
Test Server
Copyright © 2002-2014 Ericsson AB. All Rights Reserved.

Test Server 3.6.4
January 23, 2014

Copyright © 2002-2014 Ericsson AB. All Rights Reserved.
The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

January 23, 2014

Ericsson AB. All Rights Reserved.: Test Server | 1

1.1 Test Server Basics

2 | Ericsson AB. All Rights Reserved.: Test Server

1 Test Server User's Guide

Test Server is a portable test server for automated application testing. The server can run test suites and log progress
and results to HTML pages. The main purpose of Test Server is to act as engine inside customized test tools. A callback
interface for such framework applications is provided.

1.1 Test Server Basics
1.1.1 Introduction
Test Server is a portable test tool for automated testing of Erlang programs and OTP applications. It provides an
interface for running test programs directly with Test Server as well as an interface for integrating Test Server with
a framework application. The latter makes it possible to use Test Server as the engine of a higher level test tool
application.

It is strongly recommended that Test Server be used from inside a framework application, rather than interfaced directly
for running test programs. Test Server can be pretty difficult to use since it's a very general and quite extensive and
complex application. Furthermore, the test_server_ctrl functions are not meant to be used from within the
actual test programs. The framework should handle communication with Test Server and deal with the more complex
aspects of this interaction automatically so that a higher level interface may be provided for the tester. For test tool
usage to be productive, a simpler, more intuitive and (if required) more specific interface is required than what Test
Server can provide.

OTP delivers a general purpose framework for Test Server, called Common Test. This application is a tool well suited
for automated black box testing of target systems of any kind (not necessarily implemented in Erlang). Common Test
is also a very useful tool for white box testing of Erlang programs and OTP applications. Unless a more specific
functionality and/or user interface is required (in which case you might need to implement your own framework),
Common Test should do the job for you. Please read the Common Test User's Guide and reference manual for more
information.

Under normal circumstances, knowledge about the Test Server application is not required for using the Common Test
framework. However, if you want to use Test Server without a framework, or learn how to integrate it with your own
framework, please read on...

1.1.2 Getting started
Testing when using Test Server is done by running test suites. A test suite is a number of test cases, where each test
case tests one or more things. The test case is the smallest unit that the test server deals with. One or more test cases
are grouped together into one ordinary Erlang module, which is called a test suite. Several test suite modules can be
grouped together in special test specification files representing whole application and/or system test "jobs".

The test suite Erlang module must follow a certain interface, which is specified by Test Server. See the section on
writing test suites for details about this.

Each test case is considered a success if it returns to the caller, no matter what the returned value is. An exception to
this is the return value {skip, Reason} which indicates that the test case is skipped. A failure is specified as a
crash, no matter what the crash reason is.

As a test suite runs, all information (including output to stdout) is recorded in several different log files. A minimum
of information is displayed to the user console. This only include start and stop information, plus a note for each failed
test case.

1.1 Test Server Basics

Ericsson AB. All Rights Reserved.: Test Server | 3

The result from each test case is recorded in an HTML log file which is created for each test run. Every test case gets
one row in a table presenting total time, whether the case was successful or not, if it was skipped, and possibly also a
comment. The HTML file has links to each test case's logfile, which may be viewed from e.g. Netscape or any other
HTML capable browser.

The Test Server consists of three parts:

• The part that executes the test suites and provides support for the test suite author is called test_server.
This is described in the chapter about writing test cases in this user's guide, and in the reference manual for the
test_server module.

• The controlling part, which provides the low level operator interface, starts and stops slave nodes and writes
log files, is called test_server_ctrl. The Test Server Controller should not be used directly when
running tests. Instead a framework built on top of it should be used. More information about how to write your
own framework can be found in this user's guide and in the reference manual for the test_server_ctrl
module.

1.1.3 Definition of terms
conf(iguration) case

This is a group of test cases which need some specific configuration. A conf case contains
an initiation function which sets up a specific configuration, one or more test cases using this
configuration, and a cleanup function which restores the configuration. A conf case is specified in a
test specification either like this:{conf,InitFunc,ListOfCases,CleanupFunc}, or this:
{conf,Properties,InitFunc,ListOfCases,CleanupFunc}

datadir
Data directory for a test suite. This directory contains any files used by the test suite, e.g. additional erlang
modules, c code or data files. If the data directory contains code which must be compiled before the test suite is
run, it should also contain a makefile source called Makefile.src defining how to compile.

documentation clause
One of the function clauses in a test case. This clause shall return a list of strings describing what the test case
tests.

execution clause
One of the function clauses in a test case. This clause implements the actual test case, i.e. calls the functions
that shall be tested and checks results. The clause shall crash if it fails.

major log file
This is the test suites log file.

Makefile.src
This file is used by the test server framework to generate a makefile for a datadir. It contains some special
characters which are replaced according to the platform currently tested.

minor log file
This is a separate log file for each test case.

privdir
Private directory for a test suite. This directory should be used when the test suite needs to write to files.

skip case
A test case which shall be skipped.

specification clause
One of the function clauses in a test case. This clause shall return an empty list, a test specification or
{skip,Reason}. If an empty list is returned, it means that the test case shall be executed, and so it must also
have an execution clause.

test case
A single test included in a test suite. Typically it tests one function in a module or application. A test case is
implemented as a function in a test suite module. The function can have three clauses, the documentation-,
specification- and execution clause.

1.2 Test Structure and Test Specifications

4 | Ericsson AB. All Rights Reserved.: Test Server

test specification
A specification of which test suites and test cases to run. There can be test specifications on three different
levels in a test. The top level is a test specification file which roughly specifies what to test for a whole
application. Then there is a test specification for each test suite returned from the all(suite) function in the
suite. And there can also be a test specification returned from the specification clause of a test case.

test specification file
This is a text file containing the test specification for an application. The file has the extension ".spec" or
".spec.Platform", where Platform is e.g. "vxworks".

test suite
An erlang module containing a collection of test cases for a specific application or module.

topcase
The first "command" in a test specification file. This command contains the test specification, like this:
{topcase,TestSpecification}

1.2 Test Structure and Test Specifications
1.2.1 Test structure
A test consists of a set of test cases. Each test case is implemented as an erlang function. An erlang module
implementing one or more test cases is called a test suite.

1.2.2 Test specifications
A test specification is a specification of which test suites and test cases to run and which to skip. A test specification
can also group several test cases into conf cases with init and cleanup functions (see section about configuration cases
below). In a test there can be test specifications on three different levels:

The top level is a test specification file which roughly specifies what to test for a whole application. The test
specification in such a file is encapsulated in a topcase command.

Then there is a test specification for each test suite, specifying which test cases to run within the suite. The test
specification for a test suite is returned from the all(suite) function in the test suite module.

And finally there can be a test specification per test case, specifying sub test cases to run. The test specification for a
test case is returned from the specification clause of the test case.

When a test starts, the total test specification is built in a tree fashion, starting from the top level test specification.

The following are the valid elements of a test specification. The specification can be one of these elements or a list
with any combination of the elements:

{Mod, Case}
This specifies the test case Mod:Case/1

{dir, Dir}
This specifies all modules *_SUITE in the directory Dir

{dir, Dir, Pattern}
This specifies all modules Pattern* in the directory Dir

{conf, Init, TestSpec, Fin}
This is a configuration case. In a test specification file, Init and Fin must be {Mod,Func}. Inside a
module they can also be just Func. See the section named Configuration Cases below for more information
about this.

{conf, Properties, Init, TestSpec, Fin}
This is a configuration case as explained above, but which also takes a list of execution properties for its group
of test cases and nested sub-groups.

1.2 Test Structure and Test Specifications

Ericsson AB. All Rights Reserved.: Test Server | 5

{make, Init, TestSpec, Fin}
This is a special version of a conf case which is only used by the test server framework ts. Init and Fin are
make and unmake functions for a data directory. TestSpec is the test specification for the test suite owning
the data directory in question. If the make function fails, all tests in the test suite are skipped. The difference
between this "make case" and a normal conf case is that for the make case, Init and Fin are given with
arguments ({Mod,Func,Args}).

Case
This can only be used inside a module, i.e. not a test specification file. It specifies the test case
CurrentModule:Case.

1.2.3 Test Specification Files
A test specification file is a text file containing the top level test specification (a topcase command), and possibly
one or more additional commands. A "command" in a test specification file means a key-value tuple ended by a dot-
newline sequence.

The following commands are valid:

{topcase, TestSpec}
This command is mandatory in all test specification files. TestSpec is the top level test specification of a test.

{skip, {Mod, Comment}}
This specifies that all cases in the module Mod shall be skipped. Comment is a string.

{skip, {Mod, Case, Comment}}
This specifies that the case Mod:Case shall be skipped.

{skip, {Mod, CaseList, Comment}}
This specifies that all cases Mod:Case, where Case is in CaseList, shall be skipped.

{nodes, Nodes}
Nodes is a list of nodenames available to the test suite. It will be added to the Config argument to all test
cases. Nodes is a list of atoms.

{require_nodenames, Num}
Specifies how many nodenames the test suite will need. Theese will be automatically generated and inserted
into the Config argument to all test cases. Num is an integer.

