
xmerl
Copyright © 2004-2021 Ericsson AB. All Rights Reserved.

xmerl 1.3.28
September 21, 2021

Copyright © 2004-2021 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

September 21, 2021

1.1 xmerl

1 xmerl User's Guide

The xmerl application contains modules with support for processing of xml files compliant to XML 1.0.

1.1 xmerl
1.1.1 Introduction
Features
The xmerl XML parser is able to parse XML documents according to the XML 1.0 standard. As default it performs
well-formed parsing, (syntax checks and checks of well-formed constraints). Optionally one can also use xmerl as
a validating parser, (validate according to referenced DTD and validating constraints). By means of for example the
xmerl_xs module it is possible to transform the parsed result to other formats, e.g. text, HTML, XML etc.

Overview
This document does not give an introduction to XML. There are a lot of books available that describe XML from
different views. At the www.W3.org site you will find the XML 1.0 specification and other related specs. One site
were you can find tutorials on XML and related specs is ZVON.org.

However, here you will find some examples of how to use and to what you can use xmerl. A detailed description of
the user interface can be found in the reference manual.

There are two known shortcomings in xmerl:

• It cannot retrieve external entities on the Internet by a URL reference, only resources in the local file system.

• xmerl can parse Unicode encoded data. But, it fails on tag names, attribute names and other mark-up names that
are encoded Unicode characters not mapping on ASCII.

By parsing an XML document you will get a record, displaying the structure of the document, as return value. The
record also holds the data of the document. xmerl is convenient to use in for instance the following scenarios:

You need to retrieve data from XML documents. Your Erlang software can handle information from the XML
document by extracting data from the data structure received by parsing.

It is also possible to do further processing of parsed XML with xmerl. If you want to change format of the
XML document to for instance HTML, text or other XML format you can transform it. There is support for such
transformations in xmerl.

One may also convert arbitrary data to XML. So it for instance is easy to make it readable by humans. In this case you
first create xmerl data structures out of your data, then transform it to XML.

You can find examples of these three examples of usage below.

1.1.2 xmerl User Interface Data Structure
The following records used by xmerl to save the parsed data are defined in xmerl.hrl

The result of a successful parsing is a tuple {DataStructure,M}. M is the XML production Misc, which is the
mark-up that comes after the element of the document. It is returned "as is". DataStructure is an xmlElement
record, that among others have the fields name, parents, attributes and content like:

Ericsson AB. All Rights Reserved.: xmerl | 1

href
href
href

1.1 xmerl

#xmlElement{name=Name,
 ...
 parents=Parents,
 ...
 attributes=Attrs,
 content=Content,
 ...}

The name of the element is found in the name field. In the parents field is the names of the parent elements saved.
Parents is a list of tuples where the first element in each tuple is the name of the parent element. The list is in reverse
order.

The record xmlAttribute holds the name and value of an attribute in the fields name and value. All attributes
of an element is a list of xmlAttribute in the field attributes of the xmlElement record.

The content field of the top element is a list of records that shows the structure and data of the document. If it is
a simple document like:

<?xml version="1.0"?>
<dog>
Grand Danois
</dog>

The parse result will be:

#xmlElement{name = dog,
 ...
 parents = [],
 ...
 attributes = [],
 content = [{xmlText,[{dog,1}],1,[],"\
Grand Danois\
",text}],
 ...
 }

Where the content of the top element is: [{xmlText,[{dog,1}],1,[],"\ Grand Danois\ ",text}].
Text will be returned in xmlText records. Though, usually documents are more complex, and the content of the top
element will in that case be a nested structure with xmlElement records that in turn may have complex content. All
of this reflects the structure of the XML document.

Space characters between mark-up as space, tab and line feed are normalized and returned as xmlText records.

Errors
An unsuccessful parse results in an error, which may be a tuple {error,Reason} or an exit: {'EXIT',Reason}.
According to the XML 1.0 standard there are fatal error and error situations. The fatal errors must be detected
by a conforming parser while an error may be detected. Both categories of errors are reported as fatal errors by this
version of xmerl, most often as an exit.

1.1.3 Getting Started
In the following examples we use the XML file "motorcycles.xml" and the corresponding DTD "motorcycles.dtd".
motorcycles.xml looks like:

2 | Ericsson AB. All Rights Reserved.: xmerl

1.1 xmerl

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE motorcycles SYSTEM "motorcycles.dtd">
<motorcycles>
 <bike year="2000" color="black">
 <name>
 <manufacturer>Suzuki</manufacturer>
 <brandName>Suzuki VL 1500</brandName>
 <additionalName>Intruder</additionalName>
 </name>
 <engine>V-engine, 2-cylinders, 1500 cc</engine>
 <kind>custom</kind>
 <drive>cardan</drive>
 <accessories>Sissy bar, luggage carrier,V&H exhaust pipes</accessories>
 </bike>
 <date>2004.08.25</date>
 <bike year="1983" color="read pearl">
 <name>
 <manufacturer>Yamaha</manufacturer>
 <brandName>XJ 400</brandName>
 </name>
 <engine>4 cylinder, 400 cc</engine>
 <kind>alround</kind>
 <drive>chain</drive>
 <comment>Good shape!</comment>
 </bike>
</motorcycles>

and motorcycles.dtd looks like:

<?xml version="1.0" encoding="utf-8" ?>
<!ELEMENT motorcycles (bike,date?)+ >
<!ELEMENT bike (name,engine,kind,drive, accessories?,comment?) >
<!ELEMENT name (manufacturer,brandName,additionalName?) >
<!ELEMENT manufacturer (#PCDATA)>
<!ELEMENT brandName (#PCDATA)>
<!ELEMENT additionalName (#PCDATA)>
<!ELEMENT engine (#PCDATA)>
<!ELEMENT kind (#PCDATA)>
<!ELEMENT drive (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT accessories (#PCDATA)>

<!-- Date of the format yyyy.mm.dd -->
<!ELEMENT date (#PCDATA)>
<!ATTLIST bike year NMTOKEN #REQUIRED
 color NMTOKENS #REQUIRED
 condition (useless | bad | serviceable | moderate | good |
 excellent | new | outstanding) "excellent" >

If you want to parse the XML file motorcycles.xml you run it in the Erlang shell like:

Ericsson AB. All Rights Reserved.: xmerl | 3

1.1 xmerl

3> {ParsResult,Misc}=xmerl_scan:file("motorcycles.xml").
{{xmlElement,motorcycles,
 motorcycles,
 [],
 {xmlNamespace,[],[]},
 [],
 1,
 [],
 [{xmlText,[{motorcycles,1}],1,[],"\
 ",text},
 {xmlElement,bike,
 bike,
 [],
 {xmlNamespace,[],[]},
 [{motorcycles,1}],
 2,
 [{xmlAttribute,year,[],[],[],[]|...},
 {xmlAttribute,color,[],[],[]|...}],
 [{xmlText,[{bike,2},{motorcycles|...}],
 1,
 []|...},
 {xmlElement,name,name,[]|...},
 {xmlText,[{...}|...],3|...},
 {xmlElement,engine|...},
 {xmlText|...},
 {...}|...],
 [],
 ".",
 undeclared},
 ...
],
 [],
 ".",
 undeclared},
 []}
4>

If you instead receives the XML doc as a string you can parse it by xmerl_scan:string/1. Both file/2 and
string/2 exists where the second argument is a list of options to the parser, see the reference manual.

