok`
 - [page 42] Add directories to the beginning of the code path

- `del_path(Name | Dir) -> true | false | {error, What}`
 - [page 42] Delete a directory from the code path

- `replace_path(Name, Dir) -> true | {error, What}`
 - [page 42] Replace a directory with another in the code path

- `load_file(Module) -> {module, Module} | {error, What}`
 - [page 42] Load a module

- `load_abs(Filename) -> {module, Module} | {error, What}`
 - [page 43] Load a module, residing in a given file

- `ensure_loaded(Module) -> {module, Module} | {error, What}`
 - [page 43] Ensure that a module is loaded

- `load_binary(Module, Filename, Binary) -> {module, Module} | {error, What}`
 - [page 43] Load object code for a module

- `delete(Module) -> true | false`
 - [page 43] Removes current code for a module

- `purge(Module) -> true | false`
 - [page 44] Removes old code for a module

- `soft_purge(Module) -> true | false`
 - [page 44] Removes old code for a module, unless no process uses it

- `is_loaded(Module) -> {file, Loaded} | false`
 - [page 44] Check if a module is loaded

- `all_loaded() -> [{Module, Loaded}]`
 - [page 44] Get all loaded modules

- `which(Module) -> Which`
 - [page 44] The object code file of a module

- `get_object_code(Module) -> {Module, Binary, Filename} | error`
 - [page 45] Get the object code for a module
- `root_dir()` -> string()
 [page 45] Root directory of Erlang/OTP
- `lib_dir()` -> string()
 [page 45] Library directory of Erlang/OTP
- `lib_dir(Name) -> string() | {error, bad_name}
 [page 45] Library directory for an application
- `lib_dir(Name, SubDir) -> string() | {error, bad_name}
 [page 46] subdirectory for an application
- `compiler_dir()` -> string()
 [page 46] Library directory for the compiler
- `priv_dir(Name) -> string() | {error, bad_name}
 [page 46] Priv directory for an application
- `objfile_extension()` -> ".beam"
 [page 46] Object code file extension
- `stick_dir(Dir) -> ok | error
 [page 46] Mark a directory as sticky
- `unstick_dir(Dir) -> ok | error
 [page 47] Remove a sticky directory mark
- `is_sticky(Module) -> true | false
 [page 47] Test whether a module is sticky
- `rehash()` -> ok
 [page 47] Rehash or create code path cache
- `where_is_file(Filename) -> Absname | non_existing
 [page 47] Full name of a file located in the code path
- `clash()` -> ok
 [page 47] Search for modules with identical names.
- `is_module_native(Module) -> true | false | undefined
 [page 47] Test whether a module has native code

disk_log

The following functions are exported:

- `accessible_logs()` -> [{LocalLog}, [DistributedLog]]
 [page 50] Return the accessible disk logs on the current node.
- `alog(Log, Term)`
 [page 50] Asynchronously log an item onto a disk log.
- `balog(Log, Bytes) -> ok | {error, Reason}
 [page 50] Asynchronously log an item onto a disk log.
- `alog_terms(Log, TermList)`
 [page 50] Asynchronously log several items onto a disk log.
- `balog_terms(Log, BytesList) -> ok | {error, Reason}
 [page 50] Asynchronously log several items onto a disk log.
- `block(Log)`
 [page 51] Block a disk log.
- `block(Log, QueueLogRecords) -> ok | {error, Reason}
 [page 51] Block a disk log.
• change_header(Log, Header) -> ok | {error, Reason}
 [page 51] Change the head or head_func option for an owner of a disk log.
• change_notify(Log, Owner, Notify) -> ok | {error, Reason}
 [page 51] Change the notify option for an owner of a disk log.
• change_size(Log, Size) -> ok | {error, Reason}
 [page 52] Change the size of an open disk log.
• chunk(Log, Continuation)
 [page 52] Read a chunk of items written to a disk log.
• chunk(Log, Continuation, N) -> {Continuation2, Terms} |
 {Continuation2, Terms, Badbytes} | eof | {error, Reason}
 [page 52] Read a chunk of items written to a disk log.
• bchunk(Log, Continuation)
 [page 52] Read a chunk of items written to a disk log.
• bchunk(Log, Continuation, N) -> {Continuation2, Binaries} |
 {Continuation2, Binaries, Badbytes} | eof | {error, Reason}
 [page 52] Read a chunk of items written to a disk log.
• chunk_info(Continuation) -> InfoList | {error, Reason}
 [page 53] Return information about a chunk continuation of a disk log.
• chunk_step(Log, Continuation, Step) -> {ok, Continuation2} | {error, Reason}
 [page 53] Step forward or backward among the wrap log files of a disk log.
• close(Log) -> ok | {error, Reason}
 [page 54] Close a disk log.
• format_error(Error) -> Chars
 [page 54] Return an English description of a disk log error reply.
• inc_wrap_file(Log) -> ok | {error, Reason}
 [page 54] Change to the next wrap log file of a disk log.
• info(Log) -> InfoList | {error, no_such_log}
 [page 54] Return information about a disk log.
• lclose(Log)
 [page 56] Close a disk log on one node.
• lclose(Log, Node) -> ok | {error, Reason}
 [page 56] Close a disk log on one node.
• log(Log, Term)
 [page 56] Log an item onto a disk log.
• blog(Log, Bytes) -> ok | {error, Reason}
 [page 56] Log an item onto a disk log.
• log_terms(Log, TermList)
 [page 56] Log several items onto a disk log.
• blog_terms(Log, BytesList) -> ok | {error, Reason}
 [page 57] Log several items onto a disk log.
• open(ArgL) -> OpenRet | DistOpenRet
 [page 57] Open a disk log file.
• pid2name(Pid) -> {ok, Log} | undefined
 [page 60] Return the name of the disk log handled by a pid.
• reopen(Log, File)
 [page 60] Reopen a disk log and save the old log.
- `reopen(Log, File, Head)`
 [page 60] Reopen a disk log and save the old log.
- `breopen(Log, File, BHead)` -> `ok | {error, Reason}`
 [page 60] Reopen a disk log and save the old log.
- `sync(Log)` -> `ok | {error, Reason}`
 [page 61] Flush the contents of a disk log to the disk.
- `truncate(Log)`
 [page 61] Truncate a disk log.
- `truncate(Log, Head)`
 [page 61] Truncate a disk log.
- `btruncate(Log, BHead)` -> `ok | {error, Reason}`
 [page 61] Truncate a disk log.
- `unblock(Log)` -> `ok | {error, Reason}`
 [page 61] Unblock a disk log.

`erl_boot_server`

The following functions are exported:

- `start(Slaves)` -> `{ok, Pid} | {error, What}`
 [page 62] Start the boot server
- `start_link(Slaves)` -> `{ok, Pid} | {error, What}`
 [page 62] Start the boot server and links the caller
- `add_slave(Slave)` -> `ok | {error, What}`
 [page 63] Add a slave to the list of allowed slaves
- `delete_slave(Slave)` -> `ok | {error, What}`
 [page 63] Delete a slave from the list of allowed slaves
- `which_slaves()` -> `Slaves`
 [page 63] Return the current list of allowed slave hosts

`erl_ddll`

The following functions are exported:

- `demonitor(MonitorRef)` -> `ok`
 [page 66] Remove a monitor for a driver
- `info()` -> `AllInfoList`
 [page 66] Retrieve information about all drivers
- `info(Name)` -> `InfoList`
 [page 66] Retrieve information about one driver
- `info(Name, Tag)` -> `Value`
 [page 67] Retrieve specific information about one driver
- `load(Path, Name)` -> `ok | {error, ErrorDesc}`
 [page 67] Load a driver
- `load_driver(Path, Name)` -> `ok | {error, ErrorDesc}`
 [page 68] Load a driver
- `monitor(Tag, Item)` -> `MonitorRef`
 [page 69] Create a monitor for a driver
Kernel Application (KERNEL)

- `reload(Path, Name) -> ok | {error, ErrorDesc}`
 [page 70] Replace a driver
- `reload_driver(Path, Name) -> ok | {error, ErrorDesc}`
 [page 71] Replace a driver
- `try_load(Path, Name, OptionList) -> {ok,Status} | {ok, PendingStatus, Ref} | {error, ErrorDesc}`
 [page 72] Load a driver
- `tryUnload(Name, OptionList) -> {ok,Status} | {ok, PendingStatus, Ref} | {error, ErrorAtom}`
 [page 75] Unload a driver
- `unload(Name) -> ok | {error, ErrorDesc}`
 [page 77] Unload a driver
- `unload_driver(Name) -> ok | {error, ErrorDesc}`
 [page 77] Unload a driver
- `loaded_drivers() -> {ok, Drivers}`
 [page 78] List loaded drivers
- `format_error(ErrorDesc) -> string()`
 [page 78] Format an error descriptor

erl_prim_loader

No functions are exported.

erlang

No functions are exported.

error_handler

The following functions are exported:
- `undefined_function(Module, Function, Args) -> term()`
 [page 81] Called when an undefined function is encountered
- `undefined_lambda(Module, Fun, Args) -> term()`
 [page 81] Called when an undefined lambda (fun) is encountered

error_logger

The following functions are exported:
- `error_msg(Format) -> ok`
 [page 83] Send an standard error event to the error logger
- `error_msg(Format, Data) -> ok`
 [page 83] Send an standard error event to the error logger
- `format(Format, Data) -> ok`
 [page 83] Send an standard error event to the error logger
- `error_report(Report) -> ok`
 [page 84] Send a standard error report event to the error logger
- error_report(Type, Report) -> ok
 [page 84] Send a user defined error report event to the error logger
- warning_map() -> Tag
 [page 84] Return the current mapping for warning events
- warning_msg(Format) -> ok
 [page 85] Send a standard warning event to the error logger
- warning_msg(Format, Data) -> ok
 [page 85] Send a standard warning event to the error logger
- warning_report(Report) -> ok
 [page 85] Send a standard warning report event to the error logger
- warning_report(Type, Report) -> ok
 [page 86] Send a user defined warning report event to the error logger
- info_msg(Format) -> ok
 [page 86] Send a standard information event to the error logger
- info_msg(Format, Data) -> ok
 [page 86] Send a standard information event to the error logger
- info_report(Report) -> ok
 [page 86] Send a standard information report event to the error logger
- info_report(Type, Report) -> ok
 [page 87] Send a user defined information report event to the error logger
- add_report_handler(Handler) -> Result
 [page 87] Add an event handler to the error logger
- add_report_handler(Handler, Args) -> Result
 [page 87] Add an event handler to the error logger
- delete_report_handler(Handler) -> Result
 [page 87] Delete an event handler from the error logger
- tty(Flag) -> ok
 [page 87] Enable or disable printouts to the tty
- logfile(Request) -> ok | Filename | {error, What}
 [page 88] Enable or disable error printouts to a file

file

The following functions are exported:
- change_group(Filename, Gid) -> ok | {error, Reason}
 [page 90] Change group of a file
- change_owner(Filename, Uid) -> ok | {error, Reason}
 [page 90] Change owner of a file
- change_owner(Filename, Uid, Gid) -> ok | {error, Reason}
 [page 91] Change owner and group of a file
- change_time(Filename, Mtime) -> ok | {error, Reason}
 [page 91] Change the modification time of a file
- change_time(Filename, Mtime, Atime) -> ok | {error, Reason}
 [page 91] Change the modification and last access time of a file
- close(IoDevice) -> ok | {error, Reason}
 [page 91] Close a file
- `consult(Filename) -> {ok, Terms} | {error, Reason}` [page 91] Read Erlang terms from a file
- `copy(Source, Destination) -> ok, Terms | error, Reason` [page 92] Copy file contents
- `copy(Source, Destination, ByteCount) -> {ok, BytesCopied} | {error, Reason}` [page 92] Copy file contents
- `del_dir(Dir) -> ok | {error, Reason}` [page 92] Delete a directory
- `delete(Filename) -> ok | {error, Reason}` [page 93] Delete a file
- `eval(Filename) -> ok | {error, Reason}` [page 93] Evaluate Erlang expressions in a file
- `eval(Filename, Bindings) -> ok | {error, Reason}` [page 94] Evaluate Erlang expressions in a file
- `file_info(Filename) -> {ok, FileInfo} | {error, Reason}` [page 94] Get information about a file (deprecated)
- `format_error(Reason) -> Chars` [page 94] Return a descriptive string for an error reason
- `get_cwd() -> {ok, Dir} | {error, Reason}` [page 94] Get the current working directory
- `get_cwd(Drive) -> {ok, Dir} | {error, Reason}` [page 94] Get the current working directory for the drive specified
- `list_dir(Dir) -> {ok, Filenames} | {error, Reason}` [page 95] List files in a directory
- `make_dir(Dir) -> ok | {error, Reason}` [page 95] Make a directory
- `make_link(Existing, New) -> ok | {error, Reason}` [page 95] Make a hard link to a file
- `make_symlink(Name1, Name2) -> ok | {error, Reason}` [page 96] Make a symbolic link to a file or directory
- `open(Filename, Modes) -> {ok, IoDevice} | {error, Reason}` [page 96] Open a file
- `path_conсult(Path, Filename) -> {ok, Terms, FullName} | {error, Reason}` [page 99] Read Erlang terms from a file
- `path_eval(Path, Filename) -> {ok, FullName} | {error, Reason}` [page 99] Evaluate Erlang expressions in a file
- `path_open(Path, Filename, Modes) -> {ok, IoDevice, FullName} | {error, Reason}` [page 100] Open a file
- `path_script(Path, Filename) -> {ok, Value, FullName} | {error, Reason}` [page 100] Evaluate and return the value of Erlang expressions in a file
- `path_script(Path, Filename, Bindings) -> {ok, Value, FullName} | {error, Reason}` [page 101] Evaluate and return the value of Erlang expressions in a file
- `pid2name(Pid) -> string() | undefined` [page 101] Return the name of the file handled by a pid
- `position(IoDevice, Location) -> {ok, NewPosition} | {error, Reason}` [page 101] Set position in a file
- `pread(IoDevice, LocNums) -> {ok, DataL} | eof | {error, Reason}` [page 102] Read from a file at certain positions
- `pread(IoDevice, Location, Number) -> {ok, Data} | eof | {error, Reason}` [page 102] Read from a file at a certain position
- `pwrite(IoDevice, LocBytes) -> ok | {error, N, Reason}` [page 102] Write to a file at certain positions
- `pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}` [page 103] Write to a file at a certain position
- `read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}` [page 103] Read from a file
- `read_file(Filename) -> {ok, Binary} | {error, Reason}` [page 104] Read a file
- `read_file_info(Filename) -> {ok, FileInfo} | {error, Reason}` [page 104] Get information about a file
- `read_link(Name) -> {ok, Filename} | {error, Reason}` [page 105] See what a link is pointing to
- `read_link_info(Name) -> {ok, FileInfo} | {error, Reason}` [page 106] Get information about a link or file
- `rename(Source, Destination) -> ok | {error, Reason}` [page 106] Rename a file
- `script(Filename) -> {ok, Value} | {error, Reason}` [page 106] Evaluate and return the value of Erlang expressions in a file
- `script(Filename, Bindings) -> {ok, Value} | {error, Reason}` [page 107] Evaluate and return the value of Erlang expressions in a file
- `set_cwd(Dir) -> ok | {error,Reason}` [page 107] Set the current working directory
- `sync(IoDevice) -> ok | {error, Reason}` [page 107] Synchronizes the in-memory state of a file with that on the physical medium
- `truncate(IoDevice) -> ok | {error, Reason}` [page 108] Truncate a file
- `write(IoDevice, Bytes) -> ok | {error, Reason}` [page 108] Write to a file
- `write_file(Filename, Bytes) -> ok | {error, Reason}` [page 108] Write a file
- `write_file(Filename, Bytes, Modes) -> ok | {error, Reason}` [page 109] Write a file
- `write_file_info(Filename, FileInfo) -> ok | {error, Reason}` [page 109] Change information about a file
gen_sctp

The following functions are exported:

- `abort(sctp_socket(), Assoc) -> ok | {error, posix()}`
 [page 115] Abnormally terminate the association given by Assoc, without flushing of unsent data
- `close(sctp_socket()) -> ok | {error, posix()}`
 [page 115] Completely close the socket and all associations on it
- `connect(Socket, Addr, Port, Opts) -> {ok, Assoc} | {error, posix()}`
 [page 115] Same as `connect(Socket, Addr, Port, Opts, infinity)`.
- `connect(Socket, Addr, Port, [Opt], Timeout) -> {ok, Assoc} | {error, posix()}`
 [page 115] Establish a new association for the socket Socket, with a peer (SCTP server socket)
- `controlling_process(sctp_socket(), pid()) -> ok`
 [page 116] Assign a new controlling process pid to the socket
- `eof(Socket, Assoc) -> ok | {error, Reason}`
 [page 116] Gracefully terminate the association given by Assoc, with flushing of all unsent data
- `listen(Socket, IsServer) -> ok | {error, Reason}`
 [page 116] Set up a socket to listen.
- `open() -> {ok, Socket} | {error, posix()}`
 [page 117] Create an SCTP socket and bind it to local addresses
- `open(Port) -> {ok, Socket} | {error, posix()}`
 [page 117] Create an SCTP socket and bind it to local addresses
- `open([Opt]) -> {ok, Socket} | {error, posix()}`
 [page 117] Create an SCTP socket and bind it to local addresses
- `recv(sctp_socket()) -> {ok, {FromIP, FromPort, AncData, BinMsg}} | {error, Reason}`
 [page 117] Receive a message from a socket
- `recv(sctp_socket(), timeout()) -> {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}`
 [page 117] Receive a message from a socket
- `send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}`
 [page 119] Send a message using an #sctp_sndrcvinfo record
- `send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}`
 [page 119] Send a message over an existing association and given stream
- `error_string(integer()) -> ok | string() | undefined`
 [page 119] Translate an SCTP error number into a string

gen_tcp

The following functions are exported:

- `connect(Address, Port, Options) -> {ok, Socket} | {error, Reason}`
 [page 129] Connect to a TCP port
- `connect(Address, Port, Options, Timeout) -> {ok, Socket} | {error, Reason}`
 [page 129] Connect to a TCP port
- `listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}`
 [page 130] Set up a socket to listen on a port
- `accept(ListenSocket) -> {ok, Socket} | {error, Reason}`
 [page 130] Accept an incoming connection request on a listen socket
- `accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}`
 [page 130] Accept an incoming connection request on a listen socket
- `send(Socket, Packet) -> ok | {error, Reason}`
 [page 131] Send a packet
- `recv(Socket, Length) -> {ok, Packet} | {error, Reason}`
 [page 131] Receive a packet from a passive socket
- `recv(Socket, Length, Timeout) -> {ok, Packet} | {error, Reason}`
 [page 131] Receive a packet from a passive socket
- `controlling_process(Socket, Pid) -> ok | {error, Reason}`
 [page 132] Change controlling process of a socket
- `close(Socket) -> ok | {error, Reason}`
 [page 132] Close a TCP socket
- `shutdown(Socket, How) -> ok | {error, Reason}`
 [page 132] Immediately close a socket

gen_udp

The following functions are exported:

- `open(Port) -> {ok, Socket} | {error, Reason}`
 [page 135] Associate a UDP port number with the process calling it
- `open(Port, Options) -> {ok, Socket} | {error, Reason}`
 [page 135] Associate a UDP port number with the process calling it
- `send(Socket, Address, Port, Packet) -> ok | {error, Reason}`
 [page 136] Send a packet
- `recv(Socket, Length) -> {ok, {Address, Port, Packet}} | {error, Reason}`
 [page 136] Receive a packet from a passive socket
- `recv(Socket, Length, Timeout) -> {ok, {Address, Port, Packet}} | {error, Reason}`
 [page 136] Receive a packet from a passive socket
- `controlling_process(Socket, Pid) -> ok`
 [page 136] Change controlling process of a socket
- `close(Socket) -> ok | {error, Reason}`
 [page 137] Close a UDP socket
global

The following functions are exported:

- `del_lock(Id)`
 [page 139] Delete a lock
- `del_lock(Id, Nodes) -> void()`
 [page 139] Delete a lock
- `notify_all_name(Name, Pid1, Pid2) -> none`
 [page 139] Name resolving function that notifies both pids
- `random_exit_name(Name, Pid1, Pid2) -> Pid1 | Pid2`
 [page 139] Name resolving function that kills one pid
- `random_notify_name(Name, Pid1, Pid2) -> Pid1 | Pid2`
 [page 139] Name resolving function that notifies one pid
- `register_name(Name, Pid)`
 [page 140] Globally register a name for a pid
- `register_name(Name, Pid, Resolve) -> yes | no`
 [page 140] Globally register a name for a pid
- `registered_names() -> [Name]`
 [page 140] All globally registered names
- `re_register_name(Name, Pid)`
 [page 140] Atomically re-register a name
- `re_register_name(Name, Pid, Resolve) -> void()`
 [page 140] Atomically re-register a name
- `send(Name, Msg) -> Pid`
 [page 141] Send a message to a globally registered pid
- `set_lock(Id)`
 [page 141] Set a lock on the specified nodes
- `set_lock(Id, Nodes)`
 [page 141] Set a lock on the specified nodes
- `set_lock(Id, Nodes, Retries) -> boolean()`
 [page 141] Set a lock on the specified nodes
- `sync() -> void()`
 [page 142] Synchronize the global name server
- `trans(Id, Fun)`
 [page 142] Micro transaction facility
- `trans(Id, Fun, Nodes)`
 [page 142] Micro transaction facility
- `trans(Id, Fun, Nodes, Retries) -> Res | aborted`
 [page 142] Micro transaction facility
- `unregister_name(Name) -> void()`
 [page 142] Remove a globally registered name for a pid
- `whereis_name(Name) -> pid() | undefined`
 [page 142] Get the pid with a given globally registered name
global_group

The following functions are exported:

- `global_groups()` -> {GroupName, GroupNames} | undefined
 [page 144] Return the global group names
- `info()` -> [{Item, Info}]
 [page 144] Information about global groups
- `monitor_nodes(Flag)` -> ok
 [page 144] Subscribe to node status changes
- `own_nodes()` -> Nodes
 [page 144] Return the group nodes
- `registered_names(Where)` -> Names
 [page 145] Return globally registered names
- `send(Name, Msg)` -> pid() | {badarg, [Name, Msg]}
 [page 145] Send a message to a globally registered pid
- `send(Where, Name, Msg)` -> pid() | {badarg, [Name, Msg]}
 [page 145] Send a message to a globally registered pid
- `sync()` -> ok
 [page 145] Synchronize the group nodes
- `whereis_name(Name)` -> pid() | undefined
 [page 145] Get the pid with a given globally registered name
- `whereis_name(Where, Name)` -> pid() | undefined
 [page 145] Get the pid with a given globally registered name

heart

The following functions are exported:

- `set_cmd(Cmd)` -> ok | {error, [bad_cmd, Cmd]}
 [page 148] Set a temporary reboot command
- `clear_cmd()` -> ok
 [page 148] Clear the temporary boot command
- `get_cmd()` -> {ok, Cmd}
 [page 148] Get the temporary reboot command

inet

The following functions are exported:

- `close(Socket)` -> ok
 [page 150] Close a socket of any type
- `get_rc()` -> [{Par, Val}]
 [page 150] Return a list of IP configuration parameters
- `format_error(Posix)` -> string()
 [page 150] Return a descriptive string for an error reason
- `getaddr(Host, Family)` -> {ok, Address} | {error, posix()}
 [page 151] Return the IP-adress for a host
- `getaddrs(Host, Family)` -> `{ok, Addresses} | {error, posix()}
 [page 151] Return the IP-adresses for a host
- `gethostbyaddr(Address)` -> `{ok, Hostent} | {error, posix()}
 [page 151] Return a hostent record for the host with the given address
- `gethostbyname(Name)` -> `{ok, Hostent} | {error, posix()}
 [page 151] Return a hostent record for the host with the given name
- `gethostbyname(Name, Family)` -> `{ok, Hostent} | {error, posix()}
 [page 151] Return a hostent record for the host with the given name
- `gethostname()` -> `{ok, Hostname}
 [page 151] Return the local hostname
- `getopts(Socket, Options)` -> `OptionValues | {error, posix()}
 [page 152] Get one or more options for a socket
- `getstat(Socket)`
 [page 153] Get one or more statistic options for a socket
- `getstat(Socket, Options)` -> `{ok, OptionValues} | {error, posix()}
 [page 153] Get one or more statistic options for a socket
- `peername(Socket)` -> `{ok, {Address, Port}} | {error, posix()}
 [page 153] Return the address and port for the other end of a connection
- `port(Socket)` -> `{ok, Port}
 [page 153] Return the local port number for a socket
- `sockname(Socket)` -> `{ok, {Address, Port}} | {error, posix()}
 [page 154] Return the local address and port number for a socket
- `setopts(Socket, Options)` -> `ok | {error, posix()}
 [page 154] Set one or more options for a socket

init
No functions are exported.

net_adm
The following functions are exported:
- `dns_hostname(Host)` -> `{ok, Name} | {error, Host}
 [page 162] Official name of a host
- `host_file()` -> Hosts | {error, Reason}
 [page 162] Read the .hosts.erlang file
- `localhost()` -> `Name
 [page 162] Name of the local host
- `names()` -> `{ok, [{Name, Port}]} | {error, Reason}
 [page 162] Names of Erlang nodes at a host
- `names(Host)` -> `{ok, [{Name, Port}]} | {error, Reason}
 [page 162] Names of Erlang nodes at a host
- `ping(Node)` -> `pong | pang
 [page 163] Set up a connection to a node
- `world()` -> `[node()]`
 [page 163] Lookup and connect to all nodes at all hosts in .hosts.erlang
Kernel Reference Manual

- `world(Arg) -> [node()]`
 [page 163] Lookup and connect to all nodes at all hosts in .hosts.erlang

- `world_list(Hosts) -> [node()]`
 [page 163] Lookup and connect to all nodes at specified hosts

- `world_list(Hosts, Arg) -> [node()]`
 [page 163] Lookup and connect to all nodes at specified hosts

net_kernel

The following functions are exported:

- `allow(Nodes) -> ok | error`
 [page 165] Limit access to a specified set of nodes

- `connect_node(Node) -> true | false | ignored`
 [page 165] Establish a connection to a node

- `monitor_nodes(Flag) -> ok | Error`
 [page 166] Subscribe to node status change messages

- `monitor_nodes(Flag, Options) -> ok | Error`
 [page 166] Subscribe to node status change messages

- `get_net_ticktime() -> Res`
 [page 167] Get net_ticktime

- `set_net_ticktime(NetTicktime) -> Res`
 [page 167] Set net_ticktime

- `set_net_ticktime(NetTicktime, TransitionPeriod) -> Res`
 [page 167] Set net_ticktime

- `start([Name]) -> ok, pid() | error, Reason`
 [page 168] Turn an Erlang runtime system into a distributed node

- `start([Name, NameType]) -> ok, pid() | error, Reason`
 [page 168] Turn an Erlang runtime system into a distributed node

- `start([Name, NameType, Ticktime]) -> ok, pid() | error, Reason`
 [page 168] Turn an Erlang runtime system into a distributed node

- `stop() -> ok | error, not_allowed | not_found`
 [page 168] Turn a node into a non-distributed Erlang runtime system

OS

The following functions are exported:

- `cmd(Command) -> string()`
 [page 169] Execute a command in a shell of the target OS

- `find_executable(Name) -> Filename | false`
 [page 169] Absolute filename of a program

- `find_executable(Name, Path) -> Filename | false`
 [page 169] Absolute filename of a program

- `getenv() -> [string()]`
 [page 169] List all environment variables

- `getenv(VarName) -> Value | false`
 [page 170] Get the value of an environment variable
• getpid() -> Value
 [page 170] Return the process identifier of the emulator process
• putenv(VarName, Value) -> true
 [page 170] Set a new value for an environment variable
• timestamp() -> {MegaSecs, Secs, MicroSecs}
 [page 176] Return a timestamp from the OS in the erlang:now/0 format
• type() -> {Osfamily, Osname} | Osfamily
 [page 171] Return the OS family and, in some cases, OS name of the current
 operating system
• version() -> {Major, Minor, Release} | VersionString
 [page 171] Return the Operating System version

packages

The following functions are exported:

• no functions exported
 [page 174] x

pg2

The following functions are exported:

• create(Name) -> void()
 [page 175] Create a new, empty process group
• delete(Name) -> void()
 [page 175] Delete a process group
• get_closest_pid(Name) -> Pid | {error, Reason}
 [page 175] Common dispatch function
• get_members(Name) -> [Pid] | {error, Reason}
 [page 176] Return all processes in a group
• get_local_members(Name) -> [Pid] | {error, Reason}
 [page 176] Return all local processes in a group
• join(Name, Pid) -> ok | {error, Reason}
 [page 176] Join a process to a group
• leave(Name, Pid) -> ok | {error, Reason}
 [page 176] Make a process leave a group
• which_groups() -> [Name]
 [page 176] Return a list of all known groups
• start()
 [page 176] Start the pg2 server
• start_link() -> {ok, Pid} | {error, Reason}
 [page 176] Start the pg2 server
The following functions are exported:

- `call(Node, Module, Function, Args) -> Res | {badrpc, Reason}`
 [page 178] Evaluate a function call on a node
- `call(Node, Module, Function, Args, Timeout) -> Res | {badrpc, Reason}`
 [page 178] Evaluate a function call on a node
- `block_call(Node, Module, Function, Args) -> Res | {badrpc, Reason}`
 [page 178] Evaluate a function call on a node in the RPC server's context
- `block_call(Node, Module, Function, Args, Timeout) -> Res | {badrpc, Reason}`
 [page 179] Evaluate a function call on a node in the RPC server's context
- `async_call(Node, Module, Function, Args) -> Key`
 [page 179] Evaluate a function call on a node, asynchronous version
- `yield(Key) -> Res | {badrpc, Reason}`
 [page 179] Deliver the result of evaluating a function call on a node (blocking)
- `nb_yield(Key) -> {value, Val} | timeout`
 [page 179] Deliver the result of evaluating a function call on a node (non-blocking)
- `multicall(Module, Function, Args) -> {ResL, BadNodes}`
 [page 180] Evaluate a function call on a number of nodes
- `multicall(Nodes, Module, Function, Args) -> {ResL, BadNodes}`
 [page 180] Evaluate a function call on a number of nodes
- `multicall(Module, Function, Args, Timeout) -> {ResL, BadNodes}`
 [page 180] Evaluate a function call on a number of nodes
- `multicall(Nodes, Module, Function, Args, Timeout) -> {ResL, BadNodes}`
 [page 180] Evaluate a function call on a number of nodes
- `cast(Node, Module, Function, Args) -> void()`
 [page 181] Run a function on a node ignoring the result
- `eval_everywhere(Module, Function, Args) -> void()`
 [page 181] Run a function on all nodes, ignoring the result
- `eval_everywhere(Nodes, Module, Function, Args) -> void()`
 [page 181] Run a function on specific nodes, ignoring the result
- `abcast(Name, Msg) -> void()`
 [page 182] Broadcast a message asynchronously to a registered process on all nodes
- `abcast(Nodes, Name, Msg) -> void()`
 [page 182] Broadcast a message asynchronously to a registered process on specific nodes
- `sbcast(Name, Msg) -> {GoodNodes, BadNodes}`
 [page 182] Broadcast a message synchronously to a registered process on all nodes
- `sbcast(Nodes, Name, Msg) -> {GoodNodes, BadNodes}`
 [page 182] Broadcast a message synchronously to a registered process on specific nodes
- server_call(Node, Name, ReplyWrapper, Msg) -> Reply | {error, Reason}
 [page 182] Interact with a server on a node
- multi_server_call(Name, Msg) -> {Replies, BadNodes}
 [page 183] Interact with the servers on a number of nodes
- multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}
 [page 183] Interact with the servers on a number of nodes
- safe_multi_server_call(Name, Msg) -> {Replies, BadNodes}
 [page 183] Interact with the servers on a number of nodes (deprecated)
- safe_multi_server_call(Nodes, Name, Msg) -> {Replies, BadNodes}
 [page 183] Interact with the servers on a number of nodes (deprecated)
- parallel_eval(FuncCalls) -> ResL
 [page 184] Evaluate several function calls on all nodes in parallel
- pmap({Module, Function}, ExtraArgs, List2) -> List1
 [page 184] Parallel evaluation of mapping a function over a list
- pinfo(Pid) -> [{Item, Info}] | undefined
 [page 184] Information about a process
- pinfo(Pid, Item) -> {Item, Info} | undefined | []
 [page 184] Information about a process

seq_trace

The following functions are exported:

- set_token(Token) -> PreviousToken
 [page 185] Set the trace token
- set_token(Component, Val) -> {Component, OldVal}
 [page 185] Set a component of the trace token
- get_token() -> TraceToken
 [page 186] Return the value of the trace token
- get_token(Component) -> {Component, Val}
 [page 186] Return the value of a trace token component
- print(TraceInfo) -> void()
 [page 186] Put the Erlang term TraceInfo into the sequential trace output
- print(Label, TraceInfo) -> void()
 [page 186] Put the Erlang term TraceInfo into the sequential trace output
- reset_trace() -> void()
 [page 187] Stop all sequential tracing on the local node
- set_system_tracer(Tracer) -> OldTracer
 [page 187] Set the system tracer
- get_system_tracer() -> Tracer
 [page 187] Return the pid() or port() of the current system tracer.

user

No functions are exported.
wrap_log_reader

The following functions are exported:

- `chunk(Continuation)`
 [page 194] Read a chunk of objects written to a wrap log.

- `chunk(Continuation, N) -> {Continuation2, Terms} | {Continuation2, Terms, Badbytes} | {Continuation2, eof} | {error, Reason}`
 [page 194] Read a chunk of objects written to a wrap log.

- `close(Continuation) -> ok`
 [page 195] Close a log

- `open(Filename) -> OpenRet`
 [page 195] Open a log file

- `open(Filename, N) -> OpenRet`
 [page 195] Open a log file

zlib

No functions are exported.

app

No functions are exported.

config

No functions are exported.
The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on Erlang/OTP consists of Kernel and STDLIB. The Kernel application contains the following services:

- application controller, see application(3)
- code
- disk_log
- dist_ac, distributed application controller
- erl_boot_server
- erl_ddll
- error_logger
- file
- global
- global_group
- heart
- inet
- net_kernel
- os
- pg2
- rpc
- seq_trace
- user

Error Logger Event Handlers

Two standard error logger event handlers are defined in the Kernel application. These are described in error_logger(3) [page 83].
Configuration

The following configuration parameters are defined for the Kernel application. See app(3) for more information about configuration parameters.

`browser.cmd = string() | {M,F,A} | {M,F,A} | {M,F,A}` When pressing the Help button in a tool such as Debugger or TV, the help text (an HTML file `File`) is by default displayed in a Netscape browser which is required to be up and running. This parameter can be used to change the command for how to display the help text if another browser than Netscape is preferred, or another platform than Unix or Windows is used.

If set to a string `Command`, the command "Command File" will be evaluated using `os:cmd/1`.

If set to a module-function-args tuple `M,F,A`, the call `apply(M,F,[File|A])` will be evaluated.

`distributed = [Distrib]` Specifies which applications are distributed and on which nodes they may execute. In this parameter:

- Distrib = {App,Nodes} | {App,Time,Nodes}
- App = atom()
- Time = integer() > 0
- Nodes = [node() | {node(),...,node()}]

The parameter is described in application(3), function `load/2`.

`dist_auto_connect = Value` Specifies when nodes will be automatically connected. If this parameter is not specified, a node is always automatically connected, e.g. when a message is to be sent to that node. Value is one of:

- never: Connections are never automatically connected, they must be explicitly connected. See `net_kernel(3)`.
- once: Connections will be established automatically, but only once per node. If a node goes down, it must thereafter be explicitly connected. See `net_kernel(3)`.

`permissions = [Perm]` Specifies the default permission for applications when they are started. In this parameter:

- Perm = {AppName,Bool}
- AppName = atom()
- Bool = boolean()

Permissions are described in application(3), function `permit/2`.

`error_logger = Value` Value is one of:

- tty: Installs the standard event handler which prints error reports to `stdio`. This is the default option.
- {file, FileName}: Installs the standard event handler which prints error reports to the file `FileName`, where `FileName` is a string.
- false: No standard event handler is installed, but the initial, primitive event handler is kept, printing raw event messages to `tty`.
- silent: Error logging is turned off.

`global_groups = [GroupTuple]` Defines global groups, see `global_group(3)`.

- GroupTuple = {GroupName, [Node]} | {GroupName, PublishType, [Node]}
- GroupName = atom()
- PublishType = normal | hidden
- Node = node()

`inet.default_connect.options = [{Opt, Val}]` Specifies default options for connect sockets, see inet(3).

`inet.default_listen.options = [{Opt, Val}]` Specifies default options for listen (and accept) sockets, see inet(3).

`{inet_dist.UseInterface, ip_address()}` If the host of an Erlang node has several network interfaces, this parameter specifies which one to listen on. See inet(3) for the type definition of ip_address().

`{inet_dist.Listen.Min, First}` See below.

`{inet_dist.Listen.Max, Last}` Define the First..Last port range for the listener socket of a distributed Erlang node.

`inet.parse.error_log = silent` If this configuration parameter is set, no error logger messages are generated when erroneous lines are found and skipped in the various Inet configuration files.

`inetrc = Filename` The name (string) of an Inet user configuration file. See ERTS User’s Guide, Inet configuration.

`net.setupTime = SetupTime` SetupTime must be a positive integer or floating point number, and will be interpreted as the maximally allowed time for each network operation during connection setup to another Erlang node. The maximum allowed value is 120; if higher values are given, 120 will be used. The default value if the variable is not given, or if the value is incorrect (e.g. not a number), is 7 seconds. Note that this value does not limit the total connection setup time, but rather each individual network operation during the connection setup and handshake.

`net.ticktime = TickTime` Specifies the net_kernel tick time. TickTime is given in seconds. Once every TickTime/4 second, all connected nodes are ticked (if anything else has been written to a node) and if nothing has been received from another node within the last four (4) tick times that node is considered to be down. This ensures that nodes which are not responding, for reasons such as hardware errors, are considered to be down. The time T, in which a node that is not responding is detected, is calculated as:

\[
\min T < T < \max T
\]

where:

\[
\begin{align*}
\min T &= \text{TickTime} - \text{TickTime} / 4 \\
\max T &= \text{TickTime} + \text{TickTime} / 4 \\
\end{align*}
\]

TickTime is by default 60 (seconds). Thus, 45 < T < 75 seconds. Note: All communicating nodes should have the same TickTime value specified. Note: Normally, a terminating node is detected immediately.

`sync.nodes.mandatory = [NodeName]` Specifies which other nodes must be alive in order for this node to start properly. If some node in the list does not start within the specified time, this node will not start either. If this parameter is undefined, it defaults to [].

`sync.nodes.optional = [NodeName]` Specifies which other nodes can be alive in order for this node to start properly. If some node in this list does not start within the specified time, this node starts anyway. If this parameter is undefined, it defaults to the empty list.

`sync.nodes.timeout = integer() | infinity` Specifies the amount of time (in milliseconds) this node will wait for the mandatory and optional nodes to start. If this parameter is undefined, no node synchronization is performed. This option also makes sure that global is synchronized.
Kernel Reference Manual

start_dist_ac = true | false Starts the dist_ac server if the parameter is true.
This parameter should be set to true for systems that use distributed applications.
The default value is false. If this parameter is undefined, the server is started if
the parameter distributed is set.

start_boot_server = true | false Starts the boot_server if the parameter is true
(see `erl_boot_server(3)`). This parameter should be set to true in an embedded
system which uses this service.
The default value is false.

boot_server_slaves = [SlaveIP] If the start_boot_server configuration parameter
is true, this parameter can be used to initialize boot_server with a list of slave IP
addresses. SlaveIP = string() | atom |
{integer(), integer(), integer(), integer()}
where 0 <= integer() <= 255.
Examples of SlaveIP in atom, string and tuple form are:
'150.236.16.70', "150,236,16,70", {150,236,16,70}.
The default value is [].

start_disk_log = true | false Starts the disk_log_server if the parameter is true
(see `disk_log(3)`). This parameter should be set to true in an embedded system
which uses this service.
The default value is false.

start_pg2 = true | false Starts the pg2 server (see `pg2(3)`) if the parameter is
true. This parameter should be set to true in an embedded system which uses
this service.
The default value is false.

start_timer = true | false Starts the timer_server if the parameter is true (see
`timer(3)`). This parameter should be set to true in an embedded system which
uses this service.
The default value is false.

shutdown_func = {Mod, Func} Where:
- Mod = atom()
- Func = atom()

Sets a function that application_controller calls when it starts to terminate.
The function is called as: Mod:Func(Reason), where Reason is the terminate
reason for application_controller, and it must return as soon as possible for
application_controller to terminate properly.

See Also

`app(4)` [page 197], `application(3)` [page 26], `code(3)` [page 37], `disk_log(3)` [page 48],
`erl_boot_server(3)` [page 62], `erl_ddll(3)` [page 64], `error_logger(3)` [page 83], `file(3)`
[page 90], `global(3)` [page 138], `global_group(3)` [page 143], `heart(3)` [page 147],
`inet(3)` [page 149], `net_kernel(3)` [page 165], `os(3)` [page 169], `pg2(3)` [page 175],
`rpc(3)` [page 178], `seq_trace(3)` [page 185], `user(3)` [page 193]
In OTP, application denotes a component implementing some specific functionality, that can be started and stopped as a unit, and which can be re-used in other systems as well. This module interfaces the application controller, a process started at every Erlang runtime system, and contains functions for controlling applications (for example starting and stopping applications), and functions to access information about applications (for example configuration parameters).

An application is defined by an application specification. The specification is normally located in an application resource file called Application.app, where Application is the name of the application. Refer to app(4) [page 197] for more information about the application specification.

This module can also be viewed as a behaviour for an application implemented according to the OTP design principles as a supervision tree. The definition of how to start and stop the tree should be located in an application callback module exporting a pre-defined set of functions.

Refer to [OTP Design Principles] for more information about applications and behaviours.

Exports

get_all_env() -> Env
get_all_env(Application) -> Env

Types:
- Application = atom()
- Env = [{Par,Val}]
- Par = atom()
- Val = term()

Returns the configuration parameters and their values for Application. If the argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the function returns [].

get_all_key() -> {ok, Keys} | []
get_all_key(Application) -> {ok, Keys} | undefined

Types:
- Application = atom()
- Keys = [{Key,Val}]
Kernel Reference Manual

- **Key = atom()**
- **Val = term()**

Returns the application specification keys and their values for *Application*. If the argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, the function returns *undefined*. If the process executing the call does not belong to any application, the function returns *[]*.

```erlang
get_application() -> {ok, Application} | undefined
get_application(Pid | Module) -> {ok, Application} | undefined
```

Types:
- **Pid = pid()**
- **Module = atom()**
- **Application = atom()**

Returns the name of the application to which the process *Pid* or the module *Module* belongs. Providing no argument is the same as calling `get_application(self())`.