{hosts, Hosts}
This is a list of available hosts on which to start slave nodes. It is used when the {remote, true} option
is given to the test_server:start_node/3 function. Also, if {require_nodenames, Num} is
contained in a test specification file, the generated nodenames will be spread over all hosts given in this Hosts
list. The hostnames are atoms or strings.

{diskless, true}
Adds {diskless, true} to the Config argument to all test cases. This is kept for backwards
compatibility and should not be used. Use a configuration case instead.

{ipv6_hosts, Hosts}
Adds {ipv6_hosts, Hosts} to the Config argument to all test cases.

All test specification files shall have the extension ".spec". If special test specification files are needed for Windows or
VxWorks platforms, additional files with the extension ".spec.win" and ".spec.vxworks" shall be used. This is useful
e.g. if some test cases shall be skipped on these platforms.

Some examples for test specification files can be found in the Examples section of this user's guide.

1.2.4 Configuration cases
If a group of test cases need the same initialization, a so called configuration or conf case can be used. A conf case
consists of an initialization function, the group of test cases needing this initialization and a cleanup or finalization
function.

1.2 Test Structure and Test Specifications

6 | Ericsson AB. All Rights Reserved.: Test Server

If the init function in a conf case fails or returns {skip,Comment}, the rest of the test cases in the conf case
(including the cleanup function) are skipped. If the init function succeeds, the cleanup function will always be called,
even if some of the test cases in between failed.

Both the init function and the cleanup function in a conf case get the Config parameter as only argument. This
parameter can be modified or returned as is. Whatever is returned by the init function is given as Config parameter
to the rest of the test cases in the conf case, including the cleanup function.

If the Config parameter is changed by the init function, it must be restored by the cleanup function. Whatever is
returned by the cleanup function will be given to the next test case called.

The optional Properties list can be used to specify execution properties for the test cases and possibly nested sub-
groups of the configuration case. The available properties are:

 Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
 Shuffle = shuffle | {shuffle,Seed}
 Seed = {integer(),integer(),integer()}
 RepeatType = repeat | repeat_until_all_ok | repeat_until_all_fail |
 repeat_until_any_ok | repeat_until_any_fail
 N = integer() | forever

If the parallel property is specified, Test Server will execute all test cases in the group in parallel. If sequence
is specified, the cases will be executed in a sequence, meaning if one case fails, all following cases will be skipped.
If shuffle is specified, the cases in the group will be executed in random order. The repeat property orders Test
Server to repeat execution of the cases in the group a given number of times, or until any, or all, cases fail or succeed.

Properties may be combined so that e.g. if shuffle, repeat_until_any_fail and sequence are all
specified, the test cases in the group will be executed repeatedly and in random order until a test case fails, when
execution is immediately stopped and the rest of the cases skipped.

The properties for a conf case is always printed on the top of the HTML log for the group's init function. Also, the
total execution time for a conf case can be found at the bottom of the log for the group's end function.

Configuration cases may be nested so that sets of grouped cases can be configured with the same init- and end functions.

1.2.5 The parallel property and nested configuration cases
If a conf case has a parallel property, its test cases will be spawned simultaneously and get executed in parallel. A test
case is not allowed to execute in parallel with the end function however, which means that the time it takes to execute
a set of parallel cases is equal to the execution time of the slowest test case in the group. A negative side effect of
running test cases in parallel is that the HTML summary pages are not updated with links to the individual test case
logs until the end function for the conf case has finished.

A conf case nested under a parallel conf case will start executing in parallel with previous (parallel) test cases (no
matter what properties the nested conf case has). Since, however, test cases are never executed in parallel with the
init- or the end function of the same conf case, it's only after a nested group of cases has finished that any remaining
parallel cases in the previous conf case get spawned.

1.2.6 Repeated execution of test cases
A conf case may be repeated a certain number of times (specified by an integer) or indefinitely (specified
by forever). The repetition may also be stopped prematurely if any or all cases fail or succeed, i.e.
if the property repeat_until_any_fail, repeat_until_any_ok, repeat_until_all_fail, or
repeat_until_all_ok is used. If the basic repeat property is used, status of test cases is irrelevant for the
repeat operation.

1.2 Test Structure and Test Specifications

Ericsson AB. All Rights Reserved.: Test Server | 7

It is possible to return the status of a conf case (ok or failed), to affect the execution of the conf case on the level above.
This is accomplished by, in the end function, looking up the value of tc_group_properties in the Config list
and checking the result of the finished test cases. If status failed should be returned from the conf case as a result,
the end function should return the value {return_group_result,failed}. The status of a nested conf case
is taken into account by Test Server when deciding if execution should be repeated or not (unless the basic repeat
property is used).

The tc_group_properties value is a list of status tuples, each with the key ok, skipped and failed. The
value of a status tuple is a list containing names of test cases that have been executed with the corresponding status
as result.

Here's an example of how to return the status from a conf case:

 conf_end_function(Config) ->
 Status = ?config(tc_group_result, Config),
 case proplists:get_value(failed, Status) of
 [] -> % no failed cases
 {return_group_result,ok};
 _Failed -> % one or more failed
 {return_group_result,failed}
 end.

It is also possible in the end function to check the status of a nested conf case (maybe to determine what status the
current conf case should return). This is as simple as illustrated in the example above, only the name of the end function
of the nested conf case is stored in a tuple {group_result,EndFunc}, which can be searched for in the status
lists. Example:

 conf_end_function_X(Config) ->
 Status = ?config(tc_group_result, Config),
 Failed = proplists:get_value(failed, Status),
 case lists:member({group_result,conf_end_function_Y}, Failed) of
 true ->
 {return_group_result,failed};
 false ->
 {return_group_result,ok}
 end;
 ...

Note:
When a conf case is repeated, the init- and end functions are also always called with each repetition.

1.2.7 Shuffled test case order
The order that test cases in a conf case are executed, is under normal circumstances the same as the order defined
in the test specification. With the shuffle property set, however, Test Server will instead execute the test cases in
random order.

The user may provide a seed value (a tuple of three integers) with the shuffle property: {shuffle,Seed}. This
way, the same shuffling order can be created every time the conf case is executed. If no seed value is given, Test
Server creates a "random" seed for the shuffling operation (using the return value of erlang:now()). The seed

1.3 Writing Test Suites

8 | Ericsson AB. All Rights Reserved.: Test Server

value is always printed to the log file of the init function so that it can be used to recreate the same execution order
in subsequent test runs.

Note:
If execution of a conf case with shuffled test cases is repeated, the seed will not be reset in between turns.

If a nested conf case is specified in a conf case with a shuffle property, the execution order of the nested cases in
relation to the test cases (and other conf cases) is also random. The order of the test cases in the nested conf case is
however not random (unless, of course, this one also has a shuffle property).

1.2.8 Skipping test cases
It is possible to skip certain test cases, for example if you know beforehand that a specific test case fails. This might be
functionality which isn't yet implemented, a bug that is known but not yet fixed or some functionality which doesn't
work or isn't applicable on a specific platform.

There are several different ways to state that a test case should be skipped:

• Using the {skip,What} command in a test specification file

• Returning {skip,Reason} from the init_per_testcase/2 function

• Returning {skip,Reason} from the specification clause of the test case

• Returning {skip,Reason} from the execution clause of the test case

The latter of course means that the execution clause is actually called, so the author must make sure that the test case
is not run. For more information about the different clauses in a test case, see the chapter about writing test cases.

When a test case is skipped, it will be noted as SKIPPED in the HTML log.

1.3 Writing Test Suites
1.3.1 Support for test suite authors
The test_server module provides some useful functions to support the test suite author. This includes:

• Starting and stopping slave or peer nodes

• Capturing and checking stdout output

• Retrieving and flushing process message queue

• Watchdog timers

• Checking that a function crashes

• Checking that a function succeeds at least m out of n times

• Checking .app files

Please turn to the reference manual for the test_server module for details about these functions.

1.3.2 Test suites
A test suite is an ordinary Erlang module that contains test cases. It's recommended that the module has a name on the
form *_SUITE.erl. Otherwise, the directory function will not find the modules (by default).

For some of the test server support, the test server include file test_server.hrl must be included. Never include
it with the full path, for portability reasons. Use the compiler include directive instead.

1.3 Writing Test Suites

Ericsson AB. All Rights Reserved.: Test Server | 9

The special function all(suite) in each module is called to get the test specification for that module. The function
typically returns a list of test cases in that module, but any test specification could be returned. Please see the chapter
about test specifications for details about this.

1.3.3 Init per test case
In each test suite module, the functions init_per_testcase/2 and end_per_testcase/2 must be
implemented.

init_per_testcase is called before each test case in the test suite, giving a (limited) possibility for initialization.

end_per_testcase/2 is called after each test case is completed, giving a possibility to clean up.

The first argument to these functions is the name of the test case. This can be used to do individual initialization and
cleanup for each test cases.

The second argument is a list of tuples called Config. The first element in a Config tuple should be an atom - a
key value to be used for searching. init_per_testcase/2 may modify the Config parameter or just return it
as is. Whatever is retuned by init_per_testcase/2 is given as Config parameter to the test case itself.

The return value of end_per_testcase/2 is ignored by the test server.