1.1.4 Example: Extracting Data From XML Content
In this example consider the situation where you want to examine a particular data in the XML file. For instance, you
want to check for how long each motorcycle have been recorded.

Take a look at the DTD and observe that the structure of an XML document that is conformant to this DTD must have
one motorcycles element (the root element). The motorcycles element must have at least one bike element. After each
bike element it may be a date element. The content of the date element is #PCDATA (Parsed Character DATA), i.e.
raw text. Observe that if #PCDATA must have a "<" or a "&" character it must be written as "<" and "&"
respectively. Also other character entities exists similar to the ones in HTML and SGML.

If you successfully parse the XML file with the validation on as in: xmerl_scan:file('motorcycles.xml',
[{validation,true}]) you know that the XML document is valid and has the structure according to the DTD.

Thus, knowing the allowed structure it is easy to write a program that traverses the data structure and picks the
information in the xmlElements records with name date.

Observe that white space: each space, tab or line feed, between mark-up results in an xmlText record.

4 | Ericsson AB. All Rights Reserved.: xmerl

1.1 xmerl

1.1.5 Example: Create XML Out Of Arbitrary Data
For this task there are more than one way to go. The "brute force" method is to create the records you need and feed
your data in the content and attribute fields of the appropriate element.

There is support for this in xmerl by the "simple-form" format. You can put your data in a simple-form data
structure and feed it into xmerl:export_simple(Content,Callback,RootAttributes). Content may
be a mixture of simple-form and xmerl records as xmlElement and xmlText.

The Types are:

• Content = [Element]

• Callback = atom()

• RootAttributes = [Attributes]

Element is any of:

• {Tag, Attributes, Content}

• {Tag, Content}

• Tag

• IOString

• #xmlText{}

• #xmlElement{}

• #xmlPI{}

• #xmlComment{}

• #xmlDecl{}

The simple-form structure is any of {Tag, Attributes, Content}, {Tag, Content} or Tag where:

• Tag = atom()

• Attributes = [{Name, Value}| #xmlAttribute{}]

• Name = atom()

• Value = IOString | atom() | integer()

See also reference manual for xmerl

If you want to add the information about a black Harley Davidsson 1200 cc Sportster motorcycle from 2003 that is in
shape as new in the motorcycles.xml document you can put the data in a simple-form data structure like:

Data =
 {bike,
 [{year,"2003"},{color,"black"},{condition,"new"}],
 [{name,
 [{manufacturer,["Harley Davidsson"]},
 {brandName,["XL1200C"]},
 {additionalName,["Sportster"]}]},
 {engine,
 ["V-engine, 2-cylinders, 1200 cc"]},
 {kind,["custom"]},
 {drive,["belt"]}]}

In order to append this data to the end of the motorcycles.xml document you have to parse the file and add Data to
the end of the root element content.

Ericsson AB. All Rights Reserved.: xmerl | 5

1.1 xmerl

 {RootEl,Misc}=xmerl_scan:file('motorcycles.xml'),
 #xmlElement{content=Content} = RootEl,
 NewContent=Content++lists:flatten([Data]),
 NewRootEl=RootEl#xmlElement{content=NewContent},

Then you can run it through the export_simple/2 function:

 {ok,IOF}=file:open('new_motorcycles.xml',[write]),
 Export=xmerl:export_simple([NewRootEl],xmerl_xml),
 io:format(IOF,"~s~n",[lists:flatten(Export)]),

The result would be:

<?xml version="1.0"?><motorcycles>
 <bike year="2000" color="black">
 <name>
 <manufacturer>Suzuki</manufacturer>
 <brandName>Suzuki VL 1500</brandName>
 <additionalName>Intruder</additionalName>
 </name>
 <engine>V-engine, 2-cylinders, 1500 cc</engine>
 <kind>custom</kind>
 <drive>cardan</drive>
 <accessories>Sissy bar, luggage carrier,V&H exhaust pipes</accessories>
 </bike>
 <date>2004.08.25</date>
 <bike year="1983" color="read pearl">
 <name>
 <manufacturer>Yamaha</manufacturer>
 <brandName>XJ 400</brandName>
 </name>
 <engine>4 cylinder, 400 cc</engine>
 <kind>alround</kind>
 <drive>chain</drive>
 <comment>Good shape!</comment>
 </bike>
<bike year="2003" color="black" condition="new"><name><manufacturer>Harley Davidsson</manufacturer><brandName>XL1200C</brandName><additionalName>Sportster</additionalName></name><engine>V-engine, 2-cylinders, 1200 cc</engine><kind>custom</kind><drive>belt</drive></bike></motorcycles>

If it is important to get similar indentation and newlines as in the original document you have to add #xmlText{}
records with space and newline values in appropriate places. It may also be necessary to keep the original prolog where
the DTD is referenced. If so, it is possible to pass a RootAttribute {prolog,Value} to export_simple/3. The
following example code fixes those changes in the previous example:

6 | Ericsson AB. All Rights Reserved.: xmerl

1.1 xmerl

 Data =
 [#xmlText{value=" "},
 {bike,[{year,"2003"},{color,"black"},{condition,"new"}],
 [#xmlText{value="\
 "},
 {name,[#xmlText{value="\
 "},
 {manufacturer,["Harley Davidsson"]},
 #xmlText{value="\
 "},
 {brandName,["XL1200C"]},
 #xmlText{value="\
 "},
 {additionalName,["Sportster"]},
 #xmlText{value="\
 "}]},
 {engine,["V-engine, 2-cylinders, 1200 cc"]},
 #xmlText{value="\
 "},
 {kind,["custom"]},
 #xmlText{value="\
 "},
 {drive,["belt"]},
 #xmlText{value="\
 "}]},
 #xmlText{value="\
"}],
 ...
 NewContent=Content++lists:flatten([Data]),
 NewRootEl=RootEl#xmlElement{content=NewContent},
 ...
 Prolog = ["<?xml version=\\"1.0\\" encoding=\\"utf-8\\" ?>
<!DOCTYPE motorcycles SYSTEM \\"motorcycles.dtd\\">\
"],
 Export=xmerl:export_simple([NewRootEl],xmerl_xml,[{prolog,Prolog}]),
 ...