If the specified process does not belong to any application, or if the specified process or module does not exist, the function returns *undefined*.

```erlang
get_env(Par) -> {ok, Val} | undefined
get_env(Application, Par) -> {ok, Val} | undefined
```

Types:
- **Application = atom()**
- **Par = atom()**
- **Val = term()**

Returns the value of the configuration parameter *Par* for *Application*. If the application argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or the configuration parameter does not exist, or if the process executing the call does not belong to any application, the function returns *undefined*.

```erlang
get_key(Key) -> {ok, Val} | undefined
get_key(Application, Key) -> {ok, Val} | undefined
```

Types:
- **Application = atom()**
- **Key = atom()**
- **Val = term()**

Returns the value of the application specification key *Key* for *Application*. If the application argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or the specification key does not exist, or if the process executing the call does not belong to any application, the function returns *undefined*.

```erlang
load(AppDescr) -> ok | {error, Reason}
load(AppDescr, Distributed) -> ok | {error, Reason}
```

Types:
loaded_applications() -> [{Application, Description, Vsn}]

Types:
- Application = atom()
- Description = string()
- Vsn = string()

Returns a list with information about the applications which have been loaded using load/1,2, also included applications. Application is the application name. Description and Vsn are the values of its description and vsn application specification keys, respectively.

permit(Application, Bool) -> ok | {error, Reason}

Types:
Changes the permission for Application to run at the current node. The application must have been loaded using load/1,2 for the function to have effect.

If the permission of a loaded, but not started, application is set to false, start will return ok but the application will not be started until the permission is set to true.

If the permission of a running application is set to false, the application will be stopped. If the permission later is set to true, it will be restarted.

If the application is distributed, setting the permission to false means that the application will be started at, or moved to, another node according to how its distribution is configured (see load/2 above).

The function does not return until the application is started, stopped or successfully moved to another node. However, in some cases where permission is set to true the function may return ok even though the application itself has not started. This is true when an application cannot start because it has dependencies to other applications which have not yet been started. When they have been started, Application will be started as well.

By default, all applications are loaded with permission true on all nodes. The permission is configurable by using the Kernel configuration parameter permissions.

```
set_env(Application, Par, Val) -> ok
set_env(Application, Par, Val, Timeout) -> ok
```

Types:
- Application = atom()
- Par = atom()
- Val = term()
- Timeout = int() | infinity

Sets the value of the configuration parameter Par for Application.

set_env/3 uses the standard gen_server timeout value (5000 ms). A Timeout argument can be provided if another timeout value is useful, for example, in situations where the application controller is heavily loaded.

Warning:

Use this function only if you know what you are doing, that is, on your own applications. It is very application and configuration parameter dependent when and how often the value is read by the application, and careless use of this function may put the application in a weird, inconsistent, and malfunctioning state.

```
start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
```

Types:
- Application = atom()
- Type = permanent | transient | temporary
• Reason = term()

Starts Application. If it is not loaded, the application controller will first load it using load/1. It will make sure any included applications are loaded, but will not start them. That is assumed to be taken care of in the code for Application.

The application controller checks the value of the application specification key applications, to ensure that all applications that should be started before this application are running. If not, {error, {not_started, App}} is returned, where App is the name of the missing application.

The application controller then creates an application master for the application. The application master is the group leader of all the processes in the application. The application master starts the application by calling the application callback function Module:start/2 as defined by the application specification key mod.

The Type argument specifies the type of the application. If omitted, it defaults to temporary.

• If a permanent application terminates, all other applications and the entire Erlang node are also terminated.
• If a transient application terminates with Reason == normal, this is reported but no other applications are terminated. If a transient application terminates abnormally, all other applications and the entire Erlang node are also terminated.
• If a temporary application terminates, this is reported but no other applications are terminated.

Note that it is always possible to stop an application explicitly by calling stop/1. Regardless of the type of the application, no other applications will be affected.

Note also that the transient type is of little practical use, since when a supervision tree terminates, the reason is set to shutdown, not normal.

start_type() -> StartType | local | undefined

Types:
• StartType = normal | {takeover, Node} | {failover, Node}
• Node = node()

This function is intended to be called by a process belonging to an application, when the application is being started, to determine the start type which is either StartType or local.

See Module:start/2 for a description of StartType.

local is returned if only parts of the application is being restarted (by a supervisor), or if the function is called outside a startup.

If the process executing the call does not belong to any application, the function returns undefined.

stop(Application) -> ok | {error, Reason}

Types:
• Application = atom()
• Reason = term()
Stops Application. The application master calls `Module:prep_stop/1`, if such a function is defined, and then tells the top supervisor of the application to shutdown (see `supervisor(3)`). This means that the entire supervision tree, including included applications, is terminated in reversed start order. After the shutdown, the application master calls `Module:stop/1`. `Module` is the callback module as defined by the application specification key `mod`.

Last, the application master itself terminates. Note that all processes with the application master as group leader, i.e. processes spawned from a process belonging to the application, thus are terminated as well.

When stopped, the application is still loaded. In order to stop a distributed application, `stop/1` has to be called on all nodes where it can execute (that is, on all nodes where it has been started). The call to `stop/1` on the node where the application currently executes will stop its execution. The application will not be moved between nodes due to `stop/1` being called on the node where the application currently executes before `stop/1` is called on the other nodes.

takeover(Application, Type) -> ok | {error, Reason}

Types:
- Application = atom()
- Type = permanent | transient | temporary
- Reason = term()

Performs a takeover of the distributed application Application, which executes at another node Node. At the current node, the application is restarted by calling `Module:start(takeover, Node, StartArgs)`. `Module` and `StartArgs` are retrieved from the loaded application specification. The application at the other node is not stopped until the startup is completed, i.e. when `Module:start/2` and any calls to `Module:start_phase/3` have returned.

Thus two instances of the application will run simultaneously during the takeover, which makes it possible to transfer data from the old to the new instance. If this is not acceptable behavior, parts of the old instance may be shut down when the new instance is started. Note that the application may not be stopped entirely however, at least the top supervisor must remain alive.

See `start/1,2` for a description of `Type`.

unload(Application) -> ok | {error, Reason}

Types:
- Application = atom()
- Reason = term()

Unloads the application specification for Application from the application controller. It will also unload the application specifications for any included applications. Note that the function does not purge the actual Erlang object code.

unset_env(Application, Par) -> ok
unset_env(Application, Par, Timeout) -> ok

Types:
- Application = atom()
- Par = atom()
• Timeout = int() | infinity

Removes the configuration parameter Par and its value for Application.

_unset_env/2 uses the standard gen_server timeout value (5000 ms). A Timeout argument can be provided if another timeout value is useful, for example, in situations where the application controller is heavily loaded.

_WARNING:
Use this function only if you know what you are doing, that is, on your own applications. It is very application and configuration parameter dependent when and how often the value is read by the application, and careless use of this function may put the application in a weird, inconsistent, and malfunctioning state.

which_applications() -> [{Application, Description, Vsn}]
which_applications(Timeout) -> [{Application, Description, Vsn}]

Types:
• Application = atom()
• Description = string()
• Vsn = string()
• Timeout = int() | infinity

Returns a list with information about the applications which are currently running.

Application is the application name. Description and Vsn are the values of its description and vsn application specification keys, respectively.

which_applications/0 uses the standard gen_server timeout value (5000 ms). A Timeout argument can be provided if another timeout value is useful, for example, in situations where the application controller is heavily loaded.

CALLBACK MODULE

The following functions should be exported from an application callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error, Reason}

Types:
• StartType = normal | {takeover, Node} | {failover, Node}
• Node = node()
• StartArgs = term()
• Pid = pid()
• State = term()
This function is called whenever an application is started using application:start/1,2, and should start the processes of the application. If the application is structured according to the OTP design principles as a supervision tree, this means starting the top supervisor of the tree.

StartType defines the type of start:

- normal if its a normal startup.
- normal also if the application is distributed and started at the current node due to a failover from another node, and the application specification key start_phases == undefined.
- {takeover,Node} if the application is distributed and started at the current node due to a takeover from Node, either because application:takeover/2 has been called or because the current node has higher priority than Node.
- {failover,Node} if the application is distributed and started at the current node due to a failover from Node, and the application specification key start_phases /= undefined.

StartArgs is the StartArgs argument defined by the application specification key mod. The function should return {ok,Pid} or {ok,Pid,State} where Pid is the pid of the top supervisor and State is any term. If omitted, State defaults to []. If later the application is stopped, State is passed to Module:prep_stop/1.

Module:start_phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types:
- Phase = atom()
- StartType = normal | {takeover,Node} | {failover,Node}
- Node = node()
- PhaseArgs = term()
- Pid = pid()
- State = state()

This function is used to start an application with included applications, when there is a need for synchronization between processes in the different applications during startup. The start phases is defined by the application specification key start_phases == [{Phase,PhaseArgs}]. For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all included applications, for which the start phase is defined. See Module:start/2 for a description of StartType.

Module:prep_stop(State) -> NewState
Types:
- State = NewState = term()
This function is called when an application is about to be stopped, before shutting down the processes of the application.

State is the state returned from Module:start/2, or [] if no state was returned.

NewState is any term and will be passed to Module:stop/1.

The function is optional. If it is not defined, the processes will be terminated and then Module:stop(State) is called.

Module:stop(State)

Types:
- State = term()

This function is called whenever an application has stopped. It is intended to be the opposite of Module:start/2 and should do any necessary cleaning up. The return value is ignored.

State is the return value of Module:prep_stop/1, if such a function exists. Otherwise State is taken from the return value of Module:start/2.

Module:config_change(Changed, New, Removed) -> ok

Types:
- Changed = [{Par,Val}]
- New = [{Par,Val}]
- Removed = [Par]
- Par = atom()
- Val = term()

This function is called by an application after a code replacement, if there are any changes to the configuration parameters.

Changed is a list of parameter-value tuples with all configuration parameters with changed values, New is a list of parameter-value tuples with all configuration parameters that have been added, and Removed is a list of all parameters that have been removed.

SEE ALSO

[OTP Design Principles], kernel(6) [page 22], app(4) [page 197]
auth

Erlang Module

This module is deprecated. For a description of the Magic Cookie system, refer to [Distributed Erlang] in the Erlang Reference Manual.

Exports

\[\text{is_auth(Node)} \rightarrow \text{yes / no}\]

Types:
- \(\text{Node} = \text{node()}\)

Returns \text{yes} if communication with \text{Node} is authorized. Note that a connection to \text{Node} will be established in this case. Returns \text{no} if \text{Node} does not exist or communication is not authorized (it has another cookie than \text{auth} thinks it has).

Use \text{net_adm:ping(Node)} [page 163] instead.

\[\text{cookie() \rightarrow Cookie}\]

Types:
- \(\text{Cookie} = \text{atom()}\)

Use \text{erlang:get_cookie()} instead.

\[\text{cookie(TheCookie) \rightarrow true}\]

Types:
- \(\text{TheCookie} = \text{Cookie} / [\text{Cookie}]\)
 - The cookie may also be given as a list with a single atom element
 - \(\text{Cookie} = \text{atom()}\)

Use \text{erlang:set_cookie(node(), Cookie)} instead.

\[\text{node_cookie([Node, Cookie]) \rightarrow yes / no}\]

Types:
- \(\text{Node} = \text{node()}\)
- \(\text{Cookie} = \text{atom()}\)

Equivalent to \text{node_cookie(Node, Cookie)} [page 35].

\[\text{node_cookie(Node, Cookie) \rightarrow yes / no}\]

Types:
- \(\text{Node} = \text{node()}\)
- `Cookie = atom()`

 Sets the magic cookie of `Node` to `Cookie`, and verifies the status of the authorization. Equivalent to calling `erlang:set_cookie(Node, Cookie)`, followed by `auth:is_auth(Node)` [page 35].
This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a running Erlang runtime system.

The runtime system can be started in either embedded or interactive mode. Which one is decided by the command line flag `-mode`.

```
erl -mode interactive
```

Default mode is `interactive`.

- In embedded mode, all code is loaded during system start-up according to the boot script. (Code can also be loaded later by explicitly ordering the code server to do so).

- In interactive mode, only some code is loaded during system startup-up, basically the modules needed by the runtime system itself. Other code is dynamically loaded when first referenced. When a call to a function in a certain module is made, and the module is not loaded, the code server searches for and tries to load the module.

To prevent accidentally reloading modules affecting the Erlang runtime system itself, the `kernel`, `stdlib` and `compiler` directories are considered sticky. This means that the system issues a warning and rejects the request if a user tries to reload a module residing in any of them. The feature can be disabled by using the command line flag `-nostick`.

Code Path

In interactive mode, the code server maintains a search path—usually called the code path—consisting of a list of directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under the library directory `$OTP_ROOT/lib`, where `$OTP_ROOT` is the installation directory of Erlang/OTP. `code:root_dir()` directories can be named `Name[-Vsn]` and the code server, by default, chooses the directory with the highest version number among those which have the same `Name`. The `-Vsn` suffix is optional. If an `ebin` directory exists under `Name[-Vsn]`, it is this directory which is added to the code path.

The environment variable `ERL_LIBS` (defined in the operating system) can be used to define additional library directories that will be handled in the same way as the standard OTP library directory described above, except that directories that do not have an `ebin` directory will be ignored.

All application directories found in the additional directories will appear before the standard OTP applications, except for the Kernel and STDLIB applications, which will be placed before any additional applications. In other words, modules found in any of
the additional library directories will override modules with the same name in OTP, except for modules in Kernel and STDLIB.

The environment variable `ERL_LIBS` (if defined) should contain a colon-separated (for Unix-like systems) or semicolon-separated (for Windows) list of additional libraries.

Example: On an Unix-like system, `ERL_LIBS` could be set to `/usr/local/jungerl:/home/some_user/my_erlang_lib`. (On Windows, use semi-colon as separator.)

Code Path Cache

The code server incorporates a code path cache. The cache functionality is disabled by default. To activate it, start the emulator with the command line flag `-code_path_cache` or call `code:rehash()`. When the cache is created (or updated), the code server searches for modules in the code path directories. This may take some time if the code path is long. After the cache creation, the time for loading modules in a large system (one with a large directory structure) is significantly reduced compared to having the cache disabled. The code server is able to look up the location of a module from the cache in constant time instead of having to search through the code path directories.

Application resource files (`.app` files) are also stored in the code path cache. This feature is used by the application controller (see `application(3)` [page 26]) to load applications efficiently in large systems.

Note that when the code path cache is created (or updated), any relative directory names in the code path are converted to absolute.

Loading of Code From Archive Files

Warning:
The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release. The function `lib_dir/2` and the flag `-code_path_choice` are also experimental.

In the current implementation, Erlang archives are ZIP files with `.ez` extension. Erlang archives may also be enclosed in escript files whose file extension is arbitrary.

Erlang archive files may contain entire Erlang applications or parts of applications. The structure in an archive file is the same as the directory structure for an application. If you for example would create an archive of `mnesia-4.4.7`, the archive file must be named `mnesia-4.4.7.ez` and it must contain a top directory with the name `mnesia-4.4.7`. If the version part of the name is omitted, it must also be omitted in the archive. That is, a `mnesia.ez` archive must contain a `mnesia` top directory.

An archive file for an application may for example be created like this:
zip:create("mnesia-4.4.7.ez",
 ["mnesia-4.4.7"],
 [{cwd, code:lib_dir()},
 {compress, all},
 {uncompress, ['.beam','.'app']}])

Any file in the archive may be compressed, but in order to speed up the access of
frequently read files, it may be a good idea to store beam and app files uncompressed in
the archive.

Normally the top directory of an application is located either in the library directory
$OTPROOT/lib or in a directory referred to by the environment variable ERL_LIBS. At
startup when the initial code path is computed, the code server will also look for
archive files in these directories and possibly add ebin directories in archives to the code
path. The code path will then contain paths to directories that looks like
$OTPROOT/lib/mnesia.ez/mnesia/ebin or
$OTPROOT/lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin.

The code server uses the module erl_prim_loader (possibly via the erl_boot_server)
to read code files from archives. But the functions in erl_prim_loader may also be used
by other applications to read files from archives. For example, the call
erl_prim_loader:list_dir("/otp/root/lib/mnesia-4.4.7.ez/mnesia-4.4.7/
examples/bench") would list the contents of a directory inside an archive. See
[erl_prim_loader(3)]

An application archive file and a regular application directory may coexist. This may be
useful when there is a need of having parts of the application as regular files. A typical
use case is the priv directory which must reside as a regular directory in order to be able to
dynamically link in drivers and start port programs. For other applications that do not
have this need, the priv directory may reside in the archive and the files under the priv
directory may be read via the erl_prim_loader.

At the time point when a directory is added to the code path as well as when the entire
code path is (re)set, the code server will decide which subdirectories in an application
that shall be read from the archive and which that shall be read as regular files. If
directories are added or removed afterwards, the file access may fail if the code path is
not updated (possibly to the same path as before in order to trigger the directory
resolution update). For each directory on the second level (ebin, priv, src etc.) in the
application archive, the code server will firstly choose the regular directory if it exists
and secondly from the archive. The function code:lib_dir/2 returns the path to the
subdirectory. For example code:lib_dir(megaco,ebin) may return
/otp/root/lib/megaco-3.9.1.1.ez/megaco-3.9.1.1/ebin while
code:lib_dir(megaco(priv) may return /otp/root/lib/megaco-3.9.1.1/priv.

When an escript file contains an archive, there are neither restrictions on the name of
the escript nor on how many applications that may be stored in the embedded
archive. Single beam files may also reside on the top level in the archive. At startup,
both the top directory in the embedded archive as well as all (second level) ebin
directories in the embedded archive are added to the code path. See [escript(1)]

By default the choice of directories in the code path is strict. The directory that ends
up in the code path will be exactly the stated one. This means that if for example the
directory $OTPROOT/lib/mnesia-4.4.7/ebin is explicitly added to the code path, the
code server will not load files from
$OTPROOT/lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin and vice versa.

This behavior can be controlled via the command line flag -code_path_choice Choice.
If the flag is set to relaxed, the code server will instead choose a suitable directory
depending on the actual file structure. If there exists a regular application ebin
directory, situation it will be chosen. But if it does not exist, the ebin directory in the
archive is chosen if it exists. If neither of them exists the original directory will be
chosen.

The command line flag `-code_path_choice Choice does also affect how init
interprets the boot script. The interpretation of the explicit code paths in the boot
script may be strict or relaxed, it is particular useful to set the flag to relaxed
when you want to elaborate with code loading from archives without editing the boot
script. See [init(3)]

Current and Old Code

The code of a module can exists in two variants in a system: current code and old code.
When a module is loaded into the system for the first time, the code of the module
becomes 'current' and the global export table is updated with references to all functions
exported from the module.

If then a new instance of the module is loaded (perhaps because of the correction of an
error), then the code of the previous instance becomes 'old', and all export entries
referring to the previous instance are removed. After that the new instance is loaded as
if it was loaded for the first time, as described above, and becomes 'current'.

Both old and current code for a module are valid, and may even be evaluated
concurrently. The difference is that exported functions in old code are unavailable.
Hence there is no way to make a global call to an exported function in old code, but old
code may still be evaluated because of processes lingering in it.

If a third instance of the module is loaded, the code server will remove (purge) the old
code and any processes lingering in it will be terminated. Then the third instance
becomes 'current' and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch
from old to current code, refer to [Erlang Reference Manual].

Argument Types and Invalid Arguments

Generally, module and application names are atoms, while file and directory names are
strings. For backward compatibility reasons, some functions accept both strings and
atoms, but a future release will probably only allow the arguments that are documented.

From the R12B release, functions in this module will generally fail with an exception if
they are passed an incorrect type (for instance, an integer or a tuple where an atom was
expected). An error tuple will be returned if type of argument was correct, but there
was some other error (for instance, a non-existing directory given to set_path/1.
Exports

`set_path(Path) -> true | {error, What}`

Types:
- `Path = [Dir]`
- `Dir = string()`
- `What = bad_directory | bad_path`

Sets the code path to the list of directories `Path`.
Returns `true` if successful, or `{error, bad_directory}` if any `Dir` is not the name of a directory, or `{error, bad_path}` if the argument is invalid.

`get_path() -> Path`

Types:
- `Path = [Dir]`
- `Dir = string()`

Returns the code path.

`add_path(Dir) -> true | {error, What}`

`add_pathz(Dir) -> true | {error, What}`

Types:
- `Dir = string()`
- `What = bad_directory`

Adds `Dir` to the code path. The directory is added as the last directory in the new path.
If `Dir` already exists in the path, it is not added.
Returns `true` if successful, or `{error, bad_directory}` if `Dir` is not the name of a directory.

`add_patha(Dir) -> true | {error, What}`

Types:
- `Dir = string()`
- `What = bad_directory`

Adds `Dir` to the beginning of the code path. If `Dir` already exists, it is removed from the old position in the code path.
Returns `true` if successful, or `{error, bad_directory}` if `Dir` is not the name of a directory.

`add_paths(Dirs) -> ok`

`add_pathsz(Dirs) -> ok`

Types:
- `Dirs = [Dir]`
- `Dir = string()`
Add the directories in \texttt{Dirs} to the end of the code path. If a \texttt{Dir} already exists, it is not added. This function always returns \texttt{ok}, regardless of the validity of each individual \texttt{Dir}.

\texttt{add_patha(Dirs) \rightarrow ok}

Types:
- \texttt{Dirs = [Dir]}
- \texttt{Dir = string()}

Add the directories in \texttt{Dirs} to the beginning of the code path. If a \texttt{Dir} already exists, it is removed from the old position in the code path. This function always returns \texttt{ok}, regardless of the validity of each individual \texttt{Dir}.

\texttt{del_path(Name | Dir) \rightarrow true | false | \{error, What\}}

Types:
- \texttt{Name = atom()}
- \texttt{Dir = string()}
- \texttt{What = bad_name}

Delete a directory from the code path. The argument can be an atom \texttt{Name}, in which case the directory with the name \texttt{.../Name[-Vsn]/ebin} is deleted from the code path. It is also possible to give the complete directory name \texttt{Dir} as argument.

Returns \texttt{true} if successful, or \texttt{false} if the directory is not found, or \texttt{error, bad_name} if the argument is invalid.

\texttt{replace_path(Name, Dir) \rightarrow true | \{error, What\}}

Types:
- \texttt{Name = atom()}
- \texttt{Dir = string()}
- \texttt{What = bad_name | bad_directory | \{badarg, term()\}}

This function replaces an old occurrence of a directory named \texttt{.../Name[-Vsn]/ebin}, in the code path, with \texttt{Dir}. If \texttt{Name} does not exist, it adds the new directory \texttt{Dir} last in the code path. The new directory must also be named \texttt{.../Name[-Vsn]/ebin}. This function should be used if a new version of the directory (library) is added to a running system.

Returns \texttt{true} if successful, or \texttt{error, bad_name} if \texttt{Name} is not found, or \texttt{error, bad_directory} if \texttt{Dir} does not exist, or \texttt{error, \{badarg, [Name, Dir]\}} if \texttt{Name} or \texttt{Dir} is invalid.

\texttt{load_file(Module) \rightarrow \{module, Module\} | \{error, What\}}

Types:
- \texttt{Module = atom()}
- \texttt{What = nofile | sticky_directory | badarg | term()}

42 Kernel Application (KERNEL)
Tries to load the Erlang module \texttt{Module}, using the code path. It looks for the object code file with an extension that corresponds to the Erlang machine used, for example \texttt{Module.beam}. The loading fails if the module name found in the object code differs from the name \texttt{Module}. load_binary/3 \cite{43} must be used to load object code with a module name that is different from the file name.

Returns \{module, Module\} if successful, or \{error, nofile\} if no object code is found, or \{error, sticky_directory\} if the object code resides in a sticky directory, or \{error, badarg\} if the argument is invalid. Also if the loading fails, an error tuple is returned. See \texttt{erlang:load_module/2} for possible values of \texttt{What}.

\begin{verbatim}
load_abs(Filename) \rightarrow \{module, Module\} | \{error, What\}
\end{verbatim}

Types:
\begin{itemize}
\item \texttt{Filename = string()}
\item \texttt{Module = atom()}
\item \texttt{What = nofile | sticky_directory | badarg | term()}
\end{itemize}

Does the same as \texttt{load_file(Module)}, but \texttt{Filename} is either an absolute file name, or a relative file name. The code path is not searched. It returns a value in the same way as \texttt{load_file/1} \cite{42}. Note that \texttt{Filename} should not contain the extension (for example ".beam"); \texttt{load_abs/1} adds the correct extension itself.

\begin{verbatim}
ensure_loaded(Module) \rightarrow \{module, Module\} | \{error, What\}
\end{verbatim}

Types:
\begin{itemize}
\item \texttt{Module = atom()}
\item \texttt{What = nofile | sticky_directory | embedded | badarg | term()}
\end{itemize}

Tries to load a module in the same way as \texttt{load_file/1} \cite{42}, unless the module is already loaded. In embedded mode, however, it does not load a module which is not already loaded, but returns \{error, embedded\} instead.

\begin{verbatim}
load_binary(Module, Filename, Binary) \rightarrow \{module, Module\} | \{error, What\}
\end{verbatim}

Types:
\begin{itemize}
\item \texttt{Module = atom()}
\item \texttt{Filename = string()}
\item \texttt{What = sticky_directory | badarg | term()}
\end{itemize}

This function can be used to load object code on remote Erlang nodes. The argument \texttt{Binary} must contain object code for \texttt{Module}. \texttt{Filename} is only used by the code server to keep a record of from which file the object code for \texttt{Module} comes. Accordingly, \texttt{Filename} is not opened and read by the code server.

Returns \{module, Module\} if successful, or \{error, sticky_directory\} if the object code resides in a sticky directory, or \{error, badarg\} if any argument is invalid. Also if the loading fails, an error tuple is returned. See \texttt{erlang:load_module/2} for possible values of \texttt{What}.

\begin{verbatim}
delete(Module) \rightarrow true | false
\end{verbatim}

Types:
\begin{itemize}
\item \texttt{Module = atom()}
\end{itemize}
Removes the current code for Module, that is, the current code for Module is made old. This means that processes can continue to execute the code in the module, but that no external function calls can be made to it.

Returns true if successful, or false if there is old code for Module which must be purged first, or if Module is not a (loaded) module.

\[\text{purge(Module)} \rightarrow \text{true | false} \]

Types:
- Module = atom()

Purges the code for Module, that is, removes code marked as old. If some processes still linger in the old code, these processes are killed before the code is removed.

Returns true if successful and any process needed to be killed, otherwise false.

\[\text{soft_purge(Module)} \rightarrow \text{true | false} \]

Types:
- Module = atom()

Purges the code for Module, that is, removes code marked as old, but only if no processes linger in it.

Returns false if the module could not be purged due to processes lingering in old code, otherwise true.

\[\text{is_loaded(Module)} \rightarrow \{\text{file, Loaded}\} | \text{false} \]

Types:
- Module = atom()
- Loaded = Absname | preloaded | cover_compiled
- Absname = string()

Checks if Module is loaded. If it is, \{file, Loaded\} is returned, otherwise false.

Normally, Loaded is the absolute file name Absname from which the code was obtained. If the module is preloaded (see \[script(4)\]), Loaded==preloaded. If the module is Cover compiled (see \[cover(3)\]), Loaded==cover_compiled.

\[\text{all_loaded()} \rightarrow \{[\text{Module, Loaded}]\} \]

Types:
- Module = atom()
- Loaded = Absname | preloaded | cover_compiled
- Absname = string()

Returns a list of tuples \{Module, Loaded\} for all loaded modules. Loaded is normally the absolute file name, as described for is_loaded/1 [page 44].

\[\text{which(Module)} \rightarrow \text{Which} \]

Types:
- Module = atom()
- Which = Filename | non_existing | preloaded | cover_compiled
- Filename = string()
If the module is not loaded, this function searches the code path for the first file which contains object code for Module and returns the absolute file name. If the module is loaded, it returns the name of the file which contained the loaded object code. If the module is pre-loaded, preloaded is returned. If the module is Cover compiled, cover_compiled is returned. non_existing is returned if the module cannot be found.

get_object_code(Module) -> {Module, Binary, Filename} | error

Types:
- Module = atom()
- Binary = binary()
- Filename = string()

Searches the code path for the object code of the module Module. It returns {Module, Binary, Filename} if successful, and error if not. Binary is a binary data object which contains the object code for the module. This can be useful if code is to be loaded on a remote node in a distributed system. For example, loading module Module on a node Node is done as follows:

...
	{{_, Module, Binary, Filename}} = code:get_object_code(Module),
	rpc:call(Node, code, load_binary, [Module, Filename, Binary]),
...

root_dir() -> string()

Returns the root directory of Erlang/OTP, which is the directory where it is installed.

> code:root_dir().
"/usr/local/otp"

lib_dir() -> string()

Returns the library directory, $OTPROOT/lib, where $OTPROOT is the root directory of Erlang/OTP.

> code:lib_dir().
"/usr/local/otp/lib"

lib_dir(Name) -> string() | {error, bad_name}

Types:
- Name = atom()

This function is mainly intended for finding out the path for the “library directory”, the top directory, for an application Name located under $OTPROOT/lib or on a directory referred to via the ERL_LIBS environment variable.

If there is a regular directory called Name or Name-Vsn in the code path with an ebin subdirectory, the path to this directory is returned (not the ebin directory). If the directory refers to a directory in an archive, the archive name is stripped away before the path is returned. For example, if the directory /usr/local/otp/lib/mnesia-4.2.2.ez/mnesia-4.2.2/ebin is in the path, /usr/local/otp/lib/mnesia-4.2.2/ebin will be returned. This means that the library directory for an application is the same, regardless of whether the application resides in an archive or not.
Returns \{error, bad_name\} if Name is not the name of an application under $OTPROOT/lib or on a directory referred to via the ERL_LIBS environment variable. Fails with an exception if Name has the wrong type.

Warning:
For backward compatibility, Name is also allowed to be a string. That will probably change in a future release.

```erlang
lib_dir(Name, SubDir) -> string() | \{error, bad_name\}
```

Types:
- Name = atom()
- SubDir = atom()

Returns the path to a subdirectory directly under the top directory of an application. Normally the subdirectories resides under the top directory for the application, but when applications at least partly resides in an archive the situation is different. Some of the subdirectories may reside as regular directories while other resides in an archive file. It is not checked if this directory really exists.

```erlang
> code:lib_dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"
```

Fails with an exception if Name or SubDir has the wrong type.

```erlang
compiler_dir() -> string()
```

Returns the compiler library directory. Equivalent to `code:lib_dir(compiler)`.

```erlang
priv_dir(Name) -> string() | \{error, bad_name\}
```

Types:
- Name = atom()

Returns the path to the priv directory in an application. Equivalent to `code:lib_dir(Name,priv)`.

Warning:
For backward compatibility, Name is also allowed to be a string. That will probably change in a future release.

```erlang
objfile_extension() -> ".beam"
```

Returns the object code file extension that corresponds to the Erlang machine used, namely ".beam".

```erlang
stick_dir(Dir) -> ok | error
```
Types:
- \texttt{Dir = string()}
- \texttt{What = term()}

This function marks \texttt{Dir} as sticky. Returns \texttt{ok} if successful or \texttt{error} if not.

\texttt{unstick_dir(Dir) -> ok | error}

Types:
- \texttt{Dir = string()}
- \texttt{What = term()}

This function unsticks a directory which has been marked as sticky. Returns \texttt{ok} if successful or \texttt{error} if not.

\texttt{is_sticky(Module) -> true | false}

Types:
- \texttt{Module = atom()}

This function returns \texttt{true} if \texttt{Module} is the name of a module that has been loaded from a sticky directory (or in other words: an attempt to reload the module will fail), or \texttt{false} if \texttt{Module} is not a loaded module or is not sticky.

\texttt{rehash() -> ok}

This function creates or rehashes the code path cache.

\texttt{where_is_file(Filename) -> Absname | non_existing}

Types:
- \texttt{Filename = Absname = string()}

Searches the code path for \texttt{Filename}, a file of arbitrary type. If found, the full name is returned. \texttt{non_existing} is returned if the file cannot be found. The function can be useful, for example, to locate application resource files. If the code path cache is used, the code server will efficiently read the full name from the cache, provided that \texttt{Filename} is an object code file or an .app file.

\texttt{clash() -> ok}

Searches the entire code space for module names with identical names and writes a report to stdout.

\texttt{is_module_native(Module) -> true | false | undefined}

Types:
- \texttt{Module = atom()}

This function returns \texttt{true} if \texttt{Module} is name of a loaded module that has native code loaded, and \texttt{false} if \texttt{Module} is loaded but does not have native. If \texttt{Module} is not loaded, this function returns \texttt{undefined}.
disk_log

Erlang Module

disk_log is a disk based term logger which makes it possible to efficiently log items on files. Two types of logs are supported, halt logs and wrap logs. A halt log appends items to a single file, the size of which may or may not be limited by the disk log module, whereas a wrap log utilizes a sequence of wrap log files of limited size. As a wrap log file has been filled up, further items are logged onto to the next file in the sequence, starting all over with the first file when the last file has been filled up. For the sake of efficiency, items are always written to files as binaries.

Two formats of the log files are supported, the internal format and the external format. The internal format supports automatic repair of log files that have not been properly closed, and makes it possible to efficiently read logged items in chunks using a set of functions defined in this module. In fact, this is the only way to read internally formatted logs. The external format leaves it up to the user to read the logged deep byte lists. The disk log module cannot repair externally formatted logs. An item logged to an internally formatted log must not occupy more than 4 GB of disk space (the size must fit in 4 bytes).

For each open disk log there is one process that handles requests made to the disk log; the disk log process is created when open/1 is called, provided there exists no process handling the disk log. A process that opens a disk log can either be an owner or an anonymous user of the disk log. Each owner is linked to the disk log process, and the disk log is closed by the owner should the owner terminate. Owners can subscribe to notifications, messages of the form \{disk_log, Node, Log, Info\} that are sent from the disk log process when certain events occur, see the commands below and in particular the open/1 option notify [page 58]. There can be several owners of a log, but a process cannot own a log more than once. One and the same process may, however, open the log as a user more than once. For a disk log process to properly close its file and terminate, it must be closed by its owners and once by some non-owner process for each time the log was used anonymously; the users are counted, and there must not be any users left when the disk log process terminates.

Items can be logged synchronously by using the functions log/2, log_terms/2 and blog_terms/2. For each of these functions, the caller is put on hold until the items have been logged (but not necessarily written, use sync/1 to ensure that). By adding an a to each of the mentioned function names we get functions that log items asynchronously. Asynchronous functions do not wait for the disk log process to actually write the items to the file, but return the control to the caller more or less immediately.

When using the internal format for logs, the functions log/2, log_terms/2, alog/2, and alog_terms/2 should be used. These functions log one or more Erlang terms. By prefixing each of the functions with a b (for “binary”) we get the corresponding blog functions for the external format. These functions log one or more deep lists of bytes or, alternatively, binaries of deep lists of bytes. For example, to log the string “hello” in ASCII format, we can use disk_log:blog(Log, “hello”), or disk_log:blog(Log, list_to_binary(“hello”)). The two alternatives are equally efficient. The blog
functions can be used for internally formatted logs as well, but in this case they must be
called with binaries constructed with calls to `term_to_binary/1`. There is no check to
ensure this, it is entirely the responsibility of the caller. If these functions are called with
binaries that do not correspond to Erlang terms, the `chunk/2,3` and automatic repair
functions will fail. The corresponding terms (not the binaries) will be returned when
`chunk/2,3` is called.

A collection of open disk logs with the same name running on different nodes is said to
be a a distributed disk log if requests made to any one of the logs are automatically made
to the other logs as well. The members of such a collection will be called individual
distributed disk logs, or just distributed disk logs if there is no risk of confusion. There is
no order between the members of such a collection. For instance, logged terms are not
necessarily written onto the node where the request was made before written onto the
other nodes. One could note here that there are a few functions that do not make
requests to all members of distributed disk logs, namely `info`, `chunk`, `bchunk`,
`chunk_step` and `lclose`. An open disk log that is not a distributed disk log is said to be
a local disk log. A local disk log is accessible only from the node where the disk log
process runs, whereas a distributed disk log is accessible from all nodes in the Erlang
system, with exception for those nodes where a local disk log with the same name as
the distributed disk log exists. All processes on nodes that have access to a local or
distributed disk log can log items or otherwise change, inspect or close the log.

It is not guaranteed that all log files of a distributed disk log contain the same log items;
there is no attempt made to synchronize the contents of the files. However, as long as at
least one of the involved nodes is alive at each time, all items will be logged. When
logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs are ignored. If all nodes are down, the disk log functions reply with a
`nonode` error.

Note:

In some applications it may not be acceptable that replies from individual logs are
ignored. An alternative in such situations is to use several local disk logs instead of
one distributed disk log, and implement the distribution without use of the disk log
module.

Errors are reported differently for asynchronous log attempts and other uses of the disk
log module. When used synchronously the disk log module replies with an error
message, but when called asynchronously, the disk log module does not know where to
send the error message. Instead owners subscribing to notifications will receive an
`error_status` message.

The disk log module itself does not report errors to the `error_logger` module; it is up
to the caller to decide whether the error logger should be employed or not. The
function `format_error/1` can be used to produce readable messages from error replies.
Information events are however sent to the error logger in two situations, namely when
a log is repaired, or when a file is missing while reading chunks.

The error message `no_such_log` means that the given disk log is not currently open.
Nothing is said about whether the disk log files exist or not.
Note: If an attempt to reopen or truncate a log fails (see reopen and truncate) the disk log process immediately terminates. Before the process terminates links to owners and blocking processes (see block) are removed. The effect is that the links work in one direction only; any process using a disk log has to check for the error message no_such_log if some other process might truncate or reopen the log simultaneously.

Exports

accessible_logs() -> {[LocalLog], [DistributedLog]}

Types:
- LocalLog = DistributedLog = term()

The accessible_logs/0 function returns the names of the disk logs accessible on the current node. The first list contains local disk logs, and the second list contains distributed disk logs.

alog(Log, Term) balog(Log, Bytes) -> ok | {error, Reason}

Types:
- Log = term()
- Term = term()
- Bytes = binary() | [Byte]
- Byte = [Byte] | 0 <= integer() <= 255
- Reason = no_such_log

The alog/2 and balog/2 functions asynchronously append an item to a disk log. The function alog/2 is used for internally formatted logs, and the function balog/2 for externally formatted logs. balog/2 can be used for internally formatted logs as well provided the binary was constructed with a call to term_to_binary/1.

The owners that subscribe to notifications will receive the message read_only, blocked_log or format_external in case the item cannot be written on the log, and possibly one of the messages wrap, full and error_status if an item was written on the log. The message error_status is sent if there is something wrong with the header function or a file error occurred.

alog_terms(Log, TermList) balog_terms(Log, BytesList) -> ok | {error, Reason}

Types:
- Log = term()
- TermList = [term()]
- BytesList = [Bytes]
- Bytes = binary() | [Byte]
- Byte = [Byte] | 0 <= integer() <= 255
- Reason = no_such_log
The `alog_term/2` and `balog_term/2` functions asynchronously append a list of items to a disk log. The function `alog_term/2` is used for internally formatted logs, and the function `balog_term/2` for externally formatted logs. `balog_term/2` can be used for internally formatted logs as well provided the binaries were constructed with calls to `term_to_binary/1`.

The owners that subscribe to notifications will receive the message `read_only`, `blocked_log` or `format_external` in case the items cannot be written on the log, and possibly one or more of the messages `wrap`, `full` and `error` status if items were written on the log. The message `error` status is sent if there is something wrong with the header function or a file error occurred.

```erlang
block(Log)
block(Log, QueueLogRecords) -> ok | {error, Reason}
```

Types:
- `Log` = term()
- `QueueLogRecords` = bool()
- `Reason` = `no_such_log` | `nonode` | `{blocked_log, Log}`

With a call to `block/1,2` a process can block a log. If the blocking process is not an owner of the log, a temporary link is created between the disk log process and the blocking process. The link is used to ensure that the disk log is unblocked should the blocking process terminate without first closing or unblocking the log. Any process can probe a blocked log with `info/1` or close it with `close/1`. The blocking process can also use the functions `chunk/2,3`, `bchunk/2,3`, `chunk_step/3`, and `unblock/1` without being affected by the block. Any other attempt than those hitherto mentioned to update or read a blocked log suspends the calling process until the log is unblocked or returns an error message `{blocked_log, Log}`, depending on whether the value of `QueueLogRecords` is true or false. The default value of `QueueLogRecords` is true, which is used by `block/1`.

```erlang
change_header(Log, Header) -> ok | {error, Reason}
```

Types:
- `Log` = term()
- `Header` = `{head, Head} | {head_func, \{M,F,A\}}`
- `Head` = none | term() | binary() | `[Byte]`
- `Byte` = `[Byte]` | 0 =< integer() =< 255
- `Reason` = `no_such_log` | `nonode` | `{read_only_mode, Log}` | `{blocked_log, Log}` | `{badarg, head}`

The `change_header/2` function changes the value of the `head` or `head_func` option of a disk log.

```erlang
change_notify(Log, Owner, Notify) -> ok | {error, Reason}
```

Types:
- `Log` = term()
- `Owner` = pid()
- `Notify` = bool()
- `Reason` = `no_such_log` | `nonode` | `{blocked_log, Log}` | `{badarg, notify}` | `{not_owner, Owner}`
The change_notify/3 function changes the value of the notify option for an owner of a disk log.

change_size(Log, Size) -> ok | {error, Reason}

Types:
- Log = term()
- Size = integer() > 0 | infinity | \{MaxNoBytes, MaxNoFiles\}
- MaxNoBytes = integer() > 0
- MaxNoFiles = integer() > 0
- Reason = no such log | nonode | \{read_only_mode, Log\} | \{blocked_log, Log\} |
 \{new_size too small, CurrentSize\} | \{badarg, size\} | \{file_error, FileName, FileError\}

The change_size/2 function changes the size of an open log. For a halt log it is always possible to increase the size, but it is not possible to decrease the size to something less than the current size of the file.

For a wrap log it is always possible to increase both the size and number of files, as long as the number of files does not exceed 65000. If the maximum number of files is decreased, the change will not be valid until the current file is full and the log wraps to the next file. The redundant files will be removed next time the log wraps around, i.e. starts to log to file number 1.

As an example, assume that the old maximum number of files is 10 and that the new maximum number of files is 6. If the current file number is not greater than the new maximum number of files, the files 7 to 10 will be removed when file number 6 is full and the log starts to write to file number 1 again. Otherwise the files greater than the current file will be removed when the current file is full (e.g. if the current file is 8, the files 9 and 10); the files between new maximum number of files and the current file (i.e. files 7 and 8) will be removed next time file number 6 is full.

If the size of the files is decreased the change will immediately affect the current log. It will not of course change the size of log files already full until next time they are used.