1.3.4 Test cases
The smallest unit that the test server is concerned with is a test case. Each test case can in turn test many things, for
example make several calls to the same interface function with different parameters.

It is possible to put many or few tests into each test case. How many things each test case tests is up to the author,
but here are some things to keep in mind.

Very small test cases often leads to more code, since initialization has to be duplicated. Larger code, especially with
a lot of duplication, increases maintenance and reduces readability.

Larger test cases make it harder to tell what went wrong if it fails, and force us to skip larger portions of test code if
a specific part fails. These effects are accentuated when running on multiple platforms because test cases often have
to be skipped.

A test case generally consists of three parts, the documentation part, the specification part and the execution part. These
are implemented as three clauses of the same function.

The documentation clause matches the argument 'doc' and returns a list for strings describing what the test case tests.

The specification clause matches the argument 'suite' and returns the test specification for this particular test case.
If the test specification is an empty list, this indicates that the test case is a leaf test case, i.e. one to be executed.

The execution clause implements the actual test case. It takes one argument, Config, which contain configuration
information like data_dir and priv_dir. See Data and Private Directories for more information about these.

The Config variable can also contain the nodenames key, if requested by the require_nodenames command
in the test suite specification file. All Config items should be extracted using the ?config macro. This is to ensure
future compatibility if the Config format changes. See the reference manual for test_server for details about
this macro.

If the execution clause crashes or exits, it is considered a failure. If it returns {skip,Reason}, the test case is
considered skipped. If it returns {comment,String}, the string will be added in the 'Comment' field on the HTML
result page. If the execution clause returns anything else, it is considered a success, unless it is {'EXIT',Reason}
or {'EXIT',Pid,Reason} which can't be distinguished from a crash, and thus will be considered a failure.

1.4 Running Test Suites

10 | Ericsson AB. All Rights Reserved.: Test Server

1.3.5 Data and Private Directories
The data directory (data_dir) is the directory where the test module has its own files needed for the testing. A
compiler test case may have source files to feed into the compiler, a release upgrade test case may have some old and
new release of something. A graphics test case may have some icons and a test case doing a lot of math with bignums
might store the correct answers there. The name of the data_dir is the the name of the test suite and then "_data".
For example, "some_path/foo_SUITE.beam" has the data directory "some_path/foo_SUITE_data/".

The priv_dir is the test suite's private directory. This directory should be used when a test case needs to write to
files. The name of the private directory is generated by the test server, which also creates the directory.

Warning: Do not depend on current directory to be writable, or to point to anything in particular. All scratch files are
to be written in the priv_dir, and all data files found in data_dir. If the current directory has to be something
specific, it must be set with file:set_cwd/1.

1.3.6 Execution environment
Each time a test case is about to be executed, a new process is created with spawn_link. This is so that the test case
will have no dependencies to earlier tests, with respect to process flags, process links, messages in the queue, other
processes having registered the process, etc. As little as possible is done to change the initial context of the process
(what is created by plain spawn). Here is a list of differences:

• It has a link to the test server. If this link is removed, the test server will not know when the test case is finished,
just wait infinitely.

• It often holds a few items in the process dictionary, all with names starting with 'test_server_'. This is to
keep track of if/where a test case fails.

• There is a top-level catch. All of the test case code is catched, so that the location of a crash can be reported
back to the test server. If the test case process is killed by another process (thus the catch code is never
executed) the test server is not able to tell where the test case was executing.

• It has a special group leader implemented by the test server. This way the test server is able to capture the io
that the test case provokes. This is also used by some of the test server support functions.

There is no time limit for a test case, unless the test case itself imposes such a
limit, by calling test_server:timetrap/1 for example. The call can be made in each
test case, or in the init_per_testcase/2 function. Make sure to call the corresponding
test_server:timetrap_cancel/1 function as well, e.g in the end_per_testcase/2 function, or else
the test cases will always fail.

1.4 Running Test Suites
1.4.1 Using the test server controller
The test server controller provides a low level interface to all the Test Server functionality. It is possible to use this
interface directly, but it is recommended to use a framework such as Common Test instead. If no existing framework
suits your needs, you could of course build your own on top of the test server controller. Some information about how
to do this can be found in the section named "Writing you own test server framework" in the Test Server User's Guide.

For information about using the controller directly, please see all available functions in the reference manual for
test_server_ctrl.

1.5 Write you own test server framework

Ericsson AB. All Rights Reserved.: Test Server | 11

1.5 Write you own test server framework
1.5.1 Introduction
The test server controller can be interfaced from the operating system or from within Erlang. The nature of your new
framework will decide which interface to use. If you want your framework to start a new node for each test, the
operating system interface is very convenient. If your node is already started, going from within Erlang might be a
more flexible solution.

The two methods are described below.

1.5.2 Interfacing the test server controller from Erlang
Using the test server from Erlang means that you have to start the test server and then add test jobs. Use
test_server_ctrl:start/0 to start the test server, and test_server_ctrl:stop/0 to stop it.

Adding test jobs
There are many commands available for adding test cases to the test server's job queue:

• Single test case
test_server_ctrl:add_case/2/3

• Multiple test cases from same suite
test_server_ctrl:add_cases/2/3

• Test suite module or modules
test_server_ctrl:add_module/1/2

• Some or all test suite modules in a directory
test_server_ctrl:add_dir/2/3

• Test cases specified in a test specification file
test_server_ctrl:add_spec/1

All test suites are given a unique name, which is usually given when the test suite is added to the job queue. In some
cases, a default name is used, as in the case when a module is added without a specified name. The test job name is
used to store logfiles, which are stored in the `name.logs' directory under the current directory.

See the reference manual for details about the functions for adding test jobs.

1.5.3 Interfacing the test server controller from the operating
system.
The function run_test/1 is your interface in the test server controller if you wish to use it from the operating
system. You simply start an erlang shell and invoke this function with the -s option. run_test/1 starts the test
server, runs the test specified by the command line and stops the test server. The argument to run_test/1 is a list
of command line flags, typically ['KEY1', Value1, 'KEY2', Value2, ...]. The valid command line
flags are listed in the reference manual for test_server_ctrl.

A typical command line may look like this
erl -noshell -s test_server_ctrl run_test KEY1 Value1 KEY2 Value2 ... -s erlang
halt

Or make an alias (this is for unix/tcsh)
alias erl_test 'erl -noshell -s test_server_ctrl run_test \!* -s erlang halt'

And then use it like this
erl_test KEY1 Value1 KEY2 Value2 ...

1.6 Examples

12 | Ericsson AB. All Rights Reserved.: Test Server

An Example
An example of starting a test run from the command line

erl -name test_srv -noshell -rsh /home/super/otp/bin/ctrsh
-pa /clearcase/otp/erts/lib/kernel/test
-boot start_sasl -sasl errlog_type error
-s test_server_ctrl run_test SPEC kernel.spec -s erlang halt

1.5.4 Framework callback functions
By defining the environment variable TEST_SERVER_FRAMEWORK to a module name, the framework callback
functions can be used. The framework callback functions are called by the test server in order let the framework interact
with the execution of the tests and to keep the framework upto date with information about the test progress.

The framework callback functions are described in the reference manual for test_server_ctrl.

Note that this topic is in an early stage of development, and changes might occur.

1.5.5 Other concerns
Some things to think about when writing you own test server framework:

• emulator version - Make sure that the intended version of the emulator is started.

• operating system path - If test cases use port programs, make sure the paths are correct.

• recompilation - Make sure all test suites are fresh compiled.

• test_server.hrl - Make sure the test_server.hrl file is in the include path when compiling test
suites.

• running applications - Some test suites require some applications to be running (e.g. sasl). Make sure
they are started.

1.6 Examples
1.6.1 Test suite

-module(my_SUITE).

-export([all/1,
 not_started/1, not_started_func1/1, not_started_func2/1,
 start/1, stop/1,
 func1/1, func2/1
]).

-export([init_per_testcase/2, end_per_testcase/2]).

-include("test_server.hrl").

-define(default_timeout, ?t:minutes(1)).

init_per_testcase(_Case, Config) ->
 ?line Dog=?t:timetrap(?default_timeout),
 [{watchdog, Dog}|Config].
end_per_testcase(_Case, Config) ->
 Dog=?config(watchdog, Config),
 ?t:timetrap_cancel(Dog),
 ok.

1.6 Examples

Ericsson AB. All Rights Reserved.: Test Server | 13

all(suite) ->
 %% Test specification on test suite level
 [not_started,
 {conf, start, [func1, func2], stop}].

not_started(suite) ->
 %% Test specification on test case level
 [not_started_func1, not_started_func2];
not_started(doc) ->
 ["Testing all functions when application is not started"].
%% No execution clause unless the specification clause returns [].

not_started_func1(suite) ->
 [];
not_started_func1(doc) ->
 ["Testing function 1 when application is not started"].
not_started_func1(Config) when list(Config) ->
 ?line {error, not_started} = myapp:func1(dummy_ref,1),
 ?line {error, not_started} = myapp:func1(dummy_ref,2),
 ok.

not_started_func2(suite) ->
 [];
not_started_func2(doc) ->
 ["Testing function 2 when application is not started"].
not_started_func2(Config) when list(Config) ->
 ?line {error, not_started} = myapp:func2(dummy_ref,1),
 ?line {error, not_started} = myapp:func2(dummy_ref,2),
 ok.