The result will be:

Ericsson AB. All Rights Reserved.: xmerl | 7

1.1 xmerl

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE motorcycles SYSTEM "motorcycles.dtd">
<motorcycles>
 <bike year="2000" color="black">
 <name>
 <manufacturer>Suzuki</manufacturer>
 <brandName>Suzuki VL 1500</brandName>
 <additionalName>Intruder</additionalName>
 </name>
 <engine>V-engine, 2-cylinders, 1500 cc</engine>
 <kind>custom</kind>
 <drive>cardan</drive>
 <accessories>Sissy bar, luggage carrier,V&H exhaust pipes</accessories>
 </bike>
 <date>2004.08.25</date>
 <bike year="1983" color="read pearl">
 <name>
 <manufacturer>Yamaha</manufacturer>
 <brandName>XJ 400</brandName>
 </name>
 <engine>4 cylinder, 400 cc</engine>
 <kind>alround</kind>
 <drive>chain</drive>
 <comment>Good shape!</comment>
 </bike>
 <bike year="2003" color="black" condition="new">
 <name>
 <manufacturer>Harley Davidsson</manufacturer>
 <brandName>XL1200C</brandName>
 <additionalName>Sportster</additionalName>
 </name><engine>V-engine, 2-cylinders, 1200 cc</engine>
 <kind>custom</kind>
 <drive>belt</drive>
 </bike>
</motorcycles>

1.1.6 Example: Transforming XML To HTML
Assume that you want to transform the motorcycles.xml document to HTML. If you want the same structure and tags
of the resulting HTML document as of the XML document then you can use the xmerl:export/2 function. The
following:

8 | Ericsson AB. All Rights Reserved.: xmerl

1.1 xmerl

2> {Doc,Misc}=xmerl_scan:file('motorcycles.xml').
{{xmlElement,motorcycles,
 motorcycles,
 [],
 {xmlNamespace,[],[]},
 [],
 1,
 [],
 [{xmlText,[{motorcycles,1}],1,[],"\
 ",text},
 {xmlElement,bike,
...
3> DocHtml=xmerl:export([Doc],xmerl_html).
["<!DOCTYPE HTML PUBLIC \\"",
 "-//W3C//DTD HTML 4.01 Transitional//EN",
 "\\"",
 [],
 ">\
",
 [[["<","motorcycles",">"],
 ["\
 ",
 [["<",
 "bike",
 [[" ","year","=\\"","2000","\\""],[" ","color","=\\"","black","\\""]],
 ">"],
...

Will give the result result_export.html

Perhaps you want to do something more arranged for human reading. Suppose that you want to list all different brands
in the beginning with links to each group of motorcycles. You also want all motorcycles sorted by brand, then some
flashy colors on top of it. Thus you rearrange the order of the elements and put in arbitrary HTML tags. This is possible
to do by means of the XSL Transformation (XSLT) like functionality in xmerl.

Even though the following example shows one way to transform data from XML to HTML it also applies to
transformations to other formats.

xmerl_xs does not implement the entire XSLT specification but the basic functionality. For all details see the
reference manual

First, some words about the xmerl_xs functionality:

You need to write template functions to be able to control what kind of output you want. Thus if you want to encapsulate
a bike element in <p> tags you simply write a function:

template(E = #xmlElement{name='bike'}) ->
 ["<p>",xslapply(fun template/1,E),"</p>"];

With xslapply you tell the XSLT processor in which order it should traverse the XML structure. By default it goes
in preorder traversal, but with the following we make a deliberate choice to break that order:

template(E = #xmlElement{name='bike'}) ->
 ["<p>",xslapply(fun template/1,select("bike/name/manufacturer")),"</p>"];

If you want to output the content of an XML element or an attribute you will get the value as a string by the value_of
function:

Ericsson AB. All Rights Reserved.: xmerl | 9

href
href

1.1 xmerl

template(E = #xmlElement{name='motorcycles'}) ->
 ["<p>",value_of(select("bike/name/manufacturer",E),"</p>"];

In the xmerl_xs functions you can provide a select(String) call, which is an XPath functionality. For more details see
the xmerl_xs tutorial.

Now, back to the example where we wanted to make the output more arranged. With the template:

template(E = #xmlElement{name='motorcycles'}) ->
 ["<head>\
<title>motorcycles</title>\
</head>\
",
 "<body>\
",
\011 "<h1>Used Motorcycles</h1>\
",
\011 "\
",
\011 remove_duplicates(value_of(select("bike/name/manufacturer",E))),
\011 "\
\
",
\011 sort_by_manufacturer(xslapply(fun template/1, E)),
 "</body>\
",
\011 "</html>\
"];

We match on the top element and embed the inner parts in an HTML body. Then we extract the string values of all
motorcycle brands, sort them and removes duplicates by remove_duplicates(value_of(select("bike/
name/manufacturer", E))). We also process the substructure of the top element and pass it to a function that
sorts all motorcycle information by brand according to the task formulation in the beginning of this example.

The next template matches on the bike element:

template(E = #xmlElement{name='bike'}) ->
 {value_of(select("name/manufacturer",E)),["<dt>",xslapply(fun template/1,select("name",E)),"</dt>",
 "<dd>\
",
 "<li style="color:green">Manufacturing year: ",xslapply(fun template/1,select("@year",E)),"\
",
 "<li style="color:red">Color: ",xslapply(fun template/1,select("@color",E)),"\
",
 "<li style="color:blue">Shape : ",xslapply(fun template/1,select("@condition",E)),"\
",
 "</dd>\
"]};

This creates a tuple with the brand of the motorcycle and the output format. We use the brand name only
for sorting purpose. We have to end the template function with the "built in clause" template(E) ->
built_in_rules(fun template/1, E).

The entire program is motorcycles2html.erl:

10 | Ericsson AB. All Rights Reserved.: xmerl

href
href

1.1 xmerl

%%%---
%%% File : motorcycles2html.erl
%%% Author : Bertil Karlsson <bertil@localhost.localdomain>
%%% Description :
%%%
%%% Created : 2 Sep 2004 by Bertil Karlsson <bertil@localhost.localdomain>
%%%---
-module(motorcycles2html).

-include_lib("xmerl/include/xmerl.hrl").

-import(xmerl_xs,
 [xslapply/2, value_of/1, select/2, built_in_rules/2]).

-export([process_xml/1,process_to_file/2,process_to_file/1]).

process_xml(Doc) ->
 template(Doc).

process_to_file(FileName) ->
 process_to_file(FileName,'motorcycles.xml').

process_to_file(FileName,XMLDoc) ->
 case file:open(FileName,[write]) of
 {ok,IOF} ->
 {XMLContent,_} = xmerl_scan:file(XMLDoc),
 TransformedXML=process_xml(XMLContent),
 io:format(IOF,"~s",[TransformedXML]),
 file:close(IOF);
 {error,Reason} ->
 io:format("could not open file due to ~p.~n",[Reason])
 end.

%%% templates
template(E = #xmlElement{name='motorcycles'}) ->
 ["<head>\n<title>motorcycles</title>\n</head>\n",
 "<body>\n",
 "<h1>Used Motorcycles</h1>\n",
 "\n",
 remove_duplicates(value_of(select("bike/name/manufacturer",E))),
 "\n\n",
 sort_by_manufacturer(xslapply(fun template/1, E)),
 "</body>\n",
 "</html>\n"];
template(E = #xmlElement{name='bike'}) ->
 {value_of(select("name/manufacturer",E)),["<dt>",xslapply(fun template/1,select("name",E)),"</dt>",
 "<dd>\n",
 "<li style=\"color:green\">Manufacturing year: ",xslapply(fun template/1,select("@year",E)),"\n",
 "<li style=\"color:red\">Color: ",xslapply(fun template/1,select("@color",E)),"\n",
 "<li style=\"color:blue\">Shape : ",xslapply(fun template/1,select("@condition",E)),"\n",
 "</dd>\n"]};
template(E) -> built_in_rules(fun template/1, E).