If the log size is decreased for instance to save space, the function inc_wrap_file/1 can be used to force the log to wrap.

chunk(Log, Continuation)
chunk(Log, Continuation, N) -> \{Continuation2, Terms\} | \{Continuation2, Terms, Badbytes\} | eof | \{error, Reason\}

bchunk(Log, Continuation)
bchunk(Log, Continuation, N) -> \{Continuation2, Binaries\} | \{Continuation2, Binaries, Badbytes\} | eof | \{error, Reason\}

Types:
- Log = term()
- Continuation = start | cont()
- N = integer() > 0 | infinity
- Continuation2 = cont()
- Terms = [term()]
- Badbytes = integer()
- Reason = no such log | \{format external, Log\} | \{blocked_log, Log\} | \{badarg, continuation\} | \{not internal _wrap, Log\} | \{corrupt_log file, Log\} | \{file error, File Name, File Error\}
The chunk/2,3 and bchunk/2,3 functions make it possible to efficiently read the terms which have been appended to an internally formatted log. It minimizes disk I/O by reading 64 kilobyte chunks from the file. The bchunk/2,3 functions return the binaries read from the file; they do not call binary_to_term. Otherwise the work just like chunk/2,3.

The first time chunk (or bchunk) is called, an initial continuation, the atom start, must be provided. If there is a disk log process running on the current node, terms are read from that log, otherwise an individual distributed log on some other node is chosen, if such a log exists.

When chunk/3 is called, N controls the maximum number of terms that are read from the log in each chunk. Default is infinity, which means that all the terms contained in the 64 kilobyte chunk are read. If less than N terms are returned, this does not necessarily mean that the end of the file has been reached.

The chunk function returns a tuple {Continuation2, Terms}, where Terms is a list of terms found in the log. Continuation2 is yet another continuation which must be passed on to any subsequent calls to chunk. With a series of calls to chunk it is possible to extract all terms from a log.

The chunk function returns a tuple {Continuation2, Terms, Badbytes} if the log is opened in read-only mode and the read chunk is corrupt. Badbytes is the number of bytes in the file which were found not to be Erlang terms in the chunk. Note also that the log is not repaired. When trying to read chunks from a log opened in read-write mode, the tuple {corrupt_log_file, FileName} is returned if the read chunk is corrupt.

chunk returns eof when the end of the log is reached, or {error, Reason} if an error occurs. Should a wrap log file be missing, a message is output on the error log.

When chunk/2,3 is used with wrap logs, the returned continuation may or may not be valid in the next call to chunk. This is because the log may wrap and delete the file into which the continuation points. To make sure this does not happen, the log can be blocked during the search.

chunk_info(Continuation) -> InfoList | {error, Reason}

Types:
- Continuation = cont()
- Reason = {no_continuation, Continuation}

The chunk_info/1 function returns the following pair describing the chunk continuation returned by chunk/2,3, bchunk/2,3, or chunk_step/3:

- {node, Node}. Terms are read from the disk log running on Node.

chunk_step(Log, Continuation, Step) -> {ok, Continuation2} | {error, Reason}

Types:
- Log = term()
- Continuation = start | cont()
- Step = integer()
- Continuation2 = cont()
The function chunk_step can be used in conjunction with chunk/2,3 and bchunk/2,3 to search through an internally formatted wrap log. It takes as argument a continuation as returned by chunk/2,3, bchunk/2,3, or chunk_step/3, and steps forward (or backward) step files in the wrap log. The continuation returned points to the first log item in the new current file.

If the atom start is given as continuation, a disk log to read terms from is chosen. A local or distributed disk log on the current node is preferred to an individual distributed log on some other node.

If the wrap log is not full because all files have not been used yet, {error, end_of_log} is returned if trying to step outside the log.

close(Log) -> ok | {error, Reason}

Types:
- Reason = no such log | nonode | {format_external, Log} | {blocked_log, Log} | {badarg, continuation} | {file_error, FileName, FileError}

The function close/1 closes a local or distributed disk log properly. An internally formatted log must be closed before the Erlang system is stopped, otherwise the log is regarded as unclosed and the automatic repair procedure will be activated next time the log is opened.

The disk log process in not terminated as long as there are owners or users of the log. It should be stressed that each and every owner must close the log, possibly by terminating, and that any other process - not only the processes that have opened the log anonymously - can decrement the users counter by closing the log. Attempts to close a log by a process that is not an owner are simply ignored if there are no users.

If the log is blocked by the closing process, the log is also unblocked.

format_error(Err) -> Chars

Types:
- Chars = [char() | Chars]

Given the error returned by any function in this module, the function format_error returns a descriptive string of the error in English. For file errors, the function format_error/1 in the file module is called.

inc_wrap_file(Log) -> ok | {error, Reason}

Types:
- Reason = no such log | nonode | {read_only_mode, Log} | {blocked_log, Log} | {halt_log, Log} | {invalid_header, InvalidHeader} | {file_error, FileName, FileError}

The inc_wrap_file/1 function forces the internally formatted disk log to start logging to the next log file. It can be used, for instance, in conjunction with change_size/2 to reduce the amount of disk space allocated by the disk log.

The owners that subscribe to notifications will normally receive a wrap message, but in case of an error with a reason tag of invalid_header or file_error an error_status message will be sent.

info(Log) -> InfoList | {error, no such log}
The `info/1` function returns a list of `{Tag, Value}` pairs describing the log. If there is a disk log process running on the current node, that log is used as source of information, otherwise an individual distributed log on some other node is chosen, if such a log exists.

The following pairs are returned for all logs:

- `{name, Log}`, where Log is the name of the log as given by the `open/1` option name.
- `{file, File}`, For halt logs `File` is the filename, and for wrap logs `File` is the base name.
- `{type, Type}`, where Type is the type of the log as given by the `open/1` option type.
- `{format, Format}`, where Format is the format of the log as given by the `open/1` option format.
- `{size, Size}`, where Size is the size of the log as given by the `open/1` option size, or the size set by `change_size/2`. The value set by `change_size/2` is reflected immediately.
- `{mode, Mode}`, where Mode is the mode of the log as given by the `open/1` option `mode`.
- `{owners, [pid(), Notify]}`, where Notify is the value set by the `open/1` option `notify` or the function `change_notify/3` for the owners of the log.
- `{users, Users}`, where Users is the number of anonymous users of the log, see the `open/1` option `linkto` [page 58].
- `{status, Status}`, where Status is `ok` or `{blocked, QueueLogRecords}` as set by the functions `block/1,2` and `unblock/1`.
- `{node, Node}`, The information returned by the current invocation of the `info/1` function has been gathered from the disk log process running on Node.
- `{distributed, Dist}`, if the log is local on the current node, then `Dist` has the value `local`, otherwise all nodes where the log is distributed are returned as a list.

The following pairs are returned for all logs opened in `read_write` mode:

- `{head, Head}`, Depending of the value of the `open/1` options `head` and `head_func` or set by the function `change_header/2`, the value of Head is `none` (default), `{head, H} (head option) or `{H, F, A} (head_func option).
- `{no_written_items, NoWrittenItems}`, where NoWrittenItems is the number of items written to the log since the disk log process was created.

The following pair is returned for halt logs opened in `read_write` mode:

- `{full, Full}`, where Full is `true` or `false` depending on whether the halt log is full or not.

The following pairs are returned for wrap logs opened in `read_write` mode:

- `{no_current_bytes, integer() >= 0}` is the number of bytes written to the current wrap log file.
- `{no_current_items, integer() >= 0}` is the number of items written to the current wrap log file, header inclusive.
- `{no_items, integer() >= 0}` is the total number of items in all wrap log files.
- \{current_file, integer()\} is the ordinal for the current wrap log file in the range 1..MaxNoFiles, where MaxNoFiles is given by the open/1 option size or set by change_size/2.

- \{no_overflows, \{SinceLogWasOpened, SinceLastInfo\}\}, where SinceLogWasOpened(SinceLastInfo) is the number of times a wrap log file has been filled up and a new one opened or inc_wrap_file/1 has been called since the disk log was last opened (info/1 was last called). The first time info/2 is called after a log was (re)opened or truncated, the two values are equal.

Note that the chunk/2,3, bchunk/2,3, and chunk_step/3 functions do not affect any value returned by info/1.

\textbf{lclose(Log)}
\textbf{lclose(Log, Node) -> ok | \{error, Reason\}

Types:
- \texttt{Node = node()}
- \texttt{Reason = no_such_log | \{file_error, FileName, FileError\}

The function lclose/1 closes a local log or an individual distributed log on the current node. The function lclose/2 closes an individual distributed log on the specified node if the node is not the current one. lclose(Log) is equivalent to lclose(Log,node()). See also close/1 [page 54].

If there is no log with the given name on the specified node, no_such_log is returned.

\textbf{log(Log, Term)}
\textbf{blog(Log, Bytes) -> ok | \{error, Reason\}

Types:
- \texttt{Log = term()}
- \texttt{Term = term()}
- \texttt{Bytes = binary() | \{Byte\}
- \texttt{Byte = [Byte] | 0 \makebox[0.5cm]{\triangleright} integer() \makebox[0.5cm]{\triangleright} 255
- \texttt{Reason = no_such_log | nonode | \{read_only_mode, Log\} | \{format_external, Log\} | \{blocked_log, Log\} | \{full, Log\} | \{invalid_header, InvalidHeader\} | \{file_error, FileName, FileError\}

The log/2 and blog/2 functions synchronously append a term to a disk log. They return ok or \{error, Reason\} when the term has been written to disk. If the log is distributed, ok is always returned, unless all nodes are down. Terms are written by means of the ordinary write() function of the operating system. Hence, there is no guarantee that the term has actually been written to the disk, it might linger in the operating system kernel for a while. To make sure the item is actually written to disk, the sync/1 function must be called.

The log/2 function is used for internally formatted logs, and blog/2 for externally formatted logs. blog/2 can be used for internally formatted logs as well provided the binary was constructed with a call to term_to_binary/1.

The owners that subscribe to notifications will be notified of an error with an error_status message if the error reason tag is invalid_header or file_error.

\textbf{log_terms(Log, TermList)
blog_terms(Log, BytesList) -> ok | {error, Reason}

Types:
- Log = term()
- TermList = [term()]
- BytesList = [Bytes]
- Bytes = binary() | [Byte]
- Byte = [Byte] | 0 <= integer() =< 255
- Reason = no_such_log | nonode | {read_only_mode, Log} | {format_external, Log} | {blocked_log, Log} | {full, Log} | {invalid_header, InvalidHeader} | {file_error, FileName, FileError}

The \texttt{log_terms/2 and blog_terms/2} functions synchronously append a list of items to the log. The benefit of using these functions rather than the \texttt{log/2 and blog/2} functions is that of efficiency: the given list is split into as large sublists as possible (limited by the size of wrap log files), and each sublist is logged as one single item, which reduces the overhead.

The \texttt{log_terms/2} function is used for internally formatted logs, and \texttt{blog_terms/2} for externally formatted logs. \texttt{blog_terms/2} can be used for internally formatted logs as well provided the binaries were constructed with calls to \texttt{term_to_binary/1}.

The owners that subscribe to notifications will be notified of an error with an error status message if the error reason tag is invalid_header or file_error.

open(ArgL) -> OpenRet | DistOpenRet

Types:
- ArgL = [Opt]
- Opt = {name, term()} | {file, FileName}, {linkto, LinkTo} | {repair, Repair} | {type, Type} | {format, Format} | {size, Size} | {distributed, [Node]} | {notify, bool()} | {head, Head} | {head_func, [M,F,A]} | {mode, Mode}
- FileName = string() | atom()
- LinkTo = pid() | none
- Repair = true | false | truncate
- Type = halt | wrap
- Format = internal | external
- Size = integer() > 0 | infinity | {MaxNBYTES, MaxNFILES}
- MaxNBYTES = integer() > 0
- MaxNFILES = 0 < integer() < 65000
- Rec = integer()
- Bad = integer()
- Head = none | term() | binary() | [Byte]
- Byte = [Byte] | 0 <= integer() =< 255
- Mode = read_write | read_only
- OpenRet = Ret | {error, Reason}
- DistOpenRet = [{Node, Ret}], [{BadNode, {error, DistReason}}]}
- Node = BadNode = atom()
- Ret = {ok, Log} | {repaired, Log, {recovered, Rec}, {badbytes, Bad}}
- DistReason = nodedown | Reason
The ArgL parameter is a list of options which have the following meanings:

- **{name, Log}** specifies the name of the log. This is the name which must be passed on as a parameter in all subsequent logging operations. A name must always be supplied.

- **{file, FileName}** specifies the name of the file which will be used for logged terms. If this value is omitted and the name of the log is either an atom or a string, the file name will default to lists:concat([Log, "\.LOG"]) for halt logs. For wrap logs, this will be the base name of the files. Each file in a wrap log will be called <base_name>.N, where N is an integer. Each wrap log will also have two files called <base_name>.idx and <base_name>.siz.

- **{linkto, LinkTo}**. If LinkTo is a pid, that pid becomes an owner of the log. If LinkTo is none the log records that it is used anonymously by some process by incrementing the users counter. By default, the process which calls open/1 owns the log.

- **{repair, Repair}**. If Repair is true, the current log file will be repaired, if needed. As the restoration is initiated, a message is output on the error log. If false is given, no automatic repair will be attempted. Instead, the tuple {error, {need_repair, Log}} is returned if an attempt is made to open a corrupt log file. If truncate is given, the log file will be truncated, creating an empty log. Default is true, which has no effect on logs opened in read-only mode.

- **{type, Type}** is the type of the log. Default is halt.

- **{format, Format}** specifies the format of the disk log. Default is internal.

- **{size, Size}** specifies the size of the log. When a halt log has reached its maximum size, all attempts to log more items are rejected. The default size is infinity, which for halt implies that there is no maximum size. For wrap logs, the Size parameter may be either a pair {MaxNoBytes, MaxNoFiles} or infinity. In the latter case, if the files of an already existing wrap log with the same name can be found, the size is read from the existing wrap log, otherwise an error is returned. Wrap logs write at most MaxNoBytes bytes on each file and use MaxNoFiles files before starting all over with the first wrap log file. Regardless of MaxNoBytes, at least the header (if there is one) and one item is written on each wrap log file before wrapping to the next file. When opening an existing wrap log, it is not necessary to supply a value for the option Size, but any supplied value must equal the current size of the log, otherwise the tuple {error, {size_mismatch, CurrentSize, NewSize}} is returned.

- **{distributed, Nodes}**. This option can be used for adding members to a distributed disk log. The default value is [], which means that the log is local on the current node.

- **{notify, bool()}**. If true, the owners of the log are notified when certain events occur in the log. Default is false. The owners are sent one of the following messages when an event occurs:
 - **{disk_log, Node, Log, {wrap, NoLostItems}}** is sent when a wrap log has filled up one of its files and a new file is opened. NoLostItems is the number of previously logged items that have been lost when truncating existing files.
- \texttt{\{disk_log, Node, Log, \{truncated, NoLostItems\}\}} is sent when a log has been truncated or reopened. For halt logs NoLostItems is the number of items written on the log since the disk log process was created. For wrap logs NoLostItems is the number of items on all wrap log files.

- \texttt{\{disk_log, Node, Log, \{read_only, Items\}\}} is sent when an asynchronous log attempt is made to a log file opened in read-only mode. Items is the items from the log attempt.

- \texttt{\{disk_log, Node, Log, \{blockedLog, Items\}\}} is sent when an asynchronous log attempt is made to a blocked log that does not queue log attempts. Items is the items from the log attempt.

- \texttt{\{disk_log, Node, Log, \{format_external, Items\}\}} is sent when \texttt{alog/2} or \texttt{alog_terms/2} is used for internally formatted logs. Items is the items from the log attempt.

- \texttt{\{disk_log, Node, Log, full\}} is sent when an attempt to log items to a wrap log would write more bytes than the limit set by the size option.

- \texttt{\{disk_log, Node, Log, \{error_status, Status\}\}} is sent when the error status changes. The error status is defined by the outcome of the last attempt to log items to a log or to truncate the log or the last use of \texttt{sync/1}, \texttt{inc_wrap_file/1} or \texttt{change_size/2}. Status is one of \texttt{ok} and \texttt{\{error, Error\}}, the former being the initial value.

- \texttt{\{head, Head\}} specifies a header to be written first on the log file. If the log is a wrap log, the item Head is written first in each new file. Head should be a term if the format is internal, and a deep list of bytes (or a binary) otherwise. Default is none, which means that no header is written first on the file.

- \texttt{\{head_func, \{M, F, A\}\}} specifies a function to be called each time a new log file is opened. The call \texttt{M:F(A)} is assumed to return \texttt{\{ok, Head\}}. The item Head is written first in each file. Head should be a term if the format is internal, and a deep list of bytes (or a binary) otherwise.

- \texttt{\{mode, Mode\}} specifies if the log is to be opened in read-only or read-write mode. It defaults to \texttt{read_write}.

The \texttt{open/1} function returns \texttt{\{ok, Log\}} if the log file was successfully opened. If the file was successfully repaired, the tuple \texttt{\{repaired, Log, \{recovered, Rec\}, \{badbytes, Bad\}\}} is returned, where \texttt{Rec} is the number of whole Erlang terms found in the file and \texttt{Bad} is the number of bytes in the file which were non-Erlang terms. If the distributed parameter was given, \texttt{open/1} returns a list of successful replies and a list of erroneous replies. Each reply is tagged with the node name. When a disk log is opened in read-write mode, any existing log file is checked for. If there is none a new empty log is created, otherwise the existing file is opened at the position after the last logged item, and the logging of items will commence from there. If the format is internal and the existing file is not recognized as an internally formatted log, a tuple \texttt{\{error, \{not_a_log_file, FileName\}\}} is returned.

The \texttt{open/1} function cannot be used for changing the values of options of an already open log; when there are prior owners or users of a log, all option values except \texttt{name}, \texttt{linkto} and \texttt{notify} are just checked against the values that have been supplied before as option values to \texttt{open/1}, \texttt{change_header/2}, \texttt{change_notify/3} or \texttt{change_size/2}. As a consequence, none of the options except \texttt{name} is mandatory. If some given value differs from the current value, a tuple \texttt{\{error, \{arg_mismatch, OptionName, CurrentValue, Value\}\}} is returned. Caution: an owner’s attempt to open a log as owner once again is acknowledged with the return value \texttt{\{ok, Log\}}, but the state of the disk log is not affected in any way.
If a log with a given name is local on some node, and one tries to open the log distributed on the same node, then the tuple \{error, \{node_already_open, Name\}\} is returned. The same tuple is returned if the log is distributed on some node, and one tries to open the log locally on the same node. Opening individual distributed disk logs for the first time adds those logs to a (possibly empty) distributed disk log. The option values supplied are used on all nodes mentioned by the distributed option. Individual distributed logs know nothing about each other's option values, so each node can be given unique option values by creating a distributed log with several calls to open/1.

It is possible to open a log file more than once by giving different values to the option name or by using the same file when distributing a log on different nodes. It is up to the user of the diskLog module to ensure that no more than one disk log process has write access to any file, or the file may be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message \{{failed,Reason},[\{disk_log,open,1\}]\}. The function returns \{error, Reason\} for all other errors.

\[\text{pid2name(Pid)} -> \{ok, Log\} | \text{undefined}\]

Types:
- \(\text{Log} = \text{term}()\)
- \(\text{Pid} = \text{pid}()\)

The \text{pid2name/1} function returns the name of the log given the pid of a disk log process on the current node, or \text{undefined} if the given pid is not a disk log process.

This function is meant to be used for debugging only.

\[\text{reopen(Log, File)}\]
\[\text{reopen(Log, File, Head)}\]
\[\text{breopen(Log, File, BHead)} -> \{ok} | \{error, Reason\}\]

Types:
- \(\text{Log} = \text{term}()\)
- \(\text{File} = \text{string}()\)
- \(\text{Head} = \text{term}()\)
- \(\text{BHead} = \text{binary}() | \text{[Byte]}\)
- \(\text{Byte} = \text{[Byte]} | 0 <= \text{integer}() =< 255\)
- \(\text{Reason} = \text{no_such_log} | \text{nonode} | \{\text{read_only_mode, Log}\} | \{\text{blocked_log, Log}\} | \{\text{same_file_name, Log}\} | \{\text{invalid_index_file, FileName}\} | \{\text{invalid_header, InvalidHeader}\} | \{\text{file_error, FileName, FileError}\}\]

The \text{reopen} functions first rename the log file to \text{File} and then re-create a new log file. In case of a wrap log, \text{File} is used as the base name of the renamed files. By default the header given to open/1 is written first in the newly opened log file, but if the Head or the BHead argument is given, this item is used instead. The header argument is used once only; next time a wrap log file is opened, the header given to open/1 is used.

The \text{reopen/2,3} functions are used for internally formatted logs, and \text{breopen/3} for externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message \{{failed,Error},[[\text{disk_log,Fun,Arity}]]\}, and other processes that have requests queued receive the message \{\text{disk_log, Node, \{error, disk_log_stopped\}}\}.
sync(Log) -> ok | {error, Reason}

Types:
- Log = term()
- Reason = no_such_log | nonode | {read_only_mode, Log} | {blocked_log, Log} | {file_error, FileName, FileError}

The sync/1 function ensures that the contents of the log are actually written to the disk. This is usually a rather expensive operation.

truncate(Log)
truncate(Log, Head)
btruncate(Log, BHead) -> ok | {error, Reason}

Types:
- Log = term()
- Head = term()
- BHead = binary() | [Byte]
- Byte = [Byte] | 0 =< integer() =< 255
- Reason = no_such_log | nonode | {read_only_mode, Log} | {blocked_log, Log} | {invalid_header, InvalidHeader} | {file_error, FileName, FileError}

The truncate functions remove all items from a disk log. If the Head or the BHead argument is given, this item is written first in the newly truncated log, otherwise the header given to open/1 is used. The header argument is only used once; next time a wrap log file is opened, the header given to open/1 is used.

The truncate/1,2 functions are used for internally formatted logs, and btruncate/2 for externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

If the attempt to truncate the log fails, the disk log process terminates with the EXIT message {failed,Reason}, [{disk_log, Fun, Arity}], and other processes that have requests queued receive the message {disk_log, Node, {error, disk_log_stopped}}.

unblock(Log) -> ok | {error, Reason}

Types:
- Log = term()
- Reason = no_such_log | nonode | {not_blocked, Log} | {not_blocked_by_pid, Log}

The unblock/1 function unblocks a log. A log can only be unblocked by the blocking process.

See Also

file(3) [page 90], pg2(3) [page 175], wrap_log_reader(3) [page 194]
erl_boot_server

Erlang Module

This server is used to assist diskless Erlang nodes which fetch all Erlang code from another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime system is started with the `:-loader inet` command line flag. All hosts specified with the `:-hosts Host` command line flag must have one instance of this server running.

This server can be started with the kernel configuration parameter `start_boot_server`.

The `erl_boot_server` can both read regular files as well as files in archives. See code(3) [page 37] and [erl_prim_loader(3)].

Warning:
The support for loading of code from archive files is experimental. The sole purpose of releasing it before it is ready is to obtain early feedback. The file format, semantics, interfaces etc. may be changed in a future release.

Exports

```erlang
start(Slaves) -> {ok, Pid} | {error, What}
```

Types:
- `Slaves = [Host]`
- `Host = atom()`
- `Pid = pid()`
- `What = term()`

Starts the boot server. `Slaves` is a list of IP addresses for hosts which are allowed to use this server as a boot server.

```erlang
start_link(Slaves) -> {ok, Pid} | {error, What}
```

Types:
- `Slaves = [Host]`
- `Host = atom()`
- `Pid = pid()`
- `What = term()`
Starts the boot server and links to the caller. This function is used to start the server if it is included in a supervision tree.

```erlang
add_slave(Slave) -> ok | {error, What}
Types:
  Slave = Host
  Host = atom()
  What = term()
```

Adds a Slave node to the list of allowed slave hosts.

```erlang
delete_slave(Slave) -> ok | {error, What}
Types:
  Slave = Host
  Host = atom()
  What = void()
```

Deletes a Slave node from the list of allowed slave hosts.

```erlang
which_slaves() -> Slaves
Types:
  Slaves = [Host]
  Host = atom()
```

Returns the current list of allowed slave hosts.

SEE ALSO

[init(3)], [erl_prim_loader(3)]
erl_ddll

Erlang Module

The erl_ddll module provides an interface for loading and unloading erlang linked in drivers in runtime.

Note:
This is a large reference document. For casual use of the module, as well as for most real world applications, the descriptions of the functions load/2 [page 67] and unload/1 [page 77] are enough to get going.

The driver should be provided as a dynamically linked library in a object code format specific for the platform in use, i.e. .so files on most Unix systems and .dll files on windows. An erlang linked in driver has to provide specific interfaces to the emulator, so this module is not designed for loading arbitrary dynamic libraries. For further information about erlang drivers, refer to the ERTS reference manual section [erl_driver].

When describing a set of functions, (i.e. a module, a part of a module or an application) executing in a process and wanting to use a ddll-driver, we use the term user. There can be several users in one process (different modules needing the same driver) and several processes running the same code, making up several users of a driver. In the basic scenario, each user loads the driver before starting to use it and unloads the driver when done. The reference counting keeps track of processes as well as the number of loads by each process, so that the driver will only be unloaded when no one wants it (it has no user). The driver also keeps track of ports that are opened towards it, so that one can delay unloading until all ports are closed or kill all ports using the driver when it is unloaded.

The interface supports two basic scenarios of loading and unloading. Each scenario can also have the option of either killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are:

Load and unload on a “when needed basis” This (most common) scenario simply supports that each user [page 64] of the driver loads it when it is needed and unloads it when the user [page 64] no longer have any use for it. The driver is always reference counted and as long as a process keeping the driver loaded is still alive, the driver is present in the system.

Each user [page 64] of the driver use literally the same pathname for the driver when demanding load, but the users [page 64] are not really concerned with if the driver is already loaded from the filesystem or if the object code has to be loaded from filesystem.

Two pairs of functions support this scenario:
load/2 and unload/1 When using the load/unload interfaces, the driver will not actually get unloaded until the last port using the driver is closed. The function `unload/1` can return immediately, as the users [page 64] are not really concerned with when the actual unloading occurs. The driver will actually get unloaded when no one needs it any longer.

If a process having the driver loaded dies, it will have the same effect as if unloading was done.

When loading, the function `load/2` returns `ok` as soon as there is any instance of the driver present, so that if a driver is waiting to get unloaded (due to open ports), it will simply change state to no longer need unloading.

load_driver/2 and unload_driver/1 These interfaces is intended to be used when it is considered an error that ports are open towards a driver that no user [page 64] has loaded. The ports still open when the last user [page 64] calls `unload_driver/1` or when the last process having the driver loaded dies, will get killed with reason `driver_unloaded`.

The function names `load_driver` and `unload_driver` are kept for backward compatibility.

Loading and reloading for code replacement This scenario occurs when the driver code might need replacement during operation of the Erlang emulator. Implementing driver code replacement is somewhat more tedious than beam code replacement, as one driver cannot be loaded as both “old” and “new” code. All users [page 64] of a driver must have it closed (no open ports) before the old code can be unloaded and the new code can be loaded.

The actual unloading/loading is done as one atomic operation, blocking all processes in the system from using the driver concerned while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When the process start, the driver is loaded. When replacement is required, the driver is reloaded. Unload is probably never done, or done when the process exits. If more than one user [page 64] has a driver loaded when code replacement is demanded, the replacement cannot occur until the last “other” user [page 64] has unloaded the driver.

Demanding reload when a reload is already in progress is always an error. Using the high level functions, it is also an error to demand reloading when more than one user [page 64] has the driver loaded. To simplify driver replacement, avoid designing your system so that more than than one user [page 64] has the driver loaded.

The two functions for reloading drivers should be used together with corresponding load functions, to support the two different behaviors concerning open ports:

load/2 and reload/2 This pair of functions is used when reloading should be done after the last open port towards the driver is closed.

As `reload/2` actually waits for the reloading to occur, a misbehaving process keeping open ports towards the driver (or keeping the driver loaded) might cause infinite waiting for reload. Timeouts has to be provided outside of the process demanding the reload or by using the low-level interface `try_load/3` [page 72] in combination with driver monitors (see below).

load_driver/2 and reload_driver/2 This pair of functions are used when open ports towards the driver should be killed with reason `driver_unloaded` to allow for new driver code to get loaded.

If, however, another process has the driver loaded, calling `reload_driver` returns the error code `pending_process`. As stated earlier, the recommended
design is to not allow other users [page 64] than the “driver reloader” to actually demand loading of the concerned driver.

Exports

demonitor(MonitorRef) -> ok

Types:
- MonitorRef = ref()

Removes a driver monitor in much the same way as [erlang:demonitor/1] does with process monitors. See monitor/2 [page 69], try_load/3 [page 72] and try_unload/2 [page 75] for details about how to create driver monitors.

The function throws a badarg exception if the parameter is not a ref().

info() -> AllInfoList

Types:
- AllInfoList = [DriverInfo]
- DriverInfo = { DriverName, InfoList }
- DriverName = string()
- InfoList = [InfoItem]
- InfoItem = { Tag, Value }
- Tag = atom()
- Value = term()

Returns a list of tuples {DriverName, InfoList}, where InfoList is the result of calling info/1 [page 66] for that DriverName. Only dynamically linked in drivers are included in the list.

info(Name) -> InfoList

Types:
- Name = string() | atom()
- InfoList = [InfoItem]
- InfoItem = { Tag, Value }
- Tag = atom()
- Value = term()

Returns a list of tuples {Tag, Value}, where Tag is the information item and Value is the result of calling info/2 [page 67] with this driver name and this tag. The result being a tuple list containing all information available about a driver.

The different tags that will appear in the list are:

- processes
- driver_options
- port_count
- linked_in_driver
- permanent
Kernel Reference Manual

- awaiting_load
- awaiting_unload

For a detailed description of each value, please read the description of info/2 [page 67] below.

The function throws a badarg exception if the driver is not present in the system.

```
info(Name, Tag) -> Value
```

Types:
- Name = string() | atom()
- Tag = processes | driver_options | port_count | linked_in_driver | permanent | awaiting_load | awaiting_unload
- Value = term()

This function returns specific information about one aspect of a driver. The `Tag` parameter specifies which aspect to get information about. The `Value` return differs between different tags:

- **processes** Return all processes containing users [page 64] of the specific drivers as a list of tuples \(\text{pid()}, \text{int()} \), where the \text{int()} denotes the number of users in the process \text{pid()}.

- **driver_options** Return a list of the driver options provided when loading, as well as any options set by the driver itself during initialization. The currently only valid option being \text{kill_ports}.

- **port_count** Return the number of ports (an \text{int()}) using the driver.

- **linked_in_driver** Return a \text{bool()}, being true if the driver is a statically linked in one and false otherwise.

- **permanent** Return a \text{bool()}, being true if the driver has made itself permanent (and is not a statically linked in driver). false otherwise.

- **awaiting_load** Return a list of all processes having monitors for loading active, each process returned as \(\text{pid()}, \text{int()} \), where the \text{int()} is the number of monitors held by the process \text{pid()}.

- **awaiting_unload** Return a list of all processes having monitors for unloading active, each process returned as \(\text{pid()}, \text{int()} \), where the \text{int()} is the number of monitors held by the process \text{pid()}.

If the options \text{linked_in_driver} or \text{permanent} return true, all other options will return the value \text{linked_in_driver} or \text{permanent} respectively.

The function throws a badarg exception if the driver is not present in the system or the tag is not supported.

```
load(Path, Name) -> ok | {error, ErrorDesc}
```

Types:
- Path = Name = string() | atom()
- ErrorDesc = term()
Loads and links the dynamic driver `Name`. `Path` is a file path to the directory containing the driver. `Name` must be a sharable object/dynamic library. Two drivers with different `Path` parameters cannot be loaded under the same name. The `Name` is a string or atom containing at least one character.

The `Name` given should correspond to the filename of the actual dynamically loadable object file residing in the directory given as `Path`, but without the extension (i.e. `.so`). The driver name provided in the driver initialization routine must correspond with the filename, in much the same way as erlang module names correspond to the names of the `.beam` files.

If the driver has been previously unloaded, but is still present due to open ports against it, a call to `load/2` will stop the unloading and keep the driver (as long as the `Path` is the same) and `ok` is returned. If one actually wants the object code to be reloaded, one uses `reload/2 [page 70]` or the low-level interface `try_load/3 [page 72]` instead. Please refer to the description of different scenarios [page 64] for loading/unloading in the introduction.

If more than one process tries to load an already loaded driver with the same `Path`, or if the same process tries to load it several times, the function will return `ok`. The emulator will keep track of the `load/2` calls, so that a corresponding number of `unload/2` calls will have to be done from the same process before the driver will actually get unloaded. It is therefore safe for an application to load a driver that is shared between processes or applications when needed. It can safely be unloaded without causing trouble for other parts of the system.

It is not allowed to load several drivers with the same name but with different `Path` parameters.

Note:

Note especially that the `Path` is interpreted literally, so that all loaders of the same driver needs to give the same literal `Path` string, even though different paths might point out the same directory in the filesystem (due to use of relative paths and links).

On success, the function returns `ok`. On failure, the return value is `error, ErrorDesc`, where `ErrorDesc` is an opaque term to be translated into human readable form by the `format_error/1 [page 78]` function.

For more control over the error handling, again use the `try_load/3 [page 72]` interface instead.

The function throws a `badarg` exception if the parameters are not given as described above.

\[\text{load_driver}(\text{Path}, \text{Name}) \rightarrow \text{ok} \mid \text{error, ErrorDesc}\]

Types:

- `Path = Name = string() \mid atom()`
- `ErrorDesc = term()`
Works essentially as load/2, but will load the driver with options other options. All ports that are using the driver will get killed with the reason driver_unloaded when the driver is to be unloaded.

The number of loads and unload by different users [page 64] influence the actual loading and unloading of a driver file. The port killing will therefore only happen when the last user [page 64] unloads the driver, or the last process having loaded the driver exits.

This interface (or at least the name of the functions) is kept for backward compatibility. Using try_load/3 [page 72] with \{driver_options, [kill_ports]\} in the option list will give the same effect regarding the port killing.

The function throws a badarg exception if the parameters are not given as described above.

\[\text{monitor}(\text{Tag}, \text{Item}) \rightarrow \text{MonitorRef}\]

Types:
- \text{Tag} = \text{driver} \\
- \text{Item} = (\text{Name}, \text{When}) \\
 \text{Name} = \text{atom()} \mid \text{string()} \\
 \text{When} = \text{loaded} \mid \text{unloaded} \mid \text{unloaded_only} \\
- \text{MonitorRef} = \text{ref()}\

This function creates a driver monitor and works in many ways as the function \text{erlang:monitor/2}, does for processes. When a driver changes state, the monitor results in a monitor-message being sent to the calling process. The MonitorRef returned by this function is included in the message sent.

As with process monitors, each driver monitor set will only generate one single message. The monitor is “destroyed” after the message is sent and there is then no need to call demonitor/1 [page 66].

The MonitorRef can also be used in subsequent calls to demonitor/1 [page 66] to remove a monitor.

The function accepts the following parameters:

\textbf{Tag} The monitor tag is always \text{driver} as this function can only be used to create driver monitors. In the future, driver monitors will be integrated with process monitors, why this parameter has to be given for consistence.

\textbf{Item} The \text{Item} parameter specifies which driver one wants to monitor (the name of the driver) as well as which state change one wants to monitor. The parameter is a tuple of arity two whose first element is the driver name and second element is either of:

- \text{loaded} Notify me when the driver is reloaded (or loaded if loading is underway). It only makes sense to monitor drivers that are in the process of being loaded or reloaded. One cannot monitor a future-to-be driver name for loading, that will only result in a ‘DOWN’ message being immediately sent. Monitoring for loading is therefore most useful when triggered by the try_load/3 [page 72] function, where the monitor is created because the driver is in such a pending state.

 Setting a driver monitor for loading will eventually lead to one of the following messages being sent:
{'UP', ref(), driver, Name, loaded} This message is sent, either immediately if the driver is already loaded and no reloading is pending, or when reloading is executed if reloading is pending. The user [page 64] is expected to know if reloading is demanded prior to creating a monitor for loading.

{'UP', ref(), driver, Name, permanent} This message will be sent if reloading was expected, but the (old) driver made itself permanent prior to reloading. It will also be sent if the driver was permanent or statically linked in when trying to create the monitor.

{'DOWN', ref(), driver, Name, load_cancelled} This message will arrive if reloading was underway, but the user [page 64] having requested reload cancelled it by either dying or calling tryUnload/2 [page 75] (or unload/1/unloadDriver/1) again before it was reloaded.

{'DOWN', ref(), driver, Name, load_failure, Failure} This message will arrive if reloading was underway but the loading for some reason failed. The Failure term is one of the errors that can be returned from tryLoad/3 [page 72]. The error term can be passed to formatError/1 [page 78] for translation into human readable form. Note that the translation has to be done in the same running erlang virtual machine as the error was detected in.

unloaded Monitor when a driver gets unloaded. If one monitors a driver that is not present in the system, one will immediately get notified that the driver got unloaded. There is no guarantee that the driver was actually ever loaded.

A driver monitor for unload will eventually result in one of the following messages being sent:

{'DOWN', ref(), driver, Name, unloaded} The driver instance monitored is now unloaded. As the unload might have been due to a reload/2 request, the driver might once again have been loaded when this message arrives.

{'UP', ref(), driver, Name, unload_cancelled} This message will be sent if unloading was expected, but while the driver was waiting for all ports to get closed, a new user [page 64] of the driver appeared and the unloading was cancelled. This message appears when an {ok, pendingDriver} was returned from tryUnload/2 [page 75] for the last user [page 64] of the driver and then an {ok, already_loaded} is returned from a call to tryLoad/3 [page 72]. If one wants to really monitor when the driver gets unloaded, this message will distort the picture, no unloading was really done. The unloaded_only option creates a monitor similar to an unloaded monitor, but does never result in this message.

{'UP', ref(), driver, Name, permanent} This message will be sent if unloading was expected, but the driver made itself permanent prior to unloading. It will also be sent if trying to monitor a permanent or statically linked in driver.

unloaded_only A monitor created as unloaded_only behaves exactly as one created as unloaded with the exception that the {'UP', ref(), driver, Name, unload_cancelled} message will never be sent, but the monitor instead persists until the driver really gets unloaded.

The function throws a badarg exception if the parameters are not given as described above.

reload(Path, Name) -> ok | {error, ErrorDesc}
Types:
- \(\text{Path} = \text{Name} = \text{string()} \lor \text{atom()} \)
- \(\text{ErrorDesc} = \text{pending_process} \lor \text{OpaqueError} \)
- \(\text{OpaqueError} = \text{term()} \)

Reloads the driver named \(\text{Name} \) from a possibly different \(\text{Path} \) than was previously used. This function is used in the code change scenario [page 64] described in the introduction.

If there are other users [page 64] of this driver, the function will return \{\text{error}, \text{pending_process}\}, but if there are no more users, the function call will hang until all open ports are closed.

Note:
Avoid mixing several users [page 64] with driver reload requests.

If one wants to avoid hanging on open ports, one should use the \text{try_load/3} [page 72] function instead.

The \(\text{Name} \) and \(\text{Path} \) parameters have exactly the same meaning as when calling the plain \text{load/2} [page 67] function.

Note:
Avoid mixing several users [page 64] with driver reload requests.

On success, the function returns \text{ok}. On failure, the function returns an opaque error, with the exception of the \text{pending_process} error described above. The opaque errors are to be translated into human readable form by the \text{format_error/1} [page 78] function.

For more control over the error handling, again use the \text{try_load/3} [page 72] interface instead.

The function throws a \text{badarg} exception if the parameters are not given as described above.

\[
\text{reload_driver(Path, Name)} \rightarrow \text{ok} | \{\text{error}, \text{ErrorDesc}\}
\]

Types:
- \(\text{Path} = \text{Name} = \text{string()} \lor \text{atom()} \)
- \(\text{ErrorDesc} = \text{pending_process} \lor \text{OpaqueError} \)
- \(\text{OpaqueError} = \text{term()} \)
Works exactly as reload/2 [page 70], but for drivers loaded with the load_driver/2 [page 68] interface.

As this interface implies that ports are being killed when the last user disappears, the function won't hang waiting for ports to get closed.

For further details, see the scenarios [page 64] in the module description and refer to the reload/2 [page 70] function description.

The function throws a badarg exception if the parameters are not given as described above.

try_load(Path, Name, OptionList) -> {ok,Status} | {ok, PendingStatus, Ref} | {error, ErrorDesc}

Types:
- Path = Name = string() | atom()
- OptionList = [Option]
- Option = {driver_options, DriverOptionList} | {monitor, MonitorOption} | {reload, ReloadOption}
- DriverOptionList = [DriverOption]
- DriverOption = kill_ports
- MonitorOption = pending_driver | pending
- ReloadOption = pending_driver | pending
- Status = loaded | already_loaded | PendingStatus
- PendingStatus = pending_driver | pending_process
- Ref = ref()
- ErrorDesc = ErrorAtom | OpaqueError
- ErrorAtom = linked_in_driver | inconsistent | permanent | not_loaded_by_this_process | not_loaded | pending_reload | pending_process

This function provides more control than the load/2/reload/2 and load_driver/2/reload_driver/2 interfaces. It will never wait for completion of other operations related to the driver, but immediately return the status of the driver as either:

{ok, loaded} The driver was actually loaded and is immediately usable.

{ok, already_loaded} The driver was already loaded by another process and/or is in use by a living port. The load by you is registered and a corresponding try_unload is expected sometime in the future.

{ok, pending_driver} or {ok, pending_driver, ref()} The load request is registered, but the loading is delayed due to the fact that an earlier instance of the driver is still waiting to get unloaded (there are open ports using it). Still, unload is expected when you are done with the driver. This return value will mostly happen when the {reload, pending_driver} or {reload, pending} options are used, but can happen when another user [page 64] is unloading a driver in parallel and the kill_ports driver option is set. In other words, this return value will always need to be handled!

{ok, pending_process} or {ok, pending_process, ref()} The load request is registered, but the loading is delayed due to the fact that an earlier instance of the driver is still waiting to get unloaded by another user [page 64] (not only by a port, in which case {ok, pending_driver} would have been returned). Still, unload is expected when you are done with the driver. This return value will only happen when the {reload, pending} option is used.
When the function returns \{ok, pending_driver\} or \{ok, pending_process\}, one might want to get information about when the driver is actually loaded. This can be achieved by using the \{monitor, PendingOption\} option.

When monitoring is requested, and a corresponding \{ok, pending_driver\} or \{ok, pending_process\} would be returned, the function will instead return a tuple \{ok, PendingStatus, ref()\} and the process will, at a later time when the driver actually gets loaded, get a monitor message. The monitor message one can expect is described in the monitor/2 [page 69] function description.

Note:
Note that in case of loading, monitoring can not only get triggered by using the \{reload, ReloadOption\} option, but also in special cases where the load-error is transient, why \{monitor, pending_driver\} should be used under basically all real world circumstances!