%% No specification clause needed for an init function in a conf case!!!
start(doc) ->
 ["Testing start of my application."];
start(Config) when list(Config) ->
 ?line Ref = myapp:start(),
 case erlang:whereis(my_main_process) of
 Pid when pid(Pid) ->
 [{myapp_ref,Ref}|Config];
 undefined ->
 %% Since this is the init function in a conf case, the rest of the
 %% cases in the conf case will be skipped if this case fails.
 ?t:fail("my_main_process did not start")
 end.

func1(suite) ->
 [];
func1(doc) ->
 ["Test that func1 returns ok when argument is 1 and error if argument is 2"];
func1(Config) when list(Config) ->
 ?line Ref = ?config(myapp_ref,Config),
 ?line ok = myapp:func1(Ref,1),
 ?line error = myapp:func1(Ref,2),
 ok.

func2(suite) ->
 [];
func2(doc) ->
 ["Test that func1 returns ok when argument is 3 and error if argument is 4"];
func2(Config) when list(Config) ->
 ?line Ref = ?config(myapp_ref,Config),
 ?line ok = myapp:func2(Ref,3),
 ?line error = myapp:func2(Ref,4),
 ok.

1.6 Examples

14 | Ericsson AB. All Rights Reserved.: Test Server

%% No specification clause needed for a cleanup function in a conf case!!!
stop(doc) ->
 ["Testing termination of my application"];
stop(Config) when list(Config) ->
 ?line Ref = ?config(myapp_ref,Config),
 ?line ok = myapp:stop(Ref),
 case erlang:whereis(my_main_process) of
 undefined ->
 lists:keydelete(myapp_ref,1,Config);
 Pid when pid(Pid) ->
 ?t:fail("my_main_process did not stop")
 end.

1.6.2 Test specification file
myapp.spec:

{topcase, {dir, "../myapp_test"}}. % Test specification on top level

myapp.spec.vxworks:

{topcase, {dir, "../myapp_test"}}. % Test specification on top level
{skip,{my_SUITE,func2,"Not applicable on VxWorks"}}.

1.6 Examples

Ericsson AB. All Rights Reserved.: Test Server | 15

2 Reference Manual

Test Server is a portable test server for automated application testing. The server can run test suites and log progress
and results to HTML pages. The main purpose of Test Server is to act as engine inside customized test tools. A callback
interface for such framework applications is provided.

test_server

16 | Ericsson AB. All Rights Reserved.: Test Server

test_server
Application

Test Server is a portable test server for automated application testing. The server can run test suites and log progress
and results to HTML pages. The main purpose of Test Server is to act as engine inside customized test tools. A callback
interface for such framework applications is provided.

In brief the test server supports:

• Running multiple, concurrent test suites

• Test suites may contain other test suites, in a tree fashion

• Logging of the events in a test suite, on both suite and case levels

• HTML presentation of test suite results

• HTML presentation of test suite code

• Support for test suite authors, e.g. start/stop slave nodes

• Call trace on target and slave nodes

For information about how to write test cases and test suites, please see the Test Server User's Guide and the reference
manual for the test_server module.

Common Test is an existing test tool application based on the OTP Test Server. Please read the Common Test User's
Guide for more information.

Configuration
There are currently no configuration parameters available for this application.

SEE ALSO

test_server_ctrl

Ericsson AB. All Rights Reserved.: Test Server | 17

test_server_ctrl
Erlang module

The test_server_ctrl module provides a low level interface to the Test Server. This interface is normally not
used directly by the tester, but through a framework built on top of test_server_ctrl.

Common Test is such a framework, well suited for automated black box testing of target systems of any kind (not
necessarily implemented in Erlang). Common Test is also a very useful tool for white box testing Erlang programs
and OTP applications. Please see the Common Test User's Guide and reference manual for more information.

If you want to write your own framework, some more information can be found in the chapter "Writing your own test
server framework" in the Test Server User's Guide. Details about the interface provided by test_server_ctrl
follows below.

Exports

start() -> Result
Types:

Result = ok | {error, {already_started, pid()}

This function starts the test server.

stop() -> ok
This stops the test server and all its activity. The running test suite (if any) will be halted.

add_dir(Name, Dir) -> ok
add_dir(Name, Dir, Pattern) -> ok
add_dir(Name, [Dir|Dirs]) -> ok
add_dir(Name, [Dir|Dirs], Pattern) -> ok
Types:

Name = term()

The jobname for this directory.

Dir = term()

The directory to scan for test suites.

Dirs = [term()]

List of directories to scan for test suites.

Pattern = term()

Suite match pattern. Directories will be scanned for Pattern_SUITE.erl files.

Puts a collection of suites matching (*_SUITE) in given directories into the job queue. Name is an arbitrary name for
the job, it can be any erlang term. If Pattern is given, only modules matching Pattern* will be added.

add_module(Mod) -> ok
add_module(Name, [Mod|Mods]) -> ok
Types:

Mod = atom()

Mods = [atom()]

test_server_ctrl

18 | Ericsson AB. All Rights Reserved.: Test Server

The name(s) of the module(s) to add.

Name = term()

Name for the job.

This function adds a module or a list of modules, to the test servers job queue. Name may be any Erlang term. When
Name is not given, the job gets the name of the module.

add_case(Mod, Case) -> ok
Types:

Mod = atom()

Name of the module the test case is in.

Case = atom()

Function name of the test case to add.

This function will add one test case to the job queue. The job will be given the module's name.

add_case(Name, Mod, Case) -> ok
Types:

Name = string()

Name to use for the test job.

Equivalent to add_case/2, but the test job will get the specified name.

add_cases(Mod, Cases) -> ok
Types:

Mod = atom()

Name of the module the test case is in.

Cases = [Case]

Case = atom()

Function names of the test cases to add.

This function will add one or more test cases to the job queue. The job will be given the module's name.

add_cases(Name, Mod, Cases) -> ok
Types:

Name = string()

Name to use for the test job.

Equivalent to add_cases/2, but the test job will get the specified name.

add_spec(TestSpecFile) -> ok | {error, nofile}
Types:

TestSpecFile = string()

Name of the test specification file

This function will add the content of the given test specification file to the job queue. The job will be given the name
of the test specification file, e.g. if the file is called test.spec, the job will be called test.

See the reference manual for the test server application for details about the test specification file.

test_server_ctrl

Ericsson AB. All Rights Reserved.: Test Server | 19

add_dir_with_skip(Name, [Dir|Dirs], Skip) -> ok
add_dir_with_skip(Name, [Dir|Dirs], Pattern, Skip) -> ok
add_module_with_skip(Mod, Skip) -> ok
add_module_with_skip(Name, [Mod|Mods], Skip) -> ok
add_case_with_skip(Mod, Case, Skip) -> ok
add_case_with_skip(Name, Mod, Case, Skip) -> ok
add_cases_with_skip(Mod, Cases, Skip) -> ok
add_cases_with_skip(Name, Mod, Cases, Skip) -> ok
Types:

Skip = [SkipItem]

List of items to be skipped from the test.

SkipItem = {Mod,Comment} | {Mod,Case,Comment} | {Mod,Cases,Comment}

Mod = atom()

Test suite name.

Comment = string()

Reason why suite or case is being skipped.

Cases = [Case]

Case = atom()

Name of test case function.

These functions add test jobs just like the add_dir, add_module, add_case and add_cases functions above, but carry
an additional argument, Skip. Skip is a list of items that should be skipped in the current test run. Test job items that
occur in the Skip list will be logged as SKIPPED with the associated Comment.

add_tests_with_skip(Name, Tests, Skip) -> ok
Types:

Name = term()

The jobname for this directory.

Tests = [TestItem]

List of jobs to add to the run queue.

TestItem = {Dir,all,all} | {Dir,Mods,all} | {Dir,Mod,Cases}

Dir = term()

The directory to scan for test suites.

Mods = [Mod]

Mod = atom()

Test suite name.

Cases = [Case]

Case = atom()

Name of test case function.

Skip = [SkipItem]

List of items to be skipped from the test.

SkipItem = {Mod,Comment} | {Mod,Case,Comment} | {Mod,Cases,Comment}

Comment = string()

Reason why suite or case is being skipped.

test_server_ctrl

20 | Ericsson AB. All Rights Reserved.: Test Server

This function adds various test jobs to the test_server_ctrl job queue. These jobs can be of different type (all or specific
suites in one directory, all or specific cases in one suite, etc). It is also possible to get particular items skipped by
passing them along in the Skip list (see the add_*_with_skip functions above).

abort_current_testcase(Reason) -> ok | {error,no_testcase_running}
Types:

Reason = term()

The reason for stopping the test case, which will be printed in the log.

When calling this function, the currently executing test case will be aborted. It is the user's responsibility to know for
sure which test case is currently executing. The function is therefore only safe to call from a function which has been
called (or synchronously invoked) by the test case.

set_levels(Console, Major, Minor) -> ok
Types:

Console = integer()

Level for I/O to be sent to console.

Major = integer()

Level for I/O to be sent to the major logfile.

Minor = integer()

Level for I/O to be sent to the minor logfile.