%%%%%%%%%%% helper routines

%% sorts on the bike name element, unwraps the bike information and
%% inserts a line feed and indentation on each bike element.
sort_by_manufacturer(L) ->
 Tuples=[X1||X1={_,_} <- L],
 SortedTS = lists:keysort(1,Tuples),
 InsertRefName_UnWrap=
 fun([{[Name],V}|Rest],Name,F)->
 [V|F(Rest,Name,F)];
 ([{[Name],V}|Rest],_PreviousName,F) ->

Ericsson AB. All Rights Reserved.: xmerl | 11

1.1 xmerl

 [["</>"],V|F(Rest,Name,F)];
 ([],_,_) -> []
 end,
 SortedRefed=InsertRefName_UnWrap(SortedTS,no_name,InsertRefName_UnWrap),
% SortedTs=[Y||{X,Y}<-lists:keysort(1,Tuples)],
 WS = "\n ",
 Fun=fun([H|T],Acc,F)->
 F(T,[H,WS|Acc],F);
 ([],Acc,_F)->
 lists:reverse([WS|Acc])
 end,
 if length(SortedRefed) > 0 ->
 Fun(SortedRefed,[],Fun);
 true -> []
 end.

%% removes all but the first of an element in L and inserts a html
%% reference for each list element.
remove_duplicates(L) ->
 remove_duplicates(L,[]).

remove_duplicates([],Acc) ->
 make_ref(lists:sort(lists:reverse(Acc)));
remove_duplicates([A|L],Acc) ->
 case lists:delete(A,L) of
 L ->
 remove_duplicates(L,[A|Acc]);
 L1 ->
 remove_duplicates([A|L1],[Acc])
 end.

make_ref([]) -> [];
make_ref([H]) when is_atom(H) ->
 ""++atom_to_list(H)++"";
make_ref([H]) when is_list(H) ->
 "\s"++H++"";
make_ref([H|T]) when is_atom(H) ->
 ["\s"++atom_to_list(H)++",\n"
 |make_ref(T)];
make_ref([H|T]) when is_list(H) ->
 ["\s"++H++",\n"|make_ref(T)].

If we run it like this: motorcycles2html:process_to_file('result_xs.html',
'motorcycles2.xml'). The result will be result_xs.html. When the input file is of the same structure as the
previous "motorcycles" XML files but it has a little more 'bike' elements and the 'manufacturer' elements are not in
order.

12 | Ericsson AB. All Rights Reserved.: xmerl

href

1.1 xmerl

2 Reference Manual

The xmerl application contains modules with support for processing of xml files compliant to XML 1.0.

Ericsson AB. All Rights Reserved.: xmerl | 13

xmerl_scan

xmerl_scan
Erlang module

This module is the interface to the XML parser, it handles XML 1.0. The XML parser is activated through
xmerl_scan:string/[1,2] or xmerl_scan:file/[1,2]. It returns records of the type defined in
xmerl.hrl. See also tutorial on customization functions.

DATA TYPES
document() = xmlElement() | xmlDocument()

The document returned by xmerl_scan:string/[1,2] and xmerl_scan:file/[1,2]. The type of
the returned record depends on the value of the document option passed to the function.

global_state()

The global state of the scanner, represented by the #xmerl_scanner{} record.

option_list()

Options allow to customize the behaviour of the scanner. See also tutorial on customization functions.

Possible options are:

{acc_fun, Fun}

Call back function to accumulate contents of entity.

{continuation_fun, Fun} | {continuation_fun, Fun, ContinuationState}

Call back function to decide what to do if the scanner runs into EOF before the document is complete.

{event_fun, Fun} | {event_fun, Fun, EventState}

Call back function to handle scanner events.

{fetch_fun, Fun} | {fetch_fun, Fun, FetchState}

Call back function to fetch an external resource.

{hook_fun, Fun} | {hook_fun, Fun, HookState}

Call back function to process the document entities once identified.

{close_fun, Fun}

Called when document has been completely parsed.

{rules, ReadFun, WriteFun, RulesState} | {rules, Rules}

Handles storing of scanner information when parsing.

{user_state, UserState}

Global state variable accessible from all customization functions

{fetch_path, PathList}

PathList is a list of directories to search when fetching files. If the file in question is not in the fetch_path,
the URI will be used as a file name.

14 | Ericsson AB. All Rights Reserved.: xmerl

href
href

xmerl_scan

{space, Flag}

'preserve' (default) to preserve spaces, 'normalize' to accumulate consecutive whitespace and replace it with
one space.

{line, Line}

To specify starting line for scanning in document which contains fragments of XML.

{namespace_conformant, Flag}

Controls whether to behave as a namespace conformant XML parser, 'false' (default) to not otherwise 'true'.

{validation, Flag}

Controls whether to process as a validating XML parser: 'off' (default) no validation, or validation 'dtd' by
DTD or 'schema' by XML Schema. 'false' and 'true' options are obsolete (i.e. they may be removed in a future
release), if used 'false' equals 'off' and 'true' equals 'dtd'.

{schemaLocation, [{Namespace,Link}|...]}

Tells explicitly which XML Schema documents to use to validate the XML document. Used together with
the {validation,schema} option.

{quiet, Flag}

Set to 'true' if xmerl should behave quietly and not output any information to standard output (default 'false').

{doctype_DTD, DTD}

Allows to specify DTD name when it isn't available in the XML document. This option has effect only
together with {validation,'dtd' option.

{xmlbase, Dir}

XML Base directory. If using string/1 default is current directory. If using file/1 default is directory of given
file.

{encoding, Enc}

Set default character set used (default UTF-8). This character set is used only if not explicitly given by the
XML declaration.

{document, Flag}

Set to 'true' if xmerl should return a complete XML document as an xmlDocument record (default 'false').

{comments, Flag}

Set to 'false' if xmerl should skip comments otherwise they will be returned as xmlComment records (default
'true').

{default_attrs, Flag}

Set to 'true' if xmerl should add to elements missing attributes with a defined default value (default 'false').

xmlDocument() = #xmlDocument{}

The record definition is found in xmerl.hrl.

xmlElement() = #xmlElement{}

Ericsson AB. All Rights Reserved.: xmerl | 15

xmerl_scan

Exports

accumulate_whitespace(T::string(), S::global_state(), X3::atom(),
Acc::string()) -> {Acc, T1, S1}
Function to accumulate and normalize whitespace.

cont_state(S::global_state()) -> global_state()
Equivalent to cont_state(ContinuationState, S).

cont_state(X::ContinuationState, S::global_state()) -> global_state()
For controlling the ContinuationState, to be used in a continuation function, and called when the parser encounters the
end of the byte stream. See tutorial on customization functions.

event_state(S::global_state()) -> global_state()
Equivalent to event_state(EventState, S).

event_state(X::EventState, S::global_state()) -> global_state()
For controlling the EventState, to be used in an event function, and called at the beginning and at the end of a parsed
entity. See tutorial on customization functions.

fetch_state(S::global_state()) -> global_state()
Equivalent to fetch_state(FetchState, S).

fetch_state(X::FetchState, S::global_state()) -> global_state()
For controlling the FetchState, to be used in a fetch function, and called when the parser fetch an external resource
(eg. a DTD). See tutorial on customization functions.

file(Filename::string()) -> {xmlElement(), Rest}
Types:

Rest = list()

Equivalent to file(Filename, []).

file(Filename::string(), Options::option_list()) -> {document(), Rest}
Types:

Rest = list()

Parse file containing an XML document

hook_state(S::global_state()) -> global_state()
Equivalent to hook_state(HookState, S).

hook_state(X::HookState, S::global_state()) -> global_state()
For controlling the HookState, to be used in a hook function, and called when the parser has parsed a complete entity.
See tutorial on customization functions.