The function accepts the following parameters:

Path The filesystem path to the directory where the driver object file is situated. The filename of the object file (minus extension) must correspond to the driver name (used in the name parameter) and the driver must identify itself with the very same name. The Path might be provided as an io list, meaning it can be a list of other io lists, characters (eight bit integers) or binaries, all to be flattened into a sequence of characters.

The (possibly flattened) Path parameter must be consistent throughout the system, a driver should, by all users [page 64], be loaded using the same literal Path. The exception is when reloading is requested, in which case the Path may be specified differently. Note that all users [page 64] trying to load the driver at a later time will need to use the new Path if the Path is changed using a reload option. This is yet another reason to have only one loader of a driver one wants to upgrade in a running system!

Name The name parameter is the name of the driver to be used in subsequent calls to \[open_port\]. The name can be specified either as an io list() or as an atom(). The name given when loading is used to find the actual object file (with the help of the Path and the system implied extension suffix, i.e. .so). The name by which the driver identifies itself must also be consistent with this Name parameter, much as a beam-file's module name much correspond to it's filename.

OptionList A number of options can be specified to control the loading operation. The options are given as a list of two-tuples, the tuples having the following values and meanings:

\(\langle \text{driver_options, DriverOptionsList} \rangle \) This option is to provide options that will change it's general behavior and will "stick" to the driver throughout it's lifespan.

The driver options for a given driver name need always to be consistent, even when the driver is reloaded, meaning that they are as much a part of the driver as the actual name. Currently the only allowed driver option is \text{kill ports}, which means that all ports opened towards the driver are killed with the exit-reason \text{driver unloaded} when no process any longer has the driver loaded. This situation arises either when the last user [page 64] calls try_unload/2 [page 73], or the last process having loaded the driver exits.
{monitor, MonitorOption} A MonitorOption tells try_load/3 to trigger a driver monitor under certain conditions. When the monitor is triggered, the function will return a three-tuple \{ok, PendingStatus, ref()\}, where the ref() is the monitor ref for the driver monitor.

Only one MonitorOption can be specified and it is either the atom pending, which means that a monitor should be created whenever a load operation is delayed, and the atom pending_driver, in which a monitor is created whenever the operation is delayed due to open ports towards an otherwise unused driver. The pending_driver option is of little use, but is present for completeness, it is very well defined which reload-options might give rise to which delays. It might, however, be a good idea to use the same MonitorOption as the ReloadOption if present.

If reloading is not requested, it might still be useful to specify the monitor option, as forced unload \{kill_ports driver option or the kill_ports option to try_unload/2 [page 75]\} will trigger a transient state where driver loading cannot be performed until all closing ports are actually closed. So, as try_unload can, in almost all situations, return \{ok, pending_driver\}, one should always specify at least \{monitor, pending_driver\} in production code (see the monitor discussion above).

{reload, ReloadOption} This option is used when one wants to reload a driver from disk, most often in a code upgrade scenario. Having a reload option also implies that the Path parameter need not be consistent with earlier loads of the driver.

To reload a driver, the process needs to have previously loaded the driver, i.e. there has to be an active user [page 64] of the driver in the process. The reload option can be either the atom pending, in which reloading is requested for any driver and will be effectuated when all ports opened against the driver are closed. The replacement of the driver will in this case take place regardless of if there are still pending users [page 64] having the driver loaded! The option also triggers port-killing (if the kill_ports driver option is used) even though there are pending users, making it usable for forced driver replacement, but laying a lot of responsibility on the driver users [page 64]. The pending option is seldom used as one does not want other users [page 64] to have loaded the driver when code change is underway.

The more useful option is pending_driver, which means that reloading will be queued if the driver is not loaded by any other users [page 64], but the driver has opened ports in which case \{ok, pending_driver\} will be returned (a monitor option is of course recommended).

If the driver is unloaded (not present in the system), the error code not_loaded will be returned. The reload option is intended for when the user has already loaded the driver in advance.

The function might return numerous errors, of which some only can be returned given a certain combination of options.

A number of errors are opaque and can only be interpreted by passing them to the format_error/1 [page 78] function, but some can be interpreted directly:

{error, linked_in_driver} The driver with the specified name is an erlang statically linked in driver, which cannot be manipulated with this API.

{error, inconsistent} The driver has already been loaded with either other DriverOptions or a different literal Path argument.

This can happen even if a reload option is given, if the DriverOptions differ from the current.
The driver has requested itself to be permanent, making it behave like an erlang linked in driver and it can no longer be manipulated with this API.

The driver is loaded by other users when the \{reload, pending_driver\} option was given.

Driver reload is already requested by another user when the \{reload, ReloadOption\} option was given.

Appears when the reload option is given. The driver Name is present in the system, but there is no user of it in this process.

Appears when the reload option is given. The driver Name is not in the system. Only drivers loaded by this process can be reloaded.

All other error codes are to be translated by the format_error/1 function. Note that calls to format_error should be performed from the same running instance of the erlang virtual machine as the error was detected in, due to system dependent behavior concerning error values.

If the arguments or options are malformed, the function will throw a \texttt{badarg} exception.

\begin{verbatim}
try_unload(Name, OptionList) -> \{ok,Status\} | \{ok, PendingStatus, Ref\} | \{error, ErrorAtom\}
\end{verbatim}

Types:
- \texttt{Name} = string() | atom()
- \texttt{OptionList} = [\texttt{Option}]
- \texttt{Option} = \{monitor, MonitorOption\} | \texttt{kill_ports}
- \texttt{MonitorOption} = pending_driver | pending
- \texttt{Status} = unloaded | PendingStatus
- \texttt{PendingStatus} = pending_driver | pending_process
- \texttt{Ref} = ref()
- \texttt{ErrorAtom} = linked_in_driver | not_loaded | not_loaded_by_this_process | permanent

This is the low level function to unload (or decrement reference counts of) a driver. It can be used to force port killing, in much the same way as the driver option \texttt{kill_ports} implicitly does, and it can trigger a monitor either due to other users still having the driver loaded or that there are open ports using the driver.

Unloading can be described as the process of telling the emulator that this particular part of the code in this particular process (i.e. this user) no longer needs the driver. That can, if there are no other users, trigger actual unloading of the driver, in which case the driver name disappears from the system and (if possible) the memory occupied by the driver executable code is reclaimed. If the driver has the \texttt{kill_ports} option set, or if \texttt{kill_ports} was specified as an option to this function, all pending ports using this driver will get killed when unloading is done by the last user. If no port-killing is involved and there are open ports, the actual unloading is delayed until there are no more open ports using the driver. If, in this case, another user (or even this user) loads the driver again before the driver is actually unloaded, the unloading will never take place.

To allow the user that requests unloading to wait for actual unloading to take place, monitor triggers can be specified in much the same way as when loading. As users of this function however seldom are interested in more than decrementing the reference counts, monitoring is more seldom needed. If the
kill_ports option is used however, monitor triggering is crucial, as the ports are not guaranteed to have been killed until the driver is unloaded, why a monitor should be triggered for at least the pending_driver case.

The possible monitor messages that can be expected are the same as when using the unloaded option to the monitor/2 [page 69] function.

The function will return one of the following statuses upon success:

{ok, unloaded} The driver was immediately unloaded, meaning that the driver name is now free to use by other drivers and, if the underlying OS permits it, the memory occupied by the driver object code is now reclaimed.

The driver can only be unloaded when there are no open ports using it and there are no more users [page 64] requiring it to be loaded.

{ok, pending_driver} or {ok, pending_driver, ref()} This return value indicates that this call removed the last user [page 64] from the driver, but there are still open ports using it. When all ports are closed and no new users [page 64] have arrived, the driver will actually be reloaded and the name and memory reclaimed.

This return value is valid even when the option kill_ports was used, as killing ports may not be a process that completes immediately. The condition is, in that case, however transient. Monitors are as always useful to detect when the driver is really unloaded.

{ok, pending_process} or {ok, pending_process, ref()} The unload request is registered, but there are still other users [page 64] holding the driver. Note that the term pending_process might refer to the running process, there might be more than one user [page 64] in the same process.

This is a normal, healthy return value if the call was just placed to inform the emulator that you have no further use of the driver. It is actually the most common return value in the most common scenario [page 64] described in the introduction.

The function accepts the following parameters:

Name The name parameter is the name of the driver to be unloaded. The name can be specified either as an io_list() or as an atom().

OptionList The OptionList argument can be used to specify certain behavior regarding ports as well as triggering monitors under certain conditions:

- **kill_ports** Force killing of all ports opened using this driver, with the exit reason driver_unloaded, if you are the last user [page 64] of the driver.

 If there are other users [page 64] having the driver loaded, this option will have no effect.

 If one wants the consistent behavior of killing ports when the last user [page 64] unloads, one should use the driver option kill_ports when loading the driver instead.

- **monitor, MonitorOption** This option creates a driver monitor if the condition given in MonitorOptions is true. The valid options are:

 pending_driver Create a driver monitor if the return value is to be {ok, pending_driver}.

 pending Create a monitor if the return value will be either {ok, pending_driver} or {ok, pending_process}.

The pending driverMonitorOption is by far the most useful and it has to be used to ensure that the driver has really been unloaded and the ports closed whenever the kill_ports option is used or the driver may have been loaded with the kill_ports driver option.

By using the monitor-triggers in the call to tryunload one can be sure that the monitor is actually added before the unloading is executed, meaning that the monitor will always get properly triggered, which would not be the case if one called erl_ddll:monitor/2 separately.

The function may return several error conditions, of which all are well specified (no opaque values):

- **error, linked_in_driver** You were trying to unload an erlang statically linked in driver, which cannot be manipulated with this interface (and cannot be unloaded at all).
- **error, not_loaded** The driver Name is not present in the system.
- **error, not_loaded_by_this_process** The driver Name is present in the system, but there is no user [page 64] of it in this process. As a special case, drivers can be unloaded from processes that has done no corresponding call to try_load/3 if, and only if, there are no users of the driver at all, which may happen if the process containing the last user dies.
- **error, permanent** The driver has made itself permanent, in which case it can no longer be manipulated by this interface (much like a statically linked in driver).

The function throws a badarg exception if the parameters are not given as described above.

\[
\text{unload}(\text{Name}) \rightarrow \text{ok} | \{\text{error}, \text{ErrorDesc}\}
\]

Types:
- \(\text{Name} = \text{string()} | \text{atom()}\)
- \(\text{ErrorDesc} = \text{term()}\)

Unloads, or at least dereferences the driver named \text{Name}. If the caller is the last user [page 64] of the driver, and there are no more open ports using the driver, the driver will actually get unloaded. In all other cases, actual unloading will be delayed until all ports are closed and there are no remaining users [page 64].

If there are other users [page 64] of the driver, the reference counts of the driver is merely decreased, so that the caller is no longer considered a user of the driver. For usage scenarios, see the description [page 64] in the beginning of this document.

The ErrorDesc returned is an opaque value to be passed further on to the format_error/1 [page 78] function. For more control over the operation, use the try_unload/2 [page 75] interface.

The function throws a badarg exception if the parameters are not given as described above.

\[
\text{unload_driver}(\text{Name}) \rightarrow \text{ok} | \{\text{error}, \text{ErrorDesc}\}
\]

Types:
- \(\text{Name} = \text{string()} | \text{atom()}\)
- \(\text{ErrorDesc} = \text{term()}\)
Unloads, or at least dereferences the driver named \texttt{Name}. If the caller is the last user \cite{page 64} of the driver, all remaining open ports using the driver will get killed with the reason \texttt{driver_unloaded} and the driver will eventually get unloaded.

If there are other users \cite{page 64} of the driver, the reference counts of the driver is merely decreased, so that the caller is no longer considered a user \cite{page 64}. For usage scenarios, see the description \cite{page 64} in the beginning of this document.

The \texttt{ErrorDesc} returned is an opaque value to be passed further on to the \texttt{format_error/1} \cite{page 78} function. For more control over the operation, use the \texttt{try_unload/2} \cite{page 75} interface.

The function throws a \texttt{badarg} exception if the parameters are not given as described above.

\begin{verbatim}
loaded_drivers() \rightarrow \{ok, Drivers\}
\end{verbatim}

\textbf{Types}:
- \texttt{Drivers} = [\texttt{Driver()}]
- \texttt{Driver} = \texttt{string()}

Returns a list of all the available drivers, both (statically) linked-in and dynamically loaded ones.

The driver names are returned as a list of strings rather than a list of atoms for historical reasons.

More information about drivers can be obtained using one of the \texttt{info} \cite{page 66} functions.

\begin{verbatim}
format_error(\texttt{ErrorDesc}) \rightarrow \texttt{string()}
\end{verbatim}

\textbf{Types}:
- \texttt{ErrorDesc} – see below

Takes an \texttt{ErrorDesc} returned by \texttt{load}, \texttt{unload} or \texttt{reload} functions and returns a string which describes the error or warning.

\begin{note}
Due to peculiarities in the dynamic loading interfaces on different platform, the returned string is only guaranteed to describe the correct error if \texttt{format_error/1} is called in the same instance of the erlang virtual machine as the error appeared in (meaning the same operating system process)!
\end{note}

\section*{SEE ALSO}

\begin{itemize}
 \item \texttt{erl_driver(4)}, \texttt{driver_entry(4)}
\end{itemize}
erl_prim_loader

Erlang Module

The module erl_prim_loader is moved to the runtime system application. Please see [erl_prim_loader(3)] in the erts reference manual instead.
The module erlang is moved to the runtime system application. Please see [erlang(3)] in the erts reference manual instead.
error_handler

Erlang Module

The error handler module defines what happens when certain types of errors occur.

Exports

undefined_function(Module, Function, Args) -> term()

Types:
- Module = Function = atom()
- Args = [term()]
 A (possibly empty) list of arguments Arg1,..,ArgN
This function is evaluated if a call is made to Module:Function(Arg1,.., ArgN) and Module:Function/N is undefined. Note that undefined_function/3 is evaluated inside the process making the original call.
If Module is interpreted, the interpreter is invoked and the return value of the interpreted Function(Arg1,.., ArgN) call is returned.
Otherwise, it returns, if possible, the value of apply(Module, Function, Args) after an attempt has been made to autoload Module. If this is not possible, the call to Module:Function(Arg1,.., ArgN) fails with exit reason undef.

undefined_lambda(Module, Fun, Args) -> term()

Types:
- Module = Function = atom()
- Args = [term()]
 A (possibly empty) list of arguments Arg1,..,ArgN
This function is evaluated if a call is made to Fun(Arg1,.., ArgN) when the module defining the fun is not loaded. The function is evaluated inside the process making the original call.
If Module is interpreted, the interpreter is invoked and the return value of the interpreted Fun(Arg1,.., ArgN) call is returned.
Otherwise, it returns, if possible, the value of apply(Fun, Args) after an attempt has been made to autoload Module. If this is not possible, the call fails with exit reason undef.
Notes

The code in `error_handler` is complex and should not be changed without fully understanding the interaction between the error handler, the `init` process of the code server, and the I/O mechanism of the code.

Changes in the code which may seem small can cause a deadlock as unforeseen consequences may occur. The use of `input` is dangerous in this type of code.
error_logger

Erlang Module

The Erlang error logger is an event manager (see [OTP Design Principles] and [gen_event(3)]), registered as error_logger. Error, warning and info events are sent to the error logger from the Erlang runtime system and the different Erlang/OTP applications. The events are, by default, logged to tty. Note that an event from a process \(P \) is logged at the node of the group leader of \(P \). This means that log output is directed to the node from which a process was created, which not necessarily is the same node as where it is executing.

Initially, error_logger only has a primitive event handler, which buffers and prints the raw event messages. During system startup, the application Kernel replaces this with a standard event handler, by default one which writes nicely formatted output to tty. Kernel can also be configured so that events are logged to file instead, or not logged at all, see kernel(6) [page 22].

Also the SASL application, if started, adds its own event handler, which by default writes supervisor-, crash- and progress reports to tty. See [sasl(6)].

It is recommended that user defined applications should report errors through the error logger, in order to get uniform reports. User defined event handlers can be added to handle application specific events (add_report_handler/1,2). Also, there is a useful event handler in STDLIB for multi-file logging of events, see log_mfh(3).

Warning events was introduced in Erlang/OTP R9C. To retain backwards compatibility, these are by default tagged as errors, thus showing up as error reports in the logs. By using the command line flag +W/w or -i, they can instead be tagged as warnings or info. Tagging them as warnings may require rewriting existing user defined event handlers.

Exports

eerror_msg(Format) -> ok
eerror_msg(Format, Data) -> ok
format(Format, Data) -> ok

Types:
- Format = string()
- Data = [term()]

Sends a standard error event to the error logger. The Format and Data arguments are the same as the arguments of io:format/2. The event is handled by the standard event handler.
error_logger

1> error_logger:error_msg("An error occurred in ~p-n", [a_module]).

=ERROR REPORT==== 11-Aug-2005::14:03:19 ===
An error occurred in a_module
ok

Warning:
If called with bad arguments, this function can crash the standard event handler, meaning no further events are logged. When in doubt, use error_report/1 instead.

error_report(Report) -> ok
Types:
- Report = [{Tag, Data} | term()] | string() | term()
 Tag = Data = term()
Sends a standard error report event to the error logger. The event is handled by the standard event handler.
2> error_logger:error_report([{tag1,data1},a_term,{tag2,data2}]).

=ERROR REPORT==== 11-Aug-2005::13:45:41 ===
tag1: data1
 a_term
 tag2: data
ok
3> error_logger:error_report("Serious error in my module").

=ERROR REPORT==== 11-Aug-2005::13:45:49 ===
Serious error in my module
ok

error_report(Type, Report) -> ok
Types:
- Type = term()
- Report = [{Tag, Data} | term()] | string() | term()
 Tag = Data = term()
Sends a user defined error report event to the error logger. An event handler to handle the event is supposed to have been added. The event is ignored by the standard event handler.
It is recommended that Report follows the same structure as for error_report/1.

warning_map() -> Tag
Types:
- Tag = error | warning | info
Returns the current mapping for warning events. Events sent using `warning_msg/1,2` or `warning_report/1,2` are tagged as errors (default), warnings or info, depending on the value of the command line flag `+W`.

```erl
os$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
error
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok
3>
User switch command
  --> q
os$ erl +W w
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error_logger:warning_map().
warning
2> error_logger:warning_msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok
```

`warning_msg(Format) -> ok`

`warning_msg(Format, Data) -> ok`

Types:
- `Format = string()`
- `Data = [term()]`

Sends a standard warning event to the error logger. The `Format` and `Data` arguments are the same as the arguments of `io:format/2`. The event is handled by the standard event handler. It is tagged either as an error, warning or info, see `warning_map/0` [page 84].

Warning:
If called with bad arguments, this function can crash the standard event handler, meaning no further events are logged. When in doubt, use `warning_report/1` instead.

`warning_report(Report) -> ok`

Types:
- `Report = [{Tag, Data} | term()] | string() | term()`
error_logger

- Tag = Data = term()

Sends a standard warning report event to the error logger. The event is handled by the standard event handler. It is tagged either as an error, warning or info, see warning_map/0 [page 84].

warning_report(Type, Report) -> ok

Types:
- Type = term()
- Report = [{Tag, Data} | term()] | string() | term()
- Tag = Data = term()

Sends a user defined warning report event to the error logger. An event handler to handle the event is supposed to have been added. The event is ignored by the standard event handler. It is tagged either as an error, warning or info, depending on the value of warning_map/0 [page 84].

info_msg(Format) -> ok
info_msg(Format, Data) -> ok

Types:
- Format = string()
- Data = [term()]

Sends a standard information event to the error logger. The Format and Data arguments are the same as the arguments of io:format/2. The event is handled by the standard event handler.

1> error_logger:info_msg("Something happened in ~p~n", [a_module]).

=INFO REPORT==== 11-Aug-2005::14:06:15 ===
Something happened in a_module
ok

Warning:
If called with bad arguments, this function can crash the standard event handler, meaning no further events are logged. When in doubt, use info_report/1 instead.

info_report(Report) -> ok

Types:
- Report = [{Tag, Data} | term()] | string() | term()
- Tag = Data = term()

Sends a standard information report event to the error logger. The event is handled by the standard event handler.
Kernel Reference Manual

error_logger

2> error_logger:info_report([tag1, data1, a_term, [tag2, data]]).

=INFO REPORT==== 11-Aug-2005::13:55:09 ===
tag1: data1
a_term
tag2: data
ok
3> error_logger:info_report("Something strange happened").

=INFO REPORT==== 11-Aug-2005::13:55:36 ===
Something strange happened
ok

info_report(Type, Report) -> ok

Types:
- Type = term()
- Report = [[Tag, Data] | term()] | string() | term()
- Tag = Data = term()

Sends a user defined information report event to the error logger. An event handler to handle the event is supposed to have been added. The event is ignored by the standard event handler.

It is recommended that Report follows the same structure as for info_report/1.

add_report_handler(Handler) -> Result
add_report_handler(Handler, Args) -> Result

Types:
- Handler, Args, Result – see gen_event:add_handler/3

Adds a new event handler to the error logger. The event handler must be implemented as a gen_event callback module, see [gen_event(3)].

Handler is typically the name of the callback module and Args is an optional term (defaults to []) passed to the initialization callback function Module:init/1. The function returns ok if successful.

The event handler must be able to handle the events [page 88] described below.

delete_report_handler(Handler) -> Result

Types:
- Handler, Result – see gen_event:delete_handler/3

Deletes an event handler from the error logger by calling gen_event:delete_handler(error_logger, Handler, []), see [gen_event(3)].

tty(Flag) -> ok

Types:
- Flag = bool()
error_logger

Enables \(\text{Flag} == \text{true} \) or disables \(\text{Flag} == \text{false} \) printout of standard events to the tty.

This is done by adding or deleting the standard event handler for output to tty, thus calling this function overrides the value of the Kernel error_logger configuration parameter.

logfile(Request) \(\rightarrow \) ok \(\mid \) Filename \(\mid \) \{error, What\}

Types:
- Request = \{open, Filename\} \mid close \mid \text{filename}
- Filename = \text{atom()} \mid \text{string()}
- What = \text{already_havelogfile} \mid \text{no_log_file} \mid \text{term()}

Enables or disables printout of standard events to a file.
This is done by adding or deleting the standard event handler for output to file, thus calling this function overrides the value of the Kernel error_logger configuration parameter.

Enabling file logging can be used in combination with calling \text{tty(false)}, in order to have a silent system, where all standard events are logged to a file only. There can only be one active log file at a time.

Request is one of:

\{open, Filename\} Opens the log file Filename. Returns ok if successful, or \{error, already_havelogfile\} if logging to file is already enabled, or an error tuple if another error occurred. For example, if Filename could not be opened.

\text{close} Closes the current log file. Returns ok, or \{error, What\}.

\text{filename} Returns the name of the log file Filename, or \{error, no_log_file\} if logging to file is not enabled.

Events

All event handlers added to the error logger must handle the following events.
Gleader is the group leader pid of the process which sent the event, and Pid is the process which sent the event.

\{error, Gleader, \{Pid, Format, Data\}\} Generated when \text{error_msg/1,2} or format is called.

\{error_report, Gleader, \{Pid, std_error, Report\}\} Generated when \text{error_report/1} is called.

\{error_report, Gleader, \{Pid, Type, Report\}\} Generated when \text{error_report/2} is called.

\{warning_msg, Gleader, \{Pid, Format, Data\}\} Generated when \text{warning_msg/1,2} is called, provided that warnings are set to be tagged as warnings.

\{warning_report, Gleader, \{Pid, std_warning, Report\}\} Generated when \text{warning_report/1} is called, provided that warnings are set to be tagged as warnings.

\{warning_report, Gleader, \{Pid, Type, Report\}\} Generated when \text{warning_report/2} is called, provided that warnings are set to be tagged as warnings.
{info_msg, Gleader, [Pid, Format, Data]} Generated when info_msg/1,2 is called.
{info_report, Gleader, [Pid, std_info, Report]} Generated when info_report/1 is called.
{info_report, Gleader, [Pid, Type, Report]} Generated when info_report/2 is called.

Note that also a number of system internal events may be received, a catch-all clause last in the definition of the event handler callback function Module:handle_event/2 is necessary. This also holds true for Module:handle_info/2, as there are a number of system internal messages the event handler must take care of as well.

SEE ALSO

gen_event(3), log_mfh(3), kernel(6), sasl(6)
The module `file` provides an interface to the file system. On operating systems with thread support, it is possible to let file operations be performed in threads of their own, allowing other Erlang processes to continue executing in parallel with the file operations. See the command line flag `+A` in `[erl(1)]`.

DATA TYPES

- `iodata() = iolist() | binary()`
- `iolist() = [char() | binary() | iolist()]`
- `io_device()` as returned by `file:open/2`, a process handling IO protocols
- `name() = string() | atom() | DeepList`
 - `DeepList = [char() | atom() | DeepList]`
- `posix()` an atom which is named from the Posix error codes used in Unix, and in the runtime libraries of most C compilers
- `ext_posix() = posix() | badarg`
- `time() = {{Year, Month, Day}, {Hour, Minute, Second}}`
 - `Year = Month = Day = Hour = Minute = Second = int()`
 - Must denote a valid date and time

Exports

- `change_group(Filename, Gid) -> ok | {error, Reason}`, Types:
 - `Filename = name()`
 - `Gid = int()`
 - `Reason = ext_posix()`
 - Changes group of a file. See `write_file_info/2` [page 109].

- `change_owner(Filename, Uid) -> ok | {error, Reason}`, Types:
- Filename = name()
- Uid = int()
- Gid = int()
- Reason = ext_posix()

Changes owner of a file. See write_file_info/2 [page 109].

\[\text{change_owner} \text{ (Filename, Uid, Gid)} \rightarrow \text{ok} | \text{error, Reason}\]

Types:
- Filename = name()
- Uid = int()
- Gid = int()
- Reason = ext_posix()

Changes owner and group of a file. See write_file_info/2 [page 109].

\[\text{change_time} \text{ (Filename, Mtime)} \rightarrow \text{ok} | \text{error, Reason}\]

Types:
- Filename = name()
- Mtime = time()
- Reason = ext_posix()

Changes the modification and access times of a file. See write_file_info/2 [page 109].

\[\text{change_time} \text{ (Filename, Mtime, Atime)} \rightarrow \text{ok} | \text{error, Reason}\]

Types:
- Filename = name()
- Mtime = Atime = time()
- Reason = ext_posix()

Changes the modification and last access times of a file. See write_file_info/2 [page 109].

\[\text{close} \text{ (IoDevice)} \rightarrow \text{ok} | \text{error, Reason}\]

Types:
- IoDevice = io_device()
- Reason = ext_posix() \| terminated

Closes the file referenced by IoDevice. It mostly returns ok, expect for some severe errors such as out of memory.

Note that if the option delayed_write was used when opening the file, close/1 might return an old write error and not even try to close the file. See open/2 [page 96].

\[\text{consult} \text{ (Filename)} \rightarrow \{\text{ok, Terms}\} | \{\text{error, Reason}\}\]

Types:
- Filename = name()
- Terms = [term()]
- Reason = ext_posix() \| terminated \| system_limit \| \{Line, Mod, Term\}
- Line, Mod, Term – see below

Reads Erlang terms, separated by ".", from Filename. Returns one of the following:
{ok, Terms} The file was successfully read.
{error, atom()} An error occurred when opening the file or reading it. See open/2 [page 96] for a list of typical error codes.
{error, [Line, Mod, Term]} An error occurred when interpreting the Erlang terms in the file. Use format_error/1 to convert the three-element tuple to an English description of the error.

Example:

f.txt: {person, "kalle", 25}.
{person, "pelle", 30}.

1> file:consult("f.txt").
{ok,[{person,"kalle",25},{person,"pelle",30}]}
delete(Filename) -> ok | {error, Reason}

Types:
- Filename = name()
- Reason = ext_posix()

Tries to delete the file Filename. Returns ok if successful. Typical error reasons are:
- enoent The file does not exist.
- eacces Missing permission for the file or one of its parents.
- eperm The file is a directory and the user is not super-user.
- enotdir A component of the file name is not a directory. On some platforms, enoent is returned instead.
- einval Filename had an improper type, such as tuple.

Warning:
In a future release, a bad type for the Filename argument will probably generate an exception.

eval(Filename) -> ok | {error, Reason}

Types:
- Filename = name()
- Reason = ext_posix() | terminated | system_limit | {Line, Mod, Term}
- Line, Mod, Term - see below

Reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions is also an expression), from Filename. The actual result of the evaluation is not returned; any expression sequence in the file must be there for its side effect. Returns one of the following:

ok The file was read and evaluated.
{error, atom()} An error occurred when opening the file or reading it. See open/2 for a list of typical error codes.
{error, {Line, Mod, Term}} An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the three-element tuple to an English description of the error.
eval(Filename, Bindings) -> ok | {error, Reason}

Types:
- Filename = name()
- Bindings - see erl_eval(3)
- Reason = ext_posix() | terminated | system_limit | {Line, Mod, Term}
- Line, Mod, Term - see eval/1

The same as eval/1 but the variable bindings Bindings are used in the evaluation. See [erl_eval(3)] about variable bindings.

file_info(Filename) -> {ok, FileInfo} | {error, Reason}

This function is obsolete. Use read_file_info/1 instead.

format_error(Reason) -> Chars

Types:
- Reason = atom() | {Line, Mod, Term}
- Line, Mod, Term - see eval/1
- Chars = [char()] | Chars

Given the error reason returned by any function in this module, returns a descriptive string of the error in English.

get_cwd() -> {ok, Dir} | {error, Reason}

Types:
- Dir = string()
- Reason = posix()

Returns {ok, Dir}, where Dir is the current working directory of the file server.

Note:
In rare circumstances, this function can fail on Unix. It may happen if read permission does not exist for the parent directories of the current directory.

Typical error reasons are:
eacces Missing read permission for one of the parents of the current directory.

get_cwd(Drive) -> {ok, Dir} | {error, Reason}

Types:
- Drive = string() – see below
- Dir = string()
- Reason = ext_posix()}
Drive should be of the form "Letter:\", for example "c:'. Returns \{ok, Dir\} or \{error, Reason\}, where Dir is the current working directory of the drive specified.

This function returns \{error, enotsup\} on platforms which have no concept of current drive (Unix, for example).

Typical error reasons are:

- enotsup: The operating system has no concept of drives.
- eaccess: The drive does not exist.
- EINVAL: The format of Drive is invalid.

\texttt{list_dir(Dir) -> \{ok, Filenames\} | \{error, Reason\}}

Types:
- \texttt{Dir = name()}
- \texttt{Filenames = [Filename]}
- \texttt{Filename = string()}
- \texttt{Reason = ext_posix()}

Lists all the files in a directory. Returns \{ok, Filenames\} if successful. Otherwise, it returns \{error, Reason\}. Filenames is a list of the names of all the files in the directory. The names are not sorted.

Typical error reasons are:

- eaccess: Missing search or write permissions for Dir or one of its parent directories.
- ENOENT: The directory does not exist.

\texttt{make_dir(Dir) -> ok | \{error, Reason\}}

Types:
- \texttt{Dir = name()}
- \texttt{Reason = ext_posix()}

Tries to create the directory Dir. Missing parent directories are not created. Returns ok if successful.

Typical error reasons are:

- eaccess: Missing search or write permissions for the parent directories of Dir.
- EEXIST: There is already a file or directory named Dir.
- ENOENT: A component of Dir does not exist.
- ENOSPC: There is no space left on the device.
- ENOTDIR: A component of Dir is not a directory. On some platforms, ENOENT is returned instead.

\texttt{make_link(Existing, New) -> ok | \{error, Reason\}}

Types:
- \texttt{Existing = New = name()}
- \texttt{Reason = ext_posix()}
Makes a hard link from \texttt{Existing} to \texttt{New}, on platforms that support links (Unix). This function returns \texttt{ok} if the link was successfully created, or \{\texttt{error}, \texttt{Reason}\}. On platforms that do not support links, \{\texttt{error}, \texttt{enotsup}\} is returned.

Typical error reasons:

- \texttt{eacces} Missing read or write permissions for the parent directories of \texttt{Existing} or \texttt{New}.
- \texttt{eexist} \texttt{New} already exists.
- \texttt{enotsup} Hard links are not supported on this platform.

\begin{verbatim}
make_sym_link(\texttt{Name1}, \texttt{Name2}) \to \texttt{ok} | \{\texttt{error}, \texttt{Reason}\}
\end{verbatim}

\textbf{Types:}
\begin{itemize}
 \item \texttt{Name1} = \texttt{Name2} = \texttt{name()}
 \item \texttt{Reason} = \texttt{ext_posix()}
\end{itemize}

This function creates a symbolic link \texttt{Name2} to the file or directory \texttt{Name1}, on platforms that support symbolic links (most Unix systems). \texttt{Name1} need not exist. This function returns \texttt{ok} if the link was successfully created, or \{\texttt{error}, \texttt{Reason}\}. On platforms that do not support symbolic links, \{\texttt{error}, \texttt{enotsup}\} is returned.

Typical error reasons:

- \texttt{eacces} Missing read or write permissions for the parent directories of \texttt{Name1} or \texttt{Name2}.
- \texttt{eexist} \texttt{Name2} already exists.
- \texttt{enotsup} Symbolic links are not supported on this platform.

\begin{verbatim}
open(\texttt{Filename}, \texttt{Modes}) \to \{\texttt{ok}, \texttt{IoDevice}\} | \{\texttt{error}, \texttt{Reason}\}
\end{verbatim}

\textbf{Types:}
\begin{itemize}
 \item \texttt{Filename} = \texttt{name()}
 \item \texttt{Modes} = \{\texttt{Mode}\}
 \item \texttt{Mode} = \texttt{read} | \texttt{write} | \texttt{append} | \texttt{raw} | \texttt{binary} | \{\texttt{delayed_write}, \texttt{Size}, \texttt{Delay}\} | \{\texttt{delayed_write}, \texttt{read_ahead}, \texttt{Size}\} | \texttt{read_ahead} | \texttt{compressed}
 \item \texttt{Size} = \texttt{Delay} = \texttt{int()}
 \item \texttt{IoDevice} = \texttt{io_device()}
 \item \texttt{Reason} = \texttt{ext_posix()} | \texttt{system_limit}
\end{itemize}

Opens the file \texttt{Filename} in the mode determined by \texttt{Modes}, which may contain one or more of the following items:

- \texttt{read} The file, which must exist, is opened for reading.
- \texttt{write} The file is opened for writing. It is created if it does not exist. If the file exists, and if \texttt{write} is not combined with \texttt{read}, the file will be truncated.
- \texttt{append} The file will be opened for writing, and it will be created if it does not exist. Every write operation to a file opened with \texttt{append} will take place at the end of the file.
- \texttt{raw} The \texttt{raw} option allows faster access to a file, because no Erlang process is needed to handle the file. However, a file opened in this way has the following limitations:
 \begin{itemize}
 \item The functions in the \texttt{io} module cannot be used, because they can only talk to an Erlang process. Instead, use the \texttt{read/2} and \texttt{write/2} functions.
 \end{itemize}
• Only the Erlang process which opened the file can use it.
• A remote Erlang file server cannot be used; the computer on which the Erlang
 node is running must have access to the file system (directly or through NFS).

binary When this option has been given, read operations on the file will return binaries
 rather than lists.

{delayed_write, Size, Delay} If this option is used, the data in subsequent write/2
calls is buffered until there are at least Size bytes buffered, or until the oldest
buffered data is Delay milliseconds old. Then all buffered data is written in one
operating system call. The buffered data is also flushed before some other file
operation than write/2 is executed.
The purpose of this option is to increase performance by reducing the number of
operating system calls, so the write/2 calls should be for sizes significantly less
than Size, and not interspersed by too many other file operations, for this to
happen.
When this option is used, the result of write/2 calls may prematurely be reported
as successful, and if a write error should actually occur the error is reported as the
result of the next file operation, which is not executed.
For example, when delayed_write is used, after a number of write/2 calls,
close/1 might return {error, enospc} because there was not enough space on
the disc for previously written data, and close/1 should probably be called again
since the file is still open.
delayed_write The same as {delayed_write, Size, Delay} with reasonable default
values for Size and Delay. (Roughly some 64 KBytes, 2 seconds)

{readAhead, Size} This option activates read data buffering. If read/2 calls are for
significantly less than Size bytes, read operations towards the operating system are
still performed for blocks of Size bytes. The extra data is buffered and returned in
subsequent read/2 calls, giving a performance gain since the number of operating
system calls is reduced.
If read/2 calls are for sizes not significantly less than, or even greater than Size
bytes, no performance gain can be expected.
readAhead The same as {readAhead, Size} with a reasonable default value for
Size. (Roughly some 64 KBytes)

compressed Makes it possible to read or write gzip compressed files. The
compressed option must be combined with either read or write, but not both.
Note that the file size obtained with read_file_info/1 will most probably not
match the number of bytes that can be read from a compressed file.

{encoding, Encoding} Makes the file perform automatic translation of characters to
and from a specific (Unicode) encoding. Note that the data supplied to file:write
or returned by file:read still is byte oriented, this option only denotes how data is
actually stored in the disk file.
Depending on the encoding, different methods of reading and writing data is
preferred. The default encoding of latin1 implies using this (the file) module for
reading and writing data, as the interfaces provided here work with byte-oriented
data, while using other (Unicode) encodings makes the [io(3)] module’s
get_chars, get_line and put_chars functions more suitable, as they can work
with the full Unicode range.
If data is sent to an io:device() in a format that cannot be converted to the
specified encoding, or if data is read by a function that returns data in a format that
cannot cope with the character range of the data, an error occurs and the file will
be closed.
The allowed values for Encoding are:
latin1 The default encoding. Bytes supplied to i.e. file:write are written as is on
the file, likewise bytes read from the file are returned to i.e. file:read as is. If
the [io(3)] module is used for writing, the file can only cope with Unicode
characters up to codepoint 255 (the ISO-latin-1 range).

unicode or utf8 Characters are translated to and from the UTF-8 encoding before
being written to or read from the file. A file opened in this way might be
readable using the fileread function, as long as no data stored on the file lies
beyond the ISO-latin-1 range (0..255), but failure will occur if the data
contains Unicode codepoints beyond that range. The file is best read with the
functions in the Unicode aware [io(3)] module.

Bytes written to the file by any means are translated to UTF-8 encoding before
actually being stored on the disk file.

utf16 or {utf16,big} Works like unicode, but translation is done to and from
big endian UTF-16 instead of UTF-8.
{utf16,little} Works like unicode, but translation is done to and from little
endian UTF-16 instead of UTF-8.

utf32 or {utf32,big} Works like unicode, but translation is done to and from
big endian UTF-32 instead of UTF-8.
{utf32,little} Works like unicode, but translation is done to and from little
endian UTF-32 instead of UTF-8.

The Encoding can be changed for a file “on the fly” by using the [io:setopts/2]
function, why a file can be analyzed in latin1 encoding for i.e. a BOM, positioned
beyond the BOM and then be set for the right encoding before further reading. See
the [unicode(3)] module for functions identifying BOM’s.

This option is not allowed on raw files.

Returns:

{ok, IoDevice} The file has been opened in the requested mode. IoDevice is a
reference to the file.

{error, Reason} The file could not be opened.

IoDevice is really the pid of the process which handles the file. This process is linked to
the process which originally opened the file. If any process to which the IoDevice is
linked terminates, the file will be closed and the process itself will be terminated. An
IoDevice returned from this call can be used as an argument to the IO functions (see
[io(3)]).

Note:
In previous versions of file, modes were given as one of the atoms read, write, or
read_write instead of a list. This is still allowed for reasons of backwards
compatibility, but should not be used for new code. Also note that read_write is not
allowed in a mode list.

Typical error reasons:

enoent The file does not exist.
eaccess Missing permission for reading the file or searching one of the parent
directories.
eisdir The named file is not a regular file. It may be a directory, a fifo, or a device.
enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.
enospc There is no space left on the device (if write access was specified).

path_consult(Path, Filename) -> {ok, Terms, FullName} | {error, Reason}

Types:
- Path = [Dir]
- Dir = name()
- Filename = name()
- Terms = [term()]
- FullName = string()
- Reason = ext_posix() | terminated | system_limit | {Line, Mod, Term}
- Line, Mod, Term – see below

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. Then reads Erlang terms, separated
by '.', from the file. Returns one of the following:

{ok, Terms, FullName} The file was successfully read. FullName is the full name of
the file.
{error, enoent} The file could not be found in any of the directories in Path.
{error, atom()} An error occurred when opening the file or reading it. See open/2
[page 96] for a list of typical error codes.
{error, {Line, Mod, Term}} An error occurred when interpreting the Erlang terms
in the file. Use format_error/1 to convert the three-element tuple to an English
description of the error.

path_eval(Path, Filename) -> {ok, FullName} | {error, Reason}

Types:
- Path = [Dir]
- Dir = name()
- Filename = name()
- FullName = string()
- Reason = ext_posix() | terminated | system_limit | {Line, Mod, Term}
- Line, Mod, Term – see below

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. Then reads and evaluates Erlang
expressions, separated by '.' (or ',', a sequence of expressions is also an expression), from
the file. The actual result of evaluation is not returned; any expression sequence in the
file must be there for its side effect. Returns one of the following:

{ok, FullName} The file was read and evaluated. FullName is the full name of the file.
{error, enoent} The file could not be found in any of the directories in Path.
{error, atom()} An error occurred when opening the file or reading it. See open/2
[page 96] for a list of typical error codes.
An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the three-element tuple to an English description of the error.

path_open(Path, Filename, Modes) -> {ok, IoDevice, FullName} | {error, Reason}

Types:
- Path = [Dir]
- Dir = name()
- Filename = name()
- Modes = [Mode] - see open/2
- IoDevice = io_device()
- FullName = string()
- Reason = ext_posix() | system_limit

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute file name, Path is ignored. Then opens the file in the mode determined by Modes. Returns one of the following:

- {ok, IoDevice, FullName} The file has been opened in the requested mode. IoDevice is a reference to the file and FullName is the full name of the file.
- {error, enoent} The file could not be found in any of the directories in Path.
- {error, atom()} The file could not be opened.

path_script(Path, Filename) -> {ok, Value, FullName} | {error, Reason}

Types:
- Path = [Dir]
- Dir = name()
- Filename = name()
- Value = term()
- FullName = string()
- Reason = ext_posix() | terminated | system_limit | {Line, Mod, Term}
- Line, Mod, Term - see below

Searches the path Path (a list of directory names) until the file Filename is found. If Filename is an absolute file name, Path is ignored. Then reads and evaluates Erlang expressions, separated by '.' (or ',', a sequence of expressions is also an expression), from the file. Returns one of the following:

- {ok, Value, FullName} The file was read and evaluated. FullName is the full name of the file and Value the value of the last expression.
- {error, enoent} The file could not be found in any of the directories in Path.
- {error, atom()} An error occurred when opening the file or reading it. See open/2 [page 96] for a list of typical error codes.
- {error, {Line, Mod, Term}} An error occurred when interpreting the Erlang expressions in the file. Use format_error/1 to convert the three-element tuple to an English description of the error.
path_script(Path, Filename, Bindings) -> {ok, Value, FullName} | {error, Reason}

Types:
- Path = [Dir]
- Dir = name()
- Filename = name()
- Bindings – see erl_eval(3)
- Value = term()
- FullName = string()
- Reason = posix() | terminated | system_limit | {Line, Mod, Term}
- Line, Mod, Term – see path_script/2

The same as path_script/2 but the variable bindings Bindings are used in the evaluation. See [erl_eval(3)] about variable bindings.

pid2name(Pid) -> string() | undefined

Types:
- Pid = pid()

If Pid is an IO device, that is, a pid returned from open/2, this function returns the filename, or rather:

{ok, Filename} If this node’s file server is not a slave, the file was opened by this node’s file server, (this implies that Pid must be a local pid) and the file is not closed. Filename is the filename in flat string format.

undefined In all other cases.

