A behaviour module for implementing a supervisor, a process which supervises other processes called child processes. A child process can either be another supervisor or a worker process. Worker processes are normally implemented using one of the gen_event, gen_fsm, or gen_server behaviours. A supervisor implemented using this module will have a standard set of interface functions and include functionality for tracing and error reporting. Supervisors are used to build an hierarchical process structure called a supervision tree, a nice way to structure a fault tolerant application. Refer to OTP Design Principles for more information.
A supervisor assumes the definition of which child processes to supervise to be located in a callback module exporting a pre-defined set of functions.
Unless otherwise stated, all functions in this module will fail if the specified supervisor does not exist or if bad arguments are given.
The supervisor is responsible for starting, stopping and monitoring its child processes. The basic idea of a supervisor is that it should keep its child processes alive by restarting them when necessary.
The children of a supervisor is defined as a list of child specifications. When the supervisor is started, the child processes are started in order from left to right according to this list. When the supervisor terminates, it first terminates its child processes in reversed start order, from right to left.
A supervisor can have one of the following restart strategies:
To prevent a supervisor from getting into an infinite loop of child process terminations and restarts, a maximum restart frequency is defined using two integer values MaxR and MaxT. If more than MaxR restarts occur within MaxT seconds, the supervisor terminates all child processes and then itself.
This is the type definition of a child specification:
child_spec() = {Id,StartFunc,Restart,Shutdown,Type,Modules} Id = term() StartFunc = {M,F,A} M = F = atom() A = [term()] Restart = permanent | transient | temporary Shutdown = brutal_kill | int()>=0 | infinity Type = worker | supervisor Modules = [Module] | dynamic Module = atom()
start_link(Module, Args) -> Result
start_link(SupName, Module, Args) -> Result
Types:
SupName = {local,Name} | {global,Name}
Name = atom()
Module = atom()
Args = term()
Result = {ok,Pid} | ignore | {error,Error}
Pid = pid()
Error = {already_started,Pid}} | shutdown | term()
Creates a supervisor process as part of a supervision tree. The function will, among other things, ensure that the supervisor is linked to the calling process (its supervisor).
The created supervisor process calls Module:init/1 to find out about restart strategy, maximum restart frequency and child processes. To ensure a synchronized start-up procedure, start_link/2,3 does not return until Module:init/1 has returned and all child processes have been started.
If SupName={local,Name} the supervisor is registered locally as Name using register/2. If SupName={global,Name} the supervisor is registered globally as Name using global:register_name/2. If no name is provided, the supervisor is not registered.
Module is the name of the callback module.
Args is an arbitrary term which is passed as the argument to Module:init/1.
If the supervisor and its child processes are successfully created (i.e. if all child process start functions return {ok,Child}, {ok,Child,Info}, or ignore) the function returns {ok,Pid}, where Pid is the pid of the supervisor. If there already exists a process with the specified SupName the function returns {error,{already_started,Pid}}, where Pid is the pid of that process.
If Module:init/1 returns ignore, this function returns ignore as well and the supervisor terminates with reason normal. If Module:init/1 fails or returns an incorrect value, this function returns {error,Term} where Term is a term with information about the error, and the supervisor terminates with reason Term.
If any child process start function fails or returns an error tuple or an erroneous value, the function returns {error,shutdown} and the supervisor terminates all started child processes and then itself with reason shutdown.
start_child(SupRef, ChildSpec) -> Result
Types:
SupRef = Name | {Name,Node} | {global,Name} | pid()
Name = Node = atom()
ChildSpec = child_spec() | [term()]
Result = {ok,Child} | {ok,Child,Info} | {error,Error}
Child = pid() | undefined
Info = term()
Error = already_present | {already_started,Child} | term()
Dynamically adds a child specification to the supervisor SupRef which starts the corresponding child process.
SupRef can be:
ChildSpec should be a valid child specification (unless the supervisor is a simple_one_for_one supervisor, see below). The child process will be started by using the start function as defined in the child specification.
If the case of a simple_one_for_one supervisor, the child specification defined in Module:init/1 will be used and ChildSpec should instead be an arbitrary list of terms List. The child process will then be started by appending List to the existing start function arguments, i.e. by calling apply(M, F, A++List) where {M,F,A} is the start function defined in the child specification.
If there already exists a child specification with the specified Id, ChildSpec is discarded and the function returns {error,already_present} or {error,{already_started,Child}}, depending on if the corresponding child process is running or not.