16 | Ericsson AB. All Rights Reserved.: xmerl

href
href
href
href

xmerl_scan

rules_state(S::global_state()) -> global_state()
Equivalent to rules_state(RulesState, S).

rules_state(X::RulesState, S::global_state()) -> global_state()
For controlling the RulesState, to be used in a rules function, and called when the parser store scanner information in
a rules database. See tutorial on customization functions.

string(Text::list()) -> {xmlElement(), Rest}
Types:

Rest = list()

Equivalent to string(Text, []).

string(Text::list(), Options::option_list()) -> {document(), Rest}
Types:

Rest = list()

Parse string containing an XML document

user_state(S::global_state()) -> global_state()
Equivalent to user_state(UserState, S).

user_state(X::UserState, S::global_state()) -> global_state()
For controlling the UserState, to be used in a user function. See tutorial on customization functions.

Ericsson AB. All Rights Reserved.: xmerl | 17

href
href

xmerl

xmerl
Erlang module

Functions for exporting XML data to an external format.

Exports

callbacks(Module) -> Result
Types:

Module = atom()

Result = [atom()]

Find the list of inherited callback modules for a given module.

export(Content, Callback) -> ExportedFormat
Equivalent to export(Data, Callback, []).

export(Content, Callback, RootAttributes) -> ExportedFormat
Types:

Content = [Element]

Callback = atom()

RootAttributes = [XmlAttributes]

Exports normal, well-formed XML content, using the specified callback-module.

Element is any of:

• #xmlText{}

• #xmlElement{}

• #xmlPI{}

• #xmlComment{}

• #xmlDecl{}

(See xmerl.hrl for the record definitions.) Text in #xmlText{} elements can be deep lists of characters and/
or binaries.

RootAttributes is a list of #xmlAttribute{} attributes for the #root# element, which implicitly becomes
the parent of the given Content. The tag-handler function for #root# is thus called with the complete exported data
of Content. Root attributes can be used to specify e.g. encoding or other metadata of an XML or HTML document.

The Callback module should contain hook functions for all tags present in the data structure. A hook function must
have the following format:

 Tag(Data, Attributes, Parents, E)

where E is the corresponding #xmlElement{}, Data is the already-exported contents of E and Attributes
is the list of #xmlAttribute{} records of E. Finally, Parents is the list of parent nodes of E, on the form
[{ParentTag::atom(), ParentPosition::integer()}].

The hook function should return either the data to be exported, or a tuple {'#xml-alias#',
NewTag::atom()}, or a tuple {'#xml-redefine#', Content}, where Content is a content list (which
can be on simple-form; see export_simple/2 for details).

18 | Ericsson AB. All Rights Reserved.: xmerl

xmerl

A callback module can inherit definitions from other callback modules, through the required function '#xml-
interitance#() -> [ModuleName::atom()].

See also: export/2, export_simple/3.

export_content(Es::Content, Callbacks) -> term()
Types:

Content = [Element]

Callback = [atom()]

Exports normal XML content directly, without further context.

export_element(E, CB) -> term()
Exports a normal XML element directly, without further context.

export_element(E, CallbackModule, CallbackState) -> ExportedFormat
For on-the-fly exporting during parsing (SAX style) of the XML document.

export_simple(Content, Callback) -> ExportedFormat
Equivalent to export_simple(Content, Callback, []).

export_simple(Content, Callback, RootAttrs::RootAttributes) -> ExportedFormat
Types:

Content = [Element]

Callback = atom()

RootAttributes = [XmlAttributes]

Exports "simple-form" XML content, using the specified callback-module.

Element is any of:

• {Tag, Attributes, Content}

• {Tag, Content}

• Tag

• IOString

• #xmlText{}

• #xmlElement{}

• #xmlPI{}

• #xmlComment{}

• #xmlDecl{}

where

• Tag = atom()

• Attributes = [{Name, Value}]

• Name = atom()

• Value = IOString | atom() | integer()

Normal-form XML elements can thus be included in the simple-form representation. Note that content lists must be
flat. An IOString is a (possibly deep) list of characters and/or binaries.

Ericsson AB. All Rights Reserved.: xmerl | 19

xmerl

RootAttributes is a list of:

• XmlAttributes = #xmlAttribute{}

See export/3 for details on the callback module and the root attributes. The XML-data is always converted to
normal form before being passed to the callback module.

See also: export/3, export_simple/2.

export_simple_content(Content, Callback) -> term()
Exports simple XML content directly, without further context.

export_simple_element(Content, Callback) -> term()
Exports a simple XML element directly, without further context.

20 | Ericsson AB. All Rights Reserved.: xmerl

xmerl_xs

xmerl_xs
Erlang module

Erlang has similarities to XSLT since both languages have a functional programming approach. Using xmerl_xpath
it is possible to write XSLT like transforms in Erlang.

XSLT stylesheets are often used when transforming XML documents, to other XML documents or (X)HTML for
presentation. XSLT contains quite many functions and learning them all may take some effort. This document assumes
a basic level of understanding of XSLT.

Since XSLT is based on a functional programming approach with pattern matching and recursion it is possible to
write similar style sheets in Erlang. At least for basic transforms. This document describes how to use the XPath
implementation together with Erlangs pattern matching and a couple of functions to write XSLT like transforms.

This approach is probably easier for an Erlanger but if you need to use real XSLT stylesheets in order to "comply to the
standard" there is an adapter available to the Sablotron XSLT package which is written i C++. See also the Tutorial.

Exports

built_in_rules(Fun, E) -> List
The default fallback behaviour. Template funs should end with:
template(E) -> built_in_rules(fun template/1, E).

select(String::string(), E) -> E
Extracts the nodes from the xml tree according to XPath.

See also: value_of/1.

value_of(E) -> List
Types:

E = term()

Concatenates all text nodes within the tree.

Example:

 <xsl:template match="title">
 <div align="center">
 <h1><xsl:value-of select="." /></h1>
 </div>
 </xsl:template>

becomes:

 template(E = #xmlElement{name='title'}) ->
 ["<div align="center"><h1>",
 value_of(select(".", E)), "</h1></div>"]

Ericsson AB. All Rights Reserved.: xmerl | 21

href

xmerl_xs

xslapply(Fun::Function, EList::list()) -> List
Types:

Function = () -> list()

xslapply is a wrapper to make things look similar to xsl:apply-templates.

Example, original XSLT:

 <xsl:template match="doc/title">
 <h1>
 <xsl:apply-templates/>
 </h1>
 </xsl:template>

becomes in Erlang:

 template(E = #xmlElement{ parents=[{'doc',_}|_], name='title'}) ->
 ["<h1>",
 xslapply(fun template/1, E),
 "</h1>"];

22 | Ericsson AB. All Rights Reserved.: xmerl

xmerl_eventp

xmerl_eventp
Erlang module

Simple event-based front-ends to xmerl_scan for processing of XML documents in streams and for parsing in SAX
style. Each contain more elaborate settings of xmerl_scan that makes usage of the customization functions.