Warning:
This function is intended for debugging only.

position(IoDevice, Location) -> {ok, NewPosition} | {error, Reason}

Types:
- IoDevice = io_device()

If Offset is one of the following:

{offset, Offset} | {bof, Offset} | {cur, Offset} | {eof, Offset} | bof | cur | eof
- Offset = int()
- NewPosition = int()
- Reason = ext posix() | terminated

Sets the position of the file referenced by IoDevice to Location. Returns {ok, NewPosition} (as absolute offset) if successful, otherwise {error, Reason}. Location is one of the following:

Offset The same as {bof, Offset}.
- {bof, Offset} Absolute offset.
- {cur, Offset} Offset from the current position.
- {eof, Offset} Offset from the end of file.
- bof | cur | eof The same as above with Offset 0.
Note that offsets are counted in bytes, not in characters. If the file is opened using some other encoding than latin1, one byte does not correspond to one character. Positioning in such a file can only be done to known character boundaries, i.e. to a position earlier retrieved by getting a current position, to the beginning/end of the file or to some other position known to be on a correct character boundary by some other means (typically beyond a byte order mark in the file, which has a known byte-size).

Typical error reasons are:

\texttt{einval} Either \texttt{Location} was illegal, or it evaluated to a negative offset in the file. Note that if the resulting position is a negative value, the result is an error, and after the call the file position is undefined.

\texttt{pread(IoDevice, LocNums)} \rightarrow \{\texttt{ok, DataL} | \texttt{eof} | \{\texttt{error, Reason}\}

Types:
- \texttt{IoDevice = io_device()}
- \texttt{LocNums = [\{Location, Number\}]}
- \texttt{Location} – see position/2
- \texttt{Number = int()}
- \texttt{DataL} = [Data]
- \texttt{Data} = [char()] | binary()
- \texttt{Reason} = \texttt{ext_posix()} | \texttt{terminated}

Performs a sequence of \texttt{pread/3} in one operation, which is more efficient than calling them one at a time. Returns \{\texttt{ok, [Data, ...]}\} or \{\texttt{error, Reason}\}, where each Data, the result of the corresponding \texttt{pread}, is either a list or a binary depending on the mode of the file, or \texttt{eof} if the requested position was beyond end of file.

As the position is given as a byte-offset, special caution has to be taken when working with files where encoding is set to something else than latin1, as not every byte position will be a valid character boundary on such a file.

\texttt{pread(IoDevice, Location, Number)} \rightarrow \{\texttt{ok, Data} | \texttt{eof} | \{\texttt{error, Reason}\}

Types:
- \texttt{IoDevice = io_device()}
- \texttt{Location} – see position/2
- \texttt{Number = int()}
- \texttt{Data} = [char()] | binary()
- \texttt{Reason} = \texttt{ext_posix()} | \texttt{terminated}

Combines position/2 and read/2 in one operation, which is more efficient than calling them one at a time. If \texttt{IoDevice} has been opened in raw mode, some restrictions apply: Location is only allowed to be an integer; and the current position of the file is undefined after the operation.

As the position is given as a byte-offset, special caution has to be taken when working with files where encoding is set to something else than latin1, as not every byte position will be a valid character boundary on such a file.

\texttt{pwrite(IoDevice, LocBytes)} \rightarrow \texttt{ok} | \{\texttt{error, \{N, Reason\}}

Types:
pwrite(IoDevice, Location, Bytes) -> ok | {error, Reason}

Types:
- IoDevice = io_device()
- Location - see position/2
- Bytes = iodata()
- Reason = ext_posix() | terminated

Combines position/2 and write/2 in one operation, which is more efficient than calling them one at a time. If IoDevice has been opened in raw mode, some restrictions apply: Location is only allowed to be an integer; and the current position of the file is undefined after the operation.

When positioning in a file with other encoding than latin1, caution must be taken to set the position on a correct character boundary, see position/2 [page 101] for details.

read(IoDevice, Number) -> {ok, Data} | eof | {error, Reason}

Types:
- IoDevice = io_device()
- Number = int()
- Data = [char()] | binary()
- Reason = ext_posix() | terminated

Reads Number bytes/characters from the file referenced by IoDevice. This function is the only way to read from a file opened in raw mode (although it works for normally opened files, too).

For files where encoding is set to something else than latin1, one character might be represented by more than one byte on the file. The parameter Number always denotes the number of characters read from the file, why the position in the file might be moved a lot more than this number when reading a Unicode file.

Also if encoding is set to something else than latin1, the read/3 call will fail if the data contains characters larger than 255, why the [io(3)] module is to be preferred when reading such a file.

The function returns:

{ok, Data} If the file was opened in binary mode, the read bytes are returned in a binary, otherwise in a list. The list or binary will be shorter than the number of bytes requested if end of file was reached.
eof Returned if Number > 0 and end of file was reached before anything at all could be read.

{error, Reason} An error occurred.

Typical error reasons:

ebadf The file is not opened for reading.

{no_translation, unicode, latin1} The file is was opened with another encoding than latin1 and the data on the file can not be translated to the byte-oriented data that this function returns.

read_file(Filename) -> {ok, Binary} | {error, Reason}

Types:
- Filename = name()
- Binary = binary()
- Reason = ext_posix() | terminated | system_limit

Returns {ok, Binary}, where Binary is a binary data object that contains the contents of Filename, or {error, Reason} if an error occurs.

Typical error reasons:

enoent The file does not exist.

eacces Missing permission for reading the file, or for searching one of the parent directories.

eisdir The named file is a directory.

enotdir A component of the file name is not a directory. On some platforms, enoent is returned instead.

enomem There is not enough memory for the contents of the file.

read_file_info(Filename) -> {ok, FileInfo} | {error, Reason}

Types:
- Filename = name()
- FileInfo = file_info()
- Reason = ext_posix()

Retrieves information about a file. Returns {ok, FileInfo} if successful, otherwise {error, Reason}. FileInfo is a record file_info, defined in the Kernel include file file.hrl. Include the following directive in the module from which the function is called:

-include_lib("kernel/include/file.hrl").

The record file_info contains the following fields.

size = int() Size of file in bytes

type = device | directory | regular | other The type of the file.

access = read | write | read_write | none The current system access to the file.

atime = time() The last (local) time the file was read.

mtime = time() The last (local) time the file was written.
ctime = time() The interpretation of this time field depends on the operating system.
On Unix, it is the last time the file or the inode was changed. In Windows, it is the
create time.

mode = int() The file permissions as the sum of the following bit values:

- **read permission: owner** \[8\#00400\]
- **write permission: owner** \[8\#00200\]
- **execute permission: owner** \[8\#00100\]
- **read permission: group** \[8\#00040\]
- **write permission: group** \[8\#00020\]
- **execute permission: group** \[8\#00010\]
- **read permission: other** \[8\#00004\]
- **write permission: other** \[8\#00002\]
- **execute permission: other** \[8\#00001\]
- **set user id on execution** \[16\#800\]
- **set group id on execution** \[16\#400\]

On Unix platforms, other bits than those listed above may be set.

links = int() Number of links to the file (this will always be 1 for file systems which
have no concept of links).

major_device = int() Identifies the file system where the file is located. In Windows,
the number indicates a drive as follows: 0 means A:, 1 means B:, and so on.

minor_device = int() Only valid for character devices on Unix. In all other cases,
this field is zero.

inode = int() Gives the inode number. On non-Unix file systems, this field will be
zero.

uid = int() Indicates the owner of the file. Will be zero for non-Unix file systems.

gid = int() Gives the group that the owner of the file belongs to. Will be zero for
non-Unix file systems.

Typical error reasons:

- **eacces** Missing search permission for one of the parent directories of the file.
- **enoent** The file does not exist.
- **enotdir** A component of the file name is not a directory. On some platforms, enoent
is returned instead.

read_link(Name) \(\rightarrow\) \{ok, Filename\} \| \{error, Reason\}

Types:
- **Name** = name()
- **Filename** = string()
- **Reason** = ext posix()

This function returns \{ok, Filename\} if Name refers to a symbolic link or \{error,
Reason\} otherwise. On platforms that do not support symbolic links, the return value
will be \{error, enotsup\}.

Typical error reasons:

- **EINVAL** Linkname does not refer to a symbolic link.
The file does not exist.
Symbolic links are not supported on this platform.

read_link_info(Name) -> \{ok, FileInfo\} | \{error, Reason\}

Types:
- Name = name()
- FileInfo = #file_info{}, see read_file_info/1
- Reason = ext_posix()

This function works like read_file_info/1, except that if Name is a symbolic link, information about the link will be returned in the file_info record and the type field of the record will be set to symlink.

If Name is not a symbolic link, this function returns exactly the same result as read_file_info/1. On platforms that do not support symbolic links, this function is always equivalent to read_file_info/1.

rename(Source, Destination) -> ok | \{error, Reason\}

Types:
- Source = Destination = name()
- Reason = ext_posix()

Tries to rename the file Source to Destination. It can be used to move files (and directories) between directories, but it is not sufficient to specify the destination only. The destination file name must also be specified. For example, if bar is a normal file and foo and baz are directories, rename("foo/bar", "baz") returns an error, but rename("foo/bar", "baz/bar") succeeds. Returns ok if it is successful.

Note:
Renaming of open files is not allowed on most platforms (see eaccess below).

Typical error reasons:
- eaccess Missing read or write permissions for the parent directories of Source or Destination. On some platforms, this error is given if either Source or Destination is open.
- eexist Destination is not an empty directory. On some platforms, also given when Source and Destination are not of the same type.
- einval Source is a root directory, or Destination is a sub-directory of Source.
- eisdir Destination is a directory, but Source is not.
- enoent Source does not exist.
- enotdir Source is a directory, but Destination is not.
- exdev Source and Destination are on different file systems.

script(Filename) -> \{ok, Value\} | \{error, Reason\}

Types:
reads and evaluates Erlang expressions, separated by `.' (or `,.'), a sequence of expressions is also an expression), from the file. Returns one of the following:

- `{ok, Value}` The file was read and evaluated. `Value` is the value of the last expression.
- `{error, atom()}` An error occurred when opening the file or reading it. See `open/2` [page 96] for a list of typical error codes.
- `{error, {Line, Mod, Term}}` An error occurred when interpreting the Erlang expressions in the file. Use `format_error/1` to convert the three-element tuple to an English description of the error.

script(Filename, Bindings) -> {ok, Value} | {error, Reason}

Types:
- Filename = name()
- Bindings - see `erl_eval(3)`
- Value = term()
- Reason = ext posix() | terminated | system_limit | {Line, Mod, Term}
- Line, Mod, Term - see below

The same as `script/1` but the variable bindings `Bindings` are used in the evaluation. See `erl_eval(3)` about variable bindings.

set_cwd(Dir) -> ok | {error, Reason}

Types:
- Dir = name()
- Reason = ext posix()

Sets the current working directory of the file server to `Dir`. Returns `ok` if successful. Typical error reasons are:

- `enoent` The directory does not exist.
- `enotdir` A component of `Dir` is not a directory. On some platforms, `enoent` is returned.
- `eaccess` Missing permission for the directory or one of its parents.
- `badarg` `Filename` had an improper type, such as tuple.

Warning:
In a future release, a bad type for the `Filename` argument will probably generate an exception.

sync(IoDevice) -> ok | {error, Reason}
Types:
- `IoDevice = io_device()`
- `Reason = ext_posix() | terminated`

Makes sure that any buffers kept by the operating system (not by the Erlang runtime system) are written to disk. On some platforms, this function might have no effect.

Typical error reasons are:
- `enospc` Not enough space left to write the file.

```
truncate(IoDevice) -> ok | {error, Reason}
```

Types:
- `IoDevice = io_device()`
- `Reason = ext_posix() | terminated`

Truncates the file referenced by `IoDevice` at the current position. Returns `ok` if successful, otherwise `{error, Reason}`.

```
write(IoDevice, Bytes) -> ok | {error, Reason}
```

Types:
- `IoDevice = io_device()`
- `Bytes = iodata()`
- `Reason = ext_posix() | terminated`

Writes `Bytes` to the file referenced by `IoDevice`. This function is the only way to write to a file opened in raw mode (although it works for normally opened files, too). Returns `ok` if successful, and `{error, Reason}` otherwise.

If the file is opened with `encoding` set to something else than `latin1`, each byte written might result in several bytes actually being written to the file, as the byte range 0..255 might represent anything between one and four bytes depending on value and UTF encoding type.

Typical error reasons are:
- `ebadf` The file is not opened for writing.
- `enospc` There is a no space left on the device.

```
write_file(Filename, Bytes) -> ok | {error, Reason}
```

Types:
- `Filename = name()`
- `Bytes = iodata()`
- `Reason = ext_posix() | terminated | system_limit`

Writes the contents of the iodata term `Bytes` to the file `Filename`. The file is created if it does not exist. If it exists, the previous contents are overwritten. Returns `ok`, or `{error, Reason}`.

Typical error reasons are:
- `enoent` A component of the file name does not exist.
enotdir A component of the file name is not a directory. On some platforms, enoent is returned instead.

enospc There is no space left on the device.

eacces Missing permission for writing the file or searching one of the parent directories.

eisdir The named file is a directory.

write_file(Filename, Bytes, Modes) -> ok | {error, Reason}

Types:
- Filename = name()
- Bytes = iodata()
- Modes = [Mode] – see open/2
- Reason = ext_posix() | terminated | system_limit

Same as write_file/2, but takes a third argument Modes, a list of possible modes, see open/2 [page 96]. The mode flags binary and write are implicit, so they should not be used.

write_file_info(Filename, FileInfo) -> ok | {error, Reason}

Types:
- Filename = name()
- FileInfo = #file_info{} - see also read_file_info/1
- Reason = ext_posix()

Change file information. Returns ok if successful, otherwise {error, Reason}. FileInfo is a record file_info, defined in the Kernel include file file.hrl. Include the following directive in the module from which the function is called:

-include_lib("kernel/include/file.hrl").

The following fields are used from the record, if they are given.

atime = time() The last (local) time the file was read.

mtime = time() The last (local) time the file was written.

cmtime = time() On Unix, any value give for this field will be ignored (the “ctime” for the file will be set to the current time). On Windows, this field is the new creation time to set for the file.

mode = int() The file permissions as the sum of the following bit values:
- 8#00400 read permission: owner
- 8#00200 write permission: owner
- 8#00100 execute permission: owner
- 8#00040 read permission: group
- 8#00020 write permission: group
- 8#00010 execute permission: group
- 8#00004 read permission: other
- 8#00002 write permission: other
- 8#00001 execute permission: other
- 16#800 set user id on execution
- 16#400 set group id on execution
On Unix platforms, other bits than those listed above may be set.

uid = int() Indicates the owner of the file. Ignored for non-Unix file systems.

gid = int() Gives the group that the owner of the file belongs to. Ignored non-Unix file systems.

Typical error reasons:

eacces Missing search permission for one of the parent directories of the file.
enomem The file does not exist.

enotdir A component of the file name is not a directory. On some platforms, enoent is returned instead.

POSIX Error Codes

- eacces - permission denied
- eagain - resource temporarily unavailable
- ebadf - bad file number
- ebusy - file busy
- edquots - disk quota exceeded
- eexists - file already exists
- efault - bad address in system call argument
- ebig - file too large
- eintr - interrupted system call
- EINVAL - invalid argument
- EIO - IO error
- EISDIR - illegal operation on a directory
- ELOOP - too many levels of symbolic links
- EMFILE - too many open files
- EMSLINK - too many links
- ENAMETOOLONG - file name too long
- ENFILE - file table overflow
- ENODEV - no such device
- ENOENT - no such file or directory
- ENOMEM - not enough memory
- ENOSPC - no space left on device
- ENOTBLK - block device required
- ENOTDIR - not a directory
- ENOTSUP - operation not supported
- ENXIO - no such device or address
- EPERM - not owner
- EPIPE - broken pipe
- EROFS - read-only file system
- ESPIPE - invalid seek
- ESRC - no such process
- ESTATE - stale remote file handle
- EXDEV - cross-domain link
Performance

Some operating system file operations, for example a sync/1 or close/1 on a huge file, may block their calling thread for seconds. If this befalls the emulator main thread, the response time is no longer in the order of milliseconds, depending on the definition of “soft” in soft real-time system.

If the device driver thread pool is active, file operations are done through those threads instead, so the emulator can go on executing Erlang processes. Unfortunately, the time for serving a file operation increases due to the extra scheduling required from the operating system.

If the device driver thread pool is disabled or of size 0, large file reads and writes are segmented into several smaller, which enables the emulator so server other processes during the file operation. This gives the same effect as when using the thread pool, but with larger overhead. Other file operations, for example sync/1 or close/1 on a huge file, still are a problem.

For increased performance, raw files are recommended. Raw files uses the file system of the node’s host machine. For normal files (non-raw), the file server is used to find the files, and if the node is running its file server as slave to another node’s, and the other node runs on some other host machine, they may have different file systems. This is seldom a problem, but you have now been warned.

A normal file is really a process so it can be used as an IO device (see io). Therefore when data is written to a normal file, the sending of the data to the file process, copies all data that are not binaries. Opening the file in binary mode and writing binaries is therefore recommended. If the file is opened on another node, or if the file server runs as slave to another node’s, also binaries are copied.

Caching data to reduce the number of file operations, or rather the number of calls to the file driver, will generally increase performance. The following function writes 4 MBytes in 23 seconds when tested:

```erlang
create_file_slow(Name, N) when integer(N), N >= 0 ->
    {ok, FD} = file:open(Name, [raw, write, delayed_write, binary]),
    ok = create_file_slow(FD, 0, N),
    ok = ?FILE_MODULE:close(FD),
    ok.
create_file_slow(FD, M, M) -> ok;
create_file_slow(FD, M, N) ->
    ok = file:write(FD, <<M:32/unsigned>>),
    create_file_slow(FD, M+1, N).
```

The following, functionally equivalent, function collects 1024 entries into a list of 128 32-byte binaries before each call to file:write/2 and so does the same work in 0.52 seconds, which is 44 times faster.

```erlang
create_file(Name, N) when integer(N), N >= 0 ->
    {ok, FD} = file:open(Name, [raw, write, delayed_write, binary]),
    ok = create_file(FD, 0, N),
    ok = ?FILE_MODULE:close(FD),
    ok.
create_file(FD, M, M) ->
```

Kernel Application (KERNEL)
ok;
create_file(FD, M, N) when M + 1024 =< N ->
 create_file(FD, M, M + 1024, []),
 create_file(FD, M + 1024, N);
create_file(FD, M, N) ->
 create_file(FD, M, N, []).

create_file(FD, M, N) when M + 8 =< N0 ->
 N1 = N0-1, N2 = N0-2, N3 = N0-3, N4 = N0-4,
 N5 = N0-5, N6 = N0-6, N7 = N0-7, N8 = N0-8,
 create_file(FD, M, N8,
 <<N8:32/unsigned, N7:32/unsigned,
 N6:32/unsigned, N5:32/unsigned,
 N4:32/unsigned, N3:32/unsigned,
 N2:32/unsigned, N1:32/unsigned>> | R));
create_file(FD, M, N0, R) ->
 N1 = N0-1,
 create_file(FD, M, N1, [<<N1:32/unsigned>> | R]).

Note:
Trust only your own benchmarks. If the list length in create_file/2 above is increased, it will run slightly faster, but consume more memory and cause more memory fragmentation. How much this affects your application is something that this simple benchmark can not predict.

If the size of each binary is increased to 64 bytes, it will also run slightly faster, but the code will be twice as clumsy. In the current implementation are binaries larger than 64 bytes stored in memory common to all processes and not copied when sent between processes, while these smaller binaries are stored on the process heap and copied when sent like any other term.

So, with a binary size of 68 bytes create_file/2 runs 30 percent slower then with 64 bytes, and will cause much more memory fragmentation. Note that if the binaries were to be sent between processes (for example a non-raw file) the results would probably be completely different.

A raw file is really a port. When writing data to a port, it is efficient to write a list of binaries. There is no need to flatten a deep list before writing. On Unix hosts, scatter output, which writes a set of buffers in one operation, is used when possible. In this way file:write(FD, [Bin1, Bin2 | Bin3]) will write the contents of the binaries without copying the data at all except for perhaps deep down in the operating system kernel.

For raw files, pwrite/2 andpread/2 are efficiently implemented. The file driver is called only once for the whole operation, and the list iteration is done in the file driver.

The options delayed_write and read_ahead to file:open/2 makes the file driver cache data to reduce the number of operating system calls. The function create_file/2 in the example above takes 60 seconds seconds without the delayed_write option, which is 2.6 times slower.
And, as a really bad example, `create_file_slow/2` above without the raw, binary and delayed write options, that is it calls `file:open(Name, [write])`, needs 1 min 20 seconds for the job, which is 3.5 times slower than the first example, and 150 times slower than the optimized `create_file/2`.

Warnings

If an error occurs when accessing an open file with the io module, the process which handles the file will exit. The dead file process might hang if a process tries to access it later. This will be fixed in a future release.

SEE ALSO

[filename(3)]
The gen_sctp module provides functions for communicating with sockets using the SCTP protocol. The implementation assumes that the OS kernel supports SCTP (RFC2960)\(^1\) through the user-level Sockets API Extensions\(^2\). During development this implementation was tested on Linux Fedora Core 5.0 (kernel 2.6.15-2054 or later is needed), and on Solaris 10, 11. During OTP adaptation it was tested on SUSE Linux Enterprise Server 10 (x86_64) kernel 2.6.16.27-0.6-smp, with lksctp-tools-1.0.6, briefly on Solaris 10, and later on SUSE Linux Enterprise Server 10 Service Pack 1 (x86_64) kernel 2.6.16.54-0.2.3-smp with lksctp-tools-1.0.7.

Record definitions for the gen_sctp module can be found using:

```
-include_lib("kernel/include/inet_sctp.hrl").
```

These record definitions use the “new” spelling ‘adaptation’, not the deprecated ‘adaption’, regardless of which spelling the underlying C API uses.

CONTENTS

- DATA TYPES [page 114]
- EXPORTS [page 115]
- SCTP SOCKET OPTIONS [page 119]
- SCTP EXAMPLES [page 125]
- SEE ALSO [page 127]
- AUTHORS [page 127]

DATA TYPES

- **assoc_id()** An opaque term returned in for example #sctp_paddr_change() that identifies an association for an SCTP socket. The term is opaque except for the special value 0 that has a meaning such as “the whole endpoint” or “all future associations”.
- **charlist()** = [char()]
- **iolist()** = [char() | binary()]
- **ip_address()** Represents an address of an SCTP socket. It is a tuple as explained in inet(3) [page 149].
- **port_number()** = 0 .. 65535

1\(^{\text{URL: http://www.rfc-archive.org/getrfc.php?rfc=2960}}\)
posix() See inet(3); POSIX Error Codes [page 157]
sctp_option() One of the SCTP Socket Options [page 119]
sctp_socket() Socket identifier returned from open/*. timeout() = int() | infinity Timeout used in SCTP connect and receive calls.

Exports

abort(sctp_socket(), Assoc) -> ok | {error, posix()}

Types:
• Assoc = #sctp_assoc_change{}
 Abnormally terminates the association given by Assoc, without flushing of unsent data. The socket itself remains open. Other associations opened on this socket are still valid, and it can be used in new associations.

close(sctp_socket()) -> ok | {error, posix()}

Completely closes the socket and all associations on it. The unsent data is flushed as in eof/2. The close/1 call is blocking or otherwise depending of the value of the linger [page 120] socket option [page 119]. If close does not linger or linger timeout expires, the call returns and the data is flushed in the background.

connect(Socket, Addr, Port, Opts) -> {ok,Assoc} | {error, posix()}

Same as connect(Socket, Addr, Port, Opts, infinity).

connect(Socket, Addr, Port, [Opt], Timeout) -> {ok, Assoc} | {error, posix()}

Types:
• Socket = sctp_socket()
• Addr = ip_address() | Host
• Port = port_number()
• Opt = sctp_option()
• Timeout = timeout()
• Host = atom() | string()
• Assoc = #sctp_assoc_change{}

Establishes a new association for the socket Socket, with the peer (SCTP server socket) given by Addr and Port. The Timeout, is expressed in milliseconds.

A socket can be associated with multiple peers. The result of connect/* is an #sctp_assoc_change{} event which contains, in particular, the new Association ID: [page 114]

#sctp_assoc_change{
 state = atom(),
 error = atom(),
 outbound_streams = int(),
 inbound_streams = int(),
 assoc_id = assoc_id()
}
The number of outbound and inbound streams can be set by giving an `sctp_initmsg` option to `connect` as in:

```c
connect(Socket, Ip, Port,
   [{sctp_initmsg,#sctp_initmsg{num_ostreams=OutStreams,
   max_instreams=MaxInStreams}}])
```

All options `Opt` are set on the socket before the association is attempted. If an option record has got undefined field values, the options record is first read from the socket for those values. In effect, `Opt` option records only define field values to change before connecting.

The returned `outbound_streams` and `inbound_streams` are the actual stream numbers on the socket, which may be different from the requested values (`OutStreams` and `MaxInStreams` respectively) if the peer requires lower values.

The following values of `state` are possible:

- `comm_up`: association successfully established. This indicates a successful completion of `connect`.
- `cant_assoc`: association cannot be established (`connect/* failure`).

All other states do not normally occur in the output from `connect/*`. Rather, they may occur in `#sctp_assoc_change{}` events received instead of data in `recv/* [page 117]` calls. All of them indicate losing the association due to various error conditions, and are listed here for the sake of completeness. The `error` field may provide more detailed diagnostics.

- `comm_lost`;
- `restart`;
- `shutdown_comp`.

controlling_process(sctp_socket(), pid()) -> ok

Assigns a new controlling process `Pid` to Socket. Same implementation as `gen_udp:controlling_process/2`.

eof(Socket, Assoc) -> ok | {error, Reason}

Types:
- `Socket = sctp_socket()`
- `Assoc = #sctp_assoc_change{}`

Gracefully terminates the association given by `Assoc`, with flushing of all unsent data. The socket itself remains open. Other associations opened on this socket are still valid, and it can be used in new associations.

listen(Socket, IsServer) -> ok | {error, Reason}

Types:
- `Socket = sctp_socket()`
- `IsServer = bool()`
Sets up a socket to listen on the IP address and port number it is bound to. IsServer must be ‘true’ or ‘false’. In the contrast to TCP, in SCTP there is no listening queue length. If IsServer is ‘true’ the socket accepts new associations, i.e. it will become an SCTP server socket.

open() -> {ok, Socket} | {error, posix()}
open(Port) -> {ok, Socket} | {error, posix()}
open([Opt]) -> {ok, Socket} | {error, posix()}
open(Port, [Opt]) -> {ok, Socket} | {error, posix()}

Types:
- Opt = {ip,IP} | {ifaddr,IP} | {port,Port} | sctp_option()
- IP = ip_address() | any | loopback
- Port = port_number()

Creates an SCTP socket and binds it to the local addresses specified by all {ip,IP} (or synonymously {ifaddr,IP}) options (this feature is called SCTP multi-homing). The default IP and Port are any and 0, meaning bind to all local addresses on any one free port.

A default set of socket options [page 119] is used. In particular, the socket is opened in binary [page 119] and passive [page 119] mode, and with reasonably large kernel [page 120] and driver buffers [page 120].

recv(sctp_socket()) -> {ok, {FromIP, FromPort, AncData, BinMsg}} | {error, Reason}
recv(sctp_socket(), timeout()) -> {ok, {FromIP, FromPort, AncData, Data}} | {error, Reason}

Types:
- FromIP = ip_address()
- FromPort = port_number()
- AncData = [#sctp_sndrcvinfo]
- Data = binary() | charlist() | #sctp_sndrcvinfo[] | #sctp_assoc_change[] | #sctp_paddr_change[] | #sctp_adaptation_event[]
- Reason = posix() | #scpt_send_failed[] | #scpt_paddr_change() | #scpt_paddr_change[] | #scpt_paddr_change[] | #scpt_paddr_change[] | #scpt_paddr_change[] | #scpt_paddr_change[] | #scpt_paddr_change[]

Receives the Data message from any association of the socket. If the receive times out the error, timeout is returned. The default timeout is infinity. FromIP and FromPort indicate the sender’s address.

AncData is a list of Ancillary Data items which may be received along with the main Data. This list can be empty, or contain a single #sctp_sndrcvinfo [page 123] record, if receiving of such ancillary data is enabled (see option sctp_events [page 123]). It is enabled by default, since such ancillary data provide an easy way of determining the association and stream over which the message has been received. (An alternative way would be to get the Association ID from the FromIP and FromPort using the sctp_get_peer_addr_info [page 125] socket option, but this would still not produce the Stream number).

The actual Data received may be a binary(), or list() of bytes (integers in the range 0 through 255) depending on the socket mode, or an SCTP Event. The following SCTP Events are possible:
- #sctp_sndrcvinfo[] [page 123]
In case of an error (e.g., address unreachable), the error field provides additional diagnostics. In such cases, the `#sctp:change` Event automatically converted into an error term returned by `gen:sctp:recv`. The error field value can be converted into a string using `error:string/1`.

Delivered when a peer sends an Adaptation Layer Indication parameter (configured through the option `sctp:adaptation:layer`). Note that with the current implementation of the Erlang SCTP binding, this event is disabled by default.

The sender may receive this event if a send operation fails. The `flags` field specifies whether the data have actually been transmitted over the wire; `error` provides extended diagnostics. In such cases, the `#sctp:change` Event automatically converted into an error term returned by `gen:sctp:recv`. The error field value can be converted into a string using `error:string/1`.

Indicates change of the status of the peer's IP address given by `addr` within the association `assoc:id`. Possible values of `state` (mostly self-explanatory) include:

- `addr:unreachable`;
- `addr:available`;
- `addr:removed`;
- `addr:added`;
- `addr:confirmed`.

In case of an error (e.g., `addr:unreachable`), the error field provides additional diagnostics. In such cases, the `#sctp:change` Event automatically converted into an error term returned by `gen:sctp:recv`. The error field value can be converted into a string using `error:string/1`.

The sender may receive this event if a send operation fails. The `flags` field specifies whether the data have actually been transmitted over the wire; `error` provides extended diagnostics. In such cases, the `#sctp:change` Event automatically converted into an error term returned by `gen:sctp:recv`. The error field value can be converted into a string using `error:string/1`.
#sctp pdapi_event{
 indication = sctp_partial_delivery_aborted,
 assoc_id = assoc_id()
}

A partial delivery failure. In the current implementation of the Erlang/SCTP binding, this Event is internally converted into an error term returned by recv/*.

send(Socket, SndRcvInfo, Data) -> ok | {error, Reason}

Types:
- Socket = sctp_socket()
- SndRcvInfo = #sctp_sndrcvinfo{}
- Data = binary() | iolist()

Sends the Data message with all sending parameters from a #sctp_sndrcvinfo{} [page 123] record. This way, the user can specify the PPID (passed to the remote end) and Context (passed to the local SCTP layer) which can be used for example for error identification. However, such a fine level of user control is rarely required. The send/4 function is sufficient for most applications.

send(Socket, Assoc, Stream, Data) -> ok | {error, Reason}

Types:
- Socket = sctp_socket()
- Assoc = #sctp_assoc_change() | assoc_id()
- Stream = integer()
- Data = binary() | iolist()

Sends Data message over an existing association and given stream.

error_string(integer()) -> ok | string() | undefined

Translates an SCTP error number from for example #sctp_remote_error{} or #sctp_send_failed{} into an explanatory string, or one of the atoms ok for no error and undefined for an unrecognized error.

SCTP SOCKET OPTIONS

The set of admissible SCTP socket options is by construction orthogonal to the sets of TCP, UDP and generic INET options: only those options which are explicitly listed below are allowed for SCTP sockets. Options can be set on the socket using gen_sctp:open/1,2 or inet:setopts/2, retrieved using inet:getopts/2, and when calling gen_sctp:connect/4,5 options can be changed.

{mode, list|binary}or just list or binary. Determines the type of data returned from gen_sctp:recv/1,2.

{active, true|false|once} • If false (passive mode, the default), the caller needs to do an explicit gen_sctp:recv call in order to retrieve the available data from the socket.
- If `true` (full active mode), the pending data or events are sent to the owning process.

 NB: This can cause the message queue to overflow, as there is no way to throttle the sender in this case (no flow control!).

- If `once`, only one message is automatically placed in the message queue, after that the mode is automatically re-set to passive. This provides flow control as well as the possibility for the receiver to listen for its incoming SCTP data interleaved with other inter-process messages.


  ```
  {buffer, int()} Determines the size of the user-level software buffer used by the SCTP driver. Not to be confused with `sndbuf` and `recbuf` options which correspond to the kernel socket buffers. It is recommended to have `val(buffer) >= max(val(sndbuf),val(recbuf))`. In fact, the `val(buffer)` is automatically set to the above maximum when `sndbuf` or `recbuf` values are set.
  ```

  ```
  {tos, int()} Sets the Type-Of-Service field on the IP datagrams being sent, to the given value, which effectively determines a prioritization policy for the outbound packets. The acceptable values are system-dependent. TODO: we do not provide symbolic names for these values yet.
  ```

  ```
  {priority, int()} A protocol-independent equivalent of `tos` above. Setting priority implies setting `tos` as well.
  ```

  ```
  {dontroute, true|false} By default false. If true, the kernel does not send packets via any gateway, only sends them to directly connected hosts.
  ```

  ```
  {reuseaddr, true|false} By default false. If true, the local binding address {IP, Port} of the socket can be re-used immediately: no waiting in the CLOSE_WAIT state is performed (may be required for high-throughput servers).
  ```

  ```
  {linger, {true|false, int()}} Determines the timeout in seconds for flushing unsent data in the `gen_sctp:close/1` socket call. If the 1st component of the value tuple is false, the 2nd one is ignored, which means that `gen_sctp:close/1` returns immediately not waiting for data to be flushed. Otherwise, the 2nd component is the flushing time-out in seconds.
  ```

  ```
  {sndbuf, int()} The size, in bytes, of the *kernel* send buffer for this socket. Sending errors would occur for datagrams larger than `val(sndbuf)`. Setting this option also adjusts the size of the driver buffer (see `buffer` above).
  ```

  ```
  {recbuf, int()} The size, in bytes, of the *kernel* recv buffer for this socket. Sending errors would occur for datagrams larger than `val(sndbuf)`. Setting this option also adjusts the size of the driver buffer (see `buffer` above).
  ```

  ```
  {sctp_rtoinfo, #sctp_rtoinfo{}}
  ```

  ```
  #sctp_rtoinfo{
      assoc_id = assoc_id(),
      initial = int(),
      max = int(),
      min = int()
  }
  ```

 Determines re-transmission time-out parameters, in milliseconds, for the association(s) given by `assoc_id`. If `assoc_id = 0` (default) indicates the whole endpoint. See RFC 29603 and Sockets API Extensions for SCTP4 for the exact semantics of the fields values.

{sctp_associnfo, #sctp_assocparams[]}

#sctp_assocparams{
 assoc_id = assoc_id(),
 assocmaxrxt = int(),
 number_peer_destinations = int(),
 peer_rwnd = int(),
 local_rwnd = int(),
 cookie_life = int()
}

Determines association parameters for the association(s) given by assoc_id.
assoc_id = 0 (default) indicates the whole endpoint. See Sockets API Extensions
for SCTP§ for the discussion of their semantics. Rarely used.

{sctp_initmsg, #sctp_initmsg[]}

#sctp_initmsg{
 num_ostreams = int(),
 max_instreams = int(),
 max_attempts = int(),
 max_init_timeo = int()
}

Determines the default parameters which this socket attempts to negotiate with its
peer while establishing an association with it. Should be set after open/* but
before the first connect/*.* sctp_initmsg[] can also be used as ancillary data
with the first call of send/* to a new peer (when a new association is created).

• num_ostreams: number of outbound streams;
• max_instreams: max number of in-bound streams;
• max_attempts: max re-transmissions while establishing an association;
• max_init_timeo: time-out in milliseconds for establishing an association.

{sctp_autoclose, int()|infinity} Determines the time (in seconds) after which an
idle association is automatically closed.

{sctp_nodelay, true|false} Turns on|off the Nagle algorithm for merging small
packets into larger ones (which improves throughput at the expense of latency).

{sctp_disable_fragments, true|false} If true, induces an error on an attempt to
send a message which is larger than the current PMTU size (which would require
fragmentation/re-assembling). Note that message fragmentation does not affect
the logical atomicity of its delivery; this option is provided for performance reasons
only.

{sctp_iwant_mapped_v4_addr, true|false} Turns on|off automatic mapping of
IPv4 addresses into IPv6 ones (if the socket address family is AF_INET6).

{sctp_maxseg, int()} Determines the maximum chunk size if message fragmentation
is used. If 0, the chunk size is limited by the Path MTU only.

{sctp_primary_addr, #sctpprim[]}

#sctpprim{
 assoc_id = assoc_id(),
 addr = {IP, Port}
}

IP = ip_address()
Port = port_number()

For the association given by assoc_id, \{IP, Port\} must be one of the peer's addresses. This option determines that the given address is treated by the local SCTP stack as the peer's primary address.

\{sctp_set_peer_primary_addr, #sctp_setpeerprim\}

#sctp_setpeerprim\
assoc_id = assoc_id(),
addr = \{IP, Port\}
\}
IP = ip_address()
Port = port_number()

When set, informs the peer that it should use \{IP, Port\} as the primary address of the local endpoint for the association given by assoc_id.

\{sctp_adaptation_layer, #sctp_setadaptation\}

#sctp_setadaptation\
adaptation_ind = int()
\}

When set, requests that the local endpoint uses the value given by adaptation_ind as the Adaptation Indication parameter for establishing new associations. See RFC 2960\(^6\) and Sockets API Extensions for SCTP\(^7\) for more details.

\{sctp_peer_addr_params, #sctp_paddrparams\}

#sctp_paddrparams\
assoc_id = assoc_id(),
address = \{IP, Port\},
hbinterval = int(),
pathmaxrxt = int(),
pathmtu = int(),
sackdelay = int(),
flags = list()
\}
IP = ip_address()
Port = port_number()

This option determines various per-address parameters for the association given by assoc_id and the peer address address (the SCTP protocol supports multi-homing, so more than 1 address can correspond to a given association).

- hbinterval: heartbeat interval, in milliseconds;
- pathmaxrxt: max number of retransmissions before this address is considered unreachable (and an alternative address is selected);
- pathmtu: fixed Path MTU, if automatic discovery is disabled (see flags below);
- sackdelay: delay in milliseconds for SAC messages (if the delay is enabled, see flags below);
- flags: the following flags are available:
 - hb_enable: enable heartbeat;
 - hb_disable: disable heartbeat;

\(^6\)URL: http://www.rfc-archive.org/getrfc.php?rfc=2960
\(^7\)URL: http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13
- hb_demand: initiate heartbeat immediately;
- pmtud_enable: enable automatic Path MTU discovery;
- pmtud_disable: disable automatic Path MTU discovery;
- sackdelay_enable: enable SAC delay;
- sackdelay_disable: disable SAC delay.

{sctp.default.send.param, #sctp_sndrcvinfo[]}

#sctp_sndrcvinfo{
 stream = int(),
 ssn = int(),
 flags = list(),
 ppid = int(),
 context = int(),
 timetolive = int(),
 tsn = int(),
 cumtsn = int(),
 assoc_id = assoc_id()
}

#sctp_sndrcvinfo[] is used both in this socket option, and as ancillary data while sending or receiving SCTP messages. When set as an option, it provides a default values for subsequent gen_sctp:send calls on the association given by assoc_id. assoc_id = 0 (default) indicates the whole endpoint. The following fields typically need to be specified by the sender:

- sinfo_stream: stream number (0-base) within the association to send the messages through;
- sinfo_flags: the following flags are recognised:
 - unordered: the message is to be sent unordered;
 - addr_over: the address specified in gen_sctp:send overwrites the primary peer address;
 - abort: abort the current association without flushing any unsent data;
 - eof: gracefully shut down the current association, with flushing of unsent data.

Other fields are rarely used. See RFC2960 and Sockets API Extensions for SCTP for full information.

{sctp.events, #sctp_event_subscribe[]}

#sctp_event_subscribe{
 data_flow_event = true | false,
 association_event = true | false,
 address_event = true | false,
 send_failure_event = true | false,
 peer_error_event = true | false,
 shutdown_event = true | false,
 partial_delivery_event = true | false,
 adaptation_layer_event = true | false
}
This option determines which SCTP Events [page 117] are to be received (via recv/* [page 117]) along with the data. The only exception is data_io_event which enables or disables receiving of #sctp_sndrcvinfo{} [page 123] ancillary data, not events. By default, all flags except adaptation_layer_event are enabled, although sctp_data_io_event and association_event are used by the driver itself and not exported to the user level.

{sctpDelayed_ack_time, #sctpAssoc_value{}}

#sctpAssoc_value{
 assoc_id = assoc_id(),
 assoc_value = int()
}

Rarely used. Determines the ACK time (given by assoc_value in milliseconds) for the given association or the whole endpoint if assoc_value = 0 (default).

{sctp_status, #sctp_status{}}

#sctp_status{
 assoc_id = assoc_id(),
 state = atom(),
 rwnd = int(),
 unackdata = int(),
 penddata = int(),
 instrms = int(),
 outstrms = int(),
 fragmentation_point = int(),
 primary = #sctp_paddrinfo{}
}

This option is read-only. It determines the status of the SCTP association given by assoc_id. Possible values of state follow. The state designations are mostly self-explanatory. state_empty is the default which means that no other state is active:

- sctp_state_empty
- sctp_state_closed
- sctp_state_cookie_wait
- sctp_state_cookie_echoed
- sctp_state_established
- sctp_state_shutdown_pending
- sctp_state_shutdown_sent
- sctp_state_shutdown_received
- sctp_state_shutdown_ack_sent

The semantics of other fields is the following:

- sstat_rwnd: the association peer’s current receiver window size;
- sstat_unackdata: number of unacked data chunks;
- sstat_penddata: number of data chunks pending receipt;
- sstat_instrms: number of inbound streams;
- sstat_outstrms: number of outbound streams;
- sstat_fragmentation_point: message size at which SCTP fragmentation will occur;
- stat_primary: information on the current primary peer address (see below for the format of #sctp_paddrinfo{}).