Determines where I/O from test suites/test server will go. All text output from test suites and the test server is tagged
with a priority value which ranges from 0 to 100, 100 being the most detailed. (see the section about log files in the
user's guide). Output from the test cases (using io:format/2) has a detail level of 50. Depending on the levels
set by this function, this I/O may be sent to the console, the major log file (for the whole test suite) or to the minor
logfile (separate for each test case).

All output with detail level:

• Less than or equal to Console is displayed on the screen (default 1)

• Less than or equal to Major is logged in the major log file (default 19)

• Greater than or equal to Minor is logged in the minor log files (default 10)

To view the currently set thresholds, use the get_levels/0 function.

get_levels() -> {Console, Major, Minor}
Returns the current levels. See set_levels/3 for types.

jobs() -> JobQueue
Types:

JobQueue = [{list(), pid()}]

This function will return all the jobs currently in the job queue.

multiply_timetraps(N) -> ok
Types:

N = integer() | infinity

This function should be called before a test is started which requires extended timetraps, e.g. if extensive tracing is
used. All timetraps started after this call will be multiplied by N.

test_server_ctrl

Ericsson AB. All Rights Reserved.: Test Server | 21

scale_timetraps(Bool) -> ok
Types:

Bool = true | false

This function should be called before a test is started. The parameter specifies if test_server should attempt to
automatically scale the timetrap value in order to compensate for delays caused by e.g. the cover tool.

get_timetrap_parameters() -> {N,Bool}
Types:

N = integer() | infinity

Bool = true | false

This function may be called to read the values set by multiply_timetraps/1 and scale_timetraps/1.

cover(Application,Analyse) -> ok
cover(CoverFile,Analyse) -> ok
cover(App,CoverFile,Analyse) -> ok
Types:

Application = atom()

OTP application to cover compile

CoverFile = string()

Name of file listing modules to exclude from or include in cover compilation. The filename must include full
path to the file.

Analyse = details | overview

This function informs the test_server controller that next test shall run with code coverage analysis. All timetraps will
automatically be multiplied by 10 when cover i run.

Application and CoverFile indicates what to cover compile. If Application is given, the default is that
all modules in the ebin directory of the application will be cover compiled. The ebin directory is found by adding
ebin to code:lib_dir(Application).

A CoverFile can have the following entries:

{exclude, all | ExcludeModuleList}.
{include, IncludeModuleList}.
{cross, CrossCoverInfo}.

Note that each line must end with a full stop. ExcludeModuleList and IncludeModuleList are lists of atoms,
where each atom is a module name.

CrossCoverInfo is used when collecting cover data over multiple tests. Modules listed here are compiled, but
they will not be analysed when the test is finished. See cross_cover_analyse/2 for more information about the cross
cover mechanism and the format of CrossCoverInfo.

If both an Application and a CoverFile is given, all modules in the application are cover compiled, except for
the modules listed in ExcludeModuleList. The modules in IncludeModuleList are also cover compiled.

If a CoverFile is given, but no Application, only the modules in IncludeModuleList are cover compiled.

Analyse indicates the detail level of the cover analysis. If Analyse = details, each cover compiled module will
be analysed with cover:analyse_to_file/1. If Analyse = overview an overview of all cover compiled
modules is created, listing the number of covered and not covered lines for each module.

test_server_ctrl

22 | Ericsson AB. All Rights Reserved.: Test Server

If the test following this call starts any slave or peer nodes with test_server:start_node/3, the same
cover compiled code will be loaded on all nodes. If the loading fails, e.g. if the node runs an old version of OTP,
the node will simply not be a part of the coverage analysis. Note that slave or peer nodes must be stopped with
test_server:stop_node/1 for the node to be part of the coverage analysis, else the test server will not be able
to fetch coverage data from the node.

When the test is finished, the coverage analysis is automatically completed, logs are created and the cover compiled
modules are unloaded. If another test is to be run with coverage analysis, test_server_ctrl:cover/2/3 must
be called again.

cross_cover_analyse(Level, Tests) -> ok
Types:

Level = details | overview

Tests = [{Tag,LogDir}]

Tag = atom()

Test identifier.

LogDir = string()

Log directory for the test identified by Tag. This can either be the run.<timestamp> directory or the parent
directory of this (in which case the latest run.<timestamp> directory is chosen.

Analyse cover data collected from multiple tests. The modules analysed are the ones listed in cross statements in
the cover files. These are modules that are heavily used by other tests than the one where they belong or are explicitly
tested. They should then be listed as cross modules in the cover file for the test where they are used but do not belong.
Se example below.

This function should be run after all tests are completed, and the result will be stored in a file called
cross_cover.html in the run.<timestamp> directory of the test the modules belong to.

Note that the function can be executed on any node, and it does not require test_server_ctrl to be started first.

The cross statement in the cover file must be like this:

{cross,[{Tag,Modules}]}.

where Tag is the same as Tag in the Tests parameter to this function and Modules is a list of module names
(atoms).

Example:

If the module m1 belongs to system s1 but is heavily used also in the tests for another system s2, then the cover files
for the two systems' tests could be like this:

s1.cover:
 {include,[m1]}.

s2.cover:
 {include,[....]}. % modules belonging to system s2
 {cross,[{s1,[m1]}]}.

When the tests for both s1 and s2 are completed, run

test_server_ctrl

Ericsson AB. All Rights Reserved.: Test Server | 23

test_server_ctrl:cross_cover_analyse(Level,[{s1,S1LogDir},{s2,S2LogDir}])

and the accumulated cover data for m1 will be written to S1LogDir/
[run.<timestamp>/]cross_cover.html.

Note that the m1 module will also be presented in the normal coverage log for s1 (due to the include statement in
s1.cover), but that only includes the coverage achieved by the s1 test itself.

The Tag in the cross statement in the cover file has no other purpose than mapping the list of modules ([m1] in the
example above) to the correct log directory where it should be included in the cross_cover.html file (S1LogDir
in the example above). I.e. the value of Tag has no meaning, it could be foo as well as s1 above, as long as the same
Tag is used in the cover file and in the call to this function.

trc(TraceInfoFile) -> ok | {error, Reason}
Types:

TraceInfoFile = atom() | string()

Name of a file defining which functions to trace and how

This function starts call trace on target and on slave or peer nodes that are started or will be started by the test suites.

Timetraps are not extended automatically when tracing is used. Use multiply_timetraps/1 if necessary.

Note that the trace support in the test server is in a very early stage of the implementation, and thus not yet as powerful
as one might wish for.

The trace information file specified by the TraceInfoFile argument is a text file containing one or more of the
following elements:

• {SetTP,Module,Pattern}.

• {SetTP,Module,Function,Pattern}.

• {SetTP,Module,Function,Arity,Pattern}.

• ClearTP.

• {ClearTP,Module}.

• {ClearTP,Module,Function}.

• {ClearTP,Module,Function,Arity}.

SetTP = tp | tpl
This is maps to the corresponding functions in the ttb module in the observer application. tp means set
trace pattern on global function calls. tpl means set trace pattern on local and global function calls.

ClearTP = ctp | ctpl | ctpg
This is maps to the corresponding functions in the ttb module in the observer application. ctp means
clear trace pattern (i.e. turn off) on global and local function calls. ctpl means clear trace pattern on local
function calls only and ctpg means clear trace pattern on global function calls only.

Module = atom()
The module to trace

Function = atom()
The name of the function to trace

Arity = integer()
The arity of the function to trace

Pattern = [] | match_spec()
The trace pattern to set for the module or function. For a description of the match_spec() syntax, please turn to
the User's guide for the runtime system (erts). The chapter "Match Specification in Erlang" explains the general
match specification language.

test_server_ctrl

24 | Ericsson AB. All Rights Reserved.: Test Server

The trace result will be logged in a (binary) file called NodeName-test_server in the current directory of the
test server controller node. The log must be formatted using ttb:format/1/2.

stop_trace() -> ok | {error, not_tracing}
This function stops tracing on target, and on slave or peer nodes that are currently running. New slave or peer nodes
will no longer be traced after this.

FUNCTIONS INVOKED FROM COMMAND LINE
The following functions are supposed to be invoked from the command line using the -s option when starting the
erlang node.

Exports

run_test(CommandLine) -> ok
Types:

CommandLine = FlagList

This function is supposed to be invoked from the commandline. It starts the test server, interprets the argument supplied
from the commandline, runs the tests specified and when all tests are done, stops the test server and returns to the
Erlang prompt.

The CommandLine argument is a list of command line flags, typically ['KEY1', Value1, 'KEY2',
Value2, ...]. The valid command line flags are listed below.

Under a UNIX command prompt, this function can be invoked like this:
erl -noshell -s test_server_ctrl run_test KEY1 Value1 KEY2 Value2 ... -s erlang
halt

Or make an alias (this is for unix/tcsh)
alias erl_test 'erl -noshell -s test_server_ctrl run_test \!* -s erlang halt'

And then use it like this
erl_test KEY1 Value1 KEY2 Value2 ...

The valid command line flags are

DIR dir
Adds all test modules in the directory dir to the job queue.

MODULE mod
Adds the module mod to the job queue.

CASE mod case
Adds the case case in module mod to the job queue.

SPEC spec
Runs the test specification file spec.