DATA TYPES
option_list()

Options allow to customize the behaviour of the scanner. See also tutorial on customization functions.

Possible options are:

{acc_fun, Fun}

Call back function to accumulate contents of entity.

{continuation_fun, Fun} | {continuation_fun, Fun, ContinuationState}

Call back function to decide what to do if the scanner runs into EOF before the document is complete.

{event_fun, Fun} | {event_fun, Fun, EventState}

Call back function to handle scanner events.

{fetch_fun, Fun} | {fetch_fun, Fun, FetchState}

Call back function to fetch an external resource.

{hook_fun, Fun} | {hook_fun, Fun, HookState}

Call back function to process the document entities once identified.

{close_fun, Fun}

Called when document has been completely parsed.

{rules, ReadFun, WriteFun, RulesState} | {rules, Rules}

Handles storing of scanner information when parsing.

{user_state, UserState}

Global state variable accessible from all customization functions

{fetch_path, PathList}

PathList is a list of directories to search when fetching files. If the file in question is not in the fetch_path,
the URI will be used as a file name.

{space, Flag}

'preserve' (default) to preserve spaces, 'normalize' to accumulate consecutive whitespace and replace it with
one space.

{line, Line}

To specify starting line for scanning in document which contains fragments of XML.

{namespace_conformant, Flag}

Controls whether to behave as a namespace conformant XML parser, 'false' (default) to not otherwise 'true'.

Ericsson AB. All Rights Reserved.: xmerl | 23

href

xmerl_eventp

{validation, Flag}

Controls whether to process as a validating XML parser: 'off' (default) no validation, or validation 'dtd' by
DTD or 'schema' by XML Schema. 'false' and 'true' options are obsolete (i.e. they may be removed in a future
release), if used 'false' equals 'off' and 'true' equals 'dtd'.

{schemaLocation, [{Namespace,Link}|...]}

Tells explicitly which XML Schema documents to use to validate the XML document. Used together with
the {validation,schema} option.

{quiet, Flag}

Set to 'true' if xmerl should behave quietly and not output any information to standard output (default 'false').

{doctype_DTD, DTD}

Allows to specify DTD name when it isn't available in the XML document. This option has effect only
together with {validation,'dtd' option.

{xmlbase, Dir}

XML Base directory. If using string/1 default is current directory. If using file/1 default is directory of given
file.

{encoding, Enc}

Set default character set used (default UTF-8). This character set is used only if not explicitly given by the
XML declaration.

{document, Flag}

Set to 'true' if xmerl should return a complete XML document as an xmlDocument record (default 'false').

{comments, Flag}

Set to 'false' if xmerl should skip comments otherwise they will be returned as xmlComment records (default
'true').

{default_attrs, Flag}

Set to 'true' if xmerl should add to elements missing attributes with a defined default value (default 'false').

xmlElement() = #xmlElement{}

Exports

file_sax(Fname::string(), CallBackModule::atom(), UserState,
Options::option_list()) -> NewUserState
Parse file containing an XML document, SAX style. Wrapper for a call to the XML parser xmerl_scan with a
hook_fun for using xmerl export functionality directly after an entity is parsed.

stream(Fname::string(), Options::option_list()) -> xmlElement()
Parse file containing an XML document as a stream, DOM style. Wrapper for a call to the XML parser xmerl_scan
with a continuation_fun for handling streams of XML data. Note that the continuation_fun, acc_fun,
fetch_fun, rules and close_fun options cannot be user defined using this parser.

stream_sax(Fname, CallBack::CallBackModule, UserState, Options) ->
xmlElement()
Types:

24 | Ericsson AB. All Rights Reserved.: xmerl

xmerl_eventp

Fname = string()

CallBackModule = atom()

Options = option_list()

Parse file containing an XML document as a stream, SAX style. Wrapper for a call to the XML parser xmerl_scan
with a continuation_fun for handling streams of XML data. Note that the continuation_fun, acc_fun,
fetch_fun, rules, hook_fun, close_fun and user_state options cannot be user defined using this parser.

string_sax(String::list(), CallBackModule::atom(), UserState,
Options::option_list()) -> xmlElement()
Parse file containing an XML document, SAX style. Wrapper for a call to the XML parser xmerl_scan with a
hook_fun for using xmerl export functionality directly after an entity is parsed.

Ericsson AB. All Rights Reserved.: xmerl | 25

xmerl_xpath

xmerl_xpath
Erlang module

The xmerl_xpath module handles the entire XPath 1.0 spec. XPath expressions typically occur in XML attributes and
are used to address parts of an XML document. The grammar is defined in xmerl_xpath_parse.yrl. The core
functions are defined in xmerl_xpath_pred.erl.

Some useful shell commands for debugging the XPath parser

 c(xmerl_xpath_scan).
 yecc:yecc("xmerl_xpath_parse.yrl", "xmerl_xpath_parse", true, []).
 c(xmerl_xpath_parse).

 xmerl_xpath_parse:parse(xmerl_xpath_scan:tokens("position() > -1")).
 xmerl_xpath_parse:parse(xmerl_xpath_scan:tokens("5 * 6 div 2")).
 xmerl_xpath_parse:parse(xmerl_xpath_scan:tokens("5 + 6 mod 2")).
 xmerl_xpath_parse:parse(xmerl_xpath_scan:tokens("5 * 6")).
 xmerl_xpath_parse:parse(xmerl_xpath_scan:tokens("-----6")).
 xmerl_xpath_parse:parse(xmerl_xpath_scan:tokens("parent::node()")).
 xmerl_xpath_parse:parse(xmerl_xpath_scan:tokens("descendant-or-self::node()")).
 xmerl_xpath_parse:parse(xmerl_xpath_scan:tokens("parent::processing-instruction('foo')")).

DATA TYPES
docEntity() = #xmlDocument{} | [docNodes()]

docNodes() = #xmlElement{} | #xmlAttribute{} | #xmlText{} | #xmlPI{} | #xmlComment{} | #xmlNsNode{}

nodeEntity() = #xmlElement{} | #xmlAttribute{} | #xmlText{} | #xmlPI{} | #xmlComment{} | #xmlNsNode{} |
#xmlDocument{}

option_list()

Options allows to customize the behaviour of the XPath scanner.

Possible options are:

{namespace, #xmlNamespace}

Set namespace nodes, from XmlNamspace, in xmlContext

{namespace, Nodes}

Set namespace nodes in xmlContext.

parentList() = [{atom(), integer()}]

xPathString() = string()

Exports

string(Str, Doc) -> [docEntity()] | Scalar
Equivalent to string(Str, Doc, []).

26 | Ericsson AB. All Rights Reserved.: xmerl

xmerl_xpath

string(Str, Doc, Options) -> [docEntity()] | Scalar
Equivalent to string(Str, Doc, [], Doc, Options).

string(Str, Node, Parents, Doc, Options) -> [docEntity()] | Scalar
Types:

Str = xPathString()

Node = nodeEntity()

Parents = parentList()

Doc = nodeEntity()

Options = option_list()

Scalar = #xmlObj{}

Extracts the nodes from the parsed XML tree according to XPath. xmlObj is a record with fields type and value, where
type is boolean | number | string

Ericsson AB. All Rights Reserved.: xmerl | 27

xmerl_xsd

xmerl_xsd
Erlang module

Interface module for XML Schema validation. It handles the W3.org specifications of XML Schema second edition 28
october 2004. For an introduction to XML Schema study part 0. An XML structure is validated by xmerl_xsd:validate/
[2,3].