{sctp_get_peer_addr_info, #sctp_paddrinfo{}}

#sctp_paddrinfo{}

 assoc_id = assoc_id(),
 address = [IP, Port],
 state = inactive | active,
 cwnd = int(),
 srtt = int(),
 rto = int(),
 mtu = int()

IP = ip_address()
Port = port_number()

This option is read-only. It determines the parameters specific to the peer’s address given by address within the association given by assoc_id. The address field must be set by the caller; all other fields are filled in on return. If assoc_id = 0 (default), the address is automatically translated into the corresponding association ID. This option is rarely used; see RFC 2960\(^{10}\) and Sockets API Extensions for SCTP\(^ {11} \) for the semantics of all fields.

SCTP EXAMPLES

- Example of an Erlang SCTP Server which receives SCTP messages and prints them on the standard output:

```erlang
-module(sctp\_server).
-export([server/0, server/1, server/2]).
-includes(include("kernel/include/inet.hrl"),
-includes(include("kernel/include/inet\_sctp.hrl"),

server() ->
    server(any, 2006).

server([Host, Port]) when is\_list(Host), is\_list(Port) ->
    {ok, #hostent{h\_addr\_list = [IP|]}} = inet\_gethostbyname(Host),
    io\_format("\~{w} -> \~{w}\n", [Host, IP]),
    server([IP, list\_to\_integer(Port)]).

server(IP, Port) when is\_tuple(IP) orelse IP == any orelse IP == loopback, 
    is\_integer(Port) ->
    {ok, S} = gen\_sctp\:open([\{IP,IP\},\{port,Port\}],\{recbuf,65536\}),
    io\_format("Listening on \~{w}:\~{w}\n", \{IP,Port,S\}),
    ok = gen\_sctp\:listen(S, true),
    server\_loop(S).
```

\(^{10}\)URL: http://www.rfc-archive.org/getrfc.php?rfc=2960

server_loop(S) ->
 case gen_sctp:recv(S) of
 {error, Error} ->
 io:format("SCTP RECV ERROR: ~p~n", [Error]);
 Data ->
 io:format("Received: ~p~n", [Data])
 end,
 server_loop(S).

Example of an Erlang SCTP Client which interacts with the above Server. Note that in this example, the Client creates an association with the Server with 5 outbound streams. For this reason, sending of “Test 0” over Stream 0 succeeds, but sending of “Test 5” over Stream 5 fails. The client then aborts the association, which results in the corresponding Event being received on the Server side.

-module(sctp_client).
-export([client/0, client/1, client/2]).
-includelib("kernel/include/inet.hrl").
-includelib("kernel/include/inet_sctp.hrl").

client() ->
 client([localhost]).

client([Host]) ->
 client(Host, 2006);

client([Host, Port]) when is_list(Host), is_list(Port) ->
 client(Host, list_to_integer(Port)),
 init:stop().

client(Host, Port) when is_integer(Port) ->
 {ok,S} = gen_sctp:open(),
 {ok,Assoc} = gen_sctp:connect
 (S, Host, Port, [{sctp_initmsg,#sctp_initmsg{num_ostreams=5}]}),
 io:format("Connection Successful, Assoc=~p~n", [Assoc]),
 io:write(gen_sctp:send(S, Assoc, 0, <<"Test 0">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:send(S, Assoc, 5, <<"Test 5">>)),
 io:nl(),
 timer:sleep(10000),
 io:write(gen_sctp:abort(S, Assoc)),
 io:nl(),
 timer:sleep(1000),
 gen_sctp:close(S).
SEE ALSO

inet(3) [page 149], gen_tcp(3) [page 128], gen_udp(3) [page 135], RFC 2960\(^\text{12}\) (Stream Control Transmission Protocol), Sockets API Extensions for SCTP.\(^\text{13}\)

The `gen_tcp` module provides functions for communicating with sockets using the TCP/IP protocol.

The following code fragment provides a simple example of a client connecting to a server at port 5678, transferring a binary and closing the connection:

```erlang
client() ->
    SomeHostInNet = "localhost" % to make it runnable on one machine
    {ok, Sock} = gen_tcp:connect(SomeHostInNet, 5678,
                               [binary, {packet, 0}]),
    ok = gen_tcp:send(Sock, "Some Data"),
    ok = gen_tcp:close(Sock).
```

At the other end a server is listening on port 5678, accepts the connection and receives the binary:

```erlang
server() ->
    {ok, LSock} = gen_tcp:listen(5678, [binary, {packet, 0},
                                        {active, false}]),
    {ok, Sock} = gen_tcp:accept(LSock),
    {ok, Bin} = do_recv(Sock, []),
    ok = gen_tcp:close(Sock),
    Bin.
```

```erlang
do_recv(Sock, Bs) ->
    case gen_tcp:recv(Sock, 0) of
        {ok, B} ->
            do_recv(Sock, [Bs, B]);
        {error, closed} ->
            {ok, list_to_binary(Bs)}
    end.
```

For more examples, see the examples [page 132] section.

DATA TYPES

- **ip_address()**
 - see `inet(3)`

- **posix()**
 - see `inet(3)`

- **socket()**
 - as returned by `accept/1,2` and `connect/3,4`
Exports

connect(Address, Port, Options) -> {ok, Socket} | {error, Reason}
connect(Address, Port, Options, Timeout) -> {ok, Socket} | {error, Reason}

Types:
- Address = string() | atom() | ip_address()
- Port = 0..65535
- Options = [Opt]
- Opt - see below
- Timeout = int() | infinity
- Socket = socket()
- Reason = posix()

Connects to a server on TCP port Port on the host with IP address Address. The Address argument can be either a hostname, or an IP address.

The available options are:

- list Received Packet is delivered as a list.
- binary Received Packet is delivered as a binary.
- ip, ip_address() If the host has several network interfaces, this option specifies which one to use.
- {port, Port} Specify which local port number to use.
- {fd, int()} If a socket has somehow been connected without using gen_tcp, use this option to pass the file descriptor for it.
- inet6 Set up the socket for IPv6.
- inet Set up the socket for IPv4.
- Opt See inet:setopts/2 [page 154].

Packets can be sent to the returned socket Socket using send/2. Packets sent from the peer are delivered as messages:

-{tcp, Socket, Data}

If the socket is closed, the following message is delivered:

-{tcp_closed, Socket}

If an error occurs on the socket, the following message is delivered:

-{tcp_error, Socket, Reason}

unless {active, false} is specified in the option list for the socket, in which case packets are retrieved by calling recv/2.

The optional Timeout parameter specifies a timeout in milliseconds. The default value is infinity.

Note:
The default values for options given to connect can be affected by the Kernel configuration parameter inet_default_connect_options. See inet(3) [page 149] for details.
listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}

Types:
- Port = 0..65535
- Options = [Opt]
- Opt - see below
- ListenSocket - see below
- Reason = posix()

Sets up a socket to listen on the port Port on the local host.
If Port == 0, the underlying OS assigns an available port number, use inet:port/1 to retrieve it.

The available options are:

- list Received Packet is delivered as a list.
- binary Received Packet is delivered as a binary.
- {backlog, B} B is an integer > 0. The backlog value defaults to 5. The backlog value defines the maximum length that the queue of pending connections may grow to.
- {ip, ip_address()} If the host has several network interfaces, this option specifies which one to listen on.
- {fd, Fd} If a socket has somehow been connected without using gen_tcp, use this option to pass the file descriptor for it.
- inet6 Set up the socket for IPv6.
- inet Set up the socket for IPv4.
- Opt See inet:setopts/2 [page 154].

The returned socket ListenSocket can only be used in calls to accept/1,2.

Note:
The default values for options given to listen can be affected by the Kernel configuration parameter inet_default_listen_options. See inet(3) [page 149] for details.

accept(ListenSocket) -> {ok, Socket} | {error, Reason}
accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}

Types:
- ListenSocket - see listen/2
- Timeout = int() | infinity
- Socket = socket()
- Reason = closed | timeout | posix()
Accepts an incoming connection request on a listen socket. Socket must be a socket returned from listen/2. Timeout specifies a timeout value in ms, defaults to infinity. Returns \{ok, Socket\} if a connection is established, or \{error, closed\} if ListenSocket is closed, or \{error, timeout\} if no connection is established within the specified time. May also return a POSIX error value if something else goes wrong, see inet(3) for possible error values.

Packets can be sent to the returned socket Socket using send/2. Packets sent from the peer are delivered as messages:

\{tcp, Socket, Data\}

unless \{active, false\} was specified in the option list for the listen socket, in which case packets are retrieved by calling recv/2.

Note:
It is worth noting that the accept call does not have to be issued from the socket owner process. Using version 5.5.3 and higher of the emulator, multiple simultaneous accept calls can be issued from different processes, which allows for a pool of acceptor processes handling incoming connections.

send(Socket, Packet) -> ok | \{error, Reason\}

Types:
- Socket = socket()
- Packet = [char()] | binary()
- Reason = posix()

Sends a packet on a socket.

There is no send call with timeout option, you use the send_timeout socket option if timeouts are desired. See the examples [page 132] section.

recv(Socket, Length) -> \{ok, Packet\} | \{error, Reason\}
recv(Socket, Length, Timeout) -> \{ok, Packet\} | \{error, Reason\}

Types:
- Socket = socket()
- Length = int()
- Packet = [char()] | binary()
- Timeout = int() | infinity
- Reason = closed | posix()

This function receives a packet from a socket in passive mode. A closed socket is indicated by a return value \{error, closed\}.

The Length argument is only meaningful when the socket is in raw mode and denotes the number of bytes to read. If Length = 0, all available bytes are returned. If Length > 0, exactly Length bytes are returned, or an error; possibly discarding less than Length bytes of data when the socket gets closed from the other side.

The optional Timeout parameter specifies a timeout in milliseconds. The default value is infinity.
controlling_process(Socket, Pid) -> ok | {error, Reason}

Types:
- Socket = socket()
- Pid = pid()
- Reason = closed | not_owner | posix()

Assigns a new controlling process Pid to Socket. The controlling process is the process which receives messages from the socket. If called by any other process than the current controlling process, {error, eperm} is returned.

close(Socket) -> ok | {error, Reason}

Types:
- Socket = socket()
- Reason = posix()

Closes a TCP socket.

shutdown(Socket, How) -> ok | {error, Reason}

Types:
- Socket = socket()
- How = read | write | read_write
- Reason = posix()

Immediately close a socket in one or two directions. How == write means closing the socket for writing, reading from it is still possible. To be able to handle that the peer has done a shutdown on the write side, the {exit_on_close, false} option is useful.

Examples

The following example illustrates usage of the {active, once} option and multiple accepts by implementing a server as a number of worker processes doing accept on one single listen socket. The start/2 function takes the number of worker processes as well as a port number to listen for incoming connections on. If LPort is specified as 0, an ephemeral port number is used, why the start function returns the actual port number allocated:

```erlang
start(Num,LPort) ->
    case gen_tcp:listen(LPort,[[active, false],[packet,2]]) of
    {ok, ListenSock} ->
        start_servers(Num,ListenSock),
        {ok, Port} = inet:port(ListenSock),
        Port;
    {error,Reason} ->
        {error,Reason}
    end.

start_servers(0,_) ->
    ok;
start_servers(Num,LS) ->
```
spawn(?MODULE,server,[LS]),
start_servers(Num-1,LS).

server(LS) ->
 case gen_tcp:accept(LS) of
 {ok,S} ->
 loop(S),
 server(LS);
 Other ->
 io:format("accept returned ~w - goodbye!"\n,[Other]),
 ok
 end.

loop(S) ->
 inet:setopts(S,[\{active,once\}]),
 receive
 {tcp,S,Data} ->
 Answer = process(Data), % Not implemented in this example
 gen_tcp:send(S,Answer),
 loop(S);
 \{tcp_closed,S\} ->
 io:format("Socket ~w closed [\w]\n,[S,self()]),
 ok
 end.

A simple client could look like this:

client(PortNo,Message) ->
 \{ok,Sock\} = gen_tcp:connect("localhost",PortNo,[\{active,\false\},
 \{packet,2\}]),
 gen_tcp:send(Sock,Message),
 A = gen_tcp:recv(Sock,0),
 gen_tcp:close(Sock),
 A.

The fact that the send call does not accept a timeout option, is because timeouts on
send is handled through the socket option send_timeout. The behavior of a send
operation with no receiver is in a very high degree defined by the underlying TCP stack,
as well as the network infrastructure. If one wants to write code that handles a hanging
receiver that might eventually cause the sender to hang on a send call, one writes code
like the following.

Consider a process that receives data from a client process that is to be forwarded to a
server on the network. The process has connected to the server via TCP/IP and does not
get any acknowledge for each message it sends, but has to rely on the send timeout
option to detect that the other end is unresponsive. We could use the send_timeout
option when connecting:

...{ok,Sock} = gen_tcp:connect(HostAddress, Port,
 [[active,\false],
 \{send_timeout, 5000\},
 \{packet,2\}]],
 loop(Sock), % See below
In the loop where requests are handled, we can now detect send timeouts:

```erlang
loop(Sock) ->
    receive
        {Client, send_data, Binary} ->
            case gen_tcp:send(Sock, [Binary]) of
                {error, timeout} ->
                    io:format("Send timeout, closing!\n", [A]),
                    handle_send_timeout(), % Not implemented here
                    Client ! {self(), {error_sending, timeout}},
                    %% Usually, it's a good idea to give up in case of a
                    %% send timeout, as you never know how much actually
                    %% reached the server, maybe only a packet header?!
                    gen_tcp:close(Sock);
                {error, OtherSendError} ->
                    io:format("Some other error on socket (~p), closing", [OtherSendError]),
                    Client ! {self(), {error_sending, OtherSendError}},
                    gen_tcp:close(Sock);
                ok ->
                    Client ! {self(), data_sent},
                    loop(Sock)
            end
    end.
```

Usually it would suffice to detect timeouts on receive, as most protocols include some sort of acknowledgment from the server, but if the protocol is strictly one way, the `send_timeout` option comes in handy!
The `gen_udp` module provides functions for communicating with sockets using the UDP protocol.

DATA TYPES

- **ip_address()**
 - see `inet(3)`
- **posix()**
 - see `inet(3)`
- **socket()**
 - as returned by `open/1,2`

Exports

```erlang
open(Port) -> {ok, Socket} | {error, Reason}
opean(Port, Options) -> {ok, Socket} | {error, Reason}
```

<table>
<thead>
<tr>
<th>Types</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port number from 0 to 65535</td>
</tr>
<tr>
<td>Options</td>
<td>[Opt]</td>
</tr>
<tr>
<td>Opt</td>
<td>see below</td>
</tr>
<tr>
<td>Socket</td>
<td>socket()</td>
</tr>
<tr>
<td>Reason</td>
<td>posix()</td>
</tr>
</tbody>
</table>

Associates a UDP port number (`Port`) with the calling process.

The available options are:

- **list** Received Packet is delivered as a list.
- **binary** Received Packet is delivered as a binary.
- **{ip, ip_address()}** If the host has several network interfaces, this option specifies which one to use.
- **{fd, int()**} If a socket has somehow been opened without using `gen_udp`, use this option to pass the file descriptor for it.
- **inet6** Set up the socket for IPv6.
- **inet** Set up the socket for IPv4.
The returned socket `Socket` is used to send packets from this port with `send/4`. When UDP packets arrive at the opened port, they are delivered as messages:

```
{udp, Socket, IP, InPortNo, Packet}
```

Note that arriving UDP packets that are longer than the receive buffer option specifies, might be truncated without warning.

`IP` and `InPortNo` define the address from which `Packet` came. `Packet` is a list of bytes if the option `list` was specified. `Packet` is a binary if the option `binary` was specified.

Default value for the receive buffer option is `{rebuf, 8192}`.

If `Port == 0`, the underlying OS assigns a free UDP port, use `inet:port/1` to retrieve it.

```
send(Socket, Address, Port, Packet) -> ok | {error, Reason}
```

Types:
- `Socket` = `socket()`
- `Address` = `string()` | `atom()` | `ip:address()`
- `Port` = `0..65535`
- `Packet` = `[char()]` | `binary()`
- `Reason` = `not_owner` | `posix()`

Sends a packet to the specified address and port. The `Address` argument can be either a hostname, or an IP address.

```
recv(Socket, Length) -> {ok, {Address, Port, Packet}} | {error, Reason}
```

```
recv(Socket, Length, Timeout) -> {ok, {Address, Port, Packet}} | {error, Reason}
```

Types:
- `Socket` = `socket()`
- `Length` = `int()`
- `Address` = `ip:address()`
- `Port` = `0..65535`
- `Packet` = `[char()]` | `binary()`
- `Timeout` = `int()` | `infinity`
- `Reason` = `not_owner` | `posix()`

This function receives a packet from a socket in passive mode.

The optional `Timeout` parameter specifies a timeout in milliseconds. The default value is `infinity`.

```
controlling_process(Socket, Pid) -> ok
```

Types:
- `Socket` = `socket()`
- `Pid` = `pid()`

Assigns a new controlling process `Pid` to `Socket`. The controlling process is the process which receives messages from the socket.
close(Socket) -> ok | {error, Reason}

Types:
- Socket = socket()
- Reason = not_owner | posix()

Closes a UDP socket.
This documentation describes the Global module which consists of the following functionalities:

- registration of global names;
- global locks;
- maintenance of the fully connected network.

These services are controlled via the process global_name_server which exists on every node. The global name server is started automatically when a node is started. With the term global is meant over a system consisting of several Erlang nodes.

The ability to globally register names is a central concept in the programming of distributed Erlang systems. In this module, the equivalent of the register/2 and whereis/1 BIFs (for local name registration) are implemented, but for a network of Erlang nodes. A registered name is an alias for a process identifier (pid). The global name server monitors globally registered pids. If a process terminates, the name will also be globally unregistered.

The registered names are stored in replica global name tables on every node. There is no central storage point. Thus, the translation of a name to a pid is fast, as it is always done locally. When any action in taken which results in a change to the global name table, all tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For instance, the specified resource could be a pid. When a global lock is set, access to the locked resource is denied for all other resources other than the lock requester.

Both the registration and lock functionalities are atomic. All nodes involved in these actions will have the same view of the information.

The global name server also performs the critical task of continuously monitoring changes in node configuration: if a node which runs a globally registered process goes down, the name will be globally unregistered. To this end the global name server subscribes to nodeup and nodedown messages sent from the net_kernel module. Relevant Kernel application variables in this context are net_setuptime, net_ticktime, and dist_auto_connect. See also kernel(6) [page 24].

The name server will also maintain a fully connected network. For example, if node N1 connects to node N2 (which is already connected to N3), the global name servers on the nodes N1 and N3 will make sure that also N1 and N3 are connected. If this is not desired, the command line flag -connect_all false can be used (see also [erl(1)]). In this case the name registration facility cannot be used, but the lock mechanism will still work.

If the global name server fails to connect nodes (N1 and N3 in the example above) a warning event is sent to the error logger. The presence of such an event does not exclude the possibility that the nodes will later connect— one can for example try the
command `rpc:call(N1, net_adm, ping, [N2])` in the Erlang shell—but it indicates some kind of problem with the network.

Note:
If the fully connected network is not set up properly, the first thing to try is to increase the value of `net_setuptime`.

Exports

del_lock(Id)

`del_lock(Id, Nodes) -> void()`
Types:
- `Id` = `{ResourceId, LockRequesterId}`
- `ResourceId` = `term()`
- `LockRequesterId` = `term()`
- `Nodes` = `[node()]`

Deletes the lock `Id` synchronously.

notify_all_name(Name, Pid1, Pid2) -> none

Types:
- `Name` = `term()`
- `Pid1` = `Pid2` = `pid()`

This function can be used as a name resolving function for `register_name/3` and `re_register_name/3`. It unregisters both pids, and sends the message `{global_name_conflict, Name, OtherPid}` to both processes.

random_exit_name(Name, Pid1, Pid2) -> Pid1 | Pid2

Types:
- `Name` = `term()`
- `Pid1` = `Pid2` = `pid()`

This function can be used as a name resolving function for `register_name/3` and `re_register_name/3`. It randomly chooses one of the pids for registration and kills the other one.

random_notify_name(Name, Pid1, Pid2) -> Pid1 | Pid2

Types:
- `Name` = `term()`
- `Pid1` = `Pid2` = `pid()`

This function can be used as a name resolving function for `register_name/3` and `re_register_name/3`. It randomly chooses one of the pids for registration, and sends the message `{global_name_conflict, Name}` to the other pid.
register_name(Name, Pid)
register_name(Name, Pid, Resolve) -> yes | no

Types:
- Name = term()
- Pid = pid()
- Resolve = fun() or {Module, Function} where
 Resolve(Name, Pid, Pid2) -> Pid | Pid2 | none

Globally associates the name Name with a pid, that is, Globally notifies all nodes of a new global name in a network of Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered names that already exist. The network is also informed of any global names in newly connected nodes. If any name clashes are discovered, the Resolve function is called. Its purpose is to decide which pid is correct. If the function crashes, or returns anything other than one of the pids, the name is unregistered. This function is called once for each name clash.

There are three pre-defined resolve functions: random_exit_name/3, random_notify_name/3, and notify_all_name/3. If no Resolve function is defined, random_exit_name is used. This means that one of the two registered processes will be selected as correct while the other is killed.

This function is completely synchronous. This means that when this function returns, the name is either registered on all nodes or none.

The function returns yes if successful, no if it fails. For example, no is returned if an attempt is made to register an already registered process or to register a process with a name that is already in use.

Note:
Releases up to and including OTP R10 did not check if the process was already registered. As a consequence the global name table could become inconsistent. The old (buggy) behavior can be chosen by giving the Kernel application variable global_multi_name_action the value allow.

If a process with a registered name dies, or the node goes down, the name is unregistered on all nodes.

registered_names() -> [Name]

Types:
- Name = term()

Returns a lists of all globally registered names.

re_register_name(Name, Pid)
re_register_name(Name, Pid, Resolve) -> void()

Types:
- Name = term()
- Pid = pid()
Kernel Reference Manual

- **Resolve** = fun() or {Module, Function} where
- **Resolve(Name, Pid, Pid2) -> Pid | Pid2 | none**

Atomically changes the registered name `Name` on all nodes to refer to `Pid`. The `Resolve` function has the same behavior as in `register_name/2,3`.

```
send(Name, Msg) -> Pid

Types:
- Name = term()
- Msg = term()
- Pid = pid()
```

Sends the message `Msg` to the pid globally registered as `Name`. Failure: If `Name` is not a globally registered name, the calling function will exit with reason `{badarg, {Name, Msg}}`.

```
set_lock(Id)
set_lock(Id, Nodes)
set_lock(Id, Nodes, Retries) -> boolean()

Types:
- Id = {ResourceId, LockRequesterId}
- ResourceId = term()
- LockRequesterId = term()
- Nodes = [node()]
- Retries = int() = 0 | infinity
```

Sets a lock on the specified nodes (or on all nodes if none are specified) on `ResourceId` for `LockRequesterId`. If a lock already exists on `ResourceId` for another requestor than `LockRequesterId`, and Retries is not equal to 0, the process sleeps for a while and will try to execute the action later. When Retries attempts have been made, `false` is returned, otherwise `true`. If `Retries` is `infinity`, `true` is eventually returned (unless the lock is never released).

If no value for `Retries` is given, `infinity` is used.

This function is completely synchronous.

If a process which holds a lock dies, or the node goes down, the locks held by the process are deleted. The global name server keeps track of all processes sharing the same lock, that is, if two processes set the same lock, both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur as long as processes only lock one resource at a time. But if some processes try to lock two or more resources, a deadlock may occur. It is up to the application to detect and rectify a deadlock.

Note:
Some values of `ResourceId` should be avoided or Erlang/OTP will not work properly. A list of resources to avoid: `global`, `dist_ac`, `mnesia_table_lock`, `mnesia_adjust_logWrites`, `pg2`.

Kernel Application (KERNEL)
sync() -> void()

Synchronizes the global name server with all nodes known to this node. These are the nodes which are returned from `erlang:nodes()`. When this function returns the global name server will receive global information from all nodes. This function can be called when new nodes are added to the network.

trans(Id, Fun)
trans(Id, Fun, Nodes)
trans(Id, Fun, Nodes, Retries) -> Res | aborted

Types:
- Id = ResourceId, LockRequesterId
- ResourceId = term()
- LockRequesterId = term()
- Fun = fun() | \{M, F\}
- Nodes = [node()]
- Retries = int() \(\geq 0\) | infinity
- Res = term()

Sets a lock on \(\text{Id}\) (using `set_lock/3`). If this succeeds, \(\text{Fun()}\) is evaluated and the result \(\text{Res}\) is returned. Returns `aborted` if the lock attempt failed. If `Retries` is set to `infinity`, the transaction will not abort. `infinity` is the default setting and will be used if no value is given for `Retries`.

unregister_name(Name) -> void()

Types:
- Name = term()

Removes the globally registered name `Name` from the network of Erlang nodes.

whereis_name(Name) -> pid() | undefined

Types:
- Name = term()

Returns the pid with the globally registered name `Name`. Returns `undefined` if the name is not globally registered.

See Also

`global_group(3)` [page 143], `net_kernel(3)` [page 165]
The global group function makes it possible to group the nodes in a system into partitions, each partition having its own global name space, refer to global(3). These partitions are called global groups.

The main advantage of dividing systems to global groups is that the background load decreases while the number of nodes to be updated is reduced when manipulating globally registered names.

The Kernel configuration parameter global_groups defines the global groups (see also kernel(6) [page 22], config(4) [page 200]:

{global_groups, [GroupTuple]}

Types:

- GroupTuple = {GroupName, Node} | {GroupName, PublishType, Node}
- GroupName = atom() (naming a global group)
- PublishType = normal | hidden
- Node = atom() (naming a node)

A GroupTuple without PublishType is the same as a GroupTuple with PublishType == normal.

A node started with the command line flag -hidden, see [erl(1)], is said to be a hidden node. A hidden node will establish hidden connections to nodes not part of the same global group, but normal (visible) connections to nodes part of the same global group.

A global group defined with PublishType == hidden, is said to be a hidden global group. All nodes in a hidden global group are hidden nodes, regardless if they are started with the -hidden command line flag or not.

For the processes and nodes to run smoothly using the global group functionality, the following criteria must be met:

- An instance of the global group server, global_group, must be running on each node. The processes are automatically started and synchronized when a node is started.
- All involved nodes must agree on the global group definition, or the behavior of the system is undefined.
- All nodes in the system should belong to exactly one global group.

In the following description, a group node is a node belonging to the same global group as the local node.
Exports

global_groups() -> {GroupName, GroupNames} | undefined

Types:
 - GroupName = atom()
 - GroupNames = [GroupName]

Returns a tuple containing the name of the global group the local node belongs to, and
the list of all other known group names. Returns undefined if no global groups are
defined.

info() -> [{Item, Info}]

Types:
 - Item, Info - see below

Returns a list containing information about the global groups. Each element of the list is
a tuple. The order of the tuples is not defined.

{state, State} If the local node is part of a global group, State == synced. If no
global groups are defined, State == no_conf.
{own_group_name, GroupName} The name (atom) of the group that the local node
belongs to.
{own_group_nodes, Nodes} A list of node names (atoms), the group nodes.
{synced_nodes, Nodes} A list of node names, the group nodes currently synchronized
with the local node.
{sync_error, Nodes} A list of node names, the group nodes with which the local
node has failed to synchronize.
{no_contact, Nodes} A list of node names, the group nodes to which there are
currently no connections.
{other_groups, Groups} Groups is a list of tuples {GroupName, Nodes}, specifying
the name and nodes of the other global groups.
{monitoring, Pids} A list of pids, specifying the processes which have subscribed to
nodeup and nodedown messages.

monitor_nodes(Flag) -> ok

Types:
 - Flag = bool()

Depending on Flag, the calling process starts subscribing (Flag == true) or stops
subscribing (Flag == false) to node status change messages.
A process which has subscribed will receive the messages {nodeup, Node} and
{nodedown, Node} when a group node connects or disconnects, respectively.

own_nodes() -> Nodes

Types:
 - Nodes = [Node]
 - Node = node()
Returns the names of all group nodes, regardless of their current status.

```prolog
classified_names(Where) -> Names
```

Types:
- `Where` = {node, Node} | {group, GroupName}
- `Node` = node()
- `GroupName` = atom()
- `Names` = [Name]
- `Name` = atom()

Returns a list of all names which are globally registered on the specified node or in the specified global group.

```prolog
send(Name, Msg) -> pid() | {badarg, {Name, Msg}}
send(Where, Name, Msg) -> pid() | {badarg, {Name, Msg}}
```

Types:
- `Where` = {node, Node} | {group, GroupName}
- `Node` = node()
- `GroupName` = atom()
- `Name` = atom()
- `Msg` = term()

Searches for `Name`, globally registered on the specified node or in the specified global group, or - if the `Where` argument is not provided - in any global group. The global groups are searched in the order in which they appear in the value of the `global_groups` configuration parameter.

If `Name` is found, the message `Msg` is sent to the corresponding pid. The pid is also the return value of the function. If the name is not found, the function returns `{badarg, {Name, Msg}}`.

```prolog
sync() -> ok
```

Synchronizes the group nodes, that is, the global name servers on the group nodes. Also check the names globally registered in the current global group and unregisters them on any known node not part of the group.

If synchronization is not possible, an error report is sent to the error logger (see also `error_logger(3)`).

Failure: `{error, {'invalid global_groups definition', Bad}}` if the `global_groups` configuration parameter has an invalid value `Bad`.

```prolog
whereis_name(Name) -> pid() | undefined
whereis_name(Where, Name) -> pid() | undefined
```

Types:
- `Where` = {node, Node} | {group, GroupName}
- `Node` = node()
- `GroupName` = atom()
- `Name` = atom()
Searches for Name, globally registered on the specified node or in the specified global group, or – if the Where argument is not provided – in any global group. The global groups are searched in the order in which they appear in the value of the global groups configuration parameter.

If Name is found, the corresponding pid is returned. If the name is not found, the function returns undefined.

NOTE

In the situation where a node has lost its connections to other nodes in its global group, but has connections to nodes in other global groups, a request from another global group may produce an incorrect or misleading result. For example, the isolated node may not have accurate information about registered names in its global group.

Note also that the send/2,3 function is not secure.

Distribution of applications is highly dependent of the global group definitions. It is not recommended that an application is distributed over several global groups of the obvious reason that the registered names may be moved to another global group at failover/takeover. There is nothing preventing doing this, but the application code must in such case handle the situation.

SEE ALSO

[erl(1)], global(3) [page 138]
heart

Erlang Module

This module contains the interface to the heart process. heart sends periodic heartbeats to an external port program, which is also named heart. The purpose of the heart port program is to check that the Erlang runtime system it is supervising is still running. If the port program has not received any heartbeats within HEART_BEAT_TIMEOUT seconds (default is 60 seconds), the system can be rebooted. Also, if the system is equipped with a hardware watchdog timer and is running Solaris, the watchdog can be used to supervise the entire system.

An Erlang runtime system to be monitored by a heart program, should be started with the command line flag -heart (see also [erl(1)]. The heart process is then started automatically:

```
% erl -heart ...
```

If the system should be rebooted because of missing heart-beats, or a terminated Erlang runtime system, the environment variable HEART_COMMAND has to be set before the system is started. If this variable is not set, a warning text will be printed but the system will not reboot. However, if the hardware watchdog is used, it will trigger a reboot HEART_BEAT_BOOT_DELAY seconds later nevertheless (default is 60).

To reboot on the WINDOWS platform HEART_COMMAND can be set to heart -shutdown (included in the Erlang delivery) or of course to any other suitable program which can activate a reboot.

The hardware watchdog will not be started under Solaris if the environment variable HW_ID_DISABLE is set.

The HEART_BEAT_TIMEOUT and HEART_BEAT_BOOT_DELAY environment variables can be used to configure the heart timeouts, they can be set in the operating system shell before Erlang is started or be specified at the command line:

```
% erl -heart -env HEART_BEAT_TIMEOUT 30 ...
```

The value (in seconds) must be in the range $10 < X <= 65535$.

It should be noted that if the system clock is adjusted with more than HEART_BEAT_TIMEOUT seconds, heart will timeout and try to reboot the system. This can happen, for example, if the system clock is adjusted automatically by use of NTP (Network Time Protocol).

In the following descriptions, all function fails with reason badarg if heart is not started.
Exports

set_cmd(Cmd) -> ok | {error, {bad_cmd, Cmd}}

Types:
• Cmd = string()

Sets a temporary reboot command. This command is used if a \texttt{HEART_COMMAND} other than the one specified with the environment variable should be used in order to reboot the system. The new Erlang runtime system will (if it misbehaves) use the environment variable \texttt{HEART_COMMAND} to reboot.

Limitations: The length of the \texttt{Cmd} command string must be less than 2047 characters.

clear_cmd() -> ok

Clears the temporary boot command. If the system terminates, the normal \texttt{HEART_COMMAND} is used to reboot.

get_cmd() -> {ok, Cmd}

Types:
• Cmd = string()

Get the temporary reboot command. If the command is cleared, the empty string will be returned.
inet

Erlang Module

Provides access to TCP/IP protocols.

See also ERTS User’s Guide Inet configuration for more information on how to configure an Erlang runtime system for IP communication.

Two Kernel configuration parameters affect the behaviour of all sockets opened on an Erlang node: inet_default_connect_options can contain a list of default options used for all sockets returned when doing connect, and inet_default_listen_options can contain a list of default options used when issuing a listen call. When accept is issued, the values of the listensocket options are inherited, why no such application variable is needed for accept.

Using the Kernel configuration parameters mentioned above, one can set default options for all TCP sockets on a node. This should be used with care, but options like \{delay_send, true\} might be specified in this way. An example of starting an Erlang node with all sockets using delayed send could look like this:

```
$ erl -sname test -kernel \n inet_default_connect_options '[[delay_send, true]]' \n inet_default_listen_options '[[delay_send, true]]'
```

Note that the default option \{active, true\} currently cannot be changed, for internal reasons.

DATA TYPES

```erl
#hostent{h_addr_list = [ip_address()] % list of addresses for this host
    h_addrtype = inet | inet6
    h_aliases = [hostname()] % list of aliases
    h_length = int() % length of address in bytes
    h_name = hostname() % official name for host

The record is defined in the Kernel include file "inet.hrl"
Add the following directive to the module:
-include_lib("kernel/include/inet.hrl").

hostname() = atom() | string()

ip_address() = \{N1,N2,N3,N4\} % IPv4
    | \{K1,K2,K3,K4,K5,K6,K7,K8\} % IPv6
    Ni = 0..255
    Ki = 0..65535

posix()
    an atom which is named from the Posix error codes used in
```
Unix, and in the runtime libraries of most C compilers

socket()
 see gen_tcp(3), gen_udp(3)

Addresses as inputs to functions can be either a string or a tuple. For instance, the IP address 150.236.20.73 can be passed to gethostbyaddr/1 either as the string “150.236.20.73” or as the tuple \{150, 236, 20, 73\}.

IPv4 address examples:

<table>
<thead>
<tr>
<th>Address</th>
<th>ip_address()</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>{127,0,0,1}</td>
</tr>
<tr>
<td>192.168.42.2</td>
<td>{192,168,42,2}</td>
</tr>
</tbody>
</table>

IPv6 address examples:

<table>
<thead>
<tr>
<th>Address</th>
<th>ip_address()</th>
</tr>
</thead>
<tbody>
<tr>
<td>::1</td>
<td>{0,0,0,0,0,0,0,1}</td>
</tr>
<tr>
<td>::192.168.42.2</td>
<td>{0,0,0,0,0,0,(192 bsl 8) bor 168,(42 bsl 8) bor 2}</td>
</tr>
<tr>
<td>FFFF::192.168.42.2</td>
<td>{16#FFFF,0,0,0,0,0,(192 bsl 8) bor 168,(42 bsl 8) bor 2}</td>
</tr>
<tr>
<td>3ffe:b80:1f8d:2:204:acff:fe17:bf38</td>
<td>{16#3ffe,16#b80,16#1f8d,16#2,16#204,16#acff,16#fe17,16#bf38}</td>
</tr>
<tr>
<td>fe80:204:acff:fe17:bf38</td>
<td>{16#fe80,0,0,0,0,16#204,16#acff,16#fe17,16#bf38}</td>
</tr>
</tbody>
</table>

A function that may be useful is \texttt{inet_parse:address/1}:

1> \texttt{inet_parse:address("192.168.42.2").}
\{ok,\{192,168,42,2\}\}

2> \texttt{inet_parse:address("FFFF::192.168.42.2").}
\{ok,\{65535,0,0,0,0,0,49320,10754\}\}

Exports

close(Socket) -> ok
 Types:
 • Socket = socket()
 Closes a socket of any type.

get_rc() -> [{Par, Val}]
 Types:
 • Par, Val - see below
 Returns the state of the Inet configuration database in form of a list of recorded configuration parameters. (See the ERTS User’s Guide, Inet configuration, for more information). Only parameters with other than default values are returned.

format_error(Posix) -> string()}
Types:
- Posix = posix()
 Returns a diagnostic error string. See the section below for possible Posix values and the corresponding strings.

getaddr(Host, Family) -> {ok, Address} | {error, posix()}
Types:
- Host = ip_address() | string() | atom()
- Family = inet | inet6
- Address = ip_address()
- posix() = term()
Returns the IP-address for Host as a tuple of integers. Host can be an IP-address, a single hostname or a fully qualified hostname.

getaddrs(Host, Family) -> {ok, Addresses} | {error, posix()}
Types:
- Host = ip_address() | string() | atom()
- Addresses = [ip_address()]
- Family = inet | inet6
Returns a list of all IP-addresses for Host. Host can be an IP-address, a single hostname or a fully qualified hostname.

gethostbyaddr(Address) -> {ok, Hostent} | {error, posix()}
Types:
- Address = string() | ip_address()
- Hostent = #hostent{}
Returns a hostent record given an address.

gethostbyname(Name) -> {ok, Hostent} | {error, posix()}
Types:
- Hostname = hostname()
- Hostent = #hostent{}
Returns a hostent record given a hostname.

gethostbyname(Name, Family) -> {ok, Hostent} | {error, posix()}
Types:
- Hostname = hostname()
- Family = inet | inet6
- Hostent = #hostent{}
Returns a hostent record given a hostname, restricted to the given address family.

gethostname() -> {ok, Hostname}
Types:
Hostname = string()

Returns the local hostname. Will never fail.

getopts(Socket, Options) -> OptionValues | {error, posix()}

Types:
- Socket = term()
- Options = [Opt | RawOptReq]
- Opt = atom()
- RawOptReq = {raw, Protocol, OptionNum, ValueSpec}
- Protocol = int()
- OptionNum = int()
- ValueSpec = ValueSize | ValueBin
- ValueSize = int()
- ValueBin = binary()
- OptionValues = [{Opt, Val} | {raw, Protocol, OptionNum, ValueBin}]

Gets one or more options for a socket. See setopts/2 [page 154] for a list of available options.

The number of elements in the returned OptionValues list does not necessarily correspond to the number of options asked for. If the operating system fails to support an option, it is simply left out in the returned list. An error tuple is only returned when getting options for the socket is impossible (i.e. the socket is closed or the buffer size in a raw request is too large). This behavior is kept for backward compatibility reasons.

A RawOptReq can be used to get information about socket options not (explicitly) supported by the emulator. The use of raw socket options makes the code non portable, but allows the Erlang programmer to take advantage of unusual features present on the current platform.

The RawOptReq consists of the tag raw followed by the protocol level, the option number and either a binary or the size, in bytes, of the buffer in which the option value is to be stored. A binary should be used when the underlying getsockopt requires input in the argument field, in which case the size of the binary should correspond to the required buffer size of the return value. The supplied values in a RawOptReq correspond to the second, third and fourth/fifth parameters to the getsockopt call in the C socket API. The value stored in the buffer is returned as a binary ValueBin where all values are coded in the native endianness.

Asking for and inspecting raw socket options require low level information about the current operating system and TCP stack.

As an example, consider a Linux machine where the TCP_INFO option could be used to collect TCP statistics for a socket. Let's say we're interested in the tcpi_sacked field of the struct tcp_info filled in when asking for TCP_INFO. To be able to access this information, we need to know both the numeric value of the protocol level IPPROTO_TCP, the numeric value of the option TCP_INFO, the size of the struct tcp_info and the size and offset of the specific field. By inspecting the headers or writing a small C program, we found IPPROTO_TCP to be 6, TCP_INFO to be 11, the structure size to be 92 (bytes), the offset of tcpi_sacked to be 28 bytes and the actual value to be a 32 bit integer. We could use the following code to retrieve the value:
get_tcpi_sacked(Sock) ->
 {ok, [{raw, _, _, Info}]} = inet:getopts(Sock, [{raw, 6, 11, 92}]),
 <<:28/binary,TcpiSacked:32/native, _/binary>> = Info,
 TcpiSacked.

Preferably, you would check the machine type, the OS and the kernel version prior to
executing anything similar to the code above.

getstat(Socket)
getstat(Socket, Options) -> {ok, OptionValues} | {error, posix()}

Types:
 - Socket = term()
 - Options = [Opt]
 - OptionValues = [{O pt, Val}]
 - O pt, Val – see below

Gets one or more statistic options for a socket.

getstat(Socket) is equivalent to getstat(Socket, [recv_avg, recv_cnt, recv_dvi,
recv_max, recv_oct, send_avg, send_cnt, send_dvi, send_max, send_oct])

The following options are available:

recv_avg Average size of packets in bytes received to the socket.
recv_cnt Number of packets received to the socket.
recv_dvi Average packet size deviation in bytes received to the socket.
recv_max The size of the largest packet in bytes received to the socket.
recv_oct Number of bytes received to the socket.
send_avg Average size of packets in bytes sent from the socket.
send_cnt Number of packets sent from the socket.
send_dvi Average packet size deviation in bytes received sent from the socket.
send_max The size of the largest packet in bytes sent from the socket.
send_oct Number of bytes sent from the socket.

peername(Socket) -> {ok, {Address, Port}} | {error, posix()}

Types:
 - Socket = socket()
 - Address = ip_address()
 - Port = int()

Returns the address and port for the other end of a connection.

port(Socket) -> {ok, Port}

Types:
 - Socket = socket()
 - Port = int()

Returns the local port number for a socket.
sockname(Socket) \rightarrow \{\text{ok, } \{\text{Address, Port}\}\} \mid \{\text{error, posix()}\}

Types:
- Socket = socket()
- Address = ip_address()
- Port = int()

Returns the local address and port number for a socket.

setopts(Socket, Options) \rightarrow \text{ok} \mid \{\text{error, posix()}\}

Types:
- Socket = term()
- Options = [{Opt, Val} \mid \{\text{raw, Protocol, Option, ValueBin}\}]
- Protocol = int()
- OptionNum = int()
- ValueBin = binary()
- Opt, Val – see below

Sets one or more options for a socket. The following options are available:

\{\text{active, true} \mid \text{false} \mid \text{once}\} If the value is \text{true}, which is the default, everything received from the socket will be sent as messages to the receiving process. If the value is \text{false} (passive mode), the process must explicitly receive incoming data by calling \text{gen_tcp:recv/2,3} or \text{gen_udp:recv/2,3} (depending on the type of socket).