If the child process start function returns {ok,Child} or {ok,Child,Info}, the child specification and pid is added to the supervisor and the function returns the same value.
If the child process start function returns ignore, the child specification is added to the supervisor, the pid is set to undefined and the function returns {ok,undefined}.
If the child process start function returns an error tuple or an erroneous value, or if it fails, the child specification is discarded and the function returns {error,Error} where Error is a term containing information about the error and child specification.
terminate_child(SupRef, Id) -> Result
Types:
SupRef = Name | {Name,Node} | {global,Name} | pid()
Name = Node = atom()
Id = term()
Result = ok | {error,Error}
Error = not_found | simple_one_for_one
Tells the supervisor SupRef to terminate the child process corresponding to the child specification identified by Id. The process, if there is one, is terminated but the child specification is kept by the supervisor. This means that the child process may be later be restarted by the supervisor. The child process can also be restarted explicitly by calling restart_child/2. Use delete_child/2 to remove the child specification.
See start_child/2 for a description of SupRef.
If successful, the function returns ok. If there is no child specification with the specified Id, the function returns {error,not_found}.
delete_child(SupRef, Id) -> Result
Types:
SupRef = Name | {Name,Node} | {global,Name} | pid()
Name = Node = atom()
Id = term()
Result = ok | {error,Error}
Error = running | not_found | simple_one_for_one
Tells the supervisor SupRef to delete the child specification identified by Id. The corresponding child process must not be running, use terminate_child/2 to terminate it.
See start_child/2 for a description of SupRef.
If successful, the function returns ok. If the child specification identified by Id exists but the corresponding child process is running, the function returns {error,running}. If the child specification identified by Id does not exist, the function returns {error,not_found}.
restart_child(SupRef, Id) -> Result
Types:
SupRef = Name | {Name,Node} | {global,Name} | pid()
Name = Node = atom()
Id = term()
Result = {ok,Child} | {ok,Child,Info} | {error,Error}
Child = pid() | undefined
Error = running | not_found | simple_one_for_one | term()
Tells the supervisor SupRef to restart a child process corresponding to the child specification identified by Id. The child specification must exist and the corresponding child process must not be running.
See start_child/2 for a description of SupRef.
If the child specification identified by Id does not exist, the function returns {error,not_found}. If the child specification exists but the corresponding process is already running, the function returns {error,running}.
If the child process start function returns {ok,Child} or {ok,Child,Info}, the pid is added to the supervisor and the function returns the same value.
If the child process start function returns ignore, the pid remains set to undefined and the function returns {ok,undefined}.
If the child process start function returns an error tuple or an erroneous value, or if it fails, the function returns {error,Error} where Error is a term containing information about the error.
which_children(SupRef) -> [{Id,Child,Type,Modules}]
Types:
SupRef = Name | {Name,Node} | {global,Name} | pid()
Name = Node = atom()
Id = term() | undefined
Child = pid() | undefined
Type = worker | supervisor
Modules = [Module] | dynamic
Module = atom()
Returns a list with information about all child specifications and child processes belonging to the supervisor SupRef.
See start_child/2 for a description of SupRef.
The information given for each child specification/process is:
check_childspecs([ChildSpec]) -> Result
Types:
ChildSpec = child_spec()
Result = ok | {error,Error}
Error = term()
This function takes a list of child specification as argument and returns ok if all of them are syntactically correct, or {error,Error} otherwise.
The following functions should be exported from a supervisor callback module.
Types:
Args = term()
Result = {ok,{{RestartStrategy,MaxR,MaxT},[ChildSpec]}} | ignore
RestartStrategy = one_for_all | one_for_one | rest_for_one | simple_one_for_one
MaxR = MaxT = int()>=0
ChildSpec = child_spec()
Whenever a supervisor is started using supervisor:start_link/2,3, this function is called by the new process to find out about restart strategy, maximum restart frequency and child specifications.
Args is the Args argument provided to the start function.
RestartStrategy is the restart strategy and MaxR and MaxT defines the maximum restart frequency of the supervisor. [ChildSpec] is a list of valid child specifications defining which child processes the supervisor should start and monitor. See the discussion about Supervision Principles above.
Note that when the restart strategy is simple_one_for_one, the list of child specifications must be a list with one child specification only. (The Id is ignored). No child process is then started during the initialization phase, but all children are assumed to be started dynamically using supervisor:start_child/2.
The function may also return ignore.