DATA TYPES
filename() = string()

global_state()

The global state of the validator. It is representated by the #xsd_state{} record.

option_list()

Options allow to customize the behaviour of the validation.

Possible options are :

{tab2file,boolean()}

Enables saving of abstract structure on file for debugging purpose.

{xsdbase,filename()}

XSD Base directory.

{fetch_fun,FetchFun}

Call back function to fetch an external resource.

{fetch_path,PathList}

PathList is a list of directories to search when fetching files. If the file in question is not in the fetch_path,
the URI will be used as a file name.

{state,State}

It is possible by this option to provide a state with process information from an earlier validation.

Exports

file2state(FileName) -> {ok, State} | {error, Reason}
Types:

State = global_state()

FileName = string()

Reads the schema state with all information of the processed schema from a file created with state2file/[1,2].
The format of this file is internal. The state can then be used validating an XML document.

format_error(L::Errors) -> Result
Types:

Errors = tuple() | [tuple()]

Result = string() | [string()]

28 | Ericsson AB. All Rights Reserved.: xmerl

href
href

xmerl_xsd

Formats error descriptions to human readable strings.

process_schema(Schema) -> Result
Equivalent to process_schema(Schema, []).

process_schema(Schema, Options) -> Result
Types:

Schema = string()

Result = {ok, State} | {error, Reason}

State = global_state()

Reason = [ErrorReason] | ErrorReason

Options = option_list()

Reads the referenced XML schema and checks that it is valid. Returns the global_state() with schema info or
an error reason. The error reason may be a list of several errors or a single error encountered during the processing.

process_schemas(Schemas) -> Result
Equivalent to process_schema(Schemas, []).

process_schemas(Schemas, Options) -> Result
Types:

Schemas = [{NameSpace, string()} | Schemas] | []

Result = {ok, State} | {error, Reason}

Reason = [ErrorReason] | ErrorReason

Options = option_list()

Reads the referenced XML schemas and controls they are valid. Returns the global_state() with schema info
or an error reason. The error reason may be a list of several errors or a single error encountered during the processing.

process_validate(Schema, Xml::Element) -> Result
Equivalent to process_validate(Schema, Xml, []).

process_validate(Schema, Xml::Element, Opts::Options) -> Result
Types:

Schema = string()

Element = XmlElement

Options = option_list()

Result = {ValidXmlElement, State} | {error, Reason}

Reason = [ErrorReason] | ErrorReason

Validates a parsed well-formed XML element towards an XML schema.

Validates in two steps. First it processes the schema, saves the type and structure info in an ets table and then validates
the element towards the schema.

Usage example:

1>{E,_} = xmerl_scan:file("my_XML_document.xml").
2>{E2,_} = xmerl_xsd:validate("my_XML_Schema.xsd",E).

Ericsson AB. All Rights Reserved.: xmerl | 29

xmerl_xsd

Observe that E2 may differ from E if for instance there are default values defined in my_XML_Schema.xsd.

state2file(S::State) -> ok | {error, Reason}
Same as state2file(State,SchemaName)

The name of the saved file is the same as the name of the schema, but with .xss extension.

state2file(S::State, FileName) -> ok | {error, Reason}
Types:

State = global_state()

FileName = string()

Saves the schema state with all information of the processed schema in a file. You can provide the file name for the
saved state. FileName is saved with the .xss extension added.

validate(Xml::Element, State) -> Result
Equivalent to validate(Element, State, []).

validate(Xml::Element, State, Opts::Options) -> Result
Types:

Element = XmlElement

Options = option_list()

Result = {ValidElement, global_state()} | {error, Reasons}

ValidElement = XmlElement

State = global_state()

Reasons = [ErrorReason] | ErrorReason

Validates a parsed well-formed XML element (Element).

A call to validate/2 or validate/3 must provide a well formed parsed XML element #xmlElement{} and a State,
global_state(), which holds necessary information from an already processed schema. Thus validate enables
reuse of the schema information and therefore if one shall validate several times towards the same schema it reduces
time consumption.

The result, ValidElement, is the valid element that conforms to the post-schema-validation infoset. When the validator
finds an error it tries to continue and reports a list of all errors found. In those cases an unexpected error is found it
may cause a single error reason.

Usage example:

1>{E,_} = xmerl_scan:file("my_XML_document.xml").
2>{ok,S} = xmerl_xsd:process_schema("my_XML_Schema.xsd").
3>{E2,_} = xmerl_xsd:validate(E,S).

Observe that E2 may differ from E if for instance there are default values defined in my_XML_Schema.xsd.

30 | Ericsson AB. All Rights Reserved.: xmerl

xmerl_sax_parser

xmerl_sax_parser
Erlang module

A SAX parser for XML that sends the events through a callback interface. SAX is the Simple API for XML, originally
a Java-only API. SAX was the first widely adopted API for XML in Java, and is a de facto standard where there are
versions for several programming language environments other than Java.

DATA TYPES
option()

Options used to customize the behaviour of the parser. Possible options are:

{continuation_fun, ContinuationFun}
ContinuationFun is a call back function to decide what to do if the parser runs into EOF before the
document is complete.

{continuation_state, term()}
State that is accessible in the continuation call back function.

{event_fun, EventFun}
EventFun is the call back function for parser events.

{event_state, term()}
State that is accessible in the event call back function.

{file_type, FileType}
Flag that tells the parser if it's parsing a DTD or a normal XML file (default normal).

• FileType = normal | dtd

{encoding, Encoding}
Set default character set used (default UTF-8). This character set is used only if not explicitly given by the
XML document.

• Encoding = utf8 | {utf16,big} | {utf16,little} | latin1 | list

skip_external_dtd
Skips the external DTD during parsing.

event()

The SAX events that are sent to the user via the callback.

startDocument
Receive notification of the beginning of a document. The SAX parser will send this event only once
before any other event callbacks.

endDocument
Receive notification of the end of a document. The SAX parser will send this event only once, and it will
be the last event during the parse.

{startPrefixMapping, Prefix, Uri}
Begin the scope of a prefix-URI Namespace mapping. Note that start/endPrefixMapping events are
not guaranteed to be properly nested relative to each other: all startPrefixMapping events will occur
immediately before the corresponding startElement event, and all endPrefixMapping events will occur
immediately after the corresponding endElement event, but their order is not otherwise guaranteed. There
will not be start/endPrefixMapping events for the "xml" prefix, since it is predeclared and immutable.

• Prefix = string()

• Uri = string()

Ericsson AB. All Rights Reserved.: xmerl | 31

xmerl_sax_parser

{endPrefixMapping, Prefix}
End the scope of a prefix-URI mapping.

• Prefix = string()

{startElement, Uri, LocalName, QualifiedName, Attributes}
Receive notification of the beginning of an element. The Parser will send this event at the beginning
of every element in the XML document; there will be a corresponding endElement event for every
startElement event (even when the element is empty). All of the element's content will be reported, in
order, before the corresponding endElement event.