If the value is \text{once} (\{\text{active, once}\}), one data message from the socket will be sent to the process. To receive one more message, \text{setopts/2} must be called again with the \{\text{active, once}\} option.

When using \{\text{active, once}\}, the socket changes behaviour automatically when data is received. This can sometimes be confusing in combination with connection oriented sockets (i.e. \text{gen_tcp}) as a socket with \{\text{active, false}\} behaviour reports closing differently than a socket with \{\text{active, true}\} behaviour. To make programming easier, a socket where the peer closed and this was detected while in \{\text{active, false}\} mode, will still generate the message \{\text{tcp_closed,Socket}\} when set to \{\text{active, once}\} or \{\text{active, true}\} mode. It is therefore safe to assume that the message \{\text{tcp_closed,Socket}\}, possibly followed by socket port termination (depending on the \text{exit_on_close} option) will eventually appear when a socket changes back and forth between \{\text{active, true}\} and \{\text{active, false}\} mode. However, when peer closing is detected is all up to the underlying TCP/IP stack and protocol.

Note that \{\text{active, true}\} mode provides no flow control; a fast sender could easily overflow the receiver with incoming messages. Use active mode only if your high-level protocol provides its own flow control (for instance, acknowledging received messages) or the amount of data exchanged is small. \{\text{active, false}\} mode or use of the \{\text{active, once}\} mode provides flow control; the other side will not be able send faster than the receiver can read.

\{\text{broadcast, Boolean}\}(\text{UDP sockets}) Enable/disable permission to send broadcasts.
{delay_send, Boolean} Normally, when an Erlang process sends to a socket, the
driver will try to immediately send the data. If that fails, the driver will use any
means available to queue up the message to be sent whenever the operating system
says it can handle it. Setting {delay_send, true} will make all messages queue
up. This makes the messages actually sent onto the network be larger but fewer.
The option actually affects the scheduling of send requests versus Erlang processes
instead of changing any real property of the socket. Needless to say it is an
implementation specific option. Default is false.

{dontroute, Boolean} Enable/disable routing bypass for outgoing messages.

{exit_on_close, Boolean} By default this option is set to true.
The only reason to set it to false is if you want to continue sending data to the
socket after a close has been detected, for instance if the peer has used
gen_tcp:shutdown/2 [page 132] to shutdown the write side.

{header, Size} This option is only meaningful if the binary option was specified
when the socket was created. If the header option is specified, the first Size
number bytes of data received from the socket will be elements of a list, and the
rest of the data will be a binary given as the tail of the same list. If for example
Size == 2, the data received will match [Byte1,Byte2|Binary].

{keepalive, Boolean} (TCP/IP sockets) Enables/disables periodic transmission on a
connected socket, when no other data is being exchanged. If the other end does
not respond, the connection is considered broken and an error message will be sent
to the controlling process. Default disabled.

{nodelay, Boolean} (TCP/IP sockets) If Boolean == true, the TCP_NODELAY option
is turned on for the socket, which means that even small amounts of data will be
sent immediately.

{packet, PacketType} (TCP/IP sockets) Defines the type of packets to use for a
socket. The following values are valid:
- raw | 0 No packaging is done.
- 1 | 2 | 4 Packets consist of a header specifying the number of bytes in the
 packet, followed by that number of bytes. The length of header can be one,
two, or four bytes; the order of the bytes is big-endian. Each send operation
 will generate the header, and the header will be stripped off on each receive
 operation.
- asn1 | cdr | sunrm | fcgi | tpkt | line These packet types only have
effect on receiving. When sending a packet, it is the responsibility of the
application to supply a correct header. On receiving, however, there will be
one message sent to the controlling process for each complete packet received,
and, similarly, each call to gen_tcp:recv/2,3 returns one complete packet.
The header is not stripped off.
The meanings of the packet types are as follows:
- asn1 - ASN.1 BER,
- sunrm - Sun's RPC encoding,
- cdr - CORBA (GIO P 1.1),
- fcgi - Fast CGI,
- tpkt - TPKT format [RFC1006],
- line - Line mode, a packet is a line terminated with newline, lines longer than
 the receive buffer are truncated.

http | http_bin The Hypertext Transfer Protocol. The packets are returned with
the format according to httpPacket described in [erlang:decode_packet/3]. A
socket in passive mode will return {ok, HttpPacket} from gen_tcp:recv
while an active socket will send messages like {http, Socket, HttpPacket}.
Note that the packet type http is not needed when reading from a socket.

\{packet_size, Integer\} **TCP/IP sockets** Sets the max allowed length of the packet body. If the packet header indicates that the length of the packet is longer than the max allowed length, the packet is considered invalid. The same happens if the packet header is too big for the socket receive buffer.

\{read_packets, Integer\} **UDP sockets** Sets the max number of UDP packets to read without intervention from the socket when data is available. When this many packets have been read and delivered to the destination process, new packets are not read until a new notification of available data has arrived. The default is 5, and if this parameter is set too high the system can become unresponsive due to UDP packet flooding.

\{recbuf, Integer\} Gives the size of the receive buffer to use for the socket.

\{reuseaddr, Boolean\} Allows or disallows local reuse of port numbers. By default, reuse is disallowed.

\{send_timeout, Integer\} Only allowed for connection oriented sockets. Specifies a longest time to wait for a send operation to be accepted by the underlying TCP stack. When the limit is exceeded, the send operation will return \{error,timeout\}. How much of a packet that actually got sent is unknown, why the socket should be closed whenever a timeout has occurred (see \{send_timeout,close\}). Default is infinity.

\{send_timeout,close, Boolean\} Only allowed for connection oriented sockets. Used together with \{send_timeout\} to specify whether the socket will be automatically closed when the send operation returns \{error,timeout\}. The recommended setting is true which will automatically close the socket. Default is false due to backward compatibility.

\{sndbuf, Integer\} Gives the size of the send buffer to use for the socket.

\{priority, Integer\} Sets the SO_PRIORITY socket level option on platforms where this is implemented. The behaviour and allowed range varies on different systems. The option is ignored on platforms where the option is not implemented. Use with caution.

\{tos, Integer\} Sets IP_TOS IP level options on platforms where this is implemented. The behaviour and allowed range varies on different systems. The option is ignored on platforms where the option is not implemented. Use with caution.

In addition to the options mentioned above, raw option specifications can be used. The raw options are specified as a tuple of arity four, beginning with the tag raw, followed by the protocol level, the option number and the actual option value specified as a binary. This corresponds to the second, third and fourth argument to the \{setsockopt\} call in the C socket API. The option value needs to be coded in the native endian of the platform and, if a structure is required, needs to follow the struct alignment conventions on the specific platform.

Using raw socket options require detailed knowledge about the current operating system and TCP stack.

As an example of the usage of raw options, consider a Linux system where you want to set the TCP_LINGER2 option on the IPPROTO_TCP protocol level in the stack. You know that on this particular system it defaults to 60 (seconds), but you would like to lower it to 30 for a particular socket. The TCP_LINGER2 option is not explicitly supported by inet, but you know that the protocol level translates to the number 6, the option number to the number 8 and the value is to be given as a 32 bit integer. You can use this line of code to set the option for the socket named Sock:

156
As many options are silently discarded by the stack if they are given out of range, it could be a good idea to check that a raw option really got accepted. This code places the value in the variable TcpLinger2:

```erlang
{ok, [{raw, 6, 8, <<TcpLinger2:32/native>>}], inet:getopts(Sock, [{raw, 6, 8, 4}]),}
```

Code such as the examples above is inherently non portable, even different versions of the same OS on the same platform may respond differently to this kind of option manipulation. Use with care.

Note that the default options for TCP/IP sockets can be changed with the Kernel configuration parameters mentioned in the beginning of this document.

POSIX Error Codes

- e2big - argument list too long
- eacces - permission denied
- eaddrinuse - address already in use
- eaddrnotavail - cannot assign requested address
- eadv - advertise error
- eafnosupport - address family not supported by protocol family
- eagain - resource temporarily unavailable
- ealign - EALIGN
- ealready - operation already in progress
- ebade - bad exchange descriptor
- ebadf - bad file number
- ebadfd - file descriptor in bad state
- ebadmsg - not a data message
- ebadr - bad request descriptor
- ebadrpc - RPC structure is bad
- ebadrcq - bad request code
- ebadsrv - invalid slot
- ebfout - bad font file format
- ebust - file busy
- echild - no children
- echrng - channel number out of range
- ecomm - communication error on send
- econnaborted - software caused connection abort
- econnrefused - connection refused
- econnreset - connection reset by peer
- edeadlk - resource deadlock avoided
- edeadlock - resource deadlock avoided
- estaddrreq - destination address required
- edir - mounting a dirty fs w/o force
- edom - math argument out of range
- edotdot - cross mount point
- edquot - disk quota exceeded
- eduppkg - duplicate package name
- eexist - file already exists
- efault - bad address in system call argument
- efbig - file too large
- ehostdown - host is down
- ehostunreach - host is unreachable
- eidrm - identifier removed
- einit - initialization error
- einprogress - operation now in progress
- eintr - interrupted system call
- einval - invalid argument
- eio - I/O error
- eisconn - socket is already connected
- eisdir - illegal operation on a directory
- eisnam - is a named file
- e12hlt - level 2 halted
- e12nsync - level 2 not synchronized
- e13hlt - level 3 halted
- e13rst - level 3 reset
- elbin - ELBIN
- elibacc - cannot access a needed shared library
- elibbad - accessing a corrupted shared library
- elibexec - cannot exec a shared library directly
- elibmax - attempting to link in more shared libraries than system limit
- elibscn - .lib section in a.out corrupted
- elnrng - link number out of range
- eloop - too many levels of symbolic links
- emfile - too many open files
- emlink - too many links
- emsgsize - message too long
- emultihop - multihop attempted
- enames - file name too long
- enavail - not available
- enet - ENET
- enetdown - network is down
- enetreset - network dropped connection on reset
- enetunreach - network is unreachable
- enfile - file table overflow
- enoano - anode table overflow
- enobufs - no buffer space available
- enocsi - no CSI structure available
- enodata - no data available
- enodev - no such device
- enoent - no such file or directory
- enoexec - exec format error
- enolck - no locks available
- enolink - link has been severed
- enomem - not enough memory
- enomsg - no message of desired type
- enonet - machine is not on the network
- enopkg - package not installed
- enopROTOopt - bad protocol option
- enospc - no space left on device
- enosr - out of stream resources or not a stream device
- enosym - unresolved symbol name
- enosys - function not implemented
- enotblk - block device required
- enotconn - socket is not connected
- enotdir - not a directory
- enotempty - directory not empty
- enotnam - not a named file
- enotsock - socket operation on non-socket
- enotsup - operation not supported
- enotty - inappropriate device for ioctl
- enotuniq - name not unique on network
- enxio - no such device or address
- eopnotsupp - operation not supported on socket
- eperm - not owner
- epfnosupport - protocol family not supported
- epipe - broken pipe
- eproclim - too many processes
- eprocunavai - bad procedure for program
- eprogmismatch - program version wrong
- eprogunavai - RPC program not available
- eproto - protocol error
- eprotonosupport - protocol not supported
- eprototyp - protocol wrong type for socket
- erange - math result unrepresentable
inet Kernel Reference Manual

- erefused - EREFUSED
- eremchg - remote address changed
- eremdev - remote device
- eremote - pathname hit remote file system
- eremoteio - remote i/o error
- eremoterelease - EREMOTERELEASE
- erofs - read-only file system
- erpcmismatch - RPC version is wrong
- erremote - object is remote
- eshutdown - cannot send after socket shutdown
- esocktnosupport - socket type not supported
- espipe - invalid seek
- esrch - no such process
- esrmnt - srmount error
- estale - stale remote file handle
- esuccess - Error 0
- etime - timer expired
- etimedout - connection timed out
- etoomanyrefs - too many references
- etxtbsy - text file or pseudo-device busy
- euclean - structure needs cleaning
- euatch - protocol driver not attached
- eusers - too many users
- eversion - version mismatch
- ewouldblock - operation would block
- exdev - cross-domain link
- exfull - message tables full
- nxdomain - the hostname or domain name could not be found
init

Erlang Module

The module init is moved to the runtime system application. Please see [init(3)] in the erts reference manual instead.
This module contains various network utility functions.

Exports

dns_hostname(Host) -> {ok, Name} | {error, Host}
Types:
 * Host = atom() | string()
 * Name = string()
Returns the official name of Host, or {error, Host} if no such name is found. See also inet(3).

host_file() -> Hosts | {error, Reason}
Types:
 * Hosts = [Host]
 * Host = atom()
 * Reason = term()
Reads the .hosts.erlang file, see the section Files below. Returns the hosts in this file as a list, or returns {error, Reason} if the file could not be read. See file(3) for possible values of Reason.

localhost() -> Name
Types:
 * Name = string()
Returns the name of the local host. If Erlang was started with the -name command line flag, Name is the fully qualified name.

names() -> {ok, [{Name, Port}]} | {error, Reason}
names(Host) -> {ok, [{Name, Port}]} | {error, Reason}
Types:
 * Name = string()
 * Port = int()
 * Reason = address | term()
Similar to `epmd -names`, see `epmd(1)`. Host defaults to the local host. Returns the names and associated port numbers of the Erlang nodes that `epmd` at the specified host has registered.

Returns `{error, address}` if `epmd` is not running. See `inet(3)` for other possible values of `Reason`.

```erlang
(arn@doom)1> net_adm:names().
{ok, [{'arne', 40262}]}.
```

```erlang
ping(Node) -> pong | pang
Types:
  * Node = node()
Tries to set up a connection to `Node`. Returns `pang` if it fails, or `pong` if it is successful.

world() -> [node()]
world(Arg) -> [node()]
Types:
  * Arg = silent | verbose
This function calls `names(Host)` for all hosts which are specified in the Erlang host file `.hosts.erlang`, collects the replies and then evaluates `ping(Node)` on all those nodes. Returns the list of all nodes that were, successfully pinged.

Arg defaults to `silent`. If `Arg == verbose`, the function writes information about which nodes it is pinging to `stdout`.

This function can be useful when a node is started, and the names of the other nodes in the network are not initially known.

Failure: `{error, Reason}` if `host_file()` returns `{error, Reason}`.

world_list(Hosts) -> [node()]
world_list(Hosts, Arg) -> [node()]
Types:
  * Hosts = [Host]
  * Host = atom()
  * Arg = silent | verbose
As `world/0,1`, but the hosts are given as argument instead of being read from `.hosts.erlang`.
Files

The .hosts.erlang file consists of a number of host names written as Erlang terms. It is looked for in the current work directory, the user’s home directory, and $OTP_ROOT (the root directory of Erlang/OTP), in that order.

The format of the .hosts.erlang file must be one host name per line. The host names must be within quotes as shown in the following example:

'super.eua.ericsson.se'.
'renat.eua.ericsson.se'.
'grouse.eua.ericsson.se'.
'gauffini.eua.ericsson.se'.

^ (new line)
The net kernel is a system process, registered as `net_kernel`, which must be running for distributed Erlang to work. The purpose of this process is to implement parts of the BIFs `spawn/4` and `spawn_link/4`, and to provide monitoring of the network.

An Erlang node is started using the command line flag `-name` or `-sname`:

```bash
$ erl -sname foobar
```

It is also possible to call `net_kernel:start([foobar])` directly from the normal Erlang shell prompt:

```erlang
1> net_kernel:start([foobar, shortnames]).
{ok,<0.64.0>}
(foobar@gringotts)2>
```

If the node is started with the command line flag `-sname`, the node name will be `foobar@Host`, where `Host` is the short name of the host (not the fully qualified domain name). If started with the `-name` flag, `Host` is the fully qualified domain name. See `erl(1)`.

Normally, connections are established automatically when another node is referenced. This functionality can be disabled by setting the Kernel configuration parameter `dist_auto_connect` to `false`, see `kernel(6)` [page 22]. In this case, connections must be established explicitly by calling `net_kernel:connect_node/1`.

Which nodes are allowed to communicate with each other is handled by the magic cookie system, see [Distributed Erlang] in the Erlang Reference Manual.

## Exports

- `allow(Nodes) -> ok | error`

  Types:
  - `Nodes = [node()]`

  Limits access to the specified set of nodes. Any access attempts made from (or to) nodes not in `Nodes` will be rejected.

  Returns `error` if any element in `Nodes` is not an atom.

- `connect_node(Node) -> true | false | ignored`

  Types:
  - `Node = node()`
Establishes a connection to Node. Returns true if successful, false if not, and ignored if the local node is not alive.

monitor_nodes(Flag) -> ok | Error
monitor_nodes(Flag, Options) -> ok | Error

Types:
- Flag = true | false
- Options = [Option]
- Option - see below
- Error = error | \{error, term()\}

The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered to all subscribing process when a new node is connected, and a nodedown message is delivered when a node is disconnected.

If Flag is true, a new subscription is started. If Flag is false, all previous subscriptions - started with the same Options - are stopped. Two option lists are considered the same if they contain the same set of options.

As of kernel version 2.11.4, and erts version 5.5.4, the following is guaranteed:
- nodeup messages will be delivered before delivery of any message from the remote node passed through the newly established connection.
- nodedown messages will not be delivered until all messages from the remote node that have been passed through the connection have been delivered.

Note, that this is not guaranteed for kernel versions before 2.11.4.

As of kernel version 2.11.4 subscriptions can also be made before the net_kernel server has been started, i.e., net_kernel:monitor_nodes/[1,2] does not return ignored.

As of kernel version 2.13, and erts version 5.7, the following is guaranteed:
- nodeup messages will be delivered after the corresponding node appears in results from erlang:nodes/X.
- nodedown messages will be delivered after the corresponding node has disappeared in results from erlang:nodes/X.

Note, that this is not guaranteed for kernel versions before 2.13.

The format of the node status change messages depends on Options. If Options is [], which is the default, the format is:

\{nodeup, Node\} | \{nodedown, Node\}
Node = node()

If Options /= [], the format is:

\{nodeup, Node, InfoList\} | \{nodedown, Node, InfoList\}
Node = node()
InfoList = [{Tag, Val}]

InfoList is a list of tuples. Its contents depends on Options, see below. Also, when OptionList == [] only visible nodes, that is, nodes that appear in the result of [nodes/0], are monitored.

Option can be any of the following:
Currently valid values for NodeType are:

- **visible**  Subscribe to node status change messages for visible nodes only. The tuple \{node_type, visible\} is included in InfoList.
- **hidden** Subscribe to node status change messages for hidden nodes only. The tuple \{node_type, hidden\} is included in InfoList.
- **all** Subscribe to node status change messages for both visible and hidden nodes. The tuple \{node_type, visible | hidden\} is included in InfoList.

**nodedown_reason** The tuple \{nodedown_reason, Reason\} is included in InfoList in nodedown messages. Reason can be:

- connection_setup_failed The connection setup failed (after nodeup messages had been sent).
- no_network No network available.
- net_kernel_terminated The net_kernel process terminated.
- shutdown Unspecified connection shutdown.
- connection_closed The connection was closed.
- disconnect The connection was disconnected (forced from the current node).
- net_tick_timeout Net tick timeout.
- send_net_tick_failed Failed to send net tick over the connection.
- get_status_failed Status information retrieval from the Port holding the connection failed.

### get_net_ticktime() → Res

**Types:**

- \(\text{Res} = \text{NetTicktime} \mid \{\text{ongoing\_change\_to, } \text{NetTicktime}\}\)
- \(\text{NetTicktime = int()}\)

Gets `net_ticktime` (see kernel(6) [page 22]).

Currently defined return values (Res):

- \(\text{NetTicktime \_net\_ticktime \text{isNetTicktime seconds}}\)
- \(\{\text{ongoing\_change\_to, } \text{NetTicktime}\} \text{ net\_kernel is currently changing net\_ticktime to NetTicktime seconds}\)

### set_net_ticktime(NetTicktime) → Res

**Types:**

- \(\text{NetTicktime = int()} > 0\)
- \(\text{TransitionPeriod = int()} >= 0\)
- \(\text{Res = unchanged \mid change\_initiated \mid } \{\text{ongoing\_change\_to, } \text{NewNetTicktime}\}\)
- \(\text{NewNet\_Ticktime = int()} > 0\)

Sets `net_ticktime` (see kernel(6) [page 22]) to NetTicktime seconds. TransitionPeriod defaults to 60.

Some definitions:

**The minimum transition traffic interval (MTTI)**

\[
\text{minimum}(\text{NetTicktime, PreviousNetTicktime}) \times 1000 \div 4 \text{ milliseconds}
\]
The transition period  The time of the least number of consecutive MTTIs to cover TransitionPeriod seconds following the call to set_net_ticktime/2 (i.e. \((\text{TransitionPeriod} \times 1000 - 1) \div \text{MTTI} + 1\) * MTTI milliseconds).

If NetTicktime < PreviousNetTicktime, the actual net_ticktime change will be done at the end of the transition period; otherwise, at the beginning. During the transition period, net_kernel will ensure that there will be outgoing traffic on all connections at least every MTTI millisecond.

Note:
The net_ticktime changes have to be initiated on all nodes in the network (with the same NetTicktime) before the end of any transition period on any node; otherwise, connections may erroneously be disconnected.

Returns one of the following:

unchanged net_ticktime already had the value of NetTicktime and was left unchanged.
change_initiated net_kernel has initiated the change of net_ticktime to NetTicktime seconds
{ongoing_change_to, NewNetTicktime} The request was ignored; because, net_kernel was busy changing net_ticktime to NewTicktime seconds

\[
\text{start([Name])} \to \{\text{ok, pid()}\} \mid \{\text{error, Reason}\}
\]

\[
\text{start([Name, NameType])} \to \{\text{ok, pid()}\} \mid \{\text{error, Reason}\}
\]

\[
\text{start([Name, NameType, Ticktime])} \to \{\text{ok, pid()}\} \mid \{\text{error, Reason}\}
\]

Types:
- Name = \text{atom}()
- NameType = \text{shortnames | longnames}
- Reason = \{\text{already_started, pid()}\} | \text{term}()

Note that the argument is a list with exactly one, two or three arguments. NameType defaults to \text{longnames} and Ticktime to 15000.

Turns a non-distributed node into a distributed node by starting net_kernel and other necessary processes.

\[
\text{stop()} \to \{\text{ok}\} \mid \{\text{error, not_allowed | not_found}\}
\]

Turns a distributed node into a non-distributed node. For other nodes in the network, this is the same as the node going down. Only possible when the net kernel was started using start/1, otherwise returns \{\text{error, not_allowed}\}. Returns \{\text{error, not_found}\} if the local node is not alive.
The functions in this module are operating system specific. Careless use of these functions will result in programs that will only run on a specific platform. On the other hand, with careful use these functions can be of help in enabling a program to run on most platforms.

Exports

```
cmd(Command) -> string()

Types:
 • Command = string() | atom()

Executes Command in a command shell of the target OS, captures the standard output of the command and returns this result as a string. This function is a replacement of the previous `unix:cmd/1`; on a Unix platform they are equivalent.

Examples:
 LsOut = os:cmd("ls"), % on unix platform
 DirOut = os:cmd("dir"), % on Win32 platform

Note that in some cases, standard output of a command when called from another program (for example, `os:cmd/1`) may differ, compared to the standard output of the command when called directly from an OS command shell.

find_executable(Name) -> Filename | false
find_executable(Name, Path) -> Filename | false

Types:
 • Name = string()
 • Path = string()
 • Filename = string()

These two functions look up an executable program given its name and a search path, in the same way as the underlying operating system. `find_executable/1` uses the current execution path (that is, the environment variable PATH on Unix and Windows).
Path, if given, should conform to the syntax of execution paths on the operating system. The absolute filename of the executable program `Name` is returned, or false if the program was not found.

getenv() -> [string()]
```
Returns a list of all environment variables. Each environment variable is given as a single string on the format "VarName=Value", where VarName is the name of the variable and Value its value.

\[ \text{getenv(VarName)} \to \text{Value | false} \]

Types:
- \text{VarName = string()}
- \text{Value = string()}

Returns the Value of the environment variable VarName, or false if the environment variable is undefined.

g getpid() \to \text{Value}

Types:
- \text{Value = string()}

Returns the process identifier of the current Erlang emulator in the format most commonly used by the operating system environment. Value is returned as a string containing the (usually) numerical identifier for a process. On Unix, this is typically the return value of the getpid() system call. On VxWorks, Value contains the task id (decimal notation) of the Erlang task. On Windows, the process id as returned by the GetCurrentProcessId() system call is used.

\[ \text{putenv(VarName, Value)} \to \text{true} \]

Types:
- \text{VarName = string()}
- \text{Value = string()}

Sets a new Value for the environment variable VarName.

\[ \text{timestamp()} \to \{\text{MegaSecs, Secs, MicroSecs}\} \]

Types:
- \text{MegaSecs = Secs = MicroSecs = int()}

Returns a tuple in the same format as \[\text{erlang:now/0}\]. The difference is that this function returns what the operating system thinks (a.k.a. the wall clock time) without any attempts at time correction. The result of two different calls to this function is not guaranteed to be different.

The most obvious use for this function is logging. The tuple can be used together with the function \[\text{calendar:now_to_universal_time/1}\] or \[\text{calendar:now_to_local_time/1}\] to get calendar time. Using the calendar time together with the MicroSecs part of the return tuple from this function allows you to log timestamps in high resolution and consistent with the time in the rest of the operating system.

Example of code formatting a string in the format “DD M on YYYY HH:MM:SS.mmmmmm”, where DD is the day of month, Mon is the textual month name, YYYY is the year, HH:MM:SS is the time and mmmmmm is the microseconds in six positions:
-module(print_time).
-export([format_utc_timestamp/0]).

format_utc_timestamp() ->
    TS = {_,_,Micro} = os:timestamp(),
    {{Year,Month,Day},{Hour,Minute,Second}} =
        calendar:now_to_universal_time(TS),
    Mstr = element(Month,{'Jan','Feb','Mar','Apr','May','Jun','Jul',
        'Aug','Sep','Oct','Nov','Dec'}),
    io_lib:format("~2w ~s ~4w ~2w:~2..0w:~2..0w.~6..0w", [Day,Mstr,Year,Hour,Minute,Second,Micro]).

The module above could be used in the following way:

1> io:format("~s~n", [print_time:format_utc_timestamp()]).
29 Apr 2009 9:55:30.051711

`type()` -> {Osfamily, Osname} | Osfamily

Types:
- Osfamily = win32 | unix | vxworks
- Osname = atom()

Returns the Osfamily and, in some cases, Osname of the current operating system.
On Unix, Osname will have same value as `uname -s` returns, but in lower case. For example, on Solaris 1 and 2, it will be sunos.
In Windows, Osname will be either nt (on Windows NT), or windows (on Windows 95).
On VxWorks the Os family alone is returned, that is vxworks.

**Note:**
Think twice before using this function. Use the `filename` module if you want to inspect or build file names in a portable way. Avoid matching on the Osname atom.

`version()` -> {Major, Minor, Release} | VersionString

Types:
- Major = Minor = Release = integer()
- VersionString = string()

Returns the operating system version. On most systems, this function returns a tuple, but a string will be returned instead if the system has versions which cannot be expressed as three numbers.

**Note:**
Think twice before using this function. If you still need to use it, always call `os:type()` first.
packages

Erlang Module

Warning:
Packages has since it was introduced more than 5 years ago been an experimental feature. Use it at your own risk, we do not actively maintain and develop this feature. It might however be supported some day.
In spite of this packages work quite well, but there are some known issues in tools and other parts where packages don't work well.

Introduction
Packages are simply namespaces for modules. All old Erlang modules automatically belong to the top level ("empty-string") namespace, and do not need any changes.
The full name of a packaged module is written as e.g. "fee.fie.foe.foo", i.e., as atoms separated by periods, where the package name is the part up to but not including the last period; in this case "fee.fie.foe". A more concrete example is the module erl.lang.term, which is in the package erl.lang. Package names can have any number of segments, as in erl.lang.list.sort. The atoms in the name can be quoted, as in foo.'Bar'.baz, or even the whole name, as in 'foo.bar.baz' but the concatenation of atoms and periods must not contain two consecutive period characters or end with a period, as in 'foo..bar', foo.'bar', or foo.'bar'. The periods must not be followed by whitespace.
The code loader maps module names onto the file system directory structure. E.g., the module erl.lang.term corresponds to a file .../erl/lang/term.beam in the search path. Note that the name of the actual object file corresponds to the last part only of the full module name. (Thus, old existing modules such as lists simply map to .../lists.beam, exactly as before.)
A packaged module in a file "foo/bar/fred.erl" is declared as:
-module(foo.bar.fred).

This can be compiled and loaded from the Erlang shell using c(fred), if your current directory is the same as that of the file. The object file will be named fred.beam.
The Erlang search path works exactly as before, except that the package segments will be appended to each directory in the path in order to find the file. E.g., assume the path is ["/usr/lib/erl", "/usr/local/lib/otp/legacy/ebin", "/home/barney/erl"]. Then, the code for a module named foo.bar.fred will be searched for first as
"/usr/lib/erl/foo/bar/fred.beam", then
"/usr/local/lib/otp/legacy/ebin/foo/bar/fred.beam" and lastly
"/home/barney/erl/foo/bar/fred.beam". A module like lists, which is in the top-level package, will be looked for as "/usr/lib/erl/lists.beam",
"/usr/local/lib/otp/legacy/ebin/lists.beam" and
"/home/barney/erl/lists.beam".

Programming

Normally, if a call is made from one module to another, it is assumed that the called
module belongs to the same package as the source module. The compiler automatically
expands such calls. E.g., in:
-module(foo.bar.m1).
-export([f/1]).

f(X) -> m2:g(X).

m2:g(X) becomes a call to foo.bar.m2 If this is not what was intended, the call can be
written explicitly, as in
-module(foo.bar.m1).
-export([f/1]).

f(X) -> fee.fie.foe.m2:g(X).

Because the called module is given with an explicit package name, no expansion is done
in this case.

If a module from another package is used repeatedly in a module, an import declaration
can make life easier:
-module(foo.bar.m1).
-export([f/1, g/1]).
-import(fee.fie.foe.m2).
f(X) -> m2:g(X).
g(X) -> m2:h(X).

will make the calls to m2 refer to fee.fie.foe.m2. More generally, a declaration
-import(Package.Module). will cause calls to Module to be expanded to
Package.Module.

Old-style function imports work as normal (but full module names must be used); e.g.:
-import(fee.fie.foe.m2, [g/1, h/1]).

however, it is probably better to avoid this form of import altogether in new code, since
it makes it hard to see what calls are really "remote".

If it is necessary to call a module in the top-level package from within a named package,
the module name can be written either with an initial period as in e.g. "lists", or with
an empty initial atom, as in "lists". However, the best way is to use an import
declaration - this is most obvious to the eye, and makes sure we don't forget adding a
period somewhere:
-module(foo.bar.fred).
-export([f/1]).
-import(lists).

f(X) -> lists:reverse(X).

The dot-syntax for module names can be used in any expression. All segments must be
constant atoms, and the result must be a well-formed package/module name. E.g:
spawn(foo.bar.fred, f, [X])
is equivalent to `spawn('foo.bar.fred', f, [X]).`

**The Erlang Shell**

The shell also automatically expands remote calls, however currently no expansions are made by default. The user can change the behaviour by using the `import/1` shell command (or its abbreviation `use/1`). E.g.:

```
1> import(foo.bar.m).
ok
2> m:f().
```

will evaluate `foo.bar.m:f()`. If a new import is made of the same name, this overrides any previous import. (It is likely that in the future, some system packages will be pre-imported.)

In addition, the shell command `import_all/1` (and its alias `use_all/1`) imports all modules currently found in the path for a given package name. E.g., assuming the files `".../foo/bar/fred.beam", ".../foo/bar/barney.beam"` and `".../foo/bar/bambam.beam"` can be found from our current path,

```
1> import_all(foo.bar).
```

will make `fred`, `barney` and `bambam` expand to `foo.bar.fred`, `foo.bar.barney` and `foo.bar.bambam`, respectively.

**Note:** The compiler does not have an “import all” directive, for the reason that Erlang has no compile time type checking. E.g. if the wrong search path is used at compile time, a call `m:f(...)` could be expanded to `foo.bar.m:f(...)` without any warning, instead of the intended `frob.ozz.m:f(...)`, if package `foo.bar` happens to be found first in the path. Explicitly declaring each use of a module makes for safe code.

**Exports**

*no functions exported*
Erlang Module

This module implements process groups. The groups in this module differ from the groups in the module `pg` in several ways. In `pg`, each message is sent to all members in the group. In this module, each message may be sent to one, some, or all members.

A group of processes can be accessed by a common name. For example, if there is a group named `foobar`, there can be a set of processes (which can be located on different nodes) which are all members of the group `foobar`. There is no special functions for sending a message to the group. Instead, client functions should be written with the functions `get_members/1` and `get_local_members/1` to find out which processes are members of the group. Then the message can be sent to one or more members of the group.

If a member terminates, it is automatically removed from the group.

**Warning:**
This module is used by the `disk_log` module for managing distributed disk logs. The disk log names are used as group names, which means that some action may need to be taken to avoid name clashes.

**Exports**

`create(Name) -> void()`  
Types:  
- `Name = term()`  
Creates a new, empty process group. The group is globally visible on all nodes. If the group exists, nothing happens.

`delete(Name) -> void()`  
Types:  
- `Name = term()`  
Deletes a process group.

`get_closest_pid(Name) -> Pid | {error, Reason}`  
Types:  
- `Name = term()`  
- `Pid = pid()`
This is a useful dispatch function which can be used from client functions. It returns a process on the local node, if such a process exist. Otherwise, it chooses one randomly.

get_members(Name) -> [Pid] | {error, Reason}

Types:
- Name = term()
- Pid = pid()
- Reason = {no_such_group, Name}

Returns all processes in the group Name. This function should be used from within a client function that accesses the group. It is therefore optimized for speed.

get_local_members(Name) -> [Pid] | {error, Reason}

Types:
- Name = term()
- Pid = pid()
- Reason = {no_such_group, Name}

Returns all processes running on the local node in the group Name. This function should be used from within a client function that accesses the group. It is therefore optimized for speed.

join(Name, Pid) -> ok | {error, Reason}

Types:
- Name = term()
- Pid = pid()
- Reason = {no_such_group, Name}

Joins the process Pid to the group Name. A process can join a group several times; it must then leave the group the same number of times.

leave(Name, Pid) -> ok | {error, Reason}

Types:
- Name = term()
- Pid = pid()
- Reason = {no_such_group, Name}

Makes the process Pid leave the group Name. If the process is not a member of the group, ok is returned.

which_groups() -> [Name]

Types:
- Name = term()

Returns a list of all known groups.

start()

start_link() -> {ok, Pid} | {error, Reason}
Types:
- Pid = pid()
- Reason = term()

Starts the pg2 server. Normally, the server does not need to be started explicitly, as it is started dynamically if it is needed. This is useful during development, but in a target system the server should be started explicitly. Use configuration parameters for kernel for this.

See Also

kernel(6) [page 22], [pg(3)]
rpc

Erlang Module

This module contains services which are similar to remote procedure calls. It also contains broadcast facilities and parallel evaluators. A remote procedure call is a method to call a function on a remote node and collect the answer. It is used for collecting information on a remote node, or for running a function with some specific side effects on the remote node.

Exports

call(Node, Module, Function, Args) -> Res | {badrpc, Reason}

Types:
- Node = node()
- Module = Function = atom()
- Args = [term()]
- Res = term()
- Reason = term()

Evaluates apply(Module, Function, Args) on the node Node and returns the corresponding value Res, or {badrpc, Reason} if the call fails.

call(Node, Module, Function, Args, Timeout) -> Res | {badrpc, Reason}

Types:
- Node = node()
- Module = Function = atom()
- Args = [term()]
- Res = term()
- Reason = timeout | term()
- Timeout = int() | infinity

Evaluates apply(Module, Function, Args) on the node Node and returns the corresponding value Res, or {badrpc, Reason} if the call fails. Timeout is a timeout value in milliseconds. If the call times out, Reason is timeout.

If the reply arrives after the call times out, no message will contaminate the caller’s message queue, since this function spawns off a middleman process to act as (a void) destination for such an orphan reply. This feature also makes this function more expensive than call/4 at the caller’s end.

block_call(Node, Module, Function, Args) -> Res | {badrpc, Reason}

Types:
Like call/4, but the RPC server at Node does not create a separate process to handle the call. Thus, this function can be used if the intention of the call is to block the RPC server from any other incoming requests until the request has been handled. The function can also be used for efficiency reasons when very small fast functions are evaluated, for example BIFs that are guaranteed not to suspend.

\[
\text{block\_call(Node, Module, Function, Args, Timeout)} \rightarrow \text{Res} | \{\text{badrpc, Reason}\}
\]

**Types:**
- Node = node()
- Module = Function = atom()
- Args = [term()]
- Res = term()
- Reason = term()

Like block\_call/4, but with a timeout value in the same manner as call/5.

\[
\text{async\_call(Node, Module, Function, Args)} \rightarrow \text{Key}
\]

**Types:**
- Node = node()
- Module = Function = atom()
- Args = [term()]
- Key – see below

Implements call streams with promises, a type of RPC which does not suspend the caller until the result is finished. Instead, a key is returned which can be used at a later stage to collect the value. The key can be viewed as a promise to deliver the answer.

In this case, the key Key is returned, which can be used in a subsequent call to yield/1 or nb\_yield/1,2 to retrieve the value of evaluating apply(Module, Function, Args) on the node Node.

\[
\text{yield(Key)} \rightarrow \text{Res} | \{\text{badrpc, Reason}\}
\]

**Types:**
- Key – see async\_call/4
- Res = term()
- Reason = term()

Returns the promised answer from a previous async\_call/4. If the answer is available, it is returned immediately. Otherwise, the calling process is suspended until the answer arrives from Node.

\[
\text{nb\_yield(Key)} \rightarrow \{\text{value, Val} | \text{timeout}\}
\]

**Types:**
**rpc Kernel Reference Manual**

- Key - see async_call/4
- Val = Res | {badrpc, Reason}
- Res = term()
- Reason = term()

Equivalent to `nb_yield(Key, 0).

```erlang
nb_yield(Key, Timeout) -> {value, Val} | timeout
```

Types:
- Key - see async_call/4
- Timeout = int() | infinity
- Val = Res | {badrpc, Reason}
- Res = term()
- Reason = term()

This is a non-blocking version of `yield/1`. It returns the tuple `{value, Val}` when the computation has finished, or `timeout` when `Timeout` milliseconds has elapsed.

```erlang
multicall(Module, Function, Args) -> {ResL, BadNodes}
```

Types:
- Module = Function = atom()
- Args = [term()]
- ResL = [term()]
- BadNodes = [node()]

Equivalent to `multicall([node()|nodes()], Module, Function, Args, infinity).

```erlang
multicall(Nodes, Module, Function, Args) -> {ResL, BadNodes}
```

Types:
- Nodes = [node()]
- Module = Function = atom()
- Args = [term()]
- ResL = [term()]
- BadNodes = [node()]

Equivalent to `multicall(Nodes, Module, Function, Args, infinity).

```erlang
multicall(Module, Function, Args, Timeout) -> {ResL, BadNodes}
```

Types:
- Module = Function = atom()
- Args = [term()]
- Timeout = int() | infinity
- ResL = [term()]
- BadNodes = [node()]

Equivalent to `multicall([node()|nodes()], Module, Function, Args, Timeout).