SKIPMOD mod
Skips all test cases in the module mod

SKIPCASE mod case
Skips the test case case in module mod.

NAME name
Names the test suite to something else than the default name. This does not apply to SPEC which keeps its
names.

COVER app cover_file analyse
Indicates that the test should be run with cover analysis. app, cover_file and analyse corresponds to the
parameters to test_server_ctrl:cover/3. If no cover file is used, the atom none should be given.

test_server_ctrl

Ericsson AB. All Rights Reserved.: Test Server | 25

TRACE traceinfofile
Specifies a trace information file. When this option is given, call tracing is started on the target node and all
slave or peer nodes that are started. The trace information file specifies which modules and functions to trace.
See the function trc/1 above for more information about the syntax of this file.

FRAMEWORK CALLBACK FUNCTIONS
A test server framework can be defined by setting the environment variable TEST_SERVER_FRAMEWORK to a module
name. This module will then be framework callback module, and it must export the following function:

Exports

get_suite(Mod,Func) -> TestCaseList
Types:

Mod = atom()

Test suite name.

Func = atom()

Name of test case.

TestCaseList = [SubCase]

List of test cases.

SubCase = atom()

Name of a case.

This function is called before a test case is started. The purpose is to retrieve a list of subcases. The default behaviour
of this function should be to call Mod:Func(suite) and return the result from this call.

init_tc(Mod,Func,Args0) -> {ok,Args1} | {skip,ReasonToSkip} |
{auto_skip,ReasonToSkip} | {fail,ReasonToFail}
Types:

Mod = atom()

Test suite name.

Func = atom()

Name of test case or configuration function.

Args0 = Args1 = [tuple()]

Normally Args = [Config]

ReasonToSkip = term()

Reason to skip the test case or configuration function.

ReasonToFail = term()

Reason to fail the test case or configuration function.

This function is called before a test case or configuration function starts. It is called on the process executing the
function Mod:Func. Typical use of this function can be to alter the input parameters to the test case function (Args)
or to set properties for the executing process.

By returning {skip,Reason}, Func gets skipped. Func also gets skipped if {auto_skip,Reason} is
returned, but then gets an auto skipped status (rather than user skipped).

To fail Func immediately instead of executing it, return {fail,ReasonToFail}.

test_server_ctrl

26 | Ericsson AB. All Rights Reserved.: Test Server

end_tc(Mod,Func,Status) -> ok | {fail,ReasonToFail}
Types:

Mod = atom()

Test suite name.

Func = atom()

Name of test case or configuration function.

Status = {Result,Args} | {TCPid,Result,Args}

The status of the test case or configuration function.

ReasonToFail = term()

Reason to fail the test case or configuration function.

Result = ok | Skip | Fail

The final result of the test case or configuration function.

TCPid = pid()

Pid of the process executing Func

Skip = {skip,SkipReason}

SkipReason = term() | {failed,{Mod,init_per_testcase,term()}}

Reason why the function was skipped.

Fail = {error,term()} | {'EXIT',term()} | {timetrap_timeout,integer()} |
{testcase_aborted,term()} | testcase_aborted_or_killed | {failed,term()} |
{failed,{Mod,end_per_testcase,term()}}

Reason why the function failed.

Args = [tuple()]

Normally Args = [Config]

This function is called when a test case, or a configuration function, is finished. It is normally called on the process
where the function Mod:Func has been executing, but if not, the pid of the test case process is passed with the
Status argument.

Typical use of the end_tc/3 function can be to clean up after init_tc/3.

If Func is a test case, it is possible to analyse the value of Result to verify that init_per_testcase/2 and
end_per_testcase/2 executed successfully.

It is possible with end_tc/3 to fail an otherwise successful test case, by returning {fail,ReasonToFail}. The
test case Func will be logged as failed with the provided term as reason.

report(What,Data) -> ok
Types:

What = atom()

Data = term()

This function is called in order to keep the framework up-to-date with the progress of the test. This is useful e.g. if the
framework implements a GUI where the progress information is constantly updated. The following can be reported:

What = tests_start, Data = {Name,NumCases}
What = loginfo, Data = [{topdir,TestRootDir},{rundir,CurrLogDir}]
What = tests_done, Data = {Ok,Failed,{UserSkipped,AutoSkipped}}
What = tc_start, Data = {{Mod,Func},TCLogFile}
What = tc_done, Data = {Mod,Func,Result}
What = tc_user_skip, Data = {Mod,Func,Comment}

test_server_ctrl

Ericsson AB. All Rights Reserved.: Test Server | 27

What = tc_auto_skip, Data = {Mod,Func,Comment}
What = framework_error, Data = {{FWMod,FWFunc},Error}

error_notification(Mod, Func, Args, Error) -> ok
Types:

Mod = atom()

Test suite name.

Func = atom()

Name of test case or configuration function.

Args = [tuple()]

Normally Args = [Config]

Error = {Reason,Location}

Reason = term()

Reason for termination.

Location = unknown | [{Mod,Func,Line}]

Last known position in Mod before termination.

Line = integer()

Line number in file Mod.erl.

This function is called as the result of function Mod:Func failing with Reason at Location. The function is intended
mainly to aid specific logging or error handling in the framework application. Note that for Location to have relevant
values (i.e. other than unknown), the line macro or test_server_line parse transform must be used. For details,
please see the section about test suite line numbers in the test_server reference manual page.

warn(What) -> boolean()
Types:

What = processes | nodes

The test server checks the number of processes and nodes before and after the test is executed. This function is a
question to the framework if the test server should warn when the number of processes or nodes has changed during
the test execution. If true is returned, a warning will be written in the test case minor log file.

target_info() -> InfoStr
Types:

InfoStr = string() | ""

The test server will ask the framework for information about the test target system and print InfoStr in the test case
log file below the host information.

test_server

28 | Ericsson AB. All Rights Reserved.: Test Server

test_server
Erlang module

The test_server module aids the test suite author by providing various support functions. The supported
functionality includes:

• Logging and timestamping

• Capturing output to stdout

• Retrieving and flushing the message queue of a process

• Watchdog timers, process sleep, time measurement and unit conversion

• Private scratch directory for all test suites

• Start and stop of slave- or peer nodes

For more information on how to write test cases and for examples, please see the Test Server User's Guide.

TEST SUITE SUPPORT FUNCTIONS
The following functions are supposed to be used inside a test suite.

Exports

os_type() -> OSType
Types:

OSType = term()

This is the same as returned from os:type/0

This function is equivalent to os:type/0. It is kept for backwards compatibility.

fail()
fail(Reason)
Types:

Reason = term()

The reason why the test case failed.

This will make the test suite fail with a given reason, or with suite_failed if no reason was given. Use this
function if you want to terminate a test case, as this will make it easier to read the log- and HTML files. Reason will
appear in the comment field in the HTML log.

timetrap(Timout) -> Handle
Types:

Timeout = integer() | {hours,H} | {minutes,M} | {seconds,S}

H = M = S = integer()

Pid = pid()

The process that is to be timetrapped (self()by default)

Sets up a time trap for the current process. An expired timetrap kills the process with reason timetrap_timeout.
The returned handle is to be given as argument to timetrap_cancel before the timetrap expires. If Timeout is
an integer, it is expected to be milliseconds.

test_server

Ericsson AB. All Rights Reserved.: Test Server | 29

Note:
If the current process is trapping exits, it will not be killed by the exit signal with reason timetrap_timeout.
If this happens, the process will be sent an exit signal with reason kill 10 seconds later which will kill the
process. Information about the timetrap timeout will in this case not be found in the test logs. However, the
error_logger will be sent a warning.

timetrap_cancel(Handle) -> ok
Types:

Handle = term()

Handle returned from timetrap

This function cancels a timetrap. This must be done before the timetrap expires.

timetrap_scale_factor() -> ScaleFactor
Types:

ScaleFactor = integer()

This function returns the scale factor by which all timetraps are scaled. It is normally 1, but can be greater than 1 if
the test_server is running cover, using a larger amount of scheduler threads than the amount of logical processors on
the system, running under purify, valgrind or in a debug-compiled emulator. The scale factor can be used if you need
to scale you own timeouts in test cases with same factor as the test_server uses.

sleep(MSecs) -> ok
Types:

MSecs = integer() | float() | infinity

The number of milliseconds to sleep

This function suspends the calling process for at least the supplied number of milliseconds. There are two major
reasons why you should use this function instead of timer:sleep, the first being that the module timer may be
unavailable at the time the test suite is run, and the second that it also accepts floating point numbers.

adjusted_sleep(MSecs) -> ok
Types:

MSecs = integer() | float() | infinity

The default number of milliseconds to sleep

This function suspends the calling process for at least the supplied number of milliseconds. The function behaves the
same way as test_server:sleep/1, only MSecs will be multiplied by the 'multiply_timetraps' value, if set, and
also automatically scaled up if 'scale_timetraps' is set to true (which it is by default).

hours(N) -> MSecs
minutes(N) -> MSecs
seconds(N) -> MSecs
Types:

N = integer()

Value to convert to milliseconds.