• Uri = string()

• LocalName = string()

• QualifiedName = {Prefix, LocalName}

• Prefix = string()

• Attributes = [{Uri, Prefix, AttributeName, Value}]

• AttributeName = string()

• Value = string()

{endElement, Uri, LocalName, QualifiedName}
Receive notification of the end of an element. The SAX parser will send this event at the end of every
element in the XML document; there will be a corresponding startElement event for every endElement
event (even when the element is empty).

• Uri = string()

• LocalName = string()

• QualifiedName = {Prefix, LocalName}

• Prefix = string()

{characters, string()}
Receive notification of character data.

{ignorableWhitespace, string()}
Receive notification of ignorable whitespace in element content.

{processingInstruction, Target, Data}
Receive notification of a processing instruction. The Parser will send this event once for each processing
instruction found: note that processing instructions may occur before or after the main document element.

• Target = string()

• Data = string()

{comment, string()}
Report an XML comment anywhere in the document (both inside and outside of the document element).

startCDATA
Report the start of a CDATA section. The contents of the CDATA section will be reported through the
regular characters event.

endCDATA
Report the end of a CDATA section.

{startDTD, Name, PublicId, SystemId}
Report the start of DTD declarations, it's reporting the start of the DOCTYPE declaration. If the document
has no DOCTYPE declaration, this event will not be sent.

• Name = string()

• PublicId = string()

• SystemId = string()

endDTD
Report the end of DTD declarations, it's reporting the end of the DOCTYPE declaration.

32 | Ericsson AB. All Rights Reserved.: xmerl

xmerl_sax_parser

{startEntity, SysId}
Report the beginning of some internal and external XML entities. ???

{endEntity, SysId}
Report the end of an entity. ???

{elementDecl, Name, Model}
Report an element type declaration. The content model will consist of the string "EMPTY", the string
"ANY", or a parenthesised group, optionally followed by an occurrence indicator. The model will be
normalized so that all parameter entities are fully resolved and all whitespace is removed,and will include
the enclosing parentheses. Other normalization (such as removing redundant parentheses or simplifying
occurrence indicators) is at the discretion of the parser.

• Name = string()

• Model = string()

{attributeDecl, ElementName, AttributeName, Type, Mode, Value}
Report an attribute type declaration.

• ElementName = string()

• AttributeName = string()

• Type = string()

• Mode = string()

• Value = string()

{internalEntityDecl, Name, Value}
Report an internal entity declaration.

• Name = string()

• Value = string()

{externalEntityDecl, Name, PublicId, SystemId}
Report a parsed external entity declaration.

• Name = string()

• PublicId = string()

• SystemId = string()

{unparsedEntityDecl, Name, PublicId, SystemId, Ndata}
Receive notification of an unparsed entity declaration event.

• Name = string()

• PublicId = string()

• SystemId = string()

• Ndata = string()

{notationDecl, Name, PublicId, SystemId}
Receive notification of a notation declaration event.

• Name = string()

• PublicId = string()

• SystemId = string()

unicode_char()
Integer representing valid unicode codepoint.

unicode_binary()
Binary with characters encoded in UTF-8 or UTF-16.

latin1_binary()
Binary with characters encoded in iso-latin-1.

Ericsson AB. All Rights Reserved.: xmerl | 33

xmerl_sax_parser

Exports

file(Filename, Options) -> Result
Types:

Filename = string()

Options = [option()]

Result = {ok, EventState, Rest} |

 {Tag, Location, Reason, EndTags, EventState}

Rest = unicode_binary() | latin1_binary()

Tag = atom() (fatal_error, or user defined tag)

Location = {CurrentLocation, EntityName, LineNo}

CurrentLocation = string()

EntityName = string()

LineNo = integer()

EventState = term()

Reason = term()

Parse file containing an XML document. This functions uses a default continuation function to read the file in blocks.

stream(Xml, Options) -> Result
Types:

Xml = unicode_binary() | latin1_binary() | [unicode_char()]

Options = [option()]

Result = {ok, EventState, Rest} |

 {Tag, Location, Reason, EndTags, EventState}

Rest = unicode_binary() | latin1_binary() | [unicode_char()]

Tag = atom() (fatal_error or user defined tag)

Location = {CurrentLocation, EntityName, LineNo}

CurrentLocation = string()

EntityName = string()

LineNo = integer()

EventState = term()

Reason = term()

Parse a stream containing an XML document.

The callback interface is based on that the user sends a fun with the correct signature to the parser.

Exports

Module:ContinuationFun(State) -> {NewBytes, NewState}
Types:

State = NewState = term()

NewBytes = binary() | list() (should be same as start input in stream/2)

This function is called whenever the parser runs out of input data. If the function can't get hold of more input an empty
list or binary (depends on start input in stream/2) is returned. Other types of errors is handled through exceptions.

34 | Ericsson AB. All Rights Reserved.: xmerl

xmerl_sax_parser

Use throw/1 to send the following tuple {Tag = atom(), Reason = string()} if the continuation function encounters
a fatal error. Tag is an atom that identifies the functional entity that sends the exception and Reason is a string that
describes the problem.

Module:EventFun(Event, Location, State) -> NewState
Types:

Event = event()

Location = {CurrentLocation, Entityname, LineNo}

CurrentLocation = string()

Entityname = string()

LineNo = integer()

State = NewState = term()

This function is called for every event sent by the parser. The error handling is done through exceptions. Use throw/1
to send the following tuple {Tag = atom(), Reason = string()} if the application encounters a fatal error. Tag is an atom
that identifies the functional entity that sends the exception and Reason is a string that describes the problem.

Ericsson AB. All Rights Reserved.: xmerl | 35

	xmerl
	xmerl User's Guide
	xmerl
	Introduction
	Features
	Overview

	xmerl User Interface Data Structure
	Errors

	Getting Started
	Example: Extracting Data From XML Content
	Example: Create XML Out Of Arbitrary Data
	Example: Transforming XML To HTML

	Reference Manual
	xmerl_scan
	accumulate_whitespace/4
	cont_state/1
	cont_state/2
	event_state/1
	event_state/2
	fetch_state/1
	fetch_state/2
	file/1
	file/2
	hook_state/1
	hook_state/2
	rules_state/1
	rules_state/2
	string/1
	string/2
	user_state/1
	user_state/2

	xmerl
	callbacks/1
	export/2
	export/3
	export_content/2
	export_element/2
	export_element/3
	export_simple/2
	export_simple/3
	export_simple_content/2
	export_simple_element/2

	xmerl_xs
	built_in_rules/2
	select/2
	value_of/1
	xslapply/2

	xmerl_eventp
	file_sax/4
	stream/2
	stream_sax/4
	string_sax/4

	xmerl_xpath
	string/2
	string/3
	string/5

	xmerl_xsd
	file2state/1
	format_error/1
	process_schema/1
	process_schema/2
	process_schemas/1
	process_schemas/2
	process_validate/2
	process_validate/3
	state2file/1
	state2file/2
	validate/2
	validate/3

	xmerl_sax_parser
	file/2
	stream/2
	Module:ContinuationFun/1
	Module:EventFun/3