```erlang
multicall(Nodes, Module, Function, Args, Timeout) -> {ResL, BadNodes}
```

180 Kernel Application (KERNEL)
In contrast to an RPC, a multicall is an RPC which is sent concurrently from one client to multiple servers. This is useful for collecting some information from a set of nodes or for calling a function on a set of nodes to achieve some side effects. It is semantically the same as iteratively making a series of RPCs on all the nodes, but the multicall is faster as all the requests are sent at the same time and are collected one by one as they come back.

The function evaluates \( \text{apply(Module, Function, Args)} \) on the specified nodes and collects the answers. It returns \( \{\text{ResL, Badnodes}\} \), where \text{Badnodes} is a list of the nodes that terminated or timed out during computation, and \text{ResL} is a list of the return values. \text{Timeout} is a time (integer) in milliseconds, or \text{infinity}.

The following example is useful when new object code is to be loaded on all nodes in the network, and also indicates some side effects RPCs may produce:

```erlang
%% Find object code for module Mod
\{Mod, Bin, File\} = code:get_object_code(Mod),

%% and load it on all nodes including this one
\{ResL, _\} = rpc:multicall(code, load_binary, [Mod, Bin, File,]),

%% and then maybe check the ResL list.
```

cast(Node, Module, Function, Args) -> void()

Types:
- Node = node()
- Module = Function = atom()
- Args = [term()]

Evaluates \( \text{apply(Module, Function, Args)} \) on the node \text{Node}. No response is delivered and the calling process is not suspended until the evaluation is complete, as is the case with \text{call/4,5}.

eval_everywhere(Module, Function, Args) -> void()

Types:
- Module = Function = atom()
- Args = [term()]

Equivalent to \text{eval_everywhere([node()|nodes()]), Module, Function, Args}.

eval_everywhere(Nodes, Module, Function, Args) -> void()

Types:
- Nodes = [node()]
- Module = Function = atom()
- Args = [term()]

  Evaluates apply(Module, Function, Args) on the specified nodes. No answers are collected.

**abcast(Name, Msg) -> void()**

**Types:**
- Name = atom()
- Msg = term()

  Equivalent to abcast([node()|nodes()], Name, Msg).

**abcast(Nodes, Name, Msg) -> void()**

**Types:**
- Nodes = [node()]
- Name = atom()
- Msg = term()

  Broadcasts the message Msg asynchronously to the registered process Name on the specified nodes.

**sbcast(Name, Msg) -> {GoodNodes, BadNodes}**

**Types:**
- Name = atom()
- Msg = term()
- GoodNodes = BadNodes = [node()]

  Equivalent to sbcast([node()|nodes()], Name, Msg).

**sbcast(Nodes, Name, Msg) -> {GoodNodes, BadNodes}**

**Types:**
- Name = atom()
- Msg = term()
- Nodes = GoodNodes = BadNodes = [node()]

  Broadcasts the message Msg synchronously to the registered process Name on the specified nodes.

  Returns {GoodNodes, BadNodes}, where GoodNodes is the list of nodes which have Name as a registered process.

  The function is synchronous in the sense that it is known that all servers have received the message when the call returns. It is not possible to know that the servers have actually processed the message.

  Any further messages sent to the servers, after this function has returned, will be received by all servers after this message.

**server_call(Node, Name, ReplyWrapper, Msg) -> Reply | {error, Reason}**

**Types:**
- Node = node()
- Name = atom()
This function can be used when interacting with a server called Name at node Node. It is assumed that the server receives messages in the format {From, Msg} and replies using From ! {ReplyWrapper, Node, Reply}. This function makes such a server call and ensures that the entire call is packed into an atomic transaction which either succeeds or fails. It never hangs, unless the server itself hangs.

The function returns the answer Reply as produced by the server Name, or {error, Reason}.

\[
\text{multi_server_call}(\text{Name}, \text{Msg}) \rightarrow \{\text{Replies}, \text{BadNodes}\}
\]

Types:
- \text{Name} = \text{atom()}
- \text{Msg} = \text{term()}
- \text{Replies} = [\text{Reply}]
- \text{Reply} = \text{term()}
- \text{BadNodes} = [\text{node()}]

Equivalent to \text{multi_server_call([node()|nodes()], Name, Msg)}.

\[
\text{multi_server_call}(\text{Nodes}, \text{Name}, \text{Msg}) \rightarrow \{\text{Replies}, \text{BadNodes}\}
\]

Types:
- \text{Nodes} = [\text{node()}]
- \text{Name} = \text{atom()}
- \text{Msg} = \text{term()}
- \text{Replies} = [\text{Reply}]
- \text{Reply} = \text{term()}
- \text{BadNodes} = [\text{node()}]

This function can be used when interacting with servers called Name on the specified nodes. It is assumed that the servers receive messages in the format {From, Msg} and reply using From ! {Name, Node, Reply}, where Node is the name of the node where the server is located. The function returns {Replies, BadNodes}, where Replies is a list of all Reply values and BadNodes is a list of the nodes which did not exist, or where the server did not exist, or where the server terminated before sending any reply.

\[
\text{safe_multi_server_call}(\text{Name}, \text{Msg}) \rightarrow \{\text{Replies}, \text{BadNodes}\}
\]

\[
\text{safe_multi_server_call}(\text{Nodes}, \text{Name}, \text{Msg}) \rightarrow \{\text{Replies}, \text{BadNodes}\}
\]

**Warning:**
This function is deprecated. Use \text{multi_server_call}/2,3 instead.

In Erlang/OTP R6B and earlier releases, \text{multi_server_call}/2,3 could not handle the case where the remote node exists, but there is no server called Name. Instead this function had to be used. In Erlang/OTP R7B and later releases, however, the functions are equivalent, except for this function being slightly slower.
### parallel_eval(FuncCalls) -> ResL

**Types:**
- `FuncCalls` = \[[`Module`, `Function`, `Args`]\]
- `Module` = `Function` = atom()
- `Args` = \[[term()\]]
- `ResL` = \[[term()\]]

For every tuple in `FuncCalls`, evaluates `apply(Module, Function, Args)` on some node in the network. Returns the list of return values, in the same order as in `FuncCalls`.

### pmap({Module, Function}, ExtraArgs, List2) -> List1

**Types:**
- `Module` = `Function` = atom()
- `ExtraArgs` = \[[term()\]]
- `List1` = \[[`Elem`\]]
- `Elem` = term()
- `List2` = \[[term()\]]

Evaluates `apply(Module, Function, [Elem|ExtraArgs])`, for every element `Elem` in `List1`, in parallel. Returns the list of return values, in the same order as in `List1`.

### pinfo(Pid) -> [{Item, Info}] | undefined

**Types:**
- `Pid` = pid()
- `Item, Info` - see `erlang:process_info/1`

Location transparent version of the BIF `process_info/1`.

### pinfo(Pid, Item) -> {Item, Info} | undefined | []

**Types:**
- `Pid` = pid()
- `Item, Info` - see `erlang:process_info/1`

Location transparent version of the BIF `process_info/2`. 
Sequential tracing makes it possible to trace all messages resulting from one initial message. Sequential tracing is completely independent of the ordinary tracing in Erlang, which is controlled by the `erlang:trace/3` BIF. See the chapter What is Sequential Tracing [page 188] below for more information about what sequential tracing is and how it can be used.

`seq_trace` provides functions which control all aspects of sequential tracing. There are functions for activation, deactivation, inspection and for collection of the trace output.

**Note:**
The implementation of sequential tracing is in beta status. This means that the programming interface still might undergo minor adjustments (possibly incompatible) based on feedback from users.

### Exports

**set_token(mol) \rightarrow PreviousToken**

Types:
- `Token = PreviousToken = term() | []`

Sets the trace token for the calling process to `Token`. If `Token == []` then tracing is disabled, otherwise `Token` should be an Erlang term returned from `get_token/0` or `set_token/1`. `set_token/1` can be used to temporarily exclude message passing from the trace by setting the trace token to empty like this:

```
OldToken = seq_trace:set_token([]), % set to empty and save % old value
% do something that should not be part of the trace
io:format("Exclude the signalling caused by this\n"), seq_trace:set_token(OldToken), % activate the trace token again ...
```

Returns the previous value of the trace token.

**set_token(Component, Val) \rightarrow \{Component, OldVal\}**

Types:
- `Component = label | serial | Flag`
- `Flag = send | 'receive' | print | timestamp`
• Val = 0 IdVal - see below

Sets the individual Component of the trace token to Val. Returns the previous value of the component.

set_token(label, Int) The label component is an integer which identifies all events belonging to the same sequential trace. If several sequential traces can be active simultaneously, label is used to identify the separate traces. Default is 0.

set_token(serial, SerialValue) SerialValue = {Previous, Current}. The serial component contains counters which enables the traced messages to be sorted, should never be set explicitly by the user as these counters are updated automatically. Default is \{0, 0\}.

set_token(send, Bool) A trace token flag (true | false) which enables/disables tracing on message sending. Default is false.

set_token('receive', Bool) A trace token flag (true | false) which enables/disables tracing on message reception. Default is false.

set_token(print, Bool) A trace token flag (true | false) which enables/disables tracing on explicit calls to seq_trace:print/1. Default is false.

set_token(timestamp, Bool) A trace token flag (true | false) which enables/disables a timestamp to be generated for each traced event. Default is false.

get_token() \rightarrow \text{TraceToken}

Types:
• TraceToken = term() | []

Returns the value of the trace token for the calling process. If [] is returned, it means that tracing is not active. Any other value returned is the value of an active trace token. The value returned can be used as input to the set_token/1 function.

get_token(Component) \rightarrow \{Component, Val\}

Types:
• Component = label | serial | Flag
• Flag = send | 'receive' | print | timestamp
• Val - see set_token/2

Returns the value of the trace token component Component. See set_token/2 [page 185] for possible values of Component and Val.

print(TraceInfo) \rightarrow \text{void()}

Types:
• TraceInfo = term()

Puts the Erlang term TraceInfo into the sequential trace output if the calling process currently is executing within a sequential trace and the print flag of the trace token is set.

print(Label, TraceInfo) \rightarrow \text{void()}

Types:
• Label = int()
• TraceInfo = term()

Same as print/1 with the additional condition that TraceInfo is output only if Label is equal to the label component of the trace token.

reset_trace() -> void()

Sets the trace token to empty for all processes on the local node. The process internal counters used to create the serial of the trace token is set to 0. The trace token is set to empty for all messages in message queues. Together this will effectively stop all ongoing sequential tracing in the local node.

set_system_tracer(Tracer) -> OldTracer

Types:
• Tracer = OldTracer = pid() | port() | false

Sets the system tracer. The system tracer can be either a process or port denoted by Tracer. Returns the previous value (which can be false if no system tracer is active).

Failure: {badarg, Info} if Pid is not an existing local pid.

get_system_tracer() -> Tracer

Types:
• Tracer = pid() | port() | false

Returns the pid or port identifier of the current system tracer or false if no system tracer is activated.

Trace Messages Sent To the System Tracer

The format of the messages are:
{seq_trace, Label, SeqTraceInfo, TimeStamp}

or
{seq_trace, Label, SeqTraceInfo}

depending on whether the timestamp flag of the trace token is set to true or false.

Where:
Label = int()
TimeStamp = {Seconds, Milliseconds, Microseconds}
  Seconds = Milliseconds = Microseconds = int()

The SeqTraceInfo can have the following formats:
{send, Serial, From, To, Message} Used when a process From with its trace token flag print set to true has sent a message.

{‘receive’, Serial, From, To, Message} Used when a process To receives a message with a trace token that has the ‘receive’ flag set to true.

{print, Serial, From, .., Info} Used when a process From has called seq_trace:print(Label, TraceInfo) and has a trace token with the print flag set to true and label set to Label.
Serial is a tuple (PreviousSerial, ThisSerial), where the first integer PreviousSerial denotes the serial counter passed in the last received message which carried a trace token. If the process is the first one in a new sequential trace, PreviousSerial is set to the value of the process internal "trace clock". The second integer ThisSerial is the serial counter that a process sets on outgoing messages and it is based on the process internal "trace clock" which is incremented by one before it is attached to the trace token in the message.

What is Sequential Tracing

Sequential tracing is a way to trace a sequence of messages sent between different local or remote processes, where the sequence is initiated by one single message. In short it works like this:

Each process has a trace token, which can be empty or not empty. When not empty the trace token can be seen as the tuple (Label, Flags, Serial, From). The trace token is passed invisibly with each message.

In order to start a sequential trace the user must explicitly set the trace token in the process that will send the first message in a sequence.

The trace token of a process is set each time the process matches a message in a receive statement, according to the trace token carried by the received message, empty or not.

On each Erlang node a process can be set as the system tracer. This process will receive trace messages each time a message with a trace token is sent or received (if the trace token flag send or receive is set). The system tracer can then print each trace event, write it to a file or whatever suitable.

Note:
The system tracer will only receive those trace events that occur locally within the Erlang node. To get the whole picture of a sequential trace that involves processes on several Erlang nodes, the output from the system tracer on each involved node must be merged (off line).

In the following sections Sequential Tracing and its most fundamental concepts are described.

Trace Token

Each process has a current trace token. Initially the token is empty. When the process sends a message to another process, a copy of the current token will be sent "invisibly" along with the message.

The current token of a process is set in two ways, either

1. explicitly by the process itself, through a call to seq_trace:set_token, or
2. when a message is received.
In both cases the current token will be set. In particular, if the token of a message received is empty, the current token of the process is set to empty.

A trace token contains a label, and a set of flags. Both the label and the flags are set in 1 and 2 above.

Serial

The trace token contains a component which is called serial. It consists of two integers Previous and Current. The purpose is to uniquely identify each traced event within a trace sequence and to order the messages chronologically and in the different branches if any.

The algorithm for updating Serial can be described as follows:

Let each process have two counters \texttt{prev\_cnt} and \texttt{curr\_cnt} which both are set to 0 when a process is created. The counters are updated at the following occasions:

- When the process is about to send a message and the trace token is not empty.
  
  Let the serial of the trace token be \texttt{tprev} and \texttt{tcurr}.
  
  \begin{equation*}
  \text{curr\_cnt} := \text{curr\_cnt} + 1 \\
  \text{tprev} := \text{prev\_cnt} \\
  \text{tcurr} := \text{curr\_cnt}
  \end{equation*}

  The trace token with \texttt{tprev} and \texttt{tcurr} is then passed along with the message.

- When the process calls \texttt{seq\_trace:print(Label, Info)}, \texttt{Label} matches the label part of the trace token and the trace token print flag is true.
  
  The same algorithm as for send above.

- When a message is received and contains a nonempty trace token.
  
  The process trace token is set to the trace token from the message.
  
  Let the serial of the trace token be \texttt{tprev} and \texttt{tcurr}.
  
  \begin{equation*}
  \text{if (curr\_cnt} < \text{tcurr } \text{}\}
  \text{curr\_cnt} := \text{tcurr} \\
  \text{prev\_cnt} := \text{tcurr}
  \end{equation*}

The \texttt{curr\_cnt} of a process is incremented each time the process is involved in a sequential trace. The counter can reach its limit (27 bits) if a process is very long-lived and is involved in much sequential tracing. If the counter overflows it will not be possible to use the serial for ordering of the trace events. To prevent the counter from overflowing in the middle of a sequential trace the function \texttt{seq\_trace:reset\_trace/0} can be called to reset the \texttt{prev\_cnt} and \texttt{curr\_cnt} of all processes in the Erlang node.

This function will also set all trace tokens in processes and their message queues to empty and will thus stop all ongoing sequential tracing.

Performance considerations

The performance degradation for a system which is enabled for Sequential Tracing is negligible as long as no tracing is activated. When tracing is activated there will of course be an extra cost for each traced message but all other messages will be unaffected.
Ports

Sequential tracing is not performed across ports.

If the user for some reason wants to pass the trace token to a port this has to be done manually in the code of the port controlling process. The port controlling processes have to check the appropriate sequential trace settings (as obtained from seq_trace:get_token/1 and include trace information in the message data sent to their respective ports.

Similarly, for messages received from a port, a port controller has to retrieve trace specific information, and set appropriate sequential trace flags through calls to seq_trace:set_token/2.

Distribution

Sequential tracing between nodes is performed transparently. This applies to C-nodes built with Erl_Interface too. A C-node built with Erl_Interface only maintains one trace token, which means that the C-node will appear as one process from the sequential tracing point of view.

In order to be able to perform sequential tracing between distributed Erlang nodes, the distribution protocol has been extended (in a backward compatible way). An Erlang node which supports sequential tracing can communicate with an older (OTP R3B) node but messages passed within that node can of course not be traced.

Example of Usage

The example shown here will give rough idea of how the new primitives can be used and what kind of output it will produce.

Assume that we have an initiating process with Pid == <0.30.0> like this:

```prolog
-module(seqex).
-compile(export_all).
loop(Port) ->
 receive
 {Port,Message} ->
 seq_trace:set_token(label,17),
 seq_trace:set_token('receive',true),
 seq_trace:set_token(print,true),
 seq_trace:print(17,** Trace Started ****),
 call_server ! {self(),the_message};
 {ack,Ack} ->
 ok
 end,
loop(Port).
```

And a registered process call_server with Pid == <0.31.0> like this:
loop() ->
    receive
        {PortController, Message} ->
            Ack = {received, Message},
            seq_trace:print(17, "We are here now"),
            PortController ! {ack, Ack}
    end,
    loop().

A possible output from the system's sequential tracer (inspired by AXE-10 and MD-110) could look like:

```
17:<0.30.0> Info {0,1} WITH
"**** Trace Started ****"
17:<0.31.0> Received {0,2} FROM <0.30.0> WITH
{<0.30.0>, the_message}
17:<0.31.0> Info {2,3} WITH
"We are here now"
17:<0.30.0> Received {2,4} FROM <0.31.0> WITH
{ack, {received, the_message}}
```

The implementation of a system tracer process that produces the printout above could look like this:

```
tracer() ->
 receive
 {seq_trace, Label, TraceInfo} ->
 print_trace(Label, TraceInfo, false);
 {seq_trace, Label, TraceInfo, Ts} ->
 print_trace(Label, TraceInfo, Ts);
 Other -> ignore
 end,
 tracer().

print_trace(Label, TraceInfo, false) ->
 io:format("~p: ", [Label]),
 print_trace(TraceInfo);
print_trace(Label, TraceInfo, Ts) ->
 io:format("~p ~p: ", [Label, Ts]),
 print_trace(TraceInfo).

print_trace({print, Serial, From,_, Info}) ->
 io:format("~p Info ~p WITH~n~p~n", [From, Serial, Info]);
print_trace({'receive', Serial, From, To, Message}) ->
 io:format("~p Received ~p FROM ~p WITH~n~p~n",
 [To, Serial, From, Message]);
print_trace({send, Serial, From, To, Message}) ->
 io:format("~p Sent ~p TO ~p WITH~n~p~n",
 [From, Serial, To, Message]).
```

The code that creates a process that runs the tracer function above and sets that process as the system tracer could look like this:

```
start() ->
 Pid = spawn(?MODULE, tracer, []),
 seq_trace:set_system_tracer(Pid), % set Pid as the system tracer
```
ok.

With a function like `test/0` below the whole example can be started.

```erlang
test() ->
P = spawn(?MODULE, loop, [port]),
register(call_server, spawn(?MODULE, loop, [])),
start(),
P ! {port, message}.
```
**user**

Erlang Module

**user** is a server which responds to all the messages defined in the I/O interface. The code in `user.erl` can be used as a model for building alternative I/O servers.
wrap_log_reader

Erlang Module

wrap_log_reader is a function to read internally formatted wrap disk logs, refer to disk_log(3). wrap_log_reader does not interfere with disk_log activities; there is however a known bug in this version of the wrap_log_reader, see chapter bugs below.

A wrap disk log file consists of several files, called index files. A log file can be opened and closed. It is also possible to open just one index file separately. If an non-existent or a non-internally formatted file is opened, an error message is returned. If the file is corrupt, no attempt to repair it will be done but an error message is returned.

If a log is configured to be distributed, there is a possibility that all items are not logged on all nodes. wrap_log_reader does only read the log on the called node, it is entirely up to the user to be sure that all items are read.

Exports

chunk(Continuation)
chunk(Continuation, N) -> {Continuation2, Terms} | {Continuation2, Terms, Badbytes} | {Continuation2, eof} | {error, Reason}

Types:
- Continuation = continuation()
- N = int() > 0 | infinity
- Continuation2 = continuation()
- Terms = [term()]
- Badbytes = integer()

This function makes it possible to efficiently read the terms which have been appended to a log. It minimises disk I/O by reading large 8K chunks from the file.

The first time chunk is called an initial continuation returned from the open/1, open/2 must be provided.

When chunk/3 is called, N controls the maximum number of terms that are read from the log in each chunk. Default is infinity, which means that all the terms contained in the 8K chunk are read. If less than N terms are returned, this does not necessarily mean that end of file is reached.

The chunk function returns a tuple {Continuation2, Terms}, where Terms is a list of terms found in the log. Continuation2 is yet another continuation which must be passed on into any subsequent calls to chunk. With a series of calls to chunk it is then possible to extract all terms from a log.

The chunk function returns a tuple {Continuation2, Terms, Badbytes} if the log is opened in read only mode and the read chunk is corrupt. Badbytes indicates the number of non-Erlang terms found in the chunk. Note also that the log is not repaired.
chunk returns {Continuation2, eof} when the end of the log is reached, and {error, Reason} if an error occurs.

The returned continuation may or may not be valid in the next call to chunk. This is because the log may wrap and delete the file into which the continuation points. To make sure this does not happen, the log can be blocked during the search.

close(Continuation)  ->  ok

Types:
• Continuation = continuation()

This function closes a log file properly.

open(Filename)  ->  OpenRet

open(Filename, N)  ->  OpenRet

Types:
• File = string() | atom()
• N = integer()
• OpenRet = {ok, Continuation} | {error, Reason}
• Continuation = continuation()

Filename specifies the name of the file which is to be read. N specifies the index of the file which is to be read. If N is omitted the whole wrap log file will be read; if it is specified only the specified index file will be read.

The open function returns {ok, Continuation} if the log/index file was successfully opened. The Continuation is to be used when chunking or closing the file.

The function returns {error, Reason} for all errors.

Bugs

This version of the wrap_log_reader does not detect if the disk_log wraps to a new index file between a wrap_log_reader:open and the first wrap_log_reader:chunk. In this case the chuck will actually read the last logged items in the log file, because the opened index file was truncated by the disk_log.

See Also

disk_log(3) [page 48]
The module zlib is moved to the runtime system application. Please see [zlib(3)] in the erts reference manual instead.
The application resource file specifies the resources an application uses and how the application is started. There must always be one application resource file called Application.app for each application Application in the system.

The file is read by the application controller when an application is loaded/started. It is also used by the functions in systools, for example when generating start scripts.

FILE SYNTAX

The application resource file should be called Application.app where Application is the name of the application. The file should be located in the ebin directory for the application.

It must contain one single Erlang term, which is called an application specification:

```erlang
{application, Application,
 [{description, Description},
 {id, Id},
 {vsn, Vsn},
 {modules, Modules},
 {maxP, MaxP},
 {maxT, MaxT},
 {registered, Names},
 {included_applications, Apps},
 {applications, Apps},
 {env, Env},
 {mod, Start},
 {start_phases, Phases}].
```

<table>
<thead>
<tr>
<th>Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>atom()</td>
</tr>
<tr>
<td>Description</td>
<td>&quot;&quot;</td>
</tr>
<tr>
<td>Id</td>
<td>&quot;&quot;</td>
</tr>
<tr>
<td>Vsn</td>
<td>&quot;&quot;</td>
</tr>
<tr>
<td>Modules</td>
<td>[]</td>
</tr>
<tr>
<td>MaxP</td>
<td>infinity</td>
</tr>
<tr>
<td>MaxT</td>
<td>infinity</td>
</tr>
<tr>
<td>Names</td>
<td>[]</td>
</tr>
<tr>
<td>Apps</td>
<td>[]</td>
</tr>
<tr>
<td>Env</td>
<td>[]</td>
</tr>
<tr>
<td>Start</td>
<td>{Module,StartArgs} undefined</td>
</tr>
<tr>
<td>Phases</td>
<td>[{Phase,PhaseArgs}] undefined</td>
</tr>
</tbody>
</table>

Kernel Application (KERNEL)
Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArgs = term()

Application is the name of the application.
For the application controller, all keys are optional. The respective default values are used for any omitted keys.
The functions in systools require more information. If they are used, the following keys are mandatory: description, vsn, modules, registered and applications. The other keys are ignored by systools.

description A one-line description of the application.
id Product identification, or similar.
vsn The version of the application.
modules All modules introduced by this application. systools uses this list when generating start scripts and tar files. A module can only be defined in one application.
maxP Deprecated - will be ignored
The maximum number of processes allowed in the application.
maxT The maximum time in milliseconds that the application is allowed to run. After the specified time the application will automatically terminate.
registered All names of registered processes started in this application. systools uses this list to detect name clashes between different applications.
included_applications All applications which are included by this application. When this application is started, all included application will automatically be loaded, but not started, by the application controller. It is assumed that the topmost supervisor of the included application is started by a supervisor of this application.
applications All applications which must be started before this application is allowed to be started. systools uses this list to generate correct start scripts. Defaults to the empty list, but note that all applications have dependencies to (at least) kernel and stdlib.
env Configuration parameters used by the application. The value of a configuration parameter is retrieved by calling application:get_env/1,2. The values in the application resource file can be overridden by values in a configuration file (see config(4)) or by command line flags (see erl(1)).
mod Specifies the application callback module and a start argument, see application(3).
The mod key is necessary for an application implemented as a supervision tree, or the application controller will not know how to start it. The mod key can be omitted for applications without processes, typically code libraries such as the application STDLIB.
start_phases A list of start phases and corresponding start arguments for the application. If this key is present, the application master will - in addition to the usual call to Module:start/2 - also call Module:start_phase(Phase,Type,PhaseArgs) for each start phase defined by the start_phases key, and only after this extended start procedure will application:start(Application) return.
Start phases may be used to synchronize startup of an application and its included applications. In this case, the mod key must be specified as:

{mod, {application_starter,[Module,StartArgs]}}
The application master will then call `Module:start/2` for the primary application, followed by calls to `Module:start_phase/3` for each start phase (as defined for the primary application) both for the primary application and for each of its included application, for which the start phase is defined. This implies that for an included application, the set of start phases must be a subset of the set of phases defined for the primary application. Refer to OTP Design Principles for more information.

SEE ALSO

application(3) [page 26], systools(3)
**config**

**File**

A configuration file contains values for configuration parameters for the applications in the system. The `erl` command line argument `-config Name` tells the system to use data in the system configuration file `Name.config`.

Configuration parameter values in the configuration file will override the values in the application resource files (see `app(4)`). The values in the configuration file can be overridden by command line flags (see `erl(1)`).

The value of a configuration parameter is retrieved by calling `application:get_env/1,2`.

**FILE SYNTAX**

The configuration file should be called `Name.config` where `Name` is an arbitrary name. The `.config` file contains one single Erlang term. The file has the following syntax:

```
{{Application1, [{Par11, Val11}, ..]}, ..
{ApplicationN, [{ParN1, ValN1}, ..]}].
```

- `Application = atom()` is the name of the application.
- `Par = atom()` is the name of a configuration parameter.
- `Val = term()` is the value of a configuration parameter.

**sys.config**

When starting Erlang in embedded mode, it is assumed that exactly one system configuration file is used, named `sys.config`. This file should be located in `$ROOT/releases/Vsn`, where `$ROOT` is the Erlang/OTP root installation directory and `Vsn` is the release version.

Release handling relies on this assumption. When installing a new release version, the new `sys.config` is read and used to update the application configurations.

This means that specifying another, or additional, `.config` files would lead to inconsistent update of application configurations. Therefore, in Erlang 5.4/OTP R10B, the syntax of `sys.config` was extended to allow pointing out other `.config` files:

```
{{Application, [{Par, Val}]} | File].
```

- `File = string()` is the name of another `.config` file. The extension `.config` may be omitted. It is recommended to use absolute paths. A relative path is relative the current working directory of the emulator.
When traversing the contents of `sys.config` and a filename is encountered, its contents are read and merged with the result so far. When an application configuration tuple `{Application, Env}` is found, it is merged with the result so far. Merging means that new parameters are added and existing parameter values overwritten. Example:

```
sys.config:

[myapp, [{par1, val1}, {par2, val2}],
 "home/user/myconfig"].
```

```
myconfig.config:

[myapp, [{par2, val3}, {par3, val4}]].
```

This will yield the following environment for `myapp`:

```
[{par1, val1}, {par2, val3}, {par3, val4}]
```

The behaviour if a file specified in `sys.config` does not exist or is erroneous in some other way, is backwards compatible. Starting the runtime system will fail. Installing a new release version will not fail, but an error message is given and the erroneous file is ignored.

SEE ALSO

`app(4)`, `erl(1)`, `OTP Design Principles`
Index of Modules and Functions

Modules are typed in this way. Functions are typed in this way.

abcast/2
    rpc , 182
abcast/3
    rpc , 182
abort/1
    gen_sctp , 115
accept/1
    gen_tcp , 130
accept/2
    gen_tcp , 130
accessible_logs/0
    disk_log , 50
add_path/1
    code , 41
add_patha/1
    code , 41
add_paths/1
    code , 41
add_pathsa/1
    code , 42
add_pathsz/1
    code , 41
add_pathz/1
    code , 41
add_report_handler/1
    error_logger , 87
add_report_handler/2
    error_logger , 87
add_slave/1
    erl_boot_server , 63
all_loaded/0
    code , 44
allow/1

net_kernel , 165
alog/2
    disk_log , 50
alog_terms/2
    disk_log , 50
application
    get_all_env/0, 26
    get_all_env/1, 26
    get_all_key/0, 26
    get_all_key/1, 26
    get_application/0, 27
    get_application/1, 27
    get_env/1, 27
    get_env/2, 27
    get_key/1, 27
    get_key/2, 27
    load/1, 27
    load/2, 27
    loaded_applications/0, 28
    Module:config_change/3, 34
    Module:prep_stop/1, 33
    Module:start/2, 32
    Module:start_phase/3, 33
    Module:stop/1, 34
    permit/2, 28
    set_env/3, 29
    set_env/4, 29
    start/1, 29
    start/2, 29
    start_type/0, 30
    stop/1, 30
    takeover/2, 31
    unload/1, 31
    unset_env/2, 31
    unset_env/3, 31
    which_applications/0, 32
    which_applications/1, 32
async_call/4
    rpc , 179
auth
  cookie/0, 35
  cookie/1, 35
  is_auth/1, 35
  node_cookie/2, 35

balog/2
disk_log, 50

balog_terms/2
disk_log, 50

bchunk/2
disk_log, 52

bchunk/3
disk_log, 52

block/1
disk_log, 51

block/2
disk_log, 51

block_call/4
  rpc, 178

block_call/6
  rpc, 179

blog/2
disk_log, 56

blog_terms/2
disk_log, 57

breopen/3
disk_log, 60

btruncate/2
disk_log, 61

call/4
  rpc, 178

call/5
  rpc, 178

cast/4
  rpc, 181

change_group/2
  file, 90

change_header/2
disk_log, 51

change_notify/3
disk_log, 51

change_owner/2
  file, 90

change_owner/3
  file, 91

change_size/2
disk_log, 52

change_time/2
  file, 91

change_time/3
  file, 91

chunk/1
  wrap_log_reader, 194

chunk/2
disk_log, 52
  wrap_log_reader, 194

chunk/3
disk_log, 52

chunk_info/1
disk_log, 53

chunk_step/3
disk_log, 53

clash/0
  code, 47

clear_cmd/0
  heart, 148

close/1
disk_log, 54
  file, 91

  gen_sctp, 115

  gen_tcp, 132

  gen_udp, 137

  inet, 150

  wrap_log_reader, 195

cmd/1
  os, 169

code
  add_path/1, 41
  add_patha/1, 41
  add_paths/1, 41
  add_pathsa/1, 42
  add_pathsz/1, 41
  add_pathz/1, 41
  all_loaded/0, 44
  clash/0, 47

  compiler_dir/0, 46

  del_path/1, 42

  delete/1, 43
ensure_loaded/1, 43
get_object_code/1, 45
get_path/0, 41
is_loaded/1, 44
is_module_native/1, 47
is_sticky/1, 47
lib_dir/0, 45
lib_dir/1, 45
lib_dir/2, 46
load_abs/1, 43
load_binary/3, 43
load_file/1, 42
objfile_extension/0, 46
priv_dir/1, 46
purge/1, 44
rehash/0, 47
replace_path/2, 42
root_dir/0, 45
set_path/1, 41
soft_purge/1, 44
stick_dir/1, 46
unstick_dir/1, 47
where_is_file/1, 47
which/1
compiler_dir/0
code, 46
copy/3
file, 92
create/1
pg2, 175
del_dir/1
file, 92
del_lock/1
global, 139
del_lock/2
global, 139
del_path/1
code, 42
delete/1
code, 43
file, 93
pg2, 175
delete_report_handler/1
erl.boot.server, 63
delete_slave/1
demonitor/1
erl.ddll, 66
disk_log
accessible_logs/0, 50
alog/2, 50
alog_terms/2, 50
balog/2, 50
balog_terms/2, 50
bchunk/2, 52
bchunk/3, 52
block/1, 51
block/2, 51
blog/2, 56
terms/2, 57
breopen/3, 60
btruncate/2, 61
change_header/2, 51
change_notify/3, 51
change_size/2, 52
chunk/2, 52
chunk/3, 52
chunk_info/1, 53
chunk_step/3, 53
close/1, 54
format_error/1, 54
inc_wrap_file/1, 54
info/1, 54
connect/3
gen_tcp, 129
connect/4
gen_sctp, 115
gen_tcp, 129
connect/5
gen_sctp, 115
connect_node/1
net Kernel, 165
consult/1
file, 91
controlling_process/1
gen_sctp, 116
controlling_process/2
gen_tcp, 132
gen_udp, 136
cookie/0
auth, 35
cookie/1
auth, 35
copy/2
file, 92
Kernel Application (KERNEL)
ensure_loaded/1
  code/1, 43

eof/2
gensctp/1, 116
erl_boot_server
  add_slave/1, 63
delete_slave/1, 63
  start/1, 62
  start_link/1, 62
  which_slaves/0, 63
erl_ddll
demonitor/1, 66
  format_error/1, 78
  info/0, 66
  info/1, 66
  info/2, 67
  load/2, 67
  load_driver/2, 68
  loaded_drivers/0, 78
  monitor/2, 69
  reload/2, 70
  reload_driver/2, 71
  try_load/3, 72
  try_unload/2, 75
  unload/1, 77
  unload_driver/1, 77
error_handler
  undefined_function/3, 81
  undefined_lambda/3, 81
error_logger
  add_report_handler/1, 87
  add_report_handler/2, 87
  delete_report_handler/1, 87
  error_msg/1, 83
  error_msg/2, 83
  error_report/1, 84
  error_report/2, 84
  format/2, 83
  info_msg/1, 86
  info_msg/2, 86
  info_report/1, 86
  info_report/2, 87
  logfile/1, 88
  tty/1, 87
  warning_map/0, 84
  warning_msg/1, 85
  warning_msg/2, 85
  warning_report/1, 85
  warning_report/2, 86
eval/1
gensctp/1, 119
eval/2
gensctp/1, 119
eval_everywhere/3
rpc/1, 181
eval_everywhere/4
rpc/1, 181
eval/1
gensctp/1, 119
eval/2
gensctp/1, 119
file
close/1, 56
close/2, 56
log/2, 56
log_terms/2, 56
open/1, 57
pid2name/1, 60
reopen/2, 60
reopen/3, 60
sync/1, 61
truncate/1, 61
truncate/2, 61
unblock/1, 61
dns_hostname/1
  netadm/1, 162
delete/1
close/2, 56
log/2, 56
log_terms/2, 56
open/1, 57
pid2name/1, 60
reopen/2, 60
reopen/3, 60
sync/1, 61
truncate/1, 61
truncate/2, 61
unblock/1, 61
dns_hostname/1
  netadm/1, 162
format_error/1, 94
get_cwd/0, 94
get_cwd/1, 94
list_dir/1, 95
make_dir/1, 95
make_link/2, 95
make_sym_link/2, 96
open/2, 96
path_consult/2, 99
path_eval/2, 99
path_open/3, 100
path_script/2, 100
path_script/3, 101
pid2name/1, 101
position/2, 101
pread/2, 102
pread/3, 102
pwrite/2, 102
pwrite/3, 103
read/2, 103
read_file/1, 104
read_file_info/1, 104
read_link/1, 105
read_link_info/1, 106
rename/2, 106
script/1, 106
script/2, 107
set_cwd/1, 107
close/1, 115
connect/4, 115
connect/5, 115
controlling_process/1, 116
eof/2, 116
error_string/1, 119
listen/2, 116
open/0, 117
open/1, 117
open/2, 117
recv/1, 117
send/3, 119
send/4, 119
generic
accept/1, 130
accept/2, 130
close/1, 132
connect/3, 129
connect/4, 129
controlling_process/2, 132
listen/2, 130
recv/2, 131
recv/3, 131
send/2, 131
shutdown/2, 132
generic
accept/1, 130
accept/2, 130
close/1, 132
connect/3, 129
connect/4, 129
controlling_process/2, 132
listen/2, 130
recv/2, 131
recv/3, 131
send/2, 131
shutdown/2, 132
get_all_env/0
application, 26
generic
get_all_env/1
application, 26
generic
generic
get_all_key/0
application, 26
generic
get_all_key/1
application, 26
generic
generic
get_application/0
application, 27
generic
get_application/1
application, 27
generic
generic
get_closest_pid/1
pg2, 175
get_cmd/0
heart, 148
get_cwd/0
  file, 94
get_cwd/1
  file, 94
get_env/1
  application, 27
get_env/2
  application, 27
get_key/1
  application, 27
get_key/2
  application, 27
get_local_members/1
  pg2, 176
get_members/1
  pg2, 176
get_net_ticktime/0
  net_kernel, 167
get_object_code/1
  code, 45
get_path/0
  code, 41
get_rc/0
  inet, 150
get_system_tracer/0
  seq_trace, 187
get_token/0
  seq_trace, 186
get_token/1
  seq_trace, 186
getaddr/2
  inet, 151
getaddr/2
  inet, 151
getenv/0
  os, 169
getenv/1
  os, 170
gethostbyaddr/1
  inet, 151
gethostbyname/1
  inet, 151
gethostbyname/2
  inet, 151
gethostbyname/2
  inet, 151
gethostname/0
  inet, 151
gethostname/1
  inet, 151
gethostname/2
  inet, 151
get_network/0
  os, 170
getstat/1
  inet, 153
getstat/2
  inet, 153
global
del_lock/1, 139
del_lock/2, 139
notify_all_name/3, 139
random_exit_name/3, 139
random_notify_name/3, 139
re_register_name/2, 140
re_register_name/3, 140
register_name/2, 140
register_name/3, 140
registered_names/0, 140
send/2, 141
set_lock/1, 141
set_lock/2, 141
set_lock/3, 141
sync/0, 142
trans/2, 142
trans/3, 142
trans/4, 142
unregister_name/1, 142
whereis_name/1, 142
global_group
global_groups/0, 144
info/0, 144
monitor_nodes/1, 144
own_nodes/0, 144
registered_names/1, 145
send/2, 145
send/3, 145
sync/0, 145
whereis_name/1, 145
whereis_name/2, 145
global_groups/0
global_group, 144

heart
clear_cmd/0, 148
get_cmd/0, 148
set_cmd/1, 148
host_file/0
  net_adm, 162
inc_wrap_file/1
disk_log, 54
inet
close/1, 150
format_error/1, 150
get_rc/0, 150
getaddr/2, 151
getaddrs/2, 151
gethostbyaddr/1, 151
gethostbyname/1, 151
gethostbyname/2, 151
gethostname/0, 151
getopt/2, 152
getstat/1, 153
getstat/2, 153
peername/1, 153
port/1, 153
setopt/2, 154
sockname/1, 154
info/0
erl_drl, 66
global_group, 144
info/1
disk_log, 54
erl_drl, 66
info/2
erl_drl, 67
info_msg/1
  error_logger, 86
info_msg/2
  error_logger, 86
info_report/1
  error_logger, 86
info_report/2
  error_logger, 87
is_auth/1
  auth, 35
is_loaded/1
code, 44
is_module_native/1
code, 47
is_sticky/1
code, 47
join/2
pg2, 176
lclose/1
disk_log, 56
lclose/2
disk_log, 56
leave/2
pg2, 176
lib_dir/0
code, 45
lib_dir/1
code, 45
lib_dir/2
code, 46
list_dir/1
  file, 95
listen/2
gen_sctp, 116
gen_tcp, 130
load/1
  application, 27
load/2
  application, 27
erl_drl, 67
load_abs/1
code, 43
load_binary/3
code, 43
load_driver/2
erl_drl, 68
load_file/1
code, 42
loaded_applications/0
  application, 28
load_drivers/0
  erl_drl, 78
localhost/0
  net_adm, 162
log/2
disk_log, 56
log_terms/2
Kernel Application (KERNEL)
disk_log, 56
logfile/1
    error_logger, 88
make_dir/1
    file, 95
make_link/2
    file, 95
make_symlink/2
    file, 96
Module: config_change/3
    application, 34
Module: prep_stop/1
    application, 33
Module: start/2
    application, 32
Module: start_phase/3
    application, 33
Module: stop/1
    application, 34
monitor/2
    erldll, 69
monitor_nodes/1
    global_group, 144
    net_kernel, 166
monitor_nodes/2
    net_kernel, 166
multi_server_call/2
    rpc, 183
multi_server_call/3
    rpc, 183
multicall/3
    rpc, 180
multicall/4
    rpc, 180
multicall/5
    rpc, 180
names/0
    netadm, 162
names/1
    netadm, 162
nb_yield/1
    rpc, 179

nb_yield/2
    rpc, 180

netadm
dns_hostname/1, 162
    host_file/0, 162
    localhost/0, 162
    names/0, 162
    names/1, 162
    ping/1, 163
    world/0, 163
    world/1, 163
    world_list/1, 163
    world_list/2, 163

netkernel
allow/1, 165
    connect_node/1, 165
get_net_ticktime/0, 167
    monitor_nodes/1, 166
    monitor_nodes/2, 166
    set_net_ticktime/1, 167
    set_net_ticktime/2, 167
start/1, 168
start/2, 168
start/3, 168
stop/0, 168
no functions exported
packages, 174
node_cookie/2
    auth, 35
notify_all_name/3
    global, 139
objfile_extension/0
    code, 46
open/0
    gen_sctp, 117
open/1
    disk_log, 57
    gen_sctp, 117
    gen_udp, 135
    wrap_log_reader, 195
open/2
    file, 96
    gen_sctp, 117
    gen_udp, 135
    wrap_log_reader, 195
os
cmd/1, 169
find_executable/1, 169
find_executable/2, 169
getenv/0, 169
getenv/1, 170
getpid/0, 170
putenv/2, 170
timestamp/0, 170
type/0, 171
version/0, 171

own_nodes/0
  global_group, 144

packages
  no functions exported, 174
parallel_eval/1
  rpc, 184
path_consult/2
  file, 99
path_eval/2
  file, 99
path_open/3
  file, 100
path_script/2
  file, 100
path_script/3
  file, 101
peername/1
  inet, 153
permit/2
  application, 28

pg2
create/1, 175
delete/1, 175
get_closest_pid/1, 175
get_local_members/1, 176
get_members/1, 176
join/2, 176
leave/2, 176
start/0, 176
start_link/0, 176
which_groups/0, 176

pid2name/1
  disk_log, 60
  file, 101

pinfo/1
  rpc, 184
pinfo/2

rpc, 184

ping/1
  netadm, 163
pmap/4
  rpc, 184
port/1
  inet, 153
position/2
  file, 101
pread/2
  file, 102
pread/3
  file, 102
print/1
  seq_trace, 186
print/2
  seq_trace, 186
priv_dir/1
  code, 46
purge/1
  code, 44
putenv/2
  os, 170
pwrite/2
  file, 102
pwrite/3
  file, 103

random_exit_name/3
  global, 139
random_notify_name/3
  global, 139
re_register_name/2
  global, 140
re_register_name/3
  global, 140
read/2
  file, 103
read_file/1
  file, 104
read_file_info/1
  file, 104
read_link/1
file, 105
read_link_info/1
  file, 106
recv/1
gen_sctp, 117
recv/2
gen_tcp, 131
gen_udp, 136
recv/3
gen_tcp, 131
gen_udp, 136
register_name/2
global, 140
register_name/3
global, 140
registered_names/0
global, 140
registered_names/1
global_group, 145
rehash/0
code, 47
reload/2
erl_ddll, 70
reload_driver/2
erl_ddll, 71
rename/2
  file, 106
reopen/2
disk_log, 60
reopen/3
disk_log, 60
replace_path/2
code, 42
reset_trace/0
  seq_trace, 187
root_dir/0
code, 45
rpc
  abcast/2, 182
  abcast/3, 182
  async_call/4, 179
  block_call/4, 178
  block_call/5, 179
  call/4, 178
call/5, 178
  cast/4, 181
  eval_everywhere/3, 181
  eval_everywhere/4, 181
multi_server_call/2, 183
multi_server_call/3, 183
multicall/3, 180
multicall/4, 180
multicall/5, 180
  nb_yield/1, 179
  nb_yield/2, 180
parallel_eval/1, 184
  pinfo/1, 184
  pinfo/2, 184
  pmap/4, 184
safe_multi_server_call/2, 183
safe_multi_server_call/3, 183
sbcast/2, 182
sbcast/3, 182
server_call/4, 182
  yield/1, 179
safe_multi_server_call/2
  rpc, 183
safe_multi_server_call/3
  rpc, 183
sbcast/2
  rpc, 182
sbcast/3
  rpc, 182
script/1
  file, 106
script/2
  file, 107
send/2
  gen_tcp, 131
global, 141
global_group, 145
send/3
  gen_sctp, 119
global_group, 145
send/4
  gen_sctp, 119
gen_udp, 136
seq_trace
  get_system_tracer/0, 187
  get_token/0, 186
  get_token/1, 186
Kernel Application (KERNEL)