Theese functions convert N number of hours, minutes or seconds into milliseconds.

test_server

30 | Ericsson AB. All Rights Reserved.: Test Server

Use this function when you want to test_server:sleep/1 for a number of seconds, minutes or hours(!).

format(Format) -> ok
format(Format, Args)
format(Pri, Format)
format(Pri, Format, Args)
Types:

Format = string()

Format as described for io_:format.

Args = list()

List of arguments to format.

Formats output just like io:format but sends the formatted string to a logfile. If the urgency value, Pri, is lower
than some threshold value, it will also be written to the test person's console. Default urgency is 50, default threshold
for display on the console is 1.

Typically, the test person don't want to see everything a test suite outputs, but is merely interested in if the test cases
succeeded or not, which the test server tells him. If he would like to see more, he could manually change the threshold
values by using the test_server_ctrl:set_levels/3 function.

capture_start() -> ok
capture_stop() -> ok
capture_get() -> list()
These functions makes it possible to capture all output to stdout from a process started by the test suite. The list of
characters captured can be purged by using capture_get.

messages_get() -> list()
This function will empty and return all the messages currently in the calling process' message queue.

timecall(M, F, A) -> {Time, Value}
Types:

M = atom()

The name of the module where the function resides.

F = atom()

The name of the function to call in the module.

A = list()

The arguments to supply the called function.

Time = integer()

The number of seconds it took to call the function.

Value = term()

Value returned from the called function.

This function measures the time (in seconds) it takes to call a certain function. The function call is not caught within
a catch.

test_server

Ericsson AB. All Rights Reserved.: Test Server | 31

do_times(N, M, F, A) -> ok
do_times(N, Fun)
Types:

N = integer()

Number of times to call MFA.

M = atom()

Module name where the function resides.

F = atom()

Function name to call.

A = list()

Arguments to M:F.

Calls MFA or Fun N times. Useful for extensive testing of a sensitive function.

m_out_of_n(M, N, Fun) -> ok | exit({m_out_of_n_failed, {R,left_to_do}}
Types:

N = integer()

Number of times to call the Fun.

M = integer()

Number of times to require a successful return.

Repeatedly evaluates the given function until it succeeds (doesn't crash) M times. If, after N times, M successful
attempts have not been accomplished, the process crashes with reason {m_out_of_n_failed, {R,left_to_do}}, where
R indicates how many cases that was still to be successfully completed.

For example:

m_out_of_n(1,4,fun() -> tricky_test_case() end)
Tries to run tricky_test_case() up to 4 times, and is happy if it succeeds once.

m_out_of_n(7,8,fun() -> clock_sanity_check() end)
Tries running clock_sanity_check() up to 8 times,and allows the function to fail once. This might be useful if
clock_sanity_check/0 is known to fail if the clock crosses an hour boundary during the test (and the up to 8 test runs
could never cross 2 boundaries)

call_crash(M, F, A) -> Result
call_crash(Time, M, F, A) -> Result
call_crash(Time, Crash, M, F, A) -> Result
Types:

Result = ok | exit(call_crash_timeout) | exit({wrong_crash_reason,
Reason})

Crash = term()

Crash return from the function.

Time = integer()

Timeout in milliseconds.

M = atom()

Module name where the function resides.

F = atom()

Function name to call.

test_server

32 | Ericsson AB. All Rights Reserved.: Test Server

A = list()

Arguments to M:F.

Spawns a new process that calls MFA. The call is considered successful if the call crashes with the gives reason
(Crash) or any reason if not specified. The call must terminate within the given time (default infinity), or it is
considered a failure.

temp_name(Stem) -> Name
Types:

Stem = string()

Returns a unique filename starting with Stem with enough extra characters appended to make up a unique filename.
The filename returned is guaranteed not to exist in the filesystem at the time of the call.

break(Comment) -> ok
Types:

Comment = string()

Comment is a string which will be written in the shell, e.g. explaining what to do.

This function will cancel all timetraps and pause the execution of the test case until the user executes the continue/0
function. It gives the user the opportunity to interact with the erlang node running the tests, e.g. for debugging purposes
or for manually executing a part of the test case.

When the break/1 function is called, the shell will look something like this:

 --- SEMIAUTOMATIC TESTING ---
 The test case executes on process <0.51.0>

 "Here is a comment, it could e.g. instruct to pull out a card"

 Continue with --> test_server:continue().

The user can now interact with the erlang node, and when ready call test_server:continue().

Note that this function can not be used if the test is executed with ts:run/0/1/2/3/4 in batch mode.

continue() -> ok
This function must be called in order to continue after a test case has called break/1.

run_on_shielded_node(Fun, CArgs) -> term()
Types:

Fun = function() (arity 0)

Function to execute on the shielded node.

CArg = string()

Extra command line arguments to use when starting the shielded node.

Fun is executed in a process on a temporarily created hidden node with a proxy for communication with the test server
node. The node is called a shielded node (should have been called a shield node). If Fun is successfully executed,

test_server

Ericsson AB. All Rights Reserved.: Test Server | 33

the result is returned. A peer node (see start_node/3) started from the shielded node will be shielded from test
server node, i.e. they will not be aware of each other. This is useful when you want to start nodes from earlier OTP
releases than the OTP release of the test server node.

Nodes from an earlier OTP release can normally not be started if the test server hasn't been started in compatibility
mode (see the +R flag in the erl(1) documentation) of an earlier release. If a shielded node is started in compatibility
mode of an earlier OTP release than the OTP release of the test server node, the shielded node can start nodes of an
earlier OTP release.

Note:
You must make sure that nodes started by the shielded node never communicate directly with the test server node.

Note:
Slave nodes always communicate with the test server node; therefore, never start slave nodes from the shielded
node, always start peer nodes.

start_node(Name, Type, Options) -> {ok, Node} | {error, Reason}
Types:

Name = atom() | string()

Name of the slavenode to start (as given to -sname or -name)

Type = slave | peer

The type of node to start.

Options = [{atom(), term()]

Tuplelist of options

This functions starts a node, possibly on a remote machine, and guarantees cross architecture transparency. Type is
set to either slave or peer.

slave means that the new node will have a master, i.e. the slave node will terminate if the master terminates, TTY
output produced on the slave will be sent back to the master node and file I/O is done via the master. The master is
normally the target node unless the target is itself a slave.

peer means that the new node is an independent node with no master.

Options is a tuplelist which can contain one or more of

{remote, true}
Start the node on a remote host. If not specified, the node will be started on the local host. Test cases that
require a remote host will fail with a reasonable comment if no remote hosts are available at the time they are
run.

{args, Arguments}
Arguments passed directly to the node. This is typically a string appended to the command line.

{wait, false}
Don't wait until the node is up. By default, this function does not return until the node is up and running, but
this option makes it return as soon as the node start command is given..
Only valid for peer nodes

{fail_on_error, false}
Returns {error, Reason} rather than failing the test case.

test_server

34 | Ericsson AB. All Rights Reserved.: Test Server

Only valid for peer nodes. Note that slave nodes always act as if they had fail_on_error=false
{erl, ReleaseList}

Use an Erlang emulator determined by ReleaseList when starting nodes, instead of the same emulator as the
test server is running. ReleaseList is a list of specifiers, where a specifier is either {release, Rel}, {prog, Prog},
or 'this'. Rel is either the name of a release, e.g., "r12b_patched" or 'latest'. 'this' means using the same emulator
as the test server. Prog is the name of an emulator executable. If the list has more than one element, one of
them is picked randomly. (Only works on Solaris and Linux, and the test server gives warnings when it notices
that nodes are not of the same version as itself.)
When specifying this option to run a previous release, use is_release_available/1 function to test if
the given release is available and skip the test case if not.
In order to avoid compatibility problems (may not appear right away), use a shielded node (see
run_on_shielded_node/2) when starting nodes from different OTP releases than the test server.

{cleanup, false}
Tells the test server not to kill this node if it is still alive after the test case is completed. This is useful if the
same node is to be used by a group of test cases.

{env, Env}
Env should be a list of tuples {Name, Val}, where Name is the name of an environment variable, and Val
is the value it is to have in the started node. Both Name and Val must be strings. The one exception is Val
being the atom false (in analogy with os:getenv/1), which removes the environment variable. Only valid
for peer nodes. Not available on VxWorks.

{start_cover, false}
By default the test server will start cover on all nodes when the test is run with code coverage analysis. To
make sure cover is not started on a new node, set this option to false. This can be necessary if the connection
to the node at some point will be broken but the node is expected to stay alive. The reason is that a remote
cover node can not continue to run without its main node. Another solution would be to explicitly stop cover on
the node before breaking the connection, but in some situations (if old code resides in one or more processes)
this is not possible.

stop_node(NodeName) -> bool()
Types:

NodeName = term()

Name of the node to stop

This functions stops a node previously started with start_node/3. Use this function to stop any node you start, or
the test server will produce a warning message in the test logs, and kill the nodes automatically unless it was started
with the {cleanup, false} option.

is_commercial() -> bool()
This function test whether the emulator is commercially supported emulator. The tests for a commercially supported
emulator could be more stringent (for instance, a commercial release should always contain documentation for all
applications).

is_release_available(Release) -> bool()
Types:

Release = string() | atom()

Release to test for

This function test whether the release given by Release (for instance, "r12b_patched") is available on the computer
that the test_server controller is running on. Typically, you should skip the test case if not.

Caution: This function may not be called from the suite clause of a test case, as the test_server will deadlock.

test_server

Ericsson AB. All Rights Reserved.: Test Server | 35

is_native(Mod) -> bool()
Types:

Mod = atom()

A module name

Checks whether the module is natively compiled or not

app_test(App) -> ok | test_server:fail()
app_test(App,Mode)
Types:

App = term()

The name of the application to test

Mode = pedantic | tolerant

Default is pedantic

Checks an applications .app file for obvious errors. The following is checked:

• required fields

• that all modules specified actually exists

• that all requires applications exists

• that no module included in the application has export_all

• that all modules in the ebin/ dir is included (If Mode==tolerant this only produces a warning, as all
modules does not have to be included)

comment(Comment) -> ok
Types:

Comment = string()

The given String will occur in the comment field of the table on the HTML result page. If called several times, only
the last comment is printed. comment/1 is also overwritten by the return value {comment,Comment} from a test case
or by fail/1 (which prints Reason as a comment).

TEST SUITE EXPORTS
The following functions must be exported from a test suite module.

Exports

all(suite) -> TestSpec | {skip, Comment}
Types:

TestSpec = list()

Comment = string()

This comment will be printed on the HTML result page

This function must return the test specification for the test suite module. The syntax of a test specification is described
in the Test Server User's Guide.

init_per_suite(Config0) -> Config1 | {skip, Comment}
Types:

Config0 = Config1 = [tuple()]

test_server

36 | Ericsson AB. All Rights Reserved.: Test Server

Comment = string()

Describes why the suite is skipped

This function is called before all other test cases in the suite. Config is the configuration which can be modified here.
Whatever is returned from this function is given as Config to the test cases.

If this function fails, all test cases in the suite will be skipped.

end_per_suite(Config) -> void()
Types:

Config = [tuple()]

This function is called after the last test case in the suite, and can be used to clean up whatever the test cases have
done. The return value is ignored.

init_per_testcase(Case, Config0) -> Config1 | {skip, Comment}
Types:

Case = atom()

Config0 = Config1 = [tuple()]

Comment = string()

Describes why the test case is skipped

This function is called before each test case. The Case argument is the name of the test case, and Config is the
configuration which can be modified here. Whatever is returned from this function is given as Config to the test case.

end_per_testcase(Case, Config) -> void()
Types:

Case = atom()

Config = [tuple()]

This function is called after each test case, and can be used to clean up whatever the test case has done. The return
value is ignored.

Case(doc) -> [Decription]
Case(suite) -> [] | TestSpec | {skip, Comment}
Case(Config) -> {skip, Comment} | {comment, Comment} | Ok
Types:

Description = string()

Short description of the test case

TestSpec = list()

Comment = string()

This comment will be printed on the HTML result page

Ok = term()

Config = [tuple()]

Elements from the Config parameter can be read with the ?config macro, see section about test suite support
macros

The documentation clause (argument doc) can be used for automatic generation of test documentation or test
descriptions.

test_server

Ericsson AB. All Rights Reserved.: Test Server | 37

The specification clause (argument spec) shall return an empty list, the test specification for the test case or
{skip,Comment}. The syntax of a test specification is described in the Test Server User's Guide.

The execution clause (argument Config) is only called if the specification clause returns an empty list. The execution
clause is the real test case. Here you must call the functions you want to test, and do whatever you need to check the
result. If something fails, make sure the process crashes or call test_server:fail/0/1 (which also will cause
the process to crash).

You can return {skip,Comment} if you decide not to run the test case after all, e.g. if it is not applicable on this
platform.

You can return {comment,Comment} if you wish to print some information in the 'Comment' field on the HTML
result page.

If the execution clause returns anything else, it is considered a success, unless it is {'EXIT',Reason} or
{'EXIT',Pid,Reason} which can't be distinguished from a crash, and thus will be considered a failure.

A conf test case is a group of test cases with an init and a cleanup function. The init and cleanup functions are also
test cases, but they have special rules:

• They do not need a specification clause.

• They must always have the execution clause.

• They must return the Config parameter, a modified version of it or {skip,Comment} from the execution
clause.

• The cleanup function may also return a tuple {return_group_result,Status}, which is used to
return the status of the conf case to Test Server and/or to a conf case on a higher level. (Status = ok |
skipped | failed).

• init_per_testcase and end_per_testcase are not called before and after these functions.

TEST SUITE LINE NUMBERS
If a test case fails, the test server can report the exact line number at which it failed. There are two ways of doing this,
either by using the line macro or by using the test_server_line parse transform.

The line macro is described under TEST SUITE SUPPORT MACROS below. The line macro will only report
the last line executed when a test case failed.

The test_server_line parse transform is activated by including the headerfile test_server_line.hrl in
the test suite. When doing this, it is important that the test_server_line module is in the code path of the erlang
node compiling the test suite. The parse transform will report a history of a maximum of 10 lines when a test case
fails. Consecutive lines in the same function are not shown.

The attribute -no_lines(FuncList). can be used in the test suite to exclude specific functions from the parse
transform. This is necessary e.g. for functions that are executed on old (i.e. <R10B) OTP releases. FuncList =
[{Func,Arity}].

If both the line macro and the parse transform is used in the same module, the parse transform will overrule the macro.

TEST SUITE SUPPORT MACROS
There are some macros defined in the test_server.hrl that are quite useful for test suite programmers:

The line macro, is quite essential when writing test cases. It tells the test server exactly what line of code that is being
executed, so that it can report this line back if the test case fails. Use this macro at the beginning of every test case
line of code.

The config macro, is used to retrieve information from the Config variable sent to all test cases. It is used with two
arguments, where the first is the name of the configuration variable you wish to retrieve, and the second is the Config
variable supplied to the test case from the test server.

test_server

38 | Ericsson AB. All Rights Reserved.: Test Server

Possible configuration variables include:

• data_dir - Data file directory.

• priv_dir - Scratch file directory.

• nodes - Nodes specified in the spec file

• nodenames - Generated nodenames.

• Whatever added by conf test cases or init_per_testcase/2

Examples of the line and config macros can be seen in the Examples chapter in the user's guide.

If the line_trace macro is defined, you will get a timestamp (erlang:now()) in your minor log for each line
macro in your suite. This way you can at any time see which line is currently being executed, and when the line was
called.

The line_trace macro can also be used together with the test_server_line parse transform described above.
A timestamp will then be written for each line in the suite, except for functions stated in the -no_lines attribute.

The line_trace macro can e.g. be defined as a compile option, like this:
erlc -W -Dline_trace my_SUITE.erl

	Test Server
	Test Server User's Guide
	Test Server Basics
	Introduction
	Getting started
	Definition of terms

	Test Structure and Test Specifications
	Test structure
	Test specifications
	Test Specification Files
	Configuration cases
	The parallel property and nested configuration cases
	Repeated execution of test cases
	Shuffled test case order
	Skipping test cases

	Writing Test Suites
	Support for test suite authors
	Test suites
	Init per test case
	Test cases
	Data and Private Directories
	Execution environment

	Running Test Suites
	Using the test server controller

	Write you own test server framework
	Introduction
	Interfacing the test server controller from Erlang
	Adding test jobs

	Interfacing the test server controller from the operating system.
	An Example

	Framework callback functions
	Other concerns

	Examples
	Test suite
	Test specification file

	Reference Manual
	test_server
	test_server_ctrl
	start/0
	stop/0
	add_dir/2
	add_dir/3
	add_dir/2
	add_dir/3
	add_module/1
	add_module/2
	add_case/2
	add_case/3
	add_cases/2
	add_cases/3
	add_spec/1
	add_dir_with_skip/3
	add_dir_with_skip/4
	add_module_with_skip/2
	add_module_with_skip/3
	add_case_with_skip/3
	add_case_with_skip/4
	add_cases_with_skip/3
	add_cases_with_skip/4
	add_tests_with_skip/3
	abort_current_testcase/1
	set_levels/3
	get_levels/0
	jobs/0
	multiply_timetraps/1
	scale_timetraps/1
	get_timetrap_parameters/0
	cover/2
	cover/2
	cover/3
	cross_cover_analyse/2
	trc/1
	stop_trace/0
	run_test/1
	get_suite/2
	init_tc/3
	end_tc/3
	report/2
	error_notification/4
	warn/1
	target_info/0

	test_server
	os_type/0
	fail/0
	fail/1
	timetrap/1
	timetrap_cancel/1
	timetrap_scale_factor/0
	sleep/1
	adjusted_sleep/1
	hours/1
	minutes/1
	seconds/1
	format/1
	format/2
	format/2
	format/3
	capture_start/0
	capture_stop/0
	capture_get/0
	messages_get/0
	timecall/3
	do_times/4
	do_times/2
	m_out_of_n/3
	call_crash/3
	call_crash/4
	call_crash/5
	temp_name/1
	break/1
	continue/0
	run_on_shielded_node/2
	start_node/3
	stop_node/1
	is_commercial/0
	is_release_available/1
	is_native/1
	app_test/1
	app_test/2
	comment/1
	all/1
	init_per_suite/1
	end_per_suite/1
	init_per_testcase/2
	end_per_testcase/2
	Case/1
	Case/1
	Case/